WO2022177352A1 - 양극 활물질용 전구체 및 그 제조 방법 - Google Patents

양극 활물질용 전구체 및 그 제조 방법 Download PDF

Info

Publication number
WO2022177352A1
WO2022177352A1 PCT/KR2022/002432 KR2022002432W WO2022177352A1 WO 2022177352 A1 WO2022177352 A1 WO 2022177352A1 KR 2022002432 W KR2022002432 W KR 2022002432W WO 2022177352 A1 WO2022177352 A1 WO 2022177352A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
active material
positive electrode
electrode active
transition metal
Prior art date
Application number
PCT/KR2022/002432
Other languages
English (en)
French (fr)
Inventor
이민준
예성지
조승범
이장수
박윤빈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US18/275,751 priority Critical patent/US20240083767A1/en
Priority to EP22756550.4A priority patent/EP4269362A4/en
Priority to CN202280010947.3A priority patent/CN116867742A/zh
Publication of WO2022177352A1 publication Critical patent/WO2022177352A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a precursor for a positive electrode active material applied to a secondary battery and a method for manufacturing the same, and more particularly, to a precursor for a positive electrode active material having excellent reactivity with lithium during firing and a method for manufacturing the same.
  • a lithium composite transition metal oxide containing two or more transition metals such as nickel, cobalt, manganese, and aluminum is widely used as a cathode active material for a lithium secondary battery.
  • the lithium composite transition metal oxide is a metal solution containing a transition metal element as a raw material, an ammonium cation complex forming agent, and a basic aqueous solution are added to a continuous reactor (CSTR) or batch (BATCH) reactor and a co-precipitation reaction is performed. to prepare a precursor in the form of a hydroxide, mix the precursor and a lithium raw material, and then calcinate.
  • CSTR continuous reactor
  • BATCH batch
  • a continuous reactor is a method in which raw materials are input and co-precipitated while simultaneously discharging a precursor formed as particles. and the reaction proceeds, and then the precursor is discharged after the reaction is completed.
  • the productivity of the precursor is high because the precursor is discharged at the same time as the reaction raw material is injected and co-precipitated.
  • There may be variations in residence time and reaction time in the reactor of the cathode active material precursors produced in the and accordingly, there is a problem in that the size and particle size distribution of the generated precursor particles are non-uniform. Therefore, in order to ensure uniformity of precursor quality, a method for preparing a precursor using a batch reactor is mainly used.
  • the growth rate of the precursor particles decreases as the co-precipitation reaction time elapses because the particle growth occurs without a change in the number of particles after the seed is formed at the beginning of the reaction. While the surface density of the precursor particles and the size of the primary particles are increased, the surface energy of the precursor particles is decreased. In the case of a precursor having a high surface density, there is a problem in that the reactivity with the lithium raw material is low during firing, and the penetration of lithium elements and doping elements into the precursor particles is suppressed, so that uniform firing is difficult. In addition, when a precursor for a positive electrode active material is prepared using a batch reactor, there is a problem in that productivity is lowered.
  • the present invention is to solve the above problems, by controlling the supply flow rate of the raw material during the preparation of the precursor, by controlling the surface density of the precursor particles for a cathode active material having excellent reactivity with the lithium raw material during firing
  • An object of the present invention is to provide a method for preparing a precursor.
  • the present invention provides a seed forming step of forming a precursor seed for a positive electrode active material by co-precipitation reaction while supplying an aqueous transition metal solution, an ammonium cation complex forming agent, and a basic compound to a reactor, and the precursor seed for the positive electrode active material
  • the present invention provides a precursor for a positive electrode active material prepared by the above manufacturing method.
  • the method for producing a precursor for a positive active material of the present invention by continuously increasing the supply rates of the transition metal aqueous solution and the ammonium cation complex forming agent, which are reaction raw materials, in the precursor particle growth step, the density inside the precursor particles is lowered, and the It was made possible to prepare precursor particles having a small primary particle size.
  • the specific surface area is increased, thereby improving the reactivity with the lithium raw material in the firing step, thereby improving the firing uniformity and developing the crystal structure well. Accordingly, when the positive active material prepared by using the precursor prepared according to the method of the present invention is applied to a secondary battery, an effect of increasing the reversible capacity can be obtained.
  • a reaction time required to produce precursor particles having a desired particle size is shortened, thereby increasing productivity.
  • Example 1 is a scanning electron microscope (SEM) image showing the surface properties of the precursor prepared in Example 1.
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • the present inventors have conducted the reaction while continuously increasing the supply rate of the raw material in the precursor particle growth step, the surface density is low and , it is possible to prepare precursor particles with a high specific surface area, and when such a precursor is used, it was found that the reactivity with lithium during firing can be improved, and the present invention has been completed.
  • a transition metal aqueous solution, an ammonium cation complex forming agent, and a basic compound are supplied to a reactor and a co-precipitation reaction is performed to form a precursor seed for a positive electrode active material a seed forming step, and (2) co-precipitating the transition metal aqueous solution, ammonium cation complex forming agent, and basic compound to the reaction solution in which the precursor seed for the positive electrode active material is formed to grow the precursor particles for the positive electrode active material.
  • the reaction proceeds while continuously increasing the feed rates of the transition metal aqueous solution and the ammonium cation complex forming agent in the (2) particle growth step.
  • continuously increasing the supply rate means changing the supply flow rate of the raw material so that the graph of the supply flow rate with time becomes a continuous linear graph with a constant slope, and the supply flow rate is discontinuously increased in stages. It is a concept distinct from increasing.
  • an aqueous transition metal solution, an ammonium cation complex forming agent, and a basic compound are supplied to a reactor, and a co-precipitation reaction is performed while stirring to form a precursor seed.
  • the reactor is a batch reactor. This is because, when a precursor is prepared using a continuous reactor (CSTR), it is difficult to control the particle size of the precursor particles.
  • CSTR continuous reactor
  • the reactor may include a reaction mother liquor. Specifically, before supplying the reaction raw material, the transition metal aqueous solution, the ammonium cation complex forming agent, and the basic compound, the ammonium cation complex forming agent, the basic compound, and water are first added to the reactor to form a reaction mother liquid.
  • the ammonium cation complexing agent is at least one selected from the group consisting of NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , and NH 4 CO 3 . and may be introduced into the reactor in the form of a solution in which the compound is dissolved in a solvent.
  • a solvent water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the basic compound may be at least one selected from the group consisting of NaOH, KOH, and Ca(OH) 2 , and may be introduced into the reactor in the form of a solution in which the compound is dissolved in a solvent.
  • a solvent water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the reaction mother liquid may have a pH of 11.0 to 12.5, preferably 11.3 to 12.3.
  • pH of the reaction mother liquid satisfies the above range, seed formation may be smoothly performed.
  • an ammonium cation complexing agent a basic compound, and water to the reactor to form a reaction mother liquid, and then purging with nitrogen gas to remove oxygen in the reaction mother liquid.
  • a coprecipitation reaction is performed by stirring to generate a precursor seed and spheroidize to form a precursor seed.
  • the transition metal aqueous solution and the ammonium cation complex forming agent are supplied at a constant rate.
  • the co-precipitation reaction proceeds to generate precursor nuclei in the form of primary particles (nucleation), and the nuclei in the form of primary particles are aggregated, It is spheroidized to form a seed in the form of secondary particles.
  • the transition metal aqueous solution may include nickel, cobalt and manganese elements, and may be formed by mixing a nickel raw material, a cobalt raw material, and a manganese raw material with water.
  • the nickel raw material is, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, may be a fatty acid nickel salt or nickel halide, and any one or a mixture of two or more thereof may be used.
  • the cobalt raw material may be Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 .4H 2 O, Co(NO 3 ) 2 .6H 2 O or Co(SO 4 ) 2 .7H 2 O, etc. Any one of these or a mixture of two or more may be used.
  • the manganese raw material may include manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salts, manganese citrate and fatty acid manganese salts; It may be oxyhydroxide or manganese chloride, and any one or a mixture of two or more thereof may be used.
  • manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4
  • manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salts, manganese citrate and fatty acid manganese salts
  • It may be oxyhydroxide or manganese chloride, and any one or a mixture of two or more thereof may be used
  • the transition metal aqueous solution may further include a doping element (M 1 ) in addition to nickel, cobalt and manganese.
  • M 1 may include at least one selected from the group consisting of Al, W, Mo, Cr, Zr, Ti, Mg, Ta and Nb.
  • a raw material containing the doping element M 1 may be selectively further added during the preparation of the transition metal aqueous solution.
  • the raw material containing the doping element M 1 at least one selected from the group consisting of acetate, sulfate, sulfide, hydroxide, oxide or oxyhydroxide containing the doping element M 1 may be used.
  • the transition metal aqueous solution is a nickel raw material such that the content of nickel is 30 wt% or more, preferably 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, based on the total number of moles of the transition metal. material may be included.
  • the nickel content in the transition metal aqueous solution is 70 mol% or more, the capacity characteristics can be further improved.
  • the ammonium cation complexing agent is at least one selected from the group consisting of NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , and NH 4 CO 3 . and may be introduced into the reactor in the form of a solution in which the compound is dissolved in a solvent.
  • a solvent water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the basic compound may be at least one selected from the group consisting of NaOH, KOH, and Ca(OH) 2 , and may be introduced into the reactor in the form of a solution in which the compound is dissolved in a solvent.
  • a solvent water or a mixture of water and an organic solvent that can be uniformly mixed with water (specifically, alcohol, etc.) and water may be used.
  • the seed forming step may be performed for 1 hour to 8 hours, preferably 1 hour to 5 hours. If the seed formation time is too short, the number of seeds is not sufficiently generated, so that the grain growth is too fast, the sphericity is lowered, and the amount of the precursor finally obtained is reduced. In addition, if the seed formation time is too long, the number of seeds is too large, and the reaction time required to grow the precursor particles to a desired particle size is too long, which may decrease productivity.
  • the pH of the reaction solution may be 11.0 to 12.5, preferably 11.3 to 12.0, and the temperature of the reaction solution may be 40°C to 65°C, preferably 50°C to 65°C.
  • the pH of the reaction solution may be controlled by adjusting the input amount of the basic compound using a pH sensor or the like.
  • the precursor particles for the positive electrode active material are grown by co-precipitation reaction while supplying an aqueous transition metal solution, an ammonium cation complex forming agent, and a basic compound to the reaction solution in which the precursor seeds are formed.
  • the reaction proceeds while continuously increasing the feed rates of the transition metal aqueous solution and the ammonium cation complex forming agent.
  • the feed rate of the transition metal aqueous solution and the ammonium cation complex forming agent is 2 to 10 times, preferably 2 to 10 times, the feed rate of the transition metal aqueous solution and the ammonium cation complex forming agent in the seed forming step. It can be increased continuously until reaching 5 times, more preferably 3 to 5 times.
  • the specific surface area increase effect is insignificant, and the effect of improving the firing uniformity is reduced.
  • the surface density and the primary The particle size is reduced, which leads to the preparation of precursor particles with a large specific surface area.
  • a precursor with such a large specific surface area is used to manufacture the positive electrode active material, the reactivity of the precursor and the lithium raw material is improved in the firing step, thereby improving the firing uniformity, thereby improving the reversible capacity of the positive electrode active material.
  • the size of the primary particles in the precursor particles is gradually decreased by continuously increasing the feed rate of the reaction raw material, thereby preventing the occurrence of cracks in the secondary particles during sintering.
  • the reaction time required to form precursor particles having a desired particle size can be shortened, and thus the production can be improved.
  • the rate of increase of the supply rate of the transition metal aqueous solution and the rate of increase of the supply rate of the ammonium cation complex forming agent are the same.
  • the rate of increase of the supply rate means a slope in the supply flow rate graph with time.
  • transition metal aqueous solution ammonium cation complexing agent, and basic compound input in the particle growth step are the same as those used in the seed forming step.
  • the pH of the reaction solution may be 10.5 to 11.7, preferably 10.7 to 11.3, and the temperature of the reaction solution may be 40°C to 65°C, preferably 50°C to 65°C.
  • the pH of the reaction solution may be controlled by adjusting the input amount of the basic compound using a pH sensor or the like.
  • the reactor when the reactor is full in the particle growth step, the supply of the raw material is stopped and the stirring is stopped, the precursor particles in the reaction solution are settled, the supernatant is removed, and then the supply of the raw material is resumed to proceed with the reaction.
  • the process of removing the supernatant in the reactor as described above, it is possible to sufficiently secure the reaction time required for the growth of the precursor particles, and it is possible to increase the production of the precursor.
  • the above process may be repeated two or more times.
  • the precursor particles for the positive electrode active material may be obtained by separating the precursor particles from the reaction solution, washing and drying the precursor particles.
  • the precursor for a cathode active material according to the present invention is a precursor for a cathode active material prepared by the manufacturing method of the present invention described above.
  • the precursor for a positive electrode active material prepared according to the manufacturing method of the present invention has a low surface density and a high specific surface area compared to a conventional precursor for a positive electrode active material.
  • the precursor for a positive electrode active material according to the present invention has a BET specific surface area of 10m 2 /g to 20m 2 /g, preferably 10m 2 /g to 18m 2 /g, more preferably 10m 2 /g to 16m 2 /g.
  • the BET specific surface area of the precursor satisfies the above range, the reactivity with lithium or a doping element during firing is improved to improve firing quality, and thus, a positive electrode active material having excellent capacity characteristics and structural stability can be manufactured.
  • the precursor for the positive electrode active material may be a hydroxide or oxyhydroxide containing nickel, cobalt and manganese, for example, a compound having a composition represented by the following [Formula 1] or [Formula 2].
  • M 1 is at least one selected from the group consisting of Al, W, Mo, Cr, Zr, Ti, Mg, Ta and Nb, 0.8 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2 0 ⁇ d ⁇ 0.1.
  • the positive electrode active material precursor according to the present invention prepared as described above may be mixed with a lithium raw material and then fired to prepare a positive electrode active material.
  • the lithium raw material may be used without particular limitation as long as it is a compound containing a lithium source, preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOHH 2 O), LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 At least one selected from the group consisting of may be used.
  • a lithium source preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOHH 2 O), LiNO 3 , CH 3 COOLi and Li 2 (COO) 2 At least one selected from the group consisting of may be used.
  • the precursor and the lithium raw material may be mixed so that a molar ratio of transition metal (Me):lithium (Li) included in the precursor is 1:1 to 1:1.2, preferably 1:1 to 1:1.1.
  • a molar ratio of transition metal (Me):lithium (Li) included in the precursor is 1:1 to 1:1.2, preferably 1:1 to 1:1.1.
  • the lithium raw material is mixed below the above range, there is a risk that the capacity of the positive active material to be produced is lowered, and when the lithium raw material is mixed in excess of the above range, the particles are sintered during the firing process, making it difficult to manufacture the positive active material It may be difficult, and separation of the positive active material particles after capacity reduction and firing may occur.
  • a material containing a doping element M 2 may be additionally mixed during the sintering.
  • the doping element M 2 may be, for example, at least one selected from the group consisting of Al, W, Mo, Cr, Zr, Ti, Mg, Ta and Nb, and the doping element M 2 containing raw material is doped It may be at least one selected from the group consisting of acetate, sulfate, sulfide, hydroxide, oxide, or oxyhydroxide containing element M 2 .
  • the sintering may be performed at 700° C. to 800° C. for 5 hours to 20 hours, preferably at 700° C. to 780° C. for 5 to 15 hours, but is not limited thereto.
  • the positive active material may be, for example, a lithium nickel cobalt manganese-based oxide represented by the following formula (3).
  • M 2 may be at least one selected from the group consisting of Al, W, Mo, Cr, Zr, Ti, Mg, Ta, and Nb.
  • 1+p represents the molar ratio of lithium in the lithium transition metal oxide, and may be 0 ⁇ p ⁇ 0.3, preferably 0 ⁇ p ⁇ 0.2.
  • the x represents a molar ratio of nickel among all transition metals, and may be 0.80 ⁇ x ⁇ 1.0, 0.85 ⁇ x ⁇ 1, or 0.90 ⁇ x ⁇ 1. When the nickel content satisfies the above range, excellent capacity characteristics can be realized.
  • the y represents a molar ratio of cobalt among all transition metals, and may be 0 ⁇ y ⁇ 0.20, 0 ⁇ y ⁇ 0.15, or 0 ⁇ y ⁇ 0.10.
  • the z represents the molar ratio of manganese among all transition metals, and may be 0 ⁇ z ⁇ 0.20, 0 ⁇ z ⁇ 0.15, or 0 ⁇ z ⁇ 0.10.
  • the w represents the molar ratio of M 2 among all transition metals, and may be 0 ⁇ w ⁇ 0.1, or 0 ⁇ w ⁇ 0.05.
  • the present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material prepared by the above-described method.
  • the positive electrode includes a positive electrode current collector, and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium on the surface of aluminum or stainless steel. , silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector. For example, it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material layer may include a conductive material and a binder together with the positive active material.
  • the positive active material may be included in an amount of 80 to 99% by weight, more specifically, 85 to 98% by weight based on the total weight of the positive active material layer.
  • excellent capacity characteristics may be exhibited.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • the conductive material include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive active material particles and the adhesion between the positive active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene and rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, the positive electrode active material and, optionally, a positive electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent is coated on a positive electrode current collector, and then dried and rolled, or the positive electrode mixture is prepared separately It can be produced by casting on a support and then laminating a film obtained by peeling from this support on a positive electrode current collector.
  • the solvent used for preparing the positive electrode mixture may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), and acetone or water, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity during application for the production of the positive electrode thereafter. do.
  • the present invention can manufacture an electrochemical device including the positive electrode.
  • the electrochemical device may specifically be a battery, a capacitor, or the like, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so detailed description is omitted, Hereinafter, only the remaining components will be described in detail.
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam body, a nonwoven body, and the like.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • anode active material a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide;
  • a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the anode active material may be included in an amount of 80 wt% to 99 wt%
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and may be typically included in an amount of 0.1 wt% to 10 wt% based on the total weight of the anode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetra fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be included in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the anode active material layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • carbon fluoride such as aluminum and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode active material layer may be prepared by applying the negative electrode active material, and optionally a negative electrode mixture prepared by dissolving or dispersing a binder and a conductive material in a solvent, on the negative electrode current collector and drying, or the negative electrode mixture is separately prepared It can be prepared by casting on a support of a, and then laminating a film obtained by peeling from this support on a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and if it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to and excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminated structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes, which can be used in the manufacture of lithium secondary batteries, and are limited to these. it's not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2
  • a carbonate-based solvent is preferable, and a cyclic carbonate (for example, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate for example, ethylene carbonate or propylene carbonate, etc.
  • a low-viscosity linear carbonate-based compound for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2.
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 4.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • the electrolyte may further include additives for the purpose of improving battery life characteristics, suppressing reduction in battery capacity, and improving battery discharge capacity.
  • the lithium secondary battery as described above may be usefully used in portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • the supply of the reactants was stopped whenever the volume of the reaction solution reached 20L, the stirring was stopped to settle the precursor intermediate product, the reaction solution was left 10L, the supernatant was removed, and the reaction was restarted again.
  • the reaction was terminated when the average particle diameter D 50 of the precursor particles reached 15 ⁇ m.
  • Example 1 While changing the supply rate of the transition metal aqueous solution to continuously increase from 1200ml/hr to 6000ml/hr in Example 1 (S-3), and changing the supply rate of ammonia water to continuously increase from 108ml to 540ml/hr A cathode active material was prepared in the same manner as in Example 1, except that the reaction was performed for 12.3 hours.
  • Example 1 While changing the supply rate of the transition metal aqueous solution to continuously increase from 1200ml/hr to 9000ml/hr in Example 1 (S-3), and changing the supply rate of ammonia water to continuously increase from 108ml to 810ml/hr A positive active material was prepared in the same manner as in Example 1, except that the reaction was performed for 8.7 hours.
  • the supply of the reactants was stopped whenever the volume of the reaction solution reached 20L, the stirring was stopped to settle the precursor intermediate product, the reaction solution was left 10L, the supernatant was removed, and the reaction was restarted again.
  • the reaction was terminated when the average particle diameter D 50 of the precursor particles reached 15 ⁇ m.
  • the supply rate of the transition metal aqueous solution was increased to 3600 ml/hr and the supply rate of the aqueous ammonia solution was increased to 324 ml/hr.
  • the supply rate of the transition metal aqueous solution was increased to 6000 ml/hr and the supply rate of the ammonia water to 540 ml/hr at 80% of the supply flow rate after the reaction for 4 hours, except that the reaction was carried out in the same manner as in Example 1 A positive electrode active material was prepared.
  • the average particle diameter (D50), BET specific surface area, and tap density of the precursors for the positive electrode active material prepared in Examples 1 to 3 and Comparative Examples 1 to 2, and the positive electrode active material prepared in Examples 1 to 3 and Comparative Examples 1 to 2 The pellet density was measured by the following method. The measurement results are shown in [Table 1] below.
  • Average particle size D50 It was measured as a volume-based cumulative particle size distribution using a particle size distribution measuring device (Microtrac S3500, Microtrac).
  • BET specific surface area The specific surface area was measured by the BET method by calculating from the amount of nitrogen gas adsorbed under liquid nitrogen temperature (77 K) using BELSORP-mini II manufactured by BEL Japan.
  • Pellet density 5 g of the positive active material was placed in a mold having a diameter of 22 mm, and the pellet was prepared by pressing with a 2 ton pressure, then the volume of the pellet was measured, and the weight was divided by the volume to calculate the pellet density.
  • HPRM-A2 Hydrophilic Materials
  • the precursor for the positive electrode active material prepared by the method of Examples 1 to 3 in which the feed rate of the raw material was continuously increased in the particle growth step was prepared by the method of Comparative Example in which the reaction proceeded without changing the feed rate It had a higher specific surface area than the precursor for the positive electrode active material. In addition, it can be seen that the specific surface area also increased more as the amount of increase in the feed rate increased.
  • Examples 1 to 3 and Comparative Examples 1 to 2 a sample of precursor particles was collected at the point in time when a flow rate corresponding to 20% of the total supply flow rate of the transition metal aqueous solution input to the entire process was input and analyzed by scanning electron microscope (SEM) Through this, the surface properties of the precursor particles were confirmed. In addition, the surface properties of the final precursor particles prepared by the methods of Examples 1 to 3 and Comparative Examples 1 and 2 were confirmed through scanning electron microscope (SEM) analysis.
  • 1, 2, 3, 4 and 5 show SEM images of the precursors for the positive electrode active material prepared in Examples 1, 2, and 3 Comparative Examples 1 and 2, respectively.
  • 1 to 5 (A) is an SEM image showing the surface of the precursor particles collected when a flow rate corresponding to 20% of the total supply flow rate of the transition metal aqueous solution is input, (B) is the surface of the final precursor particle SEM image. Also, in FIG. 5C , an SEM image of the positive active material prepared in Comparative Example 2 is shown.
  • a positive electrode slurry was prepared by mixing the positive electrode active material, conductive material and PVDF binder prepared in Examples 1 to 3 and Comparative Example 1 with N-methyl-2-pyrrolidone (NMP) in a weight ratio of 97.5: 1: 1.5. did.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was coated on an aluminum current collector using a doctor blade, dried and rolled to prepare a positive electrode.
  • An electrode assembly was prepared by laminating a polyethylene separator and a lithium metal negative electrode on the positive electrode prepared as described above, and an electrolyte solution was injected to prepare a coin battery.
  • an electrolyte solution a solution in which LiPF 6 was dissolved at a concentration of 1M in an organic solvent in which ethylene carbonate (EC): ethylmethyl carbonate (EMC): diethyl carbonate (DEC) was mixed in a volume ratio of 3: 4: 3 was used.
  • the coin battery prepared as described above was charged with a constant current at 25°C at a rate of 0.1C until the voltage became 4.25V, and charged with a constant voltage until the current became 0.05C or less, and then the voltage reached 2.5V. It was discharged with a constant current of 0.1C until the time of measurement, and the charge capacity and the discharge capacity were measured.
  • the coin battery prepared as described above is charged with a constant current at 25° C. with a current of 0.2 C rate until the voltage becomes 4.25 V, and charged with a constant voltage until the current is 0.05 C or less, and then the voltage is 2.5 V It was discharged with a constant current of 0.2C until it reached, and the charge capacity and the discharge capacity were measured.
  • FIG. 5 is a graph showing a specific capacity-voltage profile at 0.1C/0.1C charging/discharging.
  • the coin battery prepared in Experimental Example 2 was charged to 4.25V at 45°C with a constant current of 0.33C, and then charged at a constant voltage until the current became 0.05C or less. Then, discharge was performed until it became 2.5V with 0.33C constant current. After repeating this cycle 30 times with one cycle of charging and discharging, the capacity retention ratios of the lithium secondary batteries of Examples 1 to 3 and Comparative Example 1 were measured after 30 cycles. In this case, the capacity retention rate after 30 cycles is a percentage of the ratio of the discharge capacity after 30 cycles to the discharge capacity after 1 cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 씨드(seed)를 형성하는 씨드 형성 단계; 및 상기 양극 활물질용 전구체 씨드가 형성된 반응 용액에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 입자를 성장시키는 입자 성장 단계를 포함하고, 상기 입자 성장 단계에서 상기 전이금속 수용액 및 상기 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시키면서 반응을 진행하는 것인 양극 활물질용 전구체의 제조 방법에 관한 것이다.

Description

양극 활물질용 전구체 및 그 제조 방법
본 출원은 2021년 2월 18일에 출원된 한국특허출원 제10-2021-0021657호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차전지에 적용되는 양극 활물질용 전구체 및 그 제조 방법에 관한 것으로, 보다 상세하게는 소성 시에 리튬과의 반응성이 우수한 양극 활물질용 전구체 및 그 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로 니켈, 코발트, 망간, 알루미늄 등과 같은 전이금속을 2 이상 포함하는 리튬 복합 전이금속 산화물이 널리 사용되고 있다.
상기 리튬 복합 전이금속 산화물은, 일반적으로, 연속 반응기(CSTR)나 배치(BATCH) 반응기에 원료 물질인 전이금속 원소를 포함하는 금속 용액, 암모늄 양이온 착물 형성제 및 염기성 수용액을 투입하고 공침 반응을 진행하여 수산화물 형태의 전구체를 제조하고, 상기 전구체와 리튬 원료 물질을 혼합한 후 소성하는 방법으로 제조된다.
연속 반응기(CSTR)는 원료 물질들을 투입하여 공침하면서 동시에 입자로 형성된 전구체를 배출하는 방식이며, 배치(batch) 반응기는 반응기 부피에 맞게 원료 물질을 투입하고, 반응기가 만액이 되면 원료 물질 투입을 중단하고 반응을 진행시킨 다음, 반응이 종료된 후에 전구체를 배출하는 방식이다.
연속 반응기(CSTR)를 사용하여 전구체를 제조할 경우, 반응 원료를 투입하여 공침하는 동시에 전구체를 배출하기 때문에 전구체의 생산성이 높다는 장점이 있으나, 원료물질 투입과 생성물 배출이 동시에 연속적으로 이루어져 반응기 내에서 생성되는 양극 활물질 전구체들의 반응기 내에서의 체류 시간 및 반응 시간에 편차가 존재할 수 있으며, 그에 따라 생성된 전구체 입자의 크기 및 입도 분포가 불균일하다는 문제점이 있다. 따라서, 전구체 품질 균일성 확보를 위해 배치 반응기를 이용한 전구체 제조 방법이 주로 이용되고 있다.
그러나, 종래의 배치 반응기를 이용한 양극 활물질용 전구체의 제조 방법의 경우, 반응 초반에 씨드가 형성된 후 입자 개수 변화 없이 입자 성장이 이루어지기 때문에, 공침 반응 시간이 경과함에 따라 전구체 입자의 성장 속도가 감소하면서 전구체 입자의 표면 밀도 및 1차 입자의 크기가 증가하게 되고, 이로 인해 전구체 입자의 표면 에너지가 감소하게 된다. 표면 밀도가 높은 전구체의 경우, 소성 시에 리튬 원료 물질과의 반응성이 낮고, 전구체 입자 내부로 리튬 원소 및 도핑 원소의 침투가 억제되어 균일한 소성이 어렵다는 문제점이 있었다. 또한, 배치식 반응기를 이용하여 양극 활물질용 전구체를 제조할 경우, 생산성이 떨어진다는 문제점도 있다.
따라서, 소성 시에 리튬 원료 물질과의 반응성이 우수한 양극 활물질용 전구체의 개발이 요구되고 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위한 것으로, 전구체 제조 시에 원료 물질의 공급 유량을 조절함으로써, 전구체 입자의 표면 밀도를 제어하여 소성 시에 리튬 원료 물질과의 우수한 반응성을 갖는 양극 활물질용 전구체를 제조하는 방법을 제공하고자 한다.
일 측면에서, 본 발명은 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 씨드(seed)를 형성하는 씨드 형성 단계, 및 상기 양극 활물질용 전구체 씨드가 형성된 반응 용액에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 입자를 성장시키는 입자 성장 단계를 포함하되, 상기 입자 성장 단계에서 상기 전이금속 수용액 및 상기 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시키면서 반응을 진행하는 것인 활물질용 전구체의 제조 방법을 제공한다.
다른 측면에서, 본 발명은 상기 제조 방법에 의해 제조된 양극 활물질용 전구체을 제공한다.
본 발명의 양극 활물질용 전구체의 제조 방법은, 전구체 입자 성장 단계에서 반응 원료인 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시킴으로써, 전구체 입자 내부의 밀도를 낮추고, 입자 표면에서의 1차 입자 크기가 작은 전구체 입자를 제조할 수 있도록 하였다. 전구체 입자의 표면 밀도와 1차 입자 크기가 감소하면 비표면적이 증가하게 되고, 이로 인해 소성 단계에서 리튬 원료 물질과의 반응성이 향상되어 소성 균일성이 개선되고, 결정 구조가 잘 발달하게 된다. 이에 따라, 본 발명의 방법에 따라 제조된 전구체를 이용하여 제조된 양극 활물질을 이차 전지에 적용할 경우, 가역 용량이 증가하는 효과를 얻을 수 있다.
또한, 본 발명의 양극 활물질용 전구체의 제조 방법에 따르면, 원하는 입경을 갖는 전구체 입자를 생성하는데 소요되는 반응 시간이 단축되어 생산성이 증가하는 효과를 얻을 수 있다.
도 1은 실시예 1에 의해 제조된 전구체의 표면 특성을 보여주는 주사전자현미경(SEM) 이미지이다.
도 2는 실시예 2에 의해 제조된 전구체의 표면 특성을 보여주는 주사전자현미경(SEM) 이미지이다.
도 3은 실시예 3에 의해 제조된 전구체의 표면 특성을 보여주는 주사전자현미경(SEM) 이미지이다.
도 4는 비교예 1에 의해 제조된 전구체의 표면 특성을 보여주는 주사전자현미경(SEM) 이미지이다.
도 5는 비교예 2에 의해 제조된 전구체 및 양극 활물질의 표면 특성을 보여주는 주사전자현미경(SEM) 이미지이다.
도 6은 실시예 1 ~ 3 및 비교예에 의해 제조된 양극 활물질을 적용한 이차 전지를 0.1C/0.1C 조건으로 충/방전하여 측정한 비용량(Specific Capacity)-전압(voltage) 프로파일(profile)을 보여주는 그래프이다.
도 7은 실시예 1 ~ 3 및 비교예에 의해 제조된 양극 활물질을 적용한 이차 전지의 고온 수명 특성을 보여주는 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
양극 활물질용 전구체의 제조 방법
본 발명자들은 소성 시에 리튬과의 반응성이 우수한 양극 활물질용 전구체를 개발하기 위해 연구를 거듭한 결과, 전구체 입자 성장 단계에서 원료 물질의 공급 속도를 연속적으로 증가시키면서 반응을 진행할 경우, 표면 밀도가 낮고, 비표면적이 높은 전구체 입자를 제조할 수 있고, 이러한 전구체를 이용할 경우, 소성 시의 리튬과의 반응성을 개선할 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 양극 활물질용 전구체의 제조 방법은, (1) 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 씨드(seed)를 형성하는 씨드 형성 단계, 및 (2) 상기 양극 활물질용 전구체 씨드가 형성된 반응 용액에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 입자를 성장시키는 입자 성장 단계를 포함하되, 상기 (2) 입자 성장 단계에서의 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시키면서 반응을 진행하는 것을 그 특징으로 한다.
여기서, 공급 속도를 연속적으로 증가시킨다는 것은, 시간에 따른 공급 유량의 그래프가 일정한 기울기를 갖는 연속적인 선형 그래프가 되도록 원료 물질의 공급 유량을 변화시키는 것을 의미하는 것으로, 공급 유량을 불연속적으로 단계적으로 증가시키는 것과는 구별되는 개념이다.
이하, 본 발명에 따른 양극 활물질의 제조 방법을 보다 상세히 설명한다.
(1) 씨드 형성 단계
먼저, 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하고, 교반하면서 공침 반응을 진행시켜 전구체 씨드(seed)가 형성되도록 한다.
상기 반응기는 배치 반응기인 것이 바람직하다. 연속 반응기(CSTR)를 이용하여 전구체를 제조할 경우, 전구체 입자의 입도 제어가 어렵기 때문이다.
한편, 상기 반응기는 반응 모액을 포함할 수 있다. 구체적으로는, 반응 원료인 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하기 전에, 반응기에 암모늄 양이온 착물 형성제, 염기성 화합물 및 물을 먼저 투입하여 반응 모액을 형성할 수 있다.
이때, 상기 암모늄 양이온 착물 형성제는, NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 상기 화합물을 용매에 용해시킨 용액 형태로 반응기 내로 투입될 수 있다. 이때, 상기 용매로는, 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
다음으로, 상기 염기성 화합물은, NaOH, KOH, 및 Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 상기 화합물을 용매에 용해시킨 용액 형태로 반응기 내로 투입될 수 있다. 이때, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 반응 모액은 pH가 11.0 내지 12.5, 바람직하게는 11.3 내지 12.3이 되도록 형성할 수 있다. 반응 모액의 pH가 상기 범위를 만족할 때, 씨드 형성이 원활하게 이루어질 수 있다.
한편, 반응기에 암모늄 양이온 착물 형성제, 염기성 화합물 및 물을 투입하여 반응 모액을 형성한 후, 질소 가스로 퍼징하여 반응 모액 내의 산소를 제거하는 것이 바람직하다.
다음으로, 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서, 교반시켜 공침 반응을 진행시킴으로써, 전구체 씨드(seed)를 생성하고, 구형화시켜 전구체 씨드를 형성한다. 이때, 상기 전이금속 수용액 및 암모늄 양이온 착물 형성제는 일정한 속도로 공급된다.
반응 모액이 수용된 반응기에 전이금속 수용액, 암모늄 양이온 및 염기성 수용액을 공급하고 교반하면 공침 반응이 진행되면서 1차 입자 형태의 전구체 핵이 생성(nucleation)되고, 상기 1차 입자 형태의 핵들이 응집되고, 구형화되어 2차 입자 형태의 씨드(seed)가 형성된다.
이때, 상기 전이금속 수용액은 니켈, 코발트 및 망간 원소를 포함하는 것일 수 있으며, 니켈 원료 물질, 코발트 원료 물질 및 망간 원료 물질을 물에 혼합하여 형성할 수 있다.
상기 니켈 원료물질은, Ni(OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 코발트 원료물질은, Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 망간 원료물질은, Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 또는 염화 망간 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
필요에 따라, 상기 전이금속 수용액은 니켈, 코발트 및 망간 이외에 도핑원소(M1)를 더 포함할 수 있다. 이때, 상기 M1은 Al, W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb으로 이루어진 군에서 선택되는 적어도 하나 이상을 포함할 수 있다. 상기 양극 활물질이 도핑원소를 더 포함할 경우, 수명 특성, 방전 특성 및/또는 안정성 등을 개선하는 효과를 달성할 수 있다.
상기 전이금속 수용액이 상기 도핑원소 M1을 더 포함할 경우, 상기 전이 금속 수용액의 제조 시에 상기 도핑원소 M1 함유 원료물질을 선택적으로 더 첨가할 수 있다.
상기 도핑원소 M1 함유 원료 물질로는 도핑원소 M1을 포함하는 아세트산염, 황산염, 황화물, 수산화물, 산화물 또는 옥시수산화물로 이루어진 군에서 선택되는 적어도 하나 이상이 사용될 수 있다.
상기 전이금속 수용액은, 전이금속의 전체 몰수에 대하여 니켈의 함량이 30중량% 이상, 바람직하게는 70 몰% 이상, 바람직하게는 80몰% 이상, 더 바람직하게는 90몰% 이상이 되도록 니켈 원료물질을 포함할 수 있다. 전이금속 수용액 중 니켈 함유량이 70몰% 이상일 경우, 용량 특성을 더욱 개선할 수 있다.
한편, 상기 암모늄 양이온 착물 형성제는, NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 및 NH4CO3로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 상기 화합물을 용매에 용해시킨 용액 형태로 반응기 내로 투입될 수 있다. 이때, 상기 용매로는, 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
또한, 상기 염기성 화합물은, NaOH, KOH, 및 Ca(OH)2로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 상기 화합물을 용매에 용해시킨 용액 형태로 반응기 내로 투입될 수 있다. 이때, 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 씨드 형성 단계는 1시간 내지 8시간, 바람직하게는 1시간 내지 5시간 동안 수행될 수 있다. 씨드 형성 시간이 너무 짧으면 씨드의 개수가 충분히 생성되지 않아 입자 성장이 너무 빨라지고, 구형도가 떨어지며, 최종적으로 수득되는 전구체 양이 적어진다. 또한, 씨드 형성 시간이 너무 길면 씨드의 개수가 너무 많아져서 원하는 입경까지 전구체 입자를 성장시키는데 소요되는 반응시간이 너무 길어져 생산성이 저하될 수 있다.
또한, 상기 씨드 형성 단계에서 반응 용액의 pH는 11.0 내지 12.5, 바람직하게는 11.3 내지 12.0일 수 있으며, 반응 용액의 온도는 40℃ 내지 65℃, 바람직하게는 50℃ 내지 65℃일 수 있다. 반응 용액의 pH 및 온도가 상기 범위를 만족할 경우, 반응 용액 내에 양극 활물질 전구체들의 핵이 형성되고, 상기 핵들이 응집되어 씨드를 형성하는 과정이 원활하게 이루어질 수 있다. 반응 용액의 pH는 pH 센서 등을 이용하여 염기성 화합물의 투입량을 조절하는 방법으로 제어할 수 있다.
(2) 입자 성장 단계
상기와 같은 과정을 통해 씨드가 충분히 형성되면, 상기 전구체 씨드가 형성된 반응 용액에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 입자를 성장시킨다.
한편, 입자 성장 단계에서는, 상기 전이금속 수용액 및 상기 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시키면서 반응을 진행한다. 구체적으로는, 상기 전이금속 수용액 및 암모늄 상기 양이온 착물 형성제의 공급 속도는 상기 씨드 형성 단계에서의 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도의 2배 내지 10배, 바람직하게는 2배 내지 5배, 더 바람직하게는 3배 내지 5배에 도달할 때까지 연속적으로 증가시킬 수 있다. 입자 성장 단계에서의 전이금속 수용액 및 암모늄 상기 양이온 착물 형성제의 공급 속도가 상기 씨드 형성 단계에서의 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도의 2배 미만으로 증가할 경우에는 비표면적 증가 효과가 미미하여 소성 균일성 개선 효과가 저하된다.
본 발명과 같이, 전구체 입자 성장 단계에서 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시킬 경우, 반응 원료의 증가로 인해 반응 속도가 증가하면서 생성되는 전구체 입자의 표면 밀도와 1차 입자 크기가 감소하고, 이로 인해 비표면적이 큰 전구체 입자가 제조되게 된다. 이와 같이 비표면적이 큰 전구체를 양극 활물질 제조에 사용하게 되면, 소성 단계에서 전구체와 리튬 원료 물질의 반응성이 향상되어 소성 균일성이 개선되고, 이로 인해 양극 활물질의 가역 용량이 개선되는 효과를 얻을 수 있다. 한편, 반응 원료의 공급 속도를 연속적으로 증가시키지 않고, 한번에 급격하게 증가시킬 경우, 비표면적이 큰 전구체 입자를 제조할 수는 있으나, 전구체 입자의 1차 입자 크기가 갑자기 작아지게 됨으로 인해, 소성 시에 전구체 입자의 씨드와 입자 성장 단계에서 형성된 영역의 수축율 차이가 커져 2차 입자에 크랙을 발생시킬 수 있다. 따라서, 본 발명은 반응 원료의 공급 속도를 연속적으로 증가시켜 전구체 입자 내의 1차 입자 크기가 점진적으로 감소하도록 함으로써 소성 시에 2차 입자에 크랙이 발생하는 것을 방지할 수 있도록 하였다.
또한, 본 발명과 같이 입자 성장 단계에서 반응 원료의 공급 속도를 증가시킬 경우, 원하는 입경의 전구체 입자를 형성하는데 소요되는 반응시간을 단축할 수 있어 생산량이 개선되는 효과를 얻을 수 있다.
한편, 상기 전이금속 수용액의 공급 속도 증가율과 암모늄 양이온 착물 형성제의 공급 속도 증가율은 서로 동일한 것이 바람직하다. 여기서, 공급 속도 증가율은 시간에 따른 공급 유량 그래프에서의 기울기를 의미한다. 전이금속 수용액의 공급 속도 증가율과 암모늄 양이온 착물 형성제의 공급 속도 증가율이 서로 다를 경우, 입자 치밀도가 감소하여 비표면적이 지나치게 증가하거나, 침전되지 않는 금속 착염이 증가하여 생산성을 낮추거나 미립자를 형성할 수 있다.
한편, 입자 성장 단계에서 투입되는 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물은 씨드 형성 단계에서 사용되는 것과 동일하다.
상기 입자 성장 단계에서 반응 용액의 pH는 10.5 내지 11.7, 바람직하게는 10.7 내지 11.3일 수 있으며, 반응 용액의 온도는 40℃ 내지 65℃, 바람직하게는 50℃ 내지 65℃일 수 있다. 반응 용액의 pH 및 온도가 상기 범위를 만족할 경우, 입자 성장이 원활하게 이루어질 수 있다. 반응 용액의 pH는 pH 센서 등을 이용하여 염기성 화합물의 투입량을 조절하는 방법으로 제어할 수 있다.
한편, 입자 성장 단계에서 반응기가 만액이 되면, 원료 물질의 공급을 중단하고 교반을 정지시켜, 반응 용액 내의 전구체 입자들을 가라앉힌 후, 상등액을 제거한 다음 원료 물질 공급을 재개하여 반응을 진행할 수 있다. 상기와 같이 반응기 내의 상등액을 제거하는 공정을 수행함으로써 전구체 입자 성장에 필요한 반응 시간을 충분히 확보할 수 있으며, 전구체 생산량을 증가시킬 수 있다. 상기 공정은 2회 이상 반복하여 수행될 수 있다.
상기 과정을 통해 전구체 입자가 충분히 성장하면, 반응 용액으로부터 전구체 입자를 분리하고, 세척한 후 건조시켜 양극 활물질용 전구체 입자를 수득할 수 있다.
양극 활물질용 전구체
다음으로, 본 발명에 따른 양극 활물질용 전구체에 대해 설명한다.
본 발명에 따른 양극 활물질용 전구체는 상술한 본 발명의 제조 방법에 의해 제조된 양극 활물질용 전구체이다.
본 발명의 제조 방법에 따라 제조된 양극 활물질용 전구체는, 종래의 양극 활물질용 전구체에 비해 낮은 표면 밀도와 높은 비표면적을 갖는다.
구체적으로는, 본 발명에 따른 양극 활물질용 전구체는 BET 비표면적이 10m2/g 내지 20m2/g, 바람직하게는 10m2/g 내지 18m2/g, 더 바람직하게는 10m2/g 내지 16m2/g일 수 있다. 전구체의 BET 비표면적이 상기 범위를 만족하면, 소성 시에 리튬이나 도핑 원소 등과의 반응성이 향상되어 소성 품질이 개선되고, 이로 인해, 용량 특성과 구조 안정성이 우수한 양극 활물질을 제조할 수 있다.
구체적으로는 상기 양극 활물질용 전구체는, 니켈, 코발트 및 망간을 포함하는 수산화물 또는 옥시 수산화물일 수 있으며, 예를 들면, 하기 [화학식 1] 또는 [화학식 2]로 표시되는 조성을 갖는 화합물일 수 있다.
[화학식 1]
[NiaCobMncM1 d](OH)2
[화학식 2]
[NiaCobMncM1 d]O·OH
상기 화학식 1 및 2에서, M1은 Al, W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb으로 이루어진 군에서 선택되는 적어도 하나 이상이며, 0.8≤a<1, 0<b<0.2, 0<c<0.2 0≤d<0.1이다. 바람직하게는 0.85≤a<1, 0<b<0.15, 0<c<0.15 0≤d<0.1, 더 바람직하게는 0.9≤a<1, 0<b<0.1, 0<c<0.1 0≤d<0.1일 수 있다.
양극 활물질
상기와 같이 제조된 본 발명에 따른 양극 활물질 전구체를 리튬 원료물질과 혼합한 후 소성하여 양극 활물질을 제조할 수 있다.
상기 리튬 원료 물질은, 리튬 소스를 포함하는 화합물이라면 특별히 제한되지 않고 사용할 수 있으며, 바람직하게는 탄산리튬(Li2CO3), 수산화리튬(LiOHH2O), LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다.
상기 전구체와 리튬 원료 물질은 전구체에 포함되는 전이금속(Me):리튬(Li)의 몰비가 1:1 내지 1:1.2, 바람직하게는 1:1 내지 1:1.1이 되도록 혼합될 수 있다. 상기 리튬 원료물질이 상기 범위 미만으로 혼합될 경우 제조되는 양극 활물질의 용량이 저하될 우려가 있으며, 상기 리튬 원료물질이 상기 범위를 초과하여 혼합될 경우 소성 과정에서 입자가 소결되어 버려 양극 활물질 제조가 어려울 수 있고, 용량 저하 및 소성 후 양극 활물질 입자의 분리가 발생할 수 있다.
또한, 필요에 따라, 상기 소성 시에 도핑 원소 M2 함유 물질을 추가로 혼합할 수 있다. 상기 도핑 원소 M2는, 예를 들면, Al, W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb으로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있으며, 상기 도핑원소 M2 함유 원료 물질은 도핑원소 M2를 포함하는 아세트산염, 황산염, 황화물, 수산화물, 산화물 또는 옥시수산화물로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있다.
상기 소성은 700℃ 내지 800℃에서 5시간 내지 20 시간, 바람직하게는 700℃ 내지 780℃에서 5 내지 15 시간 동안 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 양극 활물질은, 예를 들면, 하기 화학식 3으로 표시되는 리튬 니켈코발트망간계 산화물일 수 있다.
[화학식 3]
Li1+pNixCoyMnzM2 wO2
상기 화학식 1에서, 상기 M2은 Al, W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 1+p는 리튬 전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0≤p≤0.3, 바람직하게는 0≤p≤0.2일 수 있다.
상기 x는 전체 전이금속 중 니켈의 몰비를 나타내는 것으로, 0.80≤x<1.0, 0.85≤x<1, 또는 0.90≤x<1일 수 있다. 니켈 함유량이 상기 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.
상기 y는 전체 전이금속 중 코발트의 몰비를 나타내는 것으로, 0<y<0.20, 0<y<0.15, 또는 0<y<0.10일 수 있다.
상기 z는 전체 전이금속 중 망간의 몰비를 나타내는 것으로, 0<z<0.20, 0<z<0.15, 또는 0<z<0.10일 수 있다.
상기 w는 전체 전이금속 중 M2의 몰비를 나타내는 것으로, 0≤w≤0.1, 또는 0≤w≤0.05일 수 있다.
양극
또한, 본 발명은 상술한 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 상기 도전재의 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 합재를 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조되거나, 또는 상기 양극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 양극 합재 제조에 사용되는 용매는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 상기 음극 활물질은 음극 활물질층의 총 중량에 대하여 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 총 중량에 대하여 0.1 중량% 내지 10 중량%로 포함될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 총 중량에 대하여 10 중량% 이하, 바람직하게는 5 중량% 이하로 포함될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은, 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합재를 음극 집전체 상에 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합재를 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 4.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제를 더 포함할 수 있다.
상기와 같은 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
(S-1) 20L의 배치 반응기에 증류수, 암모니아수, 수산화나트륨 수용액을 채우고, N2 가스를 분당 4L의 속도로 공급하여 퍼징한 후 교반하여 반응 모액을 형성하였다. 그런 다음, 반응기 온도를 58℃로 승온하였다.
(S-2) NiSO4, CoSO4, 및 MnSO4를 니켈 : 코발트 : 망간의 몰비가 92:4:4가 되도록 하는 양으로 이온 교환수에 녹여 2.3M 농도의 전이금속 수용액을 준비하였다. 반응기 내부 용액 온도가 58℃에 도달하면, 상기 전이금속 수용액을 1200ml/hr, 15중량% 농도의 암모니아수를 108ml/hr의 공급 속도로 3시간 동안 정량 주입하고, pH 연동 펌프를 이용하여 25중량%의 수산화 나트륨 수용액을 주입하여 반응 용액 pH를 11.1로 유지시키면서 반응을 진행하여 전구체 씨드를 형성하였다.
(S-3) 3 시간 후, 전이금속 수용액의 공급 속도를 1200ml/hr에서 3600ml/hr까지 연속적으로 증가하도록 변경하고, 암모니아수의 공급 속도를 108ml에서 324ml/hr로 연속적으로 증가하도록 변경하면서 18.5시간 동안 반응을 진행시켜 전구체 입자를 성장시켰다. 상기 반응 과정에서 반응 용액의 pH가 11.1을 유지하도록 pH 연동 펌프를 이용하여 25중량%의 수산화 나트륨 수용액을 주입하였다.
상기 과정에서 반응 용액의 부피가 20L에 도달할 때마다 반응물의 공급을 멈추고, 교반을 정지시켜 전구체 중간 생성물을 가라앉힌 뒤, 반응 용액을 10L 남기고 상등액을 제거한 다음, 다시 반응을 재개하였다. 전구체 입자의 평균 입경 D50이 15㎛에 도달하였을 때 반응을 종료하였다.
(S-4) 반응 용액으로부터 전구체 입자들을 분리한 후, 물로 세척한 후 130℃ 건조 오븐에서 12시간 건조시킨 후 해쇄 및 체질하여 양극 활물질용 전구체를 제조하였다.
(S-5) 상기와 같이 제조된 전구체, LiOH, Al2O3 및 ZrO2을 (Ni+Co+Mn) : Li : Al : Zr의 몰비가 1 : 1.03 : 0.02 : 0.0035가 되도록 혼합한 후 760℃에서 10시간 동안 소성하여 양극 활물질을 제조하였다.
실시예 2
상기 실시예 1의 (S-3)에서 전이금속 수용액의 공급 속도를 1200ml/hr에서 6000ml/hr까지 연속적으로 증가하도록 변경하고, 암모니아수의 공급 속도를 108ml에서 540ml/hr로 연속적으로 증가하도록 변경하면서 12.3시간 동안 반응을 진행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실시예 3
상기 실시예 1의 (S-3)에서 전이금속 수용액의 공급 속도를 1200ml/hr에서 9000ml/hr까지 연속적으로 증가하도록 변경하고, 암모니아수의 공급 속도를 108ml에서 810ml/hr로 연속적으로 증가하도록 변경하면서 8.7시간 동안 반응을 진행한 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
비교예 1
(S-1) 20L의 배치 반응기에 증류수, 암모니아수, 수산화나트륨 수용액을 채우고, N2 가스를 분당 4L의 속도로 공급하여 퍼징한 후 교반하여 반응 모액을 형성하였다. 그런 다음, 반응기 온도를 58℃로 승온하였다.
(S-2) NiSO4, CoSO4, 및 MnSO4를 니켈 : 코발트 : 망간의 몰비가 92:4:4가 되도록 하는 양으로 이온 교환수에 녹여 2.3M 농도의 전이금속 수용액을 준비하였다. 반응기 내부 용액 온도가 58℃에 도달하면, 상기 전이금속 수용액을 1200ml/hr, 15중량% 농도의 암모니아수를 108ml/hr의 공급 속도로 40시간 동안 정량 주입하고, pH 연동 펌프를 이용하여 25중량%의 수산화 나트륨 수용액을 주입하여 반응 용액 pH를 11.1로 유지시키면서 40시간 동안 반응을 진행시켜 전구체 입자를 제조하였다.
상기 과정에서 반응 용액의 부피가 20L에 도달할 때마다 반응물의 공급을 멈추고, 교반을 정지시켜 전구체 중간 생성물을 가라앉힌 뒤, 반응 용액을 10L 남기고 상등액을 제거한 다음, 다시 반응을 재개하였다. 전구체 입자의 평균 입경 D50이 15㎛에 도달하였을 때 반응을 종료하였다.
(S-3) 반응용액으로부터 전구체 입자들을 분리한 후, 물로 세척한 후 130℃ 건조 오븐에서 12시간 건조시킨 후 해쇄 및 체질하여 양극 활물질용 전구체를 제조하였다.
(S-4) 상기와 같이 제조된 전구체, LiOH, Al2O3 및 ZrO2을 (Ni+Co+Mn) : Li : Al : Zr의 몰비가 1 : 1.03 : 0.02 : 0.0035가 되도록 혼합한 후 760℃에서 10시간 동안 소성하여 양극 활물질을 제조하였다.
비교예 2
상기 실시예 1의 (S-3) 단계에서, 전이금속 수용액과 암모니아수의 공급 속도를 연속적으로 증가시키지 않고, 전이금속 수용액의 공급 속도를 3600ml/hr, 암모니아수의 공급 속도를 324ml/hr로 증가시켜 9시간 동안 반응 후에 공급 유량 80% 시점에서 전이금속 수용액의 공급 속도를 6000ml/hr, 암모니아수의 공급 속도를 540ml/hr로 더 증가시켜 4시간 반응시킨 점을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
실험예 1 - 전구체 분체 특성 평가
실시예 1 ~ 3 및 비교예 1 ~ 2에서 제조된 양극 활물질용 전구체의 평균입경(D50), BET 비표면적 및 탭 밀도와, 실시예 1 ~ 3 및 비교예 1 ~ 2에서 제조된 양극 활물질의 펠렛 밀도(pellet density)를 하기와 방법을 통해 측정하였다. 측정 결과는 하기 [표 1]에 나타내었다.
(1) 평균 입경 D50: 입도 분포 측정 장치(Microtrac S3500, Microtrac 社)을 이용하여 체적 기준 누적 입도 분포로 측정하였다.
(2) BET 비표면적: BEL Japan 사 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하여 BET법에 의해 비표면적을 측정하였다.
(3) 탭밀도: 양극 활물질용 전구체 50g을 계량하여 전용 용기에 투입한 후, 3000회 탭핑하여 부피를 측정한 후, 무게를 부피로 나누어 탭 밀도를 계산하였다. 측정 장치로는 SEISHIN社의 KYT-4000을 사용하였다.
(4) 펠렛 밀도: 양극 활물질 5g을 직경 22mm인 몰드에 넣고, 2톤 압력으로 가압하여 펠렛을 제조한 후, 펠렛의 부피를 측정하고, 무게를 부피로 나누어 펠렛 밀도를 계산하였다. 측정 장치로는 HPRM-A2(㈜ 한테크)를 사용하였다.
전구체 양극 활물질
D50
[단위: ㎛]
BET
[단위: m2/g]
탭 밀도
[단위: g/cc]
펠렛 밀도
[단위: g/cc]
비교예 1 15.16 9.67 1.96 2.77
비교예 2 15.25 12.54 1.94 2.51
실시예 1 15.18 10.57 1.98 2.78
실시예 2 15.16 12.38 1.96 2.75
실시예 3 15.18 15.65 1.94 2.72
상기 표 1에 나타난 바와 같이, 입자 성장 단계에서 원료 물질의 공급 속도를 연속적으로 증가시킨 실시예 1 ~ 3의 방법으로 제조된 양극 활물질용 전구체가 공급 속도 변화 없이 반응을 진행시킨 비교예의 방법으로 제조된 양극 활물질용 전구체에 비해 더 높은 비표면적을 가졌다. 또한, 공급 속도의 증가량이 커질수록 비표면적도 더 많이 증가하였음을 확인할 수 있다.
한편, 입자의 비표면적이 증가하면 밀도가 감소하는 것이 일반적이나, 본 발명의 실시예 1 ~ 3의 전구체는 비표면적이 증가하였음에도 불구하고, 비교예 1의 전구체와 동등 수준의 탭 밀도를 나타내었으며, 이를 이용해 제조된 양극 활물질의 펠렛 밀도 역시 비교예 1과 큰 차이가 없음을 확인할 수 있다.
한편, 공급 속도를 연속적으로 증가시키지 않고, 한꺼번에 증가시킨 비교예 2의 경우, 전구체의 비표면적 및 탭 밀도는 실시예와 유사한 수준이었으나, 소성 후 양극 활물질의 펠렛 밀도가 현저하게 감소하였으며, 이는 소성 과정에서 입자 크랙이 발생하였기 때문인 것으로 판단된다.
또한, 실시예 1 ~ 3, 비교예 1 ~ 2에서 전체 공정에 투입되는 전이금속 수용액의 총 공급 유량의 20%에 해당하는 유량이 투입된 시점에 전구체 입자 샘플을 채취하여 주사전자현미경(SEM) 분석을 통해 전구체 입자 표면 특성을 확인하였다. 또한, 주사전자현미경(SEM) 분석을 통해 실시예 1 ~ 3 및 비교예 1 ~ 2의 방법으로 제조된 최종 전구체 입자의 표면 특성을 확인하였다.
도 1, 도 2, 도 3, 도 4 및 도 5에는 각각 실시예 1, 실시예 2, 실시예 3 비교예 1 및 비교예 2에서 제조된 양극 활물질용 전구체의 SEM 이미지가 도시되어 있다. 도 1 ~ 5에서 (A)는 전이금속 수용액의 총 공급 유량의 20%에 해당하는 유량이 투입된 시점에 채취된 전구체 입자의 표면을 보여주는 SEM 이미지이며, (B)는 최종 전구체 입자의 표면을 보여주는 SEM 이미지이다. 또한, 도 5의 (C)에는 비교예 2에서 제조된 양극 활물질의 SEM 이미지가 도시되어 있다.
도 1 ~ 도 5를 통해, 실시예 1 ~ 3에서 제조된 양극 활물질용 전구체의 표면 밀도 및 1차 입자의 크기가 비교예 1에 의해 제조된 양극 활물질용 전구체에 비해 감소하였음을 확인할 수 있다. 또한, 실시예 1 ~ 3의 경우, 전이금속 수용액의 총 공급 유량의 20%에 해당하는 유량이 투입된 시점에 채취된 전구체 입자와 최종 전구체 입자의 표면 밀도 및 1차 입자 크기가 거의 변화되지 않은 반면, 비교예 1의 경우, 최종 전구체 입자의 표면 밀도 및 1차 입자의 크기가 전이금속 수용액의 총 공급 유량의 20%에 해당하는 유량이 투입된 시점에 채취된 전구체 입자에 비해 크게 증가하였음을 확인할 수 있다. 한편, 도 5 (C)를 통해, 공급 속도를 연속적으로 증가시키지 않고 단계적으로 증가시킨 비교예 2의 방법에 따를 경우, 소성 후 양극 활물질에 크랙이 발생함을 확인할 수 있다. 이는 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 유량을 불연속적으로 급격하게 증가시킬 경우, 입자 내부에 밀도가 급격하게 변하면서 소성 과정에서 입자 수축 정도가 달라지기 때문인 것으로 판단된다.
실험예 2 - 용량 특성 평가
N-메틸-2-피롤리돈(NMP)에 실시예 1 ~ 3 및 비교예 1에 의해 제조된 양극 활물질, 도전재 및 PVDF 바인더를 97.5 : 1 : 1.5의 중량비율로 혼합하여 양극 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 알루미늄 집전체 상에 코팅하고 건조 후 압연하여 양극을 제조하였다.
상기와 같이 제조된 양극에 폴리에틸렌 분리막과 리튬 금속 음극을 적층하여 전극 조립체를 제조하고, 전해액을 주입하여 코인 전지를 제조하였다. 상기 전해액으로는 에틸렌 카보네이트(EC) : 에틸메틸 카보네이트(EMC) : 디에틸 카보네이트(DEC)를 3 : 4 : 3의 부피비로 혼합한 유기 용매에 LiPF6를 1M 농도로 용해시킨 용액을 사용하였다.
상기와 같이 제조된 코인 전지를 25℃에서 0.1C rate의 전류로 전압이 4.25V가 될 때까지 정전류 충전하고, 전류가 0.05C 이하가 될 때까지 정전압으로 충전한 다음, 전압이 2.5V에 이를 때까지 0.1C 정전류로 방전하여, 충전 용량 및 방전 용량을 측정하였다.
또한, 상기와 같이 제조된 코인 전지를 25℃에서 0.2C rate의 전류로 전압이 4.25V가 될 때까지 정전류 충전하고, 전류가 0.05C 이하가 될 때까지 정전압으로 충전한 다음, 전압이 2.5V에 이를 때까지 0.2C 정전류로 방전하여, 충전 용량 및 방전 용량을 측정하였다.
측정 결과는 하기 표 2 및 도 6에 나타내었다. 도 5는 0.1C/0.1C 충/방전 시의 비용량(Specific Capacity)-전압(voltage) 프로파일(profile)을 보여주는 그래프이다.
0.1C/0.1C 충/방전
[단위: mAh/g]
0.2C/0.2C 충방전
[단위: mAh/g]
충전용량 방전용량 충전 용량 방전 용량
비교예 1 239.0 220.1 239.9 215.0
실시예 1 242.6 225.0 241.8 217.3
실시예 2 243.4 229.2 243.5 223.3
실시예 3 239.3 227.9 239.7 220.8
상기 [표 2] 및 도 6을 통해, 실시예 1 ~ 3의 양극 활물질을 이용하여 제조된 이차전지의 충/방전 용량이 비교예의 양극 활물질을 이용하여 제조된 이차 전지보다 우수하게 나타남을 확인할 수 있다.
실험예 3 - 고온 사이클 특성
실험예 2에서 제조한 코인 전지를 45℃에서 0.33C 정전류로 4.25V까지 충전한 후, 전류가 0.05C 이하가 될 때까지 정전압으로 충전을 실시하였다. 이어서, 0.33C 정전류로 2.5V가 될 때까지 방전을 실시하였다. 상기 충전 및 방전을 1 사이클로 하여 이러한 사이클을 30회 반복 실시한 후, 실시예 1 ~ 3 및 비교예 1의 리튬 이차전지의 30회 사이클 후 용량 유지율을 측정하였다. 이때, 상기 30회 사이클 후 용량 유지율은 1사이클 후의 방전용량에 대한 30사이클 후의 방전 용량의 비의 백분율이다.
측정 결과는 하기 [표 3] 및 도 7에 나타내었다.
30 사이클 후 용량 유지율[%]
비교예 1 93.5
실시예 1 94.6
실시예 2 94.2
실시예 3 92.9
상기 [표 3] 및 도 7을 통해, 실시예 1 ~ 2의 양극 활물질을 적용한 이차 전지의 경우, 비교예 1의 양극 활물질을 적용한 이차 전지와 비교하여 30 사이클 후 용량 유지율이 높게 나타남을 확인할 수 있다.

Claims (13)

  1. 반응기에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 씨드(seed)를 형성하는 씨드 형성 단계; 및
    상기 양극 활물질용 전구체 씨드가 형성된 반응 용액에 전이금속 수용액, 암모늄 양이온 착물 형성제 및 염기성 화합물을 공급하면서 공침 반응시켜 양극 활물질용 전구체 입자를 성장시키는 입자 성장 단계를 포함하고,
    상기 입자 성장 단계에서 상기 전이금속 수용액 및 상기 암모늄 양이온 착물 형성제의 공급 속도를 연속적으로 증가시키면서 반응을 진행하는 것인 양극 활물질용 전구체의 제조 방법.
  2. 제1항에 있어서,
    상기 입자 성장 단계에서의 상기 전이금속 수용액 및 암모늄 상기 양이온 착물 형성제의 공급 속도가 상기 씨드 형성 단계에서의 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도의 2배 내지 10배에 도달할 때까지 연속적으로 증가하는 것인 양극 활물질용 전구체의 제조 방법.
  3. 제1항에 있어서,
    상기 입자 성장 단계에서의 상기 전이금속 수용액 및 상기 암모늄 양이온 착물 형성제의 공급 속도가 상기 씨드 형성 단계에서의 전이금속 수용액 및 암모늄 양이온 착물 형성제의 공급 속도의 2배 내지 5배에 도달할 때까지 연속적으로 증가하는 것인 양극 활물질용 전구체의 제조 방법.
  4. 제1항에 있어서,
    상기 입자 성장 단계에서, 상기 전이금속 수용액의 공급 속도 증가율과 암모늄 양이온 착물 형성제의 공급 속도 증가율이 동일한 것인 양극 활물질용 전구체의 제조 방법.
  5. 제1항에 있어서,
    상기 씨드 형성 단계는 1시간 내지 8시간 동안 수행되는 것인 양극 활물질용 전구체의 제조 방법.
  6. 제1항에 있어서,
    상기 전이금속 수용액은 니켈, 코발트 및 망간 원소를 포함하며, 전체 전이금속 원소 중 니켈을 30몰% 이상으로 포함하는 것인 양극 활물질용 전구체의 제조 방법.
  7. 제6항에 있어서,
    상기 전이금속 수용액은 전체 전이금속 원소 중 니켈을 70몰% 이상으로 포함하는 것인 양극 활물질용 전구체의 제조 방법.
  8. 제1항에 있어서,
    상기 씨드 형성 단계에서 상기 염기성 화합물은 반응 용액의 pH가 11.0 내지 12.5를 유지하도록 하는 양으로 투입되는 것인 양극 활물질용 전구체의 제조 방법.
  9. 제1항에 있어서,
    상기 입자 성장 단계에서 상기 염기성 화합물은 반응 용액의 pH가 10.5 내지 11.7을 유지하도록 하는 양으로 투입되는 것인 양극 활물질용 전구체의 제조 방법.
  10. 제1항에 있어서,
    상기 씨드 형성 단계 및 입자 성장 단계에서 반응 용액의 온도가 40℃ 내지 65℃인 양극 활물질용 전구체의 제조 방법.
  11. 청구항 1 내지 10 중 어느 한 항의 제조 방법에 의해 제조된 양극 활물질용 전구체.
  12. 제11항에 있어서,
    상기 양극 활물질용 전구체는 BET 비표면적이 10m2/g 내지 20m2/g인 양극 활물질용 전구체.
  13. 제11항에 있어서,
    상기 양극 활물질용 전구체는 하기 [화학식 1] 또는 [화학식 2]로 표시되는 조성을 갖는 것인 양극 활물질용 전구체.
    [화학식 1]
    [NiaCobMncM1 d](OH)2
    [화학식 2]
    [NiaCobMncM1 d]O·OH
    상기 화학식 1 및 2에서,
    M1은 Al, W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb으로 이루어진 군에서 선택되는 적어도 하나 이상이며, 0.8≤a<1, 0<b<0.2, 0<c<0.2 0≤d<0.1임.
PCT/KR2022/002432 2021-02-18 2022-02-18 양극 활물질용 전구체 및 그 제조 방법 WO2022177352A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/275,751 US20240083767A1 (en) 2021-02-18 2022-02-18 Precursor For Positive Electrode Active Material And Method Of Preparing The Same
EP22756550.4A EP4269362A4 (en) 2021-02-18 2022-02-18 PRECURSOR FOR CATHODE ACTIVE MATERIAL AND ASSOCIATED PREPARATION METHOD
CN202280010947.3A CN116867742A (zh) 2021-02-18 2022-02-18 正极活性材料用前体及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210021657 2021-02-18
KR10-2021-0021657 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022177352A1 true WO2022177352A1 (ko) 2022-08-25

Family

ID=82931013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002432 WO2022177352A1 (ko) 2021-02-18 2022-02-18 양극 활물질용 전구체 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20240083767A1 (ko)
EP (1) EP4269362A4 (ko)
KR (1) KR102622334B1 (ko)
CN (1) CN116867742A (ko)
WO (1) WO2022177352A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116443948A (zh) * 2023-03-31 2023-07-18 南通金通储能动力新材料有限公司 一种具有低锂镍混排ncma四元正极材料前驱体及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114023936B (zh) * 2021-10-29 2023-08-01 格林美股份有限公司 氮化物/石墨化碳纳米片包覆三元正极材料及其制备方法
KR20240097733A (ko) * 2022-12-20 2024-06-27 주식회사 엘지화학 양극 활물질 전구체의 제조방법, 양극 활물질 전구체 및 양극 활물질 전구체를 이용한 양극 활물질의 제조방법
WO2024205598A1 (en) * 2023-03-31 2024-10-03 Ascend Elements, Inc. Cascading co-precipitation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
KR20180091754A (ko) * 2017-02-06 2018-08-16 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
KR20200001082A (ko) * 2018-06-26 2020-01-06 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR20200019571A (ko) * 2018-08-14 2020-02-24 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR20210001449A (ko) * 2019-06-28 2021-01-06 한양대학교 산학협력단 2단계 공침 공정으로 제조된 양극활물질 전구체, 이를 이용하여 제조된 양극활물질, 및 이를 포함하는 리튬 이차 전지
KR20210021657A (ko) 2019-08-19 2021-03-02 삼성전자주식회사 도전성 부재를 포함하는 전자 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045958A1 (ja) * 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. アルカリ電池およびアルカリ電池用正極材料
KR101217453B1 (ko) * 2009-12-24 2013-01-02 제이에이치화학공업(주) 리튬이차전지 양극활물질용 전구체인 니켈계 복합금속수산화물 및 그 제조방법
CA2806915C (en) * 2010-09-22 2018-10-09 Omg Kokkola Chemicals Oy Mixed metal oxidized hydroxide and method for production
JP5971109B2 (ja) * 2011-12-20 2016-08-17 住友金属鉱山株式会社 ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
EP3555941B1 (en) * 2016-12-19 2021-02-17 GRST International Limited Method of preparing cathode material for secondary battery
US20220271283A1 (en) * 2019-07-10 2022-08-25 Battery Solution Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105588A (ja) * 2009-10-22 2011-06-02 Toda Kogyo Corp ニッケル・コバルト・マンガン系化合物粒子粉末及びその製造方法、リチウム複合酸化物粒子粉末及びその製造方法並びに非水電解質二次電池
KR20180091754A (ko) * 2017-02-06 2018-08-16 주식회사 엘지화학 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
KR20200001082A (ko) * 2018-06-26 2020-01-06 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR20200019571A (ko) * 2018-08-14 2020-02-24 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR20210001449A (ko) * 2019-06-28 2021-01-06 한양대학교 산학협력단 2단계 공침 공정으로 제조된 양극활물질 전구체, 이를 이용하여 제조된 양극활물질, 및 이를 포함하는 리튬 이차 전지
KR20210021657A (ko) 2019-08-19 2021-03-02 삼성전자주식회사 도전성 부재를 포함하는 전자 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4269362A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116443948A (zh) * 2023-03-31 2023-07-18 南通金通储能动力新材料有限公司 一种具有低锂镍混排ncma四元正极材料前驱体及制备方法

Also Published As

Publication number Publication date
EP4269362A4 (en) 2024-06-26
KR20220118348A (ko) 2022-08-25
US20240083767A1 (en) 2024-03-14
KR102622334B1 (ko) 2024-01-09
CN116867742A (zh) 2023-10-10
EP4269362A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2022177352A1 (ko) 양극 활물질용 전구체 및 그 제조 방법
WO2016204563A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019004602A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2021066576A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2019103461A2 (ko) 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2018143783A1 (ko) 리튬 이차전지용 양극 활물질 전구체 및 양극 활물질의 제조방법
WO2021194212A1 (ko) 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010947.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18275751

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022756550

Country of ref document: EP

Effective date: 20230727

NENP Non-entry into the national phase

Ref country code: DE