WO2019004602A1 - 리튬 이차전지용 양극 활물질 전구체의 제조 방법 - Google Patents

리튬 이차전지용 양극 활물질 전구체의 제조 방법 Download PDF

Info

Publication number
WO2019004602A1
WO2019004602A1 PCT/KR2018/005864 KR2018005864W WO2019004602A1 WO 2019004602 A1 WO2019004602 A1 WO 2019004602A1 KR 2018005864 W KR2018005864 W KR 2018005864W WO 2019004602 A1 WO2019004602 A1 WO 2019004602A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
active material
cathode active
solution
reactor
Prior art date
Application number
PCT/KR2018/005864
Other languages
English (en)
French (fr)
Inventor
정원식
최상순
박현아
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880005580.XA priority Critical patent/CN110139834B/zh
Priority to JP2019553257A priority patent/JP7009013B2/ja
Priority to US16/476,983 priority patent/US11183685B2/en
Publication of WO2019004602A1 publication Critical patent/WO2019004602A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00029Batch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a precursor of a cathode active material for a secondary battery, a method for producing a cathode active material for a lithium secondary battery using the precursor of the cathode active material prepared by the method, and a cathode and a lithium secondary battery for the lithium secondary battery comprising the cathode active material .
  • lithium secondary batteries having a high energy density and voltage, a long cycle life, and a low self-discharge rate are commercially available and widely used.
  • Lithium transition metal oxide is used as the cathode active material of the lithium secondary battery, and lithium cobalt oxide of LiCoO 2 having high action voltage and excellent capacity characteristic is mainly used.
  • LiCoO 2 has a poor thermal characteristic due to destabilization of crystal structure due to depolythium, and is expensive, it can not be used as a power source in fields such as electric vehicles and the like.
  • Lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compounds such as LiFePO 4
  • lithium nickel oxides such as LiNiO 2
  • research and development of lithium nickel oxide having a high reversible capacity of about 200 mAh / g and facilitating the realization of a large capacity battery have been actively studied.
  • LiNiO 2 has poor thermal stability as compared with LiCoO 2, and if an internal short circuit occurs due to external pressure or the like in a charged state, there is a problem that the cathode active material itself is decomposed to cause rupture and ignition of the battery.
  • NCM-based lithium oxide nickel-cobalt manganese-based lithium composite metal oxide substituted with Mn and Co
  • NCM-based lithium oxide nickel-cobalt manganese-based lithium composite metal oxide
  • Examples of the method for producing such a cathode active material include a method of preparing a cathode active material precursor using a continuous reactor (CSTR) and a method of producing a cathode active material precursor using a batch type reactor.
  • the continuous reactor (CSTR) is a system in which a raw material is charged and simultaneously a precursor formed by particles is discharged. In a batch system, a raw material is charged according to the volume of the reactor for a predetermined time and reacted, and the precursor is discharged after completion of the reaction .
  • the continuous-reactor (CSTR) method has advantages of easy control of the metal composition ratio.
  • the retention time and reaction time of the cathode active material precursors in the reactor There is a problem that a variation may occur, and the size and the composition of the generated particles are also uneven.
  • a first technical object of the present invention is to provide a method for producing a precursor of a cathode active material for a lithium secondary battery using a batch type reactor, To provide a method capable of not only producing a cathode active material precursor having uniform particle surfaces but also significantly increasing the productivity of the cathode active material precursor.
  • a second object of the present invention is to provide a method for producing a cathode active material having a uniform particle size and a surface.
  • a third object of the present invention is to provide a positive electrode and a lithium secondary battery comprising the above-mentioned positive electrode active material.
  • the present invention relates to a method for producing a precursor of a cathode active material for a lithium secondary battery using a batch type reactor, wherein a first transition metal-containing solution, a second transition metal-containing solution, an ammonium ion- A step of injecting a reaction solution containing a basic aqueous solution into the batch reactor while continuously discharging a part of the reaction solution inside the reactor to the outside of the reactor when the batch reactor becomes full, wherein the initial charge flow rate of the reaction solution charged into the reaction vessel meets the following formula 1 and the pH in the batch reactor satisfies the following formula 2:
  • V is the volume of a batch reactor
  • t is the total reaction time (in minutes)
  • ⁇ 1 a first transition metal-containing solution and a second transition metal-containing total initial input flow rate (mL / min) of a solution
  • ⁇ 2 contains an ammonium ion (ML / min)
  • v 3 is the initial input flow rate (mL / min) of the basic aqueous solution.
  • pH t1 is the pH in the reactor at time t1
  • pH 0 is the initial pH in the reactor
  • [Ni] 0 is the molar concentration of Ni in the initially introduced transition metal containing solution
  • [Ni] t1 is the transition metal content The molar concentration of Ni in solution.
  • the present invention also provides a method for preparing a cathode active material for a lithium secondary battery, comprising mixing the cathode active material precursor prepared by the method for producing a cathode active material precursor for a lithium secondary battery with a lithium-containing raw material and then calcining.
  • the present invention also provides a positive electrode and a lithium secondary battery for a lithium secondary battery comprising the positive electrode active material produced by the method for producing the positive electrode active material.
  • the present invention it is possible to manufacture a precursor of a cathode active material for a lithium secondary battery, which is more easily controlled in particle size than a conventional batch method and has a uniform particle size,
  • the productivity of the cathode active material can be remarkably increased by solving the problem of low productivity.
  • the precursor particles of the cathode active material having a uniform surface can be produced without any defects such as nano flakes on the surface.
  • FIG. 1 is a schematic view of an apparatus for producing a cathode active material precursor according to an embodiment of the present invention.
  • FIGS 2A and 2B are SEM photographs of the cathode active material precursor prepared in Example 1 and Comparative Example 2, respectively.
  • the present inventors have made it possible to produce a precursor of a cathode active material by preparing a precursor of a cathode active material using a batch type reactor and controlling the flow rate of the reaction solution and the pH in the reactor to satisfy specific conditions, And the productivity of the precursor of the cathode active material can be drastically increased, thereby completing the present invention.
  • the cathode active material precursor is prepared by using a batch type reactor, the reaction conditions such as the concentration of the reactants in the reactor, the temperature and the residence time are the same as those of the continuous reactor (CSTR)
  • CSTR continuous reactor
  • a method for producing a precursor of a cathode active material for a lithium secondary battery is a method for producing a precursor of a cathode active material for a lithium secondary battery, the method comprising the steps of: Injecting the reaction solution while continuously discharging a part of the reaction solution inside the reactor to the outside of the reactor when the batch type reactor is full,
  • the pH in the batch type reactor satisfies the following formula (2).
  • V is the volume of a batch reactor
  • t is the total reaction time (in minutes)
  • a first transition metal-containing solution and a second total initial input flow rate (mL / min) of a transition metal-containing solution
  • ⁇ 2 is the initial input flow rate (mL / min) of the ammonium ion-containing solution
  • v 3 is the initial input flow rate (mL / min) of the basic aqueous solution.
  • pH t1 is pH
  • pH 0 in the reactor at the time t1 is the initial pH in the reactor
  • [Ni] 0 is Ni molar concentration in the containing transition flowing into the initial metal solution
  • [Ni] t1 at time t1 The molar concentration of Ni in the incoming transition metal-containing solution.
  • a reaction solution containing a first transition metal-containing solution, a second transition metal-containing solution, an ammonium ion-containing solution, and a basic aqueous solution is introduced into a batch type reactor.
  • the initial injection flow rate of the reaction solution containing the first transition metal-containing solution, the second transition metal-containing solution, the ammonium ion-containing solution and the basic aqueous solution in the batch reactor satisfies the following formula 1:
  • V is the volume of a batch reactor
  • t is the total reaction time (in minutes)
  • a first transition metal-containing solution and a second total initial input flow rate (mL / min) of a transition metal-containing solution
  • ⁇ 2 is the initial input flow rate (mL / min) of the ammonium ion-containing solution
  • v 3 is the initial input flow rate (mL / min) of the basic aqueous solution.
  • the reactor can become a full tank within about 1.5 to 10 times faster than the time it takes to fill the reactor into the reactor, and more cathode active material precursor particle nuclei can be produced in the same size reactor in a short time.
  • the productivity may deteriorate. If the initial feed flow rate is higher than the range of the formula 1, the particle nucleation can not be stably performed and the particle size distribution control may be difficult.
  • first transition metal-containing solution and the second transition metal-containing solution each independently comprise a cation of at least one transition metal selected from the group consisting of nickel, manganese, and cobalt, wherein the first transition metal-
  • concentration of the cation of the transition metal contained in the transition metal-containing solution may be different.
  • the first transition metal containing solution may comprise 50 to 98 mole percent nickel, 1 to 40 mole percent manganese, and 1 to 40 mole percent cobalt
  • the second transition metal containing solution comprises 20 to 80 moles % Nickel, 1 to 60 mol% manganese, and 1 to 60 mol% cobalt
  • the first transition metal-containing solution may be a solution having a higher nickel cation concentration than the second transition metal-containing solution.
  • the first transition metal containing solution may contain from 50 mol% to 98 mol%, preferably from 60 mol% to 98 mol%, and from 70 mol% to 98 mol%, of the nickel salt relative to the total transition metal salt
  • the second transition metal containing solution may contain from 20 mol% to 80 mol%, preferably from 40 mol% to 80 mol%, and 50 mol%, of the nickel salt relative to the total transition metal salt, To 80 mol%, and more preferably from 60 mol% to 80 mol%.
  • the first transition metal-containing solution may be a solution in which the concentration of transition metal cations of at least one of manganese and cobalt is lower than that of the second transition metal-containing solution.
  • the first transition metal-containing solution may contain from 1 mol% to 40 mol%, preferably from 1 mol% to 30 mol%, of manganese salt and / or cobalt salt to the total transition metal salt,
  • the transition metal-containing solution may contain 1 mol% to 60 mol%, preferably 10 mol% to 50 mol% of manganese salt and / or cobalt salt with respect to the total transition metal salt.
  • the precursor having a concentration gradient of the transition metal in the particles can be formed by controlling the charging ratio of the first transition metal-containing solution and the second transition metal-containing solution having different concentrations as described above.
  • the input flow rate of the first transition metal-containing solution can be gradually decreased, and the input flow rate of the second metal-containing solution can be complementarily increased gradually to form a concentration gradient.
  • the mixing ratio of the first transition metal and the second transition metal is gradually changed from 100 vol%: 0 vol% to 0 vol%: 100 vol%
  • the first transition metal containing solution and the second transition Containing solution may be mixed to form cathode active material precursor particles having a concentration gradient that gradually changes from the center of the particle to the surface.
  • the first transition metal containing solution and the second transition metal containing solution may each independently include an acetate salt, a nitrate salt, a sulfate salt, a halide, a sulfide, a hydroxide, an oxide or an oxyhydroxide of the transition metals, And is not particularly limited as long as it can be used.
  • the cobalt (Co) is a transition Co (OH) a metal-containing solution 2, CoOOH, Co (OCOCH 3 ) 2 and 4H 2 O, Co (NO 3 ) 2 and 6H 2 O or Co (SO 4 ) 2 .7H 2 O, and at least one of them may be used.
  • the nickel (Ni) is added to the transition metal-containing solution by adding Ni (OH) 2 , NiO, NiOOH, NiCO 3 , 2Ni (OH) 2 .4H 2 O, NiC 2 O 2 .2H 2 O, Ni (NO 3 ) 2 .6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel salts or nickel halides And at least one or more of them may be used.
  • the manganese (Mn) may be a manganese oxide such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 in the transition metal-containing solution; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganous dicarboxylate, manganese citrate and manganese fatty acid; Oxyhydroxide, and manganese chloride, and at least one of them may be used.
  • first transition metal-containing solution and / or the second transition metal-containing solution may further include a metal element (M) other than nickel, manganese, and cobalt.
  • M metal element
  • the M may include at least one or more selected from the group consisting of W, Mo, Cr, Al, Zr, Ti, Mg, Ta and Nb.
  • the first transition metal-containing solution and / or the second transition metal-containing solution further contains the metal element (M)
  • the first transition metal-containing solution and / or the second transition metal-containing solution further contains the metal element (M)
  • the first transition metal-containing solution and / or the second transition metal-containing raw material may be further optionally added.
  • metal element (M) -containing raw material at least one selected from the group consisting of acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide including metal element (M) may be used.
  • metal element (M) is W, tungsten oxide or the like may be used.
  • the basic aqueous solution may contain at least one or more selected from the group consisting of NaOH, KOH and Ca (OH) 2.
  • the solvent include water or an organic solvent (specifically, alcohol or the like) A mixture of water may be used.
  • the concentration of the basic aqueous solution may be 2M to 10M, preferably 2.5M to 3.5M.
  • concentration of the basic aqueous solution is 2M to 10M, precursor particles of uniform size can be formed, and the time for forming the precursor particles can be fast and the yield can be also excellent.
  • the ammonium ion-containing solution may include at least one selected from the group consisting of NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 and NH 4 CO 3 .
  • a mixture of water and an organic solvent specifically, alcohol or the like which can be mixed with water uniformly and water can be used as the solvent.
  • the first transition metal-containing solution, the second transition metal-containing solution, the ammonium ion-containing solution, and the basic aqueous solution may be separately introduced into the reactor, and some or all of the solutions may be premixed before the reactor is charged, .
  • the first transition metal-containing solution and the second transition metal-containing solution are mixed using a static mixer or the like and then introduced into a reactor, and the ammonium ion-containing solution and the basic aqueous solution are directly introduced into the reactor, Can be input.
  • the batch reactor can be a complete solution, which means that the volume of the introduced solutions occupies 90% to 100% of the batch reactor volume.
  • the discharge flow rate of the reaction solution may be the same as the input flow rate of the reaction solution.
  • the flow rate of the reaction solution is higher than the flow rate of the reaction solution, continuous reaction may not be possible due to an increase in the level of the reactor. If the flow rate of the reaction solution is slower than the flow rate of the reaction solution, Continuous reactions may be impossible due to a decrease in water level and an increase in solids content in the solution.
  • the discharge of the reaction solution can be performed, for example, by using a tube including a filter. Due to the filter included in the tube, the cathode active material precursor particles are prevented from being discharged to the outside of the reactor, and only the reaction solution is selectively discharged outside the reactor.
  • the method may further comprise a step of back blowing the tube at a predetermined time when the reaction solution is discharged.
  • the cathode active material precursor particles intercalate into the filter contained in the tube, so that the filter can be clogged.
  • the cathode active material precursor particles sandwiched by the filter can be blown into the reactor by injecting distilled water or nitrogen into the tube at a predetermined time interval in a direction opposite to the discharge direction of the reaction solution and then blowing back the tube.
  • the pH in the batch reactor may be controlled by the Ni composition contained in the transition metal aqueous solution injected into the reactor or the flow rate of the basic aqueous solution.
  • a mixed solution obtained by mixing a first transition metal-containing solution and a second transition metal-containing solution through a static mixer is introduced into a batch type reactor, and the pH in the batch type reactor is adjusted to the mixed solution And may be controlled by the contained Ni composition.
  • the pH in the batch type reactor is adjusted to the mixed solution And may be controlled by the contained Ni composition.
  • the pH may be 11.5 to 12, preferably 11.6 to 11.8, and nuclei of the cathode precursor particles are generated .
  • the pH of the reactor is adjusted to 10.5 to 11.5, preferably 11 to 11.4, .
  • the pH in the batch type reactor satisfies the following formula (2).
  • pH t1 is pH
  • pH 0 in the reactor at the time t1 is the initial pH in the reactor
  • [Ni] 0 is Ni molar concentration in the containing transition flowing into the initial metal solution
  • [Ni] t1 at time t1 The molar concentration of Ni in the incoming transition metal-containing solution.
  • the pH may be close to pH 0 - ⁇ ([Ni] 0 - [Ni] t1 ) x 0.02 ⁇ .
  • the pH in the batch type reactor may be controlled by the input flow rate of the basic aqueous solution, and the input flow rate of the basic aqueous solution satisfies the following formula (3).
  • ⁇ 3 and t 2 are the input flow rate of the basic aqueous solution at time t 2
  • ⁇ 3 , 0 is the initial input flow rate of the basic aqueous solution
  • [Ni] 0 is the Ni molar concentration in the initially introduced transition metal-
  • [Ni] t2 is the molar concentration of Ni in the transition metal-containing solution introduced at time t2.
  • the pH of the cathode active material precursor as described above and the nucleation conditions of the precursor of the cathode active material and the growth conditions it is found that when the composition of Ni is 80 to 99 mol%, that is, the pH is 11.5 to 12, Only the formation of nuclei is performed, and thereafter the particles are grown only when the composition of Ni is less than 40 to 80 mol%, that is, at a pH of 10.5 to 11.5, the final size of the cathode active material precursor obtained is uniform in particle size and shape, A cathode active material precursor can be produced.
  • the cathode active material precursor particles are prepared by varying the Ni composition by changing the Ni composition as in the present invention, a precursor of the cathode active material having uniform surface is obtained without growth of nano-flakes or the like on the surface of the particles in the grain growth step .
  • FIG. 1 schematically shows an apparatus for manufacturing a cathode active material precursor according to an embodiment of the present invention.
  • the cathode active material precursor according to the present invention comprises a container having a first transition metal-containing solution and a container containing a second transition metal-containing solution respectively connected to a static mixer, A batch type reactor is connected to the outlet side of the static mixer, a vessel containing the ammonium ion-containing solution and a vessel containing the basic aqueous solution are connected to the batch type reactor, respectively.
  • the first transition metal-containing solution and the second transition metal-containing solution are mixed using a static mixer and then introduced into the reactor, and the ammonium ion-containing solution and the basic aqueous solution are directly introduced into the reactor.
  • a vacuum pump connected to a tube including a filter is operated to discharge a part of the reaction solution inside the reactor to the outside of the reactor through the tube, and the reaction solution is continuously introduced into the reactor, A cathode active material precursor can be produced.
  • the operation of the vacuum pump connected to the tube is stopped at predetermined time intervals, and the reverse direction of the reaction solution (batch- And then discharging the reaction solution to the outside of the reactor by blowing a small amount of distilled water or nitrogen into the reactor and blowing the precursor particles of the cathode active material sandwiched by the filter into the reactor.
  • the yields of the precursor particles of the cathode active material prepared by the method of producing the precursor of the cathode active material according to an embodiment of the present invention were compared with those of the case where the precursor particles of the cathode active material were prepared by using a batch- , It can be improved by 200% to 1100%.
  • the final positive electrode active material precursor particles are produced (D 90 -D 10) / D 50 is to be produced uniform particles of 0.6 to 0.9, preferably from 0.7 to 0.9.
  • the particle size distributions D 10 , D 50 , and D 90 of the cathode active material precursor particles can be defined as particle diameters based on 10%, 50%, and 90% of the particle diameter distribution, respectively.
  • the particle size distribution of the cathode active material precursor particles can be measured using, for example, a laser diffraction method.
  • the particle size distribution of the cathode active material is obtained by dispersing particles of a cathode active material in a dispersion medium, introducing the particles into a commercially available laser diffraction particle size analyzer (for example, Microtrac MT 3000), irradiating ultrasound of about 28 kHz at an output of 60 W ,
  • a commercially available laser diffraction particle size analyzer for example, Microtrac MT 3000
  • the particle size distribution on the basis of 10%, 50% and 90% of the particle diameter distribution in the measuring apparatus can be calculated.
  • the present invention provides a method for producing a cathode active material for a lithium secondary battery, comprising mixing the cathode active material precursor prepared as described above with a lithium-containing raw material and then calcining.
  • lithium-containing raw material for example, lithium carbonate (Li 2 CO 3 ) or lithium hydroxide (LiOH) can be used.
  • the cathode active material precursor and the lithium-containing raw material are mixed at a molar ratio of 1: 1 to 1: 1.15 can do.
  • the capacity of the cathode active material to be produced may decrease.
  • the lithium-containing raw material exceeds the above range, the particles are sintered during the firing process, And deterioration of capacity and separation of cathode active material particles after firing (induction of positive electrode active material mixture) may occur.
  • the firing may be performed at a temperature of 800 ° C to 1000 ° C. If the calcination temperature is less than 800 ° C, the raw material may remain in the particles due to insufficient reaction, which may deteriorate the high-temperature stability of the battery, deteriorate the bulk density and crystallinity, and may deteriorate the structural stability. On the other hand, if the firing temperature exceeds 1000 ° C, non-uniform growth of particles may occur and the particle size may become too large to reduce the amount of particles that can be contained per unit area, so that the volume capacity of the battery may be lowered. On the other hand, considering the control of the particle size of the produced cathode active material, the capacity, the stability, and the reduction of lithium-containing by-products, the firing temperature may be more preferably 850 to 950 ° C.
  • the calcination may be performed for 5 to 35 hours. If the calcination time is less than 5 hours, the reaction time may be too short to obtain a highly crystalline cathode active material. If the calcination time exceeds 35 hours, the particle size may become excessively large and the production efficiency may be lowered.
  • the present invention also provides a positive electrode for a lithium secondary battery comprising the positive electrode active material produced by the above-described method.
  • the positive electrode includes a positive electrode collector, and a positive electrode active material layer disposed on at least one side of the positive electrode collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium, , Silver or the like may be used.
  • the cathode current collector may have a thickness of 3 to 500 ⁇ , and fine unevenness may be formed on the surface of the current collector to increase the adhesive force of the cathode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material.
  • the cathode active material may be contained in an amount of 80 to 99% by weight, more specifically 85 to 98% by weight based on the total weight of the cathode active material layer. When included in the above content range, excellent capacity characteristics can be exhibited.
  • the conductive material is used for imparting conductivity to the electrode.
  • the conductive material can be used without particular limitation as long as it has electron conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And polyphenylene derivatives. These may be used alone or in admixture of two or more.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose ), Starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, and various copolymers thereof.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the cathode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, the cathode active material and optionally the binder and the conductive material may be dissolved or dispersed in a solvent to prepare a composition for forming a cathode active material layer on the cathode current collector, followed by drying and rolling. At this time, the types and contents of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent examples include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and the like. Water and the like, and one kind or a mixture of two or more kinds can be used.
  • the amount of the solvent to be used is sufficient to dissolve or disperse the cathode active material, the conductive material and the binder in consideration of the coating thickness of the slurry and the yield of the slurry, and then to have a viscosity capable of exhibiting excellent thickness uniformity Do.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling from the support onto the positive electrode collector.
  • an electrochemical device including the positive electrode can be manufactured.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, it may be a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode disposed opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, as described above.
  • the lithium secondary battery may further include a battery container for storing the positive electrode, the negative electrode and the electrode assembly of the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, sintered carbon, Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode collector may have a thickness of 3 to 500 ⁇ , and similarly to the positive electrode collector, fine unevenness may be formed on the surface of the collector to enhance the binding force of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon;
  • Metal compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; SiO ⁇ (0 ⁇ ⁇ 2 ), SnO 2, vanadium oxide, which can dope and de-dope a lithium metal oxide such as lithium vanadium oxide;
  • a composite containing the metallic compound and the carbonaceous material such as Si-C composite or Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the carbon material may be both low-crystalline carbon and high-crystallinity carbon.
  • Examples of the low-crystalline carbon include soft carbon and hard carbon.
  • Examples of the highly crystalline carbon include natural graphite, artificial graphite, artificial graphite or artificial graphite, Kish graphite graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar coke derived cokes).
  • binder and the conductive material may be the same as those described above for the anode.
  • the negative electrode active material layer may be formed by applying and drying a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a negative electrode active material on a negative electrode collector and optionally a binder and a conductive material in a solvent, Casting the composition on a separate support, and then peeling the support from the support to laminate a film on the negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a moving path of lithium ions.
  • the separator can be used without any particular limitation as long as it is used as a separator in a lithium secondary battery. Particularly, It is preferable to have a low resistance and an excellent ability to impregnate the electrolyte.
  • porous polymer films such as porous polymer films made of polyolefin-based polymers such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers, May be used.
  • a nonwoven fabric made of a conventional porous nonwoven fabric for example, glass fiber of high melting point, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may be optionally used as a single layer or a multilayer structure.
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in the production of a lithium secondary battery. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without limitation as long as it can act as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate,? -Butyrolactone and?
  • Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate PC) and the like; Alcohol solvents such as ethyl alcohol and isopropyl alcohol; R-CN (R is a linear, branched or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolane may be used.
  • Ether solvents such as dibutyl ether or tetrahydrofuran
  • Ketone solvents such as cyclohex
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate) having a high ionic conductivity and a high dielectric constant, for example, such as ethylene carbonate or propylene carbonate, For example, ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate
  • ethylene carbonate or propylene carbonate for example, ethylene carbonate or propylene carbonate
  • ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt can be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt LiPF 6, LiClO 4, LiAsF 6, LiBF 4, LiSbF 6, LiAl0 4, LiAlCl 4, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiN (C 2 F 5 SO 3) 2 , LiN (C 2 F 5 SO 2) 2, LiN (CF 3 SO 2) 2.
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 may be used.
  • the concentration of the lithium salt is preferably in the range of 0.1 to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte has an appropriate conductivity and viscosity, so that it can exhibit excellent electrolyte performance and the lithium ion can effectively move.
  • the electrolyte may contain, for example, a haloalkylene carbonate-based compound such as difluoroethylene carbonate or the like, pyridine, triethanolamine, or the like for the purpose of improving lifetime characteristics of the battery, Ethyl phosphite, triethanol amine, cyclic ether, ethylenediamine, glyme, hexametriamide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, At least one additive such as benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, benzyl alcohol, The additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, it can be used in portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles hybrid electric vehicle (HEV)).
  • HEV hybrid electric vehicles hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same.
  • the battery module or the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Or a power storage system, as shown in FIG.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • the lithium secondary battery according to the present invention can be used not only in a battery cell used as a power source of a small device but also as a unit cell in a middle- or large-sized battery module including a plurality of battery cells.
  • NiSO 4 CoSO 4, MnSO 4
  • Nickel Cobalt: the molar ratio of manganese to 90: 5: a mixture in water in an amount such that 5 at the same time preparing a first transition metal-containing solution of 2M concentration, NiSO 4, CoSO 4 , And MnSO 4 were mixed in water in an amount such that the molar ratio of nickel: cobalt: manganese was 60:20:20, to prepare a 2M-concentration second transition metal-containing solution.
  • a container containing the first and second transition metal-containing solutions was connected to a static mixer, and a batch type reactor 20L was connected to the outlet side of the appropriate mixer. Further, an aqueous solution of NaOH at a concentration of 25 wt% and an aqueous solution of NH 4 OH at a concentration of 15 wt% were prepared and connected to the batch reactor, respectively.
  • the first transition metal-containing solution and the second transition metal-containing solution were gradually reduced from 100% by volume to 0% by volume in the whole reaction mixture through the static mixer, and the second transition metal-containing solution in the flow is a mixed metal solution was 12mL / min., while mixing of the entire reaction increased from 0% by volume to 100% by volume gradually, 7.5mL / min of NaOH solution, NH 4 OH aqueous solution to a rate of 7.5mL / min each was added to a batch reactor and reacted for 30 minutes to form nuclei of nickel manganese cobalt composite metal hydroxide at pH 11.8.
  • the cathode active material precursor was prepared by reacting the NaOH aqueous solution for 30 hours while changing the flow rate as shown in Table 1 below.
  • the reaction solution in which the reaction was completed was discharged at the same flow rate as the input flow rate while maintaining the input flow rate of the reaction solution.
  • the flow rate of the mixed metal solution of the first transition metal-containing solution and the second transition metal-containing solution was 12 mL / min
  • the flow rate of the NH 4 OH aqueous solution was 7.5 mL / min.
  • the concentration and pH of Ni were measured at 10 hours, 20 hours, and 30 hours after the nucleation of the particles, respectively. The measurement results are shown in Table 1 below.
  • the mixed metal solution obtained by mixing the first transition metal-containing solution and the second transition metal-containing solution through a static mixer was fed at a rate of 40 mL / min, an aqueous NaOH solution of 10 mL / min, and an aqueous NH 4 OH solution at a rate of 10 mL / And the mixture was reacted for 30 minutes to form particle nuclei of the nickel manganese cobalt composite metal hydroxide.
  • the cathode active material precursor was prepared by reacting the NaOH aqueous solution for 30 hours while changing the flow rate as shown in Table 1 below. Except that the flow rate of the mixed metal solution of the first transition metal-containing solution and the second transition metal-containing solution was 40 mL / min and the flow rate of the NH 4 OH aqueous solution was 10 mL / min during the reaction time To prepare a cathode active material precursor. Further, the concentration and pH of Ni were measured at 10 hours, 20 hours, and 30 hours after the nucleation of the particles, respectively. The measurement results are shown in Table 1 below.
  • the mixed transition metal-containing solution obtained by mixing the first transition metal-containing solution and the second transition metal-containing solution through a static mixer was placed at a rate of 4 mL / min, a NaOH aqueous solution at 1 mL / min, and an NH 4 OH aqueous solution at a rate of 1 mL / min Type reactor to form the nuclei of nickel manganese cobalt composite metal hydroxide.
  • the precursor of the cathode active material was prepared in the same manner as in Example 1, and the concentration and pH of Ni were confirmed at 10 hours, 20 hours, and 30 hours after the nucleation of the particles as shown in Table 1, respectively.
  • the cathode active material Precursor except that a single composition of 80: 10: 10 was used as the transition metal-containing solution, and the reaction was carried out while maintaining the pH in the reactor constant at pH 11.4 throughout the reaction, the cathode active material Precursor.
  • Example 1 In order to confirm the particle size distribution of the cathode active material precursor prepared in Examples 1 and 2 and Comparative Example 1, the particle size of the cathode active material precursor produced in Example 1 and Comparative Example 1 was measured using a Horiba LA 950V2 particle size analyzer , And the results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 배치식 반응기를 이용하되, 반응 용액의 투입 유량과 반응기 내의 pH가 특정 조건을 만족하도록 제어함으로써 입도가 균일하고, 표면 특성이 우수한 양극 활물질 전구체를 얻을 수 있을 뿐 아니라, 양극 활물질 전구체의 생산성을 획기적으로 증가시킬 수 있는 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 상기 리튬 이차전지용 양극 활물질 전구체의 제조 방법에 의해 제조된 양극 활물질 전구체를 이용한 리튬 이차전지용 양극 활물질의 제조 방법, 및 상기 리튬 이차전지용 양극 활물질의 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.

Description

리튬 이차전지용 양극 활물질 전구체의 제조 방법
관련출원과의 상호인용
본 출원은 2017년 6월 29일자 한국특허출원 제2017-0082711호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극 활물질 전구체의 제조방법, 상기 방법에 의해 제조된 양극 활물질 전구체를 이용한 리튬 이차전지용 양극 활물질의 제조 방법, 및 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 산화물이 주로 사용되었다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.
LiCoO2를 대체하기 위한 재료로서, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역 용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 산화물에 대한 연구 및 개발이 보다 활발히 연구되고 있다. 그러나, LiNiO2는 LiCoO2와 비교하여 열안정성이 나쁘고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있다.
이에 따라 LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, 니켈의 일부를 코발트로 치환한 LiNi1 - αCoαO2(α=0.1~0.3) 또는, 니켈의 일부를 Mn과 Co으로 치환한 니켈코발트망간계 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 산화물'이라 함)이 개발되었다. 또한, 출력 특성이 우수하면서도 금속 원소들의 용출 등에 따른 안정성 문제를 해결하기 위해 금속 조성의 농도 구배를 갖는 리튬 전이금속 산화물도 제안되었다.
이러한 양극 활물질을 제조하는 방법으로는 대표적으로 연속 반응기(CSTR)를 사용하여 양극 활물질 전구체를 제조하는 방식과 배치(batch)식 반응기를 사용하여 양극 활물질 전구체를 제조하는 방식을 들 수 있다. 연속 반응기(CSTR)는 원료를 투입하여 공침하면서 동시에 입자로 형성된 전구체를 배출하는 방식이며, 배치(batch)식은 일정 시간 반응기 부피에 맞게 원료를 투입하여 반응시키고, 반응 종료 후 전구체를 배출하는 방식이다.
일반적으로 연속 반응기(CSTR) 방식은 금속 조성비의 조절이 용이한 장점이 있으나, 원료 투입과 생성물 배출이 동시에 연속적으로 이루어지므로 반응기 내에서 생성되는 양극 활물질 전구체들의 반응기 내에서의 체류 시간 및 반응 시간에 편차가 존재할 수 있으며, 그에 따라 생성되는 입자의 크기 및 성분 등에도 불균일이 생기는 문제점이 있다.
이에, 입자 크기 제어가 용이하며, 입도가 균일한 양극 활물질 전구체를 제조할 수 있는 배치(batch)식 방식을 채택하는 경향이 있으나, 배치(batch)식 반응기를 사용할 경우, 연속 반응기(CSTR) 방식에 비하여 생산성이 현저히 저하되는 문제가 있었다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제 1 기술적 과제는 배치(batch)식 반응기를 사용하여 리튬 이차전지용 양극 활물질 전구체를 제조하는 방법에 있어서, 입자 크기 제어가 용이하고, 입도가 균일하며, 입자의 표면이 균일한 양극 활물질 전구체를 제조할 수 있을 뿐만 아니라, 상기 양극 활물질 전구체의 생산성을 현저히 증가시킬 수 있는 방법을 제공하는 것이다.
본 발명의 제 2 기술적 과제는 균일한 입도 및 표면을 가지는 양극 활물질의 제조 방법을 제공하는 것이다.
또한, 본 발명의 제 3 기술적 과제는 상기에서 제조된 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공하는 것이다.
본 발명은 배치(batch)식 반응기를 사용하여 리튬 이차전지용 양극활물질 전구체를 제조하는 방법에 있어서, 상기 배치식 반응기에 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액을 포함하는 반응 용액을 투입하되, 상기 배치식 반응기가 만액이 되면 반응기 내부의 반응 용액 중 일부를 반응기 외부로 연속적으로 배출하면서 상기 반응 용액을 투입하는 단계를 포함하며, 상기 배치식 반응기에 투입되는 상기 반응 용액의 초기 투입 유량이 하기 식 1을 만족하고, 상기 배치식 반응기 내의 pH가 하기 식 2를 만족하는 것인, 리튬 이차전지용 양극활물질 전구체의 제조 방법을 제공한다:
[식 1]
1.5 x V/t ≤ υ123 ≤ 10 x V/t
상기 식 1에서,
V는 배치식 반응기의 부피, t는 전체 반응 시간(분), υ1은 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액 전체의 초기 투입 유량(mL/분), υ2는 암모늄 이온 함유 용액의 초기 투입 유량(mL/분), 및 υ3은 염기성 수용액의 초기 투입 유량(mL/분)임.
[식 2]
pH0-{([Ni]0-[Ni]t1) x 0.05} ≤ pHt1 ≤ pH0-{([Ni]0-[Ni]t1) x 0.005}
상기 식 2에서,
pHt1는 t1 시간에서 반응기 내의 pH, pH0은 반응기 내의 초기 pH, [Ni]0는 초기에 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t1는 t1 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
또한, 본 발명은 상기 리튬 이차전지용 양극 활물질 전구체의 제조 방법에 의해 제조된 양극 활물질 전구체를 리튬 함유 원료 물질과 혼합한 후 소성하는 단계를 포함하는, 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
또한, 본 발명은 상기 양극 활물질의 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 기존의 배치(batch)식 방식으로 제조할 때보다 입자 크기 제어가 더 용이하고, 입도가 균일한 리튬 이차전지용 양극 활물질 전구체를 제조할 수 있으며, 기존에 배치(batch)식 방식의 단점이었던 생산성이 낮은 문제를 해결하여 양극 활물질의 생산성을 현저히 증가시킬 수 있다.
더불어, 본원발명과 같이 배치식 반응기 내의 pH를 조절함으로써 표면에 나노 플레이크 등의 결함 없이 균일한 표면을 가지는 양극 활물질 전구체 입자를 제조할 수 있다.
도 1은 본 발명의 일 실시예에 따른 양극 활물질 전구체의 제조 장치를 개략적으로 나타낸 도면이다.
도 2a 및 도 2b는 각각 실시예 1 및 비교예 2에서 제조한 양극 활물질 전구체의 표면 SEM 사진이다.
[부호의 설명]
10: 정적 혼합기(static mixer)
100: 배치(batch)식 반응기
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명자들은 배치식 반응기를 이용하여 양극 활물질 전구체를 제조하되, 반응 용액의 투입 유량과 반응기 내의 pH가 특정 조건을 만족하도록 제어함으로써, 입도가 균일하고, 표면 특성이 우수한 양극 활물질 전구체를 얻을 수 있을 뿐 아니라, 양극 활물질 전구체의 생산성을 획기적으로 증가시킬 수 있음을 알아내고 본 발명을 완성하였다.
본 발명은 배치(batch)식 반응기를 사용하여 양극 활물질 전구체를 제조함에 따라 연속 반응기(CSTR)에 비하여 반응기 내의 반응물의 농도, 온도 및 체류시간 등의 반응 조건이 동일하기 때문에 상대적으로 편차 없는 균일한 생성물을 제조할 수 있다.
구체적으로는, 본 발명의 리튬 이차전지용 양극 활물질 전구체의 제조 방법은, 배치(batch)식 반응기에 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액을 포함하는 반응 용액을 투입하되, 상기 배치식 반응기가 만액이 되면 반응기 내부의 반응 용액 중 일부를 반응기 외부로 연속적으로 배출하면서 상기 반응 용액을 투입하는 단계를 포함하며,
상기 배치식 반응기에 투입되는 상기 반응 용액의 초기 투입 유량이 하기 식 1을 만족하고,
상기 배치식 반응기 내의 pH가 하기 식 2를 만족하는 것이다.
[식 1]
1.5 x V/t ≤ υ123 ≤ 10 x V/t
상기 식 1에서, V는 배치식 반응기의 부피, t는 전체 반응 시간(분), υ1은 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액 전체의 초기 투입 유량(mL/분), υ2는 암모늄 이온 함유 용액의 초기 투입 유량(mL/분), 및 υ3은 염기성 수용액의 초기 투입 유량(mL/분)임.
[식 2]
pH0-{([Ni]0-[Ni]t1) x 0.05} ≤ pHt1 ≤ pH0-{([Ni]0-[Ni]t1) x 0.005}
상기 식 2에서, pHt1는 t1 시간에서 반응기 내의 pH, pH0은 반응기 내의 초기 pH, [Ni]0는 초기에 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t1는 t1 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
이하, 본 발명에 따른 양극 활물질 전구체의 제조 방법을 보다 상세히 설명한다.
먼저, 배치식 반응기에 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액을 포함하는 반응 용액을 투입한다.
이때, 상기 배치식 반응기에 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액을 포함하는 반응 용액의 초기 투입 유량은 하기 식 1을 만족하는 것이다:
[식 1]
1.5 x V/t ≤ υ123 ≤ 10 x V/t
상기 식 1에서, V는 배치식 반응기의 부피, t는 전체 반응 시간(분), υ1은 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액 전체의 초기 투입 유량(mL/분), υ2는 암모늄 이온 함유 용액의 초기 투입 유량(mL/분), 및 υ3은 염기성 수용액의 초기 투입 유량(mL/분)임.
구체적으로, 상기 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액 및 염기성 수용액을 포함하는 초기 반응 용액을 배치식 반응기에 상기 식 1을 만족하는 초기 투입 유량으로 투입하면, 기존에 반응기를 채우는데 걸리는 시간보다 약 1.5배 내지 10배 빠른 시간 내에 반응기가 만액이 될 수 있고, 동일 크기의 반응기에서 단시간 내에 더 많은 양극 활물질 전구체 입자 핵을 생성할 수 있다.
상기 반응 용액의 초기 투입 유량이 상기 식 1의 범위보다 느릴 경우, 생산성이 저하될 수 있으며, 상기 식 1 범위보다 빠를 경우 안정적으로 입자 핵 생성이 되지 않으며 입도 분포 제어가 어려울 수 있다.
상기 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액은 각각 독립적으로 니켈, 망간, 코발트로 이루어진 군에서 선택된 적어도 하나 이상의 전이금속의 양이온을 포함하되, 상기 제 1 전이금속 함유 용액과 상기 제 2 전이금속 함유 용액에 포함되는 전이금속의 양이온의 농도가 상이한 것일 수 있다.
상기 제 1 전이금속 함유 용액은 50 내지 98몰%의 니켈, 1 내지 40몰%의 망간, 및 1 내지 40몰%의 코발트를 포함할 수 있고, 상기 제 2 전이금속 함유 용액은 20 내지 80몰%의 니켈, 1 내지 60몰%의 망간, 및 1 내지 60몰%의 코발트를 포함할 수 있다. 구체적으로 상기 제 1 전이금속 함유 용액은 제 2 전이금속 함유 용액에 비하여 니켈 양이온의 농도가 높은 용액일 수 있다. 예를 들어, 상기 제 1 전이금속 함유 용액은 전체 전이금속염에 대하여 니켈염이 50몰% 내지 98몰%, 바람직하게는 60몰% 내지 98몰%, 70몰% 내지 98몰%, 더욱 바람직하게는 80몰% 내지 98몰% 포함될 수 있고, 상기 제 2 전이금속 함유 용액은 전체 전이금속염에 대하여 니켈염이 20몰% 내지 80몰%, 바람직하게는 40몰% 내지 80몰%, 50몰% 내지 80몰%, 더욱 바람직하게는 60몰% 내지 80몰% 포함될 수 있다.
또한, 상기 제 1 전이금속 함유 용액은 제 2 전이금속 함유 용액에 비하여 망간 및 코발트 중 적어도 하나의 전이금속 양이온의 농도가 낮은 용액일 수 있다. 예를 들어, 상기 제 1 전이금속 함유 용액은 전체 전이금속염에 대하여 망간염 및/또는 코발트염이 1몰% 내지 40몰%, 바람직하게는 1몰% 내지 30몰% 포함될 수 있고, 상기 제 2 전이금속 함유 용액은 전체 전이금속염에 대하여 망간염 및/또는 코발트염이 1몰% 내지 60몰%, 바람직하게는 10몰% 내지 50몰% 포함될 수 있다.
상기와 같이 농도가 상이한 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액의 투입 비율을 조절하여 입자 내에서 전이금속이 농도구배를 갖는 전구체를 형성할 수 있다. 예를 들면, 상기 제 1 전이 금속 함유 용액의 투입 유량은 점진적으로 감소시키고, 상기 제 2 금속 함유 용액의 투입 유량은 상보적으로 점진적으로 증가시켜 농도구배를 형성할 수 있다. 예를 들면, 상기 제 1 전이금속 및 제 2 전이금속의 혼합 비율을 100 부피%:0 부피%에서 0 부피%:100 부피%로 점진적으로 변화되도록 상기 제 1 전이 금속 함유 용액과 상기 제2 전이 금속 함유 용액을 혼합하여, 입자의 중심에서부터 표면까지 점진적으로 변화하는 농도구배를 갖는 양극 활물질 전구체 입자를 형성하는 것일 수 있다.
상기 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액은 각각 독립적으로, 상기 전이금속들의 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등을 포함할 수 있으며, 물에 용해될 수 있는 것이라면 특별히 한정되지 않는다.
예를 들어, 상기 코발트(Co)는 상기 전이금속 함유 용액에 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등으로 포함될 수 있으며, 이들 중 적어도 하나 이상이 사용될 수 있다.
또, 상기 니켈(Ni)은 상기 전이금속 함유 용액에 Ni(OH)2, NiO, NiOOH, NiCO3, 2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등으로 포함될 수 있으며, 이들 중 적어도 하나 이상이 사용될 수 있다.
또, 상기 망간(Mn)은 상기 전이금속 함유 용액에 Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 그리고 염화 망간 등으로 포함될 수 있으며, 이들 중 적어도 하나 이상이 사용될 수 있다.
또한, 상기 제 1 전이금속 함유 용액 및/또는 상기 제 2 전이금속 함유 용액은 니켈, 망간, 및 코발트 이외에 다른 금속 원소(M)를 더 포함할 수 있다. 이때, 상기 M은 W, Mo, Cr, Al, Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다.
상기 제 1 전이금속 함유 용액 및/또는 상기 제 2 전이금속 함유 용액이 상기 금속 원소(M)을 더 포함할 경우, 상기 제 1 전이금속 함유 용액 및/또는 상기 제 2 전이금속 함유 용액의 제조시 상기 금속 원소(M) 함유 원료물질이 선택적으로 더 첨가될 수도 있다.
상기 금속 원소(M) 함유 원료물질로는 금속 원소(M)를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물로 이루어진 군에서 선택되는 적어도 하나 이상이 사용될 수 있다. 예를 들어 상기 금속 원소(M)이 W인 경우, 산화텅스텐 등이 사용될 수 있다.
상기 염기성 수용액은 NaOH, KOH 및 Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있으며, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다. 이때, 상기 염기성 수용액의 농도는 2M 내지 10M, 바람직하게는 2.5M 내지 3.5M일 수 있다. 상기 염기성 수용액의 농도가 2M 내지 10M인 경우, 균일한 크기의 전구체 입자를 형성할 수 있으며, 전구체 입자의 형성 시간이 빠르고, 수득율 또한 우수할 수 있다.
상기 암모늄 이온 함유 용액은 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다. 이때, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
한편, 상기 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액은 각각 개별적으로 반응기에 투입될 수도 있고, 반응기 투입 전에 일부 용액 또는 모든 용액들을 사전 혼합한 후 반응기로 투입할 수도 있다. 예를 들면, 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액은 정적 혼합기 등을 이용하여 혼합한 후 반응기로 투입하고, 암모늄 이온 함유 용액과 염기성 수용액은 직접 반응기로 투입하는 방법으로 반응용액을 투입할 수 있다.
다음으로, 일정 시간 후, 상기 배치식 반응기가 만액이 되면 반응기 내부의 반응 용액 중 일부를 반응기 외부로 연속적으로 배출하면서, 동시에 상기 반응기에 상기 반응 용액을 투입한다. 상기 배치식 반응기가 만액이 되는 것은 투입된 상기 용액들의 부피가 배치식 반응기 부피의 90% 내지 100%를 차지하는 것을 의미할 수 있다.
상기 반응 용액의 배출 유량은 상기 반응 용액의 투입 유량과 동일할 수 있다. 예를 들면, 상기 반응 용액의 투입 유량이 상기 반응 용액의 배출 유량보다 빠를 경우, 반응기의 수위 증가로 지속적인 반응이 불가능할 수 있고, 상기 반응 용액의 투입 유량이 반응 용액의 배출 유량보다 느릴 경우, 반응기 수위의 감소 및 용액 내의 고형분 증가로 인해 지속적인 반응이 불가능할 수 있다.
상기 반응 용액의 배출은, 예를 들면, 필터를 포함하는 튜브를 이용하여 수행될 수 있다. 상기 튜브에 포함되는 필터로 인해, 양극 활물질 전구체 입자가 반응기 외부로 배출되는 것이 방지되고 반응 용액만이 선택적으로 반응기 외부로 배출되는 것일 수 있다.
또한, 상기 반응 용액의 배출시 일정 시간마다 상기 튜브를 백블로우(back blow)하는 단계를 더 포함할 수도 있다. 예를 들면, 상기 반응 용액의 배출시 양극 활물질 전구체 입자가 상기 튜브에 포함된 필터에 끼어 상기 필터가 막힐 수 있다. 이를 방지하기 위해, 일정 시간마다 상기 튜브에 증류수 또는 질소를 반응 용액의 배출 역방향으로 투입하여 상기 튜브를 백블로우함으로써 상기 필터에 끼인 양극 활물질 전구체 입자를 반응기 내부로 불어줄 수 있다.
상기와 같이 반응이 완료된 반응 용액을 반응기 외부로 배출하면서 동시에 반응기 내부로 반응 용액을 더 투입함으로써 동일 크기의 반응기에서 동일한 반응 시간동안 입자의 성장이 더 많이 일어날 수 있으며, 이에 따라 전구체 입자의 수득률이 현저히 증가할 수 있다.
한편, 상기 배치식 반응기 내의 pH는 반응기 내에 투입되는 전이금속 수용액에 포함되는 Ni 조성 또는 염기성 수용액의 유량에 의해 제어되는 것일 수 있다.
예를 들면, 제1전이금속 함유 용액과 제2 전이금속 함유 용액을 정적 혼합기를 통해 혼합한 혼합 용액을 배치식 반응기에 투입하고, 상기 배치식 반응기 내의 pH는 상기 반응기에 투입되는 상기 혼합 용액에 포함되는 Ni 조성에 의해 제어되는 것일 수 있다. 예를 들면, Ni의 조성이 80 내지 99 몰%, 바람직하게는 85 내지 95몰%일 경우, pH는 11.5 내지 12, 바람직하게는 11.6 내지 11.8일 수 있으며, 이때 양극 활물질 전구체 입자 핵이 생성된다.
또한, Ni의 조성이 40 내지 80 몰% 미만, 바람직하게는 60 내지 79 몰%일 경우, 반응기의 pH는 10.5 내지 11.5, 바람직하게는 11 내지 11.4로 조절되며, 이때 입자가 성장하는 것일 수 있다.
구체적으로, 상기 배치식 반응기 내의 pH는 하기 식 2를 만족하는 것이다.
[식 2]
pH0-{([Ni]0-[Ni]t1) x 0.05} ≤ pHt1 ≤ pH0-{([Ni]0-[Ni]t1) x 0.005}
상기 식 2에서, pHt1는 t1 시간에서 반응기 내의 pH, pH0은 반응기 내의 초기 pH, [Ni]0는 초기에 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t1는 t1 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
상기 식 2에서, 바람직하게는 t 시간에서 pH는 pH0-{([Ni]0-[Ni]t1) x 0.02}에 근접할 수 있다.
더욱 구체적으로, 상기 배치식 반응기 내의 pH는 상기 염기성 수용액의 투입 유량에 의해 제어되는 것일 수 있으며, 상기 염기성 수용액의 투입 유량은 하기 식 3을 만족하는 것이다.
[식 3]
υ3 , 0 x {1-(0.02 x ([Ni]0-[Ni]t2))} ≤ υ3,t2 < υ3 ,0
상기 식 3에서, υ3,t2는 t2 시간에서의 염기성 수용액의 투입 유량, υ3 , 0는 염기성 수용액의 초기 투입 유량, [Ni]0는 초기 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t2는 t2 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
상기 식 2 및 식 3과 같이 pH를 제어하여 양극 활물질 전구체의 핵이 생성되는 조건 및 성장하는 조건을 구분함으로써, Ni의 조성이 80 내지 99 몰%일 때, 즉 pH 11.5 내지 12에서는 양극 활물질 전구체 핵의 생성만이 이루어지고, 이후 Ni의 조성이 40 내지 80 몰% 미만일 때, 즉 pH 10.5 내지 11.5에서 입자의 성장만 이루어지므로, 최종 수득되는 양극 활물질 전구체의 입자 크기 및 형상이 균일하고, 조밀한 양극 활물질 전구체를 제조할 수 있다.
또한, 본원발명과 같이 Ni 조성의 변화에 의해 pH 조건을 달리하며 양극 활물질 전구체 입자를 제조할 경우, 입자 성장 단계에서 입자 표면에 나노 플레이크 등의 성장 없이, 표면이 균일한 양극 활물질 전구체를 수득할 수 있다.
이와 관련하여, 도 1에는 본 발명의 일 실시예에 따른 양극 활물질 전구체의 제조 장치가 개략적으로 도시되어 있다.
도 1에 도시된 바와 같이, 본 발명에 따른 양극 활물질 전구체는 제 1 전이금속 함유 용액이 담겨있는 용기와 제 2 전이금속 함유 용액이 담겨있는 용기를 정적 혼합기(static mixer)와 각각 연결하고, 상기 정적 혼합기의 배출구 측에 배치식 반응기를 연결하고, 암모늄 이온 함유 용액이 담겨있는 용기 및 염기성 수용액이 담긴 용기를 각각 배치식 반응기에 연결한 장치를 이용하여 제조될 수 있다.
예를 들면, 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액은 정적 혼합기를 이용하여 혼합한 후 반응기로 투입하고, 암모늄 이온 함유 용액과 염기성 수용액은 직접 반응기로 투입한다. 상기 반응기가 만액이 되면 필터를 포함하는 튜브에 연결된 진공 펌프를 작동시켜, 반응기 내부의 반응 용액 중 일부를 상기 튜브를 통해 반응기 외부로 배출하면서, 반응 용액은 계속해서 반응기 내로 투입함으로써 본 발명에 따른 양극 활물질 전구체를 제조할 수 있다.
상기 반응 용액의 배출시, 양극 활물질 전구체 입자에 의한 필터 막힘 현상을 방지하기 위해, 예를 들면, 일정 시간마다 상기 튜브에 연결된 진공 펌프의 작동을 멈추고, 반응 용액의 배출 역방향(배치식 반응기 방향)으로 증류수 또는 질소를 소량 투입하여 상기 필터에 끼인 양극 활물질 전구체 입자를 상기 반응기 내부로 불어준 후, 다시 튜브에 연결된 진공 펌프를 작동시켜 반응 용액을 반응기 외부로 배출하는 것을 더 포함할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질 전구체의 제조 방법에 의해 제조된 양극 활물질 전구체 입자의 수득률은 동일 크기의 배치(batch)식 반응기를 이용하여 종래 방법으로 양극 활물질 전구체 입자를 제조하였을 때와 대비하여, 200% 내지 1100% 향상될 수 있다.
또한, 최종 생성된 양극 활물질 전구체 입자는 (D90-D10)/D50 가 0.6 내지 0.9, 바람직하게는 0.7 내지 0.9인 균일한 입자가 생성될 수 있다.
본 발명에 있어서, 상기 양극 활물질 전구체 입자의 입경 분포 D10, D50, 및 D90은 각각 입경 분포의 10%, 50% 및 90% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서, 상기 양극 활물질 전구체 입자의 입경 분포는 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로 상기 양극활물질의 입자 분포는 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사하고, 측정 장치에 있어서의 입자 직경 분포의 각각 10%, 50% 및 90% 기준에서의 입경 분포를 산출할 수 있다.
한편, 본 발명은 상술한 바와 같이 제조된 양극 활물질 전구체를 리튬 함유 원료 물질과 혼합한 후 소성하는 단계를 포함하는, 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
상기 리튬 함유 원료 물질로서는 예를 들어, 탄산리튬(Li2CO3) 또는 수산화리튬(LiOH) 등을 사용할 수 있으며, 상기 양극 활물질 전구체 및 리튬 함유 원료물질을 1:1 내지 1:1.15 몰비로 혼합할 수 있다. 리튬 함유 원료물질이 상기 범위 미만으로 혼합될 경우 제조되는 양극 활물질의 용량이 저하될 우려가 있으며, 리튬 함유 원료물질이 상기 범위를 초과하여 혼합될 경우 소성 과정에서 입자가 소결되어 버려 양극 활물질 제조가 어려울 수 있고, 용량 저하 및 소성 후 양극 활물질 입자의 분리(양극 활물질 합침 현상 유발)가 발생할 수 있다.
상기 소성은 800℃ 내지 1000℃ 온도에서 수행할 수 있다. 소성 온도가 800℃ 미만일 경우 불충분한 반응으로 인해 입자 내에 원료 물질이 잔류하게 되어 전지의 고온 안정성을 저하시킬 수 있으며, 부피 밀도 및 결정성이 저하되어 구조적 안정성이 떨어질 수 있다. 한편, 소성 온도가 1000℃를 초과할 경우 입자의 불균일한 성장이 발생할 수 있으며, 입자 크기가 너무 커져 단위 면적당 포함될 수 있는 입자량이 줄어들게 되므로 전지의 체적 용량이 저하될 수 있다. 한편, 제조되는 양극 활물질의 입자 크기 제어, 용량, 안정성 및 리튬 함유 부산물의 감소를 고려했을 때, 상기 소성 온도는 보다 바람직하게는 850℃ 내지 950℃일 수 있다.
상기 소성은 5 내지 35시간 동안 수행될 수 있다. 소성 시간이 5시간 미만일 경우 반응 시간이 너무 짧아 고결정성의 양극 활물질을 얻기 어려울 수 있으며, 35시간을 초과할 경우 입자의 크기가 지나치게 커질 수 있고, 생산 효율이 저하될 수 있다.
또한, 본 발명은 상술한 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 함량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
또한, 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2 . LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 90:5:5가 되도록 하는 양으로 물 중에서 혼합하여 2M 농도의 제 1 전이금속 함유 용액을 준비하는 동시에, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 60:20:20의 몰비가 되도록 하는 양으로 물 중에서 혼합하여 2M 농도의 제 2 전이금속 함유 용액을 준비하였다.
상기 제 1 및 제 2 전이금속 함유 용액이 담겨있는 용기를 정적 혼합기(static mixer)와 각각 연결하고, 상기 적정 혼합기의 배출구 측에 배치(batch)식 반응기(20L)를 연결하였다. 추가로 25중량% 농도의 NaOH 수용액과 15중량% 농도의 NH4OH 수용액을 준비하여 각각 상기 배치식 반응기에 연결하였다.
배치(batch)식 반응기에 탈이온수 4L를 넣은 뒤 질소가스를 반응기에 5L/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다.
제 1 전이금속 함유 용액과 제 2 전이금속 함유용액을 정적 혼합기를 통해 제 1 전이금속 함유 용액의 투입 유량은 반응 전체 중에서 100부피%에서 0부피%로 점진적으로 감소시키고, 제 2 전이금속 함유 용액의 투입 유량은 반응 전체 중에서 0부피%에서 100부피%로 점진적으로 증가시키면서 혼합한 혼합 금속 용액을 12mL/분, NaOH 수용액을 7.5mL/분, NH4OH 수용액을 7.5mL/분의 속도로 각각 배치식 반응기에 투입하여 30분간 반응시켜 pH 11.8에서 니켈망간코발트계 복합금속 수산화물의 입자 핵을 형성하였다.
그런 다음, NaOH 수용액의 유량을 하기 표 1에 기재된 대로 변화시키면서 30 시간 동안 반응시켜 양극 활물질 전구체를 제조하였다. 이때, 반응 중 상기 배치식 반응기가 만액이 되면, 반응 용액의 투입 유량은 유지하면서, 반응이 완료된 반응 용액을 상기 투입 유량과 동일 유량으로 배출하였다. 반응 시간 동안 제1 전이금속 함유 용액과 제2 전이금속 함유 용액의 혼합 금속 용액의 유량은 12mL/분, NH4OH 수용액의 유량은 7.5mL/분이었다. 또한, 입자 핵 생성 직후부터 각각 10시간 후, 20시간 후, 30시간 후일 때, Ni의 농도 및 pH를 측정하였다. 측정 결과는 하기 표 1에 기재하였다.
실시예 2
제 1 전이금속 함유 용액과 제 2 전이금속 함유 용액을 정적 혼합기를 통해 혼합한 혼합 금속 용액을 40 mL/분, NaOH 수용액을 10 mL/분, NH4OH 수용액을 10 mL/분의 속도로 각각 배치식 반응기에 투입하여 30분간 반응시켜 니켈망간코발트계 복합금속 수산화물의 입자 핵을 형성하였다.
그런 다음, NaOH 수용액의 유량을 하기 표 1에 기재된 대로 변화시키면서 30시간 동안 반응시켜 양극 활물질 전구체를 제조하였다. 반응 시간 동안 제1 전이금속 함유 용액과 제2 전이금속 함유 용액의 혼합 금속 용액의 유량은 40 mL/분, NH4OH 수용액의 유량은 10 mL/분인 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 전구체를 제조하였다. 또한, 입자 핵 생성 직후부터 각각 10시간 후, 20시간 후, 30시간 후일 때, Ni의 농도 및 pH를 측정하였다. 측정 결과는 하기 표 1에 기재하였다.
비교예 1
제 1 전이금속 함유 용액과 제 2 전이금속 함유용액을 정적 혼합기를 통해 혼합한 혼합 전이금속 함유 용액을 4mL/분, NaOH 수용액을 1mL/분, NH4OH 수용액을 1mL/분의 속도로 각각 배치식 반응기에 투입하여 니켈망간코발트계 복합금속 수산화물의 입자 핵을 형성하였다. 이후 상기 용액들의 투입 유량을 유지하며 반응기가 만액이 될 때까지 투입하여 니켈망간코발트계 복합금속 수산화물 입자를 성장시킨 후, 반응기가 만액이 되면 용액들의 투입을 중단하여 반응을 종료하는 것을 제외하고는 실시예 1과 동일하게 양극 활물질 전구체를 제조하였으며, 하기 표 1과 같이 입자 핵 생성 직후부터 각각 10시간 후, 20시간 후, 30시간 후일 때, Ni의 농도 및 pH를 확인하였다.
10시간 20시간 30시간
실시예1 [Ni]0=90mol%pH0=11.8υ3 ,0=7.5 [Ni]t1 87 78 50
pHt1 11.7 11.5 11.2
υ3,t2 7.3 6.8 6.1
실시예2 [Ni]0=90mol%pH0=11.8υ3 ,0=10 [Ni]t1 85 78 50
pHt1 11.65 11.4 11.15
υ3,t2 9.7 9.1 8.2
비교예1 [Ni]0=90mol%pH0=11.8υ3 ,0=1 [Ni]t1 87 78 50
pHt1 11.8 11.8 11.8
υ3,t2 1 1 1
비교예 2
전이금속 함유 용액으로서 80:10:10의 단일 조성물을 사용하여, 반응 전반에 걸쳐 반응기 내의 pH를 pH 11.4로 일정하게 유지하면서 반응을 진행하는 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 전구체를 제조하였다.
실험예 1: 양극 활물질 전구체 수득률 확인
상기 실시예 1, 2, 비교예 1 및 2에서 제조된 양극 활물질 전구체의 생산성을 비교하기 위해, 실시예 1, 비교예 1 및 2에서 제조된 전구체의 함량을 측정하였고, 그 결과를 하기 표 2에 나타내었다.
생성된 전구체 함량 (kg) 종래(비교예 1) 기준 수득량 향상 비율 (%)
실시예 1 2.3 209
실시예 2 12 1090
비교예 1 1.1 100
비교예 2 1.1 100
표 2를 참조하면, 비교예 1에 비하여 본 발명의 실시예 1 및 2에 따른 용액들의 투입 속도를 증가시키고, 반응기가 만액이 되면 반응기 내부의 반응 용액 중 일부를 반응기 외부로 연속적으로 배출하면서 상기 반응 용액을 투입한 경우, 동일 시간 동일 크기의 배치식 반응기를 사용하였음에도 수득률이 현저히 향상되었음을 확인할 수 있었다.
실험예 2: 입도 분포 확인
상기 실시예 1, 2 및 비교예 1에서 제조된 양극 활물질 전구체의 입도 분포를 확인하기 위하여, Horiba LA 950V2 입도분석기를 이용하여 실시예 1 및 비교예 1에서 생성된 양극 활물질 전구체의 입도를 측정하였고, 그 결과를 하기 표 3에 나타내었다.
D10 (㎛) D50 (㎛) D90 (㎛) (D90-D10)/D50
실시예 1 14.9 19.03 28.8 0.73
실시예 2 14.7 19.4 31 0.84
비교예 1 14 19.32 33.6 1.014
비교예 2 15.1 20.2 34.2 0.946
표 3을 참조하면, 실시예 1 및 2의 경우 비교예 1 및 2에 비하여 좁은 입도 분포를 나타내어, 보다 더 균일한 전구체를 생성하였음을 알 수 있었다.
실험예 3: 양극 활물질 전구체의 표면 특성 확인
상기 실시예 1 및 비교예 2에서 제조된 양극 활물질 전구체의 표면 특성을 확인하기 위하여, SEM 이미지를 촬영하였다. 실시예 1에서 제조한 양극 활물질 전구체의 표면은 도 2a와 같이 균일한 것으로 확인된 반면, 비교예 2에서 제조한 양극 활물질 전구체의 표면에는 도 2b에 나타난 바와 같이 나노 플레이크가 관찰되었다. 이는, 비교예 2의 경우 양극 활물질 전구체 입자의 제조시, 핵 생성 및 입자 성장 과정에서 pH의 변화 없이 pH를 동일 조건으로 유지하여 입자 성장이 제대로 일어나지 못한 것이다.

Claims (13)

  1. 배치(batch)식 반응기를 사용하여 리튬 이차전지용 양극활물질 전구체를 제조하는 방법에 있어서,
    상기 배치식 반응기에 제 1 전이금속 함유 용액, 제 2 전이금속 함유 용액, 암모늄 이온 함유 용액, 및 염기성 수용액을 포함하는 반응 용액을 투입하되, 상기 배치식 반응기가 만액이 되면 반응기 내부의 반응 용액 중 일부를 반응기 외부로 연속적으로 배출하면서 상기 반응 용액을 투입하는 단계를 포함하며,
    상기 배치식 반응기에 투입되는 상기 반응 용액의 초기 투입 유량이 하기 식 1을 만족하고,
    상기 배치식 반응기 내의 pH가 하기 식 2를 만족하는 것인, 리튬 이차전지용 양극활물질 전구체의 제조 방법:
    [식 1]
    1.5 x V/t ≤ υ123 ≤ 10 x V/t
    상기 식 1에서,
    V는 배치식 반응기의 부피, t는 전체 반응 시간(분), υ1은 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액 전체의 초기 투입 유량(mL/분), υ2는 암모늄 이온 함유 용액의 초기 투입 유량(mL/분), 및 υ3은 염기성 수용액의 초기 투입 유량(mL/분)임.
    [식 2]
    pH0-{([Ni]0-[Ni]t1) x 0.05} ≤ pHt1 ≤ pH0-{([Ni]0-[Ni]t1) x 0.005}
    상기 식 2에서,
    pHt1는 t1 시간에서 반응기 내의 pH, pH0은 반응기 내의 초기 pH, [Ni]0는 초기에 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t1는 t1 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
  2. 제1항에 있어서,
    상기 제 1 전이금속 함유 용액 및 제 2 전이금속 함유 용액은 각각 독립적으로 니켈, 망간, 코발트로 이루어진 군에서 선택된 적어도 하나 이상의 전이금속의 양이온을 포함하되, 상기 제 1 전이금속 함유 용액과 상기 제 2 전이금속 함유 용액에 포함되는 전이금속의 양이온의 농도가 상이한 것인, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  3. 제2항에 있어서,
    상기 제 1 전이금속 함유 용액은 50몰% 내지 98몰%의 니켈, 1몰% 내지 40몰%의 망간, 및 1몰% 내지 40몰%의 코발트를 포함하는 것인, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  4. 제2항에 있어서,
    상기 제 2 전이금속 함유 용액은 20몰% 내지 80몰%의 니켈, 1몰% 내지 60몰%의 망간, 및 1몰% 내지 60몰%의 코발트를 포함하는 것인, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  5. 제1항에 있어서,
    상기 제 1 전이 금속 함유 용액 및 상기 제 2 금속 함유 용액은 정적 혼합기를 통해 혼합된 후 배치식 반응기로 투입되는 것인, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  6. 제1항에 있어서,
    상기 암모늄 이온 함유 용액은 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  7. 제1항에 있어서,
    상기 염기성 수용액은 NaOH, KOH 및 Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는, 리튬 이차전지용 양극 활물질 전구체의 제조방법.
  8. 제1항에 있어서,
    상기 배치식 반응기 내의 pH는 상기 염기성 수용액의 투입 유량에 의해 제어되는 것인, 양극활물질 전구체의 제조 방법.
  9. 제8항에 있어서,
    상기 염기성 수용액의 투입 유량은 하기 식 3을 만족하는 리튬 이차전지용 양극활물질 전구체의 제조 방법:
    [식 3]
    υ3 , 0 x {1-(0.02 x ([Ni]0-[Ni]t2))} ≤ υ3,t2 < υ3 ,0
    상기 식 3에서,
    υ3,t2는 t2 시간에서의 염기성 수용액의 투입 유량, υ3 , 0는 염기성 수용액의 초기 투입 유량, [Ni]0는 초기 유입되는 전이금속 함유 용액에서의 Ni 몰농도, [Ni]t2는 t2 시간에서 유입되는 전이금속 함유 용액에서의 Ni 몰농도임.
  10. 제1항에 있어서,
    상기 반응 용액의 배출은 필터를 포함하는 튜브를 이용하여 수행되는 것인, 리튬 이차전지용 양극 활물질 전구체의 제조 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 방법에 의해 제조된 양극 활물질 전구체를 리튬 함유 원료 물질과 혼합한 후 소성하는 단계를 포함하는, 리튬 이차전지용 양극 활물질의 제조 방법.
  12. 제11항에 따른 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극.
  13. 제12항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2018/005864 2017-06-29 2018-05-24 리튬 이차전지용 양극 활물질 전구체의 제조 방법 WO2019004602A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880005580.XA CN110139834B (zh) 2017-06-29 2018-05-24 用于制备锂二次电池用正极活性材料前体的方法
JP2019553257A JP7009013B2 (ja) 2017-06-29 2018-05-24 リチウム二次電池用正極活物質前駆体の製造方法
US16/476,983 US11183685B2 (en) 2017-06-29 2018-05-24 Method for preparing positive electrode active material precursor for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170082711A KR102123541B1 (ko) 2017-06-29 2017-06-29 리튬 이차전지용 양극 활물질 전구체의 제조 방법
KR10-2017-0082711 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004602A1 true WO2019004602A1 (ko) 2019-01-03

Family

ID=64741662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005864 WO2019004602A1 (ko) 2017-06-29 2018-05-24 리튬 이차전지용 양극 활물질 전구체의 제조 방법

Country Status (6)

Country Link
US (1) US11183685B2 (ko)
JP (1) JP7009013B2 (ko)
KR (1) KR102123541B1 (ko)
CN (1) CN110139834B (ko)
TW (1) TWI678014B (ko)
WO (1) WO2019004602A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857909B1 (ko) * 2017-02-20 2018-05-14 현대제철 주식회사 고로의 수소가스 취입량 제어 방법
KR102125365B1 (ko) * 2018-03-16 2020-06-22 주식회사 포스코 열풍로 시스템
CN113412239B (zh) * 2019-10-02 2023-08-18 株式会社Lg化学 锂二次电池用正极活性材料和制备所述正极活性材料的方法
JP7301450B2 (ja) * 2019-12-20 2023-07-03 エルジー・ケム・リミテッド 正極活物質前駆体、その製造方法及び製造装置
KR102555562B1 (ko) * 2020-06-15 2023-07-17 주식회사 엘 앤 에프 다성분계 금속 수산화물의 제조장치
JP7353432B1 (ja) * 2022-07-15 2023-09-29 住友化学株式会社 金属複合化合物及びリチウム金属複合酸化物の製造方法
WO2024014551A1 (ja) * 2022-07-15 2024-01-18 住友化学株式会社 金属複合化合物、金属複合化合物の製造方法、及びリチウム金属複合酸化物の製造方法
KR20240129936A (ko) * 2023-02-21 2024-08-28 (주)포스코퓨처엠 양극 활물질 전구체 제조 장치 및 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (ko) * 2006-06-29 2007-08-29 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 그 제조 방법 및 그를사용한 리튬 이차 전지
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
WO2012093798A2 (ko) * 2011-01-05 2012-07-12 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20130000973A (ko) * 2011-06-24 2013-01-03 한국과학기술원 이동체의 배터리 히팅 시스템 및 방법
KR20160081452A (ko) * 2014-12-31 2016-07-08 주식회사 에코프로 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165428A (ja) 1993-10-20 1995-06-27 Nikko Rika Kk 水酸化ニッケル粒子の製造方法
CA2412426C (en) * 2000-06-08 2007-09-04 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
DE102007049108A1 (de) * 2007-10-12 2009-04-16 H.C. Starck Gmbh Pulverförmige Verbindungen, Verfahren zu deren Herstellung sowie deren Verwendung in Batterien
JP4894969B1 (ja) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、ならびに、非水系電解質二次電池
KR101893956B1 (ko) 2011-12-30 2018-09-03 삼성에스디아이 주식회사 회분식 반응기를 사용한 전극 활물질 제조방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지
WO2013117508A1 (de) * 2012-02-08 2013-08-15 Basf Se Verfahren zur herstellung von gemischten carbonaten, die hydroxid(e) enthalten können
CN103904318A (zh) 2012-12-28 2014-07-02 惠州比亚迪电池有限公司 一种锂电池正极材料及其制备方法
US20160126548A1 (en) * 2013-05-08 2016-05-05 Basf Se Spherical particles, production thereof and use
US10629903B2 (en) * 2013-07-31 2020-04-21 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for preparing transition metal composite oxide, transition metal composite oxide prepared thereby, and lithium composite oxide prepared using same
CN104979553B (zh) 2014-04-02 2019-12-06 郭建 一种核壳结构镍钴铝酸锂材料的制备方法
JP6168004B2 (ja) * 2014-06-27 2017-07-26 住友金属鉱山株式会社 マンガン複合水酸化物及びその製造方法、正極活物質及びその製造方法、並びに非水系電解質二次電池
JP6603058B2 (ja) * 2014-08-20 2019-11-06 住友化学株式会社 リチウム含有複合酸化物の製造方法およびリチウム含有複合酸化物
KR101778243B1 (ko) * 2014-10-31 2017-09-13 주식회사 엘지화학 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
WO2016175597A1 (ko) 2015-04-30 2016-11-03 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR101913906B1 (ko) * 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2016204563A1 (ko) * 2015-06-17 2016-12-22 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102227306B1 (ko) 2015-11-30 2021-03-15 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017095133A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101927295B1 (ko) 2015-11-30 2018-12-10 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752703B1 (ko) * 2006-06-29 2007-08-29 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 그 제조 방법 및 그를사용한 리튬 이차 전지
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
WO2012093798A2 (ko) * 2011-01-05 2012-07-12 한양대학교 산학협력단 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20130000973A (ko) * 2011-06-24 2013-01-03 한국과학기술원 이동체의 배터리 히팅 시스템 및 방법
KR20160081452A (ko) * 2014-12-31 2016-07-08 주식회사 에코프로 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 농도 구배를 나타내는 리튬 이차전지용 양극활물질 전구체 및 양극활물질

Also Published As

Publication number Publication date
KR102123541B1 (ko) 2020-06-16
US20190355979A1 (en) 2019-11-21
US11183685B2 (en) 2021-11-23
TWI678014B (zh) 2019-11-21
CN110139834A (zh) 2019-08-16
JP7009013B2 (ja) 2022-01-25
JP2020516026A (ja) 2020-05-28
TW201906220A (zh) 2019-02-01
CN110139834B (zh) 2022-03-08
KR20190002179A (ko) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019004602A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021066576A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019143047A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022177352A1 (ko) 양극 활물질용 전구체 및 그 제조 방법
WO2019103461A2 (ko) 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2018143783A1 (ko) 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824807

Country of ref document: EP

Kind code of ref document: A1