WO2006001210A1 - アルカリ電池 - Google Patents

アルカリ電池 Download PDF

Info

Publication number
WO2006001210A1
WO2006001210A1 PCT/JP2005/011020 JP2005011020W WO2006001210A1 WO 2006001210 A1 WO2006001210 A1 WO 2006001210A1 JP 2005011020 W JP2005011020 W JP 2005011020W WO 2006001210 A1 WO2006001210 A1 WO 2006001210A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
oxyhydroxide
positive electrode
manganese
battery
Prior art date
Application number
PCT/JP2005/011020
Other languages
English (en)
French (fr)
Inventor
Fumio Kato
Katsuya Sawada
Tadaya Okada
Yasuo Mukai
Shigeto Noya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/588,036 priority Critical patent/US20070166614A1/en
Priority to EP05751519A priority patent/EP1717887A4/en
Priority to JP2006528485A priority patent/JPWO2006001210A1/ja
Publication of WO2006001210A1 publication Critical patent/WO2006001210A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline battery as a primary battery. More specifically, the present invention includes a so-called inside-out structure in which a positive electrode mixture includes diacid-manganese and oxyhydroxide-nickel as active materials. And relates to nickel manganese batteries.
  • Alkaline batteries include a positive electrode case that also serves as a positive electrode terminal, a positive electrode material mixture pellet containing a cylindrical manganese dioxide and disposed in close contact with the inside of the positive electrode case, and a positive electrode material mixture pellet. And an inside-out structure comprising a gelled zinc negative electrode disposed via a separator.
  • the positive electrode mixture for alkaline batteries generally contains electrolytic manganese dioxide and a graphite conductive agent.
  • Nickel oxyhydroxide used in alkaline batteries is generally obtained by oxidizing spherical or hen egg-shaped nickel hydroxide for alkaline storage batteries with an oxidizing agent such as an aqueous sodium hypochlorite solution ( (See Patent Document 2).
  • an oxidizing agent such as an aqueous sodium hypochlorite solution
  • a nickel hydroxide hydroxide having a bulk density (tap density) of 8 type structure is used as a raw material.
  • nickel oxyhydroxide and nickel composed of crystals having a j8 structure are obtained.
  • nickel hydroxide for alkaline storage batteries containing cobalt, zinc and the like may be used as a raw material (see Patent Document 3).
  • nickel hydroxide crystals, cobalt, zinc, and the like are dissolved, and a solid solution of hydroxide nickel is formed.
  • Patent Document 4 a proposal to use a substantially spherical oxyhydroxide nickel in an alkaline battery (see Patent Document 4), a proposal to use a solid solution nickel oxyhydroxide containing zinc (see Patent Document 5), zinc
  • Patent Document 6 there are some proposals (see Patent Document 6) that use cobalt-containing solid solution oxyhydroxide-nickel.
  • Each of these proposals can be regarded as a slide of well-known technology related to the positive electrode of alkaline storage batteries (secondary batteries) to primary battery applications.
  • an alkaline battery including a positive electrode mixture in which oxyhydroxide-nickel is mixed as described above has a lower storage performance than an alkaline battery not including oxyhydroxide-nickel.
  • an alkaline battery not including oxyhydroxide-nickel When the battery is stored at a high temperature, there is a problem that the self-discharge of the positive electrode is large. Therefore, the application of technologies related to alkaline storage batteries (secondary batteries) to primary batteries is also being considered in order to improve such problems.
  • Patent Document 1 Japanese Patent Laid-Open No. 57-72266
  • Patent Document 2 Japanese Patent Publication No. 4-80513
  • Patent Document 3 Japanese Patent Publication No. 7-77129
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-8650
  • Patent Document 5 JP 2002-75354 A
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-203546
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-15106
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2002-289187
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-357844
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2002-8649
  • Patent Document 11 Japanese Unexamined Patent Publication No. 2003-151545 Disclosure of the invention
  • An alkaline battery including a positive electrode mixture in which nickel hydroxide and nickel is mixed has a significantly improved discharge performance as compared with a conventional alkaline battery.
  • an alkaline battery generally employs an inside-out battery structure with a simple manufacturing process. For this reason, compared to alkaline storage batteries and lithium ion secondary batteries that employ a spiral (winding) battery structure, the internal resistance of the battery is large, resulting in a voltage drop during heavy load discharge or pulse discharge. There is a big problem!
  • the present invention improves the characteristics of an alkaline battery during heavy load discharge or pulse discharge by improving the physical properties of nickel oxyhydroxide constituting the positive electrode active material. Chino.
  • the present invention includes a positive electrode, a negative electrode, and an alkaline electrolyte
  • the positive electrode includes a positive electrode mixture including electrolytic manganese dioxide and oxyhydroxide-nickel, and oxyhydroxide-nickel.
  • (1) has at least Mg-dissolved crystals
  • (2) has a tap density of 2 gZcm 3 or more when the total number of tappings is 500 times
  • (3) has a volume-based average particle size of 8-20 ⁇ m.
  • m and (4) an alkaline battery having an average valence of nickel of 2.95 to 3.05.
  • the content of Mg in the total of Ni and Mg contained in nickel oxyhydroxide is preferably 0.1 to 7 mol%.
  • the crystal of nickel oxyhydroxide is particularly desirable for further dissolving at least one element M selected from the group force consisting of Zn, Co and Mn.
  • the present invention particularly includes a positive electrode, a negative electrode, and an alkaline electrolyte, and the positive electrode includes a positive electrode mixture including an electrolytic manganese dioxide and oxyhydroxide-nickel, and oxyhydroxide-nickel.
  • (1) has a crystal that dissolves at least Mg as an essential component and dissolves at least one element M selected from the group consisting of Co, Zn, and Mn.
  • (2) The total number of tappings is 500.
  • the tap density (hereinafter referred to as the tap density (500 times)) is 2 gZcm 3 or more, (3) the volume-based average particle diameter is 8 to 20 m, and (4) the average valence of nickel Relates to an alkaline battery having a value of 2.95 to 3.05.
  • the content of Mg in the total of Ni, Mg and element M contained in nickel oxyhydroxide is 0.1 mol% or more.
  • the total content of Mg and element M in the total of Ni, Mg, and element M is preferably 7 mol% or less.
  • the content of element M in the total of Ni, Mg and element M contained in nickel oxyhydroxide is preferably 0.05 to 4 mol% or more.
  • the content of electrolytic diacid-manganese in the total of electrolytic manganese dioxide and nickel oxyhydroxide contained in the positive electrode mixture is 20 to 90 wt%, and The nickel hydroxide content should be 10-80wt%! /.
  • the positive electrode mixture further contains a graphite conductive agent.
  • the content of the graphite conductive agent in the total of the electrolytic manganese dioxide, nickel oxyhydroxide, and black lead conductive agent contained in the positive electrode mixture is 3 to 10 wt%. It is desirable.
  • the positive electrode mixture is further selected from the group consisting of Y 2 O, Er 2 O, Tm 2 O, Yb 2 O, and Lu 2 O.
  • the positive electrode mixture contains a rare earth oxide
  • the content of rare earth oxide in the total of electrolytic manganese dioxide, nickel oxyhydroxide, graphite conductive agent, and rare earth oxide contained in the positive electrode mixture is 0.1. Desirable to be ⁇ 2 wt%.
  • the oxidation-reduction potential (discharge voltage) and electronic conductivity of the oxyhydroxide-nickel are enhanced. Therefore, the battery characteristics at the time of heavy load discharge or at nors discharge can be greatly improved.
  • the tap density (500 times) is as high as 2 gZcm 3 or more, and the volume-based average Since the particle size (D50) is relatively large at 8-20 ⁇ m! /, And nickel oxyhydroxide is used, the moldability of the cathode mixture is improved and high-density filling of the cathode active material into the battery is possible. It is.
  • nickel oxyhydroxide which dissolves Mg and has an average valence of nickel in the range of 2.95 to 3.05, tends to increase the self-discharge of the battery due to its high acid-reduction potential. .
  • This tendency is significantly improved by regulating the volume-based average particle diameter of nickel oxyhydroxide to 8-20 ⁇ m and the tap density to 2 gZcm 3 or more. This is considered to be because the contact between the particles in the positive electrode mixture formed into a pellet is improved.
  • FIG. 1 is a front view, partly in section, of an alkaline battery according to an example of the present invention.
  • the positive electrode included in the alkaline battery of the present invention includes a positive electrode mixture containing electrolytic dimanganese manganese and nickel oxyhydroxide as a positive electrode active material.
  • oxyhydroxide-nickel is a solid solution composed of crystals in which at least Mg is dissolved.
  • the redox potential (discharge voltage) of such a solid solution of oxyhydroxide nickel is high and the electron conductivity is high. Therefore, the characteristics at the time of heavy load discharge or pulse discharge of the battery can be greatly improved.
  • the content of Mg in the total of Ni and Mg contained in nickel oxyhydroxide is preferably 0.1 to 7 mol%, more preferably 2 to 5 mol%. If the content of Mg in the total of Ni and Mg is less than 0.1 mol%, the effect of increasing the oxidation-reduction potential and electron conductivity of nickel oxyhydroxide may not be sufficiently exhibited. In addition, if the Mg content in the total of Ni and Mg exceeds 7 mol%, the Ni content in nickel oxyhydroxide will be relatively reduced, and the battery capacity cannot be secured. There are cases.
  • Oxyhydroxide-nickel crystals dissolve Mg as an essential element, and It is particularly desirable to dissolve at least one element M selected from the group force consisting of n, Co and Mn.
  • the content of Zn in the total of Ni, Mg, and Zn contained in nickel hydroxide is preferably 0.05 to 4 mol%, more preferably 1 to 3 mol%.
  • the content of Mg in the total of Ni, Mg, and element M contained in nickel oxyhydroxide is 0.1 mol% or more, Further, it is at least 2 mol%, and the total content of Mg and element M in the total of Ni, Mg and element M is preferably 7 mol% or less, and more preferably 5 mol% or less.
  • the tap density (500 times) of oxyhydroxide-nickel contained in the positive electrode mixture is controlled to 2 g / cm 3 or more, preferably 2. lgZcm 3 or more.
  • the tap density (500 times) is less than 2 gZcm 3 , it is difficult to obtain a high-density positive electrode mixture.
  • the volume-based average particle diameter (D50) is controlled to 8 to 20 ⁇ m, preferably 10 to 15 ⁇ m.
  • D50 volume-based average particle diameter
  • Nickel hydroxide which is a raw material of nickel oxyhydroxide, is bonded with dissolved Mg and element M. In the case of a solid solution composed of crystals, it may be difficult to obtain a high density hydroxyammonium hydroxide with high tap density. Therefore, in the present invention, it is desirable to optimize the crystallization conditions of nickel hydroxide as a raw material to synthesize high tap density nickel hydroxide and convert it to oxyhydroxide nickel.
  • the crystallization conditions to be optimized include pH and temperature in the tank for synthesizing nickel hydroxide and nickel, and the concentration of -eckel ammine complex ions.
  • pH 12.8-8.1
  • temperature 45-50 ° C.
  • nickel ammine complex ion concentration 10-15 mgZL are preferable.
  • the average valence of nickel of nickel oxyhydroxide used in the present invention is 2.95-3.
  • the nickel valence of nickel hydroxide and nickel can be controlled within the above range by adjusting the conditions for oxidizing the raw material nickel hydroxide with an oxidizing agent (such as sodium hypochlorite).
  • the average valence of nickel contained in nickel oxyhydroxide can be determined, for example, by the following ICP emission analysis and acid reduction titration.
  • ICP analysis it is possible to measure the weight ratio of metal elements in nickel hydroxide and nickel.
  • a predetermined amount of nickel oxyhydroxide and nickel is added to a nitric acid aqueous solution and heated to prepare a solution by completely dissolving nickel oxyhydroxide.
  • “VISTA-RL” manufactured by VARIAN can be used as the analyzer.
  • the weight ratio of elements such as nickel, aluminum, manganese and cobalt contained in nickel oxyhydroxide is determined.
  • potassium iodide and sulfuric acid are added to oxyhydroxide-nickel and thoroughly stirred until the oxyhydroxide-nickel is completely dissolved.
  • high valences, nickel ions, manganese ions, and cobalt ions are converted to divalent by oxidizing potassium iodide into iodine.
  • the generated 'free iodine is 0. ImolZL of sodium thiosulfate in water Titrate with liquid. The titration at that time reflects the amount of nickel ion, manganese ion, and cobalt ion that have a higher valence than the above divalent.
  • the oxyhydroxide-nickel The average valence of nickel is estimated.
  • the average valence of Mn and Co can be estimated by fitting the equilibrium potential of nickel oxyhydroxide to the pH-potential diagram (pool bay diagram) of Mn or Co.
  • electrolytic manganese dioxide is superior in terms of capacity per unit weight (mAhZg), ease of filling into the battery, material price, etc. .
  • nickel hydroxide and nickel are superior in terms of discharge voltage, heavy load discharge characteristics, and pulse discharge characteristics.
  • the contents of nickel oxyhydroxide and electrolytic manganese dioxide in the total amount of nickel oxyhydroxide and electrolytic manganese dioxide contained in the positive electrode mixture are respectively 10-80 wt% and 20-90 wt% are preferred. Further, from the viewpoint of obtaining a battery having a particularly excellent balance of characteristics, it is more preferable that the content ratios of nickel oxyhydroxide and electrolytic manganese dioxide are 30 to 60 wt% and 40 to 70 wt%, respectively! .
  • the content of oxy nickel hydroxide in the total amount of oxyhydroxide-nickel and electrolytic diacid-manganese contained in the positive electrode mixture Is preferred to be 60-80wt%! / ,.
  • the volume energy density of the active material in the positive electrode mixture is preferably higher.
  • the content of the graphite conductive agent in the total of the nickel oxyhydroxide, electrolytic dimanganese manganese and graphite conductive agent contained in the positive electrode mixture is preferably 3 to: L0 wt%. More preferably, it is 5-8 wt%.
  • the content of the graphite conductive agent is less than 3 wt%, the electron conductivity of the entire positive electrode mixture may be insufficient.
  • the content of the graphite conductive agent exceeds 10 wt%, the proportion of the active material in the positive electrode mixture may be reduced, and the volume energy density of the positive electrode mixture may be insufficient.
  • Graphite As the conductive agent, for example, various artificial graphites and natural graphites having an average particle diameter of 10 to 30 m can be used alone or in combination.
  • the positive electrode mixture is further selected from the group consisting of Y 2 O, Er 2 O, Tm 2 O, Yb 2 O, and Lu 2 O.
  • the positive electrode mixture contains a rare earth oxide
  • the content of the rare earth oxide in the total of electrolytic manganese dioxide, nickel oxyhydroxide, graphite conductive agent and rare earth oxide contained in the positive electrode mixture is 0.1 to 2 wt% is preferable, and 0.5 to 1.5 wt% is more preferable.
  • the nickel ammine complex ion concentration in the tank was 10 mg / L, and the residence time of the generated particles in the tank was 15 hours. Subsequently, the obtained particles were heated in an aqueous sodium hydroxide solution different from the above to remove sulfate radicals. Then wash the particles with water and vacuum dry Thus, raw material nickel hydroxide a (composition: Ni Mg (OH)) was obtained.
  • the obtained raw material nickel hydroxide a was composed of crystals having a ⁇ -type structure.
  • the raw material hydroxide nickel a had the following physical properties.
  • volume-based average particle size about 11 m
  • volume-based average particle size approx. 10 ⁇ m
  • the tap density was measured using “Tap Densator KYT-3000” manufactured by Seishin Co., Ltd. in accordance with the method shown in JIS-K5101. The same is true for the following!
  • the volume-based average particle diameter was measured with “Microtrac particle size distribution analyzer FRA” manufactured by Nikkiso Co., Ltd. The same applies to the following.
  • oxyhydroxide-nickel A was composed of crystals having a j8 type structure.
  • oxyhydroxide-nickel A had the following physical properties. -The average valence of the kettle was measured by the method described above. The same applies to the following.
  • volume-based average particle size 11 m
  • oxyhydroxide-nickel B to D were each composed of a crystal having a ⁇ -type structure.
  • oxyhydroxide-nickel B to C all had the following physical properties.
  • volume-based average particle size approx. 10 ⁇ m
  • Electrolytic manganese dioxide, nickel oxyhydroxide A, and graphite were blended in a weight ratio of 50: 45: 5 and mixed to obtain a positive electrode mixture powder.
  • the positive electrode mixture powder was stirred with a mixer, mixed until uniform, and sized to a constant particle size.
  • As the alkaline electrolyte a 40% by weight aqueous solution of potassium hydroxide was used.
  • the obtained granular material was press-molded into a hollow cylindrical shape to obtain positive electrode mixture pellet A.
  • positive electrode mixture pellets B to D were obtained by performing the same operation as above using oxyhydroxide-nickel B to D, respectively.
  • AA-sized nickel manganese batteries A, B, C, and D were prepared in the following manner. The filling amount of the positive electrode mixture into the batteries was the same for all the batteries.
  • Fig. 1 is a front view showing a cross section of a portion of the nickel manganese battery fabricated here.
  • the positive electrode case 1 which also serves as the positive electrode terminal, a can-shaped case made of nickel-plated steel plate was used. A graphite coating film 2 was formed on the inner surface of the positive electrode case 1.
  • a plurality of short cylindrical positive electrode mixture pellets 3 were inserted.
  • the positive electrode material mixture pellet 3 was re-pressurized in the positive electrode case 1 and adhered to the inner surface of the positive electrode case 1.
  • a separator 4 was inserted into the space of the positive electrode mixture pellet 3 and brought into contact with the hollow inner surface.
  • An insulating cap 5 was placed on the bottom of the can-shaped case in the hollow.
  • an alkaline electrolyte was poured into the positive electrode case 1 to wet the positive electrode material mixture pellet 3 and the separator 4. After injecting the electrolytic solution, the gelled negative electrode 6 was filled inside the separator 4.
  • sodium polyacrylate as a gelling agent sodium polyacrylate as a gelling agent
  • an alkaline electrolyte, and zinc powder as a negative electrode active material were used.
  • a resin sealing plate 7 having a short cylindrical center portion and a thin outer peripheral portion force and having an inner groove at the peripheral end portion of the outer peripheral portion was prepared.
  • the peripheral edge of the bottom plate 8 that also serves as the negative electrode terminal was fitted.
  • An insulating washer 9 was interposed between the sealing plate 7 and the bottom plate 8.
  • a nail-like negative electrode current collector 10 was inserted into the hollow of the central portion of the sealing plate 7.
  • the opening end portion of the positive electrode case 1 was pressed against the peripheral edge portion of the bottom plate 8 via the peripheral edge portion of the sealing plate 7 to seal the opening of the positive electrode case 1. Finally, the outer surface of the positive electrode case 1 was covered with an exterior label 11 to complete a nickel manganese battery.
  • the first nickel manganese batteries A to D were each continuously discharged at a constant power of 1 W at 20 ° C, and the discharge time until the battery voltage reached the final voltage of 0.9 V and the average voltage during discharge were calculated. It was measured. The results are shown in Table 1. However, the discharge times obtained for batteries A to C are shown relative to nickel manganese battery D, with the discharge time obtained for nickel mangan battery D as the reference value 100.
  • the first nickel manganese batteries A to D were each pulse-discharged at 20 ° C.
  • the battery was discharged for 10 seconds at a constant current of 1A, and then the discharge was stopped for 50 seconds.
  • OCV open circuit voltage
  • the cumulative discharge time until the battery voltage at pulse discharge reached 0.9V were measured.
  • Table 1 the cumulative discharge times obtained for batteries A to C are shown as relative values with respect to nickel manganese battery D, with the cumulative discharge time obtained for nickel manganese battery D as the reference value 100.
  • the battery A produced using Mg-dissolved oxyhydroxide-nickel A has a high load discharge (continuous discharge at 1 W) and a pulse discharge. It can be seen that the characteristics are higher than D.
  • the heavy load discharge characteristics it can be said that by dissolving Mg in nickel oxyhydroxide, the oxidation-reduction potential of nickel oxyhydroxide shifted preciously, the discharge voltage increased, and the capacity of battery A improved. Inferred.
  • the pulse discharge characteristics it is considered that by dissolving Mg in oxyhydroxide-nickel, the electronic conductivity of oxyhydroxide-nickel was enhanced and the voltage drop of battery A was suppressed. It is done.
  • MolZL of sodium hydroxide aqueous solution is added to 1L, and a predetermined amount (denoted as vcm 3 ) of sodium hypochlorite aqueous solution (effective chlorine concentration: 10wt%) as an oxidant is added and stirred to oxyhydroxide Converted to nickel.
  • the obtained particles were sufficiently washed with water and then vacuum-dried at 60 ° C. for 24 hours to obtain oxyhydroxide-nickel P1.
  • volume-based average particle size approx. 10 ⁇ m
  • nickel manganese batteries ⁇ ⁇ 1 to ⁇ 6 were prepared using positive electrode mixture pellets ⁇ 1 to ⁇ 6.
  • the filling amount of the positive electrode mixture in the battery was the same for all batteries.
  • the heavy load discharge characteristics and pulse discharge characteristics of the obtained batteries ⁇ 1 to ⁇ 6 were evaluated in the same manner as in Example 1. The results are shown in Table 3. However, the discharge time at the time of heavy load discharge obtained with batteries ⁇ 1 to ⁇ ⁇ 6 is shown as a relative value with respect to battery D, with the discharge time obtained for nickel-manganese battery D of Example 1 being the reference value 100 . In addition, the cumulative discharge times of the pulse discharges obtained for batteries ⁇ 1 to ⁇ 6 are also shown as relative values to battery D, with the cumulative discharge time obtained for battery D as the reference value of 100.
  • the average nickel valence is in the range of 2.95 to 3.05, and the batteries P2 to P5 using solid solution nickel oxyhydroxide P2 to P5 that dissolves Mg are heavily loaded. It can be seen that it gives better characteristics than other batteries during discharge and pulse discharge.
  • the average valence of nickel is lower than 2.95 (battery P1), the discharge voltage during heavy load discharge is relatively high, but the capacity per unit weight of nickel oxyhydroxide (mAhZg) decreases. The discharge time is shortened, and the pulse discharge characteristics are similarly reduced.
  • nickel average valence is higher than 3.05 (battery P6), the characteristics also deteriorate.
  • the Mg concentration in Table 4 is the Mg content (mol%) in the total of Ni and Mg contained in the solid solution.
  • Each of the obtained nickel hydroxide ml to m9 was composed of crystals of ⁇ -type structure, Had sex.
  • volume-based average particle size approx. 10 ⁇ m
  • Nickel hydroxide ml to m9 were converted to nickel oxyhydroxide, and the resulting particles were sufficiently washed with water, followed by vacuum drying at 60 ° C. for 24 hours. Nickel oxides M1 to M9 were obtained.
  • the obtained oxyhydroxide-nickel nickel M1 to M9 were each made of a crystal having a ⁇ -type structure and had the following physical properties.
  • volume-based average particle size approx. 10 ⁇ m
  • the heavy load discharge characteristics and pulse discharge characteristics of the obtained batteries M1 to M9 were evaluated in the same manner as in Example 1. The results are shown in Table 5. However, the discharge times obtained for the batteries M1 to M8 are shown relative to the nickel manganese battery M9, with the discharge time obtained for the nickel manganese battery M9 as the reference value 100. In addition, the cumulative discharge times obtained for the batteries M1 to M8 are shown relative to the nickel manganese battery M9, with the cumulative discharge time obtained for the nickel manganese battery M9 as the reference value 100.
  • the batteries M2 to M7 produced using nickel oxyhydroxide M2 to M7 in which Mg was dissolved in the range of 0.1 to 7 mol% were subjected to heavy load discharge (continuous discharge at 1 W). It can be seen that the characteristics are higher than those of other batteries during time and pulse discharge. It is considered that the Mg concentration is extremely low at 0.05 mol%, and oxyhydroxide-nickel Ml may not sufficiently exhibit the effect of increasing the oxidation-reduction potential and the electron conductivity. In addition, when the Mg concentration is 1 Omol%, which is an extremely high hydroxy hydroxide-nickel M8, the nickel content is relatively reduced, so it may be impossible to ensure sufficient capacity.
  • the synthesis conditions such as pH, temperature, and nickel ammine complex ion concentration were the same as in Example 1. Subsequently, the obtained particles were heated in a sodium hydroxide aqueous solution different from the above to remove sulfate radicals. Thereafter, the particles were washed with water and vacuum-dried to obtain raw material nickel hydroxide e (composition: Ni Mg Zn (OH)).
  • Nickel hydroxide g composition: Ni Mg Mn (OH)
  • a manganese sulfate (II) aqueous solution was used instead of the zinc sulfate (II) aqueous solution.
  • the obtained nickel hydroxides e to g each consisted of crystals having a ⁇ -type structure and had the following physical properties.
  • volume-based average particle size approx. 10 ⁇ m
  • Example 2 In the same manner as in Example 1, the nickel hydroxides e to g were converted to oxyhydroxide nickel, and the resulting particles were thoroughly washed with water and then vacuum dried at 60 ° C for 24 hours. Oxyhydroxide nickel E to G were obtained.
  • the obtained oxyhydroxide-nickel E to G each consisted of crystals having a ⁇ -type structure. It had physical properties.
  • volume-based average particle size approx. 10 ⁇ m
  • nickel manganese batteries E to G were manufactured using the positive electrode mixture pellets E to G.
  • the filling amount of the positive electrode mixture in the battery was the same for all batteries.
  • the heavy load discharge characteristics and pulse discharge characteristics of the obtained batteries E to G were evaluated in the same manner as in Example 1. The results are shown in Table 6. However, the discharge times obtained for the batteries E to G are shown as relative values to the nickel manganese battery D, with the discharge time obtained for the nickel manganese battery D produced in Example 1 as the reference value 100. In addition, the cumulative discharge times obtained for the batteries E to G are relative to the nickel manganese battery D, with the cumulative discharge time obtained for the nickel manganese battery D produced in Example 1 as the reference value 100. Indicated.
  • the initial batteries E to G were each continuously discharged at a constant current of 50 mA (low load) at 20 ° C., and the discharge capacity until the battery voltage reached 0.9 V was measured. The same evaluation was performed on batteries A and D produced in Example 1. The results are shown in Table 6. However, the initial discharge capacities obtained from batteries A and E to G are V for the nickel manganese battery D produced in Example 1, and the initial discharge capacity obtained from the nickel manganese battery D The value is shown relative to.
  • Batteries E to G after 1 week storage at 60 ° C are continuously released at a constant current of 50mA at 20 ° C.
  • the discharge capacity until the battery voltage reached a final voltage of 0.9 V was measured.
  • the same evaluation was performed on batteries A and D produced in Example 1.
  • the results are shown in Table 6.
  • the discharge capacity after storage obtained in the batteries A and E to G was determined based on the discharge capacity after storage obtained for the -kettle manganese battery D produced in Example 1 as a reference value of 100. The value is relative to battery D.
  • positive electrode mixture pellets were prepared by adding rare earth oxide or ZnO to oxyhydroxide-nickel, and experiments were performed using this.
  • nickel oxyhydroxide nickel oxyhydroxide A prepared in Example 1 (solid solution containing Mg), C (solid solution containing Zn and Co) and D (pure oxyhydroxide nickel)
  • oxyhydroxide-nickel E solid solution containing Mg and Zn
  • F solid solution containing Mg and Co
  • G solid solution containing Mg and Mn
  • rare earth oxide Y 2 O, Er 2 O, Tm 2 O, Yb 2 O, and Lu 2 O were used.
  • blended and mixed and the positive mix powder was obtained.
  • the positive electrode mixture powder was stirred with a mixer, mixed until uniform, and sized to a constant particle size.
  • As the alkaline electrolyte a 40% by weight aqueous solution of potassium hydroxide was used.
  • the obtained granular material was press-molded into a hollow cylindrical shape to obtain positive electrode mixture pellets A1 to A7.
  • positive electrode mixture pellet A7 was prepared without adding any of the rare earth oxides and ZnO as additives.
  • the weight ratio of electrolytic manganese dioxide, nickel oxyhydroxide A, and graphite was 49: 45: 5.
  • Example 2 In the same manner as in Example 1, using positive electrode mixture pellets A1 to A7, C1 to C7, D1 to D7, El to E7, F1 to F7, and G1 to G7, nickel manganese batteries A1 to A7, C1 to C7 , D1 to D7, E1 to E7, 1 to 7 and 01 to 07 were prepared. The filling amount of the positive electrode mixture into the battery was the same for all batteries.
  • the obtained battery was evaluated in the same manner as in Example 1 for the high load discharge characteristics, pulse discharge characteristics, low load discharge characteristics, and storage characteristics. The results are shown in Table 8. However, the discharge time for 1 W continuous discharge, the cumulative discharge time for 1 A pulse discharge, the initial value for low load discharge and the discharge capacity after storage obtained for batteries other than battery D7 are obtained for battery D7. The discharge time is shown as a relative value with respect to battery D7, with a reference value of 100.
  • any of Y 2 O, Er 2 O, Tm 2 O, Yb 2 O, and Lu 2 O is used as the positive electrode mixture.
  • the contained batteries have a very high discharge capacity after 1 week storage at 60 ° C. It is considered that the rare earth oxide is slightly dissolved in the alkaline electrolyte and reprecipitated while forming the hydroxide oxide on the oxyhydroxide-packet to form a film. This coating is presumed to have an effect of suppressing the self-discharge reaction by increasing the oxygen generation overvoltage.
  • the volume-based average particle size is about 10 m, and the tap density (500 times) is about 2.
  • Nickel oxyhydroxide with a BET specific surface area of approximately 15m 2 Zg was used, but from the viewpoint of moldability and packing properties of the positive electrode mixture pellets, the volume-based average particle size was 8-20 111, tap density (500 times) If the value is set in the range of 2 g / cm 3 or more, the effect of the present invention can be obtained similarly.
  • the obtained particles were heated in another aqueous sodium hydroxide solution to remove sulfate radicals.
  • the particles are then washed with water, dried, nickel hydroxide ql (6 hours residence), q2 (10 o'clock ), Q3 (14 hour residence), q4 (18 hour residence) and q5 (22 hour residence).
  • Table 9 summarizes the measured values of (D50) and tap density (500 times).
  • nickel manganese batteries Q1 to Q5 and R1 to R5 were produced using positive electrode mixture pellets Q1 to Q5 and R1 to R5.
  • the amount of positive electrode mixture filled in the batteries was the same for all batteries.
  • the obtained batteries Q1-Q5 and R1-R5 were evaluated for storage characteristics. Batteries Q1 to Q5 and R1 to R5 are stored at 60 ° C for 1 week and then discharged continuously at 20 ° C with a constant current of 50 mA until the battery voltage reaches the final voltage of 0.9 V. The capacity was measured. The discharge capacity of battery Q1 is defined as 100, and the discharge capacity of each battery is shown as a relative value in Table 10.
  • the basic weight ratio of electrolytic manganese dioxide, oxyhydroxide-nickel, and graphite conductive agent was 50: 45: 5.
  • the content of electrolytic manganese dioxide in the total of oxyhydroxide and nickel hydroxide is 20 to 90 wt%, and the content of nickel hydroxide is 10 to 80 wt%.
  • the content of the graphite conductive agent in the total amount is 3 to 10 wt%, a similar alkaline battery excellent in balance between characteristics and price can be obtained.
  • Example 4 a force using a solid solution of nickel oxyhydroxide in which one kind selected from Zn, Co, and Mn and Mg was dissolved, multiple kinds selected from Zn, Co, and Mn were dissolved simultaneously. Even if the solid solution to be understood is used, an alkaline battery excellent in various characteristics can be obtained.
  • the contents of Mg, Zn, Co, and Mn contained in the solid solution were all 2.5 mol%, but when the results of Example 3 were also taken into account, the Mg content was 0.1 mol% or more. If the total content of metallic elements other than Ni including Mg is in the range of 7 mol% or less, it is assumed that almost the same alkaline batteries can be obtained.
  • Example 5 the amount of rare earth oxides such as yttrium oxide is 1 wt% of the total positive electrode mixture. / c ⁇ , but Y O, Er O, Tm O, Yb O and Lu O force one or more selected
  • the amount of the seed is 0.1 to 2 wt% of the total positive electrode mixture, it is possible to obtain an alkaline battery having almost the same level of storage characteristics.
  • a so-called inside-out type alkaline dry battery was produced in which a cylindrical positive electrode mixture pellet, a separator, and a negative electrode zinc gel were arranged in a cylindrical positive electrode case. It can also be applied to batteries with different structures such as alkaline button type and square type.
  • the battery characteristics during heavy load discharge or pulse discharge are improved. That's right.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

 正極、負極およびアルカリ電解液を含み、正極は、電解二酸化マンガンおよびオキシ水酸化ニッケルを含む正極合剤を含み、オキシ水酸化ニッケルは、(1)少なくともMgを溶解した結晶を有し、(2)タッピング回数が累計500回のときのタップ密度が2g/cm3以上であり、(3)体積基準の平均粒子径が8~20μmであり、(4)ニッケルの平均価数が2.95~3.05であるアルカリ電池。                                                                         

Description

明 細 書
アルカリ電池
技術分野
[0001] 本発明は、一次電池としてのアルカリ電池に関し、詳しくは、正極合剤中に活物質 として二酸ィ匕マンガンおよびォキシ水酸ィ匕ニッケルを含み、インサイドアウト構造を採 用した、所謂、ニッケルマンガン電池に関する。
背景技術
[0002] アルカリ電池は、正極端子を兼ねる正極ケースと、正極ケースの内側に密着して配 置された円筒状の二酸ィ匕マンガンを含む正極合剤ペレットと、正極合剤ペレットの中 空にセパレータを介して配置されたゲル状の亜鉛負極とを具備したインサイドアウト 構造を有する。アルカリ電池の正極合剤は、一般に電解二酸化マンガンおよび黒鉛 導電剤を含む。
[0003] 近年のデジタル機器の普及に伴い、アルカリ電池が用いられる機器の負荷電力は 次第に大きくなり、強負荷放電性能に優れる電池が要望されつつある。これに対応 するベぐ正極合剤にォキシ水酸化ニッケルを混合して、電池の強負荷放電特性を 向上させることが提案されている (特許文献 1参照)。近年では、このようなアルカリ電 池が実用化され、広く普及している。
[0004] アルカリ電池に用いるォキシ水酸ィ匕ニッケルは、一般に、アルカリ蓄電池用途の球 状もしくは鶏卵状の水酸化ニッケルを、次亜塩素酸ナトリウム水溶液等の酸化剤で酸 化したものである(特許文献 2参照)。この際、電池内への高密度充填を達成するた めに、嵩密度 (タップ密度)が大きぐ)8型構造の結晶カゝらなる水酸ィ匕ニッケルが、原 料として用いられる。このような原料を酸化剤で処理すると、 j8型構造の結晶からなる ォキシ水酸ィ匕ニッケルが得られる。
[0005] 電池の正極容量もしくはその利用率を高める目的で、コバルト、亜鉛等を含むアル カリ蓄電池用途の水酸化ニッケルを、原料として用いることもある(特許文献 3参照)。 このような水酸化ニッケルの結晶中には、コバルト、亜鉛等が溶解しており、水酸化- ッケルの固溶体が形成されて ヽる。 [0006] 近年においても、アルカリ電池に略球状のォキシ水酸ィ匕ニッケルを用いる提案 (特 許文献 4参照)、亜鉛を含む固溶体のォキシ水酸化ニッケルを用いる提案 (特許文献 5参照)、亜鉛もしくはコバルトを含む固溶体のォキシ水酸ィ匕ニッケルを用いる提案 ( 特許文献 6参照)等が散見される。これらの提案は、いずれもアルカリ蓄電池 (二次電 池)の正極に関する周知の技術を、一次電池用途にスライドさせたものとみなすこと ができる。
[0007] しかし、上述のようなォキシ水酸ィ匕ニッケルを混合した正極合剤を含むアルカリ電 池は、ォキシ水酸ィ匕ニッケルを含まないアルカリ電池と比較して保存性能が低ぐ特 に高温で電池を保存した場合に正極の自己放電が大きいという問題点を有する。そ こで、このような問題点を改善する観点力もも、アルカリ蓄電池 (二次電池)に関する 技術を一次電池に応用することが検討されている。例えば、正極合剤に ZnOや Y O
2 3 を添加して自己放電を抑制する提案 (特許文献 7参照)、正極合剤に Yb O、 Er O
2 3 2 3 等の希土類金属の酸ィ匕物を添加して自己放電を抑制する提案 (特許文献 8参照)等 がある。
[0008] なお、近年、アルカリ蓄電池(二次電池)の分野では、電池の出力特性を高める観 点から、 Mgを溶解させたタップ密度(嵩密度)の高い水酸ィ匕ニッケルを用いる提案が なされて!/ヽる(特許文献 9〜 11参照)。
特許文献 1:特開昭 57— 72266号公報
特許文献 2:特公平 4 - 80513号公報
特許文献 3:特公平 7 - 77129号公報
特許文献 4:特開 2002 - 8650号公報
特許文献 5:特開 2002— 75354号公報
特許文献 6:特開 2002— 203546号公報
特許文献 7:特開 2001— 15106号公報
特許文献 8:特開 2002— 289187号公報
特許文献 9:特開 2001— 357844号公報
特許文献 10:特開 2002— 8649号公報
特許文献 11 :特開 2003— 151545号公報 発明の開示
発明が解決しょうとする課題
[0009] ォキシ水酸ィ匕ニッケルを混合した正極合剤を含むアルカリ電池は、従来のアルカリ 電池に比較すると放電性能が格段に向上する。しかし、アルカリ電池では、製造工程 が簡単なインサイドアウト型の電池構造を採用するのが一般的である。そのため、ス パイラル型 (捲回型)の電池構造を採用しているアルカリ蓄電池やリチウムイオン二次 電池に比較して、電池の内部抵抗が大きぐ強負荷放電時ないしはパルス放電時の 電圧低下が大き!/、と 、う問題がある。
[0010] このような問題に対する材料の改良による改善策として、先述のようなアルカリ蓄電 池用途で提案されて ヽる Mgを溶解させた水酸ィ匕ニッケルを用いるアプローチが考え られる。しかし、満足な特性を有する一次電池を得るには、一次電池用途のォキシ水 酸ィ匕ニッケルに適するように、ニッケル価数、粒度、 Mg含有量等の諸物性を適正化 する必要がある。
課題を解決するための手段
[0011] 上記を鑑み、本発明は、正極活物質を構成するォキシ水酸化ニッケルの物性を改 善することにより、アルカリ電池の強負荷放電時ないしはパルス放電時の特性を向上 さ ·¾:るちのである。
[0012] すなわち、本発明は、正極、負極およびアルカリ電解液を含み、正極は、電解二酸 化マンガンおよびォキシ水酸ィ匕ニッケルを含む正極合剤を含み、ォキシ水酸ィ匕-ッ ケルは、(1)少なくとも Mgを溶解した結晶を有し、(2)タッピング回数が累計 500回 のときのタップ密度が 2gZcm3以上であり、(3)体積基準の平均粒子径が 8〜20 μ mであり、(4)ニッケルの平均価数が 2. 95〜3. 05である、アルカリ電池に関する。
[0013] ォキシ水酸化ニッケル中に含まれる Niと Mgとの合計に占める Mgの含有量は、 0. l〜7mol%であることが望ましい。
ォキシ水酸化ニッケルの結晶は、さらに、 Zn、 Coおよび Mnよりなる群力 選ばれる 少なくとも 1種の元素 Mを溶解すること力 特に望ましい。
[0014] 本発明は、特に、正極、負極およびアルカリ電解液を含み、正極は、電解二酸化マ ンガンおよびォキシ水酸ィ匕ニッケルを含む正極合剤を含み、ォキシ水酸ィ匕ニッケル は、(1)少なくとも Mgを必須成分として溶解し、かつ、 Co、 Znおよび Mnよりなる群か ら選ばれる少なくとも 1種の元素 Mを溶解する結晶を有し、 (2)タッピング回数が累計 500回のときのタップ密度(以下、タップ密度(500回)と表記)が 2gZcm3以上であり 、(3)体積基準の平均粒子径が 8〜20 mであり、(4)ニッケルの平均価数が 2. 95 〜3. 05である、アルカリ電池に関する。
[0015] ォキシ水酸ィ匕ニッケルの結晶が元素 Mを含む場合、ォキシ水酸化ニッケル中に含 まれる Niと Mgと元素 Mとの合計に占める Mgの含有量は、 0. lmol%以上であり、 N iと Mgと元素 Mとの合計に占める Mgと元素 Mとの総含有量は、 7mol%以下であるこ とが望ましい。
特に、ォキシ水酸ィ匕ニッケル中に含まれる Niと Mgと元素 Mとの合計に占める元素 Mの含有量は、 0. 05〜4mol%以上であることが望ましい。
[0016] 正極合剤中に含まれる電解二酸化マンガンとォキシ水酸化ニッケルとの合計に占 める電解二酸ィ匕マンガンの含有量は、 20〜90wt%であり、前記合計に占めるォキ シ水酸化ニッケルの含有量は、 10〜80wt%であることが望まし!/、。
[0017] 正極合剤は、さらに、黒鉛導電剤を含むことが望ま ヽ。正極合剤が黒鉛導電剤を 含む場合、正極合剤中に含まれる電解二酸化マンガンとォキシ水酸化ニッケルと黒 鉛導電剤との合計に占める黒鉛導電剤の含有量は、 3〜10wt%であることが望まし い。
[0018] 正極合剤は、さらに、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oよりなる群から選
2 3 2 3 2 3 2 3 2 3
ばれる少なくとも 1種の希土類酸ィ匕物を含むことが望ま Uヽ。正極合剤が希土類酸化 物を含む場合、正極合剤中に含まれる電解二酸化マンガンとォキシ水酸化ニッケル と黒鉛導電剤と希土類酸化物との合計に占める希土類酸化物の含有量は、 0. 1〜2 wt%であることが望まし 、。
発明の効果
[0019] ォキシ水酸ィ匕ニッケルの結晶内に少量の Mgが溶解して 、る場合、ォキシ水酸ィ匕 ニッケルの酸化還元電位 (放電電圧)と電子伝導性とが高められる。そのため、強負 荷放電時な 、しはノルス放電時の電池特性を大幅に向上させることができる。また、 本発明では、タップ密度(500回)が 2gZcm3以上と高密度であり、体積基準の平均 粒子径(D50)が 8〜20 μ mと比較的大き!/、ォキシ水酸化ニッケルを用いることから、 正極合剤の成型性も向上し、電池内への正極活物質の高密度充填が可能である。
[0020] また、ォキシ水酸化ニッケルのニッケルの平均価数が 2. 95〜3. 05の範囲に制御 されて 、る場合、電池容量として取り出せるエネルギーを最大限に高めることができ る。
[0021] 以上のように、本発明によれば、ォキシ水酸ィ匕ニッケルを混合した正極合剤を含む アルカリ電池の高容量化にカ卩えて、強負荷放電時な!、しはパルス放電時の電池特 '性の向上を図ることができる。
なお、 Mgを溶解し、ニッケルの平均価数が 2. 95〜3. 05の範囲にあるォキシ水酸 化ニッケルは、酸ィ匕還元電位が高いため、電池の自己放電が大きくなる傾向がある。 この傾向は、ォキシ水酸化ニッケルの体積基準の平均粒子径を 8〜20 μ m、タップ 密度を 2gZcm3以上に規制することにより、大幅に改善される。これは、ペレット状に 成形された正極合剤内における粒子間の接触が向上するためと考えられる。
図面の簡単な説明
[0022] [図 1]本発明の実施例に係るアルカリ電池の一部を断面にした正面図である。
発明を実施するための最良の形態
[0023] 本発明のアルカリ電池が具備する正極は、正極活物質として電解二酸ィ匕マンガン とォキシ水酸化ニッケルとを含む正極合剤を含む。ここで、ォキシ水酸ィ匕ニッケルは 、少なくとも Mgを溶解した結晶からなる固溶体である。このような固溶体のォキシ水 酸化ニッケルの酸化還元電位 (放電電圧)は高ぐ電子伝導性も高くなる。従って、電 池の強負荷放電時ないしはパルス放電時の特性を大幅に向上させることができる。
[0024] ォキシ水酸化ニッケル中に含まれる Niと Mgとの合計に占める Mgの含有量は、 0. l〜7mol%、さらには 2〜5mol%であることが望ましい。 Niと Mgとの合計に占める Mgの含有量が 0. lmol%未満では、ォキシ水酸化ニッケルの酸化還元電位や電子 伝導性を高める効果が十分に発現しないことがある。また、 Niと Mgとの合計に占め る Mgの含有量が 7mol%を超えると、ォキシ水酸化ニッケル中の Niの含有量が相対 的に減ることになり、電池容量を確保することができな 、場合がある。
[0025] ォキシ水酸ィ匕ニッケルの結晶は、 Mgを必須元素として溶解するとともに、さらに、 Z n、 Coおよび Mnよりなる群力 選ばれる少なくとも 1種の元素 Mを溶解することが特 に望ましい。
[0026] ォキシ水酸ィ匕ニッケルの結晶内に Mgと同時に Znが溶解している場合、強負荷放 電時な 、しはパルス放電時の電池特性の向上効果に加え、ォキシ水酸ィ匕ニッケル 上での酸素発生過電圧を高める効果が発現する。従って、電池の保存特性 (貯蔵特 性)が改善される。ォキシ水酸ィ匕ニッケル中に含まれる Niと Mgと Znの合計に占める Znの含有量は、 0. 05〜4mol%、さらには l〜3mol%であることが望ましい。
[0027] また、ォキシ水酸化ニッケルの結晶内に Mgと同時に Coおよび Zまたは Mnが溶解 している場合、高価数のォキシ水酸ィ匕ニッケルを得ることが容易となる。従って、強負 荷放電時ないしはパルス放電時の電池特性の向上効果に加え、より一層の電池の 高容量ィ匕を図ることが可能となる。ォキシ水酸ィ匕ニッケル中に含まれる Niと Mgと Co ( もしくは Mn)の合計に占める Co (もしくは Mn)の含有量は、 0. 05〜4mol%、さらに は l〜3mol%であることが望ましい。
[0028] ォキシ水酸ィ匕ニッケルの結晶が元素 Mを含む場合、ォキシ水酸化ニッケル中に含 まれる Niと Mgと元素 Mとの合計に占める Mgの含有量は、 0. lmol%以上、さらには 2mol%以上であり、 Niと Mgと元素 Mとの合計に占める Mgと元素 Mとの総含有量は 、 7mol%以下、さらには 5mol%以下であることが望ましい。
[0029] 次に、高密度で比較的粒子径の大きいォキシ水酸ィ匕ニッケルを用いると、正極合 剤の成型性が向上し、電池内への正極活物質の充填性が高められる。そこで、正極 合剤に含まれるォキシ水酸ィ匕ニッケルのタップ密度(500回)は、 2g/cm3以上、好 ましくは 2. lgZcm3以上に制御する。タップ密度(500回)が 2gZcm3未満では、高 密度の正極合剤を得ることが困難になる。なお、一般にタップ密度が 2. 5gZcm3を 超えるォキシ水酸ィ匕ニッケルを得ることは困難である。
[0030] 体積基準の平均粒子径(D50)は、 8〜20 μ m、好ましくは 10〜15 μ mに制御す る。体積基準の平均粒子径が 8 m未満では、正極合剤ペレットの作製が困難となる 。なお、一般に体積基準の平均粒子径が 20 mを超えるォキシ水酸ィ匕ニッケルを得 ることは困難である。
[0031] ォキシ水酸化ニッケルの原料である水酸化ニッケル力 Mgや元素 Mを溶解した結 晶からなる固溶体である場合、タップ密度の高 ヽォキシ水酸ィ匕ニッケルを得ることが 困難なことがある。そこで、本発明では、原料である水酸化ニッケルの晶析条件を適 正化して、高タップ密度の水酸ィ匕ニッケルを合成し、これをォキシ水酸ィ匕ニッケルに 変換することが望ましい。
[0032] 適正化される晶析条件としては、水酸ィ匕ニッケルを合成する槽内の pH、温度、 -ッ ケルアンミン錯イオンの濃度等が挙げられる。例えば、 pH= 12. 8-13. 1、温度 = 45〜50°C、ニッケルアンミン錯イオン濃度 = 10〜15mgZL程度の条件が好ましい 力 これに限定されない。
[0033] また、本発明で用いるォキシ水酸化ニッケルのニッケルの平均価数は、 2. 95〜3.
05である。ニッケルの平均価数が 2. 95未満では、電池容量が不十分になり、 3. 05 を超えた場合には、ォキシ水酸ィ匕ニッケル中に γ型構造の結晶が比較的多く生成し ているため、電池特性が低下する。ォキシ水酸ィ匕ニッケルのニッケル価数は、原料で ある水酸化ニッケルを酸化剤 (次亜塩素酸ナトリウム等)で酸化する際の条件を調整 することにより、上記範囲に制御することができる。ォキシ水酸化ニッケルに含まれる ニッケルの平均価数は、例えば以下の ICP発光分析と酸ィ匕還元滴定によって求める ことができる。
[0034] (l) ICP発光分析
ICP分析では、ォキシ水酸ィ匕ニッケル中の金属元素の重量比の測定が可能である 。まず、所定量のォキシ水酸ィ匕ニッケルを硝酸水溶液中に加えて、加熱し、ォキシ水 酸化ニッケルを完全に溶解させて溶液を調製する。得られた溶液を用いて ICP分析 を行う。分析装置には、例えば VARIAN社製の「VISTA— RL」等を用いることがで きる。 ICP分析によれば、ォキシ水酸ィ匕ニッケル中に含まれるニッケル、アルミニウム 、マンガン、コバルト等の元素の重量比が求められる。
[0035] (2)酸化還元滴定
まず、ォキシ水酸ィ匕ニッケルにヨウ化カリウムと硫酸を加え、十分に攪拌を続けるこ とでォキシ水酸ィ匕ニッケルを完全に溶解させる。この過程で価数の高!、ニッケルィォ ン、マンガンイオン、コバルトイオンは、ヨウ化カリウムをヨウ素に酸ィ匕し、自身は 2価に 還元される。次いで、生成'遊離したヨウ素を 0. ImolZLのチォ硫酸ナトリウム水溶 液で滴定する。その際の滴定量は、上記のような 2価よりも価数の大きいニッケルィォ ン、マンガンイオン、コバルトイオンの量を反映する。従って、金属重量比率の測定結 果を用い、ォキシ水酸化ニッケル中のマンガンの平均価数を 4価、コバルトの平均価 数を 3価と仮定 (推定)することで、ォキシ水酸ィ匕ニッケル中のニッケルの平均価数が 見積もられる。なお、 Mnおよび Coの平均価数は、ォキシ水酸化ニッケルの平衡電 位を Mnもしくは Coの pH—電位図(プールべィダイヤグラム)に当てはめることにより 推定される。
[0036] 電解二酸化マンガンとォキシ水酸化ニッケルとを比較した場合、単位重量あたりの 容量 (mAhZg)、電池内への充填の容易さ、材料価格等の点では、電解二酸化マ ンガンの方が優れる。一方、放電電圧および強負荷放電特性やパルス放電特性の 点では、ォキシ水酸ィ匕ニッケルの方が優れる。
[0037] 従って、電池特性のバランスおよび価格を考慮すると、正極合剤に含まれるォキシ 水酸化ニッケルと電解二酸化マンガンとの合計量に占めるォキシ水酸化ニッケルお よび電解二酸化マンガンの含有率は、それぞれ 10〜80wt%および 20〜90wt%で あることが好ましい。また、特性バランスに特に優れた電池を得る観点からは、ォキシ 水酸化ニッケルおよび電解二酸化マンガンの含有率は、それぞれ 30〜60wt%およ び 40〜70wt%であることが更に好まし!/、。
なお、強負荷放電特性やパルス放電特性を特に強化したい場合には、正極合剤 に含まれるォキシ水酸ィ匕ニッケルと電解二酸ィ匕マンガンとの合計量に占めるォキシ 水酸化ニッケルの含有率は、 60〜80wt%であることが好まし!/、。
[0038] 正極合剤における活物質の体積エネルギー密度は、高 、方が好ま 、。一方、十 分な強負荷放電特性を確保するには、黒鉛導電剤を正極合剤に含ませることが望ま しい。このような観点から、正極合剤に含まれるォキシ水酸化ニッケルと電解二酸ィ匕 マンガンと黒鉛導電剤との合計に占める黒鉛導電剤の含有量は 3〜: L0wt%である ことが好ましぐ 5〜8wt%であることが更に好ましい。前記黒鉛導電剤の含有量が 3 wt%未満になると、正極合剤全体の電子伝導性が不十分になることがある。一方、 前記黒鉛導電剤の含有量が 10wt%をこえると、正極合剤に占める活物質の割合が 小さくなり、正極合剤の体積エネルギー密度が不十分になることがある。なお、黒鉛 導電剤には、例えば平均粒子径 10〜30 mの各種人造黒鉛および天然黒鉛を単 独で、もしくは組み合わせて用いることができる。
[0039] 正極合剤は、さらに、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oよりなる群から選
2 3 2 3 2 3 2 3 2 3
ばれる少なくとも 1種の希土類酸ィ匕物を含むことが望ま Uヽ。これらの希土類金属酸 化物は、アルカリ電解液中に僅かに溶解して、水酸ィ匕物を形成しながら、再析出する 。その結果、ォキシ水酸化ニッケルの粒子表面に希土類金属を含む被膜が形成され る。この被膜は、正極の酸素発生過電圧を高める役割を有する。
[0040] Mgを溶解した結晶からなるォキシ水酸ィ匕ニッケルの固溶体は、特に平衡電位が貴 である。そのため、電池の開路電圧が比較的高く保持され、自己放電速度が大きくな る傾向にある。従って、希土類金属酸ィ匕物を正極合剤中に少量添加することが、電 池の保存特性の大幅な改善につながる。
[0041] 正極合剤が希土類酸化物を含む場合、正極合剤中に含まれる電解二酸化マンガ ンとォキシ水酸化ニッケルと黒鉛導電剤と希土類酸化物との合計に占める希土類酸 化物の含有量は、 0. l〜2wt%であることが好ましぐ 0. 5〜1. 5wt%であることが 更に好ましい。
[0042] [実施例]
以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
《実施例 1》
(原料水酸化ニッケルの調製)
攪拌翼を備えた反応槽に、純水と還元剤としての少量のヒドラジンを加え、槽内に 窒素ガスによるパブリングを行いながら、所定濃度の硫酸ニッケル (II)水溶液、硫酸 マグネシウム(Π)水溶液、水酸化ナトリウム水溶液、およびアンモニア水を、ポンプで 定量供給した。その間、槽内の攪拌を続け、 pHを 13. 0に、温度を 50°Cに維持した 。その後も、十分に槽内の攪拌を続けることで、水酸化ニッケルの核を析出させ、核 を成長させた。槽内のニッケルアンミン錯イオン濃度は 10mg/Lとし、生成した粒子 の槽内滞留時間は 15時間とした。続いて、得られた粒子を、上記とは別の水酸化ナ トリウム水溶液中で加熱して、硫酸根を除去した。その後、粒子を水洗し、真空乾燥し て、原料水酸化ニッケル a (組成: Ni Mg (OH) )を得た。
0.95 0.05 2
[0043] 次に、硫酸マグネシウム (II)水溶液の代わりに、硫酸亜鉛 (II)水溶液を用いたこと 以外は、上記と同様の操作を行 、、水酸ィ匕ニッケル b (組成: Ni Zn (OH) )を得
0.95 0.05 2 た。
[0044] また、硫酸マグネシウム (Π)水溶液の代わりに、それぞれ同量の硫酸亜鉛 (II)と硫 酸コバルト (Π)を含む水溶液を用いたこと以外は、上記と同様の操作を行い、水酸ィ匕 ニッケル c (組成: Ni Zn Co (OH) )を得た。
0.95 0.025 0.025 2
[0045] 更に、硫酸マグネシウム(Π)、硫酸亜鉛 (II)および硫酸コバルト(Π)の 、ずれも用い ないこと以外は、上記と同様の操作を行い、ニッケル以外の金属を含まない水酸ィ匕 ニッケル dを得た。
[0046] 得られた原料水酸化ニッケル aは、 β型構造の結晶からなることを、粉末 X線回折 測定で確認した。また、原料水酸ィ匕ニッケル aは、以下の物性を有した。
体積基準の平均粒子径:約 11 m
タップ密度(500回):約 2. lg/cm3
BET比表面積:約 12m Vg
[0047] 得られた原料水酸化ニッケル b〜dは、何れも β型構造の結晶からなることを、粉末 X線回折測定で確認した。また、原料水酸ィ匕ニッケル b〜dは、何れも以下の物性を 有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. 2g/cm3
BET比表面積:約 13m Vg
[0048] タップ密度は、 JIS— K5101に示されている方法に準拠して、(株)セイシン企業製 の「タップデンサ一 KYT— 3000」を用いて測定した。以下につ!、ても同様である。 体積基準の平均粒子径は、(株)日機装製の「マイクロトラック粒度分布測定装置 F RA」により測定した。以下についても同様である。
[0049] (ォキシ水酸化ニッケルの調製)
水酸化ニッケル aの 200gを O.lmolZLの水酸化ナトリウム水溶液 1L中に投入し、 酸化剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 10wt%)を十分量加えて攪 拌し、ォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後、 60°Cで 24 時間の真空乾燥を行って、ォキシ水酸ィ匕ニッケル Aを得た。
[0050] 原料水酸ィ匕ニッケル b〜dに対しても、上記と同じ操作を行って、それぞれォキシ水 酸化ニッケル B〜Dを得た。
[0051] 得られたォキシ水酸ィ匕ニッケル Aは、 j8型構造の結晶からなることを、粉末 X線回 折測定で確認した。また、ォキシ水酸ィ匕ニッケル Aは、以下の物性を有した。 -ッケ ルの平均価数は、先述の方法で測定した。以下についても同様である。
体積基準の平均粒子径: 11 m
タップ密度(500回): 2. 18g/cm3
BET比表面積: 14m2Zg
ニッケルの平均価数: 2. 99
[0052] 得られたォキシ水酸ィ匕ニッケル B〜Dは、何れも β型構造の結晶からなることを、粉 末 X線回折測定で確認した。また、ォキシ水酸ィ匕ニッケル B〜Cは、何れも以下の物 性を有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. 3g/cm3
BET比表面積:約 15m Vg
ニッケルの平均価数:約 3. 0 (2. 98〜3. 02)
[0053] (正極合剤ペレットの作製)
電解二酸化マンガンと、ォキシ水酸化ニッケル Aと、黒鉛とを、重量比 50 :45 : 5の 割合で配合し、混合して、正極合剤粉を得た。正極合剤粉 100重量部あたり、アル力 リ電解液 1重量部を添加した後、正極合剤粉をミキサーで撹拌し、均一になるまで混 合するとともに、一定粒度に整粒した。なお、アルカリ電解液には、水酸化カリウムの 40重量%水溶液を用いた。得られた粒状物を中空円筒型に加圧成型して、正極合 剤ペレット Aを得た。
[0054] また、ォキシ水酸ィ匕ニッケル B〜Dを用いて、上記と同じ操作を行って、それぞれ正 極合剤ペレット B〜Dを得た。
[0055] (ニッケルマンガン電池の作製) 上記の正極合剤ペレット A、 B、 Cおよび Dを用いて、以下の要領で、単 3サイズの ニッケルマンガン電池 A、 B、 Cおよび Dをそれぞれ作製した。電池内への正極合剤 の充填量等は、全ての電池について同じとした。図 1は、ここで作製したニッケルマン ガン電池の一部を断面にした正面図である。
[0056] 正極端子を兼ねる正極ケース 1には、ニッケルメツキされた鋼板力 なる缶状ケース を用いた。正極ケース 1の内面には、黒鉛塗装膜 2を形成した。正極ケース 1内には、 短筒状の正極合剤ペレット 3を複数個挿入した。次いで、正極合剤ペレット 3を正極 ケース 1内で再加圧して、正極ケース 1の内面に密着させた。正極合剤ペレット 3の中 空にはセパレータ 4を挿入し、中空内面に接触させた。中空内の缶状ケース底部に は、絶縁キャップ 5を配した。
[0057] 次に、正極ケース 1内にアルカリ電解液を注液して、正極合剤ペレット 3とセパレー タ 4とを湿潤させた。電解液の注液後、セパレータ 4の内側にゲル状負極 6を充填し た。ゲル状負極 6には、ゲル化剤としてのポリアクリル酸ナトリウム、アルカリ電解液お よび負極活物質としての亜鉛粉末カゝらなるものを用いた。アルカリ電解液には、水酸 化力リゥムの 40重量0 /0水溶液を用 V、た。
[0058] 一方、短筒状の中心部と薄肉の外周部力 なり、外周部の周縁端部に内溝を有す る榭脂製封口板 7を準備した。封口板 7の周縁端部の内溝には、負極端子を兼ねる 底板 8の周縁端部をはめ込んだ。封口板 7と底板 8との間には、絶縁ヮッシャ 9を介在 させた。封口板 7の中心部の中空には、釘状の負極集電体 10を挿入した。
[0059] 上記のように予め封口板 7、底板 8および絶縁ヮッシャ 9と一体化された負極集電体
10を、ゲル状負極 6に挿入した。次いで、正極ケース 1の開口端部を、封口板 7の周 縁端部を介して、底板 8の周縁端部に力しめつけ、正極ケース 1の開口を密閉した。 最後に、正極ケース 1の外表面を外装ラベル 11で被覆し、ニッケルマンガン電池を 完成させた。
[0060] (ニッケルマンガン電池の評価)
〈強負荷放電特性〉
初度のニッケルマンガン電池 A〜Dを、それぞれ 20°Cで 1Wの定電力で連続放電 させ、電池電圧が終止電圧 0. 9Vに至るまでの放電時間と、放電時の平均電圧とを 測定した。結果を表 1に示す。ただし、電池 A〜Cで得られた放電時間は、ニッケルマ ンガン電池 Dにつ!/、て得られた放電時間を基準値 100として、ニッケルマンガン電池 Dに対する相対値で示した。
[0061] 〈パルス放電特性〉
初度のニッケルマンガン電池 A〜Dを、それぞれ 20°Cでパルス放電させた。パルス 放電では、 1Aの定電流で電池を 10秒間放電させ、その後 50秒間放電を休止する 操作を繰り返した。パルス放電を繰り返す際、 2パルス目の放電電圧の、開路電圧( OCV)力もの電圧低下と、パルス放電時の電池電圧が 0. 9Vに至るまでの累計放電 時間とを測定した。結果を表 1に示す。ただし、電池 A〜Cで得られた累計放電時間 は、ニッケルマンガン電池 Dについて得られた累計放電時間を基準値 100として、二 ッケルマンガン電池 Dに対する相対値で示した。
[0062] [表 1]
Figure imgf000015_0001
[0063] 表 1の結果より、 Mgを溶解したォキシ水酸ィ匕ニッケル Aを用いて作製した電池 Aは 、強負荷放電(1Wでの連続放電)時およびパルス放電時には、他の電池 B〜Dよりも 高 、特性を与えることがわかる。
[0064] 表 1の結果が得られた理由として、以下が考えられる。
強負荷放電特性については、ォキシ水酸ィ匕ニッケルに Mgを溶解させたことにより、 ォキシ水酸化ニッケルの酸化還元電位が貴にシフトし、放電電圧が高まり、電池 Aの 容量が向上したものと推察される。また、パルス放電特性については、ォキシ水酸ィ匕 ニッケルに Mgを溶解させたことにより、ォキシ水酸ィ匕ニッケルの電子伝導性が高めら れ、電池 Aの電圧低下が抑制されたものと考えられる。このように、本発明によれば、 アルカリ電池の強負荷放電時な 、しはパルス放電時の特性を大きく向上させることが 可能となる。
[0065] 《実施例 2》
ここでは、ォキシ水酸ィ匕ニッケル中のニッケルの平均価数に関する知見を得るため の検討を行った。
(ォキシ水酸ィ匕ニッケルの調製)
実施例 1で用いた原料水酸ィ匕ニッケル a (組成: Ni Mg (OH) )の 200gを 0. 1
0.95 0.05 2
molZLの水酸ィ匕ナトリウム水溶液 1L中に投入し、酸化剤の次亜塩素酸ナトリウム水 溶液 (有効塩素濃度: 10wt%)を所定量 (vcm3と表記する)加えて攪拌し、ォキシ水 酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後、 60°Cで 24時間の真空乾 燥を行って、ォキシ水酸ィ匕ニッケル P1とした。
[0066] また、次亜塩素酸ナトリウム水溶液の投入量を 1. lv、 1. 2v、 1. 3v、 1. 4vおよび 1 . 5vcm3と変化させたこと以外、全て上記と同様にして、それぞれの酸化剤量に対応 するォキシ水酸化ニッケル P2〜P6を得た。
[0067] こうして得られた 6種類のォキシ水酸ィ匕ニッケルおよび比較用に実施例 1で用いた ォキシ水酸ィ匕ニッケル D (異種金属を溶解しないもの)に関し、先述の方法で-ッケ ルの平均価数を求めた。結果を表 2にまとめる。なお、ォキシ水酸化ニッケル P1〜P 6は、何れも β型構造の結晶からなることを、粉末 X線回折測定で確認した。また、ォ キシ水酸化ニッケル Ρ1〜Ρ6は、何れも以下の物性を有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. 2g/cm3
BET比表面積:約 15m Vg
[0068] [表 2] 次亜塩素酸ナトリウム水溶液の
才キシ水酸化ニッケル ニッケルの平均価数
投入量(cm3)
P1 V 2.88
P2 1. lv 2.95
P3 】.2v 2.99
P4 1·3ν 3.02
P5 1.4ν 3.05
P6 1.5ν 3.09
D (1.2ν) 3.01
[0069] (正極合剤ペレットの作製)
実施例 1と同様の方法で、ォキシ水酸化ニッケル Ρ 1〜Ρ6を含む正極合剤ペレツト Ρ 1〜Ρ6をそれぞれ得た。
[0070] (ニッケルマンガン電池の作製)
実施例 1と同様の方法で、正極合剤ペレット Ρ1〜Ρ6を用いて、ニッケルマンガン電 池 Ρ1〜Ρ6を作製した。電池内への正極合剤の充填量等は、全ての電池について 同じとした。
[0071] (ニッケルマンガン電池の評価)
得られた電池 Ρ 1〜Ρ6の強負荷放電特性およびパルス放電特性を、実施例 1と同 様に評価した。結果を表 3に示す。ただし、電池 Ρ1〜Ρ6で得られた強負荷放電時の 放電時間は、実施例 1のニッケルマンガン電池 Dにつ 、て得られた放電時間を基準 値 100として、電池 Dに対する相対値で示した。また、電池 Ρ1〜Ρ6で得られたパル ス放電の累計放電時間についても、電池 Dについて得られた累計放電時間を基準 値 100として、電池 Dに対する相対値で示した。
[0072] [表 3] 1W連続放電 1 Α Λ°ルス放電
才キシ水酸化::ッケル 2 ルス目
電池 平^零 累計
(ニッケル平均価数) 放電時間 電圧低下
圧 nV) 放電時間
(mV)
PI P1 (2. 88) 98 1. 351 62 99
P2 P2 (2. 95) 102 1. 354 56 103
P3 P3 (2. 99) 105 51 108
P4 P4 (3. 02) 106 1 . 359 53 107
P5 P5 (3. 05) 103 1. 354 57 102
P6 P6 (3. 09) 99 1. 348 63 99
D D (3. 01) 100 (基準) 1. 331 61 100 (基準)
[0073] 表 3の結果より、ニッケル平均価数が 2. 95〜3. 05の範囲であり、 Mgを溶解する 固溶体のォキシ水酸化ニッケル P2〜P5を用いた電池 P2〜P5は、強負荷放電時お よびパルス放電時に、他の電池よりも優れた特性を与えることがわかる。ニッケルの平 均価数が 2. 95よりも低い場合 (電池 P1)、強負荷放電時の放電電圧は比較的高い ものの、ォキシ水酸化ニッケルの単位重量あたりの容量(mAhZg)が少なくなるため 、放電時間は短くなり、同様にパルス放電特性も低下する。また、ニッケル平均価数 が 3. 05よりも高い場合 (電池 P6)にも特性が低下するが、これはォキシ水酸化-ッケ ルの価数が極端に高くなると、ォキシ水酸ィ匕ニッケル中における不活性な γ型構造 の結晶の割合が多くなるためと推察される。以上より、 Mgを溶解する固溶体のォキシ 水酸化ニッケルを一次電池に適用する場合には、ニッケルの平均価数を最適範囲( 2. 95〜3. 05)に制御することが極めて重要であることがわ力る。
[0074] 《実施例 3》
ここでは、ォキシ水酸ィ匕ニッケル中に含まれる Mgの最適量を明確にするための実 験を行った。
(原料水酸化ニッケルの調製)
反応槽に供給する硫酸マグネシウム (II)水溶液の量を変化させたこと以外、実施例 1と同様の方法 (反応晶析法)で、表 4に示す濃度で Mgを溶解する固溶体の原料水 酸ィ匕ニッケル ml〜m9を得た。表 4における Mg濃度は、固溶体中に含まれる Niと M gとの合計に占める Mgの含有量 (mol%)である。
[0075] 得られた水酸ィ匕ニッケル ml〜m9は、何れも β型構造の結晶からなり、以下の物 性を有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. lg/cm3
BET比表面積:約 10m2Zg
[0076] [表 4]
Figure imgf000019_0001
[0077] (ォキシ水酸化ニッケルの調製)
実施例 1と同様の方法で、水酸化ニッケル ml〜m9をォキシ水酸化ニッケルに変 換し、得られた粒子を十分に水洗後、 60°Cで 24時間の真空乾燥を行って、ォキシ水 酸化ニッケル Ml〜M9を得た。
[0078] 得られたォキシ水酸ィ匕ニッケル M1〜M9は、何れも β型構造の結晶からなり、以 下の物性を有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. 2g/cm3
BET比表面積:約 15m Vg
ニッケルの平均価数:約 3. 0 (2. 98〜3. 02)
[0079] (正極合剤ペレットの作製)
実施例 1と同様の方法で、ォキシ水酸化ニッケル M 1〜M9を含む正極合剤ペレツ ト Ml〜M9をそれぞれ得た。
[0080] (ニッケルマンガン電池の作製) 実施例 1と同様の方法で、正極合剤ペレット M1〜M9を用いて、ニッケルマンガン 電池 M1〜M9を作製した。電池内への正極合剤の充填量等は、全ての電池につい て同じとした。
[0081] (ニッケルマンガン電池の評価)
得られた電池 M 1〜M9の強負荷放電特性およびパルス放電特性を、実施例 1と同 様に評価した。結果を表 5に示す。ただし、電池 M1〜M8で得られた放電時間は、 ニッケルマンガン電池 M9につ!/、て得られた放電時間を基準値 100として、ニッケル マンガン電池 M9に対する相対値で示した。また、電池 M1〜M8で得られた累計放 電時間は、ニッケルマンガン電池 M9につ!/、て得られた累計放電時間を基準値 100 として、ニッケルマンガン電池 M9に対する相対値で示した。
[0082] [表 5]
Figure imgf000020_0001
[0083] 表 5の結果より、 Mgを 0. l〜7mol%の範囲で溶解したォキシ水酸化ニッケル M2 〜M7を用いて作製した電池 M2〜M7は、強負荷放電(1Wでの連続放電)時およ びパルス放電時には、他の電池よりも高い特性を与えることがわかる。 Mg濃度が 0. 05mol%と極端に低 、ォキシ水酸ィ匕ニッケル Mlでは、酸化還元電位や電子伝導 性を高める効果が十分に発現しない場合があるものと考えられる。また、 Mg濃度が 1 Omol%と極端に高 ヽォキシ水酸ィ匕ニッケル M8では、相対的にニッケルの含有量が 減るため、容量を十分に確保できないことがあるものと考えられる。
[0084] 《実施例 4》 ここでは、ォキシ水酸化ニッケル中に Mgと Mg以外の元素 Mとを溶解させたォキシ 水酸ィ匕ニッケルを調製し、これを用いて実験を行った。
(原料水酸化ニッケルの調製)
攪拌翼を備えた反応槽に、純水と還元剤としての少量のヒドラジンを加え、槽内に 窒素ガスによるパブリングを行いながら、所定濃度の硫酸ニッケル (II)水溶液、硫酸 マグネシウム (Π)水溶液、硫酸亜鉛 (Π)水溶液、水酸化ナトリウム水溶液、およびアン モ-ァ水を、ポンプで定量供給した。その間、槽内の攪拌を続け、 pHを一定に維持 した。その後も、十分に槽内の攪拌を続けることで、水酸化ニッケルの核を析出させ、 核を成長させた。なお、 pH、温度、ニッケルアンミン錯イオン濃度等の合成条件は実 施例 1と同様とした。続いて、得られた粒子を、上記とは別の水酸ィ匕ナトリウム水溶液 中で加熱して、硫酸根を除去した。その後、粒子を水洗し、真空乾燥して、原料水酸 化ニッケル e (組成: Ni Mg Zn (OH) )を得た。
0.95 0.025 0.025 2
[0085] 次に、硫酸亜鉛 (II)水溶液の代わりに、硫酸コバルト (II)水溶液を用いたこと以外 は、上記と同様の操作を行い、水酸ィ匕ニッケル f (組成: Ni Mg Co (OH) )を
0.95 0.025 0.025 2 得た。
[0086] また、硫酸亜鉛 (II)水溶液の代わりに、硫酸マンガン (II)水溶液を用いたこと以外 は、上記と同様の操作を行い、水酸化ニッケル g (組成: Ni Mg Mn (OH) )
0.95 0.025 0.025 2 を得た。
[0087] 得られた水酸ィ匕ニッケル e〜gは、何れも β型構造の結晶からなり、以下の物性を 有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. lg/cm3
BET比表面積:約 1 lmVg
[0088] (ォキシ水酸化ニッケルの調製)
実施例 1と同様の方法で、水酸ィ匕ニッケル e〜gをォキシ水酸ィ匕ニッケルに変換し、 得られた粒子を十分に水洗後、 60°Cで 24時間の真空乾燥を行って、ォキシ水酸ィ匕 ニッケル E〜Gを得た。
[0089] 得られたォキシ水酸ィ匕ニッケル E〜Gは、何れも β型構造の結晶からなり、以下の 物性を有した。
体積基準の平均粒子径:約 10 μ m
タップ密度(500回):約 2. 2g/cm3
BET比表面積:約 15m Vg
ニッケルの平均価数:約 3. 0 (2. 98〜3. 02)
[0090] (正極合剤ペレットの作製)
実施例 1と同様の方法で、ォキシ水酸ィ匕ニッケル E〜Gを含む正極合剤ペレット E 〜Gをそれぞれ得た。
[0091] (ニッケルマンガン電池の作製)
実施例 1と同様の方法で、正極合剤ペレット E〜Gを用いて、ニッケルマンガン電池 E〜Gを作製した。電池内への正極合剤の充填量等は、全ての電池について同じと した。
[0092] (ニッケルマンガン電池の評価)
得られた電池 E〜Gの強負荷放電特性およびパルス放電特性を、実施例 1と同様 に評価した。結果を表 6に示す。ただし、電池 E〜Gで得られた放電時間は、実施例 1で作製したニッケルマンガン電池 Dについて得られた放電時間を基準値 100として 、ニッケルマンガン電池 Dに対する相対値で示した。また、電池 E〜Gで得られた累 計放電時間は、実施例 1で作製したニッケルマンガン電池 Dにつ ヽて得られた累計 放電時間を基準値 100として、ニッケルマンガン電池 Dに対する相対値で示した。
[0093] 〈低負荷放電特性〉
初度の電池 E〜Gを、それぞれ 20°Cで 50mA (低負荷)の定電流で連続放電させ、 電池電圧が 0. 9Vに至るまでの放電容量を測定した。また、実施例 1で作製した電池 Aおよび Dについても同様の評価を行った。結果を表 6に示す。ただし、電池 A、 E〜 Gで得られた初度の放電容量は、実施例 1で作製したニッケルマンガン電池 Dにつ V、て得られた初度の放電容量を基準値 100として、ニッケルマンガン電池 Dに対する 相対値で示した。
[0094] 〈保存特性〉
60°Cで 1週間保存後の電池 E〜Gを、それぞれ 20°Cで 50mAの定電流で連続放 電させ、電池電圧が終止電圧 0. 9Vに至るまでの放電容量を測定した。また、実施 例 1で作製した電池 Aおよび Dについても同様の評価を行った。結果を表 6に示す。 ただし、電池 A、 E〜Gで得られた保存後の放電容量は、実施例 1で作製した-ッケ ルマンガン電池 Dについて得られた保存後の放電容量を基準値 100として、 -ッケ ルマンガン電池 Dに対する相対値で示した。
[0095] [表 6]
Figure imgf000023_0001
[0096] 表 6の結果より、 Mgと元素 Mとを同時に溶解させたォキシ水酸化ニッケル E〜Gを 用いた電池は、 Mgだけを溶解させたォキシ水酸ィ匕ニッケル Aを用いた電池と同等の 強負荷放電特性およびパルス放電特性を与えることがわかる。また、 Mgと Znを溶解 させたォキシ水酸ィ匕ニッケル Eを用いた電池は、保存特性が他の電池よりも向上する 傾向にある。これは、 Znの存在によってォキシ水酸化ニッケル上での酸素発生過電 圧が高められたためと考えられる。さらに、 Mgと Coを溶解させたォキシ水酸ィ匕-ッケ ル?、 Mgと Mnを溶解させたォキシ水酸化ニッケル Gを用いた電池は、いずれも低負 荷放電時の容量が向上する傾向にある。これは、 Coや Mnの存在によってォキシ水 酸化ニッケル中のニッケル価数が高められたためと考えられる。
[0097] 以上のように、 Zn、 Coおよび Mnより選択される元素 Mと、 Mgとを、同時に溶解さ せたォキシ水酸ィ匕ニッケルを用いる場合には、強負荷放電特性とパルス放電特性の 向上のみならず、保存特性ないしは低負荷放電特性の改善も合わせて図ることが可 能である。
[0098] 《実施例 5》
ここでは、ォキシ水酸ィ匕ニッケルに、希土類酸ィ匕物または ZnOを添カ卩して正極合剤 ペレットを作製し、これを用いて実験を行った。 [0099] ォキシ水酸化ニッケルには、実施例 1で調製したォキシ水酸化ニッケル A (Mgを含 む固溶体)、 C (Znと Coを含む固溶体)および D (純粋なォキシ水酸ィ匕ニッケル)、な らびに実施例 4で調製したォキシ水酸ィ匕ニッケル E(Mgと Znを含む固溶体)、 F(Mg と Coを含む固溶体)、 G (Mgと Mnを含む固溶体)を用 、た。
[0100] 希土類酸化物には、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oを用いた。
2 3 2 3 2 3 2 3 2 3
[0101] 電解二酸化マンガンと、ォキシ水酸ィ匕ニッケル Aと、黒鉛と、表 7に示す所定の希土 類酸ィ匕物または ZnOとを、重量比 49: 45: 5:1の割合で配合し、混合して、正極合剤 粉を得た。正極合剤粉 100重量部あたり、アルカリ電解液 1重量部を添加した後、正 極合剤粉をミキサーで撹拌し、均一になるまで混合するとともに、一定粒度に整粒し た。なお、アルカリ電解液には、水酸ィ匕カリウムの 40重量%水溶液を用いた。得られ た粒状物を中空円筒型に加圧成型して、正極合剤ペレット A1〜A7を得た。
[0102] なお、表 7に示したように、正極合剤ペレット A7は、添加剤である希土類酸ィ匕物お よび ZnOのいずれも添加せずに作製した。この場合も、電解二酸化マンガンと、ォキ シ水酸化ニッケル Aと、黒鉛との重量比を、 49 :45 :5とした。
[0103] また、ォキシ水酸ィ匕ニッケル C〜Gを用いて、上記と同じ操作を行って、それぞれ添 加剤を含む正極合剤ペレット C1〜C6、 D1〜D6、 E1〜E6、 F1〜F6および G1〜G 6ならびに添加剤を含まない正極合剤ペレット C7、 D7、 E7、 F7および G7を得た。
[0104] [表 7] ォキシ水酸化ニツケル 添加物
(溶解元素
:mol¾) Y2O3 Er203 Tm203 Yb203 Lu203 ZnO なし
A へ。レツ卜 へ レツ卜 へ"レツ卜 Λ ト へレツ卜 へレツ卜 へ レツ卜
(Mg:5) A1 A2 A3 Α4 A5 A6 A7
C へ。レツ卜 へ レツ卜 へレツ卜 へレット へ'レット へレツ卜 へ レツ卜
(Zn:2.5,Co:2.5) C1 C2 C3 C4 C5 C6 C7
D へ レツ卜 へ レツ卜 へ'レット Λ 卜 へレツ卜 へレツ卜 へ レツ卜
(なし) D1 D2 D3 D4 D5 D6 D7
E へ レツ卜 へ レツ卜 へレツ卜 へレツ卜 へレツ卜 へレツ卜 へレツ卜
(Mg:2.5,Zn:2.5) E1 E2 E3 Ε4 E5 E6 E7
F へ。レット へレツ卜 へレツ卜 へレツ卜 へレツ卜 へレツ卜 へレツ卜
(Hg:2.5,Co:2.5) F1 F2 F3 F4 F5 F6 F7
G へ レツ卜 へレツ卜 レット へ。レット へ'レット へレツ卜 へ。レット
(Hg:2.5,Mn:2.5) G1 G2 G3 G4 G5 G6 G7 [0105] (ニッケルマンガン電池の作製)
実施例 1と同様の方法で、正極合剤ペレット A1〜A7、 C1〜C7、 D1〜D7、 El〜 E7、 F1〜F7および G1〜G7を用いて、ニッケルマンガン電池 A1〜A7、 C1〜C7、 D1〜D7、 E1〜E7、 1〜 7ぉょび01〜07を作製した。電池内への正極合剤の 充填量等は、全ての電池について同じとした。
[0106] (ニッケルマンガン電池の評価)
得られた電池の強負荷放電特性、パルス放電特性、低負荷放電特性および保存 特性を、実施例 1と同様に評価した。結果を表 8に示す。ただし、電池 D7以外の電池 で得られた 1W連続放電時の放電時間、 1 Aパルス放電時の累積放電時間、ならび に低負荷放電時の初度および保存後の放電容量は、電池 D7について得られた放 電時間を基準値 100として、電池 D7に対する相対値で示した。
[0107] [表 8]
1 S続放電 1 ΑΛ' 放電
電 初度 50mA 60
添加物 放電 平均電圧 2 累計 保存後 50mA 池 放電容量
時間 (mV) 電圧低下(mV) 放電時間 放電容量
Al Y203 106 1.358 50 109 101 106
A2 Er203 105 1.357 51 108 101 107
A3 Tm203 105 1.358 51 108 100 107
A4 Yb203 106 1.359 50 109 101 107
A5 Lu203 105 1.357 51 107 100 107
A6 ZnO 104 1.358 51 107 100 97
A7 なし 105 1.358 51 108 101 97
C1 Y203 99 1.323 64 100 100 103
C2 Er203 98 1.324 65 99 99 103
C3 Tm203 99 1.324 66 100 99 104
C4 Yb203 98 1.325 64 99 100 102
C5 Lu203 98 1.326 65 99 99 103
C6 ZnO 98 1.325 66 99 99 103
C7 なし 99 1.325 65 100 99 102
Dl Y203 100 1.329 62 100 100 102
D2 Er203 100 1.330 62 100 100 102
D3 Tm203 99 1.329 64 99 99 103
D4 Yb203 100 1.331 62 100 99 103
D5 Lu203 99 1.330 62 100 99 102
D6 ZnO 99 1.330 62 99 99 101
D7 なし 100 1.331 61 100 100 100
El YA 106 1.357 50 108 101 109
E2 Er203 106 1.358 51 107 100 109
E3 Tm203 105 1.357 52 108 100 108
E4 Yb203 106 1.356 51 108 101 109
E5 Lu203 105 1.357 52 107 100 109
E6 ZnO 105 1.357 52 108 100 103
E7 なし 105 1.358 52 108 100 103
F1 Y203 106 1.358 51 108 105 106
F2 Er203 105 1.357 52 107 104 105
F3 Tm203 105 1.357 52 108 105 106
F4 Yb203 106 1.358 51 108 105 106
F5 Lu203 105 1.357 52 107 104 105
F6 ZnO 105 1.357 52 107 105 98
F7 なし 105 1.357 52 107 105 97
Gl Y203 106 1.356 53 107 105 107
G2 Er203 105 1.357 52 107 104 106
G3 Tm203 106 1.357 52 106 104 106
G4 Yb203 106 1.356 52 107 104 105
G5 Lu203 105 1.356 53 107 105 106
G6 ZnO 105 1.356 53 106 104 98
G7 なし 106 1.357 52 107 105 98 8の結果より、 Mgを単独で、あるいは Zn、 Coまたは Mnとを同時に溶解させたォ キシ水酸ィ匕ニッケル A、 E、 Fおよび Gを用いた電池では、酸化イットリウム等の各種 添加物を少量正極合剤に含有させても、やはり優れた強負荷放電特性、パルス放電 特性を与えることがわかる。
[0109] なかでも特に、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oの何れかを正極合剤に
2 3 2 3 2 3 2 3 2 3
含有させた電池は、 60°Cで 1週間保存した後の放電容量が非常に高いレベルに保 たれている。希土類酸ィ匕物は、アルカリ電解液中に僅かに溶解し、ォキシ水酸化-ッ ケル上に水酸ィ匕物を形成しながら再析出し、被膜を形成するものと考えられる。この 被膜が、酸素発生過電圧を高めて、自己放電反応を抑制する効果を奏したと推察さ れる。
[0110] 以上のように、希土類酸ィ匕物を正極合剤中に少量添加することにより、アルカリ電 池の保存特性を大幅に改善することが可能である。
なお、上記の実施例では、いずれも体積基準の平均粒子径が約 10 m、タップ密 度(500回)が約 2.
Figure imgf000027_0001
BET比表面積が約 15m2Zgのォキシ水酸化ニッケル を用いたが、正極合剤ペレットの成型性や充填性の観点から、体積基準の平均粒子 径を8〜20 111、タップ密度(500回)を 2g/cm3以上の範囲に設定すれば、同様に 本発明の効果を得ることができる。
[0111] 《実施例 6》
ここでは、 Mgを溶解したォキシ水酸ィ匕ニッケルの、最適な平均粒子径およびタップ 密度を明確にするための検討を行った。
(原料水酸化ニッケルの調製)
所定濃度の硫酸ニッケル (Π)水溶液、硫酸マグネシウム(Π)水溶液、水酸化ナトリウ ム水溶液、およびアンモニア水を用意し、これらを攪拌翼を備えた反応槽内にポンプ で定量供給し、槽内 pHを 13. 1に、温度を 50°Cに維持して十分に攪拌を続けること で、球状水酸化ニッケル (組成: Ni Mg (OH) )を生成させた。この際、粒子の槽
0.95 0.05 2
内での滞留時間を 6時間、 10時間、 14時間、 18時間および 22時間と変化させること により、平均粒子径の異なる 5種類の水酸ィ匕ニッケルを調製した。
[0112] 得られた粒子は上記と別の水酸ィ匕ナトリウム水溶液中で加熱して、硫酸根を除去し た。その後、粒子を水洗し、乾燥させて、水酸化ニッケル ql (6時間滞留)、 q2 ( 10時 間滞留)、 q3 (14時間滞留)、 q4 (18時間滞留)および q5 (22時間滞留)を得た。 合成時の槽内 pHを 12. 3 (温度: 50°C)に変更したこと以外、上記と同じ条件で、 水酸化ニッケル rl (6時間滞留)、 r2 (10時間滞留)、 r3 (14時間滞留)、 r4 (18時間 滞留)および r5 (22時間滞留)を得た。
[0113] これらの水酸化ニッケル ql〜q5および rl〜r5は、いずれも β型の結晶構造を有 することを、粉末 X線回折測定により確認した。
[0114] (ォキシ水酸ィ匕ニッケルの調製)
続いて、 200gの水酸化ニッケル qlを 0. ImolZLの水酸化ナトリウム水溶液 1L中 に投入し、酸ィヒ剤の次亜塩素酸ナトリウム水溶液 (有効塩素濃度: 10wt%)を十分 量加えて攪拌し、ォキシ水酸ィ匕ニッケルに変換した。得られた粒子は十分に水洗後
、 60°Cの 24時間の真空乾燥を行って、ォキシ水酸ィ匕ニッケル Q1を得た。
[0115] 同様に、水酸化ニッケル q2〜q5および rl〜r5を、 \それぞれォキシ水酸化ニッケル
Q2〜Q5および R1〜R5に変換した。
得られたォキシ水酸化ニッケル Q 1〜Q5および Rl〜R5の体積基準の平均粒子径
(D50)、タップ密度(500回)の測定値をまとめて表 9に示す。
[0116] [表 9] ォキシ水酸化ニッケル 平均粒子径(D50) タップ密度
の種類 " m]
Q1 5.5 2.02
Q2 8.2 2.09
Q3 13.3 2.15
Q4 19.7 2.23
Q5 22.4 2.18
R 1 5.3 1.85
R2 8.3 1.88
R3 14.5 1.92
R4 19.4 1.93
R5 22.2 1.90 [0117] 水酸ィ匕ニッケル合成時の滞留時間を長くするほど、ォキシ水酸ィ匕ニッケルの平均 粒子径は大きくなり、合成時の pHを低くした場合には、タップ密度が低くなる傾向が あった。なお、これら 10種類のォキシ水酸化ニッケルのニッケル平均価数は、いずれ も 2. 97〜3. 00の範囲にあることを、酸化還元滴定を用いた分析により確認した。
[0118] (正極合剤ペレットの作製)
実施例 1と同様の方法で、ォキシ水酸化ニッケル Q1〜Q5および R1〜R5を含む 正極合剤ペレット Q1〜Q5および R1〜R5をそれぞれ得た。
[0119] (ニッケルマンガン電池の作製)
実施例 1と同様の方法で、正極合剤ペレット Q1〜Q5および R1〜R5を用いて、二 ッケルマンガン電池 Q1〜Q5および R1〜R5を作製した。電池内への正極合剤の充 填量等は、全ての電池について同じとした。
[0120] (ニッケルマンガン電池の評価)
得られた電池 Q1〜Q5および R1〜R5について、保存特性を評価した。 電池 Q1〜Q5および R1〜R5を、 60°Cの雰囲気下で 1週間保存し、その後、 20°C で 50mAの定電流で連続放電させ、電池電圧が終止電圧 0. 9Vに至るまでの放電 容量を測定した。電池 Q1の放電容量を基準値 100として、各電池の放電容量を表 1 0に相対値で示す。
[0121] [表 10]
電池の 60°C保存後
種類 50mA放電容量
Q1 100 (基準)
Q2 112
Q3 112
Q4 110
Q5 99
R1 89
R2 94
R3 99
R4 98
R5 90
[0122] 表 10より、同じ組成(Mg溶解量: 5mol%)を有し、ニッケル平均価数が 2. 97〜3.0 0価であるォキシ水酸ィ匕ニッケルであっても、平均粒子径およびタップ密度によって、 保存特性に顕著な差が生じることがわかる。表 10では、平均粒子径が 8〜20 m、 タップ密度が 2gZcm3以上である電池 Q2、 Q3および Q4の保存性能が特異的に向 上している。この理由の詳細は判明していないが、保存性能の向上は、正極合剤べ レット内の粒子間の接触が向上していることと関連するものと推察される。すなわち、 ォキシ水酸ィ匕ニッケルの粒子径ゃタップ密度が好適に制御されたことにより、正極合 剤ペレット内の粒子間の接触が向上したものと考えられる。
[0123] なお、上記の実施例では、電解二酸化マンガンと、ォキシ水酸ィ匕ニッケルと、黒鉛 導電剤との基本的な重量比を 50: 45: 5としたが、電解二酸ィ匕マンガンとォキシ水酸 化ニッケルとの合計に占める電解二酸化マンガンの含有量を 20〜90wt%、ォキシ 水酸化ニッケルの含有量を 10〜80wt%とし、電解二酸化マンガンとォキシ水酸化 ニッケルと黒鉛導電剤との合計に占める黒鉛導電剤の含有量を 3〜10wt%とする場 合には、特性 ·価格等のバランスに優れた同様のアルカリ電池を得ることができる。
[0124] 実施例 4では、 Zn、 Coおよび Mnより選ばれる 1種と Mgとを溶解させたォキシ水酸 化ニッケルの固溶体を用いた力 Zn、 Coおよび Mnより選ばれる複数種を同時に溶 解する固溶体を用いても、諸特性に優れたアルカリ電池を得ることができる。
[0125] また、 Zn、 Coおよび Mnより選択される元素 Mと Mgとを溶解させたォキシ水酸化- ッケルの固溶体に関しては、ニッケルの平均価数を変化させる場合について記載し なかったが、実施例 2の結果をカ卩味すれば、優れた電池特性を得るためには、 -ッケ ルの平均価数を 2. 95〜3. 05の範囲に制御すべきことが理解できる。
[0126] さらに、固溶体に含まれる Mg、 Zn、 Coおよび Mnの含有量を、いずれも 2. 5mol %としたが、実施例 3の結果も加味すると、 Mgの含有量が 0. lmol%以上であり、 M gを含めた Ni以外の金属元素の総含有量が 7mol%以下の範囲にあれば、ほぼ同 様のアルカリ電池が得られると推察される。
[0127] 実施例 5では、酸化イットリウム等の希土類酸ィ匕物の量を正極合剤全体の lwt。/c^ したが、 Y O、 Er O、 Tm O、 Yb Oおよび Lu O力 選ばれる 1種ないしは複数
2 3 2 3 2 3 2 3 2 3
種の量を、正極合剤全体の 0. l〜2wt%とする限り、保存特性についても、ほぼ同じ 水準にあるアルカリ電池を得ることが可能である。
[0128] さらに、上記実施例では、円筒形状の正極ケース内に筒状の正極合剤ペレットとセ パレータ、負極亜鉛ゲルを配置した、いわゆるインサイドアウト型のアルカリ乾電池を 作製したが、本発明はアルカリボタン型、角型等の別構造の電池にも適応することが 可能である。
産業上の利用可能性
[0129] 本発明によれば、ォキシ水酸ィ匕ニッケルを混合した正極合剤を含むアルカリ電池 の高容量化にカ卩えて、強負荷放電時ないしはパルス放電時の電池特性の向上を図 ることがでさる。

Claims

請求の範囲
[1] 正極、負極およびアルカリ電解液を含み、
前記正極は、電解二酸ィ匕マンガンおよびォキシ水酸ィ匕ニッケルを含む正極合剤を 含み、
前記ォキシ水酸ィ匕ニッケルは、
少なくとも Mgを溶解した結晶を含み、
タッピング回数が累計 500回のときのタップ密度が 2gZcm3以上であり、 体積基準の平均粒子径が 8〜20 μ mであり、
ニッケルの平均価数が 2. 95〜3. 05である、アルカリ電池。
[2] 前記ォキシ水酸ィ匕ニッケル中に含まれる Niと前記 Mgとの合計に占める前記 Mgの 含有量が、 0. l〜7mol%である、請求項 1記載のアルカリ電池。
[3] 前記正極合剤中に含まれる前記電解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケル との合計に占める前記電解二酸ィ匕マンガンの含有量力 20〜90^%であり、前記 合計に占める前記ォキシ水酸ィ匕ニッケルの含有量力 10〜80wt%である、請求項 1記載のアルカリ電池。
[4] 前記正極合剤が、さら〖こ、黒鉛導電剤を含み、前記正極合剤中に含まれる前記電 解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケルと前記黒鉛導電剤との合計に占める 前記黒鉛導電剤の含有量が、 3〜10wt%である、請求項 1記載のアルカリ電池。
[5] 前記正極合剤が、さらに、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oよりなる群か
2 3 2 3 2 3 2 3 2 3
ら選ばれる少なくとも 1種の希土類酸化物を含み、前記正極合剤中に含まれる前記 電解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケルと前記黒鉛導電剤と前記希土類酸 化物との合計に占める前記希土類酸ィ匕物の含有量力 0. l〜2wt%である、請求項 4記載のアルカリ電池。
[6] 正極、負極およびアルカリ電解液を含み、
前記正極は、電解二酸ィ匕マンガンおよびォキシ水酸ィ匕ニッケルを含む正極合剤を 含み、
前記ォキシ水酸ィ匕ニッケルは、
少なくとも Mgを必須成分として溶解し、かつ、 Co、 Znおよび Mnよりなる群力 選 ばれる少なくとも 1種の元素 Mを溶解する結晶を含み、
タッピング回数が累計 500回のときのタップ密度が 2gZcm3以上であり、 体積基準の平均粒子径が 8〜20 μ mであり、
ニッケルの平均価数が 2. 95〜3. 05である、アルカリ電池。
[7] 前記ォキシ水酸ィ匕ニッケル中に含まれる Niと前記 Mgと前記元素 Mとの合計に占 める前記 Mgの含有量が、 0. lmol%以上であり、前記合計に占める前記 Mgと前記 元素 Mとの総含有量が、 7mol%以下である、請求項 6記載のアルカリ電池。
[8] 前記正極合剤中に含まれる前記電解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケル との合計に占める前記電解二酸ィ匕マンガンの含有量力 20〜90^%であり、前記 合計に占める前記ォキシ水酸ィ匕ニッケルの含有量力 10〜80wt%である、請求項 6記載のアルカリ電池。
[9] 前記正極合剤が、さら〖こ、黒鉛導電剤を含み、前記正極合剤中に含まれる前記電 解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケルと前記黒鉛導電剤との合計に占める 前記黒鉛導電剤の含有量が、 3〜: LOwt%である、請求項 6記載のアルカリ電池。
[10] 前記正極合剤が、さらに、 Y O、 Er O、 Tm O、 Yb Oおよび Lu Oよりなる群か
2 3 2 3 2 3 2 3 2 3
ら選ばれる少なくとも 1種の希土類酸化物を含み、前記正極合剤中に含まれる前記 電解二酸ィ匕マンガンと前記ォキシ水酸ィ匕ニッケルと前記黒鉛導電剤と前記希土類酸 化物との合計に占める前記希土類酸ィ匕物の含有量力 0. l〜2wt%である、請求項 9記載のアルカリ電池。
PCT/JP2005/011020 2004-06-24 2005-06-16 アルカリ電池 WO2006001210A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/588,036 US20070166614A1 (en) 2004-06-24 2005-06-16 Alkaline battery
EP05751519A EP1717887A4 (en) 2004-06-24 2005-06-16 ALKALINE BATTERY
JP2006528485A JPWO2006001210A1 (ja) 2004-06-24 2005-06-16 アルカリ電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004186420 2004-06-24
JP2004-186420 2004-06-24

Publications (1)

Publication Number Publication Date
WO2006001210A1 true WO2006001210A1 (ja) 2006-01-05

Family

ID=35781708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011020 WO2006001210A1 (ja) 2004-06-24 2005-06-16 アルカリ電池

Country Status (6)

Country Link
US (1) US20070166614A1 (ja)
EP (1) EP1717887A4 (ja)
JP (1) JPWO2006001210A1 (ja)
KR (1) KR100882403B1 (ja)
CN (1) CN100431206C (ja)
WO (1) WO2006001210A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207658A (ja) * 2006-02-03 2007-08-16 Fdk Energy Co Ltd アルカリ一次電池
CN100438153C (zh) * 2006-07-20 2008-11-26 厦门大学 一种碱性电池的正极材料和制备方法
JP2010536697A (ja) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
JP2011501727A (ja) * 2007-10-12 2011-01-13 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状のniambox(oh)y化合物、その製造方法並びにバッテリーにおけるその使用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101106403B1 (ko) * 2009-12-23 2012-01-17 삼성에스디아이 주식회사 이차 전지
CN103000861A (zh) * 2011-09-14 2013-03-27 比亚迪股份有限公司 一种碱锰电池的正极和一种碱锰电池
CN115893529B (zh) * 2022-11-24 2024-07-02 福建南平南孚电池有限公司 一种羟基氧化镍的制备方法、所制得的羟基氧化镍及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110154A (ja) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法
JP2002289187A (ja) * 2001-03-27 2002-10-04 Sony Corp ベータ型オキシ水酸化ニッケルおよびその製造方法、正極活物質、電池用正極、並びにニッケル亜鉛電池
JP2003123747A (ja) * 2001-10-17 2003-04-25 Sony Corp アルカリ亜鉛電池
JP2003234107A (ja) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd アルカリ電池
JP2003242990A (ja) * 2002-02-15 2003-08-29 Fdk Corp アルカリ一次電池
JP2003257423A (ja) * 2001-12-28 2003-09-12 Toshiba Battery Co Ltd 密閉形アルカリ亜鉛一次電池及びこの電池に用いるアルカリ亜鉛系化合物正極合剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700596A (en) * 1991-07-08 1997-12-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
JP3351261B2 (ja) * 1996-09-30 2002-11-25 松下電器産業株式会社 ニッケル正極とそれを用いたニッケル・水素蓄電池
EP0975036A4 (en) * 1997-01-30 2005-11-23 Sanyo Electric Co BATTERY OF ACCUMULATORS TO ALCALIS BLINDEE
JP3866884B2 (ja) * 1998-10-08 2007-01-10 松下電器産業株式会社 アルカリ電池
JP2002008650A (ja) * 2000-04-21 2002-01-11 Sony Corp 正極活物質およびニッケル亜鉛電池
WO2003034520A1 (fr) * 2001-10-17 2003-04-24 Sony Corporation Batterie alcaline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110154A (ja) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法
JP2002289187A (ja) * 2001-03-27 2002-10-04 Sony Corp ベータ型オキシ水酸化ニッケルおよびその製造方法、正極活物質、電池用正極、並びにニッケル亜鉛電池
JP2003123747A (ja) * 2001-10-17 2003-04-25 Sony Corp アルカリ亜鉛電池
JP2003257423A (ja) * 2001-12-28 2003-09-12 Toshiba Battery Co Ltd 密閉形アルカリ亜鉛一次電池及びこの電池に用いるアルカリ亜鉛系化合物正極合剤
JP2003234107A (ja) * 2002-02-07 2003-08-22 Matsushita Electric Ind Co Ltd アルカリ電池
JP2003242990A (ja) * 2002-02-15 2003-08-29 Fdk Corp アルカリ一次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1717887A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207658A (ja) * 2006-02-03 2007-08-16 Fdk Energy Co Ltd アルカリ一次電池
CN100438153C (zh) * 2006-07-20 2008-11-26 厦门大学 一种碱性电池的正极材料和制备方法
JP2010536697A (ja) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
US9028710B2 (en) 2007-08-21 2015-05-12 H.C. Starck Gmbh Powdered NiaM1bM2c(O)x(OH)y compounds, method for the production thereof and use thereof in batteries
US9352977B2 (en) 2007-08-21 2016-05-31 H.C. Starck Gmbh Powered compounds, method for the production thereof, and use thereof in lithium secondary batteries
JP2011501727A (ja) * 2007-10-12 2011-01-13 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状のniambox(oh)y化合物、その製造方法並びにバッテリーにおけるその使用
KR101526628B1 (ko) * 2007-10-12 2015-06-05 하.체. 스타르크 게엠베하 분말 NiaMbOx(OH)y 화합물, 이 화합물의 제조 방법, 및 배터리에서의 이 화합물의 용도

Also Published As

Publication number Publication date
JPWO2006001210A1 (ja) 2008-04-17
CN1918729A (zh) 2007-02-21
US20070166614A1 (en) 2007-07-19
CN100431206C (zh) 2008-11-05
EP1717887A1 (en) 2006-11-02
EP1717887A4 (en) 2010-04-07
KR100882403B1 (ko) 2009-02-05
KR20060123627A (ko) 2006-12-01

Similar Documents

Publication Publication Date Title
CN108217753B (zh) 一种梯度掺杂四氧化三钴材料及其制备方法
US20130221271A1 (en) Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
JP2001015106A (ja) アルカリ電池
WO2003067689A1 (fr) Pile alcaline
WO2006001210A1 (ja) アルカリ電池
JPWO2005104272A1 (ja) アルカリ一次電池およびその正極材の製造方法
CN100431212C (zh) 碱性电池
AU2005224903B2 (en) Alkaline battery
JPWO2005045958A1 (ja) アルカリ電池およびアルカリ電池用正極材料の製造方法
JP4040829B2 (ja) アルカリ電池およびその正極活物質の製造方法
JP2002367606A (ja) アルカリ電池用負極組成物、この組成物に用いる亜鉛合金粉末およびこの組成物を用いたアルカリ電池
JP2005310752A (ja) アルカリ電池
WO2005015666A1 (ja) アルカリ電池
JP2006313678A (ja) アルカリ一次電池とその製造方法
JPWO2006040907A1 (ja) アルカリ電池
JP2003242990A (ja) アルカリ一次電池
JP2005071991A (ja) アルカリ電池
JP3663071B2 (ja) 密閉型アルカリ亜鉛蓄電池
JP2006221831A (ja) アルカリ乾電池
JP2003123746A (ja) アルカリ亜鉛電池
US20020039682A1 (en) Ni/metal hydride secondary element
JP2006179429A (ja) アルカリ乾電池
WO2003044883A1 (en) Non-aqueous primary battery
JP2007035506A (ja) アルカリ電池
JP2006012533A (ja) アルカリ電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528485

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007166614

Country of ref document: US

Ref document number: 10588036

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005751519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580004686.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067018865

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005751519

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067018865

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10588036

Country of ref document: US