WO2005045958A1 - アルカリ電池およびアルカリ電池用正極材料 - Google Patents

アルカリ電池およびアルカリ電池用正極材料 Download PDF

Info

Publication number
WO2005045958A1
WO2005045958A1 PCT/JP2004/016311 JP2004016311W WO2005045958A1 WO 2005045958 A1 WO2005045958 A1 WO 2005045958A1 JP 2004016311 W JP2004016311 W JP 2004016311W WO 2005045958 A1 WO2005045958 A1 WO 2005045958A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
manganese
hydroxide
oxyhydroxide
battery
Prior art date
Application number
PCT/JP2004/016311
Other languages
English (en)
French (fr)
Inventor
Fumio Kato
Katsuya Sawada
Hidekatsu Izumi
Yasuo Mukai
Shigeto Noya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/554,356 priority Critical patent/US7718315B2/en
Priority to JP2005515300A priority patent/JPWO2005045958A1/ja
Priority to EP04799490A priority patent/EP1699099A4/en
Publication of WO2005045958A1 publication Critical patent/WO2005045958A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area

Definitions

  • Alkaline batteries and cathode materials for alkaline batteries are Alkaline batteries and cathode materials for alkaline batteries.
  • the present invention relates to an alkaline battery provided with a positive electrode mixture having a nickel hydroxide and a nickel manganese oxide, and more particularly to a nickel manganese battery as a primary battery. Further, the present invention relates to a method for producing a positive electrode material for an alkaline battery, which is a nickel hydroxide.
  • an alkaline battery particularly a discharge start type alkaline battery or an alkaline primary battery
  • a cylindrical positive electrode mixture pellet is placed in close contact with a positive electrode case in a positive electrode case also serving as a positive electrode terminal, and the pellet is hollow.
  • It has an inside-out type structure in which a gelled zinc negative electrode is arranged in a portion with a separator interposed therebetween.
  • alkaline batteries have been proposed in which high-load discharge characteristics have been improved by mixing oxyhydroxide nickel with a positive electrode mixture, and have recently been put to practical use (Patent Document 1). ).
  • nickel hydroxide is obtained by oxidizing with a oxidizing agent such as an aqueous solution of sodium hypochlorite. Oxyhydroxy nickel is used.
  • a oxidizing agent such as an aqueous solution of sodium hypochlorite.
  • Oxyhydroxy nickel is used.
  • nickel hydroxide a material having a j8 type crystal structure with a large bulk density (tap density) is used.
  • the oxyhydroxide nickel obtained by treating this with an oxidizing agent mainly has a j8 type crystal structure, and tends to be densely packed in the battery.
  • the nickel valence of oxyhydroxide nickel having a j8 type crystal structure is almost trivalent, and the electrochemical energy when this changes to near divalent is used as the discharge capacity of the battery.
  • Patent Document 2 For the purpose of increasing the utilization factor of the positive electrode and the high-load discharge characteristics, a technique using a solid solution of nickel hydroxide in which cobalt and zinc are dissolved as a starting material has been proposed (Patent Document 2).
  • the group strength consisting of zinc oxide, zinc oxide, yttrium oxide, and titanium oxide is also selected from oxyhydroxide nickel. In both cases, it has been proposed to contain one kind of oxide (Patent Document 3).
  • Patent Document 4 For use in alkaline storage batteries, it has been proposed to use as a starting material a solid solution of nickel hydroxide having a j8 type crystal structure in which a transition metal such as manganese is dissolved in particles (Patent Document 4). And Patent Document 5).
  • nickel oxyhydroxide having a ⁇ -type crystal structure in which the average valence of nickel is around 3.5 is intentionally generated, and the capacity is dramatically improved.
  • Patent Document 6 discloses an a-type hydroxide prepared by coprecipitating trivalent transition metal ions such as manganese and iron with divalent nickel ions. It has been proposed to use solid solution particles of ker as starting material. Here, a high capacity is achieved by generating oxyhydroxy nickel having a ⁇ -type crystal structure during charging.
  • the raw material nickel hydroxide having a ⁇ -type crystal structure is strengthened by chemically oxidizing conditions to obtain ⁇ .
  • An approach that can be considered is to increase the nickel valency of the oxyhydroxide nickel having a type crystal structure.
  • the upper limit of the nickel valency is 3.00 to less than 3.05.
  • the j8 type crystal structure is used for the following reasons (a) to (c). It has been found that the high-load discharge characteristics are lower and more faint than that of an alkaline battery using oxyhydroxide nickel mainly composed of nickel.
  • the oxidation-reduction potential (equilibrium potential) of oxynickel hydroxide having a ⁇ -type crystal structure is lower than that of oxyhydroxide nickel having a j8-type crystal structure.
  • Oxyhydroxide nickel having a ⁇ -type crystal structure has a large volume change (change in crystal structure) that occurs during discharge.
  • oxyhydroxide nickel is added to the positive electrode mixture in order to compensate for the drawback that the utilization rate of dioxygen manganese during heavy load discharge is low.
  • the above findings imply that the advantage of improving the heavy load discharge characteristics of alkaline batteries by oxyhydroxide nickel can be impaired by the ⁇ -type crystal structure.
  • Patent Document 1 JP-A-57-72266
  • Patent Document 2 Japanese Patent Publication No. 7-77129
  • Patent Document 3 JP 2001-15106 A
  • Patent Document 4 International Publication No. 97Z19479 pamphlet
  • Patent Document 5 Patent No. 3239076
  • Patent Document 6 JP 2001-322817 A
  • Patent Document 7 JP-A-10-334913
  • Patent Document 8 JP-A-11-260364
  • the present invention solves or reduces the above problems by optimizing the physical properties of oxyhydroxy nickel, and achieves higher capacity and higher load discharge characteristics of alkaline batteries, particularly nickel manganese batteries. It is possible to improve.
  • the present invention solves or reduces the above problems by adding a specific element to oxyhydroxy nickel, and improves the high capacity and high load discharge characteristics of alkaline batteries, particularly nickel manganese batteries. Is made possible.
  • the present invention is intended to enhance the above effects by controlling the ratio of the ⁇ -type crystal structure in the oxyhydroxide nickel within a predetermined range.
  • the present invention relates to an alkaline battery, comprising a positive electrode mixture, a negative electrode, a separator interposed between the positive electrode mixture and the negative electrode, and an alkaline electrolyte solution.
  • the oxyhydroxide nickel includes a first active material that also has nickel power and a second active material that also has manganese dioxide power, and the oxyhydroxide nickel has a y-type crystal structure, and is included in the oxyhydroxide nickel.
  • An alkaline battery having a nickel content of at least 45% by weight and a volume-based average particle diameter of 3 to 20 ⁇ m of the nickel oxyhydroxide measured using a laser diffraction type particle size distribution analyzer. About.
  • the oxyhydroxy nickel preferably further includes a ⁇ -type crystal structure.
  • the tap density of the oxy nickel hydroxide is desirably 1.5 g Zcm 3 or more when tapping is performed 500 times.
  • the amount of water contained in the oxyhydroxy nickel is preferably 3% by weight or less. It is considered that the water is in a state of being adsorbed on the surface of the nickel hydroxide.
  • the specific surface area of the oxyhydroxy nickel measured by the BET method is 10 to 30 m 2 Zg.
  • Powder X-ray diffraction pattern force of the above-mentioned oxyhydroxide nickel Spacing attributed to (003) plane of ⁇ -type crystal 6.8-7.1. 1 Angstrom ( ⁇ ) diffraction peaks ⁇ and
  • the strength I j8 preferably satisfies 0.5 ⁇ / ( ⁇ + ⁇
  • the average valence of nickel contained in the oxyhydroxide nickel is 3.3 or more.
  • the oxyhydroxy nickel is preferably a solid solution in which an additive element is dissolved.
  • the additive element is preferably at least one selected from the group consisting of manganese and cobalt.
  • the amount of manganese dissolved in the solid solution is 117 mol% of the total amount of all metal elements contained in the solid solution. It is preferable that
  • the amount of manganese and konoleto dissolved in the solid solution is the total amount of all metal elements contained in the solid solution, respectively. It is preferably 17 mol% of the total.
  • the solid solution in which manganese is dissolved as the additional element, it is more preferable that the solid solution has a cobalt oxidized substance adhered to its surface.
  • the amount of manganese dissolved in the solid solution is included in the solid solution. It is preferable that the total amount of the metal elements is 17 mol% and the amount of the cobalt oxide is 0.1 to 7% by weight of the solid solution. Further, the average valency of cobalt contained in the cobalt oxidized product is preferably larger than 3.0.
  • the content of the manganese dioxide in the positive electrode mixture is preferably from 20 to 90% by weight.
  • the present invention also relates to a method for producing a positive electrode material for an alkaline battery.
  • an aqueous solution of nickel sulfate ( ⁇ ), an aqueous solution of manganese sulfate ( ⁇ ⁇ ⁇ ⁇ ⁇ ), an aqueous solution of sodium hydroxide, and an aqueous ammonia solution are supplied into a reaction vessel provided with stirring blades through independent flow paths.
  • the operation was performed while controlling the temperature and pH in the reaction tank while publishing an inert gas to obtain nickel hydroxide having a ⁇ -type crystal structure in which nickel sites were partially substituted with divalent manganese.
  • the nickel hydroxide after the first step is washed with water, dried, and heated at 50 to 150 ° C. in an oxidizing atmosphere to convert only manganese to an average valence of 3.5 or more. It has a second step of making it dangling.
  • the method includes a third step in which the nickel hydroxide after the second step is charged into an aqueous alkaline solution together with an oxidizing agent, and the nickel hydroxide is chemically oxidized.
  • hydrazine is further added into the reaction vessel to maintain a reducing atmosphere.
  • the average valence of the manganese is preferably set to 3.8 or more.
  • the oxidizing agent used in the third step is preferably hypochlorite.
  • the alkaline aqueous solution used in the third step may be an aqueous solution in which at least one alkali salt selected from the group consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide is dissolved. preferable.
  • the concentration of the alkali salt in the aqueous alkali solution is preferably 3 mol ZL or more.
  • oxy-nickel hydroxide having a ⁇ -type crystal structure is referred to as ⁇ -oxyhydroxide nickel
  • oxy-nickel nickel having a j8-type crystal structure is referred to as j8-oxyhydroxide nickel
  • Nickel hydroxide having a type crystal structure may be referred to as ⁇ -monohydroxide nickel.
  • the alkaline battery containing oxyhydroxide nickel in the positive electrode mixture is excellent in heavy load discharge characteristics, high capacity discharge can be achieved while maintaining the advantages.
  • the control of the nickel content and the average particle size of the ⁇ -hydroxy hydroxyl nickel is particularly effective for high capacity alkaline batteries.
  • the volume energy density (mAh / cm 3 ) of the positive electrode mixture pellets composed of nickel hydroxide and nickel oxide can be reduced by the existing 13-hydroxy hydroxide. It can be significantly increased as compared with those using nickel and manganese diacid. Therefore, the capacity of the alkaline battery is greatly improved.
  • dissolving the additional element in the oxyhydroxide nickel is particularly effective for improving the heavy load discharge characteristics of the alkaline battery.
  • manganese is particularly effective. If a solid solution of nickel hydroxide is used in which a small amount of manganese is dissolved in the raw material of nickel hydroxide nickel, the oxidation-reduction potential becomes low, and nickel hydroxide becomes nickel hydroxide. Is promoted, and the formation of a ⁇ -type structured crystal is likely to occur.
  • manganese can be present in a stable state in oxyhydroxide nickel, and the quality of the obtained battery can be kept stable.
  • FIG. 1 is a front view showing a cross section of a part of an alkaline battery according to an embodiment of the present invention.
  • FIG. 2 is a powder X-ray diffraction pattern of the oxyhydroxy nickel according to the present invention.
  • the alkaline battery of the present invention includes a positive electrode mixture, a negative electrode, a separator interposed between the positive electrode mixture and the negative electrode, and an alkaline electrolyte.
  • the positive electrode mixture includes a first active material having a nickel oxyhydroxide power and a second active material having a manganese dioxide manganese power, and the oxyhydroxide nickel has a ⁇ -type crystal structure.
  • the nickel content of oxyhydroxy nickel is 4%. It must be at least 5% by weight, preferably at least 50% by weight.
  • the volume-based average particle size measured using a laser diffraction type particle size distribution analyzer must be 3 to 20 m. Yes, preferably 10-15 m.
  • the oxyhydroxy nickel used in the present invention may be composed of a single phase having a ⁇ -type crystal structure or a eutectic in which a ⁇ -type crystal structure and a y-type crystal structure are mixed. is there.
  • the y-type crystal structure is such that an alkali metal is interposed between the NiO layers constituting the oxyhydroxide nickel.
  • ⁇ -nickel hydroxide is an oxide represented by the chemical formula A H NiO ⁇ ⁇
  • the y oxyhydroxy nickel gives a diffraction pattern of file number: 6-75 of JCPDS inorganic substance file in powder X-ray diffraction.
  • a typical diffraction peak is a diffraction peak ⁇ of 6.8-7.1 ⁇ (A), which is the plane spacing attributed to the (003) plane.
  • the (003) plane is a crystal plane perpendicular to the c-axis, and alkali metal ions and water molecules are inserted between the planes, extending between layers to about 7 mm.
  • the oxyhydroxide nickel used in the present invention is
  • the tap density is 500 times, the tap density is preferably 1.5 g / cm 3 or more, more preferably 1.7 gZcm 3 or more.
  • the distribution and the like of the alkaline electrolyte in the positive electrode mixture are maintained in a favorable state, the discharge reaction (electrochemical reaction) of nickel oxyhydroxide proceeds smoothly, and the high load discharge characteristics are enhanced. Therefore, it is preferable that the specific surface area measured using the BET method is 10 to 30 m 2 / g.
  • the amount of water contained in the oxyhydroxy nickel is 3% by weight or less.
  • the use of oxyhydroxy nickel having a water content of 2% by weight or less is preferable because the preparation of positive electrode mixture pellets is facilitated.
  • the oxyhydroxide nickel has a ⁇ -type crystal structure
  • the powder X-ray diffraction pattern of the oxyhydroxide nickel is based on the diffraction attributed to the (003) plane of the ⁇ -type crystal.
  • the peak ⁇ it has a diffraction peak P ⁇ with a plane spacing of about 4.5-5 A, which is attributed to the (001) plane of the j8 type crystal.
  • Nickel oxyhydroxide having a y-type crystal structure does not necessarily have a discharge capacity that matches the nickel valence. Compared with j8-oxyhydroxy nickel, ⁇ -oxynickel hydroxide causes a drastic reduction in discharge voltage, and often fails to provide a satisfactory capacity.
  • the present invention proposes to use a solid solution in which an additional element such as manganese is dissolved as the nickel oxyhydroxide having a y-type crystal structure.
  • the solid solution of oxynickel hydroxide in which the additive element is dissolved is obtained by mixing the solid solution of the additive element with nickel hydroxide. It can be synthesized by oxidation.
  • cobalt can be preferably used in addition to manganese.
  • the nickel oxyhydroxide is preferably a solid solution in which at least one of manganese and cobalt is dissolved, and more preferably a solid solution in which both manganese and cobalt are dissolved.
  • both manganese and cobalt are dissolved in oxyhydroxide nickel, the effects of increasing the capacity and improving the high-load discharge characteristics can be simultaneously enhanced.
  • the amount of manganese dissolved in the solid solution may be 17 mol% of the total amount of all metal elements contained in the solid solution. preferable. If the amount of manganese is less than 1 mol%, the effect of the added element cannot be obtained much. On the other hand, from the viewpoint of avoiding a decrease in battery capacity, the amount of manganese is preferably 7 mol% or less.
  • the amount of cobalt dissolved in the solid solution may be 17 mol% of the total amount of all metal elements contained in the solid solution. preferable. If the amount of cobalt is less than lmol%, the effect of the added element is not obtained much. On the other hand, from the viewpoint of avoiding a decrease in battery capacity, the amount of cobalt is preferably 7 mol% or less.
  • Nickel hydroxide hydroxide power In the case of a solid solution in which both manganese and cobalt are dissolved as additive elements, the amount of manganese and cobalt dissolved in the solid solution is respectively 17 mol of the total amount of all metal elements contained in the solid solution. %.
  • cobalt oxide sulfide adheres to the surface of the oxyhydroxide nickel and maintains a good current collecting state from the active material during the discharge of the ⁇ -oxyhydroxide nickel with a change in volume. And maintain a heavy load discharge characteristic.
  • the amount of the cobalt oxide is preferably 0.1% by weight or more of the nickel hydroxide.
  • the amount of cobalt oxide is 7% by weight or less of nickel oxyhydroxide from the viewpoint of suppressing the elution of cobalt and securing the stability (reliability) of the positive electrode. It is preferable.
  • the average valence of cobalt contained in the cobalt oxide is preferably larger than 3.0.
  • a cobalt oxide having an average valence of cobalt of more than 3.0 has extremely high electron conductivity as compared with a conorelet acid nitride having an average valence of cobalt of 3.0 or less. Therefore, it is possible to maximize the current collection efficiency of the nickel hydroxide. Further, in the case of such cobalt oxide, when the battery after discharge is left (stored), the reduction of cobalt to divalent or elution into the electrolyte is suppressed. Therefore, by using such oxyhydroxide nickel having the cobalt acid sulfide on the surface, in addition to increasing the capacity and improving the strong load discharge characteristics, the storage characteristics (reliability) of the battery can be improved. Improvements can also be made.
  • Dioxygen manganese is easier to pack in a battery case at a higher density than oxyhydroxy nickel, and the price of dimanganese manganese is lower.
  • the content of manganese dioxide in the positive electrode mixture is preferably 20% by weight or more. Further, from the viewpoint of improving the battery capacity, the content of manganese dioxide in the positive electrode mixture is preferably 90% by weight or less.
  • Nickel oxyhydroxide having a ⁇ -type structure is obtained by chemically oxidizing nickel hydroxide mainly having a ⁇ -type structure in an alkaline aqueous solution using an oxidizing agent, washing the resultant with water and drying. It comes out.
  • hydroxylated nickel having an ⁇ -type structure generally has a very bulky (003) plane perpendicular to the c-axis with a plane-to-plane distance of more than 8 angstroms, and this plane-to-plane distance is ⁇ -water. Oxidation-larger than that of nickel. Therefore, oxy-nickel hydroxide having a ⁇ -type structure obtained by oxidizing nickel hydroxide having an ⁇ -type structure reflects the shape (history) of the raw material, the material becomes porous, and high-density powder is produced. I can't get it.
  • nickel hydroxide having a high-density ⁇ -type structure for example, 90% by weight or more of water having a ⁇ -type structure
  • nickel oxide nickel oxide
  • the alkaline aqueous solution is preferably at least one selected from the group consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide.
  • the formation reaction of oxynickel hydroxide mainly composed of ⁇ -type structure is accompanied by the penetration of alkali metal ions into the NiO layer.
  • the reaction proceeds more smoothly when the concentration of the alkali salt coexisting with the oxidizing agent is increased. Therefore, it is desirable that the concentration of these alkali salts in an aqueous alkali solution is 3 mol ZL or more.
  • the nickel hydroxide having a ⁇ -type structure and used as a raw material of the nickel oxyhydroxide having a y-type structure is preferably a solid solution in which manganese is dissolved.
  • Nickel hydroxide a solid solution of manganese dissolved, has a redox potential Since they move in a direction more noble than nickel, they are highly oxidized in the treatment with an oxidizing agent and easily form a ⁇ -type structure.
  • a state of a solid solution in which manganese is dissolved in nickel hydroxide is better.
  • the treatment with the oxidizing agent is performed in a solid solution state in which manganese is replaced by nickel sites in the hydroxide sodium, rather than in a solid solution state in which manganese has invaded a position other than the nickel site in the nickel hydroxide nickel crystal. It is excellent in that manganese is hardly eluted sometimes.
  • the average valence of manganese in the ⁇ -monohydroxide nickel immediately before treatment with the oxidizing agent is preferably 3.5 or more, more preferably 3.8 or more.
  • the average valence of manganese is as low as a few valences, phenomena such as local release of the manganese nitride may occur in the nickel hydroxide particles.
  • the details of the cause are not clear, it is considered that an oxide is formed due to the movement of manganese species in the crystal during the oxidation treatment. In that case, it becomes difficult to obtain ⁇ -hydroxy hydroxylated nickel having high discharge efficiency enough to contribute to high capacity of the battery. Therefore, the average valence of manganese is preferably closer to tetravalent.
  • an aqueous solution of nickel sulfate (II), an aqueous solution of manganese sulfate (II), an aqueous solution of sodium hydroxide, and aqueous ammonia are supplied into a reaction vessel provided with stirring blades through independent flow paths. This operation is performed while publishing an inert gas into the reactor and controlling the temperature and ⁇ in the reactor. In this operation, some of the nickel sites Thus, a hydroxylated nickel having a ⁇ -type crystal structure substituted with gangue can be obtained.
  • the concentration of each solution in the reaction tank is required to be appropriately adjusted by those skilled in the art depending on the equipment of the reaction tank, and such adjustment can be arbitrarily performed by those skilled in the art.
  • the concentration of nickel (II) sulfate is 0.5 to 2 molZL
  • the concentration of sodium hydroxide is 1 to 5 molZL
  • the concentration of aqueous ammonia is 10 to 30% by weight. It is not done.
  • the concentration of manganese (II) sulfate should be selected so that the desired nickel content is achieved.
  • the inert gas nitrogen, argon, or the like is used.
  • nickel and manganese form an ammine complex in a divalent state, and the aqueous sodium hydroxide solution supplied excessively to the ammine complex acts.
  • nickel hydroxide mainly composed of a ⁇ -type structure in which a part of divalent nickel sites is substituted by manganese precipitates.
  • the density of manganese-dissolved nickel hydroxide is reduced, mainly because divalent manganese ions undergo oxidation during the synthesis of nickel hydroxide. I have.
  • the density is extremely high! ⁇ ⁇ -monohydroxide nickel can be obtained.
  • 8-nickel hydroxide obtained in the first step is washed with water, dried, and heated at 50 to 150 ° C. in an oxidizing atmosphere. By this operation, only manganese can be oxidized to an average valence of 3.5 or more.
  • the nickel hydroxide after the second step is put into an aqueous alkali solution together with an oxidizing agent to chemically oxidize the nickel hydroxide.
  • an oxidizing agent to chemically oxidize the nickel hydroxide.
  • ⁇ -Nickel oxyhydroxide is an alkali metal between the NiO layer of nickel oxyhydroxide.
  • the alkaline aqueous solution is preferably at least one alkali salt selected from the group consisting of potassium hydroxide, sodium hydroxide and lithium hydroxide.
  • the alkali salt concentration in the aqueous alkali solution is 3 mol ZL or more.
  • Oxidizing agents for oxidizing the nickel hydroxide to nickel oxyhydroxide include, for example, hypochlorites such as sodium hypochlorite, persulfates such as potassium peroxydisulfate, and halogens such as bromine. And hydrogen peroxide solution. Of these, hypochlorite is most suitable because of its high and stable acidity and low cost.
  • the integrated intensity I ⁇ of the diffraction peak P ⁇ of 5 A was determined, and the value of I ⁇ (I ⁇ + 1J8) was determined.
  • the nickel content of each sample powder was determined by the following chemical measurement based on the gravimetric method.
  • An aqueous solution of nitric acid was added to a sample powder of nickel hydroxide and heated by adding an aqueous solution of nitric acid to completely dissolve the particles, and the volume was adjusted by adding an aqueous solution of tartaric acid and ion-exchanged water.
  • the pH of this solution was adjusted using aqueous ammonia and acetic acid, and then bromate was added to oxidize additional elements (manganese ions and cobalt ions) that could cause measurement errors to a higher order.
  • Nickel content in each powder was calculated by the following equation.
  • Nickel content (% by weight) ⁇ weight of precipitate (g) X O. 2032 ⁇ Z ⁇ weight of sample powder (g) ⁇
  • the oxyhydroxide nickel does not contain additional elements such as manganese and cobalt, add potassium iodide and sulfuric acid to the oxyhydroxide nickel powder and completely dissolve it by continuing to stir thoroughly. I let it. During this process, the high-valent nickel ions oxidize potassium iodide to iodine and are themselves reduced to divalent. Subsequently, the generated and released iodine was titrated with an aqueous solution of 0.1 mmol ZL sodium thiosulfate. The titer at this time reflects the amount of nickel ions whose valence is greater than divalent. Titration results and nickel obtained in ⁇ 2> above Using the content, the average valence of nickel contained in the oxyhydroxy nickel was calculated by the following equation.
  • the oxyhydroxy nickel is a solid solution containing an additional element (manganese or cobalt), manganese ions and cobalt ions having high valency also oxidize potassium iodide to iodine, and become themselves. It is necessary to correct for this because it is reduced to the value.
  • manganese ions and cobalt ions having high valency also oxidize potassium iodide to iodine, and become themselves. It is necessary to correct for this because it is reduced to the value.
  • the average valence of manganese contained in the solid solution of the raw material nickel hydroxide before being oxidized to nickel oxyhydroxide is defined as the value of the content of the added element determined by ICP emission analysis. Assuming that the valency and the conoreto are divalent, they were basically determined by the same method as described above.
  • a measuring device “Powder Tester PT-R” manufactured by Hosokawa Micron Corporation was used. A sieve with an opening of 100 m was used as a sieve through which the sample powder passed, and the powder was dropped into a 20 cc tapping cell. After the cell was completely filled, tapping with a stroke length of 18 mm was performed 500 times per Z second. Thereafter, the tap density was measured.
  • the sample powder was sufficiently dispersed in water using a Microtrac particle size distribution analyzer “9220FRA” manufactured by Nikkiso Co., Ltd., and the volume-based average particle diameter D was determined by a laser diffraction method.
  • sample powder Approximately 2 g of the sample powder was evacuated for 6 hours while heating at 60 ° C using Micromeritex “ASAP2010”, pre-dried, and nitrogen gas was adsorbed on the sample. The amount of adsorption was measured. Furthermore, the weight of the sample powder was precisely weighed, and the specific surface area was determined by the BET method.
  • aqueous solution of nickel sulfate ( ⁇ ), an aqueous solution of sodium hydroxide, and aqueous ammonia were prepared at predetermined concentrations. These were supplied quantitatively by a pump into a reaction tank equipped with stirring blades so that the pH in the tank would be constant, and sufficient stirring was continued to precipitate and grow spherical j8-nickel hydroxide.
  • the obtained particles were heated in a different aqueous sodium hydroxide solution to remove sulfate ions, washed with water, and dried to obtain hydroxide aluminum al.
  • the obtained particles were heated in a different aqueous sodium hydroxide solution to remove sulfate ions, then washed with water and vacuum-dried, and further heated to 80 ° C. For 72 hours to obtain hydroxyl hydroxide nickel b 1 [composition: Ni Mn (OH)].
  • the obtained particles were heated in a different aqueous sodium hydroxide solution to remove sulfate ions, then washed with water and vacuum-dried, and further heated to 80 ° C. The mixture was subjected to air oxidation for 72 hours to obtain nickel hydroxide cl [composition: Ni Mn Co (OH)].
  • the coated Hydrozide nickel bl was designated as Hydroxide nickel dl. Hydroxide Ni nickel dl was washed with water and dried in vacuum.
  • the amount of cobalt hydroxide was set to 5.0 parts by weight per 100 parts by weight of hydroxyl hydroxide bl.
  • Nickel hydroxide al-dl had an average particle diameter of about 12 m, a BET specific surface area of 10 to 12 m 2 Zg, and a tap density of 2.1 to 2.2 gZcm 3 .
  • nickel hydroxide al 200 g is put into 1 L of 5 mol ZL aqueous sodium hydroxide solution, and a sufficient amount of an oxidizing agent aqueous solution of sodium hypochlorite (effective chlorine concentration: 5% by weight) is added, followed by stirring. Nickel was converted to oxyhydroxy nickel. The obtained particles were sufficiently washed with water and then dried in vacuum at 60 ° C. (24 hours) to obtain oxyhydroxide nickel A1.
  • nickel hydroxide bl, cl and dl were used in place of nickel hydroxide al, and the same steps as above were performed to produce nickel oxyhydroxides Bl, Cl and Dl, respectively.
  • FIG. 1 is a front view showing a cross section of a part of the battery manufactured in this example.
  • Batteries using nickel oxyhydroxide A1-D1 were referred to as batteries A1-D1, respectively.
  • a predetermined amount of oxyhydroxy nickel, dioxane manganese, and graphite are blended in a weight ratio of 50: 50: 5, and an amount corresponding to 5% by weight of nickel oxyhydroxide a2 is added to the blend.
  • Zinc acid zinc was added.
  • 1 part by weight of an alkaline electrolyte (40% by weight aqueous solution of potassium hydroxide) was added to 100 parts by weight of the total of oxyhydroxy nickel a2 and manganese diacid manganese. Thereafter, the mixture was stirred and mixed with a mixer until the mixture became uniform, and the mixture was granulated. The obtained granular material was formed into a hollow short cylindrical shape to obtain a positive electrode mixture pellet.
  • the positive electrode case 1 For the positive electrode case 1, a steel plate subjected to nickel plating was used. On the inner surface of the positive electrode case 1, a graphite coating film 2 was formed. Inside the positive electrode case 1, a short cylindrical positive electrode mixture pellet 3 is Several were inserted. The positive electrode mixture pellet 3 was repressurized inside the positive electrode case 1 and was brought into close contact with the inner surface thereof. A cylindrical separator 4 was inserted inside the positive electrode mixture pellet 3, and an insulating cap 5 was placed on the inner bottom surface of the positive electrode case 1. Thereafter, an alkaline electrolyte was injected into the positive electrode case 1 for the purpose of wetting the separator 4 and the positive electrode mixture pellet 3.
  • the alkaline electrolyte using an aqueous solution containing 40 weight 0/0 Mizusani ⁇ potassium. After the injection of the electrolytic solution, the inside of the separator 4 was filled with the gelled negative electrode 6.
  • the gelled negative electrode 6 a mixture of sodium polyacrylate as a gelling agent, an alkaline electrolyte, and zinc powder as a negative electrode active material was used.
  • the negative electrode current collector 10 integrated with the resin sealing plate 7, the bottom plate 8 also serving as the negative electrode terminal, and the insulating washer 9 was inserted into the gelled negative electrode 6. Then, the opening end of the positive electrode case 1 was pressed against the peripheral edge of the bottom plate 8 via the end of the sealing plate 7 to seal the opening of the positive electrode case 1. The outer surface of the positive electrode case 1 was covered with an outer label 11. Thus, an AA size nickel manganese battery as shown in Fig. 1 was completed.
  • the nickel manganese batteries A1 to D1 thus produced were continuously discharged at a constant current of 50 mA at 20 ° C, and the discharge capacity was measured until the battery voltage reached 0.9 V.
  • the initial batteries were continuously discharged at a constant power of 1 W at 20 ° C, and the discharge capacity until the battery voltage reached 0.9 V was measured.
  • the ⁇ -type crystal structure is thermodynamically stabilized, and the average valence of nickel in the oxyhydroxide nickel is large. It is considered that the discharge capacity was improved.
  • the electronic conductivity of nickel hydroxide itself is improved. Therefore, it is considered that the high-load discharge characteristics are significantly improved because the electron conductivity of the oxyhydroxide nickel is maintained high during the discharge.
  • battery C1 which uses solid solution nickel oxyhydroxide C1 in which both manganese and cobalt are dissolved, provided high capacity in both low-load and high-load discharges.
  • a battery D1 using a manganese-dissolved oxyhydroxide nickel D1 coated on its surface with a cobalt oxidizer also had a 50 mA (low load) discharge and 1 W ( (Heavy load) And provides a high discharge capacity.
  • Nickel oxyhydroxide D1 has a large change in the volume of ⁇ due to the adhesion of cobalt oxide having high electron conductivity to the surface of particles composed of nickel oxyhydroxide. It is considered that the current collecting property between the active materials can be kept relatively good even in the discharge of the oxyhydroxy nickel. Therefore, it is considered that the degree of polarization was reduced, and both high capacity and high load discharge characteristics were achieved.
  • a 5 mol ZL sodium hydroxide aqueous solution is added to 1 L of an aqueous solution, and a sufficient amount of an oxidizing agent aqueous solution of sodium hypochlorite (effective chlorine concentration: 5% by weight) is added and stirred. Converted to dani nickel. The obtained particles were sufficiently washed with water and vacuum dried (24 hours) at 60 ° C. to obtain oxyhydroxy nickel C.
  • the content of manganese dioxide contained in the positive electrode mixture (e.g., as a conductive agent such as graphite) is shown in Table 4. (Weight ratio of manganese dioxide) to the entire positive electrode mixture including the same.
  • Battery A (using
  • the first battery was continuously discharged at a constant power of 1 W at 20 ° C, and the battery voltage was reduced.
  • Nickel oxyhydroxide A 50 100 100 Battery c Nickel oxyhydroxide c, 10 ⁇ 02 102 Battery c 12 Nickel oxyhydroxide c, 20 105 102 Battery c 13 Nickel oxyhydroxide 30 110 103 Battery c Medium oxyhydroxide Nickel 40 1 1 1 03 battery c 15 oxy nickel hydroxide c, 60 1 1 1 103 battery c 16 oxy nickel hydroxide c, 80 112 102 battery c 17 oxy nickel hydroxide c, 90 1 12 102 battery c 18 oxy water nickel oxide 95 1 12 101 cell c 2, Okishi nickel hydroxide c 2 10 102 102 battery c 22 Okishi nickel hydroxide c 2 20 107 105 battery c 23 Okishi nickel hydroxide c 2 30 113 108 battery c 24 Okishi nickel hydroxide c 2 40 112 108
  • 11-C 68 gives higher characteristics than the battery A1 using j8-hydroxyhydroxy nickel.
  • oxy nickel hydroxide (C) having a 17 (1 +1
  • W (heavy load) discharge is significantly improved, and as shown in Table 5, more than 110 characteristics are given.
  • 8) value of 0.5 or more and an average valence of nickel of 3.3 or more, which also have a nickel force are used.
  • batteries having a manganese dioxide content of 20 to 90% by weight in the positive electrode mixture are considered to provide particularly excellent characteristics.
  • the battery A1 using nickel oxyhydroxide // 3 oxyhydroxide was also used in the case where the oxyhydroxide nickel D1 used in Example 1 was used. Higher properties were obtained. In particular, the 17 (1 +1
  • the particles composed of nickel hydroxide and nickel carbonate are coated with cobalt oxide, and the content of manganese dioxide in the positive electrode mixture is set to 20 to 90% by weight, mainly the strong load characteristics are obtained. In another experiment, it was confirmed that the performance of the obtained alkaline battery became remarkable.
  • the obtained particles were heated in an aqueous sodium hydroxide solution different from the above to remove sulfate groups, washed with water and vacuum-dried, and further heated at 80 ° C. Air oxidation was performed for 72 hours to obtain nickel hydroxide aa [composition: Ni Mn Co (OH)]. Where air
  • the acid-riding is a process for oxidizing only Mn to near tetravalent.
  • nickel hydroxide aa 200 g of nickel hydroxide aa is put into 1 L of 5 mol ZL aqueous sodium hydroxide solution, and a sufficient amount of an oxidizing agent aqueous sodium hypochlorite solution (effective chlorine concentration: 5% by weight) is added and stirred. Nickel was converted to oxyhydroxy nickel. The obtained particles were sufficiently washed with water, and then dried in vacuum at 60 ° C. (24 hours) to obtain oxyhydroxide nickel AA.
  • nickel hydroxide ab-ay was used in place of nickel hydroxide aa, and the same process as above was carried out to produce nickel oxyhydroxide AB-AY.
  • Table 6 summarizes the +1 (8) value and the average valence of nickel by chemical analysis.
  • nickel hydroxide AA-AY nickel hydroxide AA-AY
  • nickel-mangan batteries AA-AY were prepared as primary batteries.
  • nickel manganese battery AA nickel oxyhydroxide AA ⁇ manganese dioxide and graphite are blended in a weight ratio of 50: 50: 5, and 5 weight of oxyhydroxide nickel AA is further added to this blend. 0/0 was added the corresponding amount of Sani spoon zinc. Also, oxyhydroxide- 1 part by weight of the electrolytic solution was added to 100 parts by weight of the total of Aquel AA and manganese dioxide. Thereafter, the mixture was uniformly stirred and mixed with a mixer to form a uniform particle size. The obtained granules were pressure-formed into short cylindrical pellets to obtain positive electrode mixture pellets. AA size alkaline battery AA was produced in the same manner as in Example 1 except that this positive electrode mixture pellet was used.
  • AA size nickel manganese batteries AB-AY were produced in the same manner as described above, except that nickel oxyhydroxide AB-AY was used instead of nickel oxyhydroxide AA. At this time, care was taken so that the amount of the positive electrode mixture charged into the positive electrode case was the same for all batteries.
  • the 25 types of nickel-manganese batteries AB-AY and the battery A (using j8-nickel hydroxide) prepared in Example 1 were continuously discharged at 20 ° C at a constant current of 50 mA at 20 ° C. The discharge capacity up to 0.9 V was measured.
  • the initial batteries were continuously discharged at a constant power of 1 W at 20 ° C, and the discharge capacity until the battery voltage reached 0.9 V was measured.
  • Table 7 summarizes the obtained results. In both the 50 mA discharge and the 1 W discharge, the discharge capacity of the nickel manganese batteries AA-AY was shown as a relative value when the discharge capacity of the nickel manganese battery A was 100.
  • the battery AU-AY in which the amount of manganese dissolved in nickel oxyhydroxide exceeds 7 mol%, the nickel content in nickel oxyhydroxide is relatively small, and the solid solution containing manganese in high-load discharge is relatively low. The characteristic decrease in electron conductivity starts to affect, and the capacity tends to decrease.
  • the amount of manganese and cobalt dissolved in the oxyhydroxide nickel or the hydroxide nickel particles serving as the raw material is reduced.
  • the content be 17 mol% of the total amount of the metal elements contained in the particles.
  • the concentration of the aqueous cobalt sulfate solution was appropriately adjusted, and the amount of cobalt hydroxide adhering to the surface of the nickel hydroxide b was adjusted to 0.05 to 9 weight per 100 parts by weight of nickel hydroxide bl. Parts (0.05-9% by weight based on the weight of hydroxyl hydroxide nickel b).
  • seven kinds of Co (OH) coated nickel hydroxide nickel el-kl as shown in Table 8 were produced. water After washing with water, the acid elder nickel el-kl was vacuum-dried.
  • Ecquel hydroxide e1 200 g is put into 1 L of 5 mol ZL aqueous sodium hydroxide solution, a sufficient amount of an oxidizing agent aqueous sodium hypochlorite solution (effective chlorine concentration: 5% by weight) is added, and the mixture is stirred. ) And convert hydroxide to nickel hydroxide
  • the obtained particles were sufficiently washed with water, and then vacuum-dried (24 hours) at 60 ° C. to obtain oxy nickel hydroxide E1.
  • Nickel manganese batteries E1-1K1 were prepared as primary batteries using oxynickel hydroxide E1-K1.
  • nickel manganese battery E1 nickel oxyhydroxide El, manganese dioxide, and graphite are mixed in a weight ratio of 50: 50: 5, and 5 weight of oxyhydroxide nickel E1 is added to this mixture. % Of zinc oxide was added. Further, 1 part by weight of an alkaline electrolyte was added per 100 parts by weight of the total of the oxyhydroxide nickel E1 and the manganese diacid. Thereafter, the mixture was uniformly stirred and mixed with a mixer to form a uniform particle size. The obtained granular material was formed into a short cylindrical pellet to obtain a positive electrode mixture pellet. AA size alkaline battery E1 was produced in the same manner as in Example 1 except that this positive electrode mixture pellet was used.
  • nickel oxyhydroxide E1 nickel oxyhydroxide F1-K1 was used, AA size nickel manganese batteries F1-K1 were produced in the same manner as above. At this time, care was taken to ensure that the amount of the positive electrode mixture charged into the positive electrode case was the same for all batteries.
  • the seven types of nickel manganese batteries E1—K1 and the battery A1 (using ⁇ -hydroxy nickel hydroxide) prepared in Example 1 were continuously discharged at 20 ° C. at a constant current of 50 mA at 20 ° C., respectively. The discharge capacity up to 0.9 V was measured.
  • the initial batteries were continuously discharged at a constant power of 1 W at 20 ° C, and the discharge capacity until the battery voltage reached 0.9 V was measured.
  • each battery discharged at 1 W was stored at 60 ° C for 7 days, and then the amount of gas generated inside the battery was measured.
  • an alkaline battery E1-K1 using particles made of oxyhydroxide nickel having cobalt oxidizer adhered to the surface the presence of manganese dissolved in the particles that also make oxyhydroxide nickel stronger
  • the average valence of nickel is increased, and the electrical connection between the active materials is improved by the cobalt oxide. Therefore, the alkaline batteries E1 to K1 have higher characteristics than the battery A1 using the particles which also have the j8-hydroxy hydroxide. Is giving sex.
  • the amount of the cobalt oxide is too small, and the effect of greatly improving the heavy load discharge characteristics is improved. To get to, what ,.
  • the battery K using nickel oxyhydroxide K1 in which the weight percent of cobalt oxide exceeds 7% by weight can maintain the battery after power discharge at 60 ° C for 7 days to maintain relatively good discharge characteristics.
  • the amount of gas generated when it exists is increasing. This is because, in battery K1, the amount of cobalt oxide in the positive electrode is excessive, so when the battery after discharging is left (stored), the cobalt oxide in the positive electrode is reduced to divalent, and It is considered that it was eluted in It is presumed that cobalt ion precipitates as metallic cobalt on the zinc particles of the negative electrode, and accelerates the hydrogen generation reaction at the negative electrode.
  • the core characteristics are improved.
  • the amount of the baltic oxide is preferably 0.1 to 7% by weight of the particles composed of nickel oxyhydroxide.
  • a nickel (II) sulfate aqueous solution, a sodium hydroxide aqueous solution and an aqueous ammonia solution having a predetermined concentration are prepared, and these are quantitatively supplied by a pump into a reaction tank equipped with stirring blades so that the pH in the tank is constant. By continuing to stir sufficiently, spherical spherical) 8-hydroxyl nickel is precipitated and formed. Lengthened.
  • the obtained particles were heated in a sodium hydroxide aqueous solution different from the above to remove sulfate groups, and then washed and dried to obtain a powdery nickel hydroxide powder.
  • the obtained hydroxide powder had a volume-based average particle size of 10 m, a BET specific surface area of 9. OmVg, and a tap density of 2.20 g / cm 3 by a laser diffraction particle size distribution analyzer.
  • nickel hydroxide powder 200 g was added to 1 L of 0.5 mol ZL sodium hydroxide aqueous solution, and a sufficient amount of an oxidizing agent aqueous sodium hypochlorite solution (effective chlorine concentration: 5% by weight) was added thereto, followed by stirring. It was converted into oxyhydroxy nickel. The obtained particles were sufficiently washed with water and dried in a vacuum at 60 ° C. (24 hours) to obtain oxyhydroxide nickel a2.
  • the positive electrode was overcharged (excessively oxidized). At this time, the positive electrode The electric capacity when the charged oxyhydroxide nickel a2 undergoes a one-electron reaction was regarded as the cell capacity (lit), and overcharging was performed at a charge rate of 0.1 lit for 3 hours. After overcharging, the nickel positive electrode was taken out, the oxyhydroxide nickel was dropped off by ultrasonic cleaning, and this was washed with water. Thereafter, vacuum drying at 60 ° C. (24 hours) was performed to obtain overcharged nickel hydroxide nickel c2.
  • FIG. 2 shows the diffraction patterns of nickel oxyhydroxides e2 and f2.
  • I-z (I ⁇ +1 j8) value nickel content, average valence of nickel, tap density, water content, average particle size
  • BET Table 10 shows the specific surface area.
  • the oxyhydroxide nickel a2 and b2 obtained by chemical oxidation have a small value of ⁇ / ( ⁇ ⁇ + ⁇ ⁇ ), and the average valence of the nickel is also nearly trivalent.
  • the charged oxyhydroxide nickel c2—f2 can effectively reduce the I ⁇ / ( ⁇ ⁇ + ⁇ ⁇ ) value and nickel An increase in the average valence is observed.
  • the expansion and particle cracking of the nickel hydroxide particles proceed with the production of ⁇ NiOOH, the nickel content and tap density tend to decrease, and the water content and the BET specific surface area tend to increase.
  • Nickel-manganese batteries A2-F2 shown in FIG. 1 were produced in the same manner as in Example 1 using oxyhydroxy nickel a2-f2.
  • batteries using nickel oxyhydroxide c2-f2 there was a slight decrease in the fillability of the positive electrode mixture into the batteries.
  • batteries using oxyhydroxide nickel a2 and b2 A battery similar to that described above was able to be manufactured. The decrease in fillability is due to the expansion of the powder volume accompanying the formation of NiOOH.
  • Batteries C2-F2 using oxyhydroxide nickel whose ⁇ NiOOH content ratio was increased by overcharge treatment were batteries A2 using oxyhydroxide nickel obtained by chemical oxidation. Gives higher capacity than B2.
  • 8) value in powder diffraction was increased to 0.5 or more and the average valence of nickel increased to 3.3 or more. In the battery used, a more remarkable capacity improvement effect was obtained.
  • the obtained particles were heated in a different aqueous sodium hydroxide solution to remove sulfate, and then washed with water and vacuum dried. Further, the dried particles were subjected to an air oxidation at 80 ° C. for 72 hours to oxidize only manganese, thereby obtaining a raw material Hydroxidation Nickel 1.
  • the raw material Hydroxide Nickel 1 is a single phase of j8-hydroxide nickel in powder X-ray diffraction, the average valence of manganese is 3.95, the average particle size is 14 / ⁇ , and the tap density is The BET specific surface area was 9.5 m 2 / g, and 2.12 gZcm 3.
  • a raw material nickel hydroxide 2 was obtained in the same manner as in Synthesis 1 except that the air was not applied for 72 hours at 80 ° C.
  • the starting hydroxide 2 was a single phase of nickel hydroxide, and the average valence of manganese was estimated to be 2.04.
  • nickel hydroxide 2 is introduced into 1 L of a 7 mol ZL aqueous solution of sodium hydroxide, a sufficient amount of an oxidizing agent aqueous solution of sodium hypochlorite (effective chlorine concentration: 5% by weight) is added, and the mixture is stirred. It was converted to nickel hydroxide. The obtained particles were sufficiently washed with water and then dried in vacuum at 60 ° C. (24 hours) to obtain oxyhydroxide nickel m2.
  • a raw material sulfuric acid nickel 3 was obtained in the same manner as in Synthesis 1 above except that the mixture was left in the air at 20 ° C. for one month. .
  • the raw material hydroxide-nickel 3 in powder X-ray diffraction, in addition to j8-type nickel hydroxide, some peaks of oxyhydroxide manganese and dioxygen manganese were also observed. It was inferred that stable manganese species were released outside the crystals of nickel hydroxide. The average valence of manganese in the raw material nickel hydroxide 3 was 3.47.
  • a nitrogen (II) sulfate aqueous solution, manganese sulfate (II) aqueous solution, sodium hydroxide aqueous solution, and ammonia water were added to the reaction vessel without nitrogen publishing and hydrazine addition into the reaction vessel equipped with stirring blades.
  • the constant pH was supplied by a pump so that the internal pH was constant, a raw material, nickel hydroxide 4 was obtained.
  • Raw material Hydroxide Nickel 4 is a single phase of j8 type Hydroxide Nickel in powder X-ray diffraction, the average valence of manganese is 2.45, the average particle diameter is 14 m, and the tap density is 2.04 gZcm 3 The BET specific surface area was 10.9 m 2 Zg.
  • aqueous manganese sulfate (II) solution After hydrogen peroxide solution was added to the aqueous manganese sulfate (II) solution, the pH was adjusted by adding an aqueous sodium hydroxide solution to prepare a solution in which manganese ions were present in a trivalent state.
  • This solution, an aqueous solution of nickel (II) sulfate, an aqueous solution of sodium hydroxide, and aqueous ammonia were quantitatively supplied to a reaction tank provided with stirring blades using a pump so that the pH in the tank was constant, and then sufficiently supplied.
  • hydroxyl hydroxide having an ⁇ -type crystal structure containing 10 mol% of trivalent Mn was precipitated and grown.
  • the obtained particles were washed with water and dried under vacuum to obtain a starting material, Hydroxide Nickel 5.
  • the raw material Hydroxide Nickel 5 is a single phase of nickel monohydroxide in powder X-ray diffraction, the average valence of manganese is 3.02, the average particle size is 13 ⁇ m, and the tap density is 1.28 g / cm. 3.
  • the BET specific surface area was 24.5 m 2 / g.
  • nickel hydroxide 5 as a raw material is put into 1 L of a 7 mol ZL aqueous sodium hydroxide solution, a sufficient amount of an oxidizing agent aqueous sodium hypochlorite solution (effective chlorine concentration: 5% by weight) is added, and the mixture is stirred. It was converted to nickel hydroxide. At this time, red coloration of the reaction solution due to oxidation or dissolution of the manganese species was observed. From this fact, it was inferred that in the raw material nickel hydroxide 5, many manganese ions penetrated in an unstable state into the crystal of nickel hydroxide. The obtained particles were sufficiently washed with water, and then dried in vacuum at 60 ° C. (24 hours) to obtain oxyhydroxy nickel p2.
  • Table 10 shows the I ⁇ ⁇ ( ⁇ +1 J8) value, nickel content, average valence of nickel, tap density, water content, average particle size, and BET specific surface area obtained for oxynickel hydroxide g2—p2. Show.
  • the nickel oxyhydroxide m2-p2 obtained by the chemical oxidation treatment of the raw material nickel hydroxide 2-5 was the same as the nickel oxyhydroxide 12 obtained from the raw material nickel hydroxide 1
  • the above gives the same powder X-ray diffraction pattern, confirming that the average valence of nickel is also the same.
  • a nickel manganese battery as shown in FIG. 1 was produced in the same manner as in Example 5, except that nickel oxyhydroxide g2-p2 was used instead of nickel oxyhydroxide a2-f2. Batteries using oxyhydroxy nickel g2-p2 were designated as batteries G2-P2, respectively.
  • Batteries A2-F2 were continuously discharged at a constant current of 50 mA at 20 ° C, and the discharge capacity was measured until the battery voltage reached the final voltage of 0.9 V. Table 13 summarizes the results obtained. In Table 13, the value of the discharge capacity was shown as a relative value when the discharge capacity of the battery A2 of Example 5 was 100.
  • Nickel hydroxide 1 is obtained by subjecting solid solution ⁇ -monohydroxide of Mn obtained by the reaction crystallization method to air oxidation and subjecting only Mn to oxidation.
  • Nickel oxyhydroxide j2-12 is obtained by subjecting the starting hydroxide 1 to an aqueous sodium hypochlorite solution of 3 mol Zl or more with an aqueous sodium hypochlorite solution.
  • the battery [2-L2] using oxy-nickel hydroxide j2-12 gives a significantly higher capacity than the battery using oxy-nickel hydroxide obtained by other processes. The reason why the capacity is significantly higher than the capacity of the battery G2-12 can be explained similarly to the case of the fifth embodiment.
  • ⁇ -NiOOH generated at a stage having a relatively low nickel valence such as oxyhydroxy nickel g2-i2 cannot contribute much to the discharge capacity.
  • nickel oxyhydroxide j2-12 ⁇ -NiOOH generated at a stage where the nickel valence is about 3.3 or more has a high activity, and is estimated to give a large discharge capacity that is commensurate with the valence. Is done.
  • Batteries M2 and N2 also have a higher discharge capacity than battery G2-12! / Puru.
  • the nickel oxyhydroxide of the batteries M2 and N2 has almost the same physical properties as the nickel oxyhydroxide 1 obtained from the raw material nickel hydroxide 1. Therefore, it is considered that the batteries M2 and N2 show the second best discharge characteristics after the battery 2-K2.
  • Nickel hydroxide 2 which is a raw material of the nickel oxyhydroxide m2 used for the battery M2, has not undergone the treatment for oxidizing Mn. Although the detailed mechanism has not been elucidated, if nickel hydroxide is treated with an oxidizing agent in a state where Mn is not oxidized to a highly oxidized state, manganese species migrate within the crystal and local It is considered that manganese oxide stalks are released. However, such release of the manganese oxide is considered to be at a level that cannot be determined by ordinary powder X-ray diffraction. Therefore, it is inferred that in oxyhydroxy nickel m2, the generation of ⁇ -oxyhydroxy nickel having high discharge efficiency contributing to high capacity of the battery is small. Similarly, it is presumed that Battery # 2 was also affected by the released manganese.
  • the nickel oxyhydroxide ⁇ 2 and ⁇ 2 used in the batteries 02 and ⁇ 2 also had powder X-ray diffraction and average valence of nickel similar to those of oxyhydroxide nickel 12 (Nakashi k2)! / However, the capacity is rather low.
  • oxyhydroxy nickel o2 and p2 the release of manganese species and the elution of manganese were confirmed, and it was presumed that the manganese species inhibited the discharge reaction of oxyhydroxy nickel. Is done.
  • oxyhydroxy nickel o2 and p2 have a water content of more than 3% by weight and a BET specific surface area of more than 30 m 2 / g. Therefore, it is considered that the distribution of the electrolytic solution in the positive electrode mixture and the like are significantly different between the batteries 02 and P2 and the other batteries, and this is considered to have affected the capacity.
  • Table 14 shows the 1 / (1 + 1 13) value, the -nickel content, and the average nickel valency obtained according to oxyhydroxyl-Hückel rl-r6, 51-56.
  • a nickel manganese battery as shown in FIG. 1 was produced in the same manner as in Example 5, except that nickel oxyhydroxide a2 f2 was replaced with nickel oxyhydroxide rl-r6 and si-s6. . Batteries using oxyhydroxide ekkel rl-r6 were designated as batteries R1-R6, respectively. Batteries using oxyhydroxy nickel nickel si-s6 were designated as batteries S1 and S6, respectively.
  • 8) value is about 0.5, and the average valence of nickel is about 3.3, which is higher than the battery using oxyhydroxide nickel a2 even if it is not so large. It can be seen that the capacity can be adjusted.
  • the manganese in the solid solution nickel hydroxide in which Mn was dissolved was oxidized at 80 ° C for 72 hours under the air atmosphere. Similar results can be obtained when the manganese valence is increased to 3.5 or more, more preferably 3.8 or more, by appropriately adjusting the oxidation time at 150 ° C.
  • the power of adding 5% by weight of zinc oxide to zinc oxide hydroxide to the positive electrode mixture is not essential.
  • a so-called inside-out type nickel-manganese battery in which a short cylindrical positive electrode mixture pellet, a separator and a gel zinc negative electrode were disposed in a cylindrical positive electrode case was manufactured.
  • the present invention can be applied to alkaline batteries having other structures including a button type and a square type.
  • the present invention is applicable to various types of alkaline batteries, and is particularly useful for nickel manganese batteries. Further, the present invention can realize a significantly high capacity of an alkaline battery without impairing a heavy load discharge characteristic, and is particularly useful for an alkaline battery which is a power source of a device having a large load power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
アルカリ電池およびアルカリ電池用正極材料
技術分野
[0001] 本発明は、ォキシ水酸ィ匕ニッケルおよび二酸ィ匕マンガン力 なる正極合剤を具備 するアルカリ電池、特に一次電池としてのニッケルマンガン電池に関する。また、本 発明は、ォキシ水酸ィ匕ニッケル力 なるアルカリ電池用正極材料の製造方法に関す る。
背景技術
[0002] アルカリ電池、特に放電スタート型のアルカリ電池やアルカリ一次電池は、正極端 子を兼ねる正極ケースの中に、正極ケースに密着して円筒状の正極合剤ペレットを 配置し、ペレットの中空部にセパレータを介してゲル状の亜鉛負極を配置したインサ イドアウト型の構造を有する。近年のデジタル機器の普及に伴い、これらの電池が使 用される機器の負荷電力は次第に大きくなり、強負荷放電性能に優れる電池が要望 されつつある。このような要望に対応して、正極合剤にォキシ水酸ィ匕ニッケルを混合 して強負荷放電特性を向上させたアルカリ電池が提案されており、近年、実用化に 至っている(特許文献 1)。
[0003] 一方、アルカリ蓄電池(二次電池)の分野では、一般に球状な!/、しは鶏卵状の水酸 化ニッケルを、次亜塩素酸ナトリウム水溶液等の酸化剤で酸ィ匕して得られるォキシ水 酸ィ匕ニッケルが使用されている。原料の水酸ィ匕ニッケルには、嵩密度 (タップ密度)の 大きい j8型の結晶構造を有するものが用いられる。これを酸化剤で処理して得られる ォキシ水酸ィ匕ニッケルは、主に j8型の結晶構造を有し、電池内に高密度充填される 傾向がある。 j8型の結晶構造を有するォキシ水酸ィ匕ニッケルのニッケル価数は、ほ ぼ 3価であり、これが 2価近傍まで変化する際の電気化学的エネルギーが電池の放 電容量として利用される。
[0004] 正極の利用率や強負荷放電特性を高める目的から、コバルト ·亜鉛等溶解させた 水酸化ニッケルの固溶体を出発物質として用いる技術も提案されている(特許文献 2
) o [0005] ォキシ水酸ィ匕ニッケルを含むアルカリ一次電池が有する課題として、以下を挙げる ことができる。
(a)電池を高温雰囲気下で保存した際に生じるォキシ水酸ィ匕ニッケルの自己分解( 電池容量低下と内圧上昇)の改善。
(b)ォキシ水酸ィ匕ニッケルの単位重量あたりの容量 (mAhZg)が小さ 、こと〖こよる低 放電容量 (放電時間)の向上。
[0006] 上記課題を解決するために、アルカリ一次電池の正極合剤においては、以下のよう な提案がなされている。
まず、保存特性を改良する観点から、ォキシ水酸ィ匕ニッケルに亜鉛酸ィ匕物、カルシ ゥム酸ィ匕物、イットリウム酸ィ匕物および二酸ィ匕チタンよりなる群力も選択された少なくと も 1種の酸化物を含有させることが提案されて ヽる (特許文献 3)。
[0007] また、アルカリ蓄電池の用途では、マンガン等の遷移金属を粒子内に溶解させた j8 型の結晶構造を有する水酸化ニッケルの固溶体を出発物質として用いることが提案 されている(特許文献 4および特許文献 5)。ここでは、充電反応において、ニッケル の平均価数が 3. 5価付近の γ型の結晶構造を有するォキシ水酸ィヒニッケルを意図 的に生成させ、飛躍的な容量の向上が図られている。
[0008] これに類似する技術として、例えば特許文献 6は、 3価の状態にあるマンガン、鉄等 の遷移金属イオンを、 2価のニッケルイオンと共沈させて作製した a型水酸化-ッケ ルの固溶体粒子を出発物質として用いることが提案されている。ここでは、充電時に γ型の結晶構造を有するォキシ水酸ィ匕ニッケルを生成させることで高容量が図られ る。
[0009] また、 y型の結晶構造を有するォキシ水酸ィ匕ニッケルの粒子の表面を、導電性の 高いコバルト酸ィ匕物で被覆して、放電特性を改良する提案がなされている(特許文献 7および特許文献 8)。
[0010] しかし、アルカリ蓄電池において、 γ型の結晶構造を有するォキシ水酸ィ匕ニッケル を正極に用いて、高容量ィ匕を図る試みは、実用化に至っていない。その原因は、 γ 型の結晶が電解液を過剰に吸収して体積膨張するため、初期の数 10サイクルの充 放電の間に、電池内における電解液の分布が大きく変化することにある。正極側に 電解液が偏在してセパレータ中の電解液が不足すると、電池の内部抵抗は著しく上 昇する。
[0011] 一方、本発明者等は、アルカリ蓄電池で検討されている γ型の結晶構造を有する ォキシ水酸ィ匕ニッケルを、一次電池に適用することを試み、その場合に生じる問題点 について検討した。
[0012] まず、ォキシ水酸ィ匕ニッケルを含有させたアルカリ一次電池の高エネルギー密度化 を図る場合、 β型の結晶構造を有する原料水酸化ニッケルの化学酸化条件を強くし て、得られる β型の結晶構造を有するォキシ水酸ィ匕ニッケルのニッケル価数を高め るというアプローチが考えられる。し力し、このようなアプローチでは、ニッケル価数の 上限は 3.00— 3.05未満の β型の結晶構造を有するォキシ水酸ィ匕ニッケルし力得ら れない。
[0013] 次に、 γ型の結晶構造を有するォキシ水酸ィ匕ニッケルを用いた一次電池としての アルカリ電池においては、以下の(a)—(c)に示す理由により、 j8型の結晶構造を主 体とするォキシ水酸ィ匕ニッケルを用いたアルカリ電池よりも、強負荷放電特性が低下 しゃすいことが見出された。
(a) γ型の結晶構造を有するォキシ水酸化ニッケルの酸化還元電位 (平衡電位)は j8型の結晶構造を有するォキシ水酸ィ匕ニッケルよりも卑である。
(b) γ型の結晶構造を有するォキシ水酸ィ匕ニッケルは、放電の際に生じる体積変化 (結晶構造の変化)が大きい。
(c)マンガンを粒子内に溶解させた γ型の結晶構造を有するォキシ水酸ィ匕ニッケル の電子伝導性は、放電に伴って大きく低下する。
[0014] ニッケルマンガン電池などの一次電池では、強負荷放電時における二酸ィ匕マンガ ンの利用率が低いという欠点を補うために、ォキシ水酸ィ匕ニッケルが正極合剤に添 カロされる。しかし、上記所見は、ォキシ水酸ィ匕ニッケルによるアルカリ電池の強負荷 放電特性を向上させるという利点が、 Ύ型の結晶構造により損なわれ得ることを意味 する。
特許文献 1:特開昭 57— 72266号公報
特許文献 2:特公平 7 - 77129号公報 特許文献 3 :特開 2001— 15106号公報
特許文献 4:国際公開第 97Z19479号パンフレット
特許文献 5:特許第 3239076号明細書
特許文献 6 :特開 2001— 322817号公報
特許文献 7 :特開平 10- 334913号公報
特許文献 8:特開平 11—260364号公報
発明の開示
発明が解決しょうとする課題
[0015] 本発明は、ォキシ水酸ィ匕ニッケルの物性を好適化することにより、上記問題点を解 決もしくは低減し、アルカリ電池、特にニッケルマンガン電池の高容量化と強負荷放 電特性の向上を可能とするものである。
また、本発明は、ォキシ水酸ィ匕ニッケルに特定の元素を添加することにより、上記 問題点を解決もしくは低減し、アルカリ電池、特にニッケルマンガン電池の高容量ィ匕 と強負荷放電特性の向上を可能とするものである。
また、本発明は、ォキシ水酸ィ匕ニッケルにおける γ型の結晶構造の割合を所定の 範囲内に制御することにより、上記効果を高めることを内容とする。
課題を解決するための手段
[0016] 本発明は、アルカリ電池であって、正極合剤、負極、正極合剤と負極との間に介在 するセパレータ、およびアルカリ電解液力もなり、正極合剤は、ォキシ水酸ィ匕ニッケル 力もなる第 1活物質および二酸ィ匕マンガン力もなる第 2活物質を含み、前記ォキシ水 酸ィ匕ニッケルは、 y型の結晶構造を有し、前記ォキシ水酸ィ匕ニッケルに含まれる-ッ ケルの含有量は、 45重量%以上であり、前記ォキシ水酸化ニッケルのレーザー回折 式粒度分布計を用いて測定される体積基準の平均粒子径が 3— 20 μ mであるアル カリ電池に関する。
前記ォキシ水酸ィ匕ニッケルは、さらに β型の結晶構造を含むことが好ましい。
[0017] 前記ォキシ水酸化ニッケルのタップ密度は、タッピングが回数 500回の場合に 1.5g Zcm3以上であることが望まし 、。
前記ォキシ水酸ィ匕ニッケルに含まれる水分量は 3重量%以下であることが好ましい 。なお、水分は、ォキシ水酸ィ匕ニッケルの表面に吸着した状態であると考えられる。
BET法を用いて測定される前記ォキシ水酸ィ匕ニッケルの比表面積は、 10— 30m2 Zgであることが好ましい。
[0018] 前記ォキシ水酸ィ匕ニッケルの粉末 X線回折パターン力 γ型結晶の(003)面に帰 属される面間隔 6. 8-7. 1オングストローム(Α)の回折ピーク Ρ γおよび |8型結晶 の(001)面に帰属される面間隔 4. 5— 5オングストローム(Α)の回折ピーク Ρ βを有 する場合、前記回折ピーク P yの積分強度 I yおよび前記回折ピーク Ρ βの積分強 度 I j8は、 0. 5≤Ι γ / (Ι γ +Ι |8 )を満たすことが好ましい。この場合、前記ォキシ水 酸ィ匕ニッケルに含まれるニッケルの平均価数は、 3.3以上となる。
[0019] 前記ォキシ水酸ィ匕ニッケルの粉末 X線回折パターン力 γ型結晶の(003)面に帰 属される面間隔 6. 8-7. 1オングストローム(Α)の回折ピーク Ρ γおよび |8型結晶 の(001)面に帰属される面間隔 4. 5— 5オングストローム(Α)の回折ピーク Ρ βを有 する場合、前記回折ピーク P yの積分強度 I yおよび前記回折ピーク Ρ βの積分強 度 I j8は、 0. 1≤Ι γ Ζ (ΐ Ύ +I J8 ) < 0. 5を満たすことが好ましい。この場合、前記ォ キシ水酸ィ匕ニッケルに含まれるニッケルの平均価数は、 3. 05以上 3. 3未満となる。
[0020] 前記ォキシ水酸ィ匕ニッケルは、添加元素を溶解した固溶体であることが好ましい。
この場合、前記添加元素は、マンガンおよびコバルトよりなる群力 選ばれる少なくと も 1種であることが好ましい。
[0021] 前記ォキシ水酸ィ匕ニッケル力 前記添加元素としてマンガンを溶解した固溶体であ る場合、前記固溶体に溶解するマンガンの量は、前記固溶体に含まれる全金属元素 の総量の 1一 7mol%であることが好ましい。
[0022] 前記ォキシ水酸化ニッケル力 前記添加元素としてマンガンおよびコバルトの両方 を溶解した固溶体である場合、前記固溶体に溶解するマンガンおよびコノ レトの量 は、それぞれ前記固溶体に含まれる全金属元素の総量の 1一 7mol%であることが好 ましい。
[0023] 前記ォキシ水酸ィ匕ニッケル力 前記添加元素としてマンガンを溶解した固溶体であ る場合、前記固溶体は、その表面に付着したコバルト酸ィ匕物を有することが、さらに 好ましい。この場合、前記固溶体に溶解するマンガンの量は、前記固溶体に含まれ る全金属元素の総量の 1一 7mol%であり、前記コバルト酸化物の量は、前記固溶体 の 0. 1— 7重量%であることが好ましい。また、前記コバルト酸ィ匕物に含まれるコバル トの平均価数は、 3. 0よりも大きいことが好ましい。
[0024] 前記正極合剤に含まれる前記二酸ィ匕マンガンの含有量は、 20— 90重量%が好適 である。
[0025] 本発明は、また、アルカリ電池用正極材料の製造方法に関する。
本発明の製造方法は、攪拌翼を供えた反応槽内に、硫酸ニッケル (Π)水溶液、硫 酸マンガン (Π)水溶液、水酸化ナトリウム水溶液、およびアンモニア水を、それぞれ 独立した流路で供給する操作を、不活性ガスをパブリングするとともに反応槽内の温 度および pHを制御しながら行 、、ニッケルサイトの一部が 2価のマンガンで置換され た β型の結晶構造を有する水酸化ニッケルを得る第 1工程を有する。
また、前記方法は、第 1工程後の水酸ィ匕ニッケルを、水洗し、乾燥し、酸化雰囲気 下で 50— 150°Cで加熱して、マンガンだけを平均価数 3. 5以上に酸ィ匕させる第 2ェ 程を有する。
また、前記方法は、第 2工程後の水酸ィ匕ニッケルを、アルカリ水溶液中に酸化剤と ともに投入し、前記水酸化ニッケルを化学酸化する第 3工程を有する。
[0026] 前記第 1工程では、さらに反応槽内にヒドラジンが加えられ、還元雰囲気が維持さ れることが好ましい。
前記第 2工程では、前記マンガンの平均価数を 3. 8以上とすることが好ましい。 前記第 3工程で用いる酸化剤は、次亜塩素酸塩であることが好ましい。
[0027] 前記第 3工程で用いるアルカリ水溶液は、水酸ィ匕カリウム、水酸ィ匕ナトリウムおよび 水酸化リチウムよりなる群力 選択される少なくとも 1種のアルカリ塩を溶解した水溶 液であることが好ましい。この場合、前記アルカリ水溶液のアルカリ塩濃度は、 3mol ZL以上であることが好ま U、。
[0028] 以下、 γ型の結晶構造を有するォキシ水酸化ニッケルを γ—ォキシ水酸ィ匕ニッケル 、 j8型の結晶構造を有するォキシ水酸ィ匕ニッケルを j8—ォキシ水酸ィ匕ニッケル、 j8型 の結晶構造を有する水酸化ニッケルを β一水酸ィ匕ニッケルと言う場合がある。
発明の効果 [0029] 本発明によれば、正極合剤にォキシ水酸ィ匕ニッケルを含有させたアルカリ電池の 強負荷放電特性に優れると ヽぅ長所を維持したまま、高容量ィ匕が可能である。
γ ォキシ水酸ィ匕ニッケルに含まれるニッケル含有量と平均粒子径の制御は、特に 、アルカリ電池の高容量ィ匕に有効である。
ニッケル含有量と平均粒子径の制御により、ォキシ水酸ィ匕ニッケルおよび二酸ィ匕マ ンガンからなる正極合剤ペレットの体積エネルギー密度(mAh/cm3)を、既存の 13 ォキシ水酸ィ匕ニッケルおよび二酸ィ匕マンガンを用いたものよりも格段に高めること ができる。よって、アルカリ電池容量は大幅に向上する。
[0030] また、ォキシ水酸ィ匕ニッケルに添加元素を溶解させることは、特にアルカリ電池の 強負荷放電特性の改善に有効である。
添加元素としては、特にマンガンが有効であり、ォキシ水酸ィ匕ニッケルの原料にマ ンガンを少量溶解した水酸ィ匕ニッケルの固溶体を用いれば、酸化還元電位が卑とな り、水酸化ニッケルの酸化が促進し、 γ型の構結晶造の形成が起こりやすくなる。
[0031] また、本発明の正極材料の製造方法によれば、水酸化ニッケルをォキシ水酸化- ッケルに酸化する際に、マンガン酸イオン(ΜηΟ 2—)、過マンガン酸イオン(ΜηΟ一)
4 4 等が反応雰囲気に溶出しにくい。よって、ニッケルの酸ィ匕度合いにばらつきが生じに くい。換言すると、本発明の製造方法によれば、ォキシ水酸ィ匕ニッケルにマンガンを 安定な状態で存在させることができ、得られる電池の品質を安定に保つことができる 図面の簡単な説明
[0032] [図 1]本発明の実施例に係るアルカリ電池の一部を断面にした正面図である。
[図 2]本発明に係るォキシ水酸ィ匕ニッケルの粉末 X線回折パターンである。
発明を実施するための最良の形態
[0033] 本発明のアルカリ電池は、正極合剤、負極、前記正極合剤と前記負極との間に介 在するセパレータ、およびアルカリ電解液を具備する。前記正極合剤は、ォキシ水酸 化ニッケル力 なる第 1活物質および二酸ィ匕マンガン力 なる第 2活物質を含み、前 記ォキシ水酸ィ匕ニッケルは、 γ型の結晶構造を有する。
[0034] アルカリ電池の高容量ィ匕の観点から、ォキシ水酸ィ匕ニッケルのニッケル含有量は 4 5重量%以とする必要があり、 50重量%以上であることが望ましい。また、実際の生 産時において、正極合剤ペレットの作製を可能とする観点から、レーザー回折式粒 度分布計を用いて測定される体積基準の平均粒子径は 3— 20 mとする必要があり 、 10— 15 mとすることが望ましい。
[0035] 本発明で用いるォキシ水酸ィ匕ニッケルは、 γ型の結晶構造を有する単相からなる 場合と、 β型の結晶構造と y型の結晶構造とが混在した共晶からなる場合がある。
[0036] y型の結晶構造は、ォキシ水酸ィ匕ニッケルを構成する NiO層間に、アルカリ金属
2
イオン (イオン A)が侵入した構造である。この構造において、ォキシ水酸ィ匕ニッケル を構成する元素やイオン、すなわち A、 H、 Niおよび Oの間では電気的中性が保た れている。 γ ォキシ水酸化ニッケルは、化学式 A H NiO ·ηΗ Οで表される酸化物
2 2
である(J. Power Sources 8, p. 229(1982)) 0
[0037] y ォキシ水酸ィ匕ニッケルは、粉末 X線回折にお!、て、 JCPDS無機物質ファイル のファイル番号: 6-75の回折パターンを与える。代表的回折ピークとして、(003)面 に帰属される面間隔 6. 8-7. 1オングストローム(A)の回折ピーク Ρ γが挙げられる
。 (003)面は c軸に垂直な結晶面であり、その面間隔にアルカリ金属イオンや水分子 が挿入され、層間を 7 Α付近まで伸長している。
一方、 j8—ォキシ水酸ィ匕ニッケルの粉末 X線回折では、代表的な回折ピークとして
、(001)面に帰属される面間隔 4. 5— 5 Aの回折ピーク Ρ |8が観測される。
[0038] 正極合剤の電池への充填性の観点から、本発明で用いるォキシ水酸ィ匕ニッケルは
、タップ密度が、タッピング回数 500回の場合に 1. 5g/cm3以上であることが望まし く、 1. 7gZcm3以上であることが更に望ましい。
[0039] また、正極合剤中のアルカリ電解液の分布等を良好な状態に維持し、ォキシ水酸 化ニッケルの放電反応 (電気化学反応)を円滑に進め、強負荷放電特性を高める観 点から、 BET法を用いて測定される比表面積が 10— 30m2/gであることが好ましぐ
15— 20m2Zgであることが更に好ましい。
[0040] さらに、ォキシ水酸ィ匕ニッケルに含まれる水分量は、 3重量%以下であることが望ま しい。特に水分量が 2重量%以下であるォキシ水酸ィ匕ニッケルを用いると、正極合剤 ペレットの作製が容易となり望ましい。 [0041] 前記ォキシ水酸ィ匕ニッケルが、 β型の結晶構造を含む場合、前記ォキシ水酸化- ッケルの粉末 X線回折パターンは、上述の γ型結晶の(003)面に帰属される回折ピ ーク Ρ γの他に、 j8型結晶の(001)面に帰属される面間隔約 4. 5— 5 Aの回折ピー ク P βを有する。
[0042] 回折ピーク Ρ γの積分強度 I γおよび回折ピーク Ρ βの積分強度 I j8力 0. 5≤Ι γ / {l y +Ι |8 )を満たす場合、高容量ィ匕の効果が顕著となる。具体的には、ォキシ水 酸ィ匕ニッケルに含まれるニッケルの平均価数は、 3. 3以上となる。ォキシ水酸ィ匕-ッ ケルに含まれるニッケルの平均価数が 3.3以上である場合、 y ォキシ水酸ィ匕-ッケ ルは、その価数に見合うだけの大きな放電容量を与えるため、電池の大幅な高容量 化が可能となる。
[0043] 一方、 I γ Z (I γ +1 j8 )が 0. 5未満になると、高容量ィ匕は可能である力 その効果 力 S小さくなる。この場合、ォキシ水酸ィ匕ニッケルに含まれるニッケルの平均価数は 3. 05以上 3. 3未満となる。ただし、 0. 1≤Ι γ / (ΐ γ +I j8 ) < 0. 5の場合には、粒子の 嵩密度 (タップ密度)が高く保たれるので、正極合剤ペレットを作製しやすぐ電池内 への充填が容易になると 、う利点が生じる。
[0044] 一般に、水酸ィ匕ニッケルを高度に酸ィ匕させてォキシ水酸ィ匕ニッケルを得る場合、 c 軸に垂直な結晶面の層間に伸長があまり認められない j8—ォキシ水酸ィ匕ニッケル( 主成分)と、少量の γ ォキシ水酸ィ匕ニッケルとの共晶が得られる場合が多い。ただ し、本発明では、 γ ォキシ水酸化ニッケルの単相や、 γ ォキシ水酸化ニッケル(主 成分)と少量の β ォキシ水酸ィ匕ニッケルとの共晶を正極材料として積極的に使用す る場合にも重点を置 、て 、る。
[0045] y型の結晶構造を有するォキシ水酸化ニッケルは、必ずしもニッケル価数に見合う だけの放電容量を有するわけではない。 j8—ォキシ水酸ィ匕ニッケルに比べると、 γ ~ ォキシ水酸化ニッケルの方が大幅な放電電圧の低下を生じ、容量が満足に得られな いことも多い。
[0046] そこで、本発明では、 y型の結晶構造を有するォキシ水酸ィ匕ニッケルとして、マン ガンなどの添加元素を溶解した固溶体を用いることを提案する。添加元素を溶解した ォキシ水酸化ニッケルの固溶体は、添加元素を溶解した固溶体の水酸ィ匕ニッケルを 酸化すること〖こより合成することができる。添加元素としては、マンガンの他に、コバル トを好ましく用いることができる。
[0047] マンガンを溶解させた固溶体の γ—ォキシ水酸化ニッケルの場合、詳細な反応メカ -ズムは解明されていないが、比較的高い電位域で、高酸化状態のニッケルが 2価 付近まで還元されるのに見合う容量が得られる。マンガンを溶解した γ型の結晶構 造を有するォキシ水酸ィ匕ニッケルを正極材料に用いる場合、ニッケルの 1電子超の 放電反応を利用することができ、電池容量の向上に有効である。マンガンの存在によ つてォキシ水酸化ニッケルの酸化状態、すなわち保持電気量が十分に高められる。
[0048] マンガンがォキシ水酸ィ匕ニッケルに溶解して固溶体を形成している場合、ニッケル カ^ー 4価に至る酸化還元電位が卑に移行する。また、ォキシ水酸化ニッケルの-ッ ケル層内に存在する 4価のマンガンイオン力 γ型の結晶構造を熱力学的に安定ィ匕 する。従って、ォキシ水酸ィ匕ニッケルの合成の際に、 γ型の結晶構造の生成比率が 高くなり、ニッケルの平均価数の大き 、ォキシ水酸ィ匕ニッケルを得ることができる。
[0049] コバルトがォキシ水酸ィ匕ニッケルに溶解して固溶体を形成している場合、ニッケル の放電過程においてプロトンの拡散に好適な欠陥を結晶(NiO
2層)内に形成させる ことができる。その上、ォキシ水酸化ニッケル自身の電子伝導性も向上する。よって、 強負荷放電特性を損なうことなぐアルカリ電池を大幅に高容量ィ匕することが可能と なる。
[0050] ォキシ水酸化ニッケルは、マンガンおよびコバルトの少なくとも一方を溶解した固溶 体であることが好まし 、が、マンガンおよびコバルトの両方が溶解した固溶体であるこ とが更に好ましい。マンガンおよびコバルトの両方がォキシ水酸ィ匕ニッケルに溶解し ている場合には、高容量化と強負荷放電特性の向上の効果を同時に高めることがで きる。
[0051] ォキシ水酸ィ匕ニッケル力 添加元素としてマンガンを溶解した固溶体である場合、 固溶体に溶解するマンガンの量は、固溶体に含まれる全金属元素の総量の 1一 7m ol%であることが好ましい。マンガンの量が lmol%未満では、添加元素の効果があ まり得られない。一方、電池容量の減少を避ける観点から、マンガンの量は 7mol% 以下であることが好ましい。 [0052] ォキシ水酸ィ匕ニッケル力 添加元素としてコバルトを溶解した固溶体である場合、 固溶体に溶解するコバルトの量は、固溶体に含まれる全金属元素の総量の 1一 7mo 1%であることが好ましい。コバルトの量が lmol%未満では、添加元素の効果があまり 得られない。一方、電池容量の減少を避ける観点から、コバルトの量は 7mol%以下 であることが好ましい。
[0053] ォキシ水酸化ニッケル力 添加元素としてマンガンおよびコバルトの両方を溶解し た固溶体である場合、固溶体に溶解するマンガンおよびコバルトの量は、それぞれ 固溶体に含まれる全金属元素の総量の 1一 7mol%であることが好ましい。
[0054] 強負荷放電特性を維持する観点からは、ォキシ水酸ィ匕ニッケルの表面に、コバルト 酸ィ匕物を付着させることも有効である。ォキシ水酸ィ匕ニッケルの表面に付着して 、る コバルト酸ィ匕物は、体積変化を伴う γ—ォキシ水酸ィ匕ニッケルの放電の際に、活物質 からの良好な集電状態を維持し、強負荷放電特性を維持する役割を果たす。
[0055] 活物質力 の良好な集電状態を維持する観点から、前記コバルト酸ィ匕物の量は、 ォキシ水酸ィ匕ニッケルの 0. 1重量%以上であることが好ましい。また、電池の高温保 存時において、コバルトの溶出等を抑制し、正極の安定性 (信頼性)を確保する観点 から、コバルト酸化物の量は、ォキシ水酸化ニッケルの 7重量%以下であることが好ま しい。
[0056] コバルト酸化物に含まれるコバルトの平均価数は、 3. 0よりも大きいことが好ましい。
コバルトの平均価数が 3. 0よりも大きいコバルト酸化物は、コバルトの平均価数が 3. 0以下のコノ レト酸ィ匕物に比較して、電子伝導性が極めて高い。そのため、ォキシ水 酸ィ匕ニッケル力もの集電効率を最大限に高めることが可能となる。また、そのようなコ バルト酸化物の場合、放電後の電池を放置 (保存)した場合において、コバルトが 2 価へ還元されたり、電解液に溶出したりすることが抑制される。従って、このようなコバ ルト酸ィ匕物が表面に付着したォキシ水酸ィ匕ニッケルを用いることで、高容量化と強負 荷放電特性の向上に加え、電池の保存特性 (信頼性)の改善をも図ることが可能に なる。
[0057] 二酸ィ匕マンガンは、ォキシ水酸ィ匕ニッケルよりも電池ケース内に高密度充填するこ とが容易であり、しかも二酸ィ匕マンガンの価格は安価である。これらの点を踏まえると 、正極合剤に含まれる二酸ィ匕マンガンの含有量は 20重量%以上であることが好まし い。また、電池容量を向上させる観点からは、正極合剤に含まれる二酸ィ匕マンガンの 含有量は、 90重量%以下であることが好ましい。
[0058] γ型構造を有するォキシ水酸化ニッケルは、 β型構造を主体とする水酸化ニッケ ルをアルカリ水溶液中で酸化剤を用いて化学酸ィ匕し、これを水洗および乾燥して得 ることがでさる。
ここで、 γ型構造を主体とするォキシ水酸ィ匕ニッケルは、一般的な水酸ィ匕ニッケル の充放電に関する Bodeダイアグラム(Electrochemical Acta 11, p.1079(1966))を参 照すると、 α型構造の水酸ィ匕 ッケル(a— 3Ni (OH) · 2H O)を出発原料として用
2 2
いる場合に、容易に得られると考えられる。
[0059] しかし、 α型構造を有する水酸ィ匕ニッケルは、一般に非常に嵩高ぐ c軸に垂直な( 003)面の面間距離が 8オングストローム超であり、この面間距離は γ—水酸化-ッケ ルのそれよりも大きい。そのため、 α型構造を有する水酸化ニッケルを酸化して得ら れる γ型構造を有するォキシ水酸化ニッケルは、原料の形状 (履歴)を反映すること となり、材料が多孔化し、高密度の粉末が得られない。
[0060] そこで、本発明では、 y型構造を有するォキシ水酸化ニッケルの原料に、高密度の β型構造を主体とする水酸ィ匕ニッケル (例えば 90重量%以上が β型構造である水 酸化ニッケル)を使用することを提案する。 γ型構造を主体とするォキシ水酸化-ッ ケルは、比較的密度であり、電池内への活物質の高密度充填の達成に有利である。
[0061] アルカリ水溶液には、水酸ィ匕カリウム、水酸ィ匕ナトリウムおよび水酸化リチウムよりな る群力 選択される少なくとも 1種が好ましい。また、 γ型構造を主体とするォキシ水 酸化ニッケルの形成反応は、アルカリ金属イオンの NiO層内への侵入を伴いながら
2
進行する。このため、酸化剤とともに共存させるアルカリ塩の濃度を高くする方が、反 応が円滑に進む。よって、これらアルカリ塩のアルカリ水溶液における濃度は、 3mol ZL以上であることが望ま U、。
[0062] y型構造を有するォキシ水酸化ニッケルの原料として用いる β型構造を主体とす る水酸ィ匕ニッケルは、マンガンを溶解した固溶体であることが望ま U、。
マンガンを溶解した固溶体の水酸化ニッケルは、酸化還元電位が通常の水酸化- ッケルに比べて卑な方向に移行するため、酸化剤による処理において高度に酸ィ匕さ れて γ型構造を形成しやす ヽ。
[0063] また、マンガンが水酸化ニッケル中に酸化物として存在し、ニッケル酸化物との共 晶を形成して ヽる状態に比べ、水酸ィ匕ニッケルにマンガンを溶解した固溶体の状態 の方が、酸化剤による処理時にマンガンの溶出が殆ど起こらない点で優れている。 また、マンガンが水酸ィ匕ニッケル結晶内のニッケルサイト以外の位置に侵入した固 溶状態よりも、マンガンが水酸ィ匕ニッケルのニッケルサイトに置換された固溶状態の 方力 酸化剤による処理時にマンガンの溶出が殆ど起こらない点で優れている。
[0064] なお、水酸化ニッケルを酸化剤で処理する際に、マンガンがマンガン酸イオン(Μη Ο 2 )、過マンガン酸イオン (ΜηΟ―)等として溶出すると、ニッケルの酸ィ匕度合いにば
4 4
らつきが生ずる。ニッケルサイトの一部がマンガンに置換された固溶体の水酸ィ匕-ッ ケルを用いる場合には、このような現象が抑制され、マンガンの溶出が殆ど起こらな い。
[0065] 酸化剤による処理直前の β一水酸ィ匕ニッケル中のマンガンの平均価数は、 3. 5以 上であることが好ましぐ 3. 8以上であることが更に好ましい。マンガンの平均価数が 2— 3価と低い場合には、ォキシ水酸ィ匕ニッケル粒子内に、局所的にマンガン酸ィ匕物 が遊離する等の現象が起こることがある。その原因の詳細は明らかではないが、酸ィ匕 処理時にマンガン種が結晶内で移動するなどして、酸化物が形成されると考えられる 。その場合、電池の高容量ィ匕に寄与するだけの高い放電効率を有する γ ォキシ水 酸ィ匕ニッケルを得ることが困難になる。よって、マンガンの平均価数は、 4価に近い状 態の方が好ましい。
[0066] 次に、マンガンを好適な状態で溶解した γ型の結晶構造を有するォキシ水酸化- ッケルの効率的な製造方法の一例について説明する。
第 1工程
まず、攪拌翼を供えた反応槽内に、硫酸ニッケル (Π)水溶液、硫酸マンガン (Π)水 溶液、水酸化ナトリウム水溶液、およびアンモニア水を、それぞれ独立した流路で供 給する。この操作は、反応槽内に不活性ガスをパブリングするとともに、反応槽内の 温度および ρΗを制御しながら行う。この操作では、ニッケルサイトの一部が 2価のマ ンガンで置換された β型の結晶構造を有する水酸ィ匕ニッケルを得ることができる。
[0067] 反応槽内における各溶液の濃度は、反応槽の設備等によって当業者が適宜調整 することが要求されるが、そのような調整は当業者が任意に行うことができる。一般的 な濃度を挙げれば、硫酸ニッケル (II)の濃度は 0. 5— 2molZL、水酸ィ匕ナトリウムの 濃度は 1一 5molZL、アンモニア水の濃度は 10— 30重量%である力 これに限定さ れるわけではない。また、硫酸マンガン (II)の濃度は、所望のニッケル含有量が達成 されるように選択すればょ 、。
[0068] 不活性ガスには、窒素、アルゴン等を用いる。不活性ガスのパブリングを行 、ながら 原料溶液の攪拌を行うことで、ニッケルおよびマンガンが 2価の状態でアンミン錯体を 形成し、アンミン錯体に過剰供給された水酸ィ匕ナトリウム水溶液が作用して、 2価の- ッケルサイトの一部がマンガンに置換された β型構造を主体とする水酸化ニッケルが 析出する。マンガンを溶解させた水酸ィ匕ニッケルの密度は低下する場合が多 ヽが、 これは水酸ィ匕ニッケルの合成途上で 2価のマンガンイオンが酸ィ匕を受けることが主要 因となっている。一方、上記のような不活性ガス雰囲気下で合成すれば、非常に密 度の高!ヽ β一水酸ィ匕ニッケルを得ることができる。
[0069] 反応槽内の還元雰囲気を維持する観点から、第 1工程では、さらに反応槽内にヒド ラジンをカ卩えることが望ましい。このような雰囲気制御がなされることで、合成時のマン ガンイオンの酸化がより一層抑えられ、 2価のマンガンがニッケルサイトの一部に置換 した β一水酸ィ匕ニッケルを確実に得ることが可能になる。
[0070] 第 2工程
次に、第 1工程で得られた |8—水酸化ニッケルを、水洗し、乾燥し、酸化雰囲気下 で 50— 150°Cで加熱する。この操作により、マンガンだけを平均価数 3. 5以上に酸 ィ匕させることができる。
β一水酸化ニッケル中のマンガンの価数が 2価のままであると、酸化処理前の常温 大気中での保存時あるいは酸ィ匕処理時に、粒子内で局所的にマンガン酸ィ匕物が遊 離する等の現象が起こり、後に十分な特性が得られないことがある。一方、第 1工程 後に、マンガンを 3. 5価以上の状態に変換すると、マンガンを |8—水酸ィ匕ニッケルの ニッケルサイトに安定して存在させることができる。 [0071] 第 3工程
次に、第 2工程後の水酸ィ匕ニッケルを、アルカリ水溶液中に酸化剤とともに投入し、 水酸化ニッケルを化学酸化する。この操作によって、 y型の結晶構造を有するォキ シ水酸ィ匕ニッケルが得られる。
γ—ォキシ水酸化ニッケルは、ォキシ水酸化ニッケルの NiO層間にアルカリ金属ィ
2
オンが挿入して 4価ニッケルイオンの電気的中性が保たれている。従って、アルカリ 金属イオンを含む水溶液中で酸化剤処理を行う必要がある。ただし、 OH—以外の大 半のァ-オン種 (SO 2 NO―、 C1—等)は、電池特性に悪影響を及ぼすため、実質上
4 3
、アルカリ水溶液中での処理が必須となる。
[0072] アルカリ水溶液には、上述のように、水酸ィ匕カリウム、水酸ィ匕ナトリウムおよび水酸 ィ匕リチウムよりなる群力も選択される少なくとも 1種のアルカリ塩が好ましい。また、 y - ォキシ水酸ィ匕ニッケルの生成効率を高める観点から、アルカリ水溶液におけるアル力 リ塩濃度は 3molZL以上であることが望まし 、。
[0073] 水酸化 ッケルをォキシ水酸化ニッケルに酸化させるための酸化剤には、例えば 次亜塩素酸ナトリウム等の次亜塩素酸塩、ペルォキシ二硫酸カリウム等の過硫酸塩、 臭素等のハロゲン類、過酸ィ匕水素水等を用いることができる。これらのうちでは、酸ィ匕 力が高く安定しており、価格も安価であるため、次亜塩素酸塩が最も適する。
[0074] 以下、本発明を実施例に基づいて具体的に説明する。
まず、ォキシ水酸化ニッケル、ないしは原料水酸化ニッケルの物性測定法について 説明する。
〈1〉粉末 X線回折測定
理学電機株式会社製の粉末 X線回折装置「RINT1400」を用い、以下の測定条件 により、 2 0 = 10— 70度 (deg. )の範囲で各粉末の X線回折プロファイル(回折パタ ーン)を得た。
(対陰極) Cu
(フィルタ) Ni
(管電圧) 40kV
(管電流) 100mA (サンプリング角度) 0. 02deg.
(走査速度) 3. Odeg. /min.
(発散スリット) l/2deg.
(散乱スリット) l/2deg.
[0075] 各回折パターンから、 γ型結晶の(003)面に帰属される面間隔 6. 8-7. l A付近 の回折ピーク P yの積分強度 I γと、 j8型結晶の(001)面に帰属される面間隔 4.5—
5 Aの回折ピーク P βの積分強度 I βを求め、 I γ Ζ (I Ύ +1 J8 )の値を求めた。
[0076] 〈2〉ニッケル含有量
各試料粉末のニッケル含有量は、重量法に基づく以下の化学測定で求めた。 ォキシ水酸ィ匕ニッケルな ヽしは水酸ィ匕ニッケルの試料粉末に、硝酸水溶液を加え て加熱し、粒子を完全に溶解させ、酒石酸水溶液とイオン交換水とを加えて体積調 整した。この溶液の pHをアンモニア水および酢酸を用いて調整した後、臭素酸力リウ ムを加えて、測定誤差となりうる添加元素(マンガンイオンやコバルトイオン)を高次な 状態に酸化させた。
[0077] 次に、この溶液を加熱攪拌しながらジメチルダリオキシムのエタノール溶液を添加し 、ニッケル (II)イオンをジメチルダリオキシム錯ィ匕合物として沈殿させた。続いて吸引 濾過を行い、生成した沈殿物を捕集して 110°C雰囲気で乾燥させ、沈殿物の重量を 測定した。測定結果より、各粉末中に含まれるニッケル含有量を次式により算出した ニッケル含有量 (重量%) = {沈殿物の重量 (g) X O. 2032}Z{試料粉末の重量 (g ) }
[0078] 〈3〉ニッケルの平均価数
ォキシ水酸ィ匕ニッケルがマンガンやコバルトのような添加元素を含まない場合は、 ォキシ水酸ィ匕ニッケルの試料粉末にヨウ化カリウムと硫酸を加え、十分に攪拌を続け ることで完全に溶解させた。この過程で価数の高いニッケルイオンは、ヨウ化カリウム をヨウ素に酸ィ匕し、自身は 2価に還元される。続いて、生成、遊離したヨウ素を 0. lm olZLのチォ硫酸ナトリウム水溶液で滴定した。この際の滴定量は、価数が 2価よりも 大きいニッケルイオン量を反映している。滴定の結果と、上記〈2〉で求めたニッケル 含有量を用いて、ォキシ水酸ィ匕ニッケル中に含まれるニッケルの平均価数を以下の 式で算出した。
ニッケルの平均価数 = {滴定量 (L) X O. l (mol/L) X 58. 69}Z{ォキシ水酸化 ニッケルの重量(g) Xニッケル含有量 } + 2. 00
[0079] ォキシ水酸ィ匕ニッケルが添加元素(マンガンやコバルト)を含む固溶体である場合 は、価数の高いマンガンイオンやコバルトイオンもヨウ化カリウムをヨウ素に酸ィ匕し、 自 身は 2価に還元されるため、この分を補正する必要がある。
[0080] そこで、添加元素を溶解したォキシ水酸ィ匕ニッケルの固溶体の場合は、これに硝酸 水溶液を加えて加熱し、粒子を完全に溶解させた後、得られた溶液に関して ICP発 光分析を行って、添加元素の含有量を定量した。 ICP発光分析には、 VARIAN社 製の VISTA— RLを使用した。ォキシ水酸化ニッケル中に含まれるマンガンの平均価 数を 4価、コバルトの平均価数を 3. 5価と仮定して、 ICP発光分析結果を用いて前記 滴定量を補正し、ニッケルの平均価数を算出した。
[0081] なお、ォキシ水酸化ニッケルに酸化される前の原料水酸化ニッケルの固溶体に含 まれるマンガンの平均価数は、添加元素の含有量を ICP発光分析で求めた値とし、 ニッケルを 2価、コノ レトを 2価と仮定して、基本的には上記と同様の酸ィ匕還元滴定 で求めた。
[0082] 〈4〉タップ密度
タップ密度の測定には、ホソカワミクロン株式会社製の測定装置「パウダテスタ PT- R」を用いた。試料粉末が通過する篩には、 目開き 100 mの篩を使用し、 20ccのタ ッビングセルに粉末を落下させた。セルが満杯に充填された後、 1回 Z秒でストロー ク長 18mmのタッピングを 500回行った。その後、タップ密度を測定した。
[0083] 〈5〉平均粒子径
日機装株式会社製のマイクロトラック粒度分布測定装置「9220FRA」を用いて、試 料粉末を水中に十分に分散させ、レーザー回折法によって体積基準の平均粒子径 D を求めた。
50
[0084] 〈6〉水分量
株式会社製チノ一製の乾量式水分計「CZA— 2100」を用いて、 5gの試料粉末を 1 20°Cで加熱乾燥させ、その後、試料中に含まれている水分量 (重量%)を測定した。
[0085] 〈7〉 BET比表面積
マイクロメリテックス社製「ASAP2010」を用いて、約 2gの試料粉末に対して、 60°C で加熱しながら 6時間真空引きを行い、予備乾燥させた後、窒素ガスを試料に吸着さ せて吸着量を測定した。さらに試料粉末の重量を精秤して、 BET法により比表面積 を求めた。
[0086] 《実施例 1》
[1]水酸化ニッケルの製造
(1)水酸化ニッケル a 1
それぞれ所定濃度の硫酸ニッケル (Π)水溶液、水酸化ナトリウム水溶液、ならびに アンモニア水を用意した。これらを槽内 pHが一定となるように、攪拌翼を備えた反応 槽内にポンプで定量供給し、十分に攪拌を続けることで、球状の j8—水酸化ニッケル を析出 '成長させた。
続いて、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 イオンを除去した後、水洗し、乾燥させて、水酸ィ匕ニッケル alとした。
[0087] (2)水酸化ニッケル bl
攪拌翼を備えた反応槽に純水と少量のヒドラジン (還元剤)を加え、窒素ガスによる パブリングを開始した。また、それぞれ所定濃度の硫酸ニッケル (II)水溶液、硫酸マ ンガン (Π)水溶液、水酸化ナトリウム水溶液、ならびにアンモニア水を用意した。これ らを槽内 pHが一定となるように、前記反応槽内にポンプで定量供給し、十分に攪拌 を続けることで、マンガンを溶解した球状の j8—水酸ィ匕ニッケル力 なる固溶体を析 出させ、成長させた。
[0088] 続、て、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 イオンを除去した後、水洗'真空乾燥を行い、さらに、これに 80°Cで 72時間の空気酸 化を施して、水酸ィ匕ニッケル b 1〔組成: Ni Mn (OH)〕とした。ここで、空気酸ィ匕
0.95 0.05 2
は、 Mnだけを 4価近傍にまで酸ィ匕するための処理である。
[0089] (3)水酸化ニッケル cl
攪拌翼を備えた反応槽に純水と少量のヒドラジン (還元剤)を加え、窒素ガスによる パブリングを開始した。また、それぞれ所定濃度の硫酸ニッケル (II)水溶液、硫酸マ ンガン (Π)水溶液、硫酸コバルト (Π)水溶液、水酸化ナトリウム水溶液、ならびにアン モ-ァ水を用意した。これらを槽内 pHが一定となるように、前記反応槽内にポンプで 定量供給し、十分に攪拌を続けることで、マンガンとコバルトとを溶解した球状の |8— 水酸ィ匕ニッケルカゝらなる固溶体を析出させ、成長させた。
[0090] 続、て、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 イオンを除去した後、水洗'真空乾燥を行い、さらに、これに 80°Cで 72時間の空気酸 化を施して、水酸化ニッケル cl〔組成: Ni Mn Co (OH)〕とした。
0.90 0.05 0.05 2
[0091] (4)水酸化ニッケル dl
水酸ィ匕ニッケル blを反応槽内の硫酸コバルト水溶液中に投入し、水酸ィ匕ナトリウム 水溶液を徐々に加え、 35°Cで槽内の pHが 10を維持するように制御しながら攪拌を 続けて、固溶体粒子の表面に水酸ィ匕コバルトを析出させた。こうして、 Co (OH)で被
2 覆された水酸ィ匕ニッケル blを水酸ィ匕ニッケル dlとした。水酸ィ匕ニッケル dlは、水洗 した後、真空乾燥を行った。
ここで、水酸ィ匕ニッケル blの表面に付着する水酸ィ匕コバルトの量は、水酸化-ッケ ノレ blの 100重量部あたり 5. 0重量部とした。
水酸化ニッケル al— dlは、いずれも平均粒子径が約 12 m、 BET比表面積が 10 一 12m2Zg、タップ密度が 2. 1-2. 2gZcm3の範囲にあった。
[0092] [2]水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
水酸化ニッケル alの 200gを 5molZLの水酸化ナトリウム水溶液 1L中に投入し、 酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量加えて攪 拌し、水酸ィ匕ニッケルをォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水 洗後、 60°Cの真空乾燥(24時間)を行って、ォキシ水酸ィ匕ニッケル A1とした。
また、水酸化ニッケル alの代わりに水酸化ニッケル bl、 clおよび dlを用いて、上 記と同様の工程を行い、それぞれォキシ水酸化ニッケル Bl、 Clおよび Dlを製造し た。
[0093] [3]ォキシ水酸化ニッケルの物性解析
ォキシ水酸化ニッケル A1— D1につ!/、て得られた I γ Z (I Ύ +1 J8 )値および-ッケ ルの平均価数を表 1に示す。
[表 1]
Figure imgf000022_0001
[0095] 表 1より以下のことが言える。
まず、マンガンやコバルトを含まないォキシ水酸化ニッケル A1では、 γ—ォキシ水 酸ィ匕ニッケルの生成比率は僅かであり、ニッケルの化学酸化が、ほぼ 3価近傍までで 抑えられている。
一方、マンガンを溶解させた固溶体のォキシ水酸ィ匕ニッケル B1— D1では、いずれ も Ι γ Ζ (Ι γ +Ι |8 )値が 0. 8付近であり、ニッケルの平均価数が 3. 4価程度まで高め られている。
[0096] [4]アルカリ電池の作製
ォキシ水酸化ニッケル A1— D1を用いて、それぞれ一次電池としてのニッケノレマン ガン電池を作製した。図 1は、本実施例で作製した電池の一部を断面にした正面図 である。
ォキシ水酸化ニッケル A1— D1を用いた電池を、それぞれ電池 A1— D1とした。 (1)正極合剤ペレットの作製
所定のォキシ水酸ィ匕ニッケル、二酸ィ匕マンガンおよび黒鉛を、重量比 50 : 50 : 5の 割合で配合し、この配合物に、ォキシ水酸化ニッケル a2の 5重量%に相当する量の 酸ィ匕亜鉛を添加した。また、ォキシ水酸ィ匕ニッケル a2と二酸ィ匕マンガンとの合計 100 重量部に対して、アルカリ電解液 (40重量%の水酸ィ匕カリウム水溶液) 1重量部を添 カロした。その後、配合物が均一になるまでミキサーで撹拌および混合して、配合物を 粒状物とした。得られた粒状物を中空の短筒状に成形し、正極合剤ペレットとした。
[0097] (2)電池の組立
正極ケース 1には、ニッケルメツキされた鋼板を用いた。正極ケース 1の内面には、 黒鉛塗装膜 2を形成した。正極ケース 1の内部に、短筒状の正極合剤ペレット 3を複 数個挿入した。正極合剤ペレット 3は、正極ケース 1の内部で再加圧して、その内面 に密着させた。正極合剤ペレット 3の内側には、筒状セパレータ 4を挿入し、正極ケー ス 1の内底面には、絶縁キャップ 5を載置した。その後、セパレータ 4と正極合剤ペレ ット 3を湿潤させる目的で、アルカリ電解液を正極ケース 1に注液した。アルカリ電解 液には、水酸ィ匕カリウムを 40重量0 /0含む水溶液を用いた。電解液の注液後、セパレ ータ 4の内側にゲル状負極 6を充填した。ゲル状負極 6には、ゲル化剤のポリアクリル 酸ナトリウム、アルカリ電解液、および負極活物質の亜鉛粉末の混合物を用いた。
[0098] 次に、樹脂製封口板 7、負極端子を兼ねる底板 8、および絶縁ヮッシャ 9と一体ィ匕さ れた負極集電体 10を、ゲル状負極 6に差し込んだ。そして、正極ケース 1の開口端 部を、封口板 7の端部を介して、底板 8の周縁部に力しめつけ、正極ケース 1の開口 部を密閉した。正極ケース 1の外表面には、外装ラベル 11を被覆した。こうして図 1に 示すような単三サイズのニッケルマンガン電池を完成した。
[0099] [5]アルカリ電池の評価
こうして作製したニッケルマンガン電池 A1— D1を、それぞれ 20°Cで 50mAの定電 流で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量を測定した。
また、初度の電池を、それぞれ 20°Cで 1Wの定電力で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量についても測定した。
得られた結果を表 2にまとめて示す。なお、 50mA放電および 1W放電の両方にお いて、ニッケルマンガン電池 B1— D1の放電容量は、ニッケルマンガン電池 A1の放 電容量を 100とした場合の相対値で示した。
[0100] [表 2]
Figure imgf000023_0001
表 2より以下のことが言える。
まず、マンガンを溶解させてニッケルの平均価数を 3. 4価程度にまで高めたォキシ 水酸ィ匕ニッケル B 1— D 1を用 ヽた電池では、 50mAの定電流 (低負荷)で連続放電 させた場合、高価数に見合うだけの高い容量が得られている。つまり、 j8—ォキシ水 酸化ニッケルを主体とするォキシ水酸化ニッケル A1を用いた電池 A1より、電池 B1 一 D1の方が高容量ィ匕が図られる。
[0102] ただし、マンガンだけを溶解させたォキシ水酸化ニッケル B1を用いた電池 B1では 、 1W (強負荷)での連続放電では、ォキシ水酸ィ匕ニッケル A1を用いた電池 A1よりも 容量が劣っている。
これは、 (a) y ォキシ水酸化ニッケルの酸化還元電位 (平衡電位)が β ォキシ水 酸化ニッケルよりも卑であること、(b) γ ォキシ水酸ィ匕ニッケルは、放電の際に生じ る体積変化 (結晶構造の変化)が大きいため、分極の程度が大きいこと、(c)マンガン だけを溶解させた Ί ォキシ水酸ィ匕ニッケルの電子伝導性は、放電に伴って大きく 低下すること (支配因子)などにより、強負荷放電特性が大きく低下したためと推察さ れる。
[0103] これに比較して、マンガンとコバルトとを溶解させたォキシ水酸化ニッケル C1を用い た電池 C1では、 50mA (低負荷)放電と 1W (強負荷)放電のいずれにおいても、高 い放電容量を与えている。
ここでは、ニッケル層内に添加されたマンガンイオン (4価)の存在により、 γ型の結 晶構造が熱力学的に安定化され、ォキシ水酸ィ匕ニッケル中のニッケルの平均価数が 大きくなり、放電容量が向上したものと考えられる。
[0104] また、ォキシ水酸化ニッケル中にコバルトが添加されていると、ニッケルの放電過程 で、プロトンの拡散に好適な欠陥を NiO層内に形成させることができ、同時にォキシ
2
水酸化ニッケル自身の電子伝導性が向上する。従って、放電に際しても、ォキシ水 酸ィ匕ニッケルの電子伝導性が高く維持されるため、強負荷放電特性が大幅に改善さ れるものと考えられる。
このような理由から、マンガンとコバルトの両者を溶解させた固溶体のォキシ水酸化 ニッケル C1を用いた電池 C1は、低負荷.強負荷のいずれの放電においても、高い 容量を与えたものと推察される。
[0105] また、コバルト酸ィ匕物で表面が被覆された、マンガンを溶解させたォキシ水酸ィ匕ニ ッケル D 1を用 、た電池 D 1も、 50mA (低負荷)放電と 1 W (強負荷)放電の両方にお いて、高い放電容量を与えている。
[0106] これに関連して、別の実験で、 pH= 10付近で合成した Co (OH)を 5molZLの水
2
酸ィ匕ナトリウムに投入し、そこへ次亜塩素酸ナトリウム水溶液を添加して、 Co (OH)
2 をコバルト酸化物に酸化した。そして、得られたコバルト酸化物中のコバルトの平均 価数を調べたところ、 3価を超えるまで酸化されており、極めて高い電子伝導性を有 することが確認できた。
[0107] ォキシ水酸化ニッケル D1にお!/、ては、ォキシ水酸化ニッケルからなる粒子の表面 に、電子伝導性の高いコバルト酸ィ匕物が付着していることから、体積変化を伴う γ— ォキシ水酸ィ匕ニッケルの放電にぉ 、ても、活物質間の集電性を比較的良好に保つこ とができると考えられる。従って、分極の度合いが低減し、高容量化と強負荷放電特 性向上の両立が図られたと考えられる。
以上のように、本発明によれば、高容量で強負荷放電特性にも優れたアルカリ電池 を得ることができた。
[0108] 《実施例 2》
ォキシ水酸化ニッケル中のニッケルの平均価数、 I γ Ζ (I Ύ +1 J8 )値および正極合 剤に含まれる二酸化マンガンの含有量を最適化するために、以下の実験と評価を行 つた o
[0109] [1]ォキシ水酸化ニッケルの製造
実施例 1で用いた水酸化ニッケル cl〔組成: Ni Mn Co (OH)〕 200gを 0.
0.90 0.05 0.05 2
5molZLの水酸ィ匕ナトリウム水溶液 1L中に投入し、酸化剤の次亜塩素酸ナトリウム 水溶液 (有効塩素濃度: 5重量%)を十分量加えて攪拌し、水酸ィ匕ニッケルをォキシ 水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後、 60°Cの真空乾燥(24 時間)を行ってォキシ水酸ィ匕ニッケル Cとした。
1
[0110] また、水酸化ナトリウム水溶液の濃度を 1. Omol/L, 3. Omol/L, 4. Omol/L, 5. OmolZLおよび 7. OmolZLとしたこと以外、上記と同様にして、ォキシ水酸化- ッケル C
2一 Cを製造した。
6
[0111] [2]ォキシ水酸化ニッケルの物性解析
得られたォキシ水酸ィ匕ニッケル C一 Cの粉末 X線回折による I γ Z (I Ύ +1 J8 )値と 、化学分析によるニッケルの平均価数を表 3にまとめる。
表 3より、化学酸化に際して共存させる水酸化ナトリウム水溶液の濃度を調整するこ とで、ォキシ水酸化ニッケルの酸化度( Ί ォキシ水酸化ニッケルの生成比率とニッ ケルの平均価数)の制御が可能であることがわかる。
[0112] [表 3]
Figure imgf000026_0001
[0113] [3]アルカリ電池の作製
ォキシ水酸化ニッケル C
1一 Cを用いて、正極合剤 C
6 In一 C (ηは 1
6n 一 8の整数)を調 製し、それぞれ一次電池としてのニッケルマンガン電池 C一 C (nは 1
In 6n 一 8の整数) を作製した。
ここでは、正極合剤に含まれる二酸ィ匕マンガンの含有量を最適化する観点から、表 4に示すように正極合剤に含まれる二酸ィ匕マンガンの含有量 (導電剤の黒鉛等も含 めた正極合剤全体に対する二酸ィ匕マンガンの重量比率)を変化させた。
[0114] 正極合剤 C の場合、ォキシ水酸ィ匕ニッケル Cと二酸ィ匕マンガンとの合計 100重量
In 1
部あたり 5重量部の黒鉛 (導電剤)を添加し、さらにォキシ水酸ィ匕ニッケル Cの 5重量 %に相当する量の酸ィ匕亜鉛を添カ卩した。また、ォキシ水酸ィ匕ニッケル C
1と二酸化マ ンガンとの合計 100重量部あたり、電解液 1重量部を添加した。その後、配合物をミ キサ一で均一に撹拌'混合して、一定粒度に整粒した。得られた粒状物を、短筒状 のペレットに加圧成型して、正極合剤ペレットとした。この正極合剤ペレットを用いたこ と以外、実施例 1と同様にして、単 3サイズのニッケルマンガン電池 C を作製した。
In
[0115] また、ォキシ水酸ィ匕ニッケル Cの代わりにォキシ水酸ィ匕-ッケ Λ :— Cを用い、上
1 2 6 記と同様にして、単 3サイズのニッケルマンガン電池 C一 C を作製した。この際、正 極ケースへの正極合剤の充填量がすべての電池で同じになるように留意した。
[0116] [表 4]
Figure imgf000027_0001
[0117] [4]アルカリ電池の評価
こうして作製した 48種類のニッケルマンガン電池 C一 C ならびに実施例 1で作製
In 6n
した電池 A( |8—ォキシ水酸化ニッケルを使用)を、それぞれ 20°Cで 50mAの定電流 で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量を測定した。
また、初度の電池を、それぞれ 20°Cで 1Wの定電力で連続放電させ、電池電圧が
0. 9Vに至るまでの放電容量についても測定した。
[0118] 得られた結果を表 5にまとめて示す。なお、 50mA放電および 1W放電の両方にお いて、ニッケルマンガン電池 B— Dの放電容量は、ニッケノレマンガン電池 Aの放電容 量を 100とした場合の相対値で示した。
[0119] [表 5]
二酸化マンガンの
電池 ォキシ水酸化ニッケル 50mA放髦容置 1 W放髦容量 含有量(重量お)
電池 A1 ォキシ水酸化ニッケル A 50 100 100 電池 c ォキシ水酸化ニッケル c, 10 ί02 102 電池 c12 ォキシ水酸化ニッケル c, 20 105 102 電池 c13 ォキシ水酸化ニッケル 30 110 103 電池 cM 才キシ水酸化ニッケル 40 1 1 1 03 電池 c15 ォキシ水酸化ニッケル c, 60 1 1 1 103 電池 c16 ォキシ水酸化ニッケル c, 80 112 102 電池 c17 ォキシ水酸化ニッケル c, 90 1 12 102 電池 c18 ォキシ水酸化ニッケル 95 1 12 101 電池 c2, ォキシ水酸化ニッケル c2 10 102 102 電池 c22 ォキシ水酸化ニッケル c2 20 107 105 電池 c23 ォキシ水酸化ニッケル c2 30 113 108 電池 c24 ォキシ水酸化ニッケル c2 40 112 108
¾池 c25 ォキシ水酸化ニッケル c2 60 112 107 電池 c2e ォキシ水酸化ニッケル c2 80 113 106 電池 c27 ォキシ水酸化ニッケル c2 90 113 103
¾池 c2e ォキシ水酸化ニッケル c2 95 114 102 電池 c31 ォキシ水酸化ニッケル c3 to 105 102 電池 c32 ォキシ水酸化ニッケル c3 20 111 111 電池 c33 ォキシ水酸化ニッケル c3 30 114 114 電池 c34 ォキシ水酸化ニッケル c3 40 114 1 15 電池 c35 ォキシ水酸化ニッケル c3 60 1 15 114 電池 c36 ォキシ水酸化ニッケル c3 80 114 113 電池 c37 才キシ水酸化ニッケル c3 90 1 14 1 1 1 鼋池 c3e ォキシ水酸化ニッケル c3 95 115 103 電池 c41 ォキシ水酸化ニッケル c4 10 105 104 電池 c42 ォキシ水酸化ニッケル c4 20 1 1 1 11 1 電池 c43 ォキシ水酸化ニッケル c4 30 114 116 電池 c44 ォキシ水酸化ニッケル c4 40 1 16 117 鼋池 c45 ォキシ水酸化ニッケル c4 60 115 116 電池 c46 ォキシ水酸化ニッケル c4 80 116 115 電池 c47 ォキシ水酸化ニッケル c4 90 116 1 1 1 電池 c48 ォキシ水酸化ニッケル c4 95 117 103 電池 CS1 ォキシ水酸化ニッケル c5 10 104 104 髦池 c52 ォキシ水酸化ニッケル c5 20 112 112 鼋池 c53 ォキシ水酸化ニッケル c5 30 1 15 116
¾池 c54 ォキシ水酸化ニッケル c5 40 120 119 電池 c55 ォキシ水酸化ニッケル c5 60 119 1 18 電池 c5e ォキシ水酸化ニッケル c5 80 120 115 電池 c57 ォキシ水酸化ニッケル c5 90 120 112 電池 c5a ォキシ水酸化ニッケル c5 95 1 19 103 電池 c61 ォキシ水酸化ニッケル c6 10 108 Ϊ05 電池 c62 ォキシ水酸化ニッケル c6 20 1 15 110 電池 c63 ォキシ水酸化ニッケル c6 30 124 1 15 電池 c64 ォキシ水酸化ニッケル c6 40 124 117 電池 c65 ォキシ水酸化ニッケル ce 60 123 1 16 電池 cS6 ォキシ水酸化ニッケル c6 80 124 1 14 電池 c67 ォキシ水酸化ニッケル c6 90 124 110 電池 css ォキシ水酸化ニッケル c6 95 120 104 [0120] 表 5より以下のことが言える。
まず、マンガンおよびコバルトを溶解させたォキシ水酸ィ匕ニッケルを用いたアルカリ 電池 C一 C は、マンガンの存在によってニッケルの平均価数が高められており、ま
11 68
た、コバルトの存在によって、電子伝導性が高められている。従って、電池 C
11一 C 68 は、いずれも j8—ォキシ水酸ィ匕ニッケルを用いた電池 A1より、高い特性を与えている
[0121] 特に、1 7 (1 +1 |8 )値が0. 5以上で、ニッケルの平均価数が 3. 3以上のォキシ 水酸化ニッケル(C
3一 C )を用い、正極合剤中の二酸化マンガンの含有量を 20— 90 6
重量%にした電池 C
32一 C
37、C
42一 C
47、C
52一 C および C では、電池
57 62一 C Aよりも 1
67
W (強負荷)放電が顕著に向上しており、表 5にお 、て 110以上の特性を与えて 、る
[0122] 以上のような結果が得られた理由として、以下が考えられる。
まず、二酸ィ匕マンガンの含有量が同じ場合、ォキシ水酸ィ匕ニッケルにおける γ型の 結晶構造の生成比率〔I γ Ζ (I Ύ +1 J8 )値〕やニッケルの平均価数が高くなるほど(つ まり C力も Cへいくほど)、ニッケルの多電子反応を放電に活用できるようになるため
1 6
、容量が向上する。
[0123] 一方、二酸ィ匕マンガンは、容量そのものは大きいが、電子伝導性に乏しぐ強負荷 で放電した際の効率が低いため、二酸ィ匕マンガンの含有量が 90重量%を超えると 1 W特性が低下する。
また、二酸ィ匕マンガンの含有量が 10重量%と極端に少ない場合、正極合剤ペレツ トの成型性の低下のため、活物質間を黒鉛でうまく接続することが困難になると推察 され、やはり 1W特性の低下が起こる。
[0124] 以上のょぅな理由から、1 7 (1 +1 |8 )値が0. 5以上で、ニッケルの平均価数が 3 . 3以上のォキシ水酸ィ匕ニッケル力もなる粒子を用い、正極合剤中の二酸化マンガン の含有量を 20— 90重量%とした電池は、特に優れた特性を与えると考えられる。
[0125] なお、ここでは詳細を記さな 、が、実施例 1で用いたォキシ水酸ィ匕ニッケル D1を用 V、た場合にも、総じて /3 ォキシ水酸ィ匕ニッケルを用いた電池 A1より高 、特性が得 られた。特に1 7 (1 +1 |8 )値が0. 5以上で、ニッケルの平均価数が 3. 3以上のォ キシ水酸ィ匕ニッケルカゝらなる粒子をコバルト酸ィ匕物で被覆し、正極合剤中の二酸ィ匕 マンガンの含有量を 20— 90重量%にした場合に、強負荷特性を中心としたアルカリ 電池の高性能化が顕著となることを、別の実験で確認した。
[0126] 《実施例 3》
ォキシ水酸化ニッケル力 なる粒子内に溶解させるマンガンおよびコバルトの量を 最適化するために、以下の実験と評価を行った。
[ 1 ]水酸ィ匕ニッケル力 なる粒子の製造
攪拌翼を備えた反応槽に純水と少量のヒドラジン (還元剤)を加え、窒素ガスによる パブリングを開始した。また、それぞれ所定濃度の硫酸ニッケル (II)水溶液、硫酸マ ンガン (Π)水溶液、硫酸コバルト (Π)水溶液、水酸化ナトリウム水溶液、ならびにアン モ-ァ水を用意した。これらを槽内 pHが一定となるように、前記反応槽内にポンプで 定量供給し、十分に攪拌を続けることで、マンガンとコバルトとを溶解した球状の |8— 水酸ィ匕ニッケル力もなる固溶体を析出 ·成長させた。
[0127] 続いて、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 根を除去した後、水洗'真空乾燥を行い、さらに、これに 80°Cで 72時間の空気酸ィ匕 を施して、水酸化ニッケル aa〔組成: Ni Mn Co (OH)〕とした。ここで、空気
0.99 0.005 0.005 2
酸ィ匕は、 Mnだけを 4価近傍にまで酸ィ匕するための処理である。
また、反応槽に定量供給する硫酸マンガン (Π)水溶液、硫酸コバルト(II)水溶液の 比率を変化させたこと以外、上記と同様にして、表 6に示すような組成を有する水酸 化ニッケル ab— ayを合成した。
[0128] [2]水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
水酸化ニッケル aaの 200gを 5molZLの水酸化ナトリウム水溶液 1L中に投入し、 酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量加えて攪 拌し、水酸ィ匕ニッケルをォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水 洗後、 60°Cの真空乾燥(24時間)を行って、ォキシ水酸ィ匕ニッケル AAとした。
また、水酸化ニッケル aaの代わりに水酸化ニッケル ab— ayを用いて、上記と同様の 工程を行 ヽ、それぞれォキシ水酸化ニッケル AB— AYを製造した。
[0129] [3]ォキシ水酸化ニッケルの物性解析 得られた 25種類のォキシ水酸ィ匕ニッケル C一 Cの粉末 X線回折による Ι γ / (Ι Ύ
1 6
+1 (8 )値と、化学分析によるニッケルの平均価数を表 6にまとめる。
表 6より、マンガンの溶解量が O.5mol% (Mn )と極端に少ないォキシ水酸化-
0.005
ッケル AA— AEでは、 γ型の結晶構造の生成比率とニッケルの平均価数力 他に比 ベて低いことがわかる。
[表 6]
Figure imgf000031_0001
[4]アルカリ電池の作製
ォキシ水酸ィ匕ニッケル AA— AYを用いて、それぞれ一次電池としてのニッケルマン ガン電池 AA— AYを作製した。
ニッケルマンガン電池 AAの場合、ォキシ水酸化ニッケル AAゝ二酸化マンガン、お よび黒鉛を、重量比 50 : 50 : 5の割合で配合し、さらにこの配合物に、ォキシ水酸ィ匕 ニッケル AAの 5重量0 /0に相当する量の酸ィ匕亜鉛を添加した。また、ォキシ水酸化- ッケル AAと二酸化マンガンとの合計 100重量部あたり、電解液 1重量部を添カ卩した。 その後、配合物をミキサーで均一に撹拌'混合して、一定粒度に整粒した。得られた 粒状物を、短筒状のペレットに加圧成型して、正極合剤ペレットとした。この正極合剤 ペレットを用いたこと以外、実施例 1と同様にして、単 3サイズのアルカリ電池 AAを作 製した。
[0132] また、ォキシ水酸化ニッケル AAの代わりにォキシ水酸化ニッケル AB— AYを用い 、上記と同様にして、単 3サイズのニッケルマンガン電池 AB— AYを作製した。この際 、正極ケースへの正極合剤の充填量がすべての電池で同じになるように留意した。
[0133] [5]アルカリ電池の評価
こうして作製した 25種類のニッケルマンガン電池 AB— AYならびに実施例 1で作製 した電池 A( j8—ォキシ水酸化ニッケルを使用)を、それぞれ 20°Cで 50mAの定電流 で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量を測定した。
また、初度の電池を、それぞれ 20°Cで 1Wの定電力で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量についても測定した。
得られた結果を表 7にまとめて示す。なお、 50mA放電および 1W放電の両方にお いて、ニッケルマンガン電池 AA— AYの放電容量は、ニッケルマンガン電池 Aの放 電容量を 100とした場合の相対値で示した。
[0134] [表 7]
Figure imgf000033_0001
[0135] 表 7より以下のことが言える。
まず、マンガンおよびコバルトを溶解させたォキシ水酸ィ匕ニッケルを用いたアルカリ 電池 AA— AYは、マンガンの存在によってニッケルの平均価数が高められており、 また、コバルトの存在によって、電子伝導性が高められている。従って、電池 AA— A Yは、いずれも |8—ォキシ水酸ィ匕ニッケルを用いた電池 A1より、高い特性を与えてい る。
[0136] 特に、ォキシ水酸化ニッケルへのマンガンおよびコバルトの溶解量を、ォキシ水酸 化ニッケル力 なる粒子内に含まれる金属元素の総量の 1一 7mol%とした場合、す なわちォキシ水酸化ニッケル AG AI、 AL— ANおよび AQ— ASを用いた電池で は、 50mA (低負荷)放電および 1W (強負荷)放電の両方において、高容量化が顕 著となり、表 7にお 、て 110以上の特性を与えて V、る。 [0137] 表 6の結果から明らかなように、ォキシ水酸化ニッケルへのマンガンの溶解量が lm ol%未満の電池 AA— AEでは、酸化度の高!ヽォキシ水酸化ニッケルが得られな!/ヽ ため、容量の増加が比較的小さい。また、ォキシ水酸化ニッケルへのマンガンの溶解 量が 7mol%を超える電池 AU— AYでは、ォキシ水酸化ニッケル中のニッケル含有 量が相対的に少なくなることに加え、強負荷放電ではマンガンを含む固溶体に特徴 的な電子伝導性の低下が影響し始め、容量が低下する傾向がある。
[0138] また、ォキシ水酸化ニッケルへのコバルトの溶解量が lmol%未満の電池 AA、 AF 、 A :、 APおよび AUでは、コバルトの添カ卩による電子伝導性とプロトン拡散性を改 善する効果が比較的小さくなつている。一方、ォキシ水酸ィ匕ニッケルへのコバルトの 溶解量が 7mol%を超える電池 AE、 AJ、 AO、 ATおよび AYでは、ォキシ水酸化- ッケル中のニッケル含有量が相対的に少なくなるため、容量の増加が比較的小さい
[0139] このように、容量向上の観点から、本発明においては、ォキシ水酸ィ匕ニッケルない しはその原料となる水酸ィ匕ニッケル力 なる粒子内に溶解させるマンガンおよびコバ ルトの量を、いずれも粒子内に含まれる金属元素の総量の 1一 7mol%とすることが 特に好ましい。
[0140] 《実施例 4》
ォキシ水酸ィ匕ニッケル力 なる粒子の表面に付着するコバルト酸ィ匕物の量を最適 化するために、以下の実験と評価を行った。
[ 1 ]ォキシ水酸ィ匕ニッケル力もなる粒子の製造
実施例 1で用いた水酸ィ匕ニッケル bl〔組成: Ni Mn (OH)〕を、反応槽内の硫
0.95 0.05 2
酸コバルト水溶液中に投入し、水酸化ナトリウム水溶液を徐々に加え、 35°Cで槽内 の pHが 10を維持するように制御しながら攪拌を続けて、固溶体粒子の表面に水酸 ィ匕コバルトを析出させた。
[0141] この際、硫酸コバルト水溶液の濃度を適宜調整し、水酸ィ匕ニッケル bの表面に付着 する水酸化コバルトの量を、水酸化ニッケル blの 100重量部あたり、 0. 05— 9重量 部(水酸ィ匕ニッケル bに対して 0. 05— 9重量%)の範囲で変化させた。こうして、表 8 に示すような 7種類の Co (OH)で被覆された水酸ィ匕ニッケル el— klを製造した。水 酸ィ匕ニッケル el— klは、水洗した後、真空乾燥を行った。
[0142] [2]水酸化ニッケルのォキシ水酸化ニッケルへの酸化
水酸化エッケル e 1の 200gを 5molZLの水酸化ナトリウム水溶液 1L中に投入し、 酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量加えて攪 拌し、 Co (OH)を酸ィ匕するとともに、水酸ィ匕ニッケルをォキシ水酸ィ匕ニッケルに変換
2
した。得られた粒子は十分に水洗後、 60°Cの真空乾燥(24時間)を行って、ォキシ 水酸化ニッケル E 1とした。
また、水酸化-ッケノレ elの代わりに水酸化-ッケノレ fl一 klを用いて、上記と同様の 工程を行レ、、それぞれォキシ水酸ィ匕ニッケル F1— K1を製造した。
[0143] [表 8]
Figure imgf000035_0001
[0144] [3]アルカリ電池の作製
ォキシ水酸化ニッケル E1— K1を用いて、それぞれ一次電池としてのニッケルマン ガン電池 E 1一 K1を作製した。
ニッケルマンガン電池 E1の場合、ォキシ水酸化ニッケル El、二酸化マンガン、お よび黒鉛を、重量比 50 : 50 : 5の割合で配合し、さらにこの配合物に、ォキシ水酸ィ匕 ニッケル E1の 5重量%に相当する量の酸ィ匕亜鉛を添カ卩した。また、ォキシ水酸化二 ッケル E1と二酸ィ匕マンガンとの合計 100重量部あたり、アルカリ電解液 1重量部を添 カロした。その後、配合物をミキサーで均一に撹拌'混合して、一定粒度に整粒した。 得られた粒状物を、短筒状のペレットに成形して、正極合剤ペレットとした。この正極 合剤ペレットを用いたこと以外、実施例 1と同様にして、単 3サイズのアルカリ電池 E1 を作製した。
[0145] また、ォキシ水酸化ニッケル E1の代わりにォキシ水酸化ニッケル F1— K1を用い、 上記と同様にして、単 3サイズのニッケルマンガン電池 F1— K1を作製した。この際、 正極ケースへの正極合剤の充填量がすべての電池で同じになるように留意した。
[0146] [4]アルカリ電池の評価
こうして作製した 7種類のニッケルマンガン電池 E1— K1ならびに実施例 1で作製し た電池 A1 ( β ォキシ水酸化ニッケルを使用)を、それぞれ 20°Cで 50mAの定電流 で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量を測定した。
また、初度の電池を、それぞれ 20°Cで 1Wの定電力で連続放電させ、電池電圧が 0. 9Vに至るまでの放電容量についても測定した。
さらに、ここでは 1Wで放電が終わった各電池を 60°Cで 7日間保存した後、電池内 部でのガス発生量を測定した。
[0147] 得られた結果を表 9にまとめて示す。なお、 50mA放電および 1W放電の両方にお けるニッケルマンガン電池 E 1— K 1の放電容量ならびに放電後の電池 E 1— K 1の内 部で発生したガス発生量は、ニッケルマンガン電池 A1の放電容量およびガス発生 量を 100とした場合の相対値で示した。
[0148] [表 9]
Figure imgf000036_0001
[0149] 表 9より以下のことが言える。
コバルト酸ィ匕物を表面に付着させたォキシ水酸ィ匕ニッケルカゝらなる粒子を用いたァ ルカリ電池 E1— K1においては、ォキシ水酸ィ匕ニッケル力もなる粒子内に溶解させた マンガンの存在によってニッケルの平均価数が高められており、また、コバルト酸ィ匕 物によって活物質間の電気的な接続が改善されている。従って、アルカリ電池 E1— K1は、いずれも j8—ォキシ水酸ィ匕ニッケル力もなる粒子を用いた電池 A1より高い特 性を与えている。
[0150] 特に、ォキシ水酸化ニッケルからなる粒子に対するコバルト酸化物の重量%を 0.1 一 7重量%にした電池 F1— J1では、 50mA (低負荷)放電および 1W (強負荷)放電 の両方において、高い放電容量が得られており、表 9では 110以上の特性が得られ ている。また、保存時のガス発生量も、電池 Aと同程度に抑制されている。
コバルト酸ィ匕物の重量%が 0. 1重量%未満のォキシ水酸ィ匕ニッケル E1を用いた 電池 E1では、コバルト酸ィ匕物量が少なすぎて、強負荷放電特性に対する大幅な改 善効果を得るには至って 、な 、。
[0151] また、コバルト酸化物の重量%が 7重量%を超えるォキシ水酸化ニッケル K1を用い た電池 Kは、比較的よい放電特性を維持できる力 放電後の電池を 60°Cで 7日間保 存した際のガス発生量が増加している。これは、電池 K1では、正極中のコバルト酸 化物の量が過剰であるため、放電後の電池を放置 (保存)した際に正極中のコバルト 酸化物が 2価に還元されて、電解液中に溶出しているためと考えられる。そして、コバ ルトイオン力 負極の亜鉛粒子上で金属コバルトとして析出し、負極における水素発 生反応が加速されて!ヽると推察される。
[0152] 以上より、ォキシ水酸ィ匕ニッケル力 なる粒子の表面をコバルト酸ィ匕物で被覆する 場合には、放電特性と保存特性 (信頼性)のバランスを好適に確保する観点から、コ バルト酸化物の量をォキシ水酸化ニッケルからなる粒子の 0. 1— 7重量%とするが好 ましい。
[0153] ここで、本実施例においては、ォキシ水酸ィ匕ニッケル力もなる粒子の原料として、 5 mol%の Mnを含む水酸化ニッケルの固溶体〔Ni Mn (OH)〕を用いた。しかし
0.95 0.05 2
ながら、実施例 3の結果等も踏まえると、固溶体に含まれる Mnの溶解量が 1一 7mol %の範囲であれば、同様の電池特性が得られると推察される。
[0154] 《実施例 5》
[1]水酸化ニッケルの製造
所定濃度の硫酸ニッケル (II)水溶液、水酸ィ匕ナトリウム水溶液およびアンモニア水 を用意し、これらを槽内 pHが一定となるように、攪拌翼を備えた反応槽内にポンプで 定量供給し、十分に攪拌を続けることで、球状の )8—水酸ィ匕ニッケルを析出させ、成 長させた。
続いて、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 根を除去した後、水洗および乾燥させて、粉末状の水酸化ニッケル粉末とした。得ら れた水酸ィ匕ニッケル粉末のレーザー回折式粒度分布計による体積基準の平均粒子 径は 10 m、 BET比表面積は 9. OmVg,タップ密度は 2.20g/cm3であった。
[0155] [2]水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
次に、水酸化ニッケル粉末に対する酸化処理として、酸化剤による化学酸化処理と 、電気化学反応を用いた過剰酸化処理 (過充電処理)の 2つを検討した。
( 1 )酸化剤による化学酸化処理
〈1〉ォキシ水酸化ニッケル a2
水酸ィ匕ニッケル粉末 200gを 0.5molZLの水酸ィ匕ナトリウム水溶液 1L中に投入し、 酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量加えて攪 拌し、ォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後、 60°Cの真 空乾燥(24時間)を行 、、ォキシ水酸ィ匕ニッケル a2とした。
[0156] 〈2〉ォキシ水酸化ニッケル b2
0.5molZLの水酸ィ匕ナトリウム水溶液の代わりに、 7molZLと 、う高濃度の水酸化 ナトリウム水溶液を用いたこと以外は、上記〈1〉と同様の化学酸化処理を行い、ォキ シ水酸化ニッケル b2とした。
[0157] (2)電気化学反応を用いた過剰酸化処理
〈1〉ォキシ水酸化ニッケル c2
ォキシ水酸化ニッケル a2に適量の純水をカ卩えてペーストとし、これを空隙率 95%の 発泡ニッケル基板に所定量だけ充填した。続いて、ペーストが充填されたニッケル基 板を 80°Cの乾燥機内で乾燥させた後、ロールプレスを用いて圧延し、ニッケル基板 に集電のためのニッケルリードをとりつけてニッケル正極とした。このニッケル正極と 十分に容量の大き 、酸ィヒカドミウム負極と、親水化処理を施したポリプロピレン不織 布セパレータと、 7molZLの水酸ィ匕ナトリウム水溶液とを用いて、開放型のセルを作 製した。
[0158] 開放型のセルにおいて、正極の過充電 (過剰酸化)処理を行った。この際、正極に 充填したォキシ水酸ィ匕ニッケル a2が 1電子反応をする場合の電気容量をセル容量( lit)と捉え、充電レート 0. litで 3時間の過充電を行った。過充電後に、ニッケル正 極を取り出して超音波洗浄でォキシ水酸ィ匕ニッケルを脱落させ、これを水洗した。そ の後、 60°Cの真空乾燥(24時間)を行って、過充電処理がなされたォキシ水酸化二 ッケル c 2を得た。
[0159] 〈2〉ォキシ水酸化ニッケル d2、e2、f2
充電レート 0. litで 6時間、 9時間および 12時間の充電を行ったこと以外は、上記く 1〉と同様の過充電処理を行い、それぞれォキシ水酸化ニッケル d2、 e2および f2を 得た。
[0160] [3]ォキシ水酸ィ匕ニッケルの物性解析
ォキシ水酸ィ匕ニッケル a2— f 2について、まず粉末 X線回折を行った。その結果、何 れの回折パターンでもォキシ水酸ィ匕ニッケルの存在が確認できた。ォキシ水酸化- ッケル f 2は、ほぼ γ—ォキシ水酸化ニッケルの単相であり、そのピークパターン ίお C PDS無機物質ファイルのファイル番号 : 6-75に一致した。一方、ォキシ水酸ィ匕-ッケ ル b2— e2は、いずれも γ型結晶と 型結晶との共晶であった。代表例として、図 2に ォキシ水酸化ニッケル e2および f 2の回折パターンを示す。
ォキシ水酸化ニッケル a2— f 2につ!/、て得られた I γ Z (I γ +1 j8 )値、ニッケル含有 量、ニッケルの平均価数、タップ密度、水分量、平均粒子径、 BET比表面積を表 10 に示す。
[0161] [表 10]
Figure imgf000039_0001
化学酸ィ匕で得たォキシ水酸ィ匕ニッケル a2、 b2は、 Ι γ / (\ γ +\ β )値が小さぐ -ッ ケルの平均価数もほぼ 3価近傍である力 これに過充電処理を施したォキシ水酸ィ匕 ニッケル c2— f 2では、充電電気量に応じて効果的に I γ / (\ Ύ +\ β )値とニッケルの 平均価数に増大が認められる。また、 γ NiOOHの生成に伴って水酸ィ匕ニッケル粒 子の膨張と粒子割れが進行するため、ニッケル含有量とタップ密度は減少し、水分 量と BET比表面積は増加する傾向にある。
[0163] [4]アルカリ電池の作製
ォキシ水酸ィ匕ニッケル a2— f2を用い、実施例 1と同様にして、それぞれ図 1に示す ニッケルマンガン電池 A2— F2を作製した。なお、ォキシ水酸化ニッケル c2— f2を用 いた電池では、正極合剤の電池への充填性に若干の低下が見られた力 基本的に はォキシ水酸ィ匕ニッケル a2、 b2を用いた電池と同様の電池作製が可能であった。充 填性の低下は Ί NiOOHの生成に伴う粉末体積の膨張に起因する。
[0164] [5]アルカリ電池の評価
電池 A2— F2を、それぞれ 20°Cで 50mAの定電流で連続放電させ、電池電圧が 終止電圧 0. 9Vに至るまでの放電容量を測定した。得られた結果を表 11にまとめて 示す。なお、表 11において、放電容量の値は、電池 A2の放電容量を 100とした場 合の相対値で示した。
[0165] [表 11]
Figure imgf000040_0001
[0166] 過充電処理で γ NiOOHの含有比率を高めたォキシ水酸ィ匕ニッケルを用いた電 池 C2— F2は、化学酸ィ匕で得たォキシ水酸ィ匕ニッケルを用いた電池 A2、 B2よりも高 い容量を与えている。特に、粉末 線回折にぉける1 / (1 +1 |8 )値が0. 5以上、二 ッケルの平均価数が 3. 3以上にまで高められたォキシ水酸ィ匕ニッケル d2— f2を用 いた電池では、より顕著な容量向上効果が得られている。
[0167] ォキシ水酸ィ匕ニッケル b2、 c2のように、比較的ニッケル価数の低 ヽ段階で生成した
0/— NiOOHは、放電容量への寄与が少ないと考えられる。一方、ォキシ水酸ィ匕-ッ ケル d2— f2のよう〖こ、ニッケル価数が 3. 3程度以上の段階で生成する γ— NiOOH は、その価数に見合うだけの大きな放電容量を与えると考えられる。ォキシ水酸化- ッケル d2— f 2の比表面積は比較的大きぐ電気化学反応の有効面積が大きい点も、 容量向上の一因と考えられる。ただし、化学酸化で得た j8— NiOOHを電気化学的 に過剰酸化 (過充電処理)して γ型結晶を主体としたォキシ水酸化ニッケルの作製を 行う場合、電池の生産性は比較的低くなる。
[0168] 《実施例 6》
Ύ型結晶の生成を容易とするため、原料水酸ィ匕ニッケルに添加元素として Μηを溶 解させた水酸化ニッケルを種々作製し、化学酸化だけで γ型結晶を主体としたォキ シ水酸ィ匕ニッケルを作製することを試みた。なお、以下の合成 1一合成 5においては 、原料水酸化ニッケルの組成が、すべて Ni Mn (OH)となるように調整した。
0.9 0.1 2
[0169] [1]合成 1
(1)水酸化ニッケルの製造
攪拌翼を備えた反応槽に純水と少量のヒドラジン (還元剤)を加え、窒素ガスによる パブリング開始した。所定濃度の硫酸ニッケル (Π)水溶液、硫酸マンガン (Π)水溶液 、水酸ィ匕ナトリウム水溶液およびアンモニア水を、反応槽内 pHが一定となるようにポ ンプで定量供給し、十分に攪拌を続けることで、 Mnを溶解した固溶体の —水酸ィ匕 ニッケルを析出させ、成長させた。
[0170] 続いて、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液中で加熱して硫酸 根を除去した後、水洗と真空乾燥を行った。さらに、乾燥後の粒子に 80°Cで 72時間 の空気酸ィ匕を施して、マンガンだけを酸ィ匕させ、原料水酸ィ匕ニッケル 1とした。
原料水酸ィ匕ニッケル 1は、粉末 X線回折においては j8—水酸ィ匕ニッケルの単相であ り、マンガンの平均価数は 3.95価、平均粒子径は 14 /ζ πι、タップ密度は 2.12gZcm 3、 BET比表面積は 9.5m2/gであった。
[0171] (2)水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
続いて、原料水酸化ニッケル 1の 200gを 0.5molZLの水酸化ナトリウム水溶液 1L 中に投入し、酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十 分量加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗 後、 60°Cの真空乾燥(24時間)を行い、ォキシ水酸ィ匕ニッケル g2とした。
[0172] また、水酸化ナトリウム水溶液の濃度を 0.5molZLから、 lmol/L, 2mol/L, 3m ol/ 5molZLまたは 7molZLに変更したこと以外は、上記と同様にして、ォキシ 水酸ィ匕ニッケル h2— 12を作製した。
[0173] [2]合成 2
( 1)水酸化ニッケルの製造
80°Cで 72時間の空気酸ィ匕を施さな力つた点以外は、上記合成 1と同様にして、原 料水酸化ニッケル 2を得た。原料水酸ィ匕ニッケル 2は、粉末 X線回折においては — 水酸化ニッケルの単相であり、マンガンの平均価数は 2.04価と見積もられた。
[0174] (2)水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
次に、原料水酸化ニッケル 2の 200gを 7molZLの水酸化ナトリウム水溶液 1L中に 投入し、酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量 加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後、 6 0°Cの真空乾燥(24時間)を行ってォキシ水酸ィ匕ニッケル m2とした。
[0175] [3]合成 3
( 1)水酸化ニッケルの製造
80°Cで 72時間の空気酸ィ匕を施す代わりに、 20°Cで 1ヶ月間空気中で放置したこと 以外、上記の合成 1と同様にして、原料水酸ィ匕ニッケル 3を得た。原料水酸化-ッケ ル 3は、粉末 X線回折においては j8型の水酸ィ匕ニッケル以外に、ォキシ水酸化マン ガン、二酸ィ匕マンガンのピークも一部観測され、長期放置によって不安定なマンガン 種が水酸ィ匕ニッケルの結晶外に遊離したものと推察された。原料水酸化ニッケル 3中 のマンガンの平均価数は 3.47価であった。
[0176] (2)水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
次に、原料水酸化ニッケル 3の 200gを 7molZLの水酸化ナトリウム水溶液 1L中に 投入し、酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量 加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。この際、遊離したマンガン種の酸 ィ匕もしくは溶解に由来する反応液の赤変が顕著に認められた。得られた粒子は十分 に水洗後、 60°Cの真空乾燥(24時間)を行ってォキシ水酸ィ匕ニッケル n2とした。 [0177] [4]合成 4
(1)水酸化ニッケルの製造
攪拌翼を備えた反応槽内への窒素ガスによるパブリングとヒドラジン添加を行わず に、所定濃度の硫酸ニッケル (Π)水溶液、硫酸マンガン (Π)水溶液、水酸化ナトリウ ム水溶液およびアンモニア水を反応槽内 pHが一定となるようにポンプで定量供給し たこと以外、上記の合成 1と同様にして、原料水酸ィ匕ニッケル 4を得た。原料水酸ィ匕 ニッケル 4は、粉末 X線回折においては j8型の水酸ィ匕ニッケル単相であり、マンガン の平均価数は 2.45価、平均粒子径は 14 m、タップ密度は 2.04gZcm3、 BET比 表面積は 10.9m2Zgであった。
[0178] (2)水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
次に、原料水酸化ニッケル 4の 200gを 7molZLの水酸化ナトリウム水溶液 1L中に 投入し、酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量 加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。この際にも、マンガン種の酸化もし くは溶解に由来する反応液の赤変が顕著に認められた。このことから、原料水酸化- ッケル 4においては、マンガンイオンの多数が、水酸ィ匕ニッケルの結晶中に不安定な 状態で侵入していると推察された。得られた粒子は十分に水洗後、 60°Cの真空乾燥 ( 24時間)を行つてォキシ水酸ィ匕ニッケル o 2とした。
[0179] [5]合成 5
(1)水酸化ニッケルの製造
硫酸マンガン (Π)水溶液に過酸ィ匕水素水を添加した後に、水酸化ナトリウム水溶液 を加えて pH調整し、マンガンイオンが 3価の状態で存在する溶液を調製した。この溶 液と、硫酸ニッケル (Π)水溶液、水酸ィ匕ナトリウム水溶液およびアンモニア水とを、攪 拌翼を供えた反応槽に槽内 pHが一定となるようにポンプで定量供給し、十分に攪拌 を続けることで、 3価の Mnを 10mol%含有する α型の結晶構造を有する水酸化-ッ ケルを析出させ、成長させた。得られた粒子は水洗および真空乾燥を行って原料水 酸ィ匕ニッケル 5とした。原料水酸ィ匕ニッケル 5は、粉末 X線回折においてはひ一水酸 化ニッケル単相であり、マンガンの平均価数は 3.02価、平均粒径は 13 μ m、タップ 密度は 1.28g/cm3、 BET比表面積は 24.5m2/gであった。 [0180] (2)水酸化ニッケルのォキシ水酸化ニッケルへの酸ィ匕
次に、原料水酸化ニッケル 5の 200gを 7molZLの水酸化ナトリウム水溶液 1L中に 投入し、酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 5重量%)を十分量 加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。この際も、マンガン種の酸化もしく は溶解に由来する反応液の赤変が認められた。このことから、原料水酸ィ匕ニッケル 5 においては、マンガンイオンの多数が、水酸ィヒニッケルの結晶中に不安定な状態で 侵入していると推察された。得られた粒子は十分に水洗後、 60°Cの真空乾燥(24時 間)を行ってォキシ水酸ィ匕ニッケル p 2とした。
[0181] [6]ォキシ水酸ィヒニッケルの物性解析
ォキシ水酸化ニッケル g2— p2について求めた I γ Ζ (Ι Ύ +1 J8 )値、ニッケル含有量 、ニッケルの平均価数、タップ密度、水分量、平均粒子径、 BET比表面積を表 10〖こ 示す。
[0182] [表 12]
Figure imgf000044_0001
[0183] 原料水酸化ニッケル 1の化学酸化に際して共存させる水酸化ナトリウム水溶液の濃 度を高める(g2— 12)に伴って、 Ι Ύ / (\ Ύ +\ β )値が大きくなり、ニッケルの酸ィ匕が進 行することがわかる。これは、水酸ィ匕ナトリウム水溶液の濃度を高めることによって、ォ キシ水酸化ニッケルの NiO層間にアルカリ金属イオンが効果的に挿入し、 4価の-ッ
2
ケルイオンの電気的中性を保ち、ニッケルの高次化反応が促進したためと理解でき る。
また、原料水酸化ニッケル 2— 5の化学酸化処理で得られたォキシ水酸化ニッケル m2— p2は、原料水酸化ニッケル 1から得られたォキシ水酸化ニッケル 12と、見かけ 上は同じような粉末 X線回折パターンを与え、ニッケルの平均価数も同様となることが 確認できる。
[0184] [7]アルカリ電池の作製
ォキシ水酸化ニッケル a2— f 2の代わりに、ォキシ水酸化ニッケル g2— p2を用いた こと以外、それぞれ実施例 5と同様にして、図 1に示すようなニッケルマンガン電池を 作製した。ォキシ水酸ィ匕ニッケル g2— p2を用いた電池を、それぞれ電池 G2— P2と した。
[0185] [8]アルカリ電池の評価
電池 A2— F2を、それぞれ 20°Cで 50mAの定電流で連続放電させ、電池電圧が 終止電圧 0. 9Vに至るまでの放電容量を測定した。得られた結果を表 13にまとめて 示す。なお、表 13において、放電容量の値は、実施例 5の電池 A2の放電容量を 10 0とした場合の相対値で示した。
[0186] [表 13]
Figure imgf000045_0001
[0187] 原料水酸ィヒニッケル 1は、反応晶析法で得られた Mnを溶解した固溶体の β一水酸 化ニッケルに空気酸化を施し、 Mnだけを酸ィ匕させたものである。また、ォキシ水酸化 ニッケル j2— 12は、 3molZl以上の水酸ィ匕ナトリウム水溶液中で、原料水酸化-ッケ ル 1を次亜塩素酸ナトリウム水溶液でィ匕学酸ィ匕したものである。ォキシ水酸化ニッケ ル j2— 12を用いた電¾[2— L2は、他のプロセスで得たォキシ水酸化ニッケルを用い た電池よりも、際立って高い容量を与えている。 [0188] 電 2— L2の容量力 電池 G2— 12の容量よりも顕著に高くなる理由は、実施例 5 の場合と同様に説明することができる。すなわち、ォキシ水酸ィ匕ニッケル g2— i2のよ うに、比較的ニッケル価数の低い段階で生成した γ— NiOOHは、あまり放電容量に 寄与できないと考えられる。一方、ォキシ水酸化ニッケル j 2— 12のように、ニッケル価 数が 3. 3程度以上の段階で生成する γ— NiOOHは活性が高ぐその価数に見合う だけの大きな放電容量を与えると推察される。
[0189] 電池 M2および N2も、電池 G2— 12に比べて高!ヽ放電容量を示して!/ヽる。電池 M2 および N2のォキシ水酸化ニッケルは、原料水酸化ニッケル 1から得られたォキシ水 酸化ニッケル 1とほぼ同等の物性を有している。よって、電池 M2および N2は、電 2— K2に次いで良好な放電特性を示すものと考えられる。
[0190] 電池 M2に用いたォキシ水酸化ニッケル m2の原料である水酸化ニッケル 2は、 Mn を酸ィ匕する処理を経ていない。詳細なメカニズムまでは判明していないが、 Mnが高 酸化状態に酸化されない状態で、水酸化ニッケルを酸化剤で処理すると、マンガン 種が結晶内で移動するなどして、粒子内で局所的なマンガン酸ィ匕物の遊離等が起こ るものと考えられる。ただし、このようなマンガン酸ィ匕物の遊離は、通常の粉末 X線回 折では判明しないレベルであると考えられる。よって、ォキシ水酸ィ匕ニッケル m2にお いては、電池の高容量ィ匕に寄与する高い放電効率を有する γ—ォキシ水酸ィ匕ニッケ ルの生成が少ないものと推測される。同様に、電池 Ν2も遊離したマンガンによる影響 を受けたものと推察される。
[0191] 電池 02、 Ρ2で用いたォキシ水酸化ニッケル ο2、 ρ2も、粉末 X線回折やニッケルの 平均価数はォキシ水酸ィ匕ニッケル 12 (な 、しは k2)と類似して!/、るが、容量は低めで ある。ォキシ水酸ィ匕ニッケル o2、 p2の作製に際しては、マンガン種の遊離現象やマ ンガン溶出等が確認されたため、ォキシ水酸ィ匕ニッケルの放電反応がマンガン種に よって阻害されているものと推定される。また、特にォキシ水酸ィ匕ニッケル o2、 p2は、 水分量が 3重量%を超え、 BET比表面積が 30m2/gを超えている。よって、正極合 剤中での電解液分布等は、電池 02および P2と、他の電池とでは、大きく異なると考 えられ、その点が容量に影響を与えていると考えられる。
[0192] 《実施例 7》 [ 1 ]ォキシ水酸化ニッケルの製造
硫酸ニッケル (II)水溶液と硫酸マンガン (Π)水溶液の割合を変化させ、原料水酸化 ニッケルにおけるマンガンの含有量を変化させたこと以外、実施例 6のォキシ水酸ィ匕 ニッケル L2と同様にして、ォキシ水酸ィ匕エッケル rl一 r6を調製した。
[0193] また、硫酸ニッケル (II)水溶液と硫酸マンガン (II)水溶液の割合を変化させ、原料 水酸ィ匕ニッケルにおけるマンガンの含有量を変化させるとともに、化学酸ィ匕において 次亜塩素酸ナトリウム水溶液の添加量を減量したこと以外、実施例 6のォキシ水酸ィ匕 ニッケル L2と同様にして、ォキシ水酸ィ匕ニッケル si s6を調製した。
[0194] [2]ォキシ水酸化ニッケルの物性解析
ォキシ水酸ィヒュッケル rl一 r6、 51—56にっぃて求めた1 / (1 +1 13 )値、 -ッケ ル含有量、ニッケルの平均価数を表 14に示す。
[0195] [表 14]
Figure imgf000047_0001
[0196] [3]アルカリ電池の作製
ォキシ水酸化ニッケル a2 f 2の代わりに、ォキシ水酸化ニッケル rl一 r6、 si— s6 を用いたこと以外、それぞれ実施例 5と同様にして、図 1に示すようなニッケルマンガ ン電池を作製した。ォキシ水酸化エッケル rl一 r6を用いた電池を、それぞれ電池 R1 一 R6とした。また、ォキシ水酸ィ匕ニッケル si— s6を用いた電池を、それぞれ電池 S1 一 S6とした。
[0197] [4]アルカリ電池の評価 電池 Rl— R6、 SI— S6を、それぞれ 20°Cで 50mAの定電流で連続放電させ、電 池電圧が終止電圧 0. 9Vに至るまでの放電容量を測定した。得られた結果を表 14 にまとめて示す。なお、表 13において、放電容量の値は、実施例 5の電池 A2の放電 容量を 100とした場合の相対値で示した。
[0198] 表 14より、ニッケル含有量力 5重量%以上のォキシ水酸化ニッケルを用いれば、 I
77(1 +1 |8 )値が約0. 5、ニッケルの平均価数が約 3. 3と、それほど大きくない場 合であっても、ォキシ水酸ィ匕ニッケル a2を用いた電池より高容量ィ匕できることがわか る。
[0199] なお、以上の実施例では、 Mnを溶解した固溶体の水酸化ニッケル中のマンガンを 酸ィ匕する際に 80°Cで 72時間の空気酸ィ匕を施した力 大気雰囲気下 50— 150°Cで 酸化時間を適宜調整してマンガン価数を 3.5価以上、より好ましくは 3.8価以上にま で高める場合も同様の結果を得ることができる。
[0200] また、以上の実施例では、次亜塩素酸ナトリウムでのニッケルの化学酸ィ匕に際して 、水酸ィ匕ナトリウム水溶液中で処理を実施した力 水酸ィ匕カリウム水溶液、水酸化リ チウム水溶液、これらの混合アルカリ水溶液を用いても同様の結果を得ることができ る。
[0201] また、以上の実施例では、正極合剤に、ォキシ水酸ィ匕ニッケルに対して 5重量%の 酸ィ匕亜鉛を添加した力 本発明はこれを必須とするものではな 、。
また、以上の実施例では、円筒形の正極ケース内に短筒状の正極合剤ペレット、セ パレータおよびゲル状の亜鉛負極を配置した、 、わゆるインサイドアウト型のニッケル マンガン電池を作製した。しカゝしながら、本発明は、ボタン型、角型を含む他の構造 のアルカリ電池にも適応することが可能である。
産業上の利用可能性
[0202] 本発明は、様々なタイプのアルカリ電池に適用可能である力 特にニッケルマンガ ン電池に有用である。また、本発明は、強負荷放電特性を損なうことなぐアルカリ電 池の大幅な高容量ィ匕を実現できるから、特に負荷電力の大きな機器の電源となるァ ルカリ電池に有用である。

Claims

請求の範囲
[1] アルカリ電池であって、正極合剤、負極、前記正極合剤と前記負極との間に介在す るセパレータ、およびアルカリ電解液力もなり、
前記正極合剤は、ォキシ水酸ィ匕ニッケル力 なる第 1活物質および二酸ィ匕マンガン 力 なる第 2活物質を含み、
前記ォキシ水酸ィ匕ニッケルは、 y型の結晶構造を有し、
前記ォキシ水酸ィ匕ニッケルに含まれるニッケルの含有量は、 45重量%以上であり、 前記ォキシ水酸ィ匕ニッケルのレーザー回折式粒度分布計を用いて測定される体積 基準の平均粒子径が 3— 20 μ mであるアルカリ電池。
[2] 前記ォキシ水酸ィ匕ニッケルが、さらに β型の結晶構造を含む請求項 1記載のアル カリ電池。
[3] 前記ォキシ水酸化ニッケルのタップ密度力 タッピングが回数 500回の場合に 1.5g /cm3以上であり、前記ォキシ水酸ィ匕ニッケルに含まれる水分量が 3重量%以下で あり、 BET法を用いて測定される前記ォキシ水酸ィ匕ニッケルの比表面積力 10— 30 m2/gである請求項 1記載のアルカリ電池。
[4] 前記ォキシ水酸ィ匕ニッケルの粉末 X線回折パターンが、 γ型結晶の(003)面に帰 属される面間隔 6. 8-7. 1オングストローム(Α)の回折ピーク Ρ γおよび |8型結晶 の(001)面に帰属される面間隔 4. 5— 5オングストローム(Α)の回折ピーク Ρ βを有 し、前記回折ピーク P yの積分強度 I yおよび前記回折ピーク Ρ βの積分強度 I βが 、 0. 5≤Ι Ύ / (Ι Ύ +Ι β )を満たし、前記ォキシ水酸ィ匕ニッケルに含まれるニッケル の平均価数は、 3.3以上である請求項 1記載のアルカリ電池。
[5] 前記ォキシ水酸ィ匕ニッケルの粉末 X線回折パターンが、 γ型結晶の(003)面に帰 属される面間隔 6. 8-7. 1オングストローム(Α)の回折ピーク Ρ γおよび |8型結晶 の(001)面に帰属される面間隔 4. 5— 5オングストローム(Α)の回折ピーク Ρ βを有 し、前記回折ピーク P yの積分強度 I yおよび前記回折ピーク Ρ βの積分強度 I βが 、 0. 1≤Ι γ Ζ (ΐ Ύ +I J8 )く 0. 5を満たし、前記ォキシ水酸ィ匕ニッケルに含まれる- ッケルの平均価数は、 3.05以上 3. 3未満である請求項 1記載のアルカリ電池。
[6] 前記ォキシ水酸ィ匕ニッケルが、添加元素を溶解した固溶体であり、前記添加元素 がマンガンおよびコバルトよりなる群力 選ばれる少なくとも 1種である請求項 1記載 のアルカリ電池。
[7] 前記ォキシ水酸ィ匕ニッケル力 前記添加元素としてマンガンを溶解した固溶体であ り、前記固溶体に溶解するマンガンの量が、前記固溶体に含まれる全金属元素の総 量の 1一 7mol%である請求項 6記載のアルカリ電池。
[8] 前記ォキシ水酸化ニッケル力 前記添加元素としてマンガンおよびコバルトの両方 を溶解した固溶体であり、前記固溶体に溶解するマンガンおよびコバルトの量が、そ れぞれ前記固溶体に含まれる全金属元素の総量の 1一 7mol%である請求項 6記載 のアルカリ電池。
[9] 前記ォキシ水酸ィ匕ニッケル力 前記添加元素としてマンガンを溶解した固溶体であ り、かつ前記固溶体は、その表面に付着したコバルト酸化物を有する請求項 1記載の アルカリ電池。
[10] 前記固溶体に溶解するマンガンの量が、前記固溶体に含まれる全金属元素の総 量の 1一 7mol%であり、前記コバルト酸化物の量力 前記固溶体の 0. 1— 7重量% である請求項 9記載のアルカリ電池。
[11] 前記コバルト酸化物に含まれるコバルトの平均価数力 3. 0よりも大きい請求項 9記 載のアルカリ電池。
[12] 前記正極合剤に含まれる前記二酸化マンガンの含有量が、 20— 90重量%である 請求項 1記載のアルカリ電池。
[13] 攪拌翼を供えた反応槽内に、硫酸ニッケル (II)水溶液、硫酸マンガン (Π)水溶液、 水酸化ナトリウム水溶液、およびアンモニア水を、それぞれ独立した流路で供給する 操作を、不活性ガスをパブリングするとともに反応槽内の温度および pHを制御しなが ら行い、ニッケルサイトの一部が 2価のマンガンで置換された β型の結晶構造を有す る水酸ィ匕ニッケルを得る第 1工程、
第 1工程後の水酸ィ匕ニッケルを、水洗し、乾燥し、酸ィ匕雰囲気下で 50— 150°Cで 加熱して、マンガンを平均価数 3. 5以上に酸ィ匕させる第 2工程、
第 2工程後の水酸ィ匕ニッケルを、アルカリ水溶液中に酸化剤とともに投入し、前記 水酸化ニッケルを化学酸化する第 3工程、カゝらなるアルカリ電池用正極材料の製造 方法。
[14] 前記第 1工程で、さらに反応槽内にヒドラジンが加えられ、還元雰囲気を維持する 請求項 13記載のアルカリ電池用正極材料の製造方法。
[15] 前記第 2工程で、前記マンガンの平均価数を 3. 8以上とする請求項 13記載のアル カリ電池用正極材料の製造方法。
[16] 前記第 3工程で用いる酸化剤力 次亜塩素酸塩である請求項 13記載のアルカリ電 池用正極材料の製造方法。
[17] 前記第 3工程で用いるアルカリ水溶液が、水酸ィ匕カリウム、水酸ィ匕ナトリウムおよび 水酸化リチウムよりなる群力 選択される少なくとも 1種のアルカリ塩を溶解した水溶 液である請求項 13記載のアルカリ電池用正極材料の製造方法。
[18] 前記アルカリ水溶液のアルカリ塩濃度が、 3molZL以上である請求項 17記載のァ ルカリ電池用正極材料の製造方法。
PCT/JP2004/016311 2003-11-06 2004-11-04 アルカリ電池およびアルカリ電池用正極材料 WO2005045958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/554,356 US7718315B2 (en) 2003-11-06 2004-11-04 Alkaline battery and positive electrode material for alkaline battery comprising nickel oxyhydroxide and manganese dioxide
JP2005515300A JPWO2005045958A1 (ja) 2003-11-06 2004-11-04 アルカリ電池およびアルカリ電池用正極材料の製造方法
EP04799490A EP1699099A4 (en) 2003-11-06 2004-11-04 ALKALIBATTERY AND MATERIAL FOR THE POSITIVE ELECTRODE OF AN ALKALIBATTERY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-376769 2003-11-06
JP2003376769 2003-11-06
JP2004-057222 2004-03-02
JP2004057222 2004-03-02

Publications (1)

Publication Number Publication Date
WO2005045958A1 true WO2005045958A1 (ja) 2005-05-19

Family

ID=34575915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016311 WO2005045958A1 (ja) 2003-11-06 2004-11-04 アルカリ電池およびアルカリ電池用正極材料

Country Status (4)

Country Link
US (1) US7718315B2 (ja)
EP (1) EP1699099A4 (ja)
JP (1) JPWO2005045958A1 (ja)
WO (1) WO2005045958A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013374A1 (ja) * 2005-07-28 2007-02-01 Matsushita Electric Industrial Co., Ltd. アルカリ一次電池
WO2007020828A1 (ja) * 2005-08-17 2007-02-22 Matsushita Electric Industrial Co., Ltd. アルカリ乾電池
CN113851738A (zh) * 2021-08-24 2021-12-28 深圳先进技术研究院 一种可充电锰离子电池及其制备方法
US11884554B2 (en) * 2018-03-27 2024-01-30 Basf Se Process for precipitating a carbonate or (oxy)hydroxide

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829221B2 (en) 2000-11-10 2010-11-09 Powergenix Systems, Inc. Cobalt containing positive electrode formulation for a nickel-zinc cell
US8048566B2 (en) 2008-02-07 2011-11-01 Powergenix Systems, Inc. Nickel hydroxide electrode for rechargeable batteries
US8043748B2 (en) * 2008-02-07 2011-10-25 Powergenix Systems, Inc. Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
CN101597089A (zh) * 2008-06-06 2009-12-09 比亚迪股份有限公司 一种过渡金属氢氧化物及其氧化物和正极材料的制备方法
US8334067B2 (en) * 2009-01-13 2012-12-18 The Gillette Company Non-uniform conductive coating for cathode active material
WO2013132818A1 (ja) * 2012-03-05 2013-09-12 パナソニック株式会社 アルカリ蓄電池用正極およびそれを用いたアルカリ蓄電池
EP2943991A4 (en) 2013-01-14 2016-01-06 Powergenix Systems Inc PASTIC NICKEL HYDROXIDE ELECTRODE AND ACCESSORIES FOR RECHARGEABLE ALKAL BATTERIES
JP6643132B2 (ja) 2016-02-12 2020-02-12 Fdk株式会社 アルカリ二次電池用の正極活物質及びこの正極活物質を含むアルカリ二次電池
DE102018131168A1 (de) 2018-12-06 2020-06-10 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Reversible Mangandioxidelektrode, Verfahren zu deren Herstellung, deren Verwendung sowie diese enthaltende, wieder aufladbare alkalische Mangan-Batterie
JP7160930B2 (ja) * 2019-04-11 2022-10-25 Jfeミネラル株式会社 前駆体、前駆体の製造方法、正極材、正極材の製造方法、および、リチウムイオン二次電池
WO2023249431A1 (ko) * 2022-06-24 2023-12-28 주식회사 엘지화학 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214621A (ja) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池
JP2003017081A (ja) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd アルカリ乾電池
JP2003123746A (ja) * 2001-10-17 2003-04-25 Sony Corp アルカリ亜鉛電池
JP2003257440A (ja) * 2002-03-07 2003-09-12 Fdk Corp アルカリ一次電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772266A (en) 1980-10-23 1982-05-06 Matsushita Electric Ind Co Ltd Alkaline manganese battery
JPH0777129B2 (ja) 1988-07-19 1995-08-16 株式会社ユアサコーポレーション ニッケル電極用活物質及びその製造方法、ニッケル電極及びそれを用いたアルカリ電池の製造方法
US5861225A (en) 1992-11-12 1999-01-19 Ovonic Battery Company, Inc. Nickel battery electrode having multiple composition nickel hydroxide active materials
DE4328418A1 (de) 1993-08-24 1995-03-02 Bosch Gmbh Robert Elektromagnetisch betätigbares Kraftstoffeinspritzventil
EP0809309B1 (en) 1995-11-22 2003-03-05 Matsushita Electric Industrial Co., Ltd. Electrode with positive plate active material for alkaline storage battery
DE69712582T2 (de) * 1996-09-20 2003-01-09 Matsushita Electric Ind Co Ltd Aktives Material für die positive Elektrode alkalischer Speicherbatterien
US6235428B1 (en) * 1997-01-30 2001-05-22 Sanyo Electric Co., Ltd. Enclosed alkali storage battery
US6566008B2 (en) 1997-01-30 2003-05-20 Sanyo Electric Co., Ltd. Sealed alkaline storage battery
JP3661045B2 (ja) 1997-05-30 2005-06-15 松下電器産業株式会社 アルカリ蓄電池
US6020088A (en) * 1997-11-18 2000-02-01 Moltech Power Systems, Inc. Gamma niooh nickel electrodes
JP4284711B2 (ja) * 1998-01-23 2009-06-24 パナソニック株式会社 アルカリ蓄電池用正極活物質
JPH11260364A (ja) 1998-03-05 1999-09-24 Mitsui Mining & Smelting Co Ltd Mn含有複合水酸化ニッケル活物質及びその製造方法
JP3866884B2 (ja) * 1998-10-08 2007-01-10 松下電器産業株式会社 アルカリ電池
TW520575B (en) * 2000-04-21 2003-02-11 Sony Corp Positive electrode material and nickel-zinc battery
JP2001322817A (ja) 2000-05-12 2001-11-20 Sakai Chem Ind Co Ltd マンガン固溶水酸化ニッケル粒子及びその製造方法
JP3871518B2 (ja) 2001-03-13 2007-01-24 松下電器産業株式会社 アルカリ蓄電池用正極活物質、正極および正極の製造法
US7273680B2 (en) * 2002-08-28 2007-09-25 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214621A (ja) * 1997-01-30 1998-08-11 Sanyo Electric Co Ltd 密閉型アルカリ蓄電池
JP2003017081A (ja) * 2001-06-29 2003-01-17 Toshiba Battery Co Ltd アルカリ乾電池
JP2003123746A (ja) * 2001-10-17 2003-04-25 Sony Corp アルカリ亜鉛電池
JP2003257440A (ja) * 2002-03-07 2003-09-12 Fdk Corp アルカリ一次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1699099A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013374A1 (ja) * 2005-07-28 2007-02-01 Matsushita Electric Industrial Co., Ltd. アルカリ一次電池
WO2007020828A1 (ja) * 2005-08-17 2007-02-22 Matsushita Electric Industrial Co., Ltd. アルカリ乾電池
US11884554B2 (en) * 2018-03-27 2024-01-30 Basf Se Process for precipitating a carbonate or (oxy)hydroxide
CN113851738A (zh) * 2021-08-24 2021-12-28 深圳先进技术研究院 一种可充电锰离子电池及其制备方法
CN113851738B (zh) * 2021-08-24 2023-03-21 深圳先进技术研究院 一种可充电锰离子电池及其制备方法

Also Published As

Publication number Publication date
EP1699099A4 (en) 2008-12-24
US7718315B2 (en) 2010-05-18
EP1699099A1 (en) 2006-09-06
US20060257742A1 (en) 2006-11-16
JPWO2005045958A1 (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
WO2005045958A1 (ja) アルカリ電池およびアルカリ電池用正極材料
JP2008514534A (ja) アルミニウム含有リチウム遷移金属酸化物用の複合材料前駆物質およびその製造方法
WO2014063407A1 (zh) 改性高能量密度锂离子电池正极材料及其制备方法
US7569306B2 (en) Alkaline battery and manufacturing method of positive electrode material therefor
CN107123792A (zh) 双层复合结构三元正极材料及其制备方法
WO2006011430A1 (ja) アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法
CN112018335A (zh) 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车
JP2007103111A (ja) アルカリ一次電池およびオキシ水酸化ニッケルの製造方法
JPH11149921A (ja) アルカリ蓄電池及びその正極活物質の表面処理方法
CN115732674A (zh) 钠正极前驱体材料及其制备方法和应用
JP4321997B2 (ja) アルカリ蓄電池用正極活物質ならびにそれを用いた正極およびアルカリ蓄電池
Pechen et al. Effect of the synthesis method on the functional properties of lithium-rich complex oxides Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2
WO2006001210A1 (ja) アルカリ電池
CN112186187B (zh) 一种三维网状包覆的三元材料的制备方法及应用
JP2011071125A (ja) アルカリ蓄電池用正極活物質の製造方法
JP3934777B2 (ja) オキシ水酸化ニッケル製造用水酸化ニッケル
JP4330832B2 (ja) アルカリ蓄電池用正極活物質、正極ならびにアルカリ蓄電池
JP2001185138A (ja) アルカリ蓄電池用正極活物質及びその製法
WO2005015666A1 (ja) アルカリ電池
CA2564422C (en) Alkaline battery comprising nickel oxyhydroxide and manganese dioxide
CN113707870A (zh) 一种无钴正极材料及其制备方法和应用
JP2006313678A (ja) アルカリ一次電池とその製造方法
JP2006294288A (ja) アルカリ乾電池
JP2005071991A (ja) アルカリ電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004799490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006257742

Country of ref document: US

Ref document number: 10554356

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004816717X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005515300

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004799490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10554356

Country of ref document: US