WO2006011430A1 - アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法 - Google Patents

アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2006011430A1
WO2006011430A1 PCT/JP2005/013532 JP2005013532W WO2006011430A1 WO 2006011430 A1 WO2006011430 A1 WO 2006011430A1 JP 2005013532 W JP2005013532 W JP 2005013532W WO 2006011430 A1 WO2006011430 A1 WO 2006011430A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
cobalt
nickel hydroxide
Prior art date
Application number
PCT/JP2005/013532
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Sakamoto
Kazuhiro Ohkawa
Shinichi Yuasa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/658,805 priority Critical patent/US9276258B2/en
Priority to EP05766526A priority patent/EP1783848B1/en
Priority to CN2005800255813A priority patent/CN1993845B/zh
Publication of WO2006011430A1 publication Critical patent/WO2006011430A1/ja
Priority to US12/926,155 priority patent/US20110108759A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode active material for alkaline storage batteries, a positive electrode for alkaline storage batteries, an alkaline storage battery, and a method for producing a positive active material for alkaline storage batteries.
  • Al-powered rechargeable batteries have attracted attention as power sources for portable devices and portable devices, and as power sources for electric vehicles and hybrid vehicles.
  • Various alkaline storage batteries have been proposed.
  • a positive electrode made of an active material mainly composed of nickel hydroxide a negative electrode mainly composed of a hydrogen storage alloy, and a hydroxide.
  • Nickel-metal hydride secondary batteries equipped with an alkaline electrolyte containing power lithium and the like are rapidly spreading as secondary batteries with high energy density and excellent reliability.
  • the positive electrode of a nickel metal hydride secondary battery is roughly classified into two types, a sintered nickel electrode and a paste type (non-sintered) nickel electrode, depending on the manufacturing method of the electrode.
  • the sintered nickel electrode deposits nickel hydroxide into the micropores of a porous sintered substrate that is obtained by sintering nickel fine powder on both sides of a perforated steel sheet (punching metal) by a solution impregnation method or the like.
  • a paste-type nickel electrode is manufactured by directly filling an active material containing nickel hydroxide into pores of a porous nickel porous substrate (foamed nickel substrate) having a high porosity (for example, Patent Documents). 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. Sho 62-1-5 1769
  • Patent Document 2 Patent 3 3 6 3 6 70
  • Patent Document 3 Patent 3 2 3 4 4 9 2
  • Patent Document 4 Japanese Patent Laid-Open No. 2 00 1 _ 3 5 7 8 4 4
  • Paste type nickel electrode has high packing density of nickel hydroxide and high energy Due to its easy density, it is now the mainstream of positive electrodes for nickel metal hydride storage batteries.
  • improvement of active material powders and additives to be filled has improved the utilization of active materials, and improved high-rate discharge characteristics and output characteristics (for example, Patent Document 2, (See Patent Document 3 and Patent Document 4).
  • Patent Document 2 by performing heat treatment in the coexistence of oxygen and alkali, a crystal is formed on the surface of hydroxide-nickel particles containing one or more of zinc, cadmium, magnesium, and calcium in a solid solution state. Forms a coating layer of cobalt compounds that are larger than the divalent disorder. Cobalt compounds that are larger than divalent have very high electrical conductivity, so that the utilization factor of the active material is remarkably improved.
  • nickel hydroxide particles contain one or more of zinc, cadmium, magnesium, and calcium in the solid solution state, when overdischarge is maintained while maintaining a high active material utilization rate. It is said that capacity reduction can be suppressed.
  • Patent Document 3 formed on the surface of particles mainly composed of nickel hydroxide particles or nickel hydroxide, the sodium content 0. Conductive layer of 1 to 1 0 weight 0/0, and sodium-containing cobalt compound To do. It is said that the incorporation of sodium into the cobalt compound crystals results in a highly conductive compound, which makes the utilization of the active material extremely high.
  • Patent Document 4 clarifies that an excellent high-rate discharge characteristic and output characteristic are exhibited in a solid solution of nickel hydroxide with a small amount of magnesium. Furthermore, by using a solid solution of nickel hydroxide containing a small amount of magnesium as the positive electrode active material, the production of ⁇ 1 N i O O H can be suppressed, so that the cycle life of the battery is also improved. Disclosure of the invention
  • Patent Document 2 or Patent Document 3 by increasing the conductivity of the cobalt compound layer of the active material, the current collecting property of the positive electrode is improved and the utilization rate of the active material is increased. Was found to be significantly reduced. This is because when a cobalt compound layer with high conductivity is previously provided on the surface of nickel hydroxide, the nickel hydroxide surface is attached. It is assumed that the charge depth increases locally because the recent reactivity is significantly improved. In this way, the portion where the depth of charge is locally large is at a high potential, so it is thought that the self-discharge reaction proceeds preferentially with the oxygen generation reaction.
  • the present invention has been made in view of the current situation, and has a positive output material having good output characteristics and good self-discharge characteristics and cycle life characteristics, a positive electrode active material for an alkaline power storage battery, a positive electrode for an alkaline power storage battery, An object of the present invention is to provide an Al power storage battery and a method for producing a positive electrode active material for the Al power storage battery. Means for solving the problem
  • the solution is a positive electrode active material for alkaline storage battery, comprising: nickel hydroxide particles containing at least magnesium in a solid solution state; and a cobalt compound layer covering the surface of the nickel hydroxide hydroxide particles.
  • the cobalt compound layer has an average valence of cobalt contained in the cobalt compound layer of 2.6 or more and 3.0 or less, and contains sodium in a proportion of less than 0.1% by weight based on the total weight of the cobalt compound layer.
  • It is a positive electrode active material for alkaline storage batteries whose electrical conductivity is less than 1.0 x 1 0 _ 5 SZ cm when the active material is pressurized at 39.2 MPa (4,000 kgf Z cm 2) .
  • the positive electrode active material for an alkaline storage battery of the present invention has nickel hydroxide particles containing at least magnesium in a solid solution state.
  • nickel hydroxide particles containing at least magnesium in a solid solution state.
  • high rate discharge characteristics and output characteristics can be improved. This is thought to be because the electronic conductivity of nickel hydroxide is improved by the presence of divalent and stable magnesium in the nickel hydroxide crystal even in the charged state.
  • the surface of hydroxide nickel particles is displayed.
  • the average valence of cobalt contained in the cobalt compound layer covering the surface is set to 2.6 or more and 3.0 or less.
  • the self-discharge characteristic can be improved (self-discharge can be suppressed).
  • the ratio of highly conductive oxyhydroxide cobalt formed by electrochemical oxidation in the battery by charging is large. It can be suppressed. As a result, the deterioration of the self-discharge characteristics can be suppressed.
  • the average valence of cobalt is set to 3.0 or less, it is possible to maintain the balance of charges in the crystal of the cobalt compound and to stabilize the conolate compound. Therefore, the reaction with the alkaline electrolyte in the battery can be suppressed, and the incorporation of cations such as sodium ions and potassium ions into the crystal can be suppressed. Thereby, an increase in the electronic conductivity of the cobalt compound can be suppressed, and as a result, the self-discharge characteristics can be improved.
  • the proportion of sodium contained in the cobalt compound layer, relative to the total weight of the cobalt compound layer 0. 1 0 are less than the weight 0/0.
  • the positive electrode active material for an alkaline storage battery of the present invention has a conductivity smaller than 1. O xl O— 5 SZ cm under a pressure of 39.2 MPa (400 kgf / cm 2). Let's go. Thus, by reducing the electrical conductivity, the self-discharge characteristics can be improved, and the cycle life characteristics are also improved.
  • the proportion of the magnesium contained in the nickel hydroxide particles in a solid solution state is as follows with respect to all the metal elements contained in the nickel hydroxide particles.
  • above 2 mole% 1 0 mole 0/0 in which may is a positive electrode active material for an alkaline storage battery follows.
  • the proportion of magnesium contained in the nickel hydroxide particles in a solid solution state is 2 mol 0 »or more for all metal elements contained in the nickel hydroxide particles 1 It is set to 0 mole 0/0 or less. Magnesium content of 2 mol% or less By setting it as above, the high rate discharge characteristics and the output characteristics can be appropriately improved. On the other hand, if the proportion of magnesium exceeds 10 mol%, self-discharge may be significantly accelerated. On the other hand, in the positive electrode active material for an alkaline storage battery of the present invention, since the proportion of magnesium is 10 mol% or less, self-discharge can be appropriately suppressed.
  • any one of the positive electrode active materials for alkaline storage batteries described above may be 1.0% by weight or less of the positive electrode active material for alkaline storage batteries.
  • the proportion of sulfate radicals contained in the positive electrode active material exceeds 1.0% by weight, the sulfate radicals are taken into the crystals of the cobalt compound due to repeated charge and discharge, and the crystallinity of the cobalt compound is likely to deteriorate. . Cobalt compounds with low crystallinity are likely to be reduced by repeated charge and discharge, and may not be able to suppress self-discharge appropriately.
  • the proportion of sulfate radicals contained in the positive electrode active material is 1.0% by weight or less, self-discharge characteristics can be improved over a long period of time. it can.
  • the positive electrode active material for an aluminum power storage battery having a half-width of the peak of the (101) plane located in the vicinity of more than 0.7 ° and not more than 1.2 ° is preferable.
  • the half width of the peak of the (101) plane located near 20 37 ° to 40 ° of X-ray diffraction using CuKo;
  • the angle is 0.7 ° or less, since there are few lattice defects, proton diffusion is slowed (reaction is hindered), and high-rate discharge characteristics may be remarkably deteriorated.
  • the half width of the peak exceeds 1.2 °, the nickel hydroxide particles in the positive electrode tend to have a low density. For this reason, the capacity density of the positive electrode may be reduced.
  • the positive electrode active material for Al power storage battery of the present invention uses Cu u ⁇ rays.
  • Cobalt oxyhydroxide has a hexagonal rhombohedral layer structure and an XRD pattern described in JCPDS inorganic material number: 7-169. Originally, this cobalt oxyhydroxide has low electron conductivity because H + in the crystal structure forms a strong hydrogen bond with O 2 that exists above and below. However, when the crystallinity is low, many crystallite interfaces are formed, and this crystallite interface functions as an electron conduction surface, resulting in high electron conductivity. Furthermore, when the crystallinity is low, cations such as sodium ions are likely to be taken into the crystal in a high-concentration alkaline aqueous solution (alkaline electrolyte), so that the electron conductivity tends to be higher. Therefore, when nickel hydroxide particles are covered with a cobalt compound layer mainly composed of oxyhydroxide copalt having low crystallinity, the electron conductivity increases, but on the other hand, self-discharge tends to occur.
  • the cobalt compound forming the cobalt compound layer is mainly composed of cobalt oxyhydroxide and uses a CuKa line.
  • the positive electrode active material for an alkaline storage battery of the present invention is obtained by coating nickel hydroxide hydroxide particles with a cobalt compound layer mainly composed of oxyhydroxide cobalt.
  • cobalt oxyhydroxide having a peak half-value width of 1.5 ° or less has high crystallinity and low conductivity. For this reason, By using the positive electrode active material for an alkaline storage battery of the present invention, excellent self-discharge characteristics and cycle life characteristics can be obtained.
  • the residence time (reaction time) in the reaction vessel must be shortened. Since the positive electrode active material produced in a short time becomes bulky and particles, the capacity density of the positive electrode is lowered by using a positive electrode active material having an average particle size smaller than 5 m. On the other hand, when a positive electrode active material having an average particle size larger than 20 ⁇ m is used, the positive electrode expands significantly due to the influence of the crystalline structure of nickel hydride during the charge / discharge process. As a result, the electrolyte in the separator is reduced (and eventually depleted), and the cycle life characteristics are degraded.
  • the positive electrode active material for an alkaline storage battery of the present invention has an average particle size of 5 ⁇ ⁇ or more and 20 ⁇ or less, so there is no possibility that the above-described problems will occur. Therefore, by using the positive electrode active material for an alkaline power storage battery of the present invention, the capacity density of the positive electrode can be increased and the cycle life characteristics can be improved.
  • the average thickness of the cobalt compound layer is set to 0.2 ⁇ or less.
  • the average thickness of the cobalt compound layer is set to 0.2 / zm or less.
  • the possibility that the cobalt compound layer is peeled off from the nickel hydroxide particles can be reduced.
  • the electrochemical reaction on the nickel hydroxide surface is good, the charge / discharge efficiency is good.
  • the specific surface area measured using the BET method by nitrogen gas adsorption is not less than 8.0 m 2 / g 1.8 ⁇ 1 Om
  • the positive electrode active material for an Al power storage battery is 2 / g or less.
  • the specific surface area of the positive electrode active material is less than 8. Om 2 / g, the effective area of the solid-liquid interface, which is the charge / discharge reaction field, is too small, resulting in increased polarization and the utilization rate of the positive electrode active material It will decline. On the contrary, when the specific surface area of the positive electrode active material is larger than 1. 8xl 0m 2 / g, the electrolyte solution in the separator easily moves into the positive electrode, so that the electrolyte solution in the separator is reduced (and eventually dried up). However, cycle life characteristics may be deteriorated.
  • the positive electrode active material for alkaline storage batteries of the present invention has a specific surface area measured using the BET method by nitrogen gas adsorption of not less than 8.0 m 2 Zg and not more than 1.8 x 0 m 2 / g3 ⁇ 4, There is no possibility that such a problem will occur. Therefore, by using the positive electrode active material for an alkaline power storage battery of the present invention, the utilization factor of the positive electrode active material can be increased and the cycle life characteristics can be improved.
  • any one of the above-described positive electrode active materials for alkaline storage batteries wherein an aqueous solution of sodium hydroxide is supplied into an aqueous solution containing nickel hydroxide particles to maintain the pH in the range of 11.5 to 13.5. While being supplied with an aqueous solution containing cobalt ions, a positive electrode active material for an alkaline storage battery produced by supplying air is preferable.
  • the positive electrode active material for an alkaline power storage battery supplies cobalt hydroxide aqueous solution to an aqueous solution containing nickel hydroxide particles and keeps it in the range of pH 1 1.5 to 13.5 to cobalt ion. It is made by supplying an aqueous solution containing.
  • the pH of the aqueous solution in the reaction vessel By setting the pH of the aqueous solution in the reaction vessel to 11.5 or higher, the crystallinity of the cobalt compound covering the surface of the nickel hydroxide particles can be increased.
  • the crystal growth of the conol compound can be promoted by adjusting the pH of the aqueous solution in the reaction tank to 13.5 or less, the cobalt compound layer may be peeled off from the nickel hydroxide particles. Can be reduced.
  • a method for controlling the average valence of cobalt a method of adding an oxidizing agent such as hydrogen peroxide, sodium hypochlorite, or hypochlorous acid lithium, or a method of acidifying by heat treatment is used. I used it.
  • an oxidizing agent such as hydrogen peroxide, sodium hypochlorite, or hypochlorous acid lithium
  • the oxidation reaction proceeds rapidly and the average valence of cobalt tends to exceed 3.0. Therefore, it was not easy to adjust the average valence of cobalt to 3 ⁇ 0 or less. For this reason, a cobalt compound layer having high conductivity and low crystallinity tends to be formed, and the self-discharge of the alkaline storage battery tends to increase.
  • the method of oxidizing by heat treatment is not preferable because Co 3 O 4 or the like that inhibits the charge / discharge reaction is easily generated.
  • Te technique odor acid I arsenate by heat treatment even when produced in suppressing conditions the formation of Co 3 0 4, crystallinity becomes low cobalt compound formed, conductive It turns out that the nature becomes high. Therefore, the method of adding an oxidizing agent and the method of oxidizing cobalt by heat treatment tend to increase the self-discharge of the alkaline storage battery.
  • the positive electrode active material for an alkaline storage battery of the present invention is produced by supplying air.
  • air oxygen
  • the oxidation reaction proceeds to control the mono- valent valence.
  • the positive electrode active material for the above-described Al-powered rechargeable battery wherein the dissolved oxygen concentration in the aqueous solution containing the nickel hydroxide particles is reduced to 1. OmgZl by air supplied to the aqueous solution containing the nickel hydroxide particles.
  • the positive electrode active material for an Al-powered rechargeable battery is manufactured as 1.5x1 OmgZl or less.
  • the cobalt value is adjusted by adjusting the oxygen concentration in the aqueous solution in the reaction tank.
  • the number can be easily adjusted.
  • the present inventors have examined, when the concentration of dissolved oxygen in the aqueous solution in the reaction tank 1. reacted with less than Om g / l is the average valence of cobalt 2. increase in 6 or more
  • the cobalt compound layer easily peeled off from the nickel hydroxide particles. It was also found that the average valence of cobalt may exceed 3.0 when the oxygen concentration in the aqueous solution in the reaction vessel is higher than 1.5x1 Omg_l.
  • the positive electrode active material for alkaline storage batteries of the present invention comprises nickel hydroxide particles.
  • the dissolved oxygen concentration in the aqueous solution containing nickel hydroxide particles is set to 1. O mg / 1 or more and 1.5 X 1 O mg Z 1 or less by the air supplied into the aqueous solution.
  • the average valence of cobalt can be appropriately adjusted within the range of 2.6 or more and 3.0 or less. Therefore, a cobalt compound layer having an average valence number of cobalt of 2.6 or more and 3.0 or less appropriately becomes a positive electrode active material formed on the surface of nickel hydroxide particles.
  • Another solution is a positive electrode for an Al force rechargeable battery including any one of the positive electrode active materials for the Al force rechargeable battery described above.
  • the positive electrode for an alkaline storage battery of the present invention contains any of the positive electrode active materials described above. By using such a positive electrode, the output characteristics of the alkaline storage battery can be improved, and the self-discharge characteristics and cycle life characteristics can also be improved.
  • the positive electrode for an alkaline storage battery described above may be a positive electrode for an alkaline storage battery including, in addition to the positive electrode active material, metal cobalt particles (powder) and yttrium oxide particles (powder).
  • the positive electrode active material has a cobalt compound layer having relatively low conductivity. For this reason, compared with the case where a positive electrode active material has a cobalt compound layer with high electroconductivity, the current collection property of a positive electrode will fall.
  • the positive electrode for an alkaline storage battery of the present invention contains metallic cobalt particles (powder) and yttrium oxide particles (powder) in addition to the positive electrode active material.
  • metal cobalt particles (powder) excellent in conductivity in the positive electrode the current collecting property of the positive electrode can be increased.
  • yttrium oxide particles (powder) the oxygen generation overvoltage can be raised specifically, and the charge acceptability can be improved. This is thought to be due to the following reasons.
  • yttrium oxide particles (powder) in the electrode, the oxygen generation overvoltage is increased and the charge acceptability is improved.
  • metallic cobalt particles (powder) when metallic cobalt particles (powder) are contained in the positive electrode, a mixed oxide of cobalt and yttrium is generated during charging, and thus yttrium oxide The dispersibility of is improved. For this reason, it is considered that the oxygen generation overvoltage rises specifically and the charge acceptance is improved.
  • the positive electrode for an alkaline storage battery wherein the metallic cobalt particles (powder) are contained at a ratio of 2 to 7 parts by weight with respect to 100 parts by weight of the positive electrode active material. Good to be.
  • the positive electrode for alkaline storage batteries of the present invention contains 2 to 7 parts by weight of metal cobalt particles (powder) with respect to 100 parts by weight of the positive electrode active material.
  • metal cobalt particles (powder) By containing metal cobalt particles (powder) in a proportion of 2 parts by weight or more with respect to 100 parts by weight of the positive electrode active material, it is possible to improve the current collection and improve the utilization rate of the active material. can do. Further, by setting the ratio with respect to 100 parts by weight of the positive electrode active material to 7 parts by weight or less, a sufficient amount of positive electrode active material can be secured, and a positive electrode having a high capacity density can be obtained.
  • the yttrium oxide particles (powder) are included at a ratio of 0.5 to 3 parts by weight with respect to 100 parts by weight of the positive electrode active material.
  • a positive electrode for an Al power rechargeable battery is preferable.
  • the positive electrode for an alkaline storage battery of the present invention contains yttrium oxide particles (powder) at a ratio of 0.5 to 3 parts by weight with respect to 100 parts by weight of the positive electrode active material.
  • yttrium oxide particles (powder) By containing yttrium oxide particles (powder) in a proportion of 0.5 parts by weight or more with respect to 100 parts by weight of the positive electrode active material, charge acceptability can be improved.
  • yttrium oxide particles (powder) are insulators, they have electrical resistance in the positive electrode, and when the content is large, the high-rate discharge characteristics and output characteristics of the Al-rich battery are lowered.
  • the ratio of yttrium oxide particles (powder) to 100 parts by weight of the positive electrode active material is limited to 3 parts by weight or less. The characteristics can be improved.
  • Another solution is an Al force storage battery including any of the above positive electrodes for Al power storage batteries.
  • the alkaline storage battery of the present invention includes any of the positive electrodes for alkaline storage batteries described above. Therefore, the output characteristics are good, and the self-discharge characteristics and cycle life characteristics are good.
  • Another solution is a method for producing a positive electrode active material for an alkaline storage battery, comprising: Eckel hydroxide particles and a cobalt compound layer covering the particles;
  • the aqueous solution containing sodium hydroxide is supplied with an aqueous solution of sodium hydroxide to keep the pH in the range of 11.5 to 13.5 while supplying an aqueous solution containing cobaltion, and is supplied with air.
  • This is a method for producing a positive electrode active material for an Al force rechargeable battery having a cobalt compound layer forming step for forming the cobalt compound layer on the surface of the battery.
  • an aqueous solution of sodium hydroxide is supplied to supply an aqueous solution containing cobalt ions while maintaining the pH in the range of 11.5 to 13.5, and a cobalt compound is formed on the surface of the nickel hydroxide particles.
  • a cobalt compound is formed on the surface of the nickel hydroxide particles.
  • the average valence of cobalt is easily and appropriately adjusted by supplying air to the aqueous solution in the reaction tank and adjusting the oxygen concentration in the aqueous solution. It can be 6 or more and 3.0 or less. This makes it possible to easily and appropriately suppress the increase in conductivity of the cobalt compound layer that accompanies charging / discharging, thereby improving the self-discharge characteristics of the alkaline storage battery.
  • the dissolved oxygen concentration in the aqueous solution is set to 1 by the air supplied into the aqueous solution containing the nickel hydroxide particles.
  • OmgZl or more 1.5 Preferable method for producing a positive electrode active material for an alkaline power storage battery maintained at 5x1 Omg / 1 or less.
  • the aqueous solution in the reaction vessel By adjusting the oxygen concentration therein, the valence of the cobalt can be easily adjusted.
  • the dissolved oxygen concentration in the aqueous solution in the reaction tank being lower than 1.0 mg / 1, the average valence of cobalt was increased to 2.6 or more.
  • the cobalt compound layer was easily peeled off from the nickel hydroxide particles. It was also found that if the oxygen concentration in the aqueous solution in the reaction vessel was higher than 1.5xl0mgZ1, the average valence of cobalt could exceed 3.0.
  • the dissolved oxygen concentration in the aqueous solution is 1. Omg / 1 or more 1.5 ⁇ 1 by air supplied into the aqueous solution containing the nickel hydroxide particles. Keep Omg / 1 or less. As a result, the average valence of the co- pal can be appropriately adjusted within the range of 2.6 to 3.0.
  • FIG. 1 is a characteristic diagram showing the relationship between the average valence of cobalt contained in the cobalt compound layer and the utilization ratio (CZA) xl 00 (%) for the alkaline storage battery according to Example 2. ⁇
  • FIG. 2 is a characteristic diagram showing the relationship between the amount of sodium contained in the cobalt compound layer and the utilization ratio (C / A) xl 00 (%) for the alkaline storage battery according to Example 3.
  • Figure 3 shows the amount of magnesium contained in nickel hydroxide, the utilization rate ratio (C / A) xl 00 (%), and the utilization rate ratio (B / A) xl 00 ( %) Is a characteristic diagram showing a relationship with
  • Figure 4 shows the amount of yttrium oxide contained in the positive electrode and the utilization ratio (F / A) I 00 (%) and utilization ratio (B / A) xl 00 (%) for the alkaline storage battery according to Example 11
  • Example 1 Example 1
  • nickel hydroxide particles containing magnesium in a solid solution state were produced as follows. First, prepare a mixed solution containing nickel sulfate and magnesium sulfate, an aqueous solution of sodium hydroxide, and an aqueous solution of ammonia, and each of them continuously in a reactor maintained at 50 ° C at a flow rate of 0.5 m 1 min. Supplied. The concentration of the mixture containing nickel sulfate and magnesium sulfate is 2.4 mol / 1. Among these, the mixing ratio of nickel sulfate and magnesium sulfate was set so that the mole number of magnesium with respect to the total mole number of nickel and magnesium was 5 mol%. The concentration of the sodium hydroxide aqueous solution was 5.5 mol / 1, and the concentration of the ammonia aqueous solution was 6.0 mol Z 1.
  • the pH in the reaction vessel became constant at 12.5, the balance between the metal salt concentration and the metal hydroxide particle concentration became constant, and after reaching a steady state, overflowed from the reaction vessel.
  • the suspension was collected and the precipitate was separated by decantation. Thereafter, this precipitate was washed with water and dried to obtain a nickel hydroxide powder having an average particle size of 10 ⁇ m.
  • the composition of the obtained nickel hydroxide powder was analyzed using ICP emission analysis.
  • the ratio of magnesium to all metal elements (nickel and magnesium) contained in the nickel hydroxide particles was It was 5 mol% similarly to the mixed solution used.
  • a coating layer of a conolate compound (hereinafter also referred to as a cobalt compound).
  • a positive electrode active material was manufactured by forming a layer. Specifically, first, 5.5 mol / l of sodium hydroxide aqueous solution was supplied to an aqueous solution (suspension) containing magnesium solid solution and nickel particles, and 2.4 mol / l. Then, stirring was continued while maintaining pH 12.5 at 5'0 ° C. At this time, air was supplied into the reaction tank, and the oxygen concentration in the aqueous solution in the reaction tank was kept constant at 3.
  • magnesium solid solution nickel hydroxide particles on which a cobalt compound layer is formed are treated with an aqueous solution of sodium hydroxide having a pH of 13 to 14 to remove anions such as sulfate, and then washed with water. Cations such as sodium ions were removed and dried. In this way, a positive electrode active material having an average particle diameter of 10 m could be obtained.
  • the amount of sulfate ion (sulfate radical) and sodium ion contained in the positive electrode active material was adjusted by adjusting the conditions for alkali treatment and washing with water.
  • Composition analysis of the obtained positive electrode active material revealed that the proportion of sodium ions contained in the conoleto compound was 0.01% by weight with respect to the total weight of the cobalt compound.
  • the ratio of the sulfate contained in the positive electrode active material was against the total weight of the positive active material 3. 0x10- 2% by weight.
  • the amount of cobalt contained in the cathode active material was measured using ICP emission analysis. It was. Further, a solution obtained by adding hydrochloric acid to the positive electrode active material powder and the potassium iodide powder was titrated with a sodium thiosulfate solution, and a starch solution was added near the end point to complete the titration. Based on the titration amount of the sodium thiosulfate solution at the end point and the amount of cobalt contained in the positive electrode active material obtained earlier, the average valence of cobalt was 2.85.
  • the specific surface area of the obtained positive electrode active material was measured by BET method using nitrogen gas adsorption and found to be 10.5 m 2 Zg.
  • an enlarged image near the edge of the fracture surface of the active material particles was observed by TEM (transmission electron microscope), and the thickness of the cobalt compound layer was investigated.
  • the average thickness was 0.15 ⁇ .
  • the positive electrode active material was pressurized at 39.2 kg (400 kgf / cm 2), the electrical conductivity was measured and found to be 2.5 ⁇ 10 — 8 SZcm. Since the positive electrode active material had high resistance, it was difficult to measure by the usual DC four-terminal method. For this reason, it was measured by the double ring method (using Mitsubishi Chemical's Hiresta UP) by applying a constant voltage.
  • a nickel positive electrode was produced. Specifically, first, the positive obtained in Step 2 The active material powder 100 g, cobalt powder 5 g, and yttrium oxide (Y 2 O 3 ) powder 2 g were mixed, and 27 g of water was added thereto and kneaded to form a paste. It was. The paste was filled in a foamed nickel substrate having a porosity of 95%, dried, and then press-molded to produce a nickel positive electrode plate. Next, the nickel positive electrode plate was cut into a predetermined size, and an electrode lead was spot welded to the nickel positive electrode plate, thereby obtaining a nickel positive electrode having a theoretical capacity of 130 mAh. The theoretical capacity of the nickel electrode is calculated assuming that nickel in the active material undergoes an electron reaction.
  • the positive electrode of Example 1 As described above, 5 g of cobalt powder is added to 100 g of the positive electrode active material powder. That is, 5 parts by weight of cobalt is contained with respect to 100 parts by weight of the positive electrode active material. Also, 2 g of yttrium oxide (Y 2 0 3 ) powder is added to 100 g of the positive electrode active material powder. That is, 2 parts by weight of yttrium oxide (Y 2 O 3 ) is contained with respect to 100 parts by weight of the positive electrode active material.
  • Y 2 0 3 yttrium oxide
  • a negative electrode containing a hydrogen storage alloy was manufactured by a known method. Specifically, to prepare a hydrogen storage alloy MmN i 3.55 C o 0.75 A 1 0. 3 powder having a particle diameter of about 2 5 mu m, which in the carboxymethylcellulose was added as a binding agent and water, kneaded to a paste with the did. This paste was press-filled into an electrode support to produce a hydrogen storage alloy negative electrode plate. This hydrogen storage alloy negative electrode plate was cut into a predetermined size to obtain a negative electrode having a capacity of 200 mAh.
  • the negative electrode and the positive electrode were wound with a separator made of a sulfonated polypropylene nonwoven fabric having a thickness of 0.15 mm interposed therebetween to form a spiral electrode group.
  • this electrode group was inserted into a separately prepared bottomed cylindrical battery case made of metal, and further, 2.2 ml of a 7 mol / l aqueous solution of hydroxylated lithium was injected. Thereafter, the opening of the battery case was sealed with a sealing plate equipped with a safety valve with a working pressure of 2. OMPa to produce an AA-sized cylindrical sealed nickel-metal hydride storage battery.
  • step 2 alkaline storage batteries were produced that differed only in the method for producing the positive electrode active material in Step 2. Specifically, in step 2, without supplying air into the reaction vessel, the surface of the magnesium solid solution nickel hydroxide particles is copal. A compound layer was formed. Thereafter, adjustment of the average valence of cobalt and X-ray diffraction measurement were performed in the same manner as in Example 1. As a result, the cobalt compound layer of Comparative Example 1 was not a coating layer mainly composed of hydroxy hydroxide. It was.
  • the reforming treatment was performed as follows for the nickel hydroxide hydroxide powder on which the cobalt compound coating layer was formed.
  • an oxidation aid 40 wt.
  • a 0 / sodium hydroxide aqueous solution was impregnated. Thereafter, this was put into a drying apparatus equipped with a microwave heating function and heated while supplying oxygen into the apparatus to be completely dried.
  • the cobalt compound layer on the particle surface was acidified and changed to indigo.
  • the obtained powder was washed with water and then vacuum-dried to obtain the positive electrode active material of Comparative Example 1.
  • the average valence of Connold contained in the cobalt compound layer was calculated in the same manner as in Example 1, and the value was 3.2.
  • the amount of sodium in the cobalt compound was 3.3% by weight.
  • the positive electrode active material 3 9. 2 MP a (4 0 0 kgf / cm 2), was measured for conductivity, shows a 3. 2 x 1 0- 2 S / cm It was. Thereby, it was confirmed that the formed cobalt compound layer had high conductivity.
  • an alkaline storage battery was produced by the same procedure as steps 3 and 4 of Example 1.
  • alkaline storage batteries differing only in the procedure of Step 1 were produced. Specifically, in Step 1 of Example 1, a mixed solution containing sulfuric acid- nickel and magnesium sulfate was supplied into the reaction vessel, but in this Comparative Example 2, nickel sulfate alone containing no magnesium sulfate was used. An aqueous solution of was fed. As a result, in Comparative Example 2, a pure nickel hydroxide powder containing no magnesium was obtained. Thereafter, an alkaline storage battery was manufactured in the same procedure as in Steps 2 to 4 of Example 1.
  • the active material utilization rate B (utilization rate during 6.5 A discharge) was calculated for each battery.
  • the active material utilization rates A and B are calculated with respect to the theoretical amount of electricity when nickel in the active material undergoes an electron reaction.
  • the ratio of the discharge capacity to the theoretical capacity of 130 OmAh of the positive electrode is shown.
  • the ratio of active material utilization rate B to active material utilization rate A (B / A) XI 00 (%) was calculated as an index indicating the high rate discharge characteristics of each battery.
  • the battery voltage is 0 at a current of 1.3A. Discharged to 8 V.
  • the active material utilization rate C (45 ° C, remaining utilization rate after 2 weeks) was calculated for each battery. Based on this calculation result, the ratio of the active material utilization rate C to the active material utilization rate A (CZA) XI 00 (%) was calculated as an index indicating the self-discharge characteristics of each battery.
  • the active material utilization rate C is also calculated with respect to the theoretical amount of electricity when nickel in the active material undergoes an electron reaction.
  • each battery is charged and discharged at 20 ° C with a current of 1.3 A for 1.2 hours, and then discharged with a current of 1.3 A until the battery voltage reaches 0.8 V. 200 cycles were performed.
  • the active material utilization rate D (utilization rate after 200 cycles) is calculated for each battery. I put it out. Based on this calculation result, the ratio of active material utilization rate D to active material utilization rate A (D / A) XI 0 0 (%) was calculated as an index indicating the cycle life characteristics of each battery.
  • the active material utilization rate D is also calculated with respect to the theoretical amount of electricity when nickel in the active material undergoes an electron reaction.
  • Table 1 shows the results of these characteristic evaluations.
  • Example 1 and Comparative Example 1 the high rate discharge characteristic values were 94.7% and 94.8%, showing similar values, and both were excellent in high rate discharge characteristics.
  • Comparative Example 2 the high rate discharge characteristic value was 89.5%, which was slightly inferior to that of Example 1 and Comparative Example 1.
  • the reason why the Al-rich battery of Example 1 and Comparative Example 1 is superior in the high-rate discharge characteristics as compared to the Al-rich battery of Comparative Example 2 is that nickel hydroxide in which magnesium is dissolved in the positive electrode active material is used. This is thought to be due to an increase in the electron conductivity of the positive electrode active material itself.
  • Example 1 and Comparative Example 2 the utilization ratios indicating the self-discharge characteristics were 78.9% and 81.8%, showing similar values, and both had good self-discharge characteristics. It was.
  • Comparative Example 1 the utilization ratio indicating self-discharge characteristics was 67.0%, and the self-discharge characteristics were considerably inferior as compared with Example 1 and Comparative Example 2.
  • the reason why the alkaline storage batteries of Example 1 and Comparative Example 2 have better self-discharge characteristics than the alkaline storage battery of Comparative Example 1 is considered as follows.
  • Example 1 and Comparative Example 2 when the cobalt compound layer was produced, the oxidation reaction was advanced by supplying air into the reaction vessel.
  • the proportion of Natoriumuion contained in Koparuto compound the total weight to be able to significantly reduce the 0.01 weight 0/0 of cobalt compounds, the average valence of cobalt is also as small as 85-valent 2.
  • I was able to. Accordingly, conductivity of the cobalt compound layer is lowered, 39. 2MP a (400 kgf Z cm 2) with an electrical conductivity at a pressurized condition, 2. 5x10- 8 SZcm a small Natsuta.
  • the charge depth of the nickel hydroxide particles was made uniform overall, and self-discharge could be suppressed. Conceivable.
  • the alkaline storage battery of Example 1 had a cycle life characteristic value as high as 94.7% and had excellent cycle life characteristics.
  • the cycle life characteristic value showed a preferable value of 89.7%, but the result was slightly inferior to that in Example 1. Further, in Comparative Example 2, the cycle life characteristic value was 80.0%, and the cycle life characteristic was inferior.
  • the Al-powered rechargeable battery of Example 1 is superior in cycle life characteristics compared to the Al-powered rechargeable battery of Comparative Example 1 is that, as described above, by suppressing self-discharge, the reduction reaction of the conoult compounds is carried out. It is thought that it was possible to suppress.
  • the alkaline storage battery of Example 1 has superior cycle life characteristics compared to the alkaline power storage battery of Comparative Example 2. The reason is that ⁇ during overcharge is obtained by dissolving magnesium in nickel hydroxide and nickel. This is probably because the formation of the phase ( ⁇ -N i OOH) could be suppressed.
  • Example 2 The reason is that ⁇ during overcharge is obtained by dissolving magnesium in nickel hydroxide and nickel. This is probably because the formation of the phase ( ⁇ -N i OOH) could be suppressed.
  • Example 2 in Step 2, the average valence of cobalt contained in the cobalt compound layer was varied by adjusting the oxygen concentration in the aqueous solution in the reaction vessel. Specifically, in step 2, the dissolved oxygen concentration in the reaction tank was changed to 0.5, 1.0, 3.0, 1 5. Five types of positive electrode active materials were prepared in the same manner as in Example 1 except for adjusting to five types of 0 and 17.0 (mg / 1).
  • Example 2 five types of alkaline storage batteries were produced in the same manner as Example 1 except that the dissolved oxygen concentration in Step 2 was changed. The characteristics of these five alkaline storage batteries were evaluated in the same manner as in Example 1, and the ratio of active material utilization rate C to active material utilization rate A (C / A) XI 00 (%) was calculated. This is an indicator of Fig. 1 shows the relationship between the average valence of cobalt contained in the cobalt compound layer and the utilization ratio (C / A) XI 00 (%).
  • the dissolved oxygen concentration in the reaction tank must be 1. Omg / 1 or more and 15. Omg / 1 or less in order to make the average valence of cobalt 2.6 or more and 3.0 or less. .
  • Step 2 the amount of sodium contained in the cobalt compound layer is varied by changing the number of times of alkali treatment and the number of times of washing with water.
  • five types of positive electrode active materials were produced.
  • Example 3 five types of alkaline storage batteries were produced in the same manner as in Example 1 except that the number of times of the step of washing and washing in Step 2 was changed. The characteristics of these five alkaline storage batteries were evaluated in the same manner as in Example 1, and the ratio of active material utilization rate C to active material utilization rate A (C / A) XI 00 (%) was calculated. It was used as an indicator of discharge characteristics.
  • Figure 2 shows the relationship between the amount of sodium (wt%) contained in the cobalt compound layer and the utilization ratio (C / A) XI 00 (%).
  • Figure 2 shows that the utilization ratio (CZA) XI 00 (%) shows a high value when the amount of sodium contained in the cobalt compound layer is less than 0.10 wt%. Therefore, it can be said that the self-discharge characteristics can be improved by making the amount of sodium contained in the cobalt compound layer less than 0.10% by weight.
  • Step 2 without adding air into the reaction vessel, an oxidizing agent is added and further heat treatment is performed to advance the oxidation reaction, thereby reducing the cobalt contained in the cobalt compound layer.
  • the average valence was adjusted. All other conditions were the same as in Example 1, and five types of positive electrode active materials (referred to as samples 1 to 5) were produced.
  • samples 1 to 5 were produced.
  • the average valence of cobalt in the cobalt compound was in the range of 2.8 to 3.0 (valence).
  • the amount of sodium in the cobalt compound is 0.1% of the total weight of the cobalt compound. / Indicates a value smaller than 0 .
  • the electric conductivity in turn, 2. 5x10-8, 9. 6X1 0 one 7, 9, 8x10-6, 1. 4X10- 5, showed 8. 3x10- 5 (S / cm) .
  • Example 2 the average valence of cobalt is adjusted in the range of 2.6 to 3.0 by adjusting the average valence of cobalt using a method of supplying air into the reaction vessel. (See Fig. 1).
  • Koval The average valence of cobalt was in the range of 2.8 to 3.0, and it was not easy to adjust the average valence of cobalt low. From this result, it is more appropriate to adjust the average valence of cobalt by using the method of supplying air into the reactor than the method of adjusting the amount of oxidant added and the heat treatment conditions. It can be said that the average valence of cobalt can be adjusted in the range of 2.6 to 3.0.
  • Example 4 five types of alkaline storage batteries were produced in the same manner as in Example 1 except that the method for adjusting the average valence of cobalt in Step 2 was changed.
  • the characteristics of these five types of alkaline storage batteries were evaluated in the same manner as in Example 1, the ratio of the active material utilization rate C to the active material utilization rate ⁇ (CZA) XI 00 (%) was calculated, and the self-discharge characteristics It was set as the index which shows.
  • Table 2 shows the results of special qualification for five types of alkaline storage batteries using Samples 1-5.
  • the reason why there is a correlation between the conductivity and the peak half width is considered as follows.
  • the larger the peak half width the smaller the crystal size and the more crystallite interfaces are formed. Since this crystallite interface functions as an electron conduction surface, the larger the peak half width, the higher the conductivity.
  • the conductivity was less than 1. 0x10- 5 SZcm, the half width of peak 1 preferably set to 5 ° or less.
  • Example 4 the average valence of cobalt was controlled not by supplying air as in Example 1, but by adding an oxidizing agent and heat treatment.
  • Table 2 the method of adding an oxidizing agent and heat treatment tended to lower the crystallinity of the cobalt compound forming the cobalt compound layer (increase the peak half-value width).
  • the conductivity is less than 1. 0X 1 0- 5 SZcm, a positive electrode active material half width of the peak is at 1. 5 ° or less, to stably mass-produced It was difficult. Therefore, it can be said that it is preferable to use a method of supplying air into the reaction tank as a method of controlling the average valence of cobalt.
  • Example 5 the ratio of magnesium to all the metal elements (nickel and magnesium in this Example 5) contained in the nickel hydroxide hydroxide particles by changing the mixing ratio of nickel sulfate and magnesium sulfate in Step 1 (molar 0/0) was adjusted. All other conditions were the same as in Example 1, and five types of nickel hydroxide particles were produced.
  • Example 5 the ratio of the active material utilization rate B to the active material utilization rate A (B / A) XI 00 (%) was calculated as an index indicating the high rate discharge characteristics, and the self-discharge characteristics were calculated. As an index indicating the ratio, the ratio of the active material utilization rate C to the active material utilization rate A (C / A) XI 00 (%) was calculated.
  • Figure 3 shows the relationship between the amount of magnesium contained in nickel hydroxide and the utilization ratio (C / A) XI 00 (%) and utilization ratio (B / A) XI 00 (%). Shown in
  • the utilization ratio (B / A) XI 00 (%) should be high when the amount of magnesium contained in nickel hydroxide is 2.0 mol% or more. I understand. In other words, it can be said that high rate discharge characteristics can be improved by setting the amount of magnesium contained in nickel hydroxide to 2.0 mol% or more.
  • the utilization ratio (C / A) XI 00 (%) shows a high value when the amount of magnesium contained in nickel hydroxide is 10.0 mol% or less. I understand that. In other words, the amount of magnesium contained in nickel hydroxide is 10.0 moles. / 0 by less, Ru 3 ⁇ 4 and can be as good self-discharge characteristics.
  • Example 6 in Step 2, the ratio of sulfate radicals contained in the positive electrode active material was adjusted by varying the number of times of alkali treatment and the number of times of washing with water. Other conditions were the same as in Example 1, and five types of positive electrode active materials were produced.
  • Example 6 except that the number of times of washing and washing in step 2 is different, five types of alkaline storage batteries were produced. The characteristics of these five alkaline storage batteries were evaluated in the same manner as in Example 1, and the ratio of the active material utilization rate C to the active material utilization rate A (CZA) XI 00 (%) was calculated. This is an indicator of
  • the ratio of utilization ratio (C / A) X I 00 was in the range of 77 to 79 (%), and there was almost no difference. That is, there was almost no difference in the initial self-discharge characteristics due to the difference in the proportion (% by weight) of sulfate groups contained in the positive electrode active material.
  • the value of the utilization ratio (E / D) XI 00 varied depending on the ratio (wt%) of the sulfate radical contained in the positive electrode active material. Specifically, the sulfate radical ratio is 1.0 weight. /.
  • the utilization rate ratio (CZA) was almost the same as the value of XI 00 (76 to 77%), but the value decreased when the ratio of sulfate radicals exceeded 1.0% by weight. However, it was less than 70%. From the above results, it can be said that self-discharge characteristics can be improved over a long period of time by setting the ratio of sulfate radicals contained in the positive electrode active material to 1.0 wt% or less.
  • Example 7 in Step 1, the concentration of the aqueous ammonia solution was varied in the range of 5.5 to 6.5 mol / 1, and the concentration of sodium hydroxide was changed to 5.0 to 6.0 mol / 1. By varying the range, the ⁇ in the reaction tank is reduced to 12. 0-13. Adjusted by range. All other conditions were the same as in Example 1, and five types of nickel hydroxide particles were produced.
  • Example 7 the relationship between the peak half-value width of the (101) plane of nickel hydroxide particles and the utilization ratio (BZA) XI 00 (%) was investigated. As a result, the peak half-value width of (101) plane is 0.7. In the battery using the following nickel hydroxide particles, the utilization ratio (B / A) XI 0 0 (%) was about 2% lower than that of larger than 0.7 °. Specifically, the utilization ratio (BZA) xl 00 (%) value is 94% or more for batteries using nickel hydroxide particles with a peak half-value width of (101) plane greater than 0.7 °.
  • the battery using nickel hydroxide particles smaller than 0.7 ° had 92% or less. From this result, it can be said that excellent high-rate discharge characteristics can be obtained by using nickel hydroxide particles having a half-value width of the (101) plane peak larger than 0.7 °.
  • nickel hydroxide particles having a peak half-width of (101) plane greater than 1.2 ° the tap density was less than 1.7 g / cc, and the packing density for the positive electrode was reduced.
  • the (101) plane peak half-width is greater than 1.2 ° dihydroxide.
  • the capacity density of the positive electrode was less than 50 OmAh / cc, and sufficient capacity density could not be obtained. From this result, it can be said that in order to obtain a sufficiently high capacity density, it is preferable to use nickel hydroxide particles having a half width of the peak of the (101) plane of 1.2 ° or less.
  • Example 8 in Step 1, the supply amount of a mixed solution containing nickel sulfate and magnesium sulfate, an aqueous solution of sodium hydroxide, and an aqueous solution of ammonia was adjusted in the range of 0.1 to 1.0 (ml / min). At the same time, the residence time (reaction time) in the reaction vessel was also adjusted to produce 5 types of hydroxyl-Neckel particles.
  • a positive electrode active material was produced in the same manner as in Step 2 of Example 1.
  • the physical properties of these positive electrode active materials were investigated in the same manner as in Example 1.
  • the average valence of cobalt in the cobalt compound was in the range of 2.8 to 3.0 (valence).
  • the amount of sodium in the cobalt compound was less than 0.1% by weight with respect to the total weight of the cobalt compound.
  • the conductivity was smaller than 1.
  • Oxl O 6 SZcm when the BET specific surface area measured by the nitrogen gas adsorption method was examined, it was found to vary in the range of 7.0 to 2.3 ⁇ 10 (m 2 / g).
  • Example 8 the BET ratio table area (m 2 / g) of the positive electrode active material particles, the utilization ratio (B / A) XI 00 (%), and the utilization ratio (D / A) XI 00 (%) was investigated.
  • the BET specific surface area is less than 8.0 (m 2 / g)
  • the polarization during charging / discharging becomes larger, and the utilization ratio is higher than that with 8.0 (m 2 / g) or more.
  • B / A The value of XI 00 (%) has dropped by 2% or more.
  • the utilization ratio (B / A) XI 00 (%) is 94% or more for batteries using positive electrode active material particles having a BET specific surface area of 8.0 (m 2 / g ) or more.
  • the battery using positive electrode active material particles smaller than 8.0 (m 2 / g) had a value of 92% or less. From this result, it can be said that an excellent high rate discharge characteristic can be obtained by using a positive electrode active material having a specific surface area of 8. Om 2 Zg or more.
  • the value of utilization ratio (D / A) XI 00 (%) has decreased by 3% or more compared to the following 10 (m 2 / g). Specifically, the utilization ratio (D / A) I 00 (%) is 94% for batteries using positive electrode active material particles with a BET specific surface area of 1.8 X 10 (m 2 / g) or less. On the other hand, the battery using positive electrode active material particles larger than 1.8X10 (mg) had a value of 91% or less.
  • the positive electrode active material has a large specific surface area, so that during the charge / discharge cycle test, the electrolyte in the separator easily moves into the positive electrode, thereby reducing the electrolyte in the separator and reducing the internal resistance. This is probably because it has risen.
  • the cycle life characteristics can be improved by using a positive electrode active material having a specific surface area of 1.8 ⁇ 10 0 (mg) or less.
  • Example 9 instead of adding 5 g of cobalt powder in Step 3, 5 g of cobalt hydroxide hydroxide powder was added to produce a nickel positive electrode. All other conditions (Steps 1 to 4) were the same as in Example 1 to produce an alkaline storage battery.
  • Cobalt oxidation efficiency is the ratio of the amount of electricity required to change from cobalt and cobalt hydroxide to oxycobalt hydroxide and the amount of electricity actually calculated from the charging curve as a charging plateau. is there.
  • Examples 1 and 9 both use a positive electrode active material in which a low-conductivity-balt compound layer is formed. For this reason, compared with the case where a positive electrode active material has a cobalt compound layer with high electroconductivity, the current collection property of a positive electrode will fall. Therefore, it is preferable to increase the cobalt oxide efficiency to compensate for this.
  • Example 1 by adding a cobalt having a high conductivity to the positive electrode, the efficiency of cobalt oxide is increased, so that the formation of a conductive network by oxycobalt hydroxide is improved, and the current collecting property of the positive electrode is improved. Is good.
  • Example 9 since cobalt hydroxide having low conductivity was added to the positive electrode, compared with Example 1, the cobalt oxidation efficiency was reduced, and the formation of a conductive network by oxycobalt hydroxide was sufficient. It is thought that it was nakatashi.
  • step 3 the amount of cobalt powder added was adjusted in the range of 1 to 8 parts by weight with respect to 100 parts by weight of the positive electrode active material, and a plurality of types of nickel positive electrodes were produced. All other conditions (Steps 1 to 4) were the same as in Example 1 to fabricate an Al force storage battery.
  • the battery characteristics were evaluated in the same manner as in Example 1. Specifically, the utilization ratio (BZA) ⁇ l 0 0 (%) was calculated for each of the Al power storage batteries of Example 10. As a result, in the battery in which the addition amount of cobalt powder is 2 parts by weight or more with respect to 100 parts by weight of the positive electrode active material, the utilization ratio (B / A) xl 0 0 (%) is as high as 94% or more. The value is shown.
  • the utilization ratio (B / A) The value of xl 0 0 (%) has dropped by 2% or more. This is thought to be because the current collecting property of the positive electrode could not be sufficiently increased because the amount of cobalt added to form the conductive network was insufficient. From the above results, by including 2 parts by weight or more of cobalt with respect to 100 parts by weight of the positive electrode active material, the current collecting property can be improved and the utilization factor of the active material can be improved. It can be said.
  • the cobalt content is preferably 2 to 7 parts by weight with respect to 100 parts by weight of the positive electrode active material.
  • Example 11 of Example 1 in Step 3, the amount of yttrium oxide powder added was adjusted in the range of 0 to 5 parts by weight with respect to 100 parts by weight of the positive electrode active material, to produce a plurality of types of double cathodes. . All other conditions (Steps 1 to 4) were the same as in Example 1 to produce an alkaline storage battery.
  • Example 1 the battery characteristics were evaluated in the same manner as in Example 1. Specifically, for each battery, first, in the same manner as in Example 1, the active material utilization rate A (1.3 A discharge utilization rate) in the initial cycle and the active material utilization rate B (6. 5A discharge utilization rate) was calculated. Furthermore, the ratio of the active material utilization rate B to the active material utilization rate A (B / A) XI 00 (%) was calculated as an index indicating the high rate discharge characteristics of each battery.
  • the battery was discharged until the battery voltage became 0.8 V with a current of 1.3 A. Based on the discharge capacity at this time, the active material utilization F (60 ° C, 1.3 A utilization during discharge) was calculated for each battery. Furthermore, the ratio of the active material utilization rate F to the active material utilization rate A (F / A) XI 00 (%) was calculated as an index showing the high-temperature charge / discharge characteristics of each battery.
  • Figure 4 shows the relationship between the amount of yttrium oxide added, the utilization ratio (FZA) XI 00 (%), and the utilization ratio (B / A) XI 00 (%).
  • the utilization ratio (F / A) XI 00 (%) tends to increase as the added amount of yttrium oxide increases.
  • the amount of yttrium oxide added is 0.5 parts by weight or more per 100 parts by weight of the positive electrode active material.
  • the utilization ratio (F / A) XI 0 0 (%) shows a high value in the range. Therefore, it can be said that the high-temperature charge / discharge characteristics can be improved by setting the addition amount of acid yttrium to 0.5 parts by weight or more with respect to 100 parts by weight of the positive electrode active material. In other words, it can be said that the charge acceptability can be improved.
  • the utilization ratio increases as the added amount of acid yttrium increases.
  • (B / A) X I 0 0 (%) tends to decrease.
  • the utilization ratio (B ZA) X I 0 0 (%) is greatly reduced. Therefore, in order to obtain good high-rate discharge characteristics, it can be said that the amount of acid yttrium added must be 3.0 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  • the content of yttrium oxide is preferably 0.5 parts by weight or more and 3 parts by weight or less with respect to 100 parts by weight of the positive electrode active material.
  • Example 12 a nickel positive electrode was produced in Step 3 without adding cobalt powder. All other conditions (Steps 1 to 4) were the same as in Example 1 to produce an alkaline storage battery.
  • Example 1 2 and Example 11 are compared.
  • the cobalt powder was not added, but the yttrium oxide powder was added in an amount of 2 parts by weight with respect to 100 parts by weight of the positive electrode active material as in Example 1.
  • Example 1 5 parts by weight of the copalto powder was added to 100 parts by weight of the positive electrode active material in the same manner as in Example 1, and the yttrium oxide powder was added in the range of 0 to 5 parts by weight. It is added. Therefore, in Example 1 2 and Example 1 1, yttrium oxide is doubled with respect to 100 parts by weight of the positive electrode active material. Compare with the amount added.
  • Example 12 the value of the utilization rate ratio (FZA) XI 0 0 was 76.1 (%), whereas in the Example 11 was 80%. That is, in Example 11, the utilization ratio (F / A) XI 0 0 was about 4% higher than that in Example 12 due to the addition of cobalt.
  • a positive electrode active material was produced using nickel hydroxide particles containing magnesium in a solid solution state.
  • the element contained in the nickel hydroxide particles is not limited to magnesium.
  • high rate discharge characteristics and output characteristics can be improved. Specifically, even when cobalt was added to nickel hydroxide particles in addition to magnesium, high rate discharge characteristics and output characteristics could be improved.
  • Examples 1 and 12 nickel-metal hydride storage batteries using a hydrogen storage alloy for the negative electrode were produced.
  • the present invention can achieve the same effect with any Al-rechargeable storage battery such as a nickel zinc storage battery or a nickel cadmium storage battery.
  • the alkaline storage battery is a cylindrical type, but is not limited to such a shape.
  • the present invention can be applied to any form of Al-powered rechargeable battery such as a prismatic battery in which electrode plates are stacked in a case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

出力特性が良好で、且つ自己放電特性及びサイクル寿命特性が良好なアルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、及びアルカリ蓄電池を提供する。本発明のアルカリ蓄電池用正極活物質は、少なくともマグネシウムを固溶状態で含む水酸化ニッケル粒子と、この水酸化ニッケル粒子の表面を被覆するコバルト化合物層とを有している。このうち、コバルト化合物層は、自身に含まれるコバルトの平均価数が2.6以上3.0以下であり、自身の全重量に対し0.10重量%より少ない割合でナトリウムを含んでいる。さらに、本発明のアルカリ蓄電池用正極活物質を39.2MPaで加圧した状態での導電率は、1.0×10−5S/cmより小さい。

Description

明 細 書 アルカリ蓄電池用正極活物質、 アルカリ蓄電池用正極、 アルカリ蓄電池、 及ぴ アル力リ蓄電池用正極活物質の製造方法 技術分野
本発明は、 アルカリ蓄電池用正極活物質、 アルカリ蓄電池用正極、 アルカリ蓄 電池、 及ぴアルカリ蓄電池用正極活物質の製造方法に関する。 背景技術
近年、アル力リ蓄電池は、ポータブル機器や携帯機器などの電源として、また、 電気自動車やハイプリッド自動車などの電¾§として注目されている。 このようなァ ルカリ蓄電池としては、 様々のものが提案されているが、 このうち、 水酸化ニッケ ルを主体とした活物質からなる正極と、 水素吸蔵合金を主成分とした負極と、 水酸 化力リゥムなどを含むアル力リ電解液とを備えるニッケル水素二次電池は、 ェネル ギー密度が高く、 信頼性に優れた二次電池として急速に普及している。
ところで、 ニッケル水素二次電池の正極は、 電極の製法の違いによって、 焼結 式ニッケル電極とペース ト式 (非焼結式) ニッケル電極との 2種類に大別される。 このうち、 焼結式ニッケル電極は、 穿孔鋼板 (パンチングメタル) の両面にニッケ ル微粉末を焼結した多孔性焼結基板の微細孔内に、 溶液含浸法などによって、 水酸 化ニッケルを析出させて製作される。 一方、 ペース ト式ニッケル電極は、 高孔度の 発泡ニッケル多孔体基板 (発泡ニッケル基板) の細孔内に、 水酸化ニッケルを含む 活物質を直接に充填して作製される (例えば、 特許文献 1参照)。
特許文献 1 :特開昭 6 2— 1 5 7 6 9号公報
特許文献 2 :特許 3 3 6 3 6 7 0号
特許文献 3 :特許 3 2 3 4 4 9 2号
特許文献 4 :特開 2 0 0 1 _ 3 5 7 8 4 4号公報
ペース ト式ニッケル電極は、 水酸化ニッケルの充填密度が高く、 高エネルギー 密度化が容易であるために、 現在では、 ニッケル水素蓄電池用正極の主流となって いる。 近年、 ペースト式ニッケル電極について、 充填する活物質粉末や添加物など の改良により、 活物質の利用率の向上、 高率放電特性や出力特性の向上が図られて いる (例えば、 特許文献 2、 特許文献 3、 特許文献 4参照)。
特許文献 2では、 酸素とアルカリの共存下で加熱処理することにより、 亜鉛、 カドミウム、 マグネシウム、 及ぴカルシウムのうちの 1種以上を固溶状態で含む水 酸ィ匕ニッケル粒子の表面に、 結晶性の乱れた 2価よりも大きいコバルトの化合物の 被覆層を形成する。 2価よりも大きいコバルトの化合物は導電性が非常に高いため、 活物質の利用率が著しく向上するとされている。 その上、 亜鉛、 カドミウム、 マグ ネシゥム、 及びカルシウムのうちの 1種以上を固溶状態で水酸化ニッケル粒子に含 有させることにより、 高い活物質の利用率を維持しつつ、 過放電したときの容量の 低下を抑制できるとされている。
特許文献 3では、 水酸化ニッケル粒子、 または水酸化ニッケルを主成分とする 粒子の表面に、 ナトリウム含有量を 0 . 1〜1 0重量0 /0としたナトリウム含有コバ ルト化合物の導電層を形成する。 コバルト化合物の結晶中にナトリウムが取り込ま れることにより、 導電性の高い化合物となり、 これにより、 活物質の利用率が極め て高くなるとされている。
特許文献 4は、 少量のマグネシウムを含む水酸ィ匕ニッケルの固溶体において、 優れた高率放電特性及ぴ出力特性を示すことを明らかにしている。 さらに、 少量の マグネシウムを含む水酸ィ匕ニッケルの固溶体を正極活物質に用いることにより、 γ 一 N i O O Hの生成を抑制することができるので、電池のサイクル寿命も向上する。 発明の開示
発明が解決しょうとする課題
特許文献 2または特許文献 3では、 活物質のコバルト化合物層の導電性を高め ることで、 正極の集電性を向上させ、 活物質の利用率を高めているが、 その反面、 自己放電特性が著しく低下してしまうことが判明した。 これは、 水酸化二ッケルの 表面に、 予め、 導電性の高いコバルト化合物層を設けると、 水酸化ニッケル表面付 近の反応性が著しく向上するため、 局所的に充電深度が大きくなると推察される。 このように、 局所的に充電深度が大きい部分は高電位となるので、 優先的に酸素発 生反応を伴い、 自己放電反応が進行してしまうと考えられる。 これに加えて、 高率 放電特性及び出力特性を向上させるベく、 活物質の水酸ィヒニッケルにマグネシウム を固溶状態で含有させた場合 (特許文献 4参照) には、 さらに、 自己放電が加速し てしまうと考えられる。 さらに、 正極の自己放電が速くなると、 充放電の繰り返し に伴いコバルト化合物の還元反応が進行し、 導電パス (導電性ネットワーク) が破 壌され、 サイクル寿命が悪ィヒしてしまう虞がある。
本発明は、 かかる現状に鑑みてなされたものであって、 出力特性が良好で、 且 っ自己放電特性及びサイクル寿命特性が良好なアル力リ蓄電池用正極活物質、 アル 力リ蓄電池用正極、 アル力リ蓄電池、 及びアル力リ蓄電池用正極活物質の製造方法 を提供することを目的とする。 課題を解決するための手段
その解決手段は、 少なくともマグネシゥムを固溶状態で含む水酸化二ッケル粒 子と、 上記水酸ィヒニッケル粒子の表面を被覆するコバルト化合物層と、 を有するァ ルカリ蓄電池用正極活物質であって、 上記コバルト化合物層は、 自身に含まれるコ バルトの平均価数が、 2 . 6以上 3 . 0以下であり、 自身の全重量に対し 0 . 1 0 重量%より少ない割合でナトリゥムを含み、 当該正極活物質を 3 9 . 2 MP a ( 4 0 0 k g f Z c m 2) で加圧した状態での導電率が、 1 . 0 x 1 0 _ 5 S Z c mより小 さいアルカリ蓄電池用正極活物質である。
本発明のアルカリ蓄電池用正極活物質は、 少なくともマグネシウムを固溶状態 で含む水酸化ニッケル粒子を有している。 水酸化ニッケル粒子に、 少なくともマグ ネシゥムを固溶状態で含ませることにより、 高率放電特性及び出力特性を良好とす ることができる。 これは、 充電状態でも、 2価で安定なマグネシウムが水酸ィ匕ニッ ケル結晶中に存在することで、 水酸化二ッケルの電子伝導性が良好となるためと考 えられる。
さらに、 本発明のアルカリ蓄電池用正極活物質では、 水酸ィヒニッケル粒子の表 面を被覆するコバルト化合物層に含まれるコバルトの平均価数を、 2 . 6以上 3 . 0以下としている。 これにより、 自己放電特性を良好にする (自己放電を抑制する) ことができる。 具体的には、 コバルトの平均価数を 2 . 6以上とすることで、 充電 により、 電池内で電気化学的に酸化して形成される、 導電性の高いォキシ水酸化コ バルトの割合が大きくなるのを抑制することができる。 これにより、 自己放電特性 の低下を抑制することができる。
また、 コバルトの平均価数を 3 . 0以下とすることにより、 コバルト化合物の 結晶中における電荷のバランスを保ち、コノ レト化合物を安定させることができる。 従って、 電池内のアルカリ電解液との反応を抑制し、 結晶中にナトリウムイオンや カリゥムイオンなどのカチオンを取り込むのを抑制することができる。これにより、 コバルト化合物の電子導電性の上昇を抑制することができ、 ひいては、 自己放電特 性を良好にすることができる。
さらに、 このコバルト化合物層に含まれるナトリウムの割合を、 コバルト化合 物層の全重量に対し 0 . 1 0重量0 /0より少なくしている。 このように、 ナトリウム の含有量を低くすることにより、 ナトリウムイオンがコバルト化合物の結晶中に取 り込まれても、 コバルト化合物の電子導電性が高くなり過ぎず、 自己放電特性の低 下を抑制することができる。
さらに、 本発明のアルカリ蓄電池用正極活物質は、 3 9 . 2 MP a ( 4 0 0 k g f / c m 2) で加圧した状態での導電率が、 1 . O x l O— 5 S Z c mより小さレヽ。 このように、 導電率を小さくすることにより、 自己放電特性を良好にすることがで き、 サイクル寿命特性も良好となる。
さらに、 上記のアルカリ蓄電池用正極活物質であって、 前記水酸化ニッケル粒 子に固溶状態で含まれる前記マグネシゥムの割合は、 上記水酸化二ッケル粒子に含 まれる全ての金属元素に対し、 2モル%以上 1 0モル0 /0以下であるアルカリ蓄電池 用正極活物質であると良い。
本発明のアル力リ蓄電池用正極活物質では、 水酸化ニッケル粒子に固溶状態で 含まれるマグネシウムの割合を、 水酸化二ッケル粒子に含まれる全ての金属元素に 対し、 2モル0 »以上 1 0モル0 /0以下としている。 マグネシウムの割合を 2モル%以 上とすることにより、 適切に、 高率放電特性及び出力特性を良好とすることができ る。 伹し、 マグネシウムの割合が 10モル%を上回ると、 自己放電が著しく速くな る虞がある。 これに対し、 本発明のアルカリ蓄電池用正極活物質では、 マグネシゥ ムの割合を 10モル%以下としているため、 適切に、 自己放電を抑制することがで さる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 当該正極活物 質に含まれる硫酸根は、 1. 0重量%以下であるアルカリ蓄電池用正極活物質であ ると良い。
正極活物質に含まれる硫酸根の割合が 1. 0重量%を上回ると、 充放電の繰り 返しにより、 コバルト化合物の結晶中に硫酸根が取り込まれ、 コバルト化合物の結 晶性が低下し易くなる。 結晶性が低いコバルト化合物は、 充放電の繰り返しにより 還元され易くなり、 適切に、 自己放電を抑制することができなくなる虞がある。 こ れに対し、 本発明のアルカリ蓄電池用正極活物質では、 当該正極活物質に含まれる 硫酸根の割合を 1. 0重量%以下としているため、 長期間にわたって自己放電特性 を良好にすることができる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 前記水酸化二 ッケル粒子は、 C u Κ α線を使用する X線回折の 20 = 37 °〜 40。付近に位置す る (101) 面のピークの半価幅が、 0. 7°より大きく 1. 2°以下であるアル力 リ蓄電池用正極活物質であると良い。
水酸化ニッケル粒子の結晶性が高くなり過ぎると、 具体的には、 CuKo;線を 使用する X線回折の 20 = 37°〜40°付近に位置する (101) 面のピークの半 価幅が 0. 7°以下の場合、 格子欠陥が少ないためにプロトン拡散が遅くなり (反応 が阻害され)、高率放電特性が著しく低下してしまう虞がある。逆に、水酸化ニッケ ル粒子の結晶性が低くなり過ぎると、 具体的には、 C u Κ α線を使用する X線回折 の 2 θ = 37°〜40°付近に位置する (101) 面のピークの半価幅が 1. 2°を上 回ると、 正極中の水酸化ニッケル粒子が低密度となり易い。 このため、 正極の容量 密度が低下してしまう虞がある。
これに対し、 本発明のアル力リ蓄電池用正極活物質は、 C u Κ α線を使用する X線回折の 2 e = 37°〜40°付近に位置する (101) 面のピークの半価幅が、 0. 7°より大きく 1. 2°以下である水酸化ニッケル粒子を用いている。 このため、 上記のような問題が生じる虞がない。 従って、 本発明のアルカリ蓄電池用正極活物 質を用いることにより、 高率放電特性及び正極の容量密度を高くすることが可能と なる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 前記コバルト 化合物層をなすコバルト化合物は、 ォキシ水酸化コバルトを主体とし、 CuKa線 を使用する X線回折の 20 = 64°〜67°付近に位置する (1 10) 面のピークの 半価幅が、 1. 5°以下であるアルカリ蓄電池用正極活物質であると良い。
ォキシ水酸化コバルトは、 六方一菱面晶の層状構造で、 J CPDS無機物質フ アイルの番号: 7— 169に記載されている XRDパターンを有する。 本来、 この ォキシ水酸化コバルトは、 結晶構造中の H+が上下に存在する O 2一と強い水素結合 を形成するため、 電子伝導性が低い。 しかし、 その結晶性が低い場合は、 多くの結 晶子界面が形成され、 この結晶子界面が電子伝導面として機能することにより、 高 い電子伝導性が生じる。 さらに、 結晶性が低い場合には、 高濃度のアルカリ水溶液 (アルカリ電解液) 中で、 ナトリウムイオンなどのカチオンが、 結晶中に取り込ま れ易くなるため、 さらに電子伝導性が高くなる傾向にある。 従って、 結晶性の低い ォキシ水酸化コパルトを主体とするコバルト化合物層によって、 水酸化二ッケル粒 子を被覆すると、 電子伝導性は高くなるが、 反面、 自己放電し易くなつてしまう。
これに対し、 本発明のアルカリ蓄電池用正極活物質では、 コバルト化合物層を なすコバルト化合物は、'ォキシ水酸化コバルトを主体とし、 CuKa線を使用する
X線回折の 20 = 64。〜 67。付近に位置する( 1 10 )面のピークの半価幅が 1. 5°以下である。 ここで、 CuKa線を使用する X線回折の 26 = 64°〜67°付近 に位置する (1 10) 面のピークは、 ォキシ水酸化コバルトのピークを表す (J C PDS無機物質ファイル番号: 7— 169参照)。従って、本発明のアルカリ蓄電池 用正極活物質は、 ォキシ水酸ィヒコバルトを主体としたコバルト化合物層によって、 水酸ィヒニッケル粒子を被覆したものである。 しかも、 上記ピークの半価幅が 1. 5° 以下であるォキシ水酸化コバルトは、結晶性が高く、導電性が低くなる。このため、 本発明のアルカリ蓄電池用正極活物質を用いることにより、 優れた自己放電特性及 びサイクル寿命特性を得ることができる。
なお、 2 0 = 6 4 °〜6 7 °付近に位置する (1 1 0 ) 面のピークを選択するこ とにより、 測定サンプル中に水酸ィ匕ニッケルが含まれている場合でも、 この位置で はォキシ水酸化コバルトのピークと水酸化ニッケルのピークとが重なることがない ため、 適切に、 ォキシ水酸化コバルトのピークを検出することができる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 当該正極活物 質の平均粒径は、 5 μ m以上 2 0 μ m以下であるアル力リ蓄電池用正極活物質であ ると良い。 ,
平均粒径が 5 mより小さい正極活物質を製造するには、 反応槽内での滞留時 間 (反応時間) を短くしなければならない。 短時間で生成した正極活物質は、 嵩高 レ、粒子となるため、 平均粒径が 5 mより小さレ、正極活物質を用いることにより、 正極の容量密度が低下してしまう。 逆に、 平均粒径が 2 0 μ mより大きい正極活物 質を用いた場合には、充放電過程における水酸ィヒニッケルの結晶構造の影響により、 正極の膨張が著しくなる。 この影響で、 セパレータ内の電解液が減少 (ひいては枯 渴) してしまレ、、 サイクル寿命特性が低下してしまう。
これに対し、 本発明のアルカリ蓄電池用正極活物質は、 平均粒径を、 5 ^ πι以 上 2 0 μ πι以下としているため、 上記のような問題が生じる虞がない。 従って、 本 発明のアル力リ蓄電池用正極活物質を用いることにより、 正極の容量密度を高くす ることができ、 サイクル寿命特性も良好にできる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 前記コバルト 化合物層の平均厚みは、 0 . 2 0 μ m以下であるアル力リ蓄電池用正極活物質であ ると良い。
本発明のアル力リ蓄電池用正極活物質では、コパルト化合物層の平均厚みを 0 . 2 μ πι以下としている。 コバルト化合物層の平均厚みを 0 . 2 /z m以下とすること により、 コバルト化合物層が水酸化ニッケル粒子から剥がれてしまう虞を小さくで きる。 さらには、 水酸化ニッケル表面での電気化学反応が良好となるので、 充放電 効率が良好となる。 さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 窒素ガス吸着 による BET法を用いて測定された比表面積が、 8. 0m2/g以上 1. 8x1 Om
2/ g以下であるアル力リ蓄電池用正極活物質であると良い。
正極活物質の比表面積が 8. Om 2/gより小さい場合には、 充放電反応の場 である固液界面の有効面積が小さ過ぎるため、 分極が大きくなり、 正極活物質の利 用率が低下してしまう。 逆に、 正極活物質の比表面積が 1. 8xl 0m2/gより大 きい場合には、 セパレータ内の電解液が正極中に移動し易くなるので、 セパレータ 内の電解液が減少 (ひいては枯渴) し、 サイクル寿命特性が低下する虞がある。
これに対し、 本発明のアルカリ蓄電池用正極活物質は、 窒素ガス吸着による B ET法を用いて測定された比表面積を、 8. 0m 2Zg以上 1. 8xl 0m 2/g¾ 下としているため、 上記のような問題が生じる虞がない。 従って、 本発明のアル力 リ蓄電池用正極活物質を用いることにより、 正極活物質の利用率を高くすることが でき、 サイクル寿命特^も良好にできる。
さらに、 上記いずれかのアルカリ蓄電池用正極活物質であって、 水酸化ニッケ ル粒子を含む水溶液中に、 水酸化ナトリウム水溶液を供給して pHを 1 1. 5〜1 3. 5の範囲に保ちつつコバルトイオンを含む水溶液を供給すると共に、 空気を供 給して作製されてなるアルカリ蓄電池用正極活物質であると良い。
本発明のアル力リ蓄電池用正極活物質は、 水酸化二ッケル粒子を含む水溶液中 に、水酸化ナトリゥム水溶液を供給して p H 1 1. 5-13. 5の範囲に保ちつつ、 コバルトイオンを含む水溶液を供給して作製されている。 反応槽内の水溶液の pH を 1 1. 5以上とすることにより、 水酸化ニッケル粒子の表面を被覆するコバルト 化合物の結晶性を高くすることができる。さらに、反応槽内の水溶液の p Hを 1 3 · 5以下とすることにより、コノ ルト化合物の結晶成長を促進することができるので、 コバルト化合物層が水酸ィ匕ニッケル粒子から剥がれてしまう虞を小さくできる。
ところで、 従来、 コバルトの平均価数をコントロールする手法として、 過酸化 水素、 次亜塩素酸ナトリゥム、 次亜塩素酸力リゥムなどの酸化剤を添加する手法、 あるいは、 熱処理によって酸ィヒする手法を用いていた。 ところが、 酸化剤を添加す る手法では、 酸化反応が急速に進行し、 コバルトの平均価数が 3. 0を上回る傾向 にあり、 コバルトの平均価数を 3 · 0以下に調整することが容易でなかった。 この ため、 高導電性で、 且つ低結晶性のコバルト化合物層が形成される傾向があり、 ァ ルカリ蓄電池の自己放電が大きくなつてしまう傾向があった。 また、 熱処理によつ て酸化する手法では、充放電反応を阻害する C o 3 O 4などが生成され易いため、好 ましくない。 なお、 本発明者が調査した結果、 熱処理によって酸ィヒする手法におい て、 Co 304の生成を抑制する条件で作製したとしても、形成されるコバルト化合 物の結晶性が低くなり、 導電性が高くなつてしまうことが判明した。 従って、 酸化 剤を添加する手法、 熱処理によってコバルトを酸化する手法では、 アルカリ蓄電池 の自己放電が大きくなつてしまう傾向にあった。
これに対し、 本発明のアルカリ蓄電池用正極活物質は、 空気を供給して作製さ れている。 すなわち、 反応槽内の水溶液中に空気 (酸素) を供給することにより、 酸化反応を進行させ、コノ ノレト価数をコントロールする。このような手法によれば、 上記のような問題が生じる虞がなく、容易に且つ適切に、コバルトの平均価数を 2. 6以上 3. 0以下とすることができる。
さらに、 上記のアル力リ蓄電池用正極活物質であって、 前記水酸化ニッケル粒 子を含む水溶液中に供給する空気により、 前記水酸化二ッケル粒子を含む水溶液中 の溶存酸素濃度を 1. OmgZl以上 1. 5x1 OmgZl以下として作製されて なるアル力リ蓄電池用正極活物質であると良い。
反応槽内の水溶液中に空気 (酸素) を供給することによりコバルトを酸ィ匕させ て、 コバルト価数をコントロールする手法では、 反応槽内の水溶液中の酸素濃度を 調整することにより、 コバルト価数を容易に調整することができる。 ところが、 本 発明者が検討した結果、 反応槽内の水溶液中の溶存酸素濃度を 1. Omg/lより 低くして反応させた場合には、 コバルトの平均価数を 2. 6以上に高めることが困 難であり、 また、 コバルト化合物層が水酸化ニッケル粒子から剥がれ易くなつてし まった。 また、 反応槽内の水溶液中の酸素濃度を 1. 5x1 Omg_ lより髙くし た場合には、 コバルトの平均価数が 3. 0を上回ってしまう可能性があることが判 明した。
これに対し、 本発明のアルカリ蓄電池用正極活物質は、 水酸化ニッケル粒子を 含む水溶液中に供給する空気により、 水酸化二ッケル粒子を含む水溶液中の溶存酸 素濃度を 1 . O m g / 1以上 1 . 5 X 1 O m g Z 1以下として作製されている。 こ のため、 コバルトの平均価数を、 適切に、 2 . 6以上 3 . 0以下の範囲で調整する ことができる。 従って、 コバルトの平均価数が 2 . 6以上 3 . 0以下であるコバル ト化合物層が、適切に、水酸化二ッケル粒子の表面に形成された正極活物質となる。
他の解決手段は、 上記いずれかのアル力リ蓄電池用正極活物質を含むアル力リ 蓄電池用正極である。
本発明のアルカリ蓄電池用正極は、 上述した正極活物質のいずれかを含んでい る。 このような正極を用いることにより、 アルカリ蓄電池の出力特性を良好にする ことができ、且つ、自己放電特性及びサイクル寿命特性も良好にすることができる。
さらに、 上記のアルカリ蓄電池用正極であって、 前記正極活物質に加えて、 金 属コバルト粒子 (粉末) と、 イットリウム酸化物粒子 (粉末) と、 を含むアルカリ 蓄電池用正極であると良い。
前述のように、 本発明のアルカリ蓄電池用正極では、 正極活物質が、 比較的導 電性の低いコバルト化合物層を有している。 このため、 正極活物質が導電性の高い コバルト化合物層を有する場合に比して、 正極の集電性が低下してしまう。 これに 対し、本発明のアルカリ蓄電池用正極は、正極活物質の他に、金属コバルト粒子(粉 末) とイットリウム酸化物粒子 (粉末) とを含んでいる。 導電性に優れた金属コバ ルト粒子 (粉末) を正極に含有させることにより、 正極の集電性を高くすることが できる。 さらに、 イットリウム酸化物粒子 (粉末) を含有させることにより、 特異 的に酸素発生過電圧を上昇させ、 充電受け入れ性を良好にすることができる。 これ は、 次のような理由によるものと考えられる。
イットリウム酸化物粒子 (粉末) を電極に含有させることにより、 酸素発生過 電圧が上昇し、 充電受け入れ性が向上することが知られている。 このような性質を 有するイットリウム酸化物粒子 (粉末) に加え、 金属コバルト粒子 (粉末) を正極 に含有させると、 充電時に、 コバルトとイットリウムとの混合酸化物が生成され、 これにより、 イットリウム酸化物の分散性が向上する。 このため、 特異的に酸素発 生過電圧が上昇し、 充電受け入れ性が良好になると考えられる。 さらに、上記のアルカリ蓄電池用正極であって、前記金属コバルト粒子 (粉末) を、 前記正極活物質の 1 0 0重量部に対し、 2〜 7重量部の割合で含むアル力リ蓄 電池用正極であると良い。
本発明のアルカリ蓄電池用正極は、 金属コバルト粒子 (粉末) を、 正極活物質 の 1 0 0重量部に対し 2〜 7重量部の割合で含んでレ、る。金属コパルト粒子(粉末) を、正極活物質の 1 0 0重量部に対し 2重量部以上の割合で含有させることにより、 集電性を良好にすることができ、活物質の利用率を良好にすることができる。また、 正極活物質 1 0 0重量部に対する割合を 7重量部以下とすることにより、 充分な正 極活物質の充填量を確保することができ、容量密度の高い正極とすることができる。
さらに、 上記いずれかのアル力リ蓄電池用正極であって、 前記ィットリウム酸 化物粒子 (粉末) を、 前記正極活物質の 1 0 0重量部に対し、 0 . 5〜 3重量部の 割合で含むアル力リ蓄電池用正極であると良い。
本発明のアルカリ蓄電池用正極は、 イットリウム酸化物粒子 (粉末) を、 正極 活物質の 1 0 0重量部に対し 0 . 5〜 3重量部の割合で含んでいる。 イットリウム 酸化物粒子 (粉末) を、 正極活物質の 1 0 0重量部に対し 0 . 5重量部以上の割合 で含有させることにより、 充電受け入れ性を良好にすることができる。 ところで、 イットリウム酸化物粒子 (粉末) は絶縁体であるため、 正極内で電気抵抗となり、 その含有量が多い場合には、 アル力リ蓄電池の高率放電特性及び出力特性が低くな つてしまう。 これに対し、 本発明のアルカリ蓄電池用正極では、 正極活物質 1 0 0 重量部に対するイットリウム酸化物粒子 (粉末) の割合を 3重量部以下に制限して いるため、 高率放電特性及ぴ出力特性を良好にすることができる。
他の解決手段は、 上記いずれかのアル力リ蓄電池用正極を備えるアル力リ蓄電 池である。
本発明のアルカリ蓄電池は、 上述したアルカリ蓄電池用正極のいずれかを備え ている。 このため、 出力特性が良好で、 且つ、 自己放電特性及ぴサイクル寿命特性 が良好となる。
他の解決手段は、水酸化ェッケル粒子と、これを被覆するコバルト化合物層と、 を有するアルカリ蓄電池用正極活物質の製造方法であって、 上記水酸化ニッケル粒 子を含む水溶液中に、 水酸化ナトリゥム水溶液を供給して pHを 11. 5〜13. 5の範囲に保ちつつコバルトィオンを含む水溶液を供給すると共に、 空気を供給し て、 上記水酸化ニッケル粒子の表面に上記コバルト化合物層を形成するコバルト化 合物層形成工程を有するアル力リ蓄電池用正極活物質の製造方法である。
本発明の製造方法では、 水酸化ナトリゥム水溶液を供給して p Hを 11. 5〜 13. 5の範囲に保ちつつコバルトイオンを含む水溶液を供給して、 水酸化ニッケ ル粒子の表面にコバルト化合物層を形成する。 このように、 反応槽内の水溶液の p Hを 11. 5以上に保つことにより、 水酸化ニッケル粒子の表面を被覆するコバル ト化合物の結晶性を高くすることができる。 さらに、 反応槽内の水溶液の pHを 1 3. 5以下に保つことにより、 コバルト化合物の結晶成長を促進することができる ので、 コパルト化合物層が水酸化ニッケル粒子から剥がれてしまう虡を小さくでき る。
さらに、 本発明の製造方法では、 反応槽內の水溶液中に空気を供給する。 これ により、 酸化反応を進行させ、 コバルト価数をコントロールすることができる。 前 述のように、 酸ィ匕剤や熱処理によってコバルトを酸化する手法を用いた場合には、 結果として、 導電性の高いコバルト化合物層が形成され、 アルカリ蓄電池の自己放 電が大きくなつてしまう傾向にあった。 これに対し、 本発明の手法によれば、 反応 槽内の水溶液中に空気を供給して当該水溶液中の酸素濃度を調整することにより、 容易に且つ適切に、 コバルトの平均価数を 2. 6以上 3. 0以下とすることが可能 となる。 これにより、 充放電に伴うコバルト化合物層の導電性の上昇を、 容易に且 つ適切に、 抑制することが可能となり、 ひいては、 アルカリ蓄電池の自己放電特性 を良好とすることができる。
さらに、 上記のアルカリ蓄電池用正極活物質の製造方法であって、 前記コバル ト化合物層形成工程では、 前記水酸化ニッケル粒子を含む水溶液中に供給する空気 により、 当該水溶液中の溶存酸素濃度を 1. OmgZl以上 1. 5x1 Omg/ 1 以下に保つアル力リ蓄電池用正極活物質の製造方法であると良い。
前述のように、 反応槽内の水溶液中に空気 (酸素) を供給することによりコバ ルトを酸化させて、 コバルト価数をコントロールする手法では、 反応槽内の水溶液 中の酸素濃度を調整することにより、コパルト価数を容易に調整することができる。 ところが、 本発明者が検討した結果、 反応槽内の水溶液中の溶存酸素濃度を 1. 0 mg/ 1より低くして反応させた場合には、 コバルトの平均価数を 2. 6以上に高 めることが困難であり、 また、 コバルト化合物層が水酸ィヒニッケル粒子から剥がれ 易くなつてしまった。 また、 反応槽内の水溶液中の酸素濃度を 1. 5xl 0mgZ 1より高くした場合には、 コバルトの平均価数が 3. 0を上回ってしまう可能性が あることが判明した。
これに対し、 本発明の製造方法では、 コバルト化合物層形成工程において、 水 酸化二ッケル粒子を含む水溶液中に供給する空気により、 当該水溶液中の溶存酸素 濃度を 1. Omg/1以上 1. 5x1 Omg/ 1以下に保つ。 これにより、 コパル トの平均価数を、 適切に、 2. 6以上 3. 0以下の範囲で調整することができる。 図面の簡単な説明
第 1図は、 実施例 2にかかるアルカリ蓄電池について、 コバルト化合物層に含 まれるコバルトの平均価数と利用率比率 (CZA) xl 00 (%) との関係を示す 特性図である。 ·
第 2図は、 実施例 3にかかるアルカリ蓄電池について、 コバルト化合物層に含 まれるナトリウム量と利用率比率 (C/A) xl 00 (%) との関係を示す特性図 である。
第 3図は、 実施例 5にかかるアルカリ蓄電池について、 水酸化ニッケルに含ま れるマグネシウム量と、 利用率比率 (C/A) xl 00 (%)、 及び利用率比率 (B /A) xl 00 (%) との関係を示す特性図である。
第 4図は、 実施例 1 1にかかるアルカリ蓄電池について、 正極に含まれる酸化 イットリウム量と利用率比率 (F/A) I 00 (%)、 及び利用率比率 (B/A) xl 00 (%) との関係を示す特性図である。 ■ 発明を実施するための最良の形態
次に、 本発明の実施例について説明する。 実施例 1
(ステップ 1 :水酸化二ッケル粒子の作製)
本実施例 1では、 次のようにして、 マグネシゥムを固溶状態で含む水酸化二ッ ケル粒子を作製した。 まず、 硫酸ニッケルと硫酸マグネシウムを含む混合液、 水酸 化ナトリウム水溶液、 アンモニア水溶液を用意し、 それぞれを、 50°Cに保持され た反応装置内に 0. 5m 1ノ分の流量で連続的に供給した。 なお、 硫酸ニッケルと 硫酸マグネシウムを含む混合液の濃度は 2. 4モル / 1としている。 このうち、 硫 酸二ッケルと硫酸マグネシゥムの混合比は、 二ッケルとマグネシゥムの総モル数に 対するマグネシゥムのモル数が 5モル%となるようにした。 また、 水酸化ナトリウ ム水溶液の濃度は 5. 5モル / 1、 ァンモニァ水溶液の濃度は 6. 0モル Z 1とし た。
次いで、 反応槽内の pHが 1 2. 5で一定となり、 金属塩濃度と金属水酸化物 粒子濃度とのバランスが一定となって、 定常状態に達した後、 反応槽内からオーバ 一フローした懸濁液を採取し、デカンテーシヨンにより沈殿物を分離した。その後、 この沈殿物を水洗し、 乾燥することにより、 平均粒径 1 0 μ mの水酸化二ッケル粉 末を得ることができた。
得られた水酸化ニッケル粉末について、 I CP発光分析を利用して組成分析を行 つたところ、 水酸化ニッケル粒子に含まれる全ての金属元素 (ニッケルとマグネシ ゥム) に対するマグネシウムの割合は、 合成に用いた混合液と同様に、 5モル%で あった。
また、 CuKa線を用いた X線回折パターンを記録したところ、 J CPDS無 機物質ファイルの番号: 14一 1 1 7に記載されている XRDパターンと一致し、 β -Ν i (OH) 2型の単層からなることが確認された。 すなわち、 マグネシウムが 水酸化ニッケルに固溶していることが確認できた。 また、 この X線回折パターンに おいて、 2 0 = 37°〜40°付近に位置する (1 0 1)面のピークの半価幅は、 1. 0°であった。 なお、 X線回折装置として、株式会社リガク製の R I NT 2200を 用いており、 測定条件は以下の通りである。
<X線回折測定条件〉 X線: C u Κ α / 0 k V/4 OmA
スリット : DS/S S=1°, R S = 0. 15 mm
走査モード: F T測定
S amp l i n g T ime : 2 s e c
S t e p W i d t h : 0. 02°
(ステップ 2 :正極活物質の製作)
次に、 ステップ 1で得られた、 マグネシゥムを固溶状態で含む水酸化二ッケル 粒子 (以下、 マグネシウム固溶水酸化ニッケル粒子ともいう) の表面に、 コノ レト 化合物の被覆層 (以下、 コバルト化合物層ともいう) を形成することにより、 正極 活物質を製作した。 具体的には、 まず、 マグネシウム固溶水酸ィ匕ニッケル粒子を含 む水溶液 (懸濁液) 中に、 5. 5モル/ 1の水酸化ナトリゥム水溶液を供給すると 共に、 2. 4モル / 1の硫酸コバルト水溶液を供給し、 5'0°Cで pH12. 5を維 持しながら攪拌を続けた。 このとき、 反応槽内に空気を供給して、 反応槽内の水溶 液中の酸素濃度を 3. OmgZ 1で一定とした。 このようにして、 マグネシウム固 溶水酸化ニッケル粒子の表面に、 コバルト化合物を析出させた。 なお、 コバルト化 合物の被覆量は、 マグネシウム固溶水酸化ニッケル粒子の重量に対し、 10重量% 濃度に調整した。
次いで、コバルト化合物層を形成したマグネシウム固溶水酸化ニッケル粒子を、 p H 13〜 14の水酸化ナトリウム水溶液でアル力リ処理することにより、 硫酸ィ オン等のァニオンを除去し、 その後、 水洗により、 ナトリウムイオン等のカチオン を除去し、 乾燥させた。 このようにして、 平均粒径 10 mの正極活物質を得るこ とができた。 なお、 アルカリ処理や水洗の条件を調整することで、 正極活物質に含 まれる硫酸イオン (硫酸根) やナトリウムイオンの量を調整した。
得られた正極活物質について組成分析を行ったところ、 コノ レト化合物中に含 まれるナトリウムイオンの割合は、 コバルト化合物の全重量に対し 0. 01重量% であった。 また、 正極活物質に含まれる硫酸根の割合は、 正極活物質の全重量に対 し 3. 0x10— 2重量%であった。
また、 I CP発光分析を利用して正極活物質中に含まれるコバルト量を測定し た。 さらに、 正極活物質粉末とヨウ化カリウム粉末に塩酸を加えた溶液を、 チォ硫 酸ナトリウム溶液を滴定し、 終点近くでデンプン溶液を加え、 滴定を終了させた。 そして、 終点でのチォ硫酸ナトリウム溶液の滴定量と、 先に取得した正極活物質中 に含まれるコバルト量とに基づいて、 コバルトの平均価数を算出したところ、 2. 85価であった。
また、 窒素ガス吸着による BET法を用いて、 得られた正極活物質の比表面積 を測定したところ、 10. 5m2Zgであった。 また、 TEM (透過型電子顕微鏡) により、 活物質粒子破断面のエッジ付近の拡大像を観察し、 コバルト化合物層の厚 みを調査したところ、 平均厚さが 0. 15 μπιであった。
さらに、 この正極活物質を 39. 2ΜΡ a (400 k g f/cm 2) で加圧し た状態で、 導電率を測定したところ、 2. 5X10_8SZcmであった。 なお、 同 正極活物質は、高抵抗であったため、通常の直流四端子法では測定が困難であった。 このため、定電圧印加による二重リング法(三菱化学製のハイレスター UPを使用) によって測定した。
次いで、 CuKo;線を使用する X線回折測定を行い、 コバルト化合物層の結晶 構造を調査した。 その結果、 J CPDS無機物質ファイルの番号: 7— 169に記 載されている六方—菱面晶の層状構造で、 結晶性の高いォキシ水酸化コバルトであ ることが確認できた。 また、 20 = 64。〜 67。付近に位置する (110) 面のピ ークの半価幅は、 0. 7°であった。 なお、 X線回折装置として、 株式会社リガク製 の R I NT2200を用いており、 測定条件は以下の通りである。
ぐ X線回折測定条件 >
X線: CuKa/40 k V/ 40 mA
スリット : DS/SS=1°, RS = 0. 3 mm
走査モード: FT測定
S amp l i n g ιπιβ : 9 s e c
S t e p Wi d t h : 0. 01°
(ステップ 3 : ニッケル正極の製作)
次に、 ニッケル正極を作製した。 具体的には、 まず、 ステップ 2で得られた正 極活物質粉末 1 0 0 gと、 コバルト粉末 5 gと、 酸化ィットリウム (Y 2 O 3) 粉末 2 gとを混合し、 これに 2 7 gの水を加え、 混練することにより、 ペースト状にし た。 このペーストを空隙率 9 5 %の発泡ニッケル基板に充填し、 乾燥した後、 加圧 成形することにより、 ニッケル正極板を製作した。 次いで、 このニッケル正極板を 所定の大きさに切断し、 これに電極リードをスポット溶接することにより、 理論容 量 1 3 0 O mA hのニッケル正極を得ることができた。 なお、 ニッケル電極の理論 容量は、 活物質中のニッケルがー電子反応をするものとして計算している。
ここで、 本実施例 1の正極では、 上述のように、 正極活物質粉末 1 0 0 gに対 し、 コバルト粉末を 5 g添加している。 すなわち、 コバルトを、 正極活物質 1 0 0 重量部に対し 5重量部含有させている。 また、 正極活物質粉末 1 0 0 gに対し、 酸 化ィットリウム (Y 2 0 3) 粉末を 2 g添カ卩している。 すなわち、 酸化ィットリウム (Y 2 O 3) を、 正極活物質 1 0 0重量部に対し 2重量部含有させている。
(ステップ 4 : アル力リ蓄電池の製作)
次に、 公知の手法により、 水素吸蔵合金を含む負極を製作した。 具体的には、 粒径約 2 5 μ mの水素吸蔵合金 MmN i 3.55 C o 0.75 A 1 0.3粉末を用意し、 これに 水と結合剤としてカルボキシメチルセルロースを加え、混練してペースト状にした。 このペーストを電極支持体に加圧充填し、 水素吸蔵合金負極板を製作した。 この水 素吸蔵合金負極板を所定の大きさに切断し、 容量 2 0 0 0 mA hの負極を得た。
次いで、 この負極と上記の正極とを、 厚さ 0 . 1 5 mmのスルホン化ポリプロ ピレン不織布からなるセパレータを間に介して捲回し、渦卷状の電極群を形成した。 次いで、別途用意した金属からなる有底円筒形状の電槽内に、この電極群を挿入し、 さらに、 7モル/ 1の水酸化力リゥム水溶液を 2 . 2 m 1注液した。 その後、 作動 圧 2 . O M P aの安全弁を備える封口板により、 電槽の開口部を密閉し、 AAサイ ズの円筒密閉型ニッケル水素蓄電池を作製した。
比較例 1
次に、 上述した実施例 1と比較して、 ステップ 2の正極活物質の製作手法のみ が異なるアルカリ蓄電池を作製した。 具体的には、 ステップ 2において、 反応槽内 に空気を供給することなく、 マグネシゥム固溶水酸化二ッケル粒子の表面にコパル ト化合物層を形成した。 その後、 実施例 1と同様に、 コバルトの平均価数の調查、 及び X線回折測定を行ったところ、 本比較例 1のコバルト化合物層は、 水酸ィヒコバ ルトを主体とした被覆層となっていた。
次いで、 コバルト化合物被覆層を形成した水酸ィヒニッケル粉末について、 以下 のようにして改質処理を行った。 まず、 酸化補助剤として、 この粉末に対し、 4 0 重量。 /0の水酸化ナトリウム水溶液を含浸させた。 その後、 これをマイクロ波加熱機 能を備えた乾燥装置内に投入し、 装置内に酸素を供給しながら加熱して、 完全乾燥 させた。これにより、粒子表面のコパルト化合物層は酸ィヒし、藍色に変色していた。 次いで、 得られた粉末を水洗した後、 真空乾燥させて、 本比較例 1の正極活物質を 得た。
次いで、 この正極活物質について、 実施例 1と同様に、 コバルト化合物層に含 まれるコノルトの平均価数を算出したところ、 3 . 2価であった。 また、 組成分析 の結果、 コバルト化合物中のナトリウム量は、 3 . 3重量%を示した。 本比較例 1 では、 このように高いナトリウム含有量を示したことから、 ナトリウムは、 コパル ト化合物の結晶中に取り込まれており、水洗除去できなかつたと推測できる。また、 この正極活物質を 3 9 . 2 M P a ( 4 0 0 k g f / c m 2) で加圧した状態で、 導 電率を測定したところ、 3 . 2 x 1 0— 2 S / c mを示した。 これにより、 形成され たコバルト化合物層は、 導電性が高いことが確認できた。 その後、 このような正極 活物質を用いて、 実施例 1のステップ 3, 4と同様の手順により、 アルカリ蓄電池 を作製した。
比較例 2
次に、 上述した実施例 1と比較して、 ステップ 1の手順のみが異なるアルカリ 蓄電池を作製した。 具体的には、 実施例 1のステップ 1では、 反応槽内に硫酸-ッ ケルと硫酸マグネシウムを含む混合液を供給したが、 本比較例 2では、 硫酸マグネ シゥムを含有させることな 硫酸ニッケル単独の水溶液を供給した。これにより、 本比較例 2では、 マグネシゥムを含まない純粋な水酸化二ッケル粉末を得た。 その 後、 実施例 1のステップ 2〜4と同様の手順により、 アルカリ蓄電池を製作した。
(電池特性の評価) 次に、 実施例 1及び比較例 1, 2のアルカリ蓄電池について、 特性評価を行つ た。
まず、 それぞれの電池について、 20°Cにおいて 130111 の電流で15時間 充電し、 その後、 260mAの電流で電池電圧が 1. 0Vになるまで放電する充放 電サイクルを、 放電容量が安定するまで繰り返し行った。 次いで、 放電容量が安定 した後、 20°Cにおいて、 1. 3 Aの電流で 1. 2時間充電した後、 1. 3Aの電 流で電池電圧が 0. 8 Vになるまで放電した。 このときの放電容量に基づき、 それ ぞれの電池について、 活物質利用率 A (1. 3 A放電時利用率) を算出した。 さら に、 20°Cにおいて、 1. 3 Aの電流で 1. 2時間充電した後、 今度は、 6. 5 A の電流で電池電圧が 0. 8Vになるまで放電した。 このときの放電容量に基づき、 それぞれの電池について、 活物質利用率 B (6. 5 A放電時利用率) を算出した。 ここで、 活物質利用率 A, Bは、 活物質中のニッケルがー電子反応したときの理論 電気量に対して算出している。 具体的には、 正極の理論容量 130 OmAhに対す る放電容量の割合を示している。 さらに、 それぞれの電池の高率放電特性を示す指 標として、 活物質利用率 Aに対する活物質利用率 Bの比率 (B/A) XI 00 (%) を算出した。
次に、 それぞれの電池について、 20°Cにおいて 1. 3Aの電流で 1. 2時間 充電し、 その後 45°Cの雰囲気下で 2週間放置した後、 1. 3 Aの電流で電池電圧 が 0. 8 Vになるまで放電した。 このときの放電容量に基づき、 それぞれの電池に ついて、 活物質利用率 C (45°C、 2週間後残存利用率) を算出した。 この算出結 果に基づき、 それぞれの電池の自己放電特性を示す指標として、 活物質利用率 Aに 対する活物質利用率 Cの比率 (CZA) XI 00 (%) を算出した。 なお、 活物質 利用率 Cも、 活物質中の二ッケルがー電子反応したときの理論電気量に対して算出 している。
さらに、 それぞれの電池について、 20°Cにおいて 1. 3Aの電流で 1. 2時 間充電し、 その後、 1. 3 Aの電流で電池電圧が 0. 8 Vになるまで放電する充放 電サイクルを、 200サイクル行った。 そして、 200サイクル目の放電容量に基 づき、 それぞれの電池について、 活物質利用率 D (200サイクル後利用率) を算 出した。 この算出結果に基づき、 それぞれの電池のサイクル寿命特性を示す指標と して、 活物質利用率 Aに対する活物質利用率 Dの比率 (D/A) X I 0 0 (%) を 算出した。 なお、 活物質利用率 Dも、 活物質中のニッケルがー電子反応したときの 理論電気量に対して算出している。
これらの特性評価の結果を表 1に示す。
[表 1 ]
Figure imgf000022_0001
ここで、 それぞれの電池について、 特性評価の結果を比較検討する。
まず、 高率放電特性について比較する。 実施例 1と比較例 1とは、 高率放電特 性値が 9 4 . 7 %と 9 4 . 8 %とで、 同程度の値を示し、 両者共に高率放電特性に 優れていた。 これに対し、 比較例 2では、 高率放電特性値が 8 9 . 5 %で、 実施例 1及ぴ比較例 1と比較して高率放電特性がやや劣っていた。 実施例 1及ぴ比較例 1 のアル力リ蓄電池が、 比較例 2のアル力リ蓄電池と比較して高率放電特性が優れる 理由は、 正極活物質にマグネシウムを固溶した水酸化ニッケルを用いたことで、 正 極活物質自身の電子伝導性が増したためであると考えられる。
次に、 自己放電特性について比較する。 実施例 1と比較例 2とは、 自己放電特 性を示す利用率比率が 7 8 . 9 %と 8 1 . 8 %で、 同程度の値を示し、 両者共に自 己放電特性が良好であった。 これに対し、 比較例 1では、 自己放電特性を示す利用 率比率が 6 7 . 0 %で、 実施例 1及ぴ比較例 2と比較して自己放電特性がかなり劣 つていた。 実施例 1及び比較例 2のアルカリ蓄電池が、 比較例 1のアルカリ蓄電池 と比較して自己放電特性が良好な理由は、 次のように考えられる。
比較例 1では、 コバルト化合物層を作製するにあたり、 酸化補助剤として、 水 酸化ニッケル粉末に対し 4 0重量%の水酸化ナトリゥム水溶液を含浸させた後、 酸 素を供給しながら加熱して酸化反応を進行させた。 このため、 コバルト化合物層に 含まれるコバルトの平均価数が 3 . 2価と高くなり、 また、 3 . 3重量%ナトリウ ムがコバルト化合物の結晶中に含有された。 このため、 コバルト化合物層の導電性 が高くなり、 39. 2MP a ( 400 k g f / c m 2) で加圧した状態における導 電率が、 3. 2x10— 2S/ cmと大きくなつてしまった。 このように、 コノ ノレト 化合物層の導電性が高くなると、 水酸化ニッケル表面付近の反応性が著しく向上す るので、 局所的に充電深度が大きくなると推察される。 このような局所的に充電深 度が大きい部分は、 高電位となるので、 優先的に酸素発生反応を伴い、 自己放電反 応が進行してしまったと考えられる。
これに対し、 実施例 1及び比較例 2では、 コバルト化合物層を作製するにあた り、 反応槽内に空気を供給することにより、 酸化反応を進行させた。 これにより、 コパルト化合物中に含まれるナトリゥムイオンの割合を、 コバルト化合物の全重量 に対し 0. 01重量0 /0と極めて小さくすることができ、コバルトの平均価数も、 2. 85価と小さくすることができた。 これにより、 コバルト化合物層の導電性が低く なり、 39. 2MP a ( 400 k g f Z c m 2) で加圧した状態における導電率が、 2. 5x10— 8SZcmと小さくなつた。 このように、 水酸化ニッケル粒子の表面 に接しているコバルト化合物の電子伝導性を低くしたことにより、 水酸化ニッケル 粒子の充電深度が全体的に均一化され、 自己放電を抑制することができたと考えら れる。
次に、 サイクル寿命特性について比較する。 実施例 1のアルカリ蓄電池は、 サ ィクル寿命特性値が 94. 7 %と高い値を示し、 サイクル寿命特性が優れていた。 これに対し、 比較例 1では、 サイクル寿命特性値が 89. 7%と好ましい値を示し たが、 実施例 1と比較してやや劣る結果となった。 さらに、 比較例 2では、 サイク ル寿命特性値が 80. 0 %を示し、 さらにサイクル寿命特性が劣る結果となつた。
実施例 1のアル力リ蓄電池が、 比較例 1のアル力リ蓄電池と比較してサイクル 寿命特性が優れる理由は、 上記のように自己放電を抑制することにより、 コノくルト 化合物の還元反応を抑制することができたためと考えられる。 また、 実施例 1のァ ルカリ蓄電池が、 比較例 2のアル力リ蓄電池と比較してサイクル寿命特性が優れる 理由は、 水酸ィ匕ニッケルにマグネシウム固溶させたことにより、 過充電時における γ相 (γ—N i OOH) の生成を抑制することができたためと考えられる。 実施例 2
本実施例 2では、 ステップ 2において、 反応槽内の水溶液中の酸素濃度を調整 することにより、 コバルト化合物層に含まれるコバルトの平均価数を異ならせた。 具体的には、 ステップ 2において、 反応槽内に供給する空気の流量を変更すること により、 反応槽内の溶存酸素濃度を、 それぞれ、 0. 5, 1. 0, 3. 0, 1 5. 0, 17. 0 (mg/1) の 5種類に調整し、 それ以外の条件を実施例 1と同様に して、 5種類の正極活物質を作製した。
この 5種類の正極活物質について、 実施例 1と同様にして物性を調査したとこ ろ、 コバルト化合物中のコバルトの平均価数は、 それぞれ、 2. 50, 2. 62, 2. 85, 2. 97, 3. 08 (価) であった。 また、 コバルト化合物中のナトリ ゥム量は、 コバルト化合物の全重量に対し、 いずれも 0. 1重量%より小さい値を 示した。 また、導電率は、いずれも 1. 0x10— 5SZcmより小さい値を示した。
本実施例 2では、 ステップ 2の溶存酸素濃度を異ならせた他は、 全て実施例 1 と同様にして、 5種類のアルカリ蓄電池を作製した。 この 5種類のアルカリ蓄電池 について、 実施例 1と同様にして特性評価を行い、 活物質利用率 Aに対する活物質 利用率 Cの比率 (C/A) XI 00 (%) を算出し、 自己放電特性を示す指標とし た。 ここで、 コバルト化合物層に含まれるコバルトの平均価数と利用率比率 (C/ A) XI 00 (%) との関係を、 第 1図に示す。
第 1図より、コバルト化合物層に含まれるコバルトの平均価数が 2.6以上 3. 0以下の範囲において、 利用率比率 (C/A) xl 00 (%) が高い値を示すこと がわかる。 従って、 コバルト化合物層に含まれるコバルトの平均価数を 2. 6以上 3. 0以下とすることにより、 自己放電特性を良好にすることができると言える。
ここで、 コバルトの平均価数を 2. 6以上 3. 0以下とするためには、 反応槽 内の溶存酸素濃度を 1. Omg/1以上 15. Omg/1以下とする必要があると 言える。
実施例 3
本実施例 3では、 ステップ 2において、 アルカリ処理の回数、 水洗の回数を変 えることにより、 コバルト化合物層に含まれるナトリウム量を異ならせ、 それ以外 の条件を実施例 1と同様にして、 5種類の正極活物質を作製した。
この 5種類の正極活物質について、 実施例 1と同様にして物性を調査したとこ ろ、 コバルト化合物中のナトリウム量は、 それぞれ、 コバルト化合物の全重量に対 し、 0. 01, 0. 05, 0. 10, 0. 18, 0. 31 (重量0 /0) であった。 ま た、 導電率は、 いずれも 1. 0x10— 5S/cmより小さい値を示した。
本実施例 3では、ステップ 2のアル力リ処理及び水洗の回数を異ならせた他は、 全て実施例 1と同様にして、 5種類のアルカリ蓄電池を作製した。 この 5種類のァ ルカリ蓄電池について、 実施例 1と同様にして特性評価を行い、 活物質利用率 Aに 対する活物質利用率 Cの比率 (C/A) XI 00 (%) を算出し、 自己放電特性を 示す指標とした。 ここで、 コバルト化合物層に含まれるナトリウム量 (重量%) と 利用率比率 (C/A) XI 00 (%) との関係を、 第 2図に示す。
第 2図より、 コバルト化合物層に含まれるナトリウム量が 0. 10重量%より 少ない範囲において、 利用率比率 (CZA) XI 00 (%) が高い値を示すことが わかる。 従って、 コバルト化合物層に含まれるナトリウム量が 0. 10重量%より 少なくすることにより、 自己放電特性を良好にすることができると言える。
実施例 4
本実施例 4では、 ステップ 2において、 反応槽内に空気を供給することなく、 酸化剤を添加し、 さらに熱処理を行うことにより、 酸化反応を進行させて、 コパル ト化合物層に含まれるコバルトの平均価数を調整した。 その他の条件は全て実施例 1と同様にして、 5種類の正極活物質 (サンプル 1〜 5とする) を作製した。 この 正極活物質について、 実施例 1と同様にして物性を調査したところ、 コバルト化合 物中のコバルトの平均価数は、 2. 8〜3. 0 (価) の範囲であった。 また、 コバ ルト化合物中のナトリウム量は、 コバルト化合物の全重量に対し、 いずれも 0. 1 重量。 /0より小さい値を示した。 また、 導電率は、 順に、 2. 5x10—8, 9. 6X1 0一7, 9, 8x10—6, 1. 4X10—5, 8. 3x10— 5 (S/c m) を示した。
ところで、 前述した実施例 2では、 反応槽内に空気を供給する手法を用いてコ バルトの平均価数を調整することにより、 コバルトの平均価数を 2. 6〜3. 0の 範囲で調整することができた (第 1図参照)。 これに対し、本実施例 4では、 コバル トの平均価数が、 2. 8〜3. 0の範囲となり、 コバルトの平均価数を低く調整す ることが容易でなかった。 この結果より、 コバルトの平均価数を調整する手法とし ては、 酸化剤の添加量及び熱処理の条件を調整する手法よりも、 反応槽内に空気を 供給する手法を用いたほうが、 適切に、 コバルトの平均価数を 2. 6以上 3. 0以 下の範囲で調整することができると言える。
次いで、 サンプル 1〜5について、 実施例 1と同様にして、 CuKa線を使用 する X線回折測定を行い、 各サンプルのコバルト化合物層の結晶構造を調査した。 この結果、 いずれのサンプルにおいても、 J CPDS無機物質ファイルの番号: 7 -169に記載されているォキシ水酸ィ匕コバルトであることが確認できた。 また、 2 Θ = 64〜67。付近に位置する ( 1 10 ) 面のピーク半価幅を調べたところ、 サ ンプノレ番号の順に、 0. 70°, 0. 97°, 1. 50°, 1. 54°, 1. 78°とな り、 1. 0。〜1. 8°の範囲でばらついた (表 2参照)。
ここで、 C u Κひ線を使用する X線回折の 2 Θ = 64°〜67。付近に位置する (1 10) 面のピークは、 ォキシ水酸化コバルトのピークを表す (J CPDS無機 物質ファイルの番号: 7— 169参照)。 なお、 26 = 64°〜 67°付近に位置する (1 10) 面のピークを選択することにより、 サンプル中に含まれる水酸化エッケ ルとォキシ水酸ィヒコバルトとのピークとが重なることがなく、 適切に、 ォキシ水酸 化コバルトのピークを検出することができる。
本実施例 4では、 ステップ 2におけるコバルトの平均価数の調整方法を変更し た他は、 全て実施例 1と同様にして、 5種類のアルカリ蓄電池を作製した。 この 5 種類のアルカリ蓄電池について、 実施例 1と同様にして特性評価を行い、 活物質利 用率 Αに対する活物質利用率 Cの比率 (CZA) XI 00 (%) を算出し、 自己放 電特性を示す指標とした。 ここで、 サンプル 1〜5を用いた 5種類のアルカリ蓄電 池について、 特生評価の結果を表 2に示す。
[表 2]
Figure imgf000027_0001
で加圧した状態での導電率を 1. 0x10— 5SZcmより小さくすることにより、 自己放電特性を良好にすることができると言える。 また、 コバルト化合物層の結晶 構造について、 結晶性の高いォキシ水酸ィ匕コバルトを主体とし、 さらに、 CuKa 線を使用する X線回折の 2 Θ = 64°〜67。付近に位置するピークの半価幅を 1 · 5°以下とすることにより、 自己放電特"生を良好にすることができると言える。
なお、 導電率とピーク半価幅との間に相関がある理由は、 次のように考えられ る。 ピーク半価幅が大きいほど、 結晶サイズが小さくなり、 結晶子界面が多く形成 される。 この結晶子界面は電子伝導面として機能するため、 ピーク半価幅が大きい ほど、 導電率が高くなると考えられる。 実施例 1でも述べたが、 予め、 導電率の高 いコバルト化合物層が設けられた水酸化ニッケル粒子は、 充電深度のばらつきが大 きくなるため、 自己放電が加速され、 自己放電特性が悪くなる。 従って、 自己放電 特性を良好にするためには、 導電率を 1. 0x10— 5SZcmより小さくし、 ピー クの半価幅を 1. 5°以下とするのが好ましい。 また、 本実施例 4では、 実施例 1のように空気を供給する手法ではなく、 酸ィ匕 剤の添加及び熱処理によって、 コバルトの平均価数をコントロールした。 しかしな がら、 酸化剤の添加及び熱処理する手法では、 表 2に示すように、 コバルト化合物 層をなすコバルト化合物の結晶性が低くなる (ピーク半価幅が大きくなる) 傾向に あった。 また、 酸化反応が急激に進行するため、 導電率が 1. 0X 1 0— 5SZcm より小さく、 ピークの半価幅が 1. 5°以下である正極活物質を、安定して量産する ことが困難であった。 従って、 コバルトの平均価数をコントロール手法としては、 反応槽内に空気を供給する手法を用いることが好ましいと言える。
実施例 5
本実施例 5では、 ステップ 1において、 硫酸ニッケルと硫酸マグネシウムとの 混合比を異ならせて、 水酸ィヒニッケル粒子に含まれる全ての金属元素 (本実施例 5 では、 ニッケルとマグネシウム) に対するマグネシウムの割合 (モル0 /0) を調整し た。 その他の条件は全て実施例 1と同様にして、 5種類の水酸化ニッケル粒子を作 製した。
これらの水酸ィ匕ニッケル粒子について、 実施例 1と同様にして物性を調査した ところ、 マグネシウムの含有量は、 それぞれ、 1. 0, 2. 0, 5. 0, 10. 0, 12. 0 (モル%) であった。 また、 CuKa線を用いた X線回折パターンを記録 したところ、 いずれも、 i3— N i (OH) 2型の単相であることが確認できた。 すな わち、 いずれの水酸化ニッケル粒子においても、 マグネシウムが水酸化ニッケルに 固溶していた。 また、 同 X線回折パターンにおいて、 20 = 37〜40°付近に位置 する (101) 面のピーク半価幅を調べたところ、 いずれも 0. 7°より大きく 1. 2°以下の範囲内にあった。
次いで、実施例 1のステップ 2と同様にして、 5種類の正極活物質を作製した。 これらの正極活物質について、 実施例 1と同様にして物性を調査したところ、 コパ ルト化合物中のコバルトの平均価数は、 2. 7〜2. 9 (価) の範囲であった。 ま た、 コバルト化合物中のナトリウム量は、 コバルト化合物の全重量に対し、 いずれ も 0. 05重量%より小さい値を示した。 また、 導電率は、 いずれも 1. 0X 1 0一 7 (S/cm) より小さい値を示した。 次いで、 実施例 1のステップ 3, 4と同様にして、 5種類のアルカリ蓄電池を 作製した。 この 5種類のアルカリ蓄電池について、 実施例 1と同様にして特性評価 を行った。 なお、 本実施例 5では、 高率放電特性を示す指標として、 活物質利用率 Aに対する活物質利用率 Bの比率 (B/A) XI 00 (%) を算出し、 さらに、 自 己放電特性を示す指標として、 活物質利用率 Aに対する活物質利用率 Cの比率 (C /A) XI 00 (%) を算出した。 ここで、 水酸化ニッケルに含まれるマグネシゥ ム量と、 利用率比率 (C/A) XI 00 (%)、 及び利用率比率 (B/A) XI 00 (%) との関係を、 第 3図に示す。
第 3図において口で示すように、 水酸ィ匕ニッケルに含まれるマグネシウム量が 2. 0モル%以上の範囲において、 利用率比率 (B/A) XI 00 (%) が高い値 を示すことがわかる。換言すれば、水酸化ニッケルに含まれるマグネシウム量を 2. 0モル%以上とすることにより、高率放電特性を良好とすることができると言える。 また、 第 3図において♦で示すように、 水酸化ニッケルに含まれるマグネシウム量 が 10. 0モル%以下の範囲において、 利用率比率 (C/A) XI 00 (%) が高 い値を示すことがわかる。 換言すれば、 水酸化ニッケルに含まれるマグネシウム量 を 10. 0モル。 /0以下とすることにより、 自己放電特性を良好とすることができる と¾ る。
実施例 6
本実施例 6では、 ステップ 2において、 アルカリ処理の回数、 水洗の回数を異 ならせることにより、 正極活物質に含まれる硫酸根の割合を調整した。 それ以外の 条件を実施例 1と同様にして、 5種類の正極活物質を作製した。
この 5種類の正極活物質について、 実施例 1と同様にして物性を調査したとこ ろ、 正極活物質に含まれる硫酸根の割合は、 0. 2重量%〜1, 1重量%の範囲で ばらついていた。 また、 コバルト化合物中のコバルトの平均価数は、 2. 6〜3. 0の範囲内にあった。 また、 コバルト化合物中のナトリウム量は、 いずれも 0. 1 0重量%より少なかった。 また、 導電率は、 いずれも 1. Oxl 0— 5 S/ cmより 小さい値を示した。
本実施例 6では、ステップ 2のアル力リ処理及ぴ水洗の回数を異ならせた他は、 全て実施例 1と同様にして、 5種類のアルカリ蓄電池を作製した。 この 5種類のァ ルカリ蓄電池について、 実施例 1と同様にして特性評価を行い、 活物質利用率 Aに 対する活物質利用率 Cの比率 (CZA) X I 00 (%) を算出し、 自己放電特性を 示す指標とした。
また、 それぞれの電池について、 20°Cにおいて 1. 3Aの電流で 1. 2時間 充電し、 その後、 1. 3 Aの電流で電池電圧が 0. 8 Vになるまで放電する充放電 サイクルを、 200サイクル行った。 そして、 200サイクル目の放電容量に基づ き、 それぞれの電池について、 活物質利用率 D (200サイクル後利用率) を算出 した。 その後、 20°Cにおいて 1. 3 Aの電流で 1. 2時間充電し、 その後 45°C の雰囲気下で 2週間放置した後、 1. 3 Aの電流で電池電圧が 0. 8 Vになるまで 放電した。 このときの放電容量に基づいて、 それぞれの電池について、 活物質利用 率 E (200サイクル後、 45°C、 2週間後残存利用率) を算出した。 そして、 活 物質利用率 Dに対する活物質利用率 Eの比率 (E/D) XI 00 (%) を算出し、 耐久試験後の自己放電特性を示す指標とした。
この結果、 利用率比率 (C/A) X I 00の値は、 いずれも 77〜79 (%) の範囲となり、 ほとんど差異がなかった。 すなわち、 正極活物質に含まれる硫酸根 の割合 (重量%) の違いにより、 初期の自己放電特性については、 ほとんど差がな かった。 ところが、 利用率比率 (E/D) XI 00の値については、 正極活物質に 含まれる硫酸根の割合 (重量%) の違いにより差異が生じた。 具体的には、 硫酸根 の割合が 1. 0重量。/。以下のものにおいては、 利用率比率 (CZA) XI 00の値 とほぼ同等の値 ( 76〜 77 %) を維持できたが、 硫酸根の割合が 1. 0重量%を 上回るものにおいて値が低下し、 70%以下となった。 以上の結果より、 正極活物 質に含まれる硫酸根の割合を 1. 0重量%以下とすることにより、 長期間にわたつ て自己放電特性を良好にすることができると言える。
実施例 7
本実施例 7では、ステップ 1において、アンモニア水溶液の濃度を 5. 5〜6· 5モル / 1の範囲で異ならせ、 さらに、 水酸化ナトリウムの濃度を 5. 0〜6. 0 モル /1の範囲で異ならせることにより、 反応槽内の ρΗを 12. 0-13. 5の 範囲で調整した。 その他の条件は全て実施例 1と同様にして、 5種類の水酸化二ッ ケル粒子を作製した。
実施例 1と同様にして、 CuKa線を用いた X線回折パターンを記録したとこ ろ、 いずれも、 — N i (OH) 2型の単相であることが確認できた。 すなわち、 い ずれの水酸化ニッケル粒子においても、 マグネシウムが水酸化ニッケルに固溶して いた。 また、 同 X線回折パターンにおいて、 2 Θ = 37〜40°付近に位置する (1 01) 面のピーク半価幅を調べたところ、 0. 5。〜1. 4°の範囲でばらついてい た。
次いで、実施例 1のステップ 2と同様にして、 5種類の正極活物質を作製した。 これらの正極活物質について、 実施例 1と同様にして物性を調査したところ、 コパ ルト化合物中のコバルトの平均価数は、 2. 7〜2. 9 (価) の範囲であった。 ま た、 コバルト化合物中のナトリウム量は、 コバルト化合物の全重量に対し、 いずれ も 0. 07重量%より少なかった。 また、 導電率は、 いずれも 1. 0x10— 7 S/ cmより小さい値を示した。
次いで、 実施例 1のステップ 3, 4と同様にして、 5種類のアルカリ蓄電池を 作製し、 特性評価を行った。 なお、 本実施例 7では、 水酸化ニッケル粒子の (10 1) 面のピーク半価幅と、 利用率比率 (BZA) XI 00 (%) との関係を調査し た。 その結果、 (101) 面のピーク半価幅が 0. 7。以下の水酸化二ッケル粒子を 用いた電池では、 0. 7°より大きいものと比較して、 利用率比率 (B/A) XI 0 0 (%) の値が 2%程度低くなつた。 具体的には、 利用率比率 (BZA) xl 00 (%) の値は、 (101) 面のピーク半価幅が 0. 7°より大きい水酸化ニッケル粒 子を用いた電池では 94%以上であるのに対し、 0. 7°より小さい水酸化ニッケル 粒子を用いた電池では 92%以下となった。 この結果より、 (101)面のピークの 半価幅が 0. 7°より大きい水酸化ニッケル粒子を用いることにより、優れた高率放 電特性を得ることができると言える。
また、 (101) 面のピーク半価幅が 1. 2 °より大きな水酸化二ッケル粒子で は、 タップ密度が 1. 7 g/c cを下回り、 正極に対する充填密度が小さくなつて しまった。 具体的には、 (101) 面のピーク半価幅が 1. 2°より大きな水酸化二 05013532
30 ッケル粒子を用いた電池では、 正極容量密度が 50 OmAh/c cを下回り、 充分 な容量密度を得ることができなかった。 この結果より、 充分に高い容量密度を得る ためには、 (101) 面のピークの半価幅が 1. 2°以下の水酸ィ匕ニッケル粒子を用 いることが好ましいと言える。
実施例 8
本実施例 8では、 ステップ 1において、 硫酸ニッケルと硫酸マグネシウムとを 含む混合液、 水酸化ナトリウム水溶液、 及びアンモニア水溶液の供給量を、 0. 1 〜1. 0 (ml/分) の範囲で調整すると共に、 反応槽内での滞留時間 (反応時間) も調整して、 5種類の水酸化-ッケル粒子を作製した。
その後、 実施例 1のステップ 2と同様にして、 正極活物質を作製した。 これら の正極活物質について、 実施例 1と同様にして物性を調査したところ、 コバルト化 合物中のコバルトの平均価数は、 2. 8〜3. 0 (価) の範囲であった。 また、 コ バルト化合物中のナトリウム量は、 コバルト化合物の全重量に対し、 いずれも 0. 1重量%より少なかった。 また、 導電率は、 いずれも 1. Oxl O 6SZcmより 小さい値を示した。 また、 窒素ガス吸着法により測定した BET比表面積を調べた ところ、 7. 0〜2. 3x10 (m 2/ g ) の範囲でばらついていた。
次いで、 実施例 1のステップ 3, 4と同様にして、 5種類のアルカリ蓄電池を 作製し、 特性評価を行った。 なお、 本実施例 8では、 正極活物質粒子の BET比表 面積 (m 2/g) と、 利用率比率 (B/A) XI 00 (%)、 及び利用率比率 (D/ A) XI 00 (%) との関係を調査した。 その結果、 BET比表面積が 8. 0 (m 2 /g) より小さいものは、 充放電時の分極が大きくなり、 8. 0 (m 2/g) 以上 のものと比較して、 利用率比率 (B/A) XI 00 (%) の値が 2%以上低くなつ た。 具体的には、 利用率比率 (B/A) XI 00 (%) の値は、 BET比表面積が 8. 0 (m 2/ g ) 以上の正極活物質粒子を用いた電池では 94%以上であるのに 対し、 8. 0 (m 2/g) より小さい正極活物質粒子を用いた電池では 92%以下 となった。 この結果より、 比表面積が 8. Om 2Zg以上の正極活物質を用いるこ とにより、 優れた高率放電特性を得ることができると言える。
また、 8£丁比表面積が1. 8x10 (m 2/g) より大きいものは、 1. 8x 1 0 (m 2/ g ) 以下のものと比較して、 利用率比率 (D/A) XI 00 (%) の値 が 3%以上低くなつた。 具体的には、利用率比率 (D/A) I 00 (%) の値は、 B E T比表面積が 1. 8X 1 0 (m 2/ g ) 以下の正極活物質粒子を用いた電池では 94%以上であるのに対し、 1. 8X1 0 (m g ) より大きい正極活物質粒子を 用いた電池では 9 1%以下となった。 これは、 正極活物質の比表面積が大きいため に、 充放電サイクル試験中に、 セパレータ内の電解液が正極中に移動し易くなり、 これによりセパレータ内の電解液が減少して、 内部抵抗が上昇してしまったためと 考えられる。
この結果より、 比表面積が 1. 8X1 0 (m g ) 以下の正極活物質を用いる ことにより、 サイクル寿命特性を良好にすることができると言える。
実施例 9
本実施例 9では、ステップ 3において、コバルト粉末 5 gを添加する代わりに、 水酸ィヒコバルト粉末 5 gを添加して、 ニッケル正極を作製した。 その他の条件 (ス テツプ 1~4) は全て実施例 1と同様にして、 アルカリ蓄電池を作製した。
次いで、 実施例 1と同様にして、 電池の特性評価を行ったところ、 高率放電特 十生、 自己放電特性、 及びサイクル寿命特性は、 共に良好であった。
但し、 本実施例 9のアルカリ蓄電池では、 利用率比率 (BZA) XI 00 (%) の値が 92. 4 %と良好な値ではあったものの、 実施例 1のアル力リ蓄電池 (利用 率比率 (BZA) X I 00 = 94. 7%) に比して 2. 3%低下した。 ここで、 両 電池の内部抵抗を調查したところ、 本実施例 9の電池は、 実施例 1の電池よりも若 干高くなつていた。 そこで、 両電池の内部抵抗を調査したところ、 本実施例 9の電 池は、 実施例 1の電池よりも若干高くなつていた。
さらに、 両者の初充電時の充放電曲線を比較したところ、 本実施例 9のコバル ト酸化効率は、 実施例 1のコバルト酸化効率に対し大きく低下していた。 これは、 実施例 1では、正極に導電性の高いコバルトを添カ卩したのに対し、本実施例 9では、 導電性の低い水酸化コバルトを添加したためと考えられる。 なお、 コバルト酸化効 率は、 コバルト及び水酸化コバルトからォキシ水酸化コバルトに変化するために必 要な電気量と、 実際に充電ブラトーとして充電曲線から計算した電気量との比率で ある。
ところで、 実施例 1, 9では、 共に、 導電性の低い-バルト化合物層を形成し た正極活物質を用いている。 このため、 正極活物質が導電性の高いコバルト化合物 層を有する場合に比して、 正極の集電性が低下してしまう。 従って、 これを補うた めに、 コバルト酸ィヒ効率を高くするのが好ましい。 実施例 1では、 導電性の高いコ バルトを正極に添カ卩することにより、 コバルト酸ィ匕効率を高めているため、 ォキシ 水酸化コバルトによる導電ネットワークの形成が良好となり、 正極の集電性が良好 となる。 このような理由により、 利用率比率 ( B /A) X I 0 0 (%) が高い値を 示したと考えられる。 これに対し、 本実施例 9では、 導電性の低い水酸化コバルト を正極に添加したため、 実施例 1と比較して、 コバルト酸化効率が低下し、 ォキシ 水酸化コバルトによる導電ネットワークの形成が充分でなかつたと考えられる。
従って、 導電性の低いコバルト化合物層を形成した正極活物質を用いる場合に は、 導電性の高いコバルトを正極に添加するのが好ましいと言える。
実施例 1 0
本実施例 1 0では、 ステップ 3において、 コバルト粉末の添加量を、 正極活物 質 1 0 0重量部に対し 1〜 8重量部の範囲で調整して、 複数種類のニッケル正極を 作製した。 その他の条件 (ステップ 1〜4 ) は全て実施例 1と同様にして、 アル力 リ蓄電池を作製した。
次いで、 実施例 1と同様にして、 電池の特性評価を行った。 具体的には、 本実 施例 1 0のアル力リ蓄電池のそれぞれについて、利用率比率(BZA) x l 0 0 (%) を算出した。 その結果、 コバルト粉末の添加量を、 正極活物質 1 0 0重量部に対し 2重量部以上とした電池において、 利用率比率 ( B /A) x l 0 0 (%) が 9 4 % 以上の高い値を示した。
これに対し、 コバルト粉末の添加量を、 正極活物質 1 0 0重量部に対し 2重量 部未満とした電池では、 2重量部以上とした電池に比して、 利用率比率 (B/A) x l 0 0 (%) の値が 2 %以上低下してしまった。 これは、 導電ネットワークを形 成するコバルトの添加量が不十分であるために、 正極の集電性を充分に高めること ができなかったためと考えられる。 以上の結果より、 コバルトを、 正極活物質 100重量部に対し 2重量部以上含 有させることにより、 集電性を良好にすることができ、 活物質の利用率を良好にす ることができると言える。
また、 コバルト粉末の添加量が、 正極活物質 100重量部に対し 7重量部を上 回る電池では、 水酸化ニッケル粒子の充填量が不十分となり、 正極の容量密度が低 下してしまった。
以上より、 コバルトの含有量は、 正極活物質 100重量部に対し、 2重量部以 上 7重量部以下とするのが好ましいと言える。
実施例 1 1
本実施例 1 1では、 ステップ 3において、 酸化ィットリゥム粉末の添加量を、 正極活物質 100重量部に対し 0〜 5重量部の範囲で調整して、 複数種類の二ッケ ル正極を作製した。その他の条件(ステップ 1〜4)は全て実施例 1と同様にして、 アルカリ蓄電池を作製した。
次いで、 実施例 1と同様にして、 電池の特性評価を行った。 具体的には、 それ ぞれの電池について、 まず、 実施例 1と同様にして、 初期サイクルの活物質利用率 A (1. 3 A放電時利用率) と、 活物質利用率 B (6. 5 A放電時利用率) を算出 した。 さらに、 それぞれの電池の高率放電特性を示す指標として、 活物質利用率 A に対する活物質利用率 Bの比率 (B/A) XI 00 (%) を算出した。
その後、 60°Cにおいて、 1. 3Aの電流で 1. 2時間充電した後、 1. 3A の電流で電池電圧が 0. 8 Vになるまで放電した。 このときの放電容量に基づき、 それぞれの電池について、 活物質利用率 F (60°C、 1. 3 A放電時利用率) を算 出した。 さらに、 それぞれの電池の高温充放電特性を示す指標として、 活物質利用 率 Aに対する活物質利用率 Fの比率 (F/A) XI 00 (%) を算出した。
ここで、 酸化イットリウムの添加量と、 利用率比率 (FZA) XI 00 (%) , 及び利用率比率 (B/A) XI 00 (%) との関係を、 第 4図に示す。
第 4図において♦で示すように、 酸化ィットリゥムの添加量が増えるほど、 利 用率比率 (F/A) XI 00 (%) が増大する傾向にあることがわかる。 詳細には、 酸化ィットリゥムの添加量が、 正極活物質 100重量部に対し 0. 5重量部以上の 範囲で、 利用率比率 (F /A) X I 0 0 (%) が高い値を示すことがわかる。 従つ て、 酸ィ匕ィットリゥムの添加量を、 正極活物質 1 0 0重量部に対し 0 . 5重量部以 上とすることにより、 高温充放電特性を良好にすることができると言える。 すなわ ち、 充電受け入れ性を良好にすることができると言える。
一方、 口で示すように、 酸ィヒィットリゥムの添加量が増えるほど、 利用率比率
( B /A) X I 0 0 (%) が低下する傾向にあることがわかる。 特に、 酸化イット リゥムの添加量が、 正極活物質 1 0 0重量部に対し 3重量部を上回ると、 利用率比 率 (B ZA) X I 0 0 (%) は大きく低下することがわかる。 従って、 良好な高率 放電特性を得るためには、 酸ィ匕ィットリゥムの添加量を、 正極活物質 1 0 0重量部 に対し 3 . 0重量部以下とするこことが必要であると言える。
以上の結果より、 イツトリゥム酸ィ匕物の含有量は、 正極活物質 1 0 0重量部に 対し、 0 . 5重量部以上 3重量部以下であるのが好ましいと言える。
実施例 1 2
本実施例 1 2では、 ステップ 3において、 コバルト粉末を添カ卩することなく、 ニッケル正極を作製した。 その他の条件 (ステップ 1〜4 ) は全て実施例 1と同様 にして、 アルカリ蓄電池を作製した。
次いで、 実施例 1と同様にして、 電池の特性評価を行ったところ、 高率放電特 性、 自己放電特性、 及びサイクル寿命特性は、 共に良好であった。 さらに、 実施例 1 1と同様にして、 電池の特性評価を行い、 それぞれの電池の高温充放電特性を示 す指標として、 活物質利用率 Aに対する活物質利用率 Fの比率 (F /A) X I 0 0 (%) を算出した。 その結果、 利用率比率 (F /A) X I 0 0 = 7 6 . 1 (%) と なつ 7こ。
ここで、 本実施例 1 2と実施例 1 1とを比較検討する。 本実施例 1 2では、 コ バルト粉末を添カ卩していないが、 酸化イットリウム粉末は、 実施例 1と同様に、 正 極活物質 1 0 0重量部に対し 2重量部添加している。これに対し、実施例 1 1では、 正極活物質 1 0 0重量部に対し、コパルト粉末を実施例 1と同様に 5重量部添加し、 酸ィ匕イットリウム粉末を 0〜 5重量部の範囲で添加している。 そこで、 本実施例 1 2と、 実施例 1 1のうち、 酸化イットリウムを正極活物質 1 0 0重量部に対し 2重 量部添加したものとを比較する。 すると、本実施例 1 2では、利用率比率 (FZA) X I 0 0の値が 7 6 . 1 (%) であるのに対し、 実施例 1 1では 8 0 %であった。 すなわち、 実施例 1 1では、 コバルトを添カ卩したことにより、 本実施例 1 2と比較 して、 利用率比率 (F /A) X I 0 0が 4 %程度高くなつていた。
そこで、 実施例 1 1及び実施例 1 2の電池について、 6 0 °Cにおける充電曲,線 をそれぞれ比較したところ、 コパルト粉末及び酸化ィットリゥム粉末を共に添加し た電池において、酸素発生過電圧が著しく上昇していることが判明した。このため、 両者を添カ卩した電池において、 高温充放電特性が良好となったと考えられる。 従つ て、正極に、コバルト及ぴ酸化イツトリゥムを共に添加するのが好ましいと言える。
これは、 次のような理由によるものと考えられる。 イットリウム酸化物を電極 に含有させることによ.り、 酸素発生過電圧が上昇し、 充電受け入れ性が向上するこ とが知られている。 このような性質を有するイットリウム酸化物に加え、 コバルト を添加すると、 充電時に、 コバルトとイツトリゥムとの混合酸化物が生成され、 こ れにより、 イツトリゥム酸化物の分散性が向上する。 このため、 特異的に酸素発生 過電圧が上昇し、 充電受け入れ性が良好になり、 高温充放電特性が良好になると考 えられる。
以上において、 本発明を実施例 1〜 1 2に即して説明したが、 本発明は上記実 施例等に限定されるものではなく、 その要旨を逸脱しない範囲で、 適宜変更して適 用できることはいうまでもない。
例えば、 実施例 1〜 1 2では、 マグネシゥムを固溶状態で含む水酸化二ッケル 粒子を用いて正極活物質を作製した。 し力、しながら、 水酸化ニッケル粒子に含有さ せる元素は、 マグネシウムのみに限定されるものではない。 少なくともマグネシゥ ムを固溶状態で含ませることにより、 高率放電特性及び出力特性を良好とすること ができる。 具体的には、 マグネシウムに加えてコバルトを水酸化ニッケル粒子に含 有させた場合でも、 高率放電特性及び出力特性を良好とすることができた。
また、 実施例 1〜 1 2では、 負極に水素吸蔵合金を用いたニッケル水素蓄電池 を作製した。 しかしながら、 本発明は、 ニッケル亜鉛蓄電池やニッケルカドミウム 蓄電池など、 いずれのアル力リ蓄電池についても同様な効果を得ることができる。 また、 実施例 1〜1 2では、 アルカリ蓄電池を円筒型としたが、 このような形 状に限定されるものではない。 ケース内に極板を積層した角形電池など、 いずれの 形態のアル力リ蓄電池についても適用することができる。

Claims

請 求 の 範 囲
1. 少なくともマグネシゥムを固溶状態で含む水酸化-ッケル粒子と、
上記水酸化二ッケル粒子の表面を被覆するコバルト化合物層と、 を有する アル力リ蓄電池用正極活物質であって、
上記コバルト化合物層は、
自身に含まれるコバルトの平均価数が、 2. 6以上 3. 0以下であり、 自身の全重量に対し 0. 10重量%より少ない割合でナトリウムを含み、 当該正極活物質を 39. 2 MP aで加圧した状態での導電率が、 1. 0x10— 5 S/cmより小さい
アル力リ蓄電池用正極活物質。
2. 請求項 1に記載のアル力リ蓄電池用正極活物質であって、
前記水酸化二ッケル粒子に固溶状態で含まれる前記マグネシウムの割合は、 上記 水酸化ニッケル粒子に含まれる全ての金属元素に対し、 2モル%以上 10モル%以 下である
アル力リ蓄電池用正極活物質。
3. 請求項 1または請求項 2に記載のアル力リ蓄電池用正極活物質であって、 当該正極活物質に含まれる硫酸根は、 1. 0重量%以下である
アル力リ蓄電池用正極活物質。
4. 請求項 1〜請求項 3のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
前記水酸化二ッケル粒子は、 C u Κ α線を使用する X線回折の 20 = 37 °〜 4 0°付近に位置する (101) 面のピークの半価幅が、 0. 7。より大きく 1. 2°以 下である
アル力リ蓄電池用正極活物質。
5. 請求項 1〜請求項 4のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
前記コバルト化合物層をなすコバルト化合物は、 . ォキシ水酸ィヒコバルトを主体とし、 C u K ct線を使用する X線回折の 2 0 = 6 4°〜6 7°付近に位置する (1 1 0) 面のピークの半価幅が、 1. 5°以下である アル力リ蓄電池用正極活物質。
6. 請求項 1〜請求項 5のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
当該正極活物質の平均粒径は、 5 μ m以上 2 0 μ m以下である
アル力リ蓄電池用正極活物質。
7. 請求項 1〜請求項 6のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
前記コバルト化合物層の平均厚みは、 0. 2 0 πι以下である
アル力リ蓄電池用正極活物質。
8. 請求項 1〜請求項 7のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
窒素ガス吸着による B ET法を用いて測定された比表面積が、 8. Om 2Zg以 上 1. 8x 1 Om /g以下である
アル力リ蓄電池用正極活物質。
9. 請求項 1〜請求項 8のいずれか一項に記載のアル力リ蓄電池用正極活物質であ つて、
水酸化二ッケル粒子を含む水溶液中に、 水酸化ナトリゥム水溶液を供給して p H を 1 1. 5〜 1 3. 5の範囲に保ちつつコバルトイオンを含む水溶液を供給すると 共に、 空気を供給して作製されてなる
アル力リ蓄電池用正極活物質。
1 0. 請求項 9に記載のアル力リ蓄電池用正極活物質であって、
前記水酸化ニッケル粒子を含む水溶液中に供給する空気により、 前記水酸化ニッ ケル粒子を含む水溶液中の溶存酸素濃度を 1. OmgZl以上 1. 5 X 1 0 m g / 1以下として作製されてなる
アル力リ蓄電池用正極活物質。
1 1. 請求項 1〜請求項 1 0のいずれか一項に記載のアルカリ蓄電池用正極活物質 を含む
アル力リ蓄電池用正極。
1 2 . 請求項 1 1に記載のアル力リ蓄電池用正極であって、
前記正極活物質に加えて、
金属コバルト粒子と、
イツトリゥム酸ィ匕物粒子と、 を含む
アル力リ蓄電池用正極。
1 3 . 請求項 1 2に記載のアル力リ蓄電池用正極であって、
前記金属コバルト粒子を、 前記正極活物質の 1 0 0重量部に対し、 2〜 7重量部 の割合で含む
アル力リ蓄電池用 E極。
1 4 . 請求項 1 2または請求項 1 3に記載のアル力リ蓄電池用正極であって、 前記ィットリゥム酸化物粒子を、 前記正極活物質の 1 0 0重量部に対し、 0 . 5
〜 3重量部の割合で含む
アル力リ蓄電池用正極。
1 5 . 請求項 1 1〜請求項 1 4のいずれか一項に記載のアル力リ蓄電池用正極を備 る
アル力リ蓄電池。 .
1 6 . 水酸化ニッケル粒子と、 これを被覆するコバルト化合物層と、 を有するアル カリ蓄電池用正極活物質の製造方法であって、
上記水酸化ニッケル粒子を含む水溶液中に、 水酸化ナトリゥム水溶液を供給して p Hを 1 1 . 5〜1 3 . 5の範囲に保ちつつコバルトイオンを含む水溶液を供給す ると共に、 空気を供給して、 上記水酸ィヒニッケル粒子の表面に上記コバルト化合物 層を形成するコバルト化合物層形成工程を有する
アル力リ蓄電池用正極活物質の製造方法。
1 7 . 請求項 1 6に記載のアルカリ蓄電池用正極活物質の製造方法であって、 前記コパルト化合物層形成工程では、
前記水酸化二ッケル粒子を含む水溶液中に供給する空気により、 当該水溶液中 の溶存酸素濃度を 1· Omg/1以上 1. 5x1 OmgZ 1以下に保つ アル力リ蓄電池用正極活物質の製造方法。
PCT/JP2005/013532 2004-07-30 2005-07-15 アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法 WO2006011430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/658,805 US9276258B2 (en) 2004-07-30 2005-07-15 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery
EP05766526A EP1783848B1 (en) 2004-07-30 2005-07-15 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method of manufacturing positive electrode active material for alkaline storage battery
CN2005800255813A CN1993845B (zh) 2004-07-30 2005-07-15 用于碱性蓄电池的正极活性材料、用于碱性蓄电池的正极、碱性蓄电池以及用于制造碱性蓄电池的正极活性材料的方法
US12/926,155 US20110108759A1 (en) 2004-07-30 2010-10-28 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004224544A JP4736372B2 (ja) 2004-07-30 2004-07-30 アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、及び、アルカリ蓄電池
JP2004-224544 2004-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/926,155 Division US20110108759A1 (en) 2004-07-30 2010-10-28 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, alkaline storage battery, and method for manufacturing positive electrode active material for alkaline storage battery

Publications (1)

Publication Number Publication Date
WO2006011430A1 true WO2006011430A1 (ja) 2006-02-02

Family

ID=35786179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013532 WO2006011430A1 (ja) 2004-07-30 2005-07-15 アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法

Country Status (6)

Country Link
US (2) US9276258B2 (ja)
EP (1) EP1783848B1 (ja)
JP (1) JP4736372B2 (ja)
KR (1) KR100829197B1 (ja)
CN (1) CN1993845B (ja)
WO (1) WO2006011430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153032B2 (en) * 2008-06-06 2012-04-10 Byd Company Limited Transition metal hydroxide and oxide, method of producing the same, and cathode material containting the same
US11168046B2 (en) 2016-09-14 2021-11-09 Genomatica, Inc. 1,3-fatty diol compounds and derivatives thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129429A (ja) * 2008-11-28 2010-06-10 Sanyo Electric Co Ltd 非焼結式アルカリ二次電池及び非焼結式アルカリ二次電池充電セット
JP5213989B2 (ja) * 2011-04-27 2013-06-19 住友金属鉱山株式会社 アルカリ二次電池正極活物質用被覆水酸化ニッケル粉末及びその製造方法
JP5744635B2 (ja) 2011-06-10 2015-07-08 プライムアースEvエナジー株式会社 アルカリ蓄電池及びアルカリ蓄電池の製造方法
JP5733859B2 (ja) * 2011-07-28 2015-06-10 Fdk株式会社 ニッケル水素二次電池
JP5858067B2 (ja) * 2012-10-25 2016-02-10 住友金属鉱山株式会社 アルカリ二次電池正極活物質用被覆水酸化ニッケル粉末
JP5610010B2 (ja) * 2012-10-25 2014-10-22 住友金属鉱山株式会社 アルカリ二次電池正極活物質用被覆水酸化ニッケル粉末及びその製造方法
JP6074635B2 (ja) * 2013-03-04 2017-02-08 株式会社田中化学研究所 粒子集合体及びその製造方法
JP6293686B2 (ja) * 2015-02-16 2018-03-14 プライムアースEvエナジー株式会社 アルカリ蓄電池の製造方法及びアルカリ蓄電池
JP6229698B2 (ja) * 2015-08-21 2017-11-15 トヨタ自動車株式会社 ニッケル水素電池
CN111066183B (zh) * 2017-09-11 2023-04-04 株式会社田中化学研究所 碱性蓄电池用正极活性物质
US20190097213A1 (en) * 2017-09-28 2019-03-28 Basf Corporation Processes and compositions to improve high-temperature performance of nimh batteries
JP6996960B2 (ja) * 2017-12-14 2022-01-17 Fdk株式会社 ニッケル水素二次電池
CN112436203B (zh) * 2020-12-28 2021-12-14 中国科学技术大学 一种降低锌钴电池自放电的充电方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789408A2 (en) * 1996-02-07 1997-08-13 SANYO ELECTRIC Co., Ltd. Conductive agent and non-sintered nickel electrode for alkaline storage batteries
JPH09210941A (ja) * 1996-02-06 1997-08-15 Sanyo Electric Co Ltd 非焼結式ニッケル極用活物質粉末の利用率の推定・評価方法
JPH10302788A (ja) * 1997-04-22 1998-11-13 Sanyo Electric Co Ltd アルカリ蓄電池用ニッケル電極活物質の製造方法
JP2000021400A (ja) * 1998-07-06 2000-01-21 Yuasa Corp 密閉型ニッケル−水素蓄電池
JP2001052696A (ja) * 1995-05-18 2001-02-23 Toshiba Battery Co Ltd アルカリ二次電池
EP1113512A1 (en) 1999-12-28 2001-07-04 Toshiba Battery Co., Ltd. Positive active material for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the positive active material and method for producing the same
EP1172870A1 (fr) 2000-07-13 2002-01-16 Alcatel Matériau conducteur pour électrode de générateur électrochimique secondaire a électrolyte alcalin
EP1172869A2 (en) 2000-07-14 2002-01-16 Matsushita Electric Industrial Co., Ltd. Method for producing a positive electrode active material for an alkaline storage battery
JP2003249215A (ja) * 2002-02-27 2003-09-05 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法およびこの製造方法にて得られた正極活物質を用いたアルカリ蓄電池
JP2004071304A (ja) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質ならびにそれを用いた正極およびアルカリ蓄電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215769A (ja) 1985-07-11 1987-01-24 Matsushita Electric Ind Co Ltd ニツケル−水素アルカリ蓄電池
JP3363670B2 (ja) 1994-09-21 2003-01-08 三洋電機株式会社 アルカリ蓄電池用非焼結式ニッケル電極及びその製造方法並びにアルカリ蓄電池
US6063642A (en) * 1994-11-15 2000-05-16 Peter S. Zory Method for generating luminescence from a buried layer in a multilayer compound semiconductor material using a liquid contact
JP3234492B2 (ja) * 1996-02-07 2001-12-04 三洋電機株式会社 アルカリ蓄電池用非焼結式ニッケル極
US6007946A (en) * 1996-06-26 1999-12-28 Sanyo Electric Co., Ltd. Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP3223858B2 (ja) * 1996-12-24 2001-10-29 松下電器産業株式会社 アルカリ蓄電池とその正極活物質およびその製造方法
JPH10326617A (ja) 1997-05-26 1998-12-08 Furukawa Battery Co Ltd:The アルカリ二次電池用正極活物質の製造法、ペースト式ニッケル極並びにアルカリ二次電池
JPH11176431A (ja) 1997-12-11 1999-07-02 Furukawa Battery Co Ltd:The ペースト式ニッケル極の製造法、ペースト式ニッケル極並びにアルカリ二次電池
JPH11219703A (ja) * 1998-01-30 1999-08-10 Sanyo Electric Co Ltd アルカリ蓄電池用活物質及びそれを用いた非焼結式ニッケル極及び電池
JP3448510B2 (ja) * 1998-04-28 2003-09-22 三洋ジ−エスソフトエナジー株式会社 アルカリ電池用水酸化ニッケル粉末およびこれを用いた水酸化ニッケル電極
JP4017302B2 (ja) 1999-09-28 2007-12-05 三洋電機株式会社 アルカリ蓄電池およびその製造方法
JP2001332257A (ja) 1999-10-08 2001-11-30 Hitachi Maxell Ltd アルカリ蓄電池用非焼結式正極、その製造方法および前記非焼結式正極を用いたアルカリ蓄電池
WO2001097305A1 (fr) * 2000-06-16 2001-12-20 Matsushita Electric Industrial Co., Ltd. Matiere active d'anode pour accumulateur alcalin, anode comprenant cette matiere et accumulateur alcalin
JP2001357845A (ja) * 2000-06-16 2001-12-26 Canon Inc ニッケル系二次電池及び該二次電池の製造方法
JP3744316B2 (ja) 2000-06-16 2006-02-08 松下電器産業株式会社 アルカリ蓄電池用正極活物質及びニッケル正極並びにアルカリ蓄電池
JP4271407B2 (ja) 2002-04-10 2009-06-03 株式会社田中化学研究所 アルカリ蓄電池用正極活物質の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052696A (ja) * 1995-05-18 2001-02-23 Toshiba Battery Co Ltd アルカリ二次電池
JPH09210941A (ja) * 1996-02-06 1997-08-15 Sanyo Electric Co Ltd 非焼結式ニッケル極用活物質粉末の利用率の推定・評価方法
EP0789408A2 (en) * 1996-02-07 1997-08-13 SANYO ELECTRIC Co., Ltd. Conductive agent and non-sintered nickel electrode for alkaline storage batteries
JPH10302788A (ja) * 1997-04-22 1998-11-13 Sanyo Electric Co Ltd アルカリ蓄電池用ニッケル電極活物質の製造方法
JP2000021400A (ja) * 1998-07-06 2000-01-21 Yuasa Corp 密閉型ニッケル−水素蓄電池
EP1113512A1 (en) 1999-12-28 2001-07-04 Toshiba Battery Co., Ltd. Positive active material for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the positive active material and method for producing the same
EP1172870A1 (fr) 2000-07-13 2002-01-16 Alcatel Matériau conducteur pour électrode de générateur électrochimique secondaire a électrolyte alcalin
EP1172869A2 (en) 2000-07-14 2002-01-16 Matsushita Electric Industrial Co., Ltd. Method for producing a positive electrode active material for an alkaline storage battery
JP2002110154A (ja) * 2000-07-14 2002-04-12 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法
JP2003249215A (ja) * 2002-02-27 2003-09-05 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質の製造方法およびこの製造方法にて得られた正極活物質を用いたアルカリ蓄電池
JP2004071304A (ja) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd アルカリ蓄電池用正極活物質ならびにそれを用いた正極およびアルカリ蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1783848A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153032B2 (en) * 2008-06-06 2012-04-10 Byd Company Limited Transition metal hydroxide and oxide, method of producing the same, and cathode material containting the same
US11168046B2 (en) 2016-09-14 2021-11-09 Genomatica, Inc. 1,3-fatty diol compounds and derivatives thereof

Also Published As

Publication number Publication date
JP4736372B2 (ja) 2011-07-27
US20110108759A1 (en) 2011-05-12
EP1783848B1 (en) 2012-04-25
CN1993845B (zh) 2011-06-08
US9276258B2 (en) 2016-03-01
KR20070040820A (ko) 2007-04-17
CN1993845A (zh) 2007-07-04
US20090202909A1 (en) 2009-08-13
KR100829197B1 (ko) 2008-05-13
EP1783848A4 (en) 2008-04-23
JP2006048954A (ja) 2006-02-16
EP1783848A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
WO2006011430A1 (ja) アルカリ蓄電池用正極活物質、アルカリ蓄電池用正極、アルカリ蓄電池、及びアルカリ蓄電池用正極活物質の製造方法
JP6069482B2 (ja) 金属ドープされた酸化ニッケル活性材料を作製する方法
JP6262320B2 (ja) 金属ドープされた酸化ニッケル活性材料
JP3738052B2 (ja) ニッケル電極用活物質とこれを用いたニッケル電極及びニッケルアルカリ蓄電池並びにこれらの製造方法
JP2015514296A (ja) 金属ドープされた酸化ニッケル活性材料
JP4321997B2 (ja) アルカリ蓄電池用正極活物質ならびにそれを用いた正極およびアルカリ蓄電池
JP4403594B2 (ja) アルカリ蓄電池用正極活物質およびその製造方法
JP2011071125A (ja) アルカリ蓄電池用正極活物質の製造方法
US6783892B2 (en) Positive electrode active material for alkaline storage batteries, and positive electrode and alkaline storage battery using the same
WO2012096291A1 (ja) アルカリ蓄電池
JP4330832B2 (ja) アルカリ蓄電池用正極活物質、正極ならびにアルカリ蓄電池
WO2017119979A1 (en) Nickel hydroxide composite material for alkaline rechargeable battery
WO2014049966A1 (ja) アルカリ蓄電池用正極活物質、それを含むアルカリ蓄電池用正極およびアルカリ蓄電池、ならびにニッケル水素蓄電池
JP3744317B2 (ja) アルカリ蓄電池用ニッケル正極およびこれを用いたアルカリ蓄電池
JP3744316B2 (ja) アルカリ蓄電池用正極活物質及びニッケル正極並びにアルカリ蓄電池
JP7454642B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP7353454B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP5309479B2 (ja) アルカリ蓄電池
JP7149525B2 (ja) 空気二次電池用の空気極触媒及び空気二次電池
JP2022138169A (ja) 空気二次電池用触媒、空気極及び空気二次電池
JP2022118881A (ja) 空気二次電池用触媒及び空気二次電池
JP2020080291A (ja) 空気二次電池用の空気極触媒、この空気極触媒の製造方法及び空気二次電池
JP2004006279A (ja) アルカリ二次電池及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005766526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580025581.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11658805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077004666

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766526

Country of ref document: EP