KR101298961B1 - 액티브 매트릭스형 표시 장치 - Google Patents

액티브 매트릭스형 표시 장치 Download PDF

Info

Publication number
KR101298961B1
KR101298961B1 KR1020110055776A KR20110055776A KR101298961B1 KR 101298961 B1 KR101298961 B1 KR 101298961B1 KR 1020110055776 A KR1020110055776 A KR 1020110055776A KR 20110055776 A KR20110055776 A KR 20110055776A KR 101298961 B1 KR101298961 B1 KR 101298961B1
Authority
KR
South Korea
Prior art keywords
thin film
oxide semiconductor
layer
semiconductor layer
electrode
Prior art date
Application number
KR1020110055776A
Other languages
English (en)
Other versions
KR20110069759A (ko
Inventor
순페이 야마자키
준이치로 사카타
준 코야마
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20110069759A publication Critical patent/KR20110069759A/ko
Application granted granted Critical
Publication of KR101298961B1 publication Critical patent/KR101298961B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Dram (AREA)
  • Shift Register Type Memory (AREA)

Abstract

산화물 반도체층을 사용하여 전기 특성이 뛰어난 박막 트랜지스터를 구비한 반도체 장치가 제공되는 것이 과제의 하나다. 또한, 동일 기판 위에 복수 종류의 박막 트랜지스터의 구조를 제작하여 복수 종류의 회로를 구성함으로써, 증가되는 공정수가 적은 반도체 장치의 제작 방법이 제공되는 것이 과제의 하나다.
절연 표면 위에 금속 박막을 형성한 후, 산화물 반도체층을 적층하고, 그 후, 가열 처리 등의 산화 처리를 행함으로써 금속 박막의 일부분 또는 전체가 산화된다. 또한, 논리 회로 등의 고속 동작을 우선하는 회로와, 매트릭스 회로에서 상이한 구조의 박막 트랜지스터가 배치된다.

Description

액티브 매트릭스형 표시 장치{An active matrix display device}
박막 트랜지스터(이하, TFT라 함)로 구성된 회로를 갖는 반도체 장치 및 그 제작 방법에 관한 것이다. 예를 들어, 액정 표시 패널로 대표되는 전기 광학 장치나 유기 발광 소자를 갖는 발광 표시 장치를 부품으로서 탑재한 전자기기에 관한 것이다.
또한, 본 명세서 중의 반도체 장치란, 반도체 특성을 이용함으로써 기능될 수 있는 장치 전반을 가리키고, 전기 광학 장치, 반도체 회로 및 전자기기는 모두 반도체 장치이다.
금속 산화물은 다양하게 존재하고, 각종 용도에 사용된다. 산화인듐은 흔히 알려져 있는 재료이고, 액정 디스플레이 등에 필요한 투명 전극 재료로서 사용된다.
금속 산화물 중에는 반도체 특성을 나타내는 것이 있다. 반도체 특성을 나타내는 금속 산화물은 화합물 반도체의 일종이다. 화합물 반도체란, 2종 이상의 원자가 결합하여 이루어진 반도체이다. 일반적으로, 금속 산화물은 절연체가 된다. 그러나, 금속 산화물을 구성하는 원소의 조합에 따라서는 반도체가 되는 것이 알려져 있다.
예를 들어, 금속 산화물 중에서 산화텅스텐, 산화주석, 산화인듐, 산화아연 등은 반도체 특성을 나타내는 것이 알려져 있다. 이러한 금속 산화물로 구성되는 투명 반도체층을 채널 형성 영역으로 하는 박막 트랜지스터가 개시된다(특허 문헌 1 내지 특허 문헌 4, 비특허 문헌 1 참조).
그러나, 금속 산화물은 일원계 산화물만이 아니라 다원계 산화물도 알려져 있다. 예를 들어, 동족계열(homologous series)을 갖는 InGaO3(ZnO)m(m: 자연수)은 공지의 재료이다(비특허 문헌 2 내지 비특허 문헌 4 참조).
그리고, 상술한 바와 같은 In-Ga-Zn계 산화물을 박막 트랜지스터의 채널층으로서 적용할 수 있는 것이 확인되었다(특허 문헌 5, 비특허 문헌 5 및 비특허 문헌 6 참조).
또한, 산화물 반도체를 사용하여 박막 트랜지스터를 제작하고 전자 디바이스나 광 디바이스에 응용하는 기술이 주목을 받고 있다. 예를 들어, 산화물 반도체막으로서 산화아연, In-Ga-Zn-O계 산화물 반도체를 사용하여 박막 트랜지스터를 제작하고, 화상 표시 장치의 스위칭 소자 등에 사용하는 기술이 특허 문헌 6 및 특허 문헌 7에서 개시된다.
[특허 문헌 1]특개소60-198861호 공보
[특허 문헌 2]특개평8-264794호 공보
[특허 문헌 3]특표평11-505377호 공보
[특허 문헌 4]특개2000-150900호 공보
[특허 문헌 5]특개2004-103957호 공보
[특허 문헌 6]특개2007-123861호 공보
[특허 문헌 7]특개2007-096055호 공보
[비특허 문헌 1]
M.W.Prins, K.O.Grosse-Holz, G.Muller, J.F.M.Cillessen, J.B.Giesbers, R.P.Weening, and R.M.Wolf, 「A ferroelectric transparent thin-film transistor」 Appl.Phys.Lett., 17 June 1996, Vol.68 p.3650-3652
[비특허 문헌 2]
M.Nakamura, N.Kimizuka, and T.Mohri, 「The Phase Relations in the In2O3-Ga2ZnO4-ZnO System at 1350℃」, J.Solid State Chem., 1991, Vol.93 p.298-315
[비특허 문헌 3]
N.Kimizuka, M.Isobe, and M.Nakamura, 「Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m(m=3,4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m(m=7,8,9 and 16) in the In2O3-ZnGa2O4-ZnO System」, J, Solid State Chem., 1995, Vol.116, p.170-178
[비특허 문헌 4]
M.Nakamura, N.Kimizuka, T.Mohri, M.Isobe, 「동족 계열, InFeO3(ZnO)m(m: 자연수)와 그 동형 화합물의 합성 및 결정 구조」, 고체 물리, 1993년, Vol.28, No.5, p.317-327
[비특허 문헌 5]
K.Nomura, H.Ohta, K.Ueda, T.Kamiya, M.Hirano, and H.Hosono, 「Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor」, SCIENCE, 2003, Vol.300, p.1269-1272
[비특허 문헌 6]
K.Nomura, H.Ohta, A.Takagi, T.Kamiya, M.Hirano, and H.Hosono, 「Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors」, NATURE, 2004, Vol.432, p.488-492
산화물 반도체층을 사용하여 전기 특성이 뛰어난 박막 트랜지스터를 구비한 반도체 장치를 제공하는 것을 과제의 하나로 한다.
또한, 동일 기판 위에 복수 종류의 박막 트랜지스터의 구조를 제작하여 복수 종류의 회로를 구성함으로써, 증가되는 공정수가 적은 반도체 장치의 제작 방법을 제공하는 것을 과제의 하나로 한다.
절연 표면 위에 금속 박막을 형성한 후, 금속 박막보다 막 두께가 두꺼운 산화물 반도체층을 적층하고, 그 후, 가열 처리 등의 산화 처리를 행함으로써 금속 박막의 일부분 또는 전부를 산화시킨다. 금속 박막으로서는, 산화 처리에 의하여 반도체로서 기능하는 재료, 예를 들어, 인듐, 아연, 주석, 몰리브덴, 또는 텅스텐 등을 사용하는 것이 바람직하다. 산화된 금속 박막은 제 1 산화물 반도체층이 되고, 그 위에 형성되는 제 2 산화물 반도체층과의 적층을 얻을 수 있다. 또한, 제 1 산화물 반도체층은 제 2 산화물 반도체층과 비교하여 전기 저항률이 낮은(즉, 도전율이 높은) 것으로 한다. 또한, 제 1 산화물 반도체층은 게이트 전극까지의 간격 거리가 가까운 측에 배치되고, 적어도 게이트 절연막에 접촉된다. 이 적층을 사용하여 박막 트랜지스터를 제작함으로써 전기 특성(예를 들어, 전계 효과 이동도 등)이 뛰어난 박막 트랜지스터를 실현할 수 있다.
본 명세서에서 개시하는 발명의 구성의 하나는 절연 표면 위에 게이트 전극을 형성하고, 게이트 전극 위에 절연층을 형성하고, 절연층 위에 금속 박막을 형성하고, 금속 박막 위에 산화물 반도체층을 형성하고, 산화물 반도체층을 형성한 후, 금속 박막의 적어도 일부분을 산화하는 산화 처리를 행하는 것을 특징으로 하는 반도체 장치의 제작 방법이다.
상기 구성은 상기 과제의 적어도 하나를 해결한다.
금속 박막은 스퍼터링법, 진공 증착법, 또는 도포법 등을 사용하여 형성한다. 금속 박막의 막 두께는 0㎚보다 두껍고 10㎚ 이하, 바람직하게는 3㎚ 이상 5㎚ 이하로 한다. 또한, 상이한 금속 박막의 적층을 사용하여도 좋고, 그 총 막 두께는 10㎚ 이하로 한다. 또한, 금속 박막의 적어도 일부분을 산화한다는 것은 박막 트랜지스터로서 기능하고, 스위칭 특성을 나타내는 정도로 산화하는 것을 가리킨다. 즉, 게이트 전압을 인가할 때와 게이트 전압을 인가하지 않을 때를 비교하여 소스 전극과 드레인 전극간에 흐르는 전류가 거의 변화되지 않는 상태, 또는 소스 전극과 드레인 전극이 도통 상태가 되지 않도록 금속 박막을 산화시키는 것을 가리킨다.
또한, 산화 처리는 산소를 포함하는 분위기하, 대기 분위기하, 질소 분위기하의 어느 하나의 분위기에서의 가열 처리(200℃ 내지 600℃)로 한다. 질소 분위기하에서도 가열 처리를 행함으로써 금속 박막은 금속 박막 위에 접촉하여 형성되는 산화물 반도체층(제 2 산화물 반도체층)의 산소와 결합하여 산화된다. 이 경우, 금속 박막의 존재에 의하여 제 2 산화물 반도체층의 산소가 뽑혀 제 2 산화물 반도체층에 산소 결손 영역을 형성할 수도 있다. 또한, 질소 분위기하의 가열 처리에 한정되지 않고, 산소를 함유한 분위기나 대기 분위기하에서 가열함으로써도, 금속 박막의 존재에 의하여 제 2 산화물 반도체층의 산소가 뽑혀 제 2 산화물 반도체층에 산소 결손 영역을 형성할 수도 있다. 제 2 산화물 반도체층에 산소 결손 영역을 형성함으로써 전계 효과 이동도를 향상시킬 수 있다. 또한, 금속 박막의 재료에 따라서는, 이 가열 처리를 행함으로써, 위에 형성되는 산화물 반도체층과의 계면이 불명확하게 될 경우도 있지만, 게이트 절연층 측의 산화물 반도체층, 즉 산화물 반도체층의 하층부와, 산화물 반도체층의 상층부에서 상이한 전기 특성을 나타낸다.
또한, 제 2 산화물 반도체층은 In, M, 또는 Zn을 포함하는 산화물 반도체이고, M은 Ga, Fe, Ni, Mn, 또는 Co 등 중에서 선택된 하나의 금속 원소 또는 복수의 금속 원소를 나타낸다. 다만, M은 Cd나 Hg와 같은 원소, 즉 인체에 유해한 물질을 포함하지 않는 것으로 한다. 본 명세서에 있어서, M으로서 Ga를 사용하는 경우는, 이 박막을 In-Ga-Zn-O계 비단결정막이라 부른다. 또한, 본 명세서에 있어서, In, Ga, 및 Zn를 포함하는 산화물 반도체막을 사용하여 형성된 반도체층을 「IGZO 반도체층」이라고도 표기한다. 또한, 상기 산화물 반도체에 있어서, M으로서 함유되는 금속 원소 외에 불순물 원소로서 Fe, Ni 그 외의 천이 금속 원소, 또는 상기 천이 금속의 산화물이 함유되는 것이 있다. 또한, 제 2 산화물 반도체층에는 절연성 불순물을 함유시켜도 좋다. 상기 불순물로서 산화실리콘, 산화게르마늄, 산화알루미늄 등으로 대표되는 절연성 산화물, 질화실리콘, 질화알루미늄 등으로 대표되는 절연성 질화물, 또는 산질화실리콘, 산질화알루미늄 등의 절연성 산질화물이 적용된다. 이들 절연성 산화물, 절연성 질화물, 또는 절연성 산화질화물은 산화물 반도체의 전기 전도성을 낮추지 않는 농도로 첨가된다. 산화물 반도체에 절연성 불순물을 함유시킴으로써 상기 산화물 반도체의 결정화를 억제할 수 있다. 산화물 반도체의 결정화를 억제함으로써 박막 트랜지스터의 특성을 안정화시킬 수 있다.
In-Ga-Zn-O계 산화물 반도체에 산화실리콘 등의 불순물을 함유시킴으로써 300℃ 내지 600℃의 열 처리를 행하여도 상기 산화물 반도체의 결정화 또는 미결정립의 생성을 방지할 수 있다. In-Ga-Zn-O계 산화물 반도체층을 채널 형성 영역으로 하는 박막 트랜지스터의 제조 과정에서는 열 처리를 행함으로써 S값(subthreshold swing value)이나 전계 효과 이동도를 향상시킬 수 있지만, 그 경우라도 박막 트랜지스터가 노멀리 온이 되는 것을 방지할 수 있다. 또한, 상기 박막 트랜지스터에 열 스트레스, 바이어스 스트레스가 가해진 경우라도 임계 값 전압이 변동되는 것을 방지할 수 있다.
박막 트랜지스터의 채널 형성 영역에 적용하는 산화물 반도체로서 상기 외에도, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, In-O계, Sn-O계, Zn-O계의 산화물 반도체를 적용할 수 있다. 즉, 결정화를 억제하고 비정질 상태를 유지시키는 불순물을 이들 산화물 반도체에 첨가함으로써, 박막 트랜지스터의 특성을 안정화시킬 수 있다. 상기 불순물은 산화실리콘, 산화게르마늄, 산화알루미늄 등으로 대표되는 절연성 산화물, 질화실리콘, 질화알루미늄 등으로 대표되는 절연성 질화물, 또는 산질화실리콘, 산질화알루미늄 등의 절연성 산질화물 등이다.
예를 들어, 산화실리콘을 첨가한 In-Sn-Zn-O계 산화물 반도체를 스퍼터링법으로 형성하는 경우에는 타깃으로서 In2O3, SnO2, ZnO, SiO2를 소정의 비율로 소결(燒結)시킨 타깃을 사용한다. 또한, 산화실리콘을 첨가한 In-Al-Zn-O계 산화물 반도체의 경우에는, 타깃으로서 In2O3, Al2O3, ZnO, SiO2를 소정의 비율로 소결시킨 타깃을 사용하여 성막한다.
또한, 박막 트랜지스터의 n+층에 적용하는 산화물 반도체로서는, 질소를 함유시킨 In-Ga-Zn-O계 비단결정막, 즉, In-Ga-Zn-O-N계 비단결정막(IGZON막이라고도 부름)을 사용하여도 좋다. 이 In-Ga-Zn-O-N계 비단결정막은 질소 가스를 함유한 분위기 중에서 인듐, 갈륨, 및 아연을 함유한 산화물을 성분으로 하는 타깃을 사용하여 형성하여 얻어진 인듐, 갈륨, 및 아연을 함유한 산질화물막을 가열 처리함으로써 얻을 수 있다.
또한, 제 2 산화물 반도체층의 막 두께는 적어도 금속 박막의 막 두께보다 두껍게 하는 것이 바람직하고, 예를 들어, 금속 박막의 막 두께의 2배 이상, 구체적으로는 30㎚ 이상으로 하고, 바람직하게는 60㎚ 이상 150㎚ 이하로 한다. 또한, 제 2 산화물 반도체층은 금속 박막과 같은 원소를 적어도 하나 포함하는 것이 바람직하고, 제 2 산화물 반도체층 중에 금속 박막과 같은 원소를 적어도 하나 포함하면, 같은 에칭액이나 에칭 가스로 제 2 산화물 반도체층과 금속 박막을 같은 에칭 공정으로 제거할 수 있으므로 공정수를 줄일 수 있다.
또한, 동일 기판 위에 매트릭스 회로와 구동 회로를 제작함으로써 반도체 장치의 제조 비용을 삭감한다. 구동 회로는, 예를 들어, 논리 회로 등의 고속 동작을 우선하는 회로를 포함한다. 이러한 회로에는 제 1 산화물 반도체층과 제 2 산화물 반도체층의 적층을 사용한 박막 트랜지스터를 사용하여 구성하고, 화소부를 구성하는 매트릭스 회로는 제 3 산화물 반도체층의 단층을 사용한 박막 트랜지스터를 사용하여 구성한다. 이로써, 논리 회로 등의 고속 동작을 우선하는 회로와, 매트릭스 회로에서 상이한 구조의 박막 트랜지스터를 배치할 수 있다.
또한, 다른 발명의 일 형태는 절연 표면 위에 매트릭스 회로와, 상기 매트릭스 회로를 구동하는 구동 회로를 갖고, 구동 회로는 제 1 게이트 절연막을 사이에 두고 제 1 게이트 전극과 중첩되는 제 1 산화물 반도체층과 제 2 산화물 반도체층의 적층을 갖는 제 1 박막 트랜지스터를 갖고, 매트릭스 회로는 제 2 게이트 절연막을 사이에 두고 제 2 게이트 전극과 중첩되는 제 3 산화물 반도체층을 갖는 제 2 박막 트랜지스터를 갖고, 제 1 산화물 반도체층과 제 2 산화물 반도체층의 재료는 상이하고, 제 2 산화물 반도체층과 제 3 산화물 반도체층의 재료는 동일한 반도체 장치이다.
상기 구성은 상기 과제의 적어도 하나를 해결한다.
상기 구성에 있어서, 제 1 박막 트랜지스터는 제 1 게이트 전극 위에 제 1 게이트 절연막을 갖고, 제 1 게이트 절연막 위에 제 1 산화물 반도체층을 갖고, 제 1 산화물 반도체층 위에 제 2 산화물 반도체층을 갖고, 제 1 산화물 반도체층의 전기 저항률은 제 2 산화물 반도체층의 전기 저항률보다 낮다. 또한, 상기 구성에 있어서, 제 2 박막 트랜지스터는 제 2 게이트 전극 위에 제 2 게이트 절연막을 갖고, 제 2 게이트 절연막 위에 제 3 산화물 반도체층을 갖는다.
또한, 상기 구성을 얻기 위한 제작 공정도 발명의 하나이고, 그 구성은 동일 기판 위에 매트릭스 회로와, 상기 매트릭스 회로를 구동하는 구동 회로를 갖는 반도체 장치의 제작 방법이고, 기판의 매트릭스 회로 영역 및 구동 회로 영역 위에 제 1 산화물 반도체층을 형성하고, 매트릭스 회로 영역 위의 제 1 산화물 반도체층을 제거하는 에칭을 행하고, 구동 회로 영역의 제 1 산화물 반도체층 위에 제 2 산화물 반도체층과, 매트릭스 회로 영역 위에 제 3 산화물 반도체층을 형성하고, 구동 회로 영역에 제 1 산화물 반도체층과 제 2 산화물 반도체층의 적층을 사용한 제 1 박막 트랜지스터와, 매트릭스 회로 영역에 제 3 산화물 반도체층을 사용한 제 2 박막 트랜지스터를 형성하는 반도체 장치의 제작 방법이다.
또한, 선택적으로 형성한 금속 박막을 산화하여 제 1 산화물 반도체층을 형성할 수도 있다. 이 제작 공정도 발명의 하나이고, 그 구성은 동일 기판 위에 매트릭스 회로와, 상기 매트릭스 회로를 구동하는 구동 회로를 갖는 반도체 장치의 제작 방법이고, 기판의 매트릭스 회로 영역 및 구동 회로 영역 위에 금속 박막을 형성하고, 매트릭스 회로 영역 위의 금속 박막을 제거하는 에칭을 행하고, 산화물 반도체층을 구동 회로 영역의 금속 박막 위와 매트릭스 회로 영역 위에 형성하고, 산화물 반도체층을 형성한 후 금속 박막의 산화 처리를 행하여 구동 회로 영역에 제 1 산화물 반도체층과 제 2 산화물 반도체층의 적층을 사용한 제 1 박막 트랜지스터와, 매트릭스 회로 영역에 제 3 산화물 반도체층을 사용한 제 2 박막 트랜지스터를 형성하는 반도체 장치의 제작 방법이다.
상기 제작 방법에 관한 각 구성에 있어서, 제 1 산화물 반도체층의 전기 저항률은 제 2 산화물 반도체층의 전기 저항률보다 낮다. 또한, 상기 제작 방법에 관한 각 구성에 있어서, 제 1 산화물 반도체층과 제 2 산화물 반도체층의 재료는 상이하고, 제 2 산화물 반도체층과 제 3 산화물 반도체층의 재료는 동일하다.
본 명세서에 있어서, 위, 아래, 측, 수평, 수직 등의 방향을 나타내는 문언은 기판 표면 위에 디바이스를 배치한 경우의 기판 면을 기준으로 한 방향을 가리킨다.
적층의 산화물 반도체층을 사용하여 전기 특성이 뛰어난 박막 트랜지스터를 구비한 반도체 장치를 실현할 수 있다.
또한, 동일 기판 위에 적층의 산화물 반도체층을 갖는 박막 트랜지스터와, 단층의 산화물 반도체층을 갖는 박막 트랜지스터를 제작하여 복수 종류의 회로를 구성할 수 있다.
도 1a 내지 도 1d는 반도체 장치의 제작 공정의 일례를 제시하는 단면도.
도 2a 내지 도 2c는 반도체 장치의 일례를 제시하는 단면도 및 등가 회로도.
도 3은 반도체 장치의 일례를 제시하는 단면도 및 등가 회로도 및 상면도.
도 4a 및 도 4b는 반도체 장치의 블록도의 일례를 설명하는 도면.
도 5는 신호선 구동 회로의 구성의 일례를 설명하는 도면.
도 6은 신호선 구동 회로의 동작의 일례를 설명하는 타이밍 차트.
도 7은 신호선 구동 회로의 동작의 일례를 설명하는 타이밍 차트.
도 8은 시프트 레지스터의 구성의 일례를 설명하는 도면.
도 9는 도 8에 도시하는 플립플롭의 접속 구성의 일례를 설명하는 도면.
도 10은 반도체 장치의 화소 등가 회로의 일례를 설명하는 도면.
도 11a 내지 도 11c는 반도체 장치의 일례를 설명하는 단면도.
도 12a 및 도 12b는 반도체 장치의 일례를 설명하는 상면도 및 단면도.
도 13a 내지 도 13c는 반도체 장치의 제작 공정의 일례를 제시하는 단면도.
도 14는 화소의 일례를 제시하는 상면도.
도 15는 화소부, 용량부, 단자부의 일례를 제시하는 단면도.
도 16a 및 도 16b는 단자부의 일례를 제시하는 상면도 및 단면도.
도 17은 화소의 일례를 제시하는 상면도.
도 18a1, 도 18a2, 도 18b는 반도체 장치의 일례를 설명하는 상면도 및 단면도.
도 19는 반도체 장치의 일례를 설명하는 단면도.
도 20a 내지 도 20e는 반도체 장치의 제작 공정의 일례를 제시하는 단면도.
도 21a 내지 도 21c는 반도체 장치의 제작 공정의 일례를 제시하는 단면도.
도 22a 및 도 22b는 반도체 장치의 일례를 설명하는 단면도 및 전자기기의 외관도.
도 23a 및 도 23b는 전자기기의 일례를 제시하는 도면.
도 24a 및 도 24b는 전자기기의 일례를 제시하는 도면.
본 발명의 실시형태에의 일 형태에 대하여 이하에 설명한다.
실시형태의 일 형태에 대하여, 도면을 사용하여 자세히 설명한다. 다만, 그 형태 및 상세한 사항은 이하의 설명에 한정되지 않고 취지 및 범위에서 벗어남이 없이 다양하게 변경될 수 있다는 것은 당업자라면 용이하게 이해할 수 있다. 따라서, 본 실시형태의 기재 내용에 한정하여 해석되는 것은 아니다. 또한, 이하에 설명하는 구성에 있어서, 동일 부분 또는 같은 기능을 갖는 부분에는 동일한 부호를 다른 도면간에서 공통적으로 사용하고, 그 반복 설명은 생략한다.
(실시형태 1)
도 1a 내지 도 1d에 구동 회로에 사용하는 제 1 박막 트랜지스터(430)와, 화소부(매트릭스 회로라고도 부름)에 사용하는 제 2 박막 트랜지스터(170)를 동일 기판 위에 형성하는 제작 예의 하나를 제시한다.
본 실시형태에서는 동일 기판 위에 상이한 구조의 박막 트랜지스터를 형성함으로써, 고속 동작할 수 있는 구동 회로와 온/오프 비가 높은 박막 트랜지스터를 갖는 화소부를 갖는 신규 구조 및 신규의 제작 방법을 제공한다. 또한, 본 실시형태에서는 산화물 반도체층의 적층을 채널 형성 영역으로 하는 박막 트랜지스터의 신규 제작 방법도 제공한다.
화소부를 구동하기 위한 구동 회로는 고속 구동이 필요하고, 인버터 회로, 용량, 또는 저항 등을 사용하여 구성한다. 2개의 n채널형 TFT를 조합하여 인버터 회로를 형성하는 경우, 인핸스먼트(enhancement)형 트랜지스터와 디플리션(depletion)형 트랜지스터를 조합하여 형성하는 경우(이하, EDMOS 회로라 함), 2개의 인핸스먼트형 TFT로 형성하는 경우(이하, EEMOS 회로라 함)가 있다. 또한, n채널형 TFT의 임계 값 전압이 양인 경우에는 인핸스먼트형 트랜지스터로 정의하고, n채널형 TFT의 임계 값 전압이 음인 경우는, 디플리션형 트랜지스터로 정의하고, 본 명세서를 통하여 이 정의에 따르는 것으로 한다.
또한, 화소부의 박막 트랜지스터는 화소 전극으로의 전압 인가의 온/오프를 전환하기 위하여 높은 온/오프비가 필요하다. 온/오프비란, 오프 전류와 온 전류의 비율(ION/IOFF)이며, 높을수록 스위칭 특성이 뛰어나다고 할 수 있고, 표시의 콘트라스트 향상에 기여한다. 또한, 온 전류란, 트랜지스터가 온 상태일 때, 소스 전극과 드레인 전극 사이에 흐르는 전류를 가리킨다. 또한, 오프 전류란, 트랜지스터가 오프 상태일 때, 소스 전극과 드레인 전극 사이에 흐르는 전류를 가리킨다. 예를 들어, n형 트랜지스터의 경우에는, 게이트 전압이 트랜지스터의 임계 값 전압보다 낮을 때, 소스 전극과 드레인 전극 사이에 흐르는 전류이다. 상술한 바와 같이, 고(高)콘트라스트 및 저소비 전력 구동을 실현하기 위해서는 화소부에 인핸스먼트형 트랜지스터를 사용하는 것이 바람직하다.
상술한 바와 같이, 화소부와 구동 회로에서는 우선되는 전기 특성이 상이하기 때문에, 각각 상이한 구조의 박막 트랜지스터를 사용하는 것이 바람직하고, 본 실시형태에서는 그 제작 방법의 일례를 이하에 제시한다.
우선, 절연 표면을 갖는 기판(400) 위에 제 1 게이트 전극(401) 및 제 2 게이트 전극(101)을 형성한다. 제 1 게이트 전극(401) 및 제 2 게이트 전극(101)의 재료는 몰리브덴, 티타늄, 크롬, 탄탈, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속 재료 또는 이들 금속 재료를 주성분으로 하는 합금 재료를 사용하여 단층으로 형성하거나 또는 적층하여 형성할 수 있다.
예를 들어, 제 1 게이트 전극(401) 및 제 2 게이트 전극(101)의 2층 적층 구조로서는, 알루미늄층 위에 몰리브덴층이 적층된 2층의 적층 구조, 또는 구리층 위에 몰리브덴층이 적층된 2층 구조, 또는 구리층 위에 질화티타늄층 또는 질화탄탈층이 적층된 2층 구조, 질화티타늄층과 몰리브덴층이 적층된 2층 구조로 하는 것이 바람직하다. 또한, Ca를 함유한 구리층 위에 배리어층이 되는 Ca를 함유하는 산화구리층의 적층이나, Mg를 함유한 구리층 위에 배리어층이 되는 Mg를 함유한 산화구리층의 적층도 있다. 또한, 3층의 적층 구조로서는, 텅스텐층 또는 질화텅스텐층과, 알루미늄과 실리콘의 합금층 또는 알루미늄과 티타늄의 합금층과, 질화티타늄층 또는 티타늄층이 적층된 적층 구조로 하는 것이 바람직하다.
다음에, 제 1 게이트 전극(401) 및 제 2 게이트 전극(101) 위를 덮는 게이트 절연층(403)을 형성한다. 게이트 절연층(403)은 스퍼터링법, PCVD법 등을 사용하여 막 두께를 50㎚ 내지 400㎚로 한다.
예를 들어, 게이트 절연층(403)으로서 스퍼터링법에 의하여 산화실리콘막을 사용하여, 100㎚의 두께로 형성한다. 물론, 게이트 절연층(403)은 이러한 산화실리콘막에 한정되지 않고, 산화질화실리콘막, 질화실리콘막, 산화알루미늄막, 질화알루미늄막, 산화질화알루미늄막, 산화탄탈막 등의 다른 절연막을 사용하여, 이들 재료로 이루어진 단층 구조 또는 적층 구조로 하여 형성하여도 좋다. 적층하는 경우, 예를 들어, PCVD법을 사용하여 질화실리콘막을 형성하고, 그 위에 스퍼터링법을 사용하여 산화실리콘막을 형성하면 좋다. 또한, 게이트 절연층(403)으로서 산화질화실리콘막 또는 질화실리콘막 등을 사용하는 경우, 유리 기판으로부터 불순물, 예를 들어, 나트륨 등이 확산되어, 이후 상방에 형성하는 산화물 반도체에 침입되는 것을 방지할 수 있다.
또한, 게이트 절연층(403)으로서 유기 실란 가스를 사용한 CVD법에 의하여 산화실리콘층을 형성할 수도 있다. 유기 실란 가스로서는, 규산에틸(TEOS: 화학식 Si(OC2H5)4), 테트라메틸실란(TMS: 화학식 Si(CH3)4), 테트라메틸시클로테트라실록산(TMCTS), 옥타메틸시클로테트라실록산(OMCTS), 헥사메틸디실라잔(HMDS), 트리에톡시실란(SiH(OC2H5)3), 트리스디메틸아미노실란(SiH(N(CH3)2)3) 등의 실리콘 함유 화합물을 사용할 수 있다.
다음에, 게이트 절연층(403) 위에 인듐, 아연, 주석, 몰리브덴, 또는 텅스텐 등의 금속 박막을 형성한다. 또한, 이들 합금 박막, 또는 이들 적층막을 사용할 수도 있다. 금속 박막은 스퍼터링법, 진공 증착법, 또는 도포법을 사용하여 형성한다. 여기서는, 증착법을 사용하여 인듐막을 0㎚보다 두껍고 10㎚ 이하, 바람직하게는 3㎚ 이상 5㎚ 이하로 형성한다. 또한, 금속 박막으로서는, 이후의 가열 처리에 의하여 이후 금속 박막 위에 접촉하여 형성되는 산화물 반도체층보다 전기 저항률이 낮은 산화물이 되는 재료를 사용한다. 또한, 금속 박막의 재료나 성막 조건에 따라서는, 게이트 절연층(403)의 표면을 덮는 막이 아니라, 게이트 절연층(403)의 일부분이 노출하는 상태, 예를 들어, 금속이 클러스터(cluster) 상태로 분산하여 존재하는 경우도 있다. 금속이 클러스터 상태로 분산하여 존재하는 경우라도 이후의 산화 처리에 의하여 산화물 반도체가 된다면, 박막 트랜지스터의 전계 효과 이동도를 향상시킬 수 있다. 또한, 클러스터 상태로 금속을 분산시키는 경우, 그 금속으로서 상술한 재료에 한정되지 않고, 알루미늄이나 구리 등을 사용할 수 있고, 그리고 그 위에 인듐의 금속 박막을 형성함으로써 박막 트랜지스터의 전기 특성 향상을 도모하여도 좋다.
다음에, 포토리소그래피 기술을 사용하여 금속 박막을 선택적으로 제거한다. 이 제거 공정으로서는 웨트 에칭이나 드라이 에칭을 사용할 수 있다. 상술한 바와 같이 하여 구동 회로 영역에 금속 박막(470)을 형성한다. 이 단계의 상태를 도시하는 단면 공정도가 도 1a에 상당한다. 또한, 포토리소그래피 기술을 사용하는 경우는, 금속 박막은 대기에 노출되기 때문에, 금속 박막의 재료에 따라서는 표면에 자연 산화막이 형성된다. 또한, 자연 산화막이 형성된 경우라도 산화물 반도체층의 일부분으로서 기능시킬 수 있다.
또한, 섀도 마스크를 사용하는 스퍼터링법에 의하여 원하는 영역 외를 차폐하고, 원하는 영역에만 금속 박막을 형성하여도 좋다. 또한, 섀도 마스크를 사용하는 스퍼터링법에 의하여, 대기에 노출하지 않고 금속 박막 위에 산화물 반도체층을 형성할 수도 있다. 이로써, 금속 박막과 산화물 반도체층의 계면을 청정하게 유지할 수 있고, 포토 마스크 수를 저감할 수도 있다.
다음에, 금속 박막(470) 위 및 게이트 절연층(403) 위에 산화물 반도체층을 형성한다. 산화물 반도체층의 막 두께는 금속 박막(470)의 막 두께보다 두껍게 하는 것이 바람직하고, 구체적으로는, 30㎚ 이상으로 하고, 바람직하게는 60㎚ 이상 150㎚ 이하로 한다. 본 실시형태에서는 산화물 반도체층으로서 제 1 In-Ga-Zn-O계 비단결정막을 형성한다. 직경 8인치의 In(인듐), Ga(갈륨), 및 Zn(아연)을 포함하는 산화물 반도체 타깃(몰(mole)수 비로 In2O3:Ga2O3:ZnO=1:1:1)을 사용하여 기판과 타깃 사이의 거리를 170㎜, 압력 0.4Pa, 직류(DC) 전원 0.5kW, 아르곤 분위기하 또는 산소 분위기하에서 성막한다. 또한, 펄스 직류(DC) 전원을 사용하면, 먼지를 경감할 수 있고, 막 두께 분포도 균일하게 되므로 바람직하다.
스퍼터링법에 의하여 In-Ga-Zn-O계 산화물 반도체층을 형성하는 경우에, In, Ga 및 Zn를 함유한 산화물 반도체 타깃에 절연성 불순물을 함유시켜 두어도 좋다. 상기 불순물은 산화실리콘, 산화게르마늄, 산화알루미늄 등으로 대표되는 절연성 산화물, 질화실리콘, 질화알루미늄 등으로 대표되는 절연성 질화물, 또는 산질화실리콘, 산질화알루미늄 등의 절연성 산질화물 등이다. 예를 들어, 산화물 반도체 타깃에 SiO2를 0.1wt% 이상 10wt% 이하, 바람직하게는 1wt% 이상 6wt% 이하의 비율로 함유시켜 두는 것이 바람직하다.
산화물 반도체에 절연성 불순물을 함유시킴으로써, 성막되는 산화물 반도체를 비정질화하는 것이 용이해진다. 또한, 산화물 반도체막을 열 처리한 경우에 결정화해 버리는 것을 억제할 수 있다.
In-Ga-Zn-O계 산화물 반도체 외에도, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, In-O계, Sn-O계, Zn-O계 산화물 반도체에 절연성 불순물을 함유시킴으로써 같은 효과를 얻을 수 있다.
예를 들어, 산화실리콘을 첨가한 In-Sn-Zn-O계 산화물 반도체를 스퍼터링법으로 형성하는 경우에는 타깃으로서 In2O3, SnO2, ZnO, SiO2를 소정의 비율로 소결시킨 타깃을 사용한다. 또한, 산화실리콘을 첨가한 In-Al-Zn-O계 산화물 반도체의 경우에는, 타깃으로서 In2O3, Al2O3, ZnO, SiO2를 소정의 비율로 소결시킨 타깃을 사용하여 성막한다.
다음에, 대기에 노출하지 않고, 제 1 In-Ga-Zn-O계 비단결정막보다 저항이 낮은 산화물 반도체막(본 실시형태에서는 제 2 In-Ga-Zn-O계 비단결정막)을 스퍼터링법을 사용하여 형성한다. 여기서는 In2O3: Ga2O3: ZnO=1:1:1로 한 타깃을 사용하여, 성막 조건은 압력을 0.4Pa, 전력을 500W, 성막 온도를 실온으로 하고, 아르곤 가스 유량 40sccm을 도입하여 스퍼터링 성막을 행한다. In2O3: Ga2O3: ZnO=1:1:1로 한 타깃을 의도적으로 사용함에도 불구하고, 성막 직후에 크기 1㎚ 내지 10㎚의 결정립을 포함하는 In-Ga-Zn-O계 비단결정막이 형성되는 경우가 있다. 또한, 타깃의 성분 비율, 성막 압력(0.1Pa 내지 2.0Pa), 전력(250W 내지 3000W: 8인치φ), 온도(실온 내지 100℃), 반응성 스퍼터링의 성막 조건 등을 적절히 조절함으로써, 결정립의 유무나, 결정립의 밀도나, 직경 크기는 1㎚ 내지 10㎚의 범위에서 조절될 수 있다고 할 수 있다. 제 2 In-Ga-Zn-O계 비단결정막의 막 두께는 5㎚ 내지 20㎚로 한다. 물론, 막 중에 결정립이 포함되는 경우는, 포함되는 결정립의 크기가 막 두께를 넘지 않는다. 본 실시형태에서는 제 2 In-Ga-Zn-O계 비단결정막의 막 두께는 5㎚로 한다.
제 1 In-Ga-Zn-O계 비단결정막과 제 2 In-Ga-Zn-O계 비단결정막의 성막 조건을 상이한 것으로 한다. 예를 들어, 제 2 In-Ga-Zn-O계 비단결정막의 성막 조건의 산소 가스 유량과 아르곤 가스 유량의 비율보다 제 1 In-Ga-Zn-O계 비단결정막의 성막 조건의 산소 가스 유량이 차지하는 비율이 많은 조건으로 한다. 구체적으로는 제 2 In-Ga-Zn-O계 비단결정막의 성막 조건은 희 가스(아르곤, 또는 헬륨 등) 분위기하(또는 산소 가스 10% 이하, 아르곤 가스 90% 이상)로 하고, 제 1 In-Ga-Zn-O계 비단결정막의 성막 조건은 산소 분위기하(또는 산소 가스 유량이 아르곤 가스 유량 이상)로 한다.
또한, 본 실시형태에서는 제 2 In-Ga-Zn-O계 비단결정막을 형성하는 예를 제시하지만 특히 한정되지 않고 형성하지 않아도 좋다.
스퍼터링법에는 스퍼터링용 전원에 고주파 전원을 사용하는 RF 스퍼터링법과 DC 스퍼터링법이 있고, 또한, 펄스적으로 바이어스를 인가하는 펄스 DC 스퍼터링법도 있다.
또한, 상이한 재료로 이루어진 타깃을 복수 설치할 수 있는 다원 스퍼터링 장치도 있다. 다원 스퍼터링 장치는 동일 챔버에서 상이한 재료막을 적층 형성할 수도 있고, 동일 챔버에서 복수 종류의 재료를 동시에 방전시켜 형성할 수도 있다.
또한, 챔버 내부에 자석 기구를 구비한 마그네트론 스퍼터링법을 사용하는 스퍼터링 장치나 글로우 방전을 사용하지 않고 마이크로파를 사용하여 발생시킨 플라즈마를 사용하는 ECR 스퍼터링법을 사용하는 스퍼터링 장치가 있다.
또한, 스퍼터링법을 사용하는 성막 방법으로서, 성막 중에 타깃 물질과 스퍼터링 가스 성분을 화학 반응시켜 이들 화합물 박막을 형성하는 리액티브 스퍼터링법이나, 성막 중에 기판에도 전압을 인가하는 바이어스 스퍼터링법도 있다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 제 1 In-Ga-Zn-O계 비단결정막 및 제 2 In-Ga-Zn-O계 비단결정막을 에칭한다. 여기서는 ITO07N(KANTO CHEMICAL CO.,INC. 제작)을 사용한 웨트 에칭에 의하여, 불필요한 부분을 제거하여 제 1 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(485a, 485b), 제 2 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(486a, 486b)을 형성한다. 또한, 금속 박막(470)으로서 인듐막이나 아연막이나 주석막을 사용한 경우, 같은 ITO07N(KANTO CHEMICAL CO.,INC. 제작)에 의하여 에칭된다. 본 실시형태에서는 인듐막을 사용하는 예이므로, 금속 박막(470)은 제 1 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(485a)과 거의 같은 상면 형상이 된다. 또한, 여기서의 에칭은 웨트 에칭에 한정되지 않고 드라이 에칭을 사용하여도 좋다. 이 단계의 단면도를 도 1b에 도시한다.
또한, 상기 에칭 공정에서 금속 박막(470)이 남은 경우에는 상기 에칭 공정에서 사용한 레지스트 마스크를 그대로 사용하여 에칭액이나 에칭 가스를 변경하여 금속 박막을 선택적으로 제거하는 에칭 공정을 행하면 좋다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 에칭에 의하여 불필요한 부분을 제거하여 게이트 전극층과 같은 재료의 배선이나 전극층에 도달되는 콘택트 홀을 형성한다. 이 콘택트 홀은 이후 형성하는 도전막과 직접 접속하기 위하여 형성한다. 예를 들어, 구동 회로부에서 게이트 전극층과 소스 전극층 또는 드레인 전극층이 직접 접촉하는 박막 트랜지스터나, 단자부의 게이트 배선과 전기적으로 접속되는 단자를 형성하는 경우에 콘택트 홀을 형성한다. 또한, 여기서는 포토리소그래피 공정을 행하여 이후 형성하는 도전막과 직접 접속하기 위한 콘택트 홀을 형성하는 예를 제시하지만, 특히 한정되지 않고, 이후 화소 전극과 접속하기 위한 콘택트 홀을 형성하는 예를 제시하지만, 특히 한정되지 않고, 이후 화소 전극과 접속하기 위한 콘택트 홀과 같은 공정에서 게이트 전극층에 도달되는 콘택트 홀을 형성하고, 화소 전극과 같은 재료로 전기적으로 접속하여도 좋다. 화소 전극과 같은 재료로 전기적으로 접속하는 경우에는 마스크를 1개 삭감할 수 있다.
다음에, 제 2 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(486a, 486b) 및 게이트 절연층(403) 위에 금속 재료로 이루어진 도전막을 스퍼터링법이나 진공 증착법으로 형성한다.
도전막의 재료로서는, Al, Cr, Ta, Ti, Mo, W 중에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나, 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한, 200℃ 내지 600℃의 열 처리를 행하는 경우에는 이 열 처리에 견딜 수 있는 내열성을 도전막에 갖게 하는 것이 바람직하다. Al 자체는 내열성이 낮고, 또한 부식되기 쉬운 등의 문제점이 있으므로 내열성 도전성 재료와 조합하여 형성한다. Al와 조합하는 내열성 도전성 재료로서는, 티타늄(Ti), 탄탈(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc) 중에서 선택된 원소, 또는 상기 원소를 성분으로 하는 합금이나, 상기 원소를 조합한 합금, 또는 상기 원소를 성분으로 하는 질화물로 형성한다.
여기서는, 도전막은 티타늄막의 단층 구조로 한다. 또한, 도전막은 2층 구조로 하여도 좋고, 알루미늄막 위에 티타늄막을 적층한 것이라도 좋다. 또한, 도전막은 Ti막과, 그 Ti막 위에 겹쳐 Nd를 함유한 알루미늄(Al-Nd)막을 적층하고, 또한 그 위에 Ti막을 형성하는 3층 구조로 하여도 좋다. 도전막은 실리콘을 함유한 알루미늄막의 단층 구조로 하여도 좋다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 에칭에 의하여 불필요한 부분을 제거하여 화소부에 소스 전극층 또는 드레인 전극층(105a, 105b), 소스 영역 또는 드레인 영역으로서 기능하는 n+층(104a, 104b)을 형성하고, 구동 회로부에 소스 전극층 또는 드레인 전극층으로서 기능하는 제 1 배선(409), 제 2 배선(410), 소스 영역 또는 드레인 영역으로서 기능하는 n+층(406a, 406b)을 형성한다. 이 때의 에칭 방법으로서 웨트 에칭 또는 드라이 에칭을 사용한다. 예를 들어, 도전막으로서 알루미늄막, 또는 알루미늄 합금막을 사용하는 경우는 인산과 초산과 질산을 섞은 용액을 사용한 웨트 에칭을 행할 수 있다. 여기서는, 암모니아과수(과산화수소:암모니아:물=5:2:2)를 사용한 웨트 에칭에 의하여, Ti막인 도전막을 에칭하여 소스 전극층 또는 드레인 전극층을 형성하고, 제 2 In-Ga-Zn-O계 비단결정막을 에칭하여 n+층(104a, 104b)을 형성한다. 이 에칭 공정에 있어서, 산화물 반도체층의 노출 영역도 일부분 에칭되어 산화물 반도체층(103)이 된다. 따라서, n+층(104a, 104b) 사이의 산화물 반도체층(103)의 채널 영역은 막 두께가 얇은 영역이 된다. 소스 전극층 또는 드레인 전극층(105a, 105b), n+층(104a, 104b)의 에칭을 암모니아과수의 에칭재에 의하여 동일 공정으로 행하기 때문에, 도 1c에 도시하는 바와 같이, 소스 전극층 또는 드레인 전극층(105a, 105b) 및 n+층(104a, 104b)의 단부는 일치하고, 연속적인 구조가 된다. 상술한 공정에 의하여, 화소부에는 산화물 반도체층(103)을 채널 형성 영역으로 하는 제 2 박막 트랜지스터(170)를 제작할 수 있다.
다음에, 200℃ 내지 600℃, 대표적으로는 300℃ 내지 500℃의 열 처리(광을 사용한 어닐링도 포함함)를 행한다. 여기서는, 노에 넣고, 질소 분위기하에서 350℃, 1시간의 열 처리를 행한다. 이 열 처리는 금속 박막(470)의 일부분 또는 전부를 산화하는 산화 처리라고도 부른다. 본 실시형태에서는, 산화인듐막인 제 1 산화물 반도체층(471)이 된다. 상술한 공정으로 구동 회로에는 제 1 산화물 반도체층(471)과 제 2 산화물 반도체층(405)의 적층을 갖는 제 1 박막 트랜지스터(430)를 제작할 수 있다. 이 단계의 단면도를 도 1c에 도시한다. 또한, 이 열 처리에 의하여 In-Ga-Zn-O계 비단결정막의 원자 레벨에서의 재배열이 행해진다. 또한, 열 처리를 행하는 타이밍은 제 2 In-Ga-Zn-O계 비단결정막을 형성한 후라면 특히 한정되지 않고, 예를 들어, 화소 전극을 형성한 후에 행하여도 좋다.
또한, 도 1c에서는 열 처리 전후의 금속 박막(470)의 막 두께와, 그 금속 박막이 산화한 후의 제 1 산화물 반도체층의 막 두께는 거의 동일한 것으로 하여 도시하지만, 산화됨으로써 열 처리 전의 금속 박막의 막 두께보다 제 1 산화물 반도체층(471)의 막 두께가 두꺼워질 수도 있다. 또한, 제 1 산화물 반도체층(471)의 막 두께가 두꺼워짐으로써, 위에 위치하는 제 2 산화물 반도체층(405)의 막 두께가 열 처리 전보다 얇아질 경우도 있다.
다음에, 레지스트 마스크를 제거하여 제 1 박막 트랜지스터(430) 및 제 2 박막 트랜지스터(170)를 덮는 보호 절연층(412)을 형성한다. 보호 절연층(412)은 스퍼터링법 등을 사용하여 얻어지는 질화실리콘막, 산화실리콘막, 산화질화실리콘막, 산화알루미늄막, 질화알루미늄막, 산화질화알루미늄막, 또는 산화탄탈막 등의 단층 또는 이들 적층을 사용할 수 있다. 보호 절연층(412)은 막 두께를 50㎚ 내지 400㎚로 한다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 보호 절연층(412)을 에칭함으로써 소스 전극층 또는 드레인 전극층(105b)에 도달되는 콘택트 홀을 형성한다.
다음에, 레지스트 마스크를 제거하여, 도전막을 형성한 후, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 도전막의 에칭에 의하여 소스 전극층 또는 드레인 전극층(105b)과 전기적으로 접속되는 제 1 전극(472)을 형성한다. 다음에, 이웃하는 화소의 제 1 전극과 절연하기 위한 격벽으로서 기능하는 절연층(473)을 형성한다. 다음에, 제 1 전극(472) 위에 발광층을 포함하는 유기 화합물층(475)을 형성하고, 또한 그 위에 제 2 전극(474)을 형성한다. 발광 소자는 적어도 제 1 전극(472)과, 발광층을 포함하는 유기 화합물층(475)과, 제 2 전극(474)을 갖는다. 이 단계의 단면도를 도 1d에 도시한다.
또한, 본 실시형태에서는 발광 소자를 사용한 발광 표시 장치의 일례를 제시하지만, 특히 한정되지 않고, 액정 표시 장치나 전자 페이퍼를 제작할 수 있다.
액정 표시 장치나 발광 표시 장치나 전자 페이퍼에 사용하는 게이트선 구동 회로 또는 소스선 구동 회로 등의 주변 회로에 적층된 산화물 반도체를 사용한 박막 트랜지스터를 사용함으로써, 고속 구동이나 저소비 전력화를 도모할 수 있다. 또한, 공정수를 대폭으로 증가시키지 않고, 동일 기판 위에 화소부와 구동 회로의 양쪽을 형성할 수 있다. 동일 기판 위에 화소부 외의 각종 회로를 형성함으로써 표시 장치의 제조 비용을 저감할 수 있다.
(실시형태 2)
본 실시형태에서는 2개의 n채널형 박막 트랜지스터를 사용하여 인버터 회로를 구성하는 예를 이하에 설명한다. 이 인버터 회로는 구동 회로의 일부분으로서 사용한다. 또한, 실시형태 1에 제시하는 제 1 박막 트랜지스터(430)와 도 2a에 도시하는 제 1 박막 트랜지스터(430)는 동일하므로, 상세한 설명은 생략하는 것으로 한다.
본 실시형태에서는 절연 표면을 갖는 기판 위에 고속 동작할 수 있는 구동 회로를 갖는 신규 구조 및 신규 제작 방법을 제공한다. 또한, 동일 기판 위에 산화물 반도체층의 적층을 채널 형성 영역으로 하는 제 1 박막 트랜지스터와, 산화물 반도체층의 단층을 채널 형성 영역으로 하는 제 2 박막 트랜지스터의 신규 제작 방법도 제공한다.
구동 회로의 인버터 회로의 단면 구조를 도 2a에 도시한다. 도 2a에 있어서, 기판(400) 위에 제 1 게이트 전극(401) 및 제 2 게이트 전극(402)을 형성한다.
또한, 제 1 게이트 전극(401) 및 제 2 게이트 전극(402)을 덮는 게이트 절연층(403)을 갖는다. 게이트 절연층(403) 위에는 제 1 게이트 전극(401)과 중첩되는 위치에 제 1 산화물 반도체층(471)과 제 2 산화물 반도체층(405)의 적층을 갖고, 제 2 게이트 전극(402)과 중첩되는 위치에 제 3 산화물 반도체층(451)과 제 4 산화물 반도체층(407)의 적층을 형성한다.
또한, 제 2 산화물 반도체층(405) 상방 또는 제 4 산화물 반도체층(407) 상방에 제 1 배선(409), 제 2 배선(410), 및 제 3 배선(411)을 형성하고, 제 2 배선(410)은 게이트 절연층(403)에 형성된 콘택트 홀(404)을 통하여 제 2 게이트 전극(402)과 직접 접속된다. 또한, 콘택트 홀(404)을 형성하는 공정 순서는 게이트 절연층(403)을 형성한 후라면, 특히 한정되지 않고, 예를 들어, 이후 행해지는 산화물 반도체막을 에칭한 후나, 또한 그 후의 가열 처리를 행한 후에 콘택트 홀(404)을 형성하여도 좋다. 제 2 산화물 반도체층(405)과 제 1 배선(409) 사이에는 n+층(406a)을 형성하고, 제 2 산화물 반도체층(405)과 제 2 배선(410) 사이에는 n+층(406b)을 형성한다. 또한, 제 4 산화물 반도체층(407)과 제 2 배선(410) 사이에는 n+층(408a)을 형성하고, 제 4 산화물 반도체층(407)과 제 3 배선(411) 사이에는 n+층(408b)을 형성한다.
제 1 박막 트랜지스터(430)는 제 1 게이트 전극(401)과, 게이트 절연층(403)을 사이에 두고 제 1 게이트 전극(401)과 중첩되는 위치에 제 1 산화물 반도체층(471)과 제 2 산화물 반도체층(405)의 적층을 갖고, 제 1 배선(409)은 접지 전위의 전원선(접지 전원선)이다. 이 접지 전위의 전원선은 음의 전압 VDL이 인가되는 전원선(음 전원선)으로 하여도 좋다.
제 2 박막 트랜지스터(431)는 제 2 게이트 전극(402)과, 게이트 절연층(403)을 사이에 두고 제 2 게이트 전극(402)과 중첩되는 위치에 제 3 산화물 반도체층(451)과 제 4 산화물 반도체층(407)의 적층을 갖고, 제 3 배선(411)은 양의 전압 VDD가 인가되는 전원선(양 전원선)이다.
도 2a에 도시하는 바와 같이, 제 2 산화물 반도체층(405)과 제 4 산화물 반도체층(407)의 양쪽 모두에 전기적으로 접속되는 제 2 배선(410)은 게이트 절연층(403)에 형성된 콘택트 홀(404)을 통하여 제 2 박막 트랜지스터(431)의 제 2 게이트 전극(402)과 직접 접속된다. 제 2 배선(410)과 제 2 게이트 전극(402)을 직접 접속시킴으로써 양호한 콘택트를 얻을 수 있어 접촉 저항을 저감할 수 있다. 제 2 게이트 전극(402)과 제 2 배선(410)을 다른 도전막, 예를 들어, 투명 도전막을 사이에 두고 접속하는 경우와 비교하여 콘택트 홀의 개수의 저감, 콘택트 홀의 개수의 저감에 의한 점유 면적의 축소를 도모할 수 있다.
또한, 구동 회로의 인버터 회로의 상면도를 도 2c에 도시한다. 도 2c에 있어서, 쇄선 Z1-Z2로 절단한 단면이 도 2a에 상당한다.
또한, EDMOS 회로의 등가 회로를 도 2b에 도시한다. 도 2a 및 도 2c에 도시하는 회로 접속은 도 2b에 상당하고, 제 1 박막 트랜지스터(430)를 인핸스먼트형 n채널형 트랜지스터로 하고, 제 2 박막 트랜지스터(431)를 디플리션형 n채널형 트랜지스터로 하는 예이다.
또한, 도 2a 내지 도 2c에는 EDMOS 회로의 예를 제시하지만, EEMOS 회로를 사용할 수도 있다. EEMOS 회로의 등가 회로를 도 3에 도시한다. 도 3의 등가 회로는 양쪽 모두 인핸스먼트형 n채널형 트랜지스터로 하는 조합이라도 좋고, 제 1 박막 트랜지스터(460)를 인핸스먼트형 n채널형 트랜지스터로 하고, 다른 한쪽의 트랜지스터인 제 2 박막 트랜지스터(461)를 디플리션형 n채널형 트랜지스터로 하는 조합이라도 좋고, 어느 조합을 사용하여도 구동 회로를 구성할 수 있다.
양쪽 모두 같은 인핸스먼트형 n채널형 트랜지스터로 하는 조합으로 제작할 수 있는 도 3의 회로 구성을 구동 회로에 사용하는 것은 화소부에 사용하는 트랜지스터도 같은 인핸스먼트형 n채널형 트랜지스터로 하기 때문에 제작 공정이 증대하지 않아 바람직하다고 할 수 있다.
또한, 실시형태 1에 있어서는, 금속 박막과 산화물 반도체층을 적층한 후, 금속 박막을 산화시켜 제 1 산화물 반도체층과 제 2 산화물 반도체층의 적층을 제작하는 일례를 제시하지만, 특히 한정되지 않는다. 예를 들어, 제 1 산화물 반도체층을 전체 면에 형성한 후, 구동 회로의 제 1 산화물 반도체층을 레지스트로 덮은 상태로 화소부의 영역을 에칭함으로써 제거하고, 레지스트를 제거한 후 전체 면에 제 2 산화물 반도체층을 형성하는 제조 공정으로 하여도 좋다. 이러한 제조 공정으로 하면, 동일 기판 위에 단층의 산화물 반도체층을 사용한 박막 트랜지스터를 배치한 화소부와, 적층된 산화물 반도체층을 사용한 박막 트랜지스터를 배치한 구동 회로를 형성할 수 있다.
또한, 본 실시형태는 실시형태 1과 자유로이 조합할 수 있다.
(실시형태 3)
반도체 장치의 일례인 표시 장치에 있어서, 동일 기판 위에 적어도 구동 회로의 일부분과, 화소부에 배치하는 박막 트랜지스터를 제작하는 예에 대하여 이하에 설명한다.
화소부에 배치하는 박막 트랜지스터는 실시형태 1에 따라 형성한다. 또한, 박막 트랜지스터는 n채널형 TFT이므로, 구동 회로 중, n채널형 TFT로 구성할 수 있는 구동 회로의 일부분을 화소부의 박막 트랜지스터와 동일 기판 위에 형성한다.
* 반도체 장치의 일례인 액티브 매트릭스형 액정 표시 장치의 블록도의 일례를 도 4a에 도시한다. 도 4a에 도시하는 표시 장치는 기판(5300) 위에 표시 소자를 구비한 복수의 화소를 갖는 화소부(5301)와, 각 화소를 선택하는 주사선 구동 회로(5302)와, 선택된 화소로의 비디오 신호의 입력을 제어하는 신호선 구동 회로(5303)를 갖는다.
또한, 실시형태 1에 제시하는 박막 트랜지스터는 n채널형 TFT이고, n채널형 TFT로 구성되는 신호선 구동 회로에 대하여 도 5를 사용하여 설명한다.
도 5에 도시하는 신호선 구동 회로는 드라이버 IC(5601), 스위치 군(5602_1 내지 5602_M), 제 1 배선(5611), 제 2 배선(5612), 제 3 배선(5613) 및 배선(5621_1 내지 5621_M)을 갖는다. 스위치 군(5602_1 내지 5602_M)의 각각은 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)를 갖는다.
화소부(5301)는 신호선 구동 회로(5303)로부터 열 방향으로 연장하여 배치된 복수의 신호선 S1 내지 신호선 Sm(도시하지 않음)에 의하여 신호선 구동 회로(5303)와 접속되고, 주사선 구동 회로(5302)로부터 행 방향으로 연장하여 배치된 복수의 주사선 G1 내지 주사선 Gn(도시하지 않음)에 의하여 주사선 구동 회로(5302)와 접속되고, 신호선 S1 내지 신호선 Sm 및 주사선 G1 내지 주사선 Gn에 대응하여 매트릭스 형상으로 배치된 복수의 화소(도시하지 않음)를 갖는다. 그리고, 각 화소는 신호선 Sj(신호선 S1 내지 신호선 Sm 중 어느 하나), 주사선 Gi(주사선 G1 내지 주사선 Gn 중 어느 하나)와 접속된다.
드라이버 IC(5601)는 제 1 배선(5611), 제 2 배선(5612), 제 3 배선(5613) 및 배선(5621_1 내지 5621_M)에 접속된다. 그리고, 스위치 군(5602_1 내지 5602_M)의 각각은 제 1 배선(5611), 제 2 배선(5612), 제 3 배선(5613) 및 스위치 군(5602_1 내지 5602_M) 각각에 대응한 배선(5621_1 내지 5621_M)에 접속된다. 그리고, 배선(5621_1 내지 5621_M)의 각각은 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b), 및 제 3 박막 트랜지스터(5603c)를 통하여 3개의 신호선에 접속된다. 예를 들어, J열째의 배선(5621_J)(배선(5621_1) 내지 배선(5621_M) 중 어느 하나)은 스위치 군(5602_J)이 갖는 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)를 통하여 신호선 Sj-1, 신호선 Sj, 신호선 Sj+1에 접속된다.
또한, 제 1 배선(5611), 제 2 배선(5612), 제 3 배선(5613)에는 각각 신호가 입력된다.
또한, 드라이버 IC(5601)는 단결정 반도체 기판 위에 형성되는 것이 바람직하다. 또한, 스위치 군(5602_1 내지 5602_M)은 화소부와 동일 기판 위에 형성되는 것이 바람직하다. 따라서, 드라이버 IC(5601)와 스위치 군(5602_1 내지 5602_M)은 FPC 등을 통하여 접속하면 좋다.
다음에, 도 5에 도시한 신호선 구동 회로의 동작에 대하여 도 6의 타이밍 차트를 참조하여 설명한다. 또한, 도 6의 타이밍 차트는 i행째의 주사선 Gi가 선택되는 경우의 타이밍 차트를 도시한 것이다. 또한, i행째의 주사선 Gi의 선택 기간은 제 1 서브 선택 기간 T1, 제 2 서브 선택 기간 T2 및 제 3 서브 선택 기간 T3으로 분할된다. 또한, 도 5의 신호선 구동 회로는 다른 행의 주사선이 선택되는 경우에도 도 6과 같은 동작을 한다.
또한, 도 6의 타이밍 차트는 J열째의 배선(5621_J)이 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)를 통하여 신호선 Sj-1, 신호선 Sj, 신호선 Sj+1에 접속되는 경우에 대하여 도시한 것이다.
또한, 도 6의 타이밍 차트는 i행째의 주사선 Gi가 선택되는 타이밍, 제 1 박막 트랜지스터(5603a)의 온/오프의 타이밍(5703a), 제 2 박막 트랜지스터(5603b)의 온/오프의 타이밍(5703b), 제 3 박막 트랜지스터(5603c)의 온/오프의 타이밍(5703c) 및 J열째의 배선(5621_J)에 입력되는 신호(5721_J)를 도시한 것이다.
또한, 배선(5621_1) 내지 배선(5621_M)에는 제 1 서브 선택 기간 T1, 제 2 서브 선택 기간 T2 및 제 3 서브 선택 기간 T3에 각각 상이한 비디오 신호가 입력된다. 예를 들어, 제 1 서브 선택 기간 T1에 배선(5621_J)에 입력되는 비디오 신호는 신호선 Sj-1에 입력되고, 제 2 서브 선택 기간 T2에 배선(5621_J)에 입력되는 비디오 신호는 신호선 Sj에 입력되고, 제 3 서브 선택 기간 T3에 배선(5621_J)에 입력되는 비디오 신호는 신호선 Sj+1에 입력된다. 또한, 제 1 서브 선택 기간 T1, 제 2 서브 선택 기간 T2 및 제 3 서브 선택 기간 T3에 배선(5621_J)에 입력되는 비디오 신호를 각각 Data_j-1, Data_j, Data_j+1로 한다.
도 6에 도시하는 바와 같이, 제 1 서브 선택 기간 T1에 제 1 박막 트랜지스터(5603a)가 온 상태가 되고, 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j-1이 제 1 박막 트랜지스터(5603a)를 통하여 신호선 Sj-1에 입력된다. 제 2 서브 선택 기간 T2에 제 2 박막 트랜지스터(5603b)가 온 상태가 되고, 제 1 박막 트랜지스터(5603a) 및 제 3 박막 트랜지스터(5603c)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j가 제 2 박막 트랜지스터(5603b)를 통하여 신호선 Sj에 입력된다. 제 3 서브 선택 기간 T3에 제 3 박막 트랜지스터(5603c)가 온 상태가 되고, 제 1 박막 트랜지스터(5603a) 및 제 2 박막 트랜지스터(5603b)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j+1이 제 3 박막 트랜지스터(5603c)를 통하여 신호선 Sj+1에 입력된다.
상술한 바와 같이, 도 5의 신호선 구동 회로는 하나의 게이트 선택 기간을 3개로 분할함으로써, 하나의 게이트 선택 기간 중에 하나의 배선(5621)으로부터 3개의 신호선에 비디오 신호를 입력할 수 있다. 따라서, 도 5의 신호선 구동 회로는 드라이버 IC(5601)가 형성되는 기판과, 화소부가 형성되는 기판의 접속 개수를 신호선의 개수와 비교하여 약 1/3로 할 수 있다. 접속 개수가 약 1/3이 됨으로써, 도 5의 신호선 구동 회로는 신뢰성, 수율 등을 향상시킬 수 있다.
또한, 도 5와 같이, 하나의 게이트 선택 기간을 복수의 서브 선택 기간으로 분할하고, 복수의 서브 선택 기간 각각에 있어서, 어느 하나의 배선으로부터 복수의 신호선 각각에 비디오 신호를 입력할 수 있으면, 박막 트랜지스터의 배치나 개수, 구동 방법 등은 한정되지 않는다.
예를 들어, 3개 이상의 서브 선택 기간 각각에 있어서, 하나의 배선으로부터 3개 이상의 신호선 각각에 비디오 신호를 입력하는 경우는 박막 트랜지스터 및 박막 트랜지스터를 제어하기 위한 배선을 추가하면 좋다. 다만, 하나의 게이트 선택 기간을 4개 이상의 서브 선택 기간으로 분할하면, 하나의 서브 선택 기간이 짧아진다. 따라서, 하나의 게이트 선택 기간은 2개 또는 3개의 서브 선택 기간으로 분할되는 것이 바람직하다.
* 다른 예로서, 도 7의 타이밍 차트에 도시하는 바와 같이, 하나의 선택 기간을 프리차지(pre-charge) 기간 Tp, 제 1 서브 선택 기간 T1, 제 2 서브 선택 기간 T2, 제 3 서브 선택 기간 T3으로 분할하여도 좋다. 또한, 도 7의 타이밍 차트는 i행째의 주사선 Gi가 선택되는 타이밍, 제 1 박막 트랜지스터(5603a)의 온/오프의 타이밍(5803a), 제 2 박막 트랜지스터(5603b)의 온/오프의 타이밍(5803b), 제 3 박막 트랜지스터(5603c)의 온/오프의 타이밍(5803c) 및 J열째의 배선(5621_J)에 입력되는 신호(5821_J)를 도시한 것이다. 도 7에 도시하는 바와 같이, 프리차지 기간 Tp에 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)가 온 상태가 된다. 이때, 배선(5621_J)에 입력되는 프리차지 전압 Vp가 제 1 박막 트랜지스터(5603a), 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)를 통하여 각각 신호선 Sj-1, 신호선 Sj, 신호선 Sj+1에 입력된다. 제 1 서브 선택 기간 T1에 제 1 박막 트랜지스터(5603a)가 온 상태가 되고, 제 2 박막 트랜지스터(5603b) 및 제 3 박막 트랜지스터(5603c)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j-1이 제 1 박막 트랜지스터(5603a)를 통하여 신호선 Sj-1에 입력된다. 제 2 서브 선택 기간 T2에 제 2 박막 트랜지스터(5603b)가 온 상태가 되고, 제 1 박막 트랜지스터(5603a) 및 제 3 박막 트랜지스터(5603c)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j가 제 2 박막 트랜지스터(5603b)를 통하여 신호선 Sj에 입력된다. 제 3 서브 선택 기간 T3에 제 3 박막 트랜지스터(5603c)가 온 상태가 되고, 제 1 박막 트랜지스터(5603a) 및 제 2 박막 트랜지스터(5603b)가 오프 상태가 된다. 이때, 배선(5621_J)에 입력되는 Data_j+1이 제 3 박막 트랜지스터(5603c)를 통하여 신호선 Sj+1에 입력된다.
상술한 바와 같이, 도 7의 타이밍 차트를 적용한 도 5의 신호선 구동 회로는 서브 선택 기간 전에 프리차지 선택 기간을 설정함으로써, 신호선을 프리차지할 수 있기 때문에, 화소에 대한 비디오 신호의 기록을 고속으로 행할 수 있다. 또한, 도 7에 있어서, 도 6과 같은 부분에 관해서는 공통되는 부호를 사용하여 도시하고, 동일 부분 또는 같은 기능을 갖는 부분의 자세한 설명은 생략한다.
또한, 주사선 구동 회로의 구성에 대하여 설명한다. 주사선 구동 회로는 시프트 레지스터, 버퍼를 갖는다. 또한, 경우에 따라서는, 레벨 시프터를 가져도 좋다. 주사선 구동 회로에 있어서, 시프트 레지스터에 클록 신호(CLK) 및 스타트 펄스 신호(SP)가 입력됨으로써, 선택 신호가 생성된다. 생성된 선택 신호는 버퍼에 있어서 완충 증폭되고, 대응하는 주사선에 공급된다. 주사선에는 1라인분의 화소의 트랜지스터의 게이트 전극이 접속된다. 그리고, 1라인분의 화소의 트랜지스터를 일제히 온하여야 하기 때문에, 버퍼는 큰 전류를 흐를 수 있는 것이 사용된다.
주사선 구동 회로의 일부분에 사용하는 시프트 레지스터의 일 형태에 대하여 도 8 및 도 9를 사용하여 설명한다.
도 8에 시프트 레지스터의 회로 구성을 도시한다. 도 8에 도시하는 시프트 레지스터는 복수의 플립플롭(플립플롭(5701_1) 내지 플립플롭(5701_n))으로 구성된다. 또한, 제 1 클록 신호, 제 2 클록 신호, 스타트 펄스 신호, 리셋 신호가 입력되어 동작한다.
도 8의 시프트 레지스터의 접속 관계에 대하여 설명한다. 도 8의 시프트 레지스터는 i단째의 플립플롭(5701_i)(플립플롭(5701_1) 내지 플립플롭(5701_n) 중 어느 하나)은 도 9에 도시하는 제 1 배선(5501)이 제 7 배선(5717_i-1)에 접속되고, 도 9에 도시하는 제 2 배선(5502)이 제 7 배선(5717_i+1)이 접속되고, 도 9에 도시하는 제 3 배선(5503)이 제 7 배선(5717_i)에 접속되고, 도 9에 도시하는 제 6 배선(5506)이 제 5 배선(5715)에 접속된다.
또한, 도 9에 도시하는 제 4 배선(5504)이 홀수 단째의 플립플롭인 경우에는 제 2 배선(5712)에 접속되고, 짝수 단째의 플립플롭인 경우에는 제 3 배선(5713)에 접속되고, 도 9에 도시한 제 5 배선(5505)이 제 4 배선(5714)에 접속된다.
다만, 1단째의 플립플롭(5701_1)에 있어서, 도 9에 도시하는 제 1 배선(5501)은 제 1 배선(5711)에 접속되고, n단째의 플립플롭(5701_n)에 있어서, 도 9에 도시하는 제 2 배선(5502)은 제 6 배선(5716)에 접속된다.
또한, 제 1 배선(5711), 제 2 배선(5712), 제 3 배선(5713), 제 6 배선(5716)을 각각 제 1 신호선, 제 2 신호선, 제 3 신호선, 제 4 신호선이라 불러도 좋다. 또한, 제 4 배선(5714), 제 5 배선(5715)을 각각 제 1 전원선, 제 2 전원선이라 불러도 좋다.
다음에, 도 8에 도시하는 플립플롭의 자세한 내용에 대하여 도 9에 도시한다. 도 9에 도시하는 플립플롭은 제 1 박막 트랜지스터(5571), 제 2 박막 트랜지스터(5572), 제 3 박막 트랜지스터(5573), 제 4 박막 트랜지스터(5574), 제 5 박막 트랜지스터(5575), 제 6 박막 트랜지스터(5576), 제 7 박막 트랜지스터(5577) 및 제 8 박막 트랜지스터(5578)를 갖는다. 또한, 제 1 박막 트랜지스터(5571), 제 2 박막 트랜지스터(5572), 제 3 박막 트랜지스터(5573), 제 4 박막 트랜지스터(5574), 제 5 박막 트랜지스터(5575), 제 6 박막 트랜지스터(5576), 제 7 박막 트랜지스터(5577) 및 제 8 박막 트랜지스터(5578)는 n채널형 트랜지스터이며, 게이트·소스간 전압(Vgs)이 임계 값 전압(Vth)을 상회하였을 때 도통 상태가 된다.
도 9에 있어서, 제 3 박막 트랜지스터(5573)의 게이트 전극은 전원선과 전기적으로 접속된다. 또한, 제 3 박막 트랜지스터(5573)와 제 4 박막 트랜지스터(5574)를 접속시킨 회로(도 9 중의 쇄선으로 둘러싼 회로)는 도 2a에 도시하는 회로 구성에 상당한다고 할 수 있다. 여기서는, 모든 박막 트랜지스터는 인핸스먼트형 n채널형 트랜지스터로 하는 예를 제시하지만, 특히 한정되지 않고, 예를 들어, 제 3 박막 트랜지스터(5573)는 디플리션형 n채널형 트랜지스터를 사용하여도 구동 회로를 구동시킬 수 있다.
다음에, 도 9에 도시하는 플립플롭의 접속 구성에 대하여 이하에 제시한다.
제 1 박막 트랜지스터(5571)의 제 1 전극(소스 전극 또는 드레인 전극의 한쪽)이 제 4 배선(5504)에 접속되고, 제 1 박막 트랜지스터(5571)의 제 2 전극(소스 전극 또는 드레인 전극의 다른 쪽)이 제 3 배선(5503)에 접속된다.
제 2 박막 트랜지스터(5572)의 제 1 전극이 제 6 배선(5506)에 접속되고, 제 2 박막 트랜지스터(5572)의 제 2 전극이 제 3 배선(5503)에 접속된다.
제 3 박막 트랜지스터(5573)의 제 1 전극이 제 5 배선(5505)에 접속되고, 제 3 박막 트랜지스터(5573)의 제 2 전극이 제 2 박막 트랜지스터(5572)의 게이트 전극에 접속되고, 제 3 박막 트랜지스터(5573)의 게이트 전극이 제 5 배선(5505)에 접속된다.
제 4 박막 트랜지스터(5574)의 제 1 전극이 제 6 배선(5506)에 접속되고, 제 4 박막 트랜지스터(5574)의 제 2 전극이 제 2 박막 트랜지스터(5572)의 게이트 전극에 접속되고, 제 4 박막 트랜지스터(5574)의 게이트 전극이 제 1 박막 트랜지스터(5571)의 게이트 전극에 접속된다.
제 5 박막 트랜지스터(5575)의 제 1 전극이 제 5 배선(5505)에 접속되고, 제 5 박막 트랜지스터(5575)의 제 2 전극이 제 1 박막 트랜지스터(5571)의 게이트 전극에 접속되고, 제 5 박막 트랜지스터(5575)의 게이트 전극이 제 1 배선(5501)에 접속된다.
제 6 박막 트랜지스터(5576)의 제 1 전극이 제 6 배선(5506)에 접속되고, 제 6 박막 트랜지스터(5576)의 제 2 전극이 제 1 박막 트랜지스터(5571)의 게이트 전극에 접속되고, 제 6 박막 트랜지스터(5576)의 게이트 전극이 제 2 박막 트랜지스터(5572)의 게이트 전극에 접속된다.
제 7 박막 트랜지스터(5577)의 제 1 전극이 제 6 배선(5506)에 접속되고, 제 7 박막 트랜지스터(5577)의 제 2 전극이 제 1 박막 트랜지스터(5571)의 게이트 전극에 접속되고, 제 7 박막 트랜지스터(5577)의 게이트 전극이 제 2 배선(5502)에 접속된다. 제 8 박막 트랜지스터(5578)의 제 1 전극이 제 6 배선(5506)에 접속되고, 제 8 박막 트랜지스터(5578)의 제 2 전극이 제 2 박막 트랜지스터(5572)의 게이트 전극에 접속되고, 제 8 박막 트랜지스터(5578)의 게이트 전극이 제 1 배선(5501)에 접속된다.
또한, 제 1 박막 트랜지스터(5571)의 게이트 전극, 제 4 박막 트랜지스터(5574)의 게이트 전극, 제 5 박막 트랜지스터(5575)의 제 2 전극, 제 6 박막 트랜지스터(5576)의 제 2 전극 및 제 7 박막 트랜지스터(5577)의 제 2 전극의 접속 개소를 노드(node)(5543)로 한다. 또한, 제 2 박막 트랜지스터(5572)의 게이트 전극, 제 3 박막 트랜지스터(5573)의 제 2 전극, 제 4 박막 트랜지스터(5574)의 제 2 전극, 제 6 박막 트랜지스터(5576)의 게이트 전극 및 제 8 박막 트랜지스터(5578)의 제 2 전극의 접속 개소를 노드(5544)로 한다.
또한, 제 1 배선(5501), 제 2 배선(5502), 제 3 배선(5503) 및 제 4 배선(5504)을 각각 제 1 신호선, 제 2 신호선, 제 3 신호선, 제 4 신호선이라 불러도 좋다. 또한, 제 5 배선(5505)을 제 1 전원선, 제 6 배선(5506)을 제 2 전원선이라 불러도 좋다.
또한, 신호선 구동 회로 및 주사선 구동 회로를 실시형태 2에 제시하는 n채널형 TFT만으로 제작할 수도 있다. 실시형태 2에 제시하는 n채널형 TFT는 트랜지스터의 이동도가 크기 때문에, 구동 회로의 구동 주파수를 높일 수 있다. 예를 들어, 실시형태 2에 제시하는 n채널형 TFT를 사용한 주사선 구동 회로는 고속으로 동작시킬 수 있기 때문에, 프레임 주파수를 높이거나 또는 흑색 화면을 삽입하는 것을 실현할 수 있다.
또한, 예를 들어, 주사선 구동 회로의 트랜지스터의 채널 폭을 크게 하거나, 복수의 주사선 구동 회로를 배치함으로써, 더 높은 프레임 주파수를 실현할 수 있다. 복수의 주사선 구동 회로를 배치하는 경우에는 짝수 행의 주사선을 구동하기 위한 주사선 구동 회로를 한쪽에 배치하고, 홀수 행의 주사선을 구동하기 위한 주사선 구동 회로를 그 반대 쪽에 배치함으로써, 프레임 주파수를 높이는 것을 실현할 수 있다. 또한, 복수의 주사선 구동 회로로 같은 주사선에 신호를 출력하는 것은 표시 장치의 대형화에 유리하다.
또한, 반도체 장치의 일례인 액티브 매트릭스형 발광 표시 장치를 제작하는 경우, 적어도 하나의 화소에 복수의 박막 트랜지스터를 배치하기 때문에, 복수의 주사선 구동 회로를 배치하는 것이 바람직하다. 액티브 매트릭스형 발광 표시 장치의 블록도의 일례를 도 4b에 도시한다.
도 4b에 도시하는 발광 표시 장치는 기판(5400) 위에 표시 소자를 구비한 복수의 화소를 갖는 화소부(5401)와, 각 화소를 선택하는 제 1 주사선 구동 회로(5402) 및 제 2 주사선 구동 회로(5404)와, 선택된 화소에 대한 비디오 신호의 입력을 제어하는 신호선 구동 회로(5403)를 갖는다.
도 4b에 도시하는 발광 표시 장치의 화소에 입력되는 비디오 신호를 디지털 형식으로 하는 경우, 화소는 트랜지스터의 온/오프를 전환함으로써, 발광 상태 또는 비발광 상태가 된다. 따라서, 면적 계조법 또는 시간 계조법을 사용하여 계조 표시할 수 있다. 면적 계조법은 하나의 화소를 복수의 부(副)화소로 분할하여 각 부화소를 독립적으로 비디오 신호에 의거하여 구동시킴으로써, 계조 표시하는 구동 방법이다. 또한, 시간 계조법은 화소가 발광하는 기간을 제어함으로써 계조 표시를 행하는 구동 방법이다.
발광 소자는 액정 소자 등과 비교하여 응답 속도가 빠르기 때문에, 액정 소자보다 시간 계조법에 적합하다. 구체적으로는, 시간 계조법을 사용하여 표시하는 경우, 하나의 프레임 기간을 복수의 서브 프레임 기간으로 분할한다. 그리고 비디오 신호에 따라, 각 서브 프레임 기간에 화소의 발광 소자를 발광 상태 또는 비발광 상태로 한다. 복수의 서브 프레임 기간으로 분할함으로써, 하나의 프레임 기간 중에 화소가 실제로 발광하는 기간의 총 길이를 비디오 신호에 의하여 제어할 수 있기 때문에, 계조 표시할 수 있다.
또한, 도 4b에 도시하는 발광 표시 장치는 하나의 화소에 2개의 스위치용 TFT를 배치하는 경우, 한쪽의 스위칭용 TFT의 게이트 배선인 제 1 주사선에 입력되는 신호를 제 1 주사선 구동 회로(5402)로 생성하고, 다른 쪽의 스위칭용 TFT의 게이트 배선인 제 2 주사선에 입력되는 신호를 제 2 주사선 구동 회로(5404)로 생성하는 예를 제시하지만, 제 1 주사선에 입력되는 신호와 제 2 주사선에 입력되는 신호의 양쪽 모두를 하나의 주사선 구동 회로로 생성하도록 하여도 좋다. 또한, 예를 들어, 하나의 화소가 갖는 스위칭용 TFT의 개수에 따라, 스위칭 소자의 동작을 제어하기 위하여 사용되는 복수의 주사선이 각 화소에 형성될 수도 있다. 이 경우, 복수의 주사선에 입력되는 신호를 모두 하나의 주사선 구동 회로로 생성하여도 좋고, 복수의 각 주사선 구동 회로로 생성하여도 좋다.
또한, 발광 표시 장치에 있어서도, 구동 회로 중, n채널형 TFT로 구성할 수 있는 구동 회로의 일부분을 화소부의 박막 트랜지스터와 동일 기판 위에 형성할 수 있다. 또한, 신호선 구동 회로 및 주사선 구동 회로를 실시형태 2에 제시하는 n채널형 TFT만으로 제작할 수도 있다.
또한, 상술한 구동 회로는 액정 표시 장치나 발광 표시 장치에 한정되지 않고, 스위칭 소자와 전기적으로 접속되는 소자를 이용하여 전자 잉크를 구동시키는 전자 페이퍼에 사용하여도 좋다. 전자 페이퍼는 전기 영동(泳動) 표시 장치(전기 영동 디스플레이)라고도 불리고, 종이처럼 읽기 쉽고, 다른 표시 장치와 비교하여 소비 전력이 낮고, 얇고 가벼운 형상으로 할 수 있는 이점을 갖는다.
전기 영동 디스플레이는 다양한 형태를 가질 수 있겠지만, 양 전하를 갖는 제 1 입자와 음 전하를 갖는 제 2 입자를 포함하는 복수의 마이크로 캡슐이 용매 또는 용질에 분산되고, 마이크로 캡슐에 전계를 인가함으로써 마이크로 캡슐 중의 입자를 서로 반대 방향으로 이동시켜 한쪽 측에 모인 입자의 색깔만을 표시하는 것이다. 또한, 제 1 입자 또는 제 2 입자는 염료를 포함하고, 전계가 없는 경우에는 이동하지 않는다. 또한, 제 1 입자의 색깔과 제 2 입자의 색깔은 다른 색깔(무색을 포함함)로 한다.
상술한 바와 같이, 전기 영동 디스플레이는 유전 상수가 높은 물질이 높은 전계 영역으로 이동하는, 소위 유전 영동적 효과를 이용한 디스플레이이다. 전기 영동 디스플레이는 액정 표시 장치에 필요한 편광판, 대향 기판도 전기 영동 표시 장치에는 필요하지 않고, 두께나 중량이 반감된다.
상기 마이크로 캡슐을 용매 중에 분산시킨 것이 전자 잉크라 불리는 것이고, 이 전자 잉크는 유리, 플라스틱, 피륙, 종이 등의 표면에 인쇄할 수 있다. 또한, 컬러 필터나 색소를 갖는 입자를 사용함으로써, 컬러 표시도 가능하다.
또한, 액티브 매트릭스 기판 위에 2개의 전극 사이에 끼워지도록 복수의 상기 마이크로 캡슐을 적절히 배치하면, 액티브 매트릭스형의 표시 장치가 완성되고, 마이크로 캡슐에 전계를 인가하면 표시할 수 있다. 예를 들어, 실시형태 1 또는 실시형태 2의 박막 트랜지스터를 사용하여 얻어지는 액티브 매트릭스 기판을 사용할 수 있다.
또한, 마이크로 캡슐 중의 제 1 입자 및 제 2 입자는 도전체 재료, 절연체 재료, 반도체 재료, 자성(磁性) 재료, 액정 재료, 강유전성 재료, 일렉트로 루미네선스 재료, 일렉트로크로믹 재료, 자기 영동 재료 중에서 선택된 일종의 재료, 또는 이들의 복합 재료를 사용하면 좋다.
상술한 공정에 의하여, 반도체 장치로서 신뢰성이 높은 표시 장치를 제작할 수 있다.
또한, 본 실시형태는 다른 실시형태에 기재하는 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 4)
본 실시형태에서는 반도체 장치로서 발광 표시 장치의 예를 제시한다. 표시 장치가 갖는 표시 소자로서는, 여기서는 일렉트로루미네선스를 이용하는 발광 소자를 사용하여 제시한다. 일렉트로루미네선스를 이용하는 발광 소자는 발광 재료가 유기 화합물인지 무기 화합물인지에 따라 구별되고, 전자는 유기 EL 소자, 후자는 무기 EL 소자라 불린다.
유기 EL 소자는 발광 소자에 전압을 인가함으로써, 한 쌍의 전극으로부터 전자 및 정공이 각각 발광성의 유기 화합물을 함유하는 층에 주입되어 전류가 흐른다. 그리고, 이들 캐리어(전자 및 정공)가 재결합함으로써, 발광성의 유기 화합물이 여기 상태를 형성하고, 그 여기 상태가 기저 상태로 되돌아올 때 발광한다. 이러한 메커니즘 때문에, 상술한 바와 같은 발광 소자는 전류 여기형의 발광 소자라 불린다.
무기 EL 소자는 그 소자 구성에 따라, 분산형 무기 EL 소자와 박막형 무기 EL 소자로 분류된다. 분산형 무기 EL 소자는 발광 재료의 입자를 바인더 중에 분산시킨 발광층을 갖고, 발광 메커니즘은 도너 준위와 억셉터 준위를 이용하는 도너-억셉터 재결합형 발광이다. 박막형 무기 EL 소자는 발광층을 유전체층으로 끼우고, 그것을 전극으로 끼운 구조이며, 발광 메커니즘은 금속 이온의 내각(內殼) 전자 천이를 이용하는 국재(局在)형 발광이다. 또한, 여기서는, 발광 소자로서 유기 EL 소자를 사용하여 설명한다.
도 10은 반도체 장치의 예로서 디지털 시간 계조 구동을 적용할 수 있는 화소 구성의 일례를 도시하는 도면이다.
디지털 시간 계조 구동을 적용할 수 있는 화소의 구성 및 화소의 동작에 대하여 설명한다. 여기서는, 산화물 반도체층(대표적으로는 In-Ga-Zn-O계 비단결정막)을 채널 형성 영역에 사용하는 n채널형 트랜지스터를 하나의 화소에 2개 사용하는 예를 제시한다.
화소(6400)는 스위칭용 트랜지스터(6401), 구동용 트랜지스터(6402), 발광 소자(6404) 및 용량 소자(6403)를 갖는다. 스위칭용 트랜지스터(6401)는 게이트가 주사선(6406)에 접속되고, 제 1 전극(소스 전극 및 드레인 전극의 한쪽)이 신호선(6405)에 접속되고, 제 2 전극(소스 전극 및 드레인 전극의 다른 쪽)이 구동용 트랜지스터(6402)의 게이트에 접속된다. 구동용 트랜지스터(6402)는 게이트가 용량 소자(6403)를 통하여 전원선(6407)에 접속되고, 제 1 전극이 전원선(6407)에 접속되고, 제 2 전극이 발광 소자(6404)의 제 1 전극(화소 전극)에 접속된다. 발광 소자(6404)의 제 2 전극은 공통 전극(6408)에 상당한다. 공통 전극(6408)은 동일 기판 위에 형성되는 공통 전위선과 전기적으로 접속되고, 그 접속 부분을 공통 접속부로 하면 좋다.
또한, 발광 소자(6404)의 제 2 전극(공통 전극(6408))에는 저전원 전위가 설정된다. 또한, 저전원 전위란, 전원선(6407)에 설정되는 고전원 전위를 기준으로 하여 저전원 전위<고전원 전위를 충족시키는 전위이며, 저전원 전위로서는, 예를 들어, GND, 0V 등이 설정되어도 좋다. 이 고전원 전위와 저전원 전위의 전위차를 발광 소자(6404)에 인가함으로써 발광 소자(6404)에 전류를 흘려 발광 소자(6404)를 발광시키기 위하여, 고전원 전위와 저전원 전위의 전위차가 발광 소자(6404)의 순 방향의 임계 값 전압 이상이 되도록 각각의 전위를 설정한다.
또한, 용량 소자(6403)는 구동용 트랜지스터(6402)의 게이트 용량을 대용함으로써 생략할 수도 있다. 구동용 트랜지스터(6402)의 게이트 용량에 대해서는 채널 영역과 게이트 전극의 사이에서 용량이 형성되어도 좋다.
여기서, 전압 입력 전압 구동 방식의 경우에는, 구동용 트랜지스터(6402)의 게이트에는 구동용 트랜지스터(6402)가 충분히 온 상태가 되거나 오프 상태가 되거나 하는 2개의 상태가 되는 비디오 신호를 입력한다. 즉, 구동용 트랜지스터(6402)는 선형 영역에서 동작시킨다. 구동용 트랜지스터(6402)는 선형 영역에서 동작시키기 위하여 전원선(6407)의 전압보다 높은 전압을 구동용 트랜지스터(6402)의 게이트에 인가한다. 또한, 신호선(6405)에는 전원선 전압+구동용 트랜지스터(6402)의 Vth 이상의 전압을 인가한다.
또한, 디지털 시간 계조 구동 대신에 아날로그 계조 구동을 행하는 경우, 신호의 입력을 상이하게 함으로써, 도 10과 같은 화소 구성을 사용할 수 있다.
아날로그 계조 구동을 행하는 경우, 구동용 트랜지스터(6402)의 게이트에 발광 소자(6404)의 순 방향 전압+구동용 트랜지스터(6402)의 Vth 이상의 전압을 인가한다. 발광 소자(6404)의 순 방향 전압이란, 원하는 휘도를 얻을 수 있는 전압을 가리키고, 적어도 순 방향의 임계 값 전압을 포함한다. 또한, 구동용 트랜지스터(6402)가 포화 영역에서 동작하는 비디오 신호를 입력함으로써, 발광 소자(6404)에 전류를 흘릴 수 있다. 구동용 트랜지스터(6402)를 포화 영역에서 동작시키기 위하여, 전원선(6407)의 전위는 구동용 트랜지스터(6402)의 게이트 전위보다 높게 한다. 비디오 신호를 아날로그로 함으로써, 발광 소자(6404)에 비디오 신호에 따른 전류를 흘려, 아날로그 계조 구동을 행할 수 있다.
또한, 도 10에 도시하는 화소 구성은 이것에 한정되지 않는다. 예를 들어, 도 10에 도시하는 화소에 스위치, 저항 소자, 용량 소자, 트랜지스터 또는 논리 회로 등을 추가하여도 좋다.
다음에, 발광 소자의 구성에 대하여 도 11a 내지 도 11c를 사용하여 설명한다. 여기서는, 구동용 TFT가 n형인 경우를 예로 들어, 화소의 단면 구조에 대하여 설명한다. 도 11a 내지 도 11c의 반도체 장치에 사용되는 구동용 TFT인 TFT(7001, 7011, 7021)는 실시형태 1에서 제시하는 제 2 박막 트랜지스터(170)와 같은 방법으로 제작할 수 있고, 산화물 반도체막을 반도체층으로서 포함하는 박막 트랜지스터이다.
발광 소자는 발광을 추출하기 위하여 적어도 양극 또는 음극의 한쪽이 투명하면 좋다. 그리고, 기판 위에 박막 트랜지스터 및 발광 소자를 형성하고, 기판과는 반대 측의 면으로부터 발광을 추출하는 상면 사출이나, 기판 측의 면으로부터 발광을 추출하는 하면 사출이나, 기판 측 및 기판과는 반대 측의 면으로부터 발광을 추출하는 양면 사출 구조의 발광 소자가 있고, 화소 구성은 어느 사출 구조의 발광 소자에나 적용할 수 있다.
상면 사출 구조의 발광 소자에 대해서 도 11a를 사용하여 설명한다.
도 11a에 구동용 TFT인 TFT(7001)가 n형이며, 발광 소자(7002)로부터 방출되는 광이 양극(7005) 측으로 사출되는 경우의 화소의 단면도를 도시한다. TFT(7001)는 반도체층으로서 산화실리콘을 첨가한 In-Sn-Zn-O계 산화물 반도체를 사용한다. 산화실리콘 등의 불순물을 함유시킴으로써 300℃ 내지 600℃의 열 처리를 행하여도 상기 산화물 반도체의 결정화 또는 미결정립의 생성을 방지할 수 있다. 도 11a에서는 발광 소자(7002)의 음극(7003)과 구동용 TFT인 TFT(7001)가 전기적으로 접속되고, 음극(7003) 위에 발광층(7004), 양극(7005)이 순차로 적층된다. 음극(7003)은 일 함수가 작고 또 광을 반사하는 도전막이라면 각종 재료를 사용할 수 있다. 예를 들어, Ca, Al, CaF, MgAg, AlLi 등이 바람직하다. 그리고 발광층(7004)은 단수의 층으로 구성되어도 좋고, 복수의 층이 적층되도록 구성되어도 좋다. 복수의 층으로 구성되는 경우, 음극(7003) 위에 전자 주입층, 전자 수송층, 발광층, 홀 수송층, 홀 주입층의 순서로 적층한다. 또한, 이들 층을 모두 형성할 필요는 없다. 양극(7005)은 광을 투과하는 투광성을 갖는 도전성 재료를 사용하여 형성하고, 예를 들어, 산화텅스텐을 함유한 인듐산화물, 산화텅스텐을 함유한 인듐아연산화물, 산화티타늄을 함유한 인듐산화물, 산화티타늄을 함유한 인듐주석산화물, 인듐주석산화물(이하, ITO라 기재함), 인듐아연산화물, 산화실리콘을 첨가한 인듐주석산화물 등의 투광성을 갖는 도전성 재료를 사용하여도 좋다.
음극(7003) 및 양극(7005)으로 발광층(7004)을 끼운 영역이 발광 소자(7002)에 상당한다. 도 11a에 도시한 화소의 경우, 발광 소자(7002)로부터 방출되는 광은 화살표로 도시하는 바와 같이, 양극(7005) 측으로 사출된다.
다음에, 하면 사출 구조의 발광 소자에 대하여 도 11b를 사용하여 설명한다. 구동용 TFT(7011)가 n형이며, 발광 소자(7012)로부터 방출되는 광이 음극(7013) 측으로 사출되는 경우의 화소의 단면도를 도시한다. TFT(7011)는 반도체층으로서 산화실리콘을 첨가한 In-Al-Zn-O계 산화물 반도체를 사용한다. 산화실리콘 등의 불순물을 함유시킴으로써 300℃ 내지 600℃의 열 처리를 행하여도 상기 산화물 반도체의 결정화 또는 미결정립의 생성을 방지할 수 있다. 도 11b에서는 구동용 TFT(7011)와 전기적으로 접속된 투광성을 갖는 도전막(7017) 위에, 발광 소자(7012)의 음극(7013)이 형성되고, 음극(7013) 위에 발광층(7014) 및 양극(7015)이 순차로 적층된다. 또한, 양극(7015)이 투광성을 갖는 경우, 양극 위를 덮도록, 광을 반사 또는 차폐하기 위한 차폐막(7016)이 형성되어도 좋다. 음극(7013)은 도 11a의 경우와 마찬가지로, 일 함수가 작은 도전성 재료라면 각종 재료를 사용할 수 있다. 다만, 그 막 두께는 광을 투과하는 정도(바람직하게는, 5㎚ 내지 30㎚ 정도)로 한다. 예를 들어, 20㎚의 막 두께를 갖는 알루미늄막을 음극(7013)으로서 사용할 수 있다. 그리고, 발광층(7014)은 도 11a와 마찬가지로, 단수의 층으로 구성되어도 좋고, 복수의 층이 적층되도록 구성되어도 좋다. 양극(7015)은 광을 투과할 필요는 없지만, 도 11a와 마찬가지로, 투광성을 갖는 도전성 재료를 사용하여 형성할 수 있다. 그리고 차폐막(7016)은, 예를 들어, 광을 반사하는 금속 등을 사용할 수 있지만, 금속막에 한정되지 않는다. 예를 들어, 흑색의 안료를 첨가한 수지 등을 사용할 수도 있다.
음극(7013) 및 양극(7015)으로 발광층(7014)을 끼운 영역이 발광 소자(7012)에 상당한다. 도 11b에 도시하는 화소의 경우, 발광 소자(7012)로부터 방출되는 광은 화살표로 도시하는 바와 같이, 음극(7013) 측으로 사출된다.
다음에, 양면 사출 구조의 발광 소자에 대하여 도 11c를 사용하여 설명한다. 도 11c에서는, 구동용 TFT(7021)와 전기적으로 접속된 투광성을 갖는 도전막(7027) 위에, 발광 소자(7022)의 음극(7023)이 성막되고, 음극(7023) 위에 발광층(7024), 양극(7025)이 순차로 적층된다. TFT(7021)는 반도체층으로서 산화실리콘을 첨가한 Sn-Al-Zn-O계 산화물 반도체를 사용한다. 산화실리콘 등의 불순물을 함유시킴으로써 300℃ 내지 600℃의 열 처리를 행하여도 상기 산화물 반도체의 결정화 또는 미결정립의 생성을 방지할 수 있다. 음극(7023)은 도 11a의 경우와 마찬가지로, 일 함수가 작은 도전성 재료라면 각종 재료를 사용할 수 있다. 다만, 그 막 두께는 광을 투과하는 정도로 한다. 예를 들어, 20㎚의 막 두께를 갖는 Al을 음극(7023)으로서 사용할 수 있다. 그리고, 발광층(7024)은 도 11a와 마찬가지로, 단수의 층으로 구성되어도 좋고, 복수의 층이 적층되도록 구성되어도 좋다. 양극(7025)은 도 11a와 마찬가지로, 광을 투과하는 투광성을 갖는 도전성 재료를 사용하여 형성할 수 있다.
음극(7023)과, 발광층(7024)과, 양극(7025)이 중첩된 부분이 발광 소자(7022)에 상당한다. 도 11c에 도시한 화소의 경우, 발광 소자(7022)로부터 방출되는 광은 화살표로 도시하는 바와 같이, 양극(7025) 측과 음극(7023) 측의 양쪽으로 사출된다.
또한, 여기서는, 발광 소자로서 유기 EL 소자에 대하여 설명하지만, 발광 소자로서 무기 EL 소자를 형성할 수도 있다.
또한, 본 실시형태에서는 발광 소자의 구동을 제어하는 박막 트랜지스터(구동용 TFT)와 발광 소자가 전기적으로 접속되는 예를 제시하지만, 구동용 TFT와 발광 소자 사이에 전류 제어용 TFT가 접속되는 구성이라도 좋다.
다음에, 반도체 장치의 일 형태에 상당하는 발광 표시 패널(발광 패널이라고도 함)의 외관 및 단면에 대하여 도 12a 및 도 12b를 사용하여 설명한다. 도 12a는 제 1 기판 위에 형성된 박막 트랜지스터 및 발광 소자를 제 2 기판과의 사이에 씰재로 밀봉한 패널의 상면도이고, 도 12b는 도 12a의 H-I의 단면도에 상당한다.
제 1 기판(4501) 위에 형성된 화소부(4502), 신호선 구동 회로(4503a, 4503b), 및 주사선 구동 회로(4504a, 4504b)를 둘러싸도록 씰재(4505)가 형성된다. 또한, 화소부(4502), 신호선 구동 회로(4503a, 4503b) 및 주사선 구동 회로(4504a, 4504b) 위에 제 2 기판(4506)이 형성된다. 따라서, 화소부(4502), 신호선 구동 회로(4503a, 4503b), 및 주사선 구동 회로(4504a, 4504b)는 제 1 기판(4501)과 씰재(4505)와 제 2 기판(4506)에 의하여 충전재(4507)와 함께 밀봉된다. 상술한 바와 같이, 적어도 화소부(4502)가 외기에 노출되지 않도록, 기밀성이 높고 탈 가스가 적은 보호 필름(접합 필름, 자외선 경화 수지 필름 등)이나 커버재로 패키징(밀봉)하는 것이 바람직하다.
또한, 제 1 기판(4501) 위에 형성된 화소부(4502), 신호선 구동 회로(4503a, 4503b), 및 주사선 구동 회로(4504a, 4504b)는 박막 트랜지스터를 복수 갖고, 도 12b에는 화소부(4502)에 포함되는 박막 트랜지스터(4510)와 신호선 구동 회로(4503a)에 포함되는 박막 트랜지스터(4509)를 예시한다.
박막 트랜지스터(4509)는 산화물 반도체층의 적층을 반도체층으로서 포함하는 실시형태 1에 제시하는 제 1 박막 트랜지스터를 적용하고, 박막 트랜지스터(4510)는 In-Ga-Zn-O계 비단결정막을 단층으로서 포함하는 실시형태 1에 제시하는 제 2 박막 트랜지스터를 적용할 수 있다. 본 실시형태에 있어서, 박막 트랜지스터(4509, 4510)는 n채널형 박막 트랜지스터다.
또한, 부호 4511은 발광 소자에 상당하고, 발광 소자(4511)가 갖는 화소 전극인 제 1 전극층(4517)은 박막 트랜지스터(4510)의 소스 전극층 또는 드레인 전극층과 전기적으로 접속된다. 또한, 발광 소자(4511)의 구성은 제 1 전극층(4517), 전계 발광층(4512), 제 2 전극층(4513)의 적층 구조이지만, 본 실시형태에 제시한 구성에 한정되지 않는다. 발광 소자(4511)로부터 추출하는 광의 방향 등에 맞추어 발광 소자(4511)의 구성은 적절히 변화시킬 수 있다.
격벽(4520)은 유기 수지막, 무기 절연막 또는 유기폴리실록산을 사용하여 형성한다. 특히, 감광성을 갖는 재료를 사용하여 제 1 전극층(4517) 위에 개구부를 형성하고, 그 개구부의 측벽이 연속된 곡률을 갖는 경사면이 되도록 형성하는 것이 바람직하다.
전계 발광층(4512)은 단수의 층으로 구성되어도 좋고, 복수의 층이 적층되도록 구성되어도 좋다.
발광 소자(4511)에 산소, 수소, 수분, 이산화탄소 등이 침입하지 않도록 제 2 전극층(4513) 및 격벽(4520) 위에 보호막을 형성하여도 좋다. 보호막으로서는, 질화실리콘막, 질화산화실리콘막, DLC막 등을 형성할 수 있다.
또한, 신호선 구동 회로(4503a, 4503b), 주사선 구동 회로(4504a, 4504b), 또는 화소부(4502)에 인가되는 각종 신호 및 전위는 FPC(4518a, 4518b)로부터 공급된다.
본 실시형태에서는 접속 단자 전극(4515)이 발광 소자(4511)가 갖는 제 1 전극층(4517)과 같은 도전막으로 형성되고, 단자 전극(4516)은 박막 트랜지스터(4509, 4510)가 갖는 소스 전극층 및 드레인 전극층과 같은 도전막으로 형성된다.
접속 단자 전극(4515)은 FPC(4518a)가 갖는 단자와 이방성 도전막(4519)을 통하여 전기적으로 접속된다.
발광 소자(4511)로부터의 광의 추출 방향에 위치하는 제 2 기판(4506)은 투광성을 가져야 한다. 그 경우에는, 유리 기판, 플라스틱 기판, 폴리에스테르 필름, 또는 아크릴 필름과 같은 투광성을 갖는 재료를 사용한다.
또한, 충전재(4507)로서는 질소나 아르곤 등의 불활성 기체 외, 자외선 경화 수지 또는 열 경화 수지를 사용할 수 있고, PVC(폴리비닐클로라이드), 아크릴, 폴리이미드, 에폭시 수지, 실리콘(silicone) 수지, PVB(폴리비닐부티랄) 또는 EVA(에틸렌비닐아세테이트)를 사용할 수 있다. 본 실시형태는 충전재로서 질소를 사용한다.
또한, 필요하면, 발광 소자의 사출면에 편광판, 또는 원형 편광판(타원형 편광판을 포함함), 위상차판(1/4 파장판, 1/2 파장판), 컬러 필터 등의 광학 필름을 적절히 형성하여도 좋다. 또한, 편광판 또는 원형 편광판에 반사 방지막을 형성하여도 좋다. 예를 들어, 표면의 요철로 반사광을 확산하여 눈부심을 절감할 수 있는 안티-글레어(anti-glare) 처리를 행할 수 있다.
신호선 구동 회로(4503a, 4503b), 및 주사선 구동 회로(4504a, 4504b)는 별도 준비된 기판 위에 단결정 반도체막 또는 다결정 반도체막으로 형성된 구동 회로로 실장되어도 좋다. 또한, 신호선 구동 회로만, 또는 그 일부분, 또는 주사선 구동 회로만, 또는 그 일부분만을 별도 형성하여 실장하여도 좋고, 본 실시형태는 도 12a 및 도 12b의 구성에 한정되지 않는다.
상술한 공정에 의하여, 반도체 장치로서 신뢰성이 높은 발광 표시 장치(표시 패널)를 제작할 수 있다.
본 실시형태는 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 5)
본 실시형태에서는 실시형태 1과 금속 박막의 상면 면적이 상이한 예, 즉, 금속 박막의 단부의 위치가 제 2 산화물 반도체층의 단부와 이간된 예를 도 13a 내지 도 13c에 도시한다. 또한, 금속 박막의 형상이 상이한 부분 외에는 도 1a 내지 도1d와 동일하기 때문에, 같은 부분에는 같은 부호를 사용하여 설명한다.
우선, 실시형태 1과 마찬가지로, 절연 표면을 갖는 기판(400) 위에 제 1 게이트 전극(401) 및 제 2 게이트 전극(101)을 형성한다. 또한, 1 게이트 전극(401) 및 제 2 게이트 전극(101)을 형성할 때, 화소부의 용량 배선(108), 및 단자부의 제 1 단자(121)도 형성한다.
다음에, 제 1 게이트 전극(401) 및 제 2 게이트 전극(101) 위를 덮는 게이트 절연층(403)을 형성한다.
다음에, 게이트 절연층(403) 위에 인듐, 아연, 주석, 몰리브덴, 또는 텅스텐 등의 금속 박막을 형성한다. 또한, 이들 합금 박막, 또는 이들 적층막을 사용할 수도 있다. 금속 박막은 스퍼터링법, 진공 증착법, 또는 도포법을 사용하여 형성한다. 여기서는, 스퍼터링법을 사용하여 아연막을 0㎚보다 두껍고 10㎚ 이하, 바람직하게는 3㎚ 이상 5㎚ 이하로 형성한다.
다음에, 포토리소그래피 기술을 사용하여 금속 박막을 선택적으로 제거한다. 이 에칭 공정에서는 이후 형성하는 산화물 반도체층의 패턴 형상보다 작은 면적이 잔존되도록 금속 박막(490)을 형성한다. 또한, 금속 박막(490)은 게이트 절연층(403)을 사이에 두고 제 1 게이트 전극(401)과 적어도 일부분이 중첩되는 위치에 형성한다. 이러한 금속 박막(490)을 형성함으로써 금속 박막(490)의 측면을 산화물 반도체층이 덮는 구조로 하고, 이후 행해지는 열 처리에 의하여 금속 박막의 산화가 충분히 행해지지 않은 경우에도 금속 박막에 의하여 제 1 배선(409)과 제 2 배선(410)이 단락되는 것을 방지할 수 있다.
다음에, 금속 박막(490)의 상면 및 측면을 덮는 산화물 반도체층을 형성한다. 본 실시형태에서는 산화물 반도체층으로서 스퍼터링법에 의하여 제 1 In-Ga-Zn-O계 산화물 반도체막을 형성한다.
스퍼터링법에 의하여 In-Ga-Zn-O계 산화물 반도체층을 형성하는 경우에 있어서, In, Ga 및 Zn를 함유한 산화물 반도체 타깃에 절연성 불순물을 함유시켜 두어도 좋다. 상기 불순물은 산화실리콘, 산화게르마늄, 산화알루미늄 등으로 대표되는 절연성 산화물, 질화실리콘, 질화알루미늄 등으로 대표되는 절연성 질화물, 또는 산질화실리콘, 산질화알루미늄 등의 절연성 산질화물 등이다. 예를 들어, 산화물 반도체 타깃에 SiO2를 0.1wt% 이상 10wt% 이하, 바람직하게는 1wt% 내지 6wt% 이하의 비율로 함유시켜 두는 것이 바람직하다.
다음에, 대기에 노출하지 않고, 제 1 In-Ga-Zn-O계 비단결정막보다 저항이 낮은 산화물 반도체막(본 실시형태에서는 제 2 In-Ga-Zn-O계 비단결정막)을 스퍼터링법으로 형성한다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 제 1 In-Ga-Zn-O계 비단결정막 및 제 2 In-Ga-Zn-O계 비단결정막을 에칭한다. 에칭에 의하여, 불필요한 부분을 제거하여 제 1 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(485a, 485b), 제 2 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(486a, 486b)을 형성한다. 이 단계의 단면도를 도 13a에 도시한다. 도 13a에 도시하는 바와 같이, 제 1 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(485a)은 금속 박막(490)의 상면 및 측면을 덮기 때문에 금속 박막(490)에는 노출되는 부분이 존재하지 않는다.
또한, 본 실시형태에서는 제 2 In-Ga-Zn-O계 비단결정막을 형성하는 예를 제시하지만 특히 한정되지 않고 형성하지 않아도 좋다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 에칭에 의하여 불필요한 부분을 제거하여 게이트 전극층과 같은 재료의 배선이나 전극층에 도달되는 콘택트 홀을 형성한다. 이 콘택트 홀은 이후 형성하는 도전막과 직접 접속하기 위하여 형성한다. 예를 들어, 구동 회로부에 있어서, 게이트 전극층과 소스 전극층 또는 드레인 전극층이 직접 접하는 박막 트랜지스터나, 단자부의 게이트 배선과 전기적으로 접속되는 단자를 형성하는 경우에 콘택트 홀을 형성한다.
다음에, 제 2 In-Ga-Zn-O계 비단결정막인 산화물 반도체막(486a, 486b) 및 게이트 절연층(403) 위에 금속 재료로 이루어진 도전막을 스퍼터링법으로 형성한다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 에칭에 의하여 불필요한 부분을 제거하여 화소부에 소스 전극층 또는 드레인 전극층(105a, 105b), 소스 영역 또는 드레인 영역으로서 기능하는 n+층(104a, 104b)을 형성하고, 구동 회로부에 소스 전극층 또는 드레인 전극층으로서 기능하는 제 1 배선(409), 제 2 배선(410), 소스 영역 또는 드레인 영역으로서 기능하는 n+층(406a, 406b)을 형성한다. 이 에칭 공정에 있어서, 산화물 반도체층의 노출 영역도 일부분 에칭되어 산화물 반도체층(103)이 된다. 따라서, n+층(104a, 104b) 사이의 산화물 반도체층(103)의 채널 영역은 막 두께가 얇은 영역이 된다. 상술한 공정에 의하여, 화소부에는 산화물 반도체층(103)을 채널 형성 영역으로 하는 제 2 박막 트랜지스터(170)를 제작할 수 있다. 또한, 이 포토리소그래피 공정에 있어서, 소스 전극층 또는 드레인 전극층(105a, 105b)과 같은 재료인 제 2 단자(122)를 단자부에 남긴다. 제 2 단자(122)는 소스 배선(소스 전극층 또는 드레인 전극층(105a, 105b)을 포함하는 소스 배선)과 전기적으로 접속된다.
또한, 단자부에 있어서, 접속 전극(120)은 게이트 절연막에 형성된 콘택트 홀을 통하여 단자부의 제 1 단자(121)와 직접 접속된다(도 15 참조). 또한, 여기서는 도시하지 않지만, 상술한 공정과 같은 공정을 거쳐 구동 회로의 박막 트랜지스터의 소스 배선 또는 드레인 배선과 게이트 전극이 직접 접속된다.
다음에, 200℃ 내지 600℃, 대표적으로는 300℃ 내지 500℃의 열 처리(광 어닐링도 포함함)를 행한다. 여기서는, 노에 넣고, 대기 분위기하에서 350℃, 1시간의 열 처리를 행한다. 이 열 처리는 금속 박막(490)의 일부분 또는 전부를 산화하는 산화 처리라고도 부른다. 본 실시형태에서는, 도전성을 갖는 산화아연막인 제 1 산화물 반도체층(491)이 된다. 상술한 공정으로 구동 회로에는 제 1 산화물 반도체층(491)과 제 2 산화물 반도체층(405)의 적층을 갖는 제 1 박막 트랜지스터(420)를 제작할 수 있다. 이 단계의 단면도를 도 13b에 도시한다. 또한, 이 열 처리에 의하여 In-Ga-Zn-O계 비단결정막의 원자 레벨에서의 재배열이 행해진다. 또한, 열 처리를 행하는 타이밍은 제 2 In-Ga-Zn-O계 비단결정막을 형성한 후라면 특히 한정되지 않고, 예를 들어, 화소 전극을 형성한 후에 행하여도 좋다.
다음에, 레지스트 마스크를 제거하여 제 1 박막 트랜지스터(420) 및 제 2 박막 트랜지스터(170)를 덮는 보호 절연층(412)을 형성한다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 보호 절연층(412)을 에칭함으로써 소스 전극층 또는 드레인 전극층(105b)에 도달되는 콘택트 홀을 형성한다. 또한, 여기서의 에칭에 의하여 제 2 단자(122)에 도달되는 콘택트 홀, 접속 전극(120)에 도달되는 콘택트 홀도 형성한다.
다음에, 레지스트 마스트를 제거한 후, 투명 도전막을 형성한다. 투명 도전막의 재료로서는 산화인듐(In2O3)이나 인듐주석산화물(In2O3-SnO2, ITO라 약기함) 등을 스퍼터링법이나 진공 증착법 등을 사용하여 형성한다. 이러한 재료의 에칭 처리는 염산계의 용액을 사용하여 행한다. 그러나, 특히 ITO의 에칭은 잔사(殘渣)가 발생하기 쉬우므로 에칭 가공성을 개선하기 위하여 산화인듐-산화아연합금(In2O3-ZnO)을 사용하여도 좋다.
다음에, 포토리소그래피 공정을 행하여 레지스트 마스크를 형성하고, 에칭에 의하여 불필요한 부분을 제거하여 화소 전극층(110)을 형성한다. 이 포토리소그래피 공정에 있어서, 용량부의 게이트 절연층(403) 및 보호 절연층(412)을 유전체로 하여 용량 배선(108)과 화소 전극(110)으로 유지 용량이 형성된다. 또한, 이 포토리소그래피 공정에 있어서, 제 1 단자 및 제 2 단자를 레지스트 마스크로 덮어 단자부에 형성된 투명 도전막(128, 129)을 남긴다. 투명 도전막(128, 129)은 FPC와 접속하는 데 사용되는 전극 또는 배선이 된다. 제 1 단자(121)와 직접 접속된 접속 전극(120) 위에 형성된 투명 도전막(128)은 게이트 배선의 입력 단자로서 기능하는 접속용 단자 전극이 된다. 제 2 단자(122) 위에 형성된 투명 도전막(129)은 소스 배선의 입력 단자로서 기능하는 접속용 단자 전극이 된다(도 15 참조).
또한, 여기서는 게이트 절연층(403) 및 보호 절연층(412)을 유전체로 하여 용량 배선(108)과 화소 전극(110)으로 유지 용량을 형성하는 예를 제시하지만, 특히 한정되지 않고, 소스 전극 또는 드레인 전극과 같은 재료로 구성되는 전극을 용량 배선 상방에 형성함으로써, 그 전극과, 용량 배선과, 이들 사이에 게이트 절연층(403)을 유전체로서 구성하는 유지 용량을 형성하고, 그 전극과 화소 전극을 전기적으로 접속하는 구성으로 하여도 좋다.
다음에, 레지스트 마스크를 제거하고, 이 단계의 단면도를 도 13c에 도시한다. 또한, 이 단계의 화소부에 있어서의 제 2 박막 트랜지스터(170)의 상면도가 도 14에 상당한다.
또한, 도 14 중의 A1-A2선을 따른 단면도 및 도 14 중의 B1-B2선을 따른 단면도가 도 15에 상당한다. 도 15는 화소부에 있어서의 제 2 박막 트랜지스터(170)의 단면 구조와, 화소부에 있어서의 용량부의 단면 구조와, 단자부의 단면 구조를 도시한 것이다.
또한, 도 16a 및 도 16b는 소스 배선 단자부의 상면도 및 단면도를 각각 도시한 것이다. 또한, 도 16a는 도 16b 중의 D1-D2선을 따른 단면도에 상당한다. 도 16a에 있어서, 보호 절연막(154) 위에 형성되는 투명 도전막(155)은 입력 단자로서 기능하는 접속용의 단자 전극이다. 또한, 도 16a에 있어서, 단자부에서는 게이트 배선과 같은 재료로 형성되는 전극(156)이 소스 배선과 전기적으로 접속되는 제 2 단자(150) 하방에 게이트 절연층(152)을 사이에 두고 중첩된다. 전극(156)은 제 2 단자(150)와 전기적으로 접속되지 않고, 전극(156)을 제 2 단자(150)와 상이한 전위, 예를 들어 플로팅, GND, 0V 등으로 설정하면 노이즈 대책을 위한 용량 또는 정전기 대책을 위한 용량을 형성할 수 있다. 또한, 제 2 단자(150)는 보호 절연막(154)을 사이에 두고 투명 도전막(155)과 전기적으로 접속된다. 또한, 보호 절연막(154)은 보호 절연층(412)과 동일하다.
게이트 배선, 소스 배선, 및 용량 배선은 화소 밀도에 따라 복수 형성되는 것이다. 또한, 단자부에 있어서는, 게이트 배선과 전위가 같은 제 1 단자, 소스 배선과 전위가 같은 제 2 단자, 용량 배선과 전위가 같은 제 3 단자 등이 복수 나란히 배치된다. 각각의 단자 수는 각각 임의의 수로 설정하면 좋은 것으로 하고, 실시자가 적절히 결정하면 좋다.
상술한 바와 같이 하여, 산화 반도체층이 적층 구조의 제 1 박막 트랜지스터(420)를 갖는 구동 회로와, 보텀 게이트형 n채널형 박막 트랜지스터인 제 2 박막 트랜지스터(170)와 유지 용량을 갖는 화소부, 및 단자부를 완성시킬 수 있다.
액티브 매트릭스형 액정 표시 장치를 제작하는 경우에는, 액티브 매트릭스 기판과, 대향 전극이 형성된 대향 기판 사이에 액정층을 형성하여 액티브 매트릭스 기판과 대향 기판을 고정한다. 또한, 대향 기판에 형성된 대향 전극과 전기적으로 접속되는 공통 전극을 액티브 매트릭스 기판 위에 형성하고, 공통 전극과 전기적으로 접속되는 단자를 단자부에 형성한다. 이 단자는 공통 전극을 고정 전위, 예를 들어, GND, 0V 등으로 설정하기 위한 단자이다.
또한, 본 실시형태는 도 14의 화소 구성에 한정되지 않고, 도 14와 상이한 상면도의 예를 도 17에 도시한다. 도 17에서는 용량 배선을 형성하지 않고, 보호 절연막 및 게이트 절연층을 사이에 두고 화소 전극을 이웃하는 화소의 게이트 배선과 중첩함으로써 유지 용량을 형성하는 예이고, 이 경우, 용량 배선 및 용량 배선과 접속되는 제 3 단자는 생략할 수 있다. 또한, 도 17에 있어서, 도 14와 같은 부분에는 같은 부호를 사용하여 설명한다.
액티브 매트릭스형 액정 표시 장치에 있어서는, 매트릭스 형상으로 배치된 화소 전극을 구동시킴으로써 화면상에 표시 패턴이 형성된다. 자세히 설명하면, 선택된 화소 전극과 상기 화소 전극에 대응하는 대향 전극 사이에 전압이 인가됨으로써 화소 전극과 대향 전극 사이에 배치된 액정층의 광학 변조가 행해지고, 이 광학 변조가 표시 패턴으로서 관찰자에 인식된다.
액정 표시 장치의 동영상 표시에 있어서, 액정 분자 자체의 응답이 느리므로, 잔상이 생기거나 또는 동영상의 번짐 형상이 일어나는 문제가 있다. 액정 표시 장치의 동영상 특성을 개선하기 위하여, 전체 면 흑색 표시를 1프레임 간격으로 행하는, 소위, 흑색 삽입이라 불리는 구동 기술이 있다.
또한, 수직 동기 주파수를 통상의 1.5배, 바람직하게는 2배 이상으로 함으로써 동영상 특성을 개선하는, 소위, 배속(倍速) 구동이라 불리는 구동 기술을 사용하여도 좋다.
또한, 액정 표시 장치의 동영상 특성을 개선하기 위하여, 백 라이트로서 복수의 LED(발광 다이오드) 광원 또는 복수의 EL 광원 등을 사용하여 면 광원을 구성하고, 면 광원을 구성하는 각 광원을 독립적으로 1프레임 기간 내에서 간결 점등 구동하는 구동 기술도 있다. 면 광원으로서 3종류 이상의 LED를 사용하여도 좋고, 백색 발광의 LED를 사용하여도 좋다. 독립적으로 복수의 LED를 제어할 수 있으므로, 액정층의 광학 변조를 전환하는 타이밍에 맞추어 LED의 발광 타이밍을 동기시킬 수도 있다. 이 구동 기술은 LED를 부분적으로 비발광 상태로 할 수 있으므로, 특히 1화면을 차지하는 흑색 표시 영역의 비율이 많은 영상 표시의 경우에는 소비 전력의 저감 효과가 도모된다.
이들 구동 기술을 조합함으로써 액정 표시 장치의 동영상 특성 등의 표시 특성을 종래보다 개선할 수 있다.
본 실시형태에서 얻어지는 제 1 박막 트랜지스터(420)는 도전율이 상이한 산화물 반도체층의 적층을 사용하고, 양호한 동(動)특성을 갖기 때문에, 이들 구동 기술을 조합할 수 있다.
또한, 본 실시형태에 의하여, 전기 특성이 높고, 신뢰성이 좋은 표시 장치를 저비용으로 제공할 수 있다.
(실시형태 6)
도전율이 상이한 산화물 반도체층의 적층을 사용한 박막 트랜지스터를 제작하고, 상기 박막 트랜지스터를 구동 회로, 또한 화소부에 사용하여 표시 기능을 갖는 액정 표시 장치를 제작할 수 있다. 또한, 박막 트랜지스터를 사용한 구동 회로의 일부분 또는 전체를 화소부와 같은 기판 위에 일체 형성하여 시스템 온 패널을 형성할 수 있다.
액정 표시 장치는 표시 소자로서는 액정 소자(액정 표시 소자라고도 함)를 포함한다.
또한, 액정 표시 장치는 표시 소자가 밀봉된 상태인 패널과, 상기 패널에 컨트롤러를 포함한 IC 등을 실장한 상태인 모듈을 포함한다. 또한, 상기 액정 표시 장치를 제작하는 과정에 있어서, 표시 소자가 완성되기 전의 일 형태에 상당하는 소자 기판에 관하여, 상기 소자 기판은 전류를 표시 소자에 공급하기 위한 수단을 복수의 각 화소에 구비한다. 소자 기판은 구체적으로는 표시 소자의 화소 전극만이 형성된 상태이어도 좋고, 화소 전극이 되는 도전막을 형성한 후이며 에칭하여 화소 전극을 형성하기 전의 상태이어도 좋고, 모든 형태가 적합하다.
또한, 본 명세서 중에 있어서의 액정 표시 장치란, 화상 표시 디바이스, 표시 디바이스, 또는 광원(조명 장치를 포함함)을 가리킨다. 또한, 커넥터, 예를 들어, FPC(Flexible Printed Circuit) 또는 TAB(Tape Automated Bonding) 테이프, 또는 TCP(Tape Carrier Package)가 부착된 모듈, TAB 테이프나 TCP 끝에 프린트 배선판이 설치된 모듈, 또는 표시 소자에 COG(Chip On Glass) 방식에 의하여 IC(집적 회로)가 직접 실장된 모듈도 모두 표시 장치에 포함한다.
액정 표시 장치의 일 형태에 상당하는 액정 표시 패널의 외관 및 단면에 대하여 도 18a1, 도 18a2, 도 18b를 사용하여 설명한다. 도 18a1, 도 18a2는 액정 소자(4013)를 제 1 기판(4001)과 제 2 기판(4006) 사이에 씰재(4005)로 밀봉한 패널의 상면도이고, 도 18b는 도 18a1 및 도 18a2의 선 M-N의 단면도에 상당한다.
제 1 기판(4001) 위에 형성된 화소부(4002)와 주사선 구동 회로(4004)를 둘러싸도록 씰재(4005)가 형성된다. 또한, 화소부(4002)와 주사선 구동 회로(4004) 위에 제 2 기판(4006)이 형성된다. 따라서, 화소부(4002)와 주사선 구동 회로(4004)는 제 1 기판(4001)과 씰재(4005)와 제 2 기판(4006)에 의하여 액정층(4008)과 함께 밀봉된다. 본 실시형태에 있어서, 액정층(4008)은 특히 한정되지 않지만, 불루상을 나타내는 액정 재료를 사용한다. 불루상을 나타내는 액정 재료는 전압 무인가 상태로부터 전압 인가 상태에 있어서는 응답 속도가 1msec 이하로 짧고, 고속 응답이 가능하다. 불루상을 나타내는 액정 재료로서 액정 및 키랄(chiral)제를 함유한다. 키랄제는 액정을 나선 구조로 배향시켜, 불루상을 발현시키기 위하여 사용한다. 예를 들어, 5wt% 이상의 키랄제를 혼합시킨 액정 재료를 액정층에 사용하면 좋다. 액정은 서모트로픽 액정, 저분자 액정, 고분자 액정, 강유전성 액정, 반강유전성 액정 등을 사용한다.
도 18a1은 제 1 기판(4001) 위에 형성된 씰재(4005)로 둘러싸인 영역과 상이한 영역에, 별도 준비된 기판 위에 단결정 반도체막 또는 다결정 반도체막으로 형성된 신호선 구동 회로(4003)가 실장된다. 또한, 도 18a2는 신호선 구동 회로의 일부분을 제 1 기판(4001) 위에 도전율이 상이한 산화물 반도체의 적층을 사용한 박막 트랜지스터로 형성하는 예이고, 제 1 기판(4001) 위에 신호선 구동 회로(4003b)가 형성되고, 또 별도 준비된 기판 위에 단결정 반도체막 또는 다결정 반도체막으로 형성된 신호선 구동 회로(4003a)가 실장된다.
또한, 별도 형성한 구동 회로의 접속 방법은 특히 한정되지 않고, COG 방법, 와이어 본딩 방법, 또는 TAB 방법 등을 사용할 수 있다. 도 18a1은 COG 방법에 의하여 신호선 구동 회로(4003)를 실장하는 예이고, 도 18a2는 TAB 방법에 의하여 신호선 구동 회로(4003)를 실장하는 예이다.
또한, 제 1 기판(4001) 위에 형성된 화소부(4002)와 주사선 구동 회로(4004)는 복수의 박막 트랜지스터를 갖고, 도 18b에는 화소부(4002)에 포함되는 박막 트랜지스터(4010)와, 주사선 구동 회로(4004)에 포함되는 박막 트랜지스터(4011)를 예시한다. 박막 트랜지스터(4010, 4011) 위에는 절연층(4020), 층간막(4021)이 형성된다. 박막 트랜지스터(4010)는 도전율이 상이한 산화물 반도체층의 적층을 반도체층으로서 포함하는 실시형태 1에 제시하는 제 1 박막 트랜지스터를 적용하고, 박막 트랜지스터(4011)는 In-Ga-Zn-O계 비단결정막을 단층으로서 포함하는, 실시형태 1에 제시하는 제 2 박막 트랜지스터를 적용할 수 있다. 본 실시형태에 있어서, 박막 트랜지스터(4010, 4011)는 n채널형 박막 트랜지스터이다.
또한, 제 1 기판(4001) 위에 화소 전극층(4030) 및 공통 전극층(4031)이 형성되고, 화소 전극층(4030)은 박막 트랜지스터(4010)와 전기적으로 접속된다. 액정 소자(4013)는 화소 전극층(4030), 공통 전극층(4031), 및 액정층(4008)을 포함한다. 본 실시형태에서는 기판에 대략 평행(즉 수평 방향)한 전계를 생기게 하여 기판과 평행한 면 내에서 액정 분자를 이동시켜 계조를 제어하는 방식을 사용한다. 이러한 방식으로서, IPS(In Plane Switching) 모드로 사용하는 전극 구성이나, FFS(Fringe Field Switching) 모드로 사용하는 전극 구성을 적용할 수 있다. 또한, 제 1 기판(4001), 제 2 기판(4006)의 외측에는 각각 편광판(4032, 4033)이 형성된다.
또한, 제 1 기판(4001) 및 제 2 기판(4006)으로서는, 투광성을 갖는 유리, 플라스틱을 사용할 수 있다. 플라스틱으로서는, FRP(Fiberglass-Reinforced Plastics)판, PVF(폴리비닐플루오라이드) 필름, 폴리에스테르 필름 또는 아크릴 수지 필름을 사용할 수 있다. 또한, 알루미늄포일을 PVF 필름이나 폴리에스테르 필름으로 끼운 구조의 시트를 사용할 수도 있다.
또한, 부호 4035는 절연막을 선택적으로 에칭함으로써 얻어지는 기둥 형상의 스페이서이며, 액정층(4008)의 막 두께(셀 갭)를 제어하기 위하여 형성된다. 또한, 구 형상(spherical)의 스페이서를 사용하여도 좋다.
또한, 도 18a1, 도 18a2, 도 18b의 액정 표시 장치에서는 기판의 외측(시인 측)에 편광판을 형성하는 예를 제시하지만, 편광판은 기판의 내측에 형성하여도 좋다. 편광판의 재료나 제작 공정 조건에 따라 적절히 설정하면 좋다. 또한, 블랙 매트릭스로서 기능하는 차광층을 형성하여도 좋다.
층간막(4021)은 투광성 수지층이다. 또한, 층간막(4021)의 일부분을 차광층(4012)으로 한다. 차광층(4012)은 박막 트랜지스터(4010, 4011)를 덮는다. 도 18b에 있어서는 박막 트랜지스터(4010, 4011) 상방을 덮도록 차광층(4034)이 제 2 기판(4006) 측에 형성된다. 차광층(4012, 4034)을 형성함으로써, 콘트라스트 향상이나 박막 트랜지스터의 안정화의 효과를 높일 수 있다.
차광층(4034)을 형성하면, 박막 트랜지스터의 반도체층에 입사되는 광의 강도를 감쇠시킬 수 있고, 산화물 반도체의 광 감도로 인한 박막 트랜지스터의 전기 특성의 변동을 방지하여 안정화시키는 효과를 얻을 수 있다.
박막 트랜지스터의 보호막으로서 기능하는 절연층(4020)으로 덮는 구성으로 하여도 좋지만, 특히 한정되지 않는다.
또한, 보호막은 대기 중에 부유하는 유기물이나 금속물, 수증기 등의 오염 불순물의 침입을 방지하기 위한 것이므로 치밀한 막인 것이 바람직하다. 보호막은 스퍼터링법을 사용하여 산화실리콘막, 질화실리콘막, 산화질화실리콘막, 질화산화실리콘막, 산화알루미늄막, 질화알루미늄막, 산화질화알루미늄막, 또는 질화산화실리콘막의 단층 또는 적층으로 형성하면 좋다.
또한, 평탄화 절연막으로서 투광성을 갖는 절연층을 더 형성하는 경우, 폴리이미드, 아크릴, 벤조시클로부텐, 폴리아미드, 에폭시 등의 내열성을 갖는 유기 재료를 사용할 수 있다. 또한, 상기 유기 재료 외에, 저유전율 재료(low-k 재료), 실록산계 수지, PSG(인 유리), BPSG(인 붕소 유리) 등을 사용할 수 있다. 또한, 이들 재료로 형성되는 복수의 절연막을 적층시킴으로써 절연층을 형성하여도 좋다.
적층하는 절연층의 형성법은 특히 한정되지 않고, 그 재료에 따라, 스퍼터링법, SOG법, 스핀코팅, 딥핑, 스프레이 도포, 액적토출법(잉크젯법, 스크린인쇄, 오프셋인쇄 등), 닥터 나이프, 롤 코터, 커튼 코터, 나이프 코터 등을 사용할 수 있다. 절연층을 재료액을 사용하여 형성하는 경우, 베이크하는 공정에서 동시에 반도체층의 어닐링(200℃ 내지 400℃)을 행하여도 좋다. 절연층의 소성 공정과 산화물 반도체층의 어닐링을 겸함으로써, 효율 좋게 액정 표시 장치를 제작할 수 있다.
화소 전극층(4030), 공통 전극층(4031)은 산화텅스텐을 함유한 인듐산화물, 산화텅스텐을 함유한 인듐아연산화물, 산화티타늄을 함유한 인듐산화물, 산화티타늄을 함유한 인듐주석산화물, 인듐주석산화물(이하, ITO라 기재함), 인듐아연산화물, 산화실리콘을 첨가한 인듐주석산화물 등의 투광성을 갖는 도전성 재료를 사용할 수 있다.
또한, 화소 전극층(4030), 공통 전극층(4031)으로서 도전성 고분자(도전성 폴리머라고도 함)를 포함하는 도전성 조성물을 사용하여 형성할 수 있다.
또한 별도 형성된 신호선 구동 회로(4003)와, 주사선 구동 회로(4004) 또는 화소부(4002)에 입력되는 각종 신호 및 인가되는 각종 전위는 FPC(4018)로부터 공급된다.
또한, 박막 트랜지스터는 정전기 등으로 인하여 파괴되기 쉬우므로, 게이트선 또는 소스선에 대하여 구동 회로 보호용의 보호 회로를 동일 기판 위에 형성하는 것이 바람직하다. 보호 회로는 산화물 반도체를 사용한 비선형 소자를 사용하여 구성하는 것이 바람직하다.
도 18a1, 도 18a2, 도 18b에서는 접속 단자 전극(4015)이 화소 전극층(4030)과 같은 도전막으로 형성되고, 단자 전극(4016)은 박막 트랜지스터(4010, 4011)의 소스 전극층 및 드레인 전극층과 같은 도전막으로 형성된다.
접속 단자 전극(4015)은 FPC(4018)가 갖는 단자와, 이방성 도전막(4019)을 통하여 전기적으로 접속된다.
또한, 도 18a1, 도 18a2, 도 18b에서는 신호선 구동 회로(4003)를 별도 형성하여 제 1 기판(4001)에 실장하는 예를 제시하지만, 이 구성에 한정되지 않는다. 주사선 구동 회로를 별도 형성하여 실장하여도 좋고, 신호선 구동 회로의 일부분 또는 주사선 구동 회로의 일부분만을 별도 형성하여 실장하여도 좋다.
도 19는 액정 표시 장치의 단면 구조의 일례이고, 소자 기판(2600)과 대향 기판(2601)이 씰재(2602)에 의하여 고착되고, 그 사이에 TFT 등을 포함하는 소자층(2603), 액정층(2604)이 형성된다.
컬러 표시하는 경우에는, 백 라이트부에 복수 종류의 발광색을 사출하는 발광 다이오드를 배치한다. RGB 방식의 경우에는, 적색의 발광 다이오드(2910R), 녹색의 발광 다이오드(2910G), 청색의 발광 다이오드(2910B)를 액정 표시 장치의 표시 에어리어를 복수로 분할한 분할 영역에 각각 배치한다.
대향 기판(2601)의 외측에는 편광판(2606)이 형성되고, 소자 기판(2600)의 외측에는 편광판(2607), 및 광학 시트(2613)가 배치된다. 광원은 적색의 발광 다이오드(2910R), 녹색의 발광 다이오드(2910G), 청색의 발광 다이오드(2910B)와 반사판(2611)으로 구성되고, 회로 기판(2612)에 형성된 LED 제어 회로(2912)는 플렉시블 배선 기판(2609)에 의하여 소자 기판(2600)의 배선 회로부(2608)와 접속되고, 또한, 컨트롤 회로나 전원 회로 등의 외부 회로가 내장된다.
본 실시형태는 이 LED 제어 회로(2912)로 개별로 LED를 발광시킴으로써 필드 시퀀셜 방식의 액정 표시 장치로 하는 예를 제시하지만 특히 한정되지 않고, 백 라이트의 광원으로서 냉음극관 또는 백색 LED를 사용하여, 컬러 필터를 형성하여도 좋다.
또한, 본 실시형태에서는 IPS 모드를 사용하는 전극 구성의 예를 제시하지만 특히 한정되지 않고, TN(Twisted Nematic) 모드, MVA(Multi-domain Vertical Alignment) 모드, PVA(Patterned Vertical Alignment) 모드, ASM(Axially Symmetric aligned Micro-cell) 모드, OCB(Optical Compensated Birefringence) 모드, FLC(Ferroelectric Liquid Crystal) 모드, AFLC(AntiFerroelectric Liquid Crystal) 모드 등을 사용할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 7)
본 실시형태에서는 마스크 수를 저감하기 위하여, 고계조 마스크를 사용한 노광을 행하는 예를 제시한다. 또한, 다계조 마스크란, 노광 부분, 중간 노광 부분, 및 미노광 부분에 3개의 노광 레벨을 행하는 것이 가능한 마스크이고, 투과한 광이 복수의 강도가 되는 노광 마스크이다. 한번의 노광 및 현상 공정에 의하여, 복수(대표적으로는 2종류)의 두께의 영역을 갖는 레지스트 마스크를 형성할 수 있다. 따라서, 다계조 마스크를 사용함으로써, 포토 마스크 수를 삭감할 수 있다.
다계조 마스크의 대표적인 예로서는, 그레이 톤 마스크나 하프 톤 마스크가 있다.
그레이 톤 마스크는 투광성 기판 및 그 위에 형성되는 차광부 및 회절 격자로 구성된다. 차광부에 있어서는, 광 투과율이 0%이다. 한편, 회절 격자는 슬릿, 도트, 메시 등의 광 투과부의 간격을, 노광에 사용하는 광 해상도 한계 이하의 간격으로 함으로써, 광 투과율을 제어할 수 있다. 또, 회절 격자는 주기적인 슬릿, 도트, 메시, 또는 비주기적인 슬릿, 도트, 메시 중의 어느 쪽이라도 사용할 수 있다.
하프 톤 마스크는 투광성 기판 및 그 위에 형성되는 반 투과부 및 차광부로 구성된다. 반 투과부는 MoSiN, MoSi, MoSiO, MoSiON, CrSi 등을 사용할 수 있다. 차광부는 크롬이나 산화크롬 등, 광을 흡수하는 차광 재료를 사용하여 형성할 수 있다. 하프 톤 마스크에 노광광을 조사한 경우, 차광부에 있어서는, 광 투과율은 0%이고, 차광부 및 반 투과부가 형성되지 않는 영역에서는 광 투과율은 100%이다. 또한, 반 투과부에 있어서는 10% 내지 70%의 범위로 조정할 수 있다. 반 투과부에 있어서의 광 투과율은 반 투과부의 재료로 조정할 수 있다.
도 20a 내지 도 20e는 박막 트랜지스터(360)의 제작 공정을 도시하는 단면도에 상당한다.
도 20a에 있어서, 절연막(357)이 형성된 기판(350) 위에 게이트 전극층(351)을 형성한다. 본 실시형태에서는 절연막(357)으로서 산화실리콘막(막 두께 100㎚)을 사용한다. 게이트 전극층(351) 위에 게이트 절연층(352), 금속 박막(380), 산화물 반도체막(381) 및 도전막(383)을 순차로 적층한다. 본 실시형태에서는 금속 박막(380)으로서 스퍼터링법을 사용한 막 두께 3㎚의 인듐막과, 스퍼터링법을 사용한 막 두께 3㎚의 아연막을 적층한 것을 사용한다.
게이트 절연층(352), 금속 박막(380), 산화물 반도체막(381) 및 도전막(383) 위에 마스크(384)를 형성한다.
본 실시형태에서는 마스크(384)를 형성하기 위하여 다계조(고계조) 마스크를 사용한 노광을 행하는 예를 제시한다.
투과한 광이 복수의 강도를 갖는 다계조 마스크를 사용하여 노광한 후 현상함으로써, 도 20b에 도시하는 바와 같이, 막 두께가 상이한 영역을 갖는 마스크(384)를 형성할 수 있다. 다계조 마스크를 사용함으로써 노광 마스크 수를 삭감할 수 있다.
다음에, 마스크(384)를 사용하여 제 1 에칭 공정을 행하여 금속 박막(380), 산화물 반도체막(381), 도전막(383)을 에칭하여 섬 형상으로 가공한다. 결과적으로, 패터닝된 금속 박막(390), 산화물 반도체층(385), 도전층(387)을 형성할 수 있다(도20b 참조).
다음에, 마스크(384)를 애싱한다. 결과적으로, 마스크의 면적이 축소되고, 두께가 얇아진다. 이 때, 막 두께가 얇은 영역의 마스크의 레지스트(게이트 전극층(351)의 일부분과 중첩되는 영역)는 제거되고, 분리된 마스크(388)를 형성할 수 있다(도 20c 참조).
마스크(388)를 사용하여 산화물 반도체층(385), 도전층(387)을 제 2 에칭 공정으로 에칭하여 반도체층(353), 소스 전극층 또는 드레인 전극층(355a, 355b)을 형성한다(도 20d 참조). 또한, 반도체층(353)은 일부분만이 에칭되어 홈부(오목부)를 갖는 반도체층이 되고, 또 단부에서도 일부분 에칭되어 노출된 형상이 된다.
염소계 가스(Cl2)에 산소 가스(O2)(바람직하게는 15% 이상)를 첨가하여 에칭하면, 게이트 절연층(352)에 산화질화실리콘막을 사용하는 경우, 산화물 반도체층(485)에 사용되는 In-Ga-Zn-O계 비단결정막과의 선택비를 높게 얻을 수 있으므로, 산화물 반도체막(481)만을 더 선택적으로 에칭할 수 있다.
산화물 반도체막(381), 도전막(383)을 제 1 에칭 공정으로 드라이 에칭하면, 산화물 반도체막(381), 도전막(383)은 이방적으로 에칭되기 때문에, 마스크(384)의 단부와, 산화물 반도체층(385), 도전층(387)의 단부는 일치되고, 연속적인 형상이 된다.
마찬가지로, 산화물 반도체층(385), 도전층(387)을 제 2 에칭 공정으로 드라이 에칭하면, 산화물 반도체층(385), 도전층(387)은 이방적으로 에칭되기 때문에, 마스크(388)의 단부와, 반도체층(353)의 오목부 및 단부, 소스 전극층 또는 드레인 전극층(355a, 355b)의 단부는 일치되고, 연속적인 형상이 된다.
또한, 본 실시형태에서는 반도체층(353), 소스 전극층 또는 드레인 전극층(355a, 355b)의 단부는 같은 테이퍼 각으로 연속적으로 적층된 형상을 제시하지만, 에칭 조건이나 산화물 반도체층 및 도전층의 재료에 따라 에칭 레이트가 상이하므로, 각각 상이한 테이퍼 각이나 연속적이 아닌 단부 형상을 갖는 경우도 있다.
그 후, 마스크(388)를 제거한다.
다음에, 산소를 함유한 분위기에서 200℃ 내지 600℃의 가열을 행하여, 금속 박막(390)을 산화시켜 제 1 산화물 반도체층(391)을 형성한다(도 20e 참조). 본 실시형태에서는 제 1 산화물 반도체층(391)은 산화인듐과 산화아연의 혼합층이 된다.
상술한 공정으로, 제 1 산화물 반도체층(391) 위에 제 2 산화물 반도체층인 반도체층(353)의 적층을 갖는 역 스태거형 박막 트랜지스터(360)를 제작할 수 있다.
본 실시형태에 제시하는 바와 같이, 다계조 마스크로 형성한 복수(대표적으로는 2종류)의 두께를 갖는 영역을 갖는 레지스트 마스크를 사용하면, 레지스트 마스크 수를 줄일 수 있으므로, 공정 간략화, 저비용화가 도모된다. 따라서, 신뢰성이 있는 반도체 장치를 저비용으로 생산성 좋게 제작할 수 있다.
본 실시형태에 있어서는, 구동 회로에 배치하는 박막 트랜지스터도 화소부에 배치하는 박막 트랜지스터도 제 1 산화물 반도체층(391) 위에 제 2 산화물 반도체층인 반도체층(353)의 적층을 갖는 역 스태거형 박막 트랜지스터(360)로 하는 예를 제시한다. 즉, 본 실시형태는 구동 회로와 화소부의 박막 트랜지스터의 구조는 거의 동일하고, 회로마다 구조가 상이한 제작 방법을 사용하지 않는 예이다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 8)
실시형태 1 또는 실시형태 2에서는 보텀 게이트 구조의 예를 제시하지만, 본 실시형태에서는 보텀 콘택트 구조(역 코플레이너(inverse coplanar)형이라고도 부름)의 예를 도 21a 내지 도 21c를 사용하여 이하에 설명한다.
인버터 회로의 제작 공정의 일례를 도 21a 내지 도 21c에 도시한다.
기판(740) 위에 스퍼터링법에 의하여 제 1 도전막을 형성하고, 제 1 포토마스크를 사용하여 선택적으로 제 1 도전막을 에칭하여 제 1 게이트 전극(741) 및 제 2 게이트 전극(742)을 형성한다. 다음에, 제 1 게이트 전극(741) 및 제 2 게이트 전극(742)을 덮는 게이트 절연층(743)을 플라즈마 CVD법 또는 스퍼터링법을 사용하여 형성한다. 게이트 절연층(743)은 CVD법 또는 스퍼터링법 등을 사용하여 산화실리콘층, 질화실리콘층, 산화질화실리콘층 또는 질화산화실리콘층을 단층으로 형성 또는 적층하여 형성할 수 있다. 또한, 게이트 절연층(743)으로서 유기 실란 가스를 사용한 CVD법에 의하여 산화실리콘층을 형성할 수도 있다.
다음에, 제 2 포토 마스크를 사용하여 게이트 절연층(743)을 선택적으로 에칭하여 제 2 게이트 전극(742)에 도달되는 콘택트 홀(744)을 형성한다. 여기까지의 단계의 단면도가 도 21a에 상당한다.
다음에, 제 2 도전막을 스퍼터링법을 사용하여 형성하고, 제 3 포토 마스크를 사용하여 선택적으로 도전막을 에칭하여, 제 1 배선(746), 제 2 배선(750), 및 제 3 배선(751)을 형성한다. 제 3 배선(751)은 콘택트 홀(744)을 통하여 제 2 게이트 전극(742)과 직접 접촉한다.
다음에, 금속 박막과 산화물 반도체막의 적층을 스퍼터링법을 사용하여 형성한다. 또한, 금속 박막을 스퍼터링법을 사용하여 형성하기 전에 아르곤 가스를 도입하여 플라즈마를 발생시키는 역 스퍼터링을 행하여 게이트 절연층(743) 표면 및 콘택트 홀(744)의 바닥 면에 부착된 먼지를 제거하는 것이 바람직하다. 역 스퍼터링이란, 타깃 측에 전압을 인가하지 않고, 아르곤 분위기하에서 기판 측에 RF 전원을 사용하여 전압을 인가함으로써 기판에 플라즈마를 형성하여 표면을 개질하는 방법이다. 또한, 아르곤 분위기 대신에 질소, 헬륨 등을 사용하여도 좋다. 또한, 아르곤 분위기에 산소, 수소, N2O 등을 첨가한 분위기에서 행하여도 좋다. 또한, 아르곤 분위기에 Cl2, CF4 등을 첨가한 분위기에서 행하여도 좋다.
다음에, 제 4 포토 마스크를 사용하여 선택적으로 금속 박막 및 산화물 반도체막을 에칭한다.
다음에, 대기 분위기하 또는 질소 분위기하에서 200℃ 내지 600℃의 가열 처리를 행한다. 이 가열 처리에 의하여 금속 박막을 산화시켜 제 1 산화물 반도체층(748), 제 3 산화물 반도체층(749)으로 한다. 가열 처리를 끝낸 단계에서 제 1 산화물 반도체층(748) 위에는 제 2 산화물 반도체층(745)이 적층되어 제 1 박막 트랜지스터(760)가 형성된다. 또한, 제 1 산화물 반도체층(748)과 제 2 산화물 반도체층(745)의 도전율은 상이하고, 제 1 산화물 반도체층(748)의 도전율이 높고, 제 1 박막 트랜지스터(760)의 전계 효과 이동도 향상에 기여한다. 또한, 마찬가지로 제 3 산화물 반도체층(749) 위에는 제 4 산화물 반도체층(747)이 적층되어 제 2 박막 트랜지스터(761)가 형성된다. 또한, 이 가열 처리를 행하는 타이밍은 한정되지 않고, 제 2 산화물 반도체막을 형성한 후라면 언제 행하여도 좋다. 예를 들어, 제 4 포토 마스크를 사용한 에칭을 행하기 전에, 가열 처리를 행함으로써 금속 박막을 산화시켜 제 1 산화물 반도체막을 형성하면, 그 후의 제 4 포토 마스크를 사용한 에칭시에 산화물 반도체막이 적층되기 때문에 에칭 잔사를 저감한 에칭이 가능하다.
다음에, 보호층(752)을 형성하여 제 5 포토 마스크를 사용하여 보호층(752)을 선택적으로 에칭하여 콘택트 홀을 형성한 후, 제 3 도전막을 형성한다. 마지막으로 제 6 포토 마스크를 사용하여 제 3 도전막을 선택적으로 에칭하여 제 2 배선(750)과 전기적으로 접속되는 접속 배선(753)을 형성한다. 여기까지의 단계의 단면도가 도 21c에 상당한다.
또한, 상술한 공정 순서는 일례에 불과하고 한정되지 않는다. 예를 들어, 포토 마스크 수가 1개 증가되지만, 금속 박막을 에칭하는 포토 마스크와, 산화물 반도체막의 일부분을 에칭하는 포토 마스크를 따로 사용하여 에칭을 행하여도 좋다.
또한, 제 2 도전막 위에 스퍼터링법으로 In-Ga-Zn-O-N계 비단결정막을 적층한 후 패터닝하여 제 1 배선(746) 및 제 2 배선(750)과, 제 2 산화물 반도체층(745) 사이에 배치되는 n+층, 또는 제 2 배선(750) 및 제 3 배선(751)과, 제 4 산화물 반도체층(747) 사이에 배치되는 n+층으로서 기능시켜도 좋다. 이 경우, In-Ga-Zn-O-N계 비단결정막은 제 1 배선(746) 및 제 2 배선(750)과 제 2 산화물 반도체층(745)이 중첩되는 영역과, 제 2 배선(750) 및 제 3 배선(751)과 제 4 산화물 반도체층(747)이 중첩되는 영역에 형성한다.
본 실시형태에서는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 9)
본 실시형태에서는 반도체 장치로서 전자 페이퍼의 일례를 제시한다.
도 22a는 액티브 매트릭스형의 전자 페이퍼를 도시한 단면도이다. 반도체 장치에 사용되는 표시부에 배치되는 박막 트랜지스터(581)로서는 실시형태 1에 제시하는 제 2 박막 트랜지스터와 같은 방법으로 형성할 수 있고, 산화물 반도체막을 반도체층으로서 포함하는 전기 특성이 높은 박막 트랜지스터이다. 본 실시형태에서는 Zn-O-Si계 산화물 반도체를 반도체층으로서 포함하고 전기 특성이 높은 박막 트랜지스터를 사용한다. 또한, 동일 기판 위에 Zn-O-Si계 산화물 반도체를 반도체층으로서 포함하고 전기 특성이 높은 박막 트랜지스터를 사용한 구동 회로를 형성하여도 좋지만, 특히 형성하지 않아도 좋다. 또한, 실시형태 1에서 제시하는 산화물 반도체층의 적층을 갖는 제 1 박막 트랜지스터도 본 실시형태의 박막 트랜지스터(581)로서 사용하여도 좋다.
도 22a의 전자 페이퍼는 트위스트 볼 표시 방식을 사용한 표시 장치의 예이다. 트위스트 볼 표시 방식이란, 백색과 흑색으로 나누어 칠해진 구형 입자를 표시 소자에 사용하는 전극층인 제 1 전극층 및 제 2 전극층 사이에 배치하고, 제 1 전극층 및 제 2 전극층에 전위차를 발생시켜 구형 입자의 방향을 제어함으로써, 표시하는 방법이다.
기판(580)과 기판(596) 사이에 밀봉되는 박막 트랜지스터(581)는 보텀 게이트 구조의 박막 트랜지스터이며, 소스 전극층 또는 드레인 전극층이 제 1 전극층(587)과 절연층(583, 584, 585)에 형성된 개구에서 접하고 전기적으로 접속된다. 제 1 전극층(587)과 제 2 전극층(588) 사이에는 흑색 영역(590a) 및 백색 영역(590b)을 갖고, 주위에 액체로 채워져 있는 캐비티(594)를 포함하는 구형 입자(589)가 한 쌍의 기판 사이에 형성되고, 구형 입자(589)의 주위는 수지 등의 충전재(595)로 충전된다(도 22a 참조). 본 실시형태에 있어서는, 제 1 전극층(587)이 화소 전극에 상당하고, 제 2 전극층(588)이 공통 전극에 상당한다. 제 2 전극층(588)은 박막 트랜지스터(581)와 동일 기판 위에 형성되는 공통 전위선과 전기적으로 접속된다. 공통 접속부에 있어서, 한 쌍의 기판 사이에 배치되는 도전성 입자를 통하여 제 2 전극층(588)과 공통 전위선을 전기적으로 접속할 수 있다.
또한, 트위스트 볼 대신에, 전기 영동 소자를 사용할 수도 있다. 투명한 액체와, 양으로 대전한 흰 미립자와 음으로 대전한 검은 미립자를 밀봉한 직경 10㎛ 내지 200㎛ 정도의 마이크로 캡슐을 사용한다. 제 1 전극층과 제 2 전극층 사이에 형성되는 마이크로 캡슐은 제 1 전극층과 제 2 전극층에 의하여 전장(電場)이 주어지면, 흰 미립자와 검은 미립자가 반대 방향으로 이동함으로써 백색 또는 흑색을 표시할 수 있다. 이 원리를 응용한 표시 소자가 전기 영동 표시 소자이고, 일반적으로 전자 페이퍼라 불린다. 전기 영동 표시 소자는 액정 표시 소자와 비교하여 반사율이 높기 때문에, 보조 라이트가 불필요하고, 또한 소비 전력이 작고, 어두컴컴한 장소에서도 표시부를 인식할 수 있다. 또한, 표시부에 전원이 공급되지 않은 경우라도, 한번 표시한 상을 유지할 수 있기 때문에, 전파 발신원으로부터 표시 기능이 딸린 반도체 장치(단순히 표시 장치, 또는 표시 장치를 구비하는 반도체 장치라고도 함)를 멀리한 경우라도 표시된 상을 보존해 둘 수 있다.
실시형태 1에 제시하는 공정으로 박막 트랜지스터를 제작함으로써, 반도체 장치로서 제조 비용이 저감된 전자 페이퍼를 제작할 수 있다. 전자 페이퍼는 정보를 표시하는 것이라면 모든 분야의 전자 기기에 사용할 수 있다. 예를 들어, 전자 페이퍼를 사용하여 전자 서적(전자 북), 포스터, 전차 등의 탈 것류의 차내 광고, 신용카드 등의 각종 카드의 표시 등에 적용할 수 있다. 전자 기기의 일례를 도 22b에 도시한다.
도 22b는 전자 서적(2700)의 일례를 도시한 것이다. 예를 들어, 전자 서적(2700)은 케이스(2701) 및 케이스(2703)의 2개의 케이스로 구성된다. 케이스(2701) 및 케이스(2703)는 축(軸)부(2711)에 의하여 일체가 되어, 상기 축부(2711)를 축으로 하여 개폐 동작할 수 있다. 이러한 구성을 가짐으로써, 종이로 이루어진 서적과 같이 동작할 수 있다.
케이스(2701)에는 표시부(2705)가 내장되고, 케이스(2703)에는 표시부(2707)가 내장된다. 표시부(2705) 및 표시부(2707)는 연속된 화면을 표시하는 구성으로 하여도 좋고, 다른 화면을 표시하는 구성으로 하여도 좋다. 다른 화면을 표시하는 구성으로 함으로써, 예를 들어, 오른쪽의 표시부(도 22b에서는 표시부(2705))에 글을 표시하고, 왼쪽의 표시부(도 22b에서는 표시부(2707))에 화상을 표시할 수 있다.
또한, 도 22b에는 케이스(2701)에 조작부 등을 구비한 예를 도시한다. 예를 들어, 케이스(2701)에 있어서, 전원(2721), 조작 키(2723), 스피커(2725) 등을 구비한다. 조작키(2723)에 의하여 페이지를 넘길 수 있다. 또한, 케이스의 표시부와 동일 면에 키보드나 포인팅 디바이스 등을 구비하는 구성으로 하여도 좋다. 또한, 케이스의 이면이나 측면에 외부 접속용 단자(이어폰 단자, USB 단자, 또는 AC 어댑터 및 USB 케이블 등의 각종 케이블과 접속할 수 있는 단자 등), 기록 매체 삽입부 등을 구비하는 구성으로 하여도 좋다. 또한, 전자 서적(2700)은 전자 사전으로서의 기능을 갖는 구성으로 하여도 좋다.
또한, 전자 서적(2700)은 무선으로 정보를 송수신할 수 있는 구성으로 하여도 좋다. 무선에 의하여 전자 서적 서버로부터 원하는 서적 데이터 등을 구입하고, 다운로드하는 구성으로 할 수도 있다.
또한, 본 실시형태는 다른 실시형태에 기재하는 구성과 적절히 조합하여 사용할 수 있다.
*(실시형태 10)
산화물 반도체층을 사용한 박막 트랜지스터를 포함하는 반도체 장치는 다양한 전자기기(유기기(遊技機)도 포함함)에 적용할 수 있다. 전자 기기로서는, 예를 들어, 텔레비전 장치(텔레비, 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라 등의 카메라, 디지털 포토 프레임, 휴대 전화기(휴대 전화, 휴대 전화 장치라고도 함), 휴대형 게임기, 휴대 정보 단말, 음향 재생 장치, 파친코(pachinko)기 등의 대형 게임기 등을 들 수 있다.
도 23a는 텔레비전 장치(9600)의 일례를 도시한 것이다. 텔레비전 장치(9600)는 케이스(9601)에 표시부(9603)가 내장된다. 표시부(9603)에 영상을 표시할 수 있다. 또한, 여기서는 벽에 고정하여 케이스(9601)의 뒤쪽을 지지한 구성을 도시한다.
텔레비전 장치(9600)의 조작은 케이스(9601)가 구비하는 조작 스위치나, 별체의 리모트 컨트롤러(9610)에 의하여 행할 수 있다. 리모트 컨트롤러(9610)가 구비하는 조작 키(9609)로 채널이나 음량을 조작할 수 있고, 표시부(9603)에 표시되는 영상을 조작할 수 있다. 또한, 리모트 컨트롤러(9610)에 상기 리모트 컨트롤러(9610)로부터 출력하는 정보를 표시하는 표시부(9607)를 형성하는 구성으로 하여도 좋다.
또한, 텔레비전 장치(9600)는 수신기나 모뎀 등을 구비한 구성으로 한다. 수신기로 일반의 텔레비전 방송을 수신할 수 있고, 또한, 모뎀을 통하여 유선 또는 무선에 의한 통신 네트워크에 접속함으로써, 한 방향(송신자로부터 수신자) 또는 쌍방향(송신자와 수신자간, 또는 수신자끼리 등)의 정보 통신을 할 수도 있다.
도 23b는 휴대형 유기기이며, 케이스(9881)와 케이스(9891)의 2개의 케이스로 구성되고, 연결부(9893)에 의하여 개폐 가능하도록 연결된다. 케이스(9881)에는 표시부(9882)가 내장되고, 케이스(9891)에는 표시부(9883)가 내장된다. 또한, 도23b에 도시하는 휴대형 유기기는, 그 외에 스피커부(9884), 기록 매체 삽입부(9886), LED 램프(9890), 입력 수단(조작키(9885), 접속 단자(9887), 센서(9888)(힘, 변위, 위치, 속도, 가속도, 각속도, 회전수, 거리, 빛, 액, 자기, 온도, 화학 물질, 음성, 시간, 경도, 전장, 전류, 전압, 전력, 방사선, 유량, 습도, 경도, 진동, 냄새 또는 적외선을 측정하는 기능을 포함한 것), 마이크로폰(9889)) 등을 포함한다. 물론, 휴대형 유기기의 구성은 상술한 것에 한정되지 않고, 적어도 반도체 장치를 구비한 구성이라면 좋고, 그 외에 부속 설비가 적절히 형성된 구성으로 할 수 있다. 도 23b에 도시하는 휴대형 유기기는 기록 매체에 기록되는 프로그램 또는 데이터를 판독하여 표시부에 표시하는 기능이나, 다른 휴대형 유기기와 무선 통신하여 정보를 공유하는 기능을 갖는다. 또한, 도 23b에 도시하는 휴대형 유기기가 갖는 기능은 이것에 한정되지 않고, 각종 기능을 가질 수 있다.
도 24a는 휴대 전화기(1000)의 일례를 도시한 것이다. 휴대 전화기(1000)는 케이스(1001)에 내장된 표시부(1002) 외, 조작 버튼(1003), 외부 접속 포트(1004), 스피커(1005), 마이크(1006) 등을 구비한다.
도 24a에 도시하는 휴대 전화기(1000)는 표시부(1002)를 손가락 등으로 터치(touch)함으로써, 정보를 입력할 수 있다. 또한, 전화를 거는 조작, 또는 메일을 작성하는 조작은 표시부(1002)를 손가락 등으로 터치함으로써 행할 수 있다.
표시부(1002)의 화면에는 주로 3가지 모드가 있다. 제 1 모드는 화상의 표시가 주된 표시 모드이고, 제 2 모드는 문자 등의 정보 입력이 주된 입력 모드이다. 제 3 모드는 표시 모드와 입력 모드의 2가지 모드가 혼합된 표시+입력 모드이다.
예를 들어, 전화를 걸거나 또는 메일을 작성하는 경우는, 표시부(1002)를 문자 입력이 주된 문자 입력 모드로 하여 화면에 표시시킨 문자의 입력 조작을 행하면 좋다. 이 경우, 표시부(1002)의 화면의 대부분에 키 보드 또는 번호 버튼을 표시시키는 것이 바람직하다.
또한, 휴대 전화기(1000) 내부에 자이로스코프(gyroscope), 가속도 센서 등의 기울기를 검출하는 센서를 갖는 검출 장치를 형성함으로써, 휴대 전화기(1000)의 방향(세로인지 가로인지)을 판단하여, 표시부(1002)의 화면 표시를 자동적으로 전환할 수 있다.
또한, 화면 모드의 전환은 표시부(1002)를 터치함으로써, 또는 케이스(1001)의 조작 버튼(1003)을 조작함으로써 행해진다. 또한, 표시부(1002)에 표시되는 화상의 종류에 따라 전환하도록 할 수도 있다. 예를 들어, 표시부에 표시하는 화상 신호가 동영상 데이터인 경우는 표시 모드, 텍스트 데이터인 경우는 입력 모드로 전환한다.
또한, 입력 모드에 있어서, 표시부(1002)의 광 센서에 의하여 검출되는 신호를 검지하고, 표시부(1002)의 터치 조작에 의한 입력이 일정 기간 없는 경우에는, 화면의 모드를 입력 모드로부터 표시 모드로 전환하도록 제어하여도 좋다.
표시부(1002)를 이미지 센서로서 기능시킬 수도 있다. 예를 들어, 표시부(1002)에 손바닥이나 손가락으로 터치하여 장문(掌紋)이나 지문(指紋) 등을 촬상함으로써, 본인 인증을 행할 수 있다. 또한, 표시부에 근적외광(近赤外光)을 발광하는 백 라이트 또는 근적외광을 발광하는 검출용 광원을 사용하면, 손가락 정맥, 손바닥 정맥 등을 촬상할 수도 있다.
도 24b도 휴대 전화기의 일례이다. 도 24b의 휴대 전화기는 케이스(9411)에 표시부(9412), 및 조작 버튼(9413)을 포함하는 표시 장치(9410)와, 케이스(9401)에 조작 버튼(9402), 외부 입력 단자(9403), 마이크(9404), 스피커(9405), 및 착신시에 발광하는 발광부(9406)를 포함하는 통신 장치(9400)를 갖고, 표시 기능을 갖는 표시 장치(9410)는 전화 기능을 갖는 통신 장치(9400)와 화살표로 표시된 2방향으로 탈착할 수 있다. 따라서, 표시 장치(9410)와 통신 장치(9400)의 단축들을 장착할 수도 있고, 표시 장치(9410)와 통신 장치(9400)의 장축들을 장착할 수도 있다. 또한, 표시 기능만이 필요한 경우, 통신 장치(9400)로부터 표시 장치(9410)를 분리하고, 표시 장치(9410)를 단독으로 사용할 수도 있다. 통신 장치(9400)와 표시 장치(9410)는 무선 통신 또는 유선 통신에 의하여 화상 또는 입력 정보를 수수(授受)할 수 있고, 각각 충전할 수 있는 배터리를 갖는다.
본 실시형태는 다른 실시형태에 기재하는 구성과 적절히 조합하여 실시할 수 있다.
<도면의 주요 부분에 대한 부호의 설명>
101: 게이트 전극 103: 산화물 반도체층
104a: n+층 104b: n+
105a: 소스 전극층 또는 드레인 전극층
105b: 소스 전극층 또는 드레인 전극층
170: 박막 트랜지스터 400: 기판
401: 게이트 전극 403: 게이트 절연층
405: 산화물 반도체층 406a: n+
406b: n+층 409: 제 1 배선
410: 제 2 배선 412: 보호 절연층
430: 박막 트랜지스터 470: 금속 박막
471: 산화물 반도체층 472: 전극
473: 절연층 474: 전극
475: 유기 화합물층 485a: 산화물 반도체막
485b: 산화물 반도체막 486a: 산화물 반도체막
486b: 산화물 반도체막

Claims (11)

  1. 기판;
    상기 기판 위의 트랜지스터로서,
    게이트 전극;
    상기 게이트 전극 위의 게이트 절연층; 및
    상기 게이트 절연층을 사이에 개재하여 상기 게이트 전극 위에 채널 형성 영역을 갖고, In-Sn-Zn-O계 반도체를 포함하는 산화물 반도체층을 포함하는, 상기 트랜지스터;
    상기 산화물 반도체층 위의 산화알루미늄을 포함하는 절연층;
    상기 산화물 반도체층에 전기적으로 접하는 화소 전극; 및
    상기 화소 전극 위의 발광층을 포함하고,
    상기 산화물 반도체층은 절연성 불순물을 함유하는, 액티브 매트릭스형 표시 장치.
  2. 기판;
    상기 기판 위의 트랜지스터로서,
    게이트 전극;
    상기 게이트 전극 위의 게이트 절연층; 및
    상기 게이트 절연층을 사이에 개재하여 상기 게이트 전극 위에 채널 형성 영역을 갖고, In-Sn-Zn-O계 반도체를 포함하는 산화물 반도체층을 포함하는, 상기 트랜지스터;
    상기 산화물 반도체층 위의 소스 전극;
    상기 산화물 반도체층 위의 드레인 전극;
    상기 산화물 반도체층, 상기 소스 전극 및 상기 드레인 전극 위의 산화알루미늄을 포함하는 절연층;
    상기 소스 전극 및 상기 드레인 전극 중 하나와 전기적으로 접하는 화소 전극; 및
    상기 화소 전극 위의 발광층을 포함하고,
    상기 산화물 반도체층은 절연성 불순물을 함유하는, 액티브 매트릭스형 표시 장치.
  3. 기판;
    화소로서,
    제 1 트랜지스터;
    상기 제 1 트랜지스터에 전기적으로 접하는 화소 전극; 및
    상기 화소 전극 위의 발광층을 포함하는, 상기 화소; 및
    상기 화소에 조작상 접속되고, 제 2 트랜지스터를 포함하는 주사선 구동 회로를 포함하고,
    상기 제 1 트랜지스터 및 상기 제 2 트랜지스터의 각각은:
    상기 기판 위의 게이트 전극;
    상기 게이트 전극 위의 게이트 절연층;
    상기 게이트 절연층을 사이에 개재하여 상기 게이트 전극 위에 채널 형성 영역을 갖고, In-Sn-Zn-O계 반도체를 포함하는 산화물 반도체층; 및
    상기 산화물 반도체층 위의 산화알루미늄을 포함하는 절연층을 포함하고,
    상기 산화물 반도체층은 절연성 불순물을 함유하는, 액티브 매트릭스형 표시 장치.
  4. 기판;
    화소로서,
    제 1 트랜지스터;
    상기 제 1 트랜지스터에 전기적으로 접하는 화소 전극; 및
    상기 화소 전극 위의 발광층을 포함하는, 상기 화소; 및
    상기 화소에 조작상 접속되고, 제 2 트랜지스터를 포함하는 주사선 구동 회로를 포함하고,
    상기 제 1 트랜지스터 및 상기 제 2 트랜지스터의 각각은:
    상기 기판 위의 게이트 전극;
    상기 게이트 전극 위의 게이트 절연층;
    상기 게이트 절연층을 사이에 개재하여 상기 게이트 전극 위에 채널 형성 영역을 갖고, In-Sn-Zn-O계 반도체를 포함하는 산화물 반도체층;
    상기 산화물 반도체층 위의 소스 전극;
    상기 산화물 반도체층 위의 드레인 전극; 및
    상기 산화물 반도체층, 상기 소스 전극 및 상기 드레인 전극 위의 산화알루미늄을 포함하는 절연층을 포함하고,
    상기 산화물 반도체층은 절연성 불순물을 함유하는, 액티브 매트릭스형 표시 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 게이트 전극은 몰리브덴을 포함하는, 액티브 매트릭스형 표시 장치.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 절연층은 상기 산화물 반도체층의 상면에 직접 접하는, 액티브 매트릭스형 표시 장치.
  7. 삭제
  8. 제 3 항 또는 제 4 항에 있어서,
    상기 주사선 구동 회로는 인버터 회로를 포함하는, 액티브 매트릭스형 표시 장치.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 화소 전극은 음극인, 액티브 매트릭스형 표시 장치.
  10. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 산화물 반도체층은 비정질인, 액티브 매트릭스형 표시 장치.
  11. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 절연성 불순물은 산화실리콘, 산화게르마늄, 산화알루미늄, 질화실리콘, 질화알루미늄, 산질화실리콘, 및 산질화알루미늄으로 구성된 그룹으로부터 선택된 하나인, 액티브 매트릭스형 표시 장치.
KR1020110055776A 2008-12-26 2011-06-09 액티브 매트릭스형 표시 장치 KR101298961B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008333788 2008-12-26
JPJP-P-2008-333788 2008-12-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090129736A Division KR101666000B1 (ko) 2008-12-26 2009-12-23 반도체 장치 및 그 제작 방법

Publications (2)

Publication Number Publication Date
KR20110069759A KR20110069759A (ko) 2011-06-23
KR101298961B1 true KR101298961B1 (ko) 2013-08-23

Family

ID=42283742

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020090129736A KR101666000B1 (ko) 2008-12-26 2009-12-23 반도체 장치 및 그 제작 방법
KR1020110055788A KR101266342B1 (ko) 2008-12-26 2011-06-09 반도체 장치
KR1020110055794A KR101328424B1 (ko) 2008-12-26 2011-06-09 반도체 장치를 제조하는 방법
KR1020110055781A KR101328423B1 (ko) 2008-12-26 2011-06-09 액티브 매트릭스형 표시 장치
KR1020110055776A KR101298961B1 (ko) 2008-12-26 2011-06-09 액티브 매트릭스형 표시 장치
KR1020160128847A KR101760249B1 (ko) 2008-12-26 2016-10-06 반도체 장치

Family Applications Before (4)

Application Number Title Priority Date Filing Date
KR1020090129736A KR101666000B1 (ko) 2008-12-26 2009-12-23 반도체 장치 및 그 제작 방법
KR1020110055788A KR101266342B1 (ko) 2008-12-26 2011-06-09 반도체 장치
KR1020110055794A KR101328424B1 (ko) 2008-12-26 2011-06-09 반도체 장치를 제조하는 방법
KR1020110055781A KR101328423B1 (ko) 2008-12-26 2011-06-09 액티브 매트릭스형 표시 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020160128847A KR101760249B1 (ko) 2008-12-26 2016-10-06 반도체 장치

Country Status (5)

Country Link
US (10) US8222092B2 (ko)
JP (12) JP5785685B2 (ko)
KR (6) KR101666000B1 (ko)
CN (8) CN113257838A (ko)
TW (8) TWI475616B (ko)

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184783B1 (en) * 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
TWI475616B (zh) 2008-12-26 2015-03-01 Semiconductor Energy Lab 半導體裝置及其製造方法
KR101034686B1 (ko) 2009-01-12 2011-05-16 삼성모바일디스플레이주식회사 유기전계발광 표시 장치 및 그의 제조 방법
US8247276B2 (en) 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
JP5504008B2 (ja) 2009-03-06 2014-05-28 株式会社半導体エネルギー研究所 半導体装置
EP2256814B1 (en) 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
KR101476817B1 (ko) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터를 갖는 표시 장치 및 그 제작 방법
WO2011007675A1 (en) * 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011010541A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010542A1 (en) 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011013502A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011013596A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101716918B1 (ko) 2009-07-31 2017-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101291434B1 (ko) 2009-07-31 2013-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스 및 그 형성 방법
WO2011013523A1 (en) * 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011034012A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
WO2011043162A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011043164A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
KR102066532B1 (ko) 2009-11-06 2020-01-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011055668A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102345456B1 (ko) 2009-11-27 2021-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
CN102668028B (zh) 2009-11-28 2015-09-02 株式会社半导体能源研究所 层叠的氧化物材料、半导体器件、以及用于制造该半导体器件的方法
WO2011065210A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR102089200B1 (ko) 2009-11-28 2020-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101921619B1 (ko) 2009-12-28 2018-11-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
JP2011155061A (ja) * 2010-01-26 2011-08-11 Sony Corp 薄膜トランジスタ、薄膜トランジスタの製造方法、表示装置、電子機器
CN113540253A (zh) * 2010-02-26 2021-10-22 株式会社半导体能源研究所 制造半导体装置的方法
KR101878206B1 (ko) 2010-03-05 2018-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막의 제작 방법 및 트랜지스터의 제작 방법
CN102844873B (zh) 2010-03-31 2015-06-17 株式会社半导体能源研究所 半导体显示装置
US8207025B2 (en) 2010-04-09 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
TWI456316B (zh) * 2010-04-22 2014-10-11 Au Optronics Corp 藍相液晶顯示裝置及其製作方法
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110298760A1 (en) 2010-06-02 2011-12-08 Omer Gila Systems and methods for writing on and using electronic paper
US9104082B2 (en) 2011-06-29 2015-08-11 Hewlett-Packard Development Company, L.P. Electronic paper with porous standoff layer
KR101863941B1 (ko) * 2010-06-08 2018-06-04 삼성디스플레이 주식회사 오프셋 구조의 박막 트랜지스터
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
JP5739257B2 (ja) 2010-08-05 2015-06-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI555128B (zh) * 2010-08-06 2016-10-21 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的驅動方法
KR102006586B1 (ko) * 2010-08-06 2019-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8422272B2 (en) * 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8487844B2 (en) * 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
US8766253B2 (en) * 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101932576B1 (ko) * 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
TWI654764B (zh) 2010-11-11 2019-03-21 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
CN103250256B (zh) 2010-12-17 2017-04-19 株式会社半导体能源研究所 氧化物材料及半导体器件
JP5993141B2 (ja) * 2010-12-28 2016-09-14 株式会社半導体エネルギー研究所 記憶装置
US9443984B2 (en) * 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI416737B (zh) * 2010-12-30 2013-11-21 Au Optronics Corp 薄膜電晶體及其製造方法
TWI657565B (zh) 2011-01-14 2019-04-21 日商半導體能源研究所股份有限公司 半導體記憶裝置
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
JP2012169344A (ja) * 2011-02-10 2012-09-06 Sony Corp 薄膜トランジスタならびに表示装置および電子機器
KR101972463B1 (ko) 2011-02-18 2019-08-19 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그 제조방법
CN102655165B (zh) * 2011-03-28 2015-04-29 京东方科技集团股份有限公司 一种非晶氧化物薄膜晶体管及其制作方法、显示面板
JP5253686B2 (ja) * 2011-03-30 2013-07-31 シャープ株式会社 アクティブマトリクス基板、表示装置、およびアクティブマトリクス基板の製造方法
US9082860B2 (en) 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9331206B2 (en) 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
TWI568181B (zh) * 2011-05-06 2017-01-21 半導體能源研究所股份有限公司 邏輯電路及半導體裝置
US8946066B2 (en) 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR101952570B1 (ko) 2011-05-13 2019-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9093539B2 (en) * 2011-05-13 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5947099B2 (ja) 2011-05-20 2016-07-06 株式会社半導体エネルギー研究所 半導体装置
TWI557739B (zh) * 2011-05-20 2016-11-11 半導體能源研究所股份有限公司 半導體積體電路
US8508256B2 (en) * 2011-05-20 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
WO2012160963A1 (en) * 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5820336B2 (ja) * 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 半導体装置
JP5820335B2 (ja) * 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 半導体装置
US9171840B2 (en) * 2011-05-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9660092B2 (en) * 2011-08-31 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor including oxygen release layer
KR101976212B1 (ko) * 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR20140086954A (ko) 2011-10-28 2014-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6076038B2 (ja) 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 表示装置の作製方法
JP6122275B2 (ja) 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 表示装置
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2013080516A1 (ja) * 2011-12-02 2013-06-06 シャープ株式会社 薄膜トランジスタ基板及びそれを備えた表示装置並びに薄膜トランジスタ基板の製造方法
WO2013094184A1 (ja) * 2011-12-22 2013-06-27 シャープ株式会社 アクティブマトリクス基板及びその製造方法
CN102646683B (zh) * 2012-02-02 2014-09-24 京东方科技集团股份有限公司 一种阵列基板及其制造方法
KR101884891B1 (ko) * 2012-02-08 2018-08-31 삼성디스플레이 주식회사 표시 장치
CN102629591B (zh) * 2012-02-28 2015-10-21 京东方科技集团股份有限公司 一种阵列基板的制造方法及阵列基板、显示器
CN104170001B (zh) 2012-03-13 2017-03-01 株式会社半导体能源研究所 发光装置及其驱动方法
KR102330543B1 (ko) 2012-04-13 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8647439B2 (en) 2012-04-26 2014-02-11 Applied Materials, Inc. Method of epitaxial germanium tin alloy surface preparation
KR102295737B1 (ko) 2012-05-10 2021-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스
US8785928B2 (en) 2012-05-31 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102723359B (zh) 2012-06-13 2015-04-29 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、阵列基板、显示装置
US9153699B2 (en) * 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
JP5965338B2 (ja) * 2012-07-17 2016-08-03 出光興産株式会社 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
KR102004398B1 (ko) 2012-07-24 2019-07-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN102819158B (zh) * 2012-08-10 2015-08-12 北京京东方光电科技有限公司 一种显示面板
TWI489191B (zh) * 2012-09-20 2015-06-21 Au Optronics Corp 畫素結構及薄膜電晶體
WO2014054329A1 (ja) * 2012-10-05 2014-04-10 シャープ株式会社 素子基板及び表示装置
TWI607510B (zh) * 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
JP6198434B2 (ja) * 2013-04-11 2017-09-20 株式会社半導体エネルギー研究所 表示装置及び電子機器
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
TWI631711B (zh) 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 半導體裝置
WO2014188983A1 (en) * 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and formation method thereof
TWI687748B (zh) * 2013-06-05 2020-03-11 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
KR102050447B1 (ko) * 2013-06-28 2019-12-02 엘지디스플레이 주식회사 인버터, 그를 가지는 액정 표시 장치 및 그 액정 표시 장치의 제조 방법
US10008513B2 (en) * 2013-09-05 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI678740B (zh) * 2013-09-23 2019-12-01 日商半導體能源研究所股份有限公司 半導體裝置
CN105659369B (zh) * 2013-10-22 2019-10-22 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
WO2015083034A1 (en) 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102663193B1 (ko) 2013-12-02 2024-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10545388B2 (en) 2014-01-31 2020-01-28 Hewlett-Packard Development Company, L.P. Display device
TWI685116B (zh) * 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 半導體裝置
JP2015188062A (ja) 2014-02-07 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
US10325937B2 (en) 2014-02-24 2019-06-18 Lg Display Co., Ltd. Thin film transistor substrate with intermediate insulating layer and display using the same
US10985196B2 (en) 2014-02-24 2021-04-20 Lg Display Co., Ltd. Thin film transistor substrate with intermediate insulating layer and display using the same
US9721973B2 (en) 2014-02-24 2017-08-01 Lg Display Co., Ltd. Thin film transistor substrate and display using the same
US9214508B2 (en) 2014-02-24 2015-12-15 Lg Display Co., Ltd. Thin film transistor substrate with intermediate insulating layer and display using the same
US10186528B2 (en) 2014-02-24 2019-01-22 Lg Display Co., Ltd. Thin film transistor substrate and display using the same
EP2911199B1 (en) 2014-02-24 2020-05-06 LG Display Co., Ltd. Thin film transistor substrate and display using the same
US10903246B2 (en) 2014-02-24 2021-01-26 Lg Display Co., Ltd. Thin film transistor substrate and display using the same
EP2911200B1 (en) 2014-02-24 2020-06-03 LG Display Co., Ltd. Thin film transistor substrate and display using the same
JP6722980B2 (ja) 2014-05-09 2020-07-15 株式会社半導体エネルギー研究所 表示装置および発光装置、並びに電子機器
TW201606115A (zh) * 2014-07-07 2016-02-16 液態空氣喬治斯克勞帝方法研究開發股份有限公司 用於薄膜沉積之含鉬及鎢之前驅物
JP6436660B2 (ja) * 2014-07-07 2018-12-12 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
JP5993496B2 (ja) * 2014-07-16 2016-09-14 株式会社神戸製鋼所 酸化物半導体薄膜、及び前記酸化物半導体薄膜の表面に保護膜を有する積層体の品質評価方法、及び酸化物半導体薄膜の品質管理方法
US10269832B2 (en) 2014-10-10 2019-04-23 Joled Inc. Thin film transistor substrate, method for manufacturing thin film transistor substrate, and display panel
CN104576760A (zh) 2015-02-02 2015-04-29 合肥鑫晟光电科技有限公司 薄膜晶体管及其制备方法、阵列基板和显示装置
US10204535B2 (en) * 2015-04-06 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US20180307451A1 (en) * 2015-04-30 2018-10-25 Semiconductor Energy Laboratory Co., Ltd. Electronic device
TWI657563B (zh) * 2015-12-15 2019-04-21 優顯科技股份有限公司 光電裝置及其製造方法
CN105489618B (zh) * 2016-01-22 2019-04-26 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及薄膜晶体管阵列基板的制备方法
WO2017131078A1 (ja) * 2016-01-28 2017-08-03 シャープ株式会社 アクティブマトリクス基板およびその製造方法
US10371129B2 (en) * 2016-02-26 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and sensor system
US10014325B2 (en) 2016-03-10 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10586817B2 (en) 2016-03-24 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
US10690975B2 (en) * 2016-03-31 2020-06-23 Sharp Kabushiki Kaisha Active matrix substrate, manufacturing method therefor and display device
KR20170126398A (ko) 2016-05-09 2017-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 상기 반도체 장치를 갖는 표시 장치
JP2017207744A (ja) 2016-05-11 2017-11-24 株式会社半導体エネルギー研究所 表示装置、モジュール、及び電子機器
TWI611463B (zh) * 2016-06-29 2018-01-11 友達光電股份有限公司 金屬氧化物半導體層的結晶方法及半導體結構
KR102554183B1 (ko) 2016-07-29 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박리 방법, 표시 장치, 표시 모듈, 및 전자 기기
TW201808628A (zh) 2016-08-09 2018-03-16 Semiconductor Energy Lab 半導體裝置的製造方法
TWI730017B (zh) 2016-08-09 2021-06-11 日商半導體能源研究所股份有限公司 顯示裝置的製造方法、顯示裝置、顯示模組及電子裝置
KR102471021B1 (ko) * 2016-09-29 2022-11-25 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이의 제조 방법
CN106298546A (zh) * 2016-10-31 2017-01-04 京东方科技集团股份有限公司 一种薄膜晶体管、其制作方法、阵列基板及显示面板
CN106384748B (zh) * 2016-11-04 2019-06-21 杭州易正科技有限公司 一种氧化物薄膜晶体管的制作方法及氧化物薄膜晶体管
KR20180055701A (ko) 2016-11-17 2018-05-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR20180079086A (ko) 2016-12-30 2018-07-10 엘지디스플레이 주식회사 산화물 박막트랜지스터 및 그 제조 방법과, 이를 이용한 표시패널 및 표시장치
US11031403B2 (en) * 2017-04-28 2021-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
KR20200014801A (ko) * 2017-06-02 2020-02-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 전자 부품, 및 전자 기기
US11257722B2 (en) 2017-07-31 2022-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide containing gallium indium and zinc
KR101997341B1 (ko) * 2017-09-05 2019-10-01 고려대학교 세종산학협력단 박막 트랜지스터 및 그 제조 방법
CN107623041B (zh) * 2017-09-08 2021-05-28 河南大学 一种基于氧化物薄膜晶体管的反相器及其制造方法
JP6998741B2 (ja) * 2017-11-20 2022-01-18 エイブリック株式会社 センサ装置
KR20210082319A (ko) * 2019-12-24 2021-07-05 삼성디스플레이 주식회사 포토 트랜지스터 및 이를 포함하는 표시 장치
US11367745B2 (en) 2020-08-20 2022-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and methods for sensing long wavelength light
CN113325625B (zh) * 2021-06-24 2022-07-29 业成科技(成都)有限公司 显示面板的制备方法
KR20230051974A (ko) * 2021-10-12 2023-04-19 엘지디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
KR20070090182A (ko) * 2004-11-10 2007-09-05 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
JP2008243928A (ja) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US152214A (en) * 1874-06-23 Improvement in velocipedes
US27804A (en) * 1860-04-10 Tkip-hammeb
JPS6017962B2 (ja) 1978-01-19 1985-05-08 川崎重工業株式会社 蒸気発生器
JPS6017962A (ja) 1983-07-11 1985-01-29 Canon Inc 薄膜トランジスタ
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
EP0445535B1 (en) 1990-02-06 1995-02-01 Sel Semiconductor Energy Laboratory Co., Ltd. Method of forming an oxide film
JP2585118B2 (ja) 1990-02-06 1997-02-26 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
US5616935A (en) 1994-02-08 1997-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit having N-channel and P-channel transistors
JP3946690B2 (ja) 1994-02-08 2007-07-18 株式会社半導体エネルギー研究所 インバータ回路の作製方法
US5625227A (en) * 1995-01-18 1997-04-29 Dell Usa, L.P. Circuit board-mounted IC package cooling apparatus
JP3479375B2 (ja) * 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
US5847410A (en) 1995-11-24 1998-12-08 Semiconductor Energy Laboratory Co. Semiconductor electro-optical device
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
US6475626B1 (en) * 1999-12-06 2002-11-05 Guardian Industries Corp. Low-E matchable coated articles and methods of making same
TW573165B (en) 1999-12-24 2004-01-21 Sanyo Electric Co Display device
WO2002016679A1 (fr) 2000-08-18 2002-02-28 Tohoku Techno Arch Co., Ltd. Matiere semi-conductrice polycristalline
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
CN1290197C (zh) 2001-03-12 2006-12-13 株式会社日立制作所 用于制造半导体集成电路器件的方法
JP2005252284A (ja) 2001-03-12 2005-09-15 Renesas Technology Corp 半導体集積回路装置の製造方法
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2002372722A (ja) 2001-06-15 2002-12-26 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003037268A (ja) * 2001-07-24 2003-02-07 Minolta Co Ltd 半導体素子及びその製造方法
KR100802445B1 (ko) * 2001-07-30 2008-02-13 엘지.필립스 엘시디 주식회사 반사투과형 액정표시장치용 어레이기판과 그 제조방법
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP2003110049A (ja) 2001-09-28 2003-04-11 Fujitsu Ten Ltd 高周波icパッケージ、高周波icパッケージを使用する高周波ユニット及び、その製造方法
JP2003122313A (ja) 2001-10-15 2003-04-25 Matsushita Electric Ind Co Ltd 液晶表示装置及びその駆動方法
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP2003197827A (ja) * 2001-12-25 2003-07-11 Toshiba Corp 半導体装置およびその製造方法
KR100473588B1 (ko) * 2001-12-28 2005-03-08 엘지.필립스 엘시디 주식회사 액정 표시 장치용 어레이 기판
JP2003203970A (ja) * 2002-01-04 2003-07-18 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2003208132A (ja) 2002-01-17 2003-07-25 Seiko Epson Corp 液晶駆動回路
WO2003068932A2 (en) * 2002-02-11 2003-08-21 Chiron Corporation Method for crystallizing human gsk3 and novel crystal structure thereof
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP2004235180A (ja) 2003-01-28 2004-08-19 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP2005049770A (ja) * 2003-07-31 2005-02-24 Sanyo Electric Co Ltd エレクトロクロミック表示装置
TWI221341B (en) 2003-09-18 2004-09-21 Ind Tech Res Inst Method and material for forming active layer of thin film transistor
US8247965B2 (en) * 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
JP2005164854A (ja) * 2003-12-01 2005-06-23 Nec Lcd Technologies Ltd 液晶表示装置
JP4692871B2 (ja) 2004-03-11 2011-06-01 カシオ計算機株式会社 表示駆動装置及び表示装置
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7242039B2 (en) * 2004-03-12 2007-07-10 Hewlett-Packard Development Company, L.P. Semiconductor device
US7033681B2 (en) * 2004-03-18 2006-04-25 Eastman Kodak Company Organic element for electroluminescent devices
KR101058176B1 (ko) * 2004-03-25 2011-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 트랜지스터의 제조 방법
KR100589062B1 (ko) 2004-06-10 2006-06-12 삼성전자주식회사 원자층 적층 방식의 박막 형성방법 및 이를 이용한 반도체소자의 커패시터 형성방법
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
TW200602774A (en) * 2004-07-06 2006-01-16 Chunghwa Picture Tubes Ltd Thin-film transistor manufacture method
EP1624333B1 (en) * 2004-08-03 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Display device, manufacturing method thereof, and television set
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7427776B2 (en) 2004-10-07 2008-09-23 Hewlett-Packard Development Company, L.P. Thin-film transistor and methods
US7382421B2 (en) 2004-10-12 2008-06-03 Hewlett-Packard Development Company, L.P. Thin film transistor with a passivation layer
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7872259B2 (en) 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5138163B2 (ja) * 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP4563786B2 (ja) 2004-12-03 2010-10-13 京セラ株式会社 液体吐出装置およびその駆動方法
KR100654569B1 (ko) 2004-12-30 2006-12-05 엘지.필립스 엘시디 주식회사 박막 트랜지스터 어레이 기판 및 그 제조 방법
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7309895B2 (en) 2005-01-25 2007-12-18 Hewlett-Packard Development Company, L.P. Semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI445178B (zh) 2005-01-28 2014-07-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
JP2006261517A (ja) * 2005-03-18 2006-09-28 Ricoh Co Ltd 有機薄膜トランジスタ、それを備えた表示装置および有機薄膜トランジスタの製造方法。
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
AT502042B1 (de) * 2005-05-18 2007-01-15 Vae Gmbh Vorrichtung zur endlagenprüfung von beweglichen teilen einer schienenweiche
KR101127218B1 (ko) * 2005-05-19 2012-03-30 엘지디스플레이 주식회사 액정표시장치용 어레이 기판과 그 제조방법
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
EP1958199A4 (en) * 2005-07-29 2009-07-08 Kestrel Wireless Inc DEVICES AND PROCESSES FOR OPTICAL SUPPORT
JP4738931B2 (ja) * 2005-07-29 2011-08-03 富士フイルム株式会社 ナノ粒子分散液、それを用いた半導体デバイスの製造方法及び半導体デバイス
JP4767616B2 (ja) * 2005-07-29 2011-09-07 富士フイルム株式会社 半導体デバイスの製造方法及び半導体デバイス
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4981283B2 (ja) 2005-09-06 2012-07-18 キヤノン株式会社 アモルファス酸化物層を用いた薄膜トランジスタ
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4560502B2 (ja) 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) * 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5188182B2 (ja) 2005-09-27 2013-04-24 出光興産株式会社 スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5198066B2 (ja) * 2005-10-05 2013-05-15 出光興産株式会社 Tft基板及びtft基板の製造方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP2007123700A (ja) 2005-10-31 2007-05-17 Toppan Printing Co Ltd 酸化物半導体のパターニング方法と薄膜トランジスタの製造方法
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
US20070115219A1 (en) 2005-11-22 2007-05-24 Matsushita Electric Industrial Co., Ltd. Apparatus for driving plasma display panel and plasma display
JP5376750B2 (ja) 2005-11-18 2013-12-25 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル
US7998372B2 (en) 2005-11-18 2011-08-16 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
JP5395994B2 (ja) 2005-11-18 2014-01-22 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
US20090237000A1 (en) 2005-11-22 2009-09-24 Matsushita Electric Industrial Co., Ltd. Pdp driving apparatus and plasma display
JP5250929B2 (ja) 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
WO2007066677A1 (en) * 2005-12-05 2007-06-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR100732849B1 (ko) 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
KR101166842B1 (ko) * 2005-12-29 2012-07-19 엘지디스플레이 주식회사 박막 트랜지스터 어레이 기판의 제조 방법 및 이를 이용한박막 트랜지스터 어레이 기판
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
GB2434686A (en) 2006-01-31 2007-08-01 Sharp Kk A drive circuit including a voltage booster
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP2007212699A (ja) * 2006-02-09 2007-08-23 Idemitsu Kosan Co Ltd 反射型tft基板及び反射型tft基板の製造方法
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5110803B2 (ja) 2006-03-17 2012-12-26 キヤノン株式会社 酸化物膜をチャネルに用いた電界効果型トランジスタ及びその製造方法
EP1843194A1 (en) * 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US7652646B2 (en) * 2006-04-14 2010-01-26 Tpo Displays Corp. Systems for displaying images involving reduced mura
KR100785038B1 (ko) 2006-04-17 2007-12-12 삼성전자주식회사 비정질 ZnO계 TFT
KR101229413B1 (ko) 2006-04-18 2013-02-04 엘지디스플레이 주식회사 횡전계 방식 액정표시장치용 어레이 기판과 그 제조방법
JP4215068B2 (ja) * 2006-04-26 2009-01-28 エプソンイメージングデバイス株式会社 電気光学装置および電子機器
JP5364242B2 (ja) 2006-04-28 2013-12-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5135709B2 (ja) * 2006-04-28 2013-02-06 凸版印刷株式会社 薄膜トランジスタ及びその製造方法
US8900970B2 (en) 2006-04-28 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a flexible substrate
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US7875312B2 (en) * 2006-05-23 2011-01-25 Air Products And Chemicals, Inc. Process for producing silicon oxide films for organoaminosilane precursors
JP5063936B2 (ja) 2006-06-08 2012-10-31 三菱電機株式会社 Tftアレイ基板の製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4349406B2 (ja) * 2006-08-24 2009-10-21 セイコーエプソン株式会社 電気光学装置用基板及び電気光学装置、並びに電子機器
EP1895545B1 (en) 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5468196B2 (ja) * 2006-09-29 2014-04-09 株式会社半導体エネルギー研究所 半導体装置、表示装置及び液晶表示装置
TWI514347B (zh) 2006-09-29 2015-12-21 Semiconductor Energy Lab 顯示裝置和電子裝置
JP4932415B2 (ja) 2006-09-29 2012-05-16 株式会社半導体エネルギー研究所 半導体装置
KR101293573B1 (ko) 2006-10-02 2013-08-06 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101146574B1 (ko) 2006-12-05 2012-05-16 캐논 가부시끼가이샤 산화물 반도체를 이용한 박막 트랜지스터의 제조방법 및 표시장치
WO2008069255A1 (en) 2006-12-05 2008-06-12 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
JP4388544B2 (ja) 2006-12-19 2009-12-24 セイコーエプソン株式会社 半導体装置の製造方法、電気光学装置および電子機器
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
KR20080068240A (ko) * 2007-01-18 2008-07-23 삼성전자주식회사 박막 트랜지스터 기판의 제조 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
US7777224B2 (en) 2007-01-30 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR101312259B1 (ko) * 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
KR101410926B1 (ko) * 2007-02-16 2014-06-24 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
KR100759086B1 (ko) * 2007-02-23 2007-09-19 실리콘 디스플레이 (주) 국부 산화를 이용한 박막 트랜지스터 제조 방법 및 투명박막 트랜지스터
KR100858088B1 (ko) 2007-02-28 2008-09-10 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
TWI487118B (zh) * 2007-03-23 2015-06-01 Idemitsu Kosan Co Semiconductor device
JP5110927B2 (ja) * 2007-03-26 2012-12-26 株式会社ジャパンディスプレイウェスト 電気光学装置及び電子機器
JP2008276211A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置およびパターニング方法
JP2008276212A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
KR20080095538A (ko) 2007-04-25 2008-10-29 엘지전자 주식회사 박막 트랜지스터 및 그 제조방법, 이를 포함하는평판표시장치
KR100987840B1 (ko) 2007-04-25 2010-10-13 주식회사 엘지화학 박막 트랜지스터 및 이의 제조방법
JP2008277326A (ja) * 2007-04-25 2008-11-13 Canon Inc アモルファス酸化物半導体、半導体デバイス及び薄膜トランジスタ
KR100982395B1 (ko) * 2007-04-25 2010-09-14 주식회사 엘지화학 박막 트랜지스터 및 이의 제조방법
KR100858821B1 (ko) * 2007-05-11 2008-09-17 삼성에스디아이 주식회사 박막 트랜지스터와 그 제조 방법 및 상기 박막트랜지스터를 포함하는 유기 발광 표시 장치와 그 제조방법
JP2008310312A (ja) * 2007-05-17 2008-12-25 Fujifilm Corp 有機電界発光表示装置
JP5294651B2 (ja) 2007-05-18 2013-09-18 キヤノン株式会社 インバータの作製方法及びインバータ
US7750345B2 (en) 2007-05-18 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5241143B2 (ja) 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
CN101681928B (zh) * 2007-05-31 2012-08-29 佳能株式会社 使用氧化物半导体的薄膜晶体管的制造方法
JP5331389B2 (ja) * 2007-06-15 2013-10-30 株式会社半導体エネルギー研究所 表示装置の作製方法
US7682882B2 (en) * 2007-06-20 2010-03-23 Samsung Electronics Co., Ltd. Method of manufacturing ZnO-based thin film transistor
KR101402189B1 (ko) * 2007-06-22 2014-06-02 삼성전자주식회사 Zn 산화물계 박막 트랜지스터 및 Zn 산화물의 식각용액
TWI456663B (zh) 2007-07-20 2014-10-11 Semiconductor Energy Lab 顯示裝置之製造方法
TWI575293B (zh) * 2007-07-20 2017-03-21 半導體能源研究所股份有限公司 液晶顯示裝置
KR101270172B1 (ko) * 2007-08-29 2013-05-31 삼성전자주식회사 산화물 박막 트랜지스터 및 그 제조 방법
JP2009099887A (ja) * 2007-10-19 2009-05-07 Hitachi Displays Ltd 表示装置
JP5230185B2 (ja) 2007-12-13 2013-07-10 富士フイルム株式会社 反応性スパッタリング装置および反応性スパッタリングの方法
KR101513601B1 (ko) 2008-03-07 2015-04-21 삼성전자주식회사 트랜지스터
TWI570937B (zh) 2008-07-31 2017-02-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI569454B (zh) * 2008-09-01 2017-02-01 半導體能源研究所股份有限公司 半導體裝置的製造方法
CN102496628B (zh) 2008-09-19 2015-09-16 株式会社半导体能源研究所 显示装置
TWI501401B (zh) * 2008-10-31 2015-09-21 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI475616B (zh) 2008-12-26 2015-03-01 Semiconductor Energy Lab 半導體裝置及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070090182A (ko) * 2004-11-10 2007-09-05 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2008243928A (ja) * 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット

Also Published As

Publication number Publication date
CN113257838A (zh) 2021-08-13
JP7474901B2 (ja) 2024-04-25
JP2014132664A (ja) 2014-07-17
US9136390B2 (en) 2015-09-15
TW201635393A (zh) 2016-10-01
JP2015005756A (ja) 2015-01-08
TW201732954A (zh) 2017-09-16
CN102214604A (zh) 2011-10-12
US11817506B2 (en) 2023-11-14
CN101794737B (zh) 2014-07-09
US20110212571A1 (en) 2011-09-01
JP2021122056A (ja) 2021-08-26
CN102214680A (zh) 2011-10-12
CN103985765B (zh) 2017-04-19
JP2015165570A (ja) 2015-09-17
TWI540647B (zh) 2016-07-01
JP2020102632A (ja) 2020-07-02
TWI482226B (zh) 2015-04-21
TWI596676B (zh) 2017-08-21
JP7365459B2 (ja) 2023-10-19
JP2022133321A (ja) 2022-09-13
CN101794737A (zh) 2010-08-04
TW201041050A (en) 2010-11-16
JP5340345B2 (ja) 2013-11-13
US20160005876A1 (en) 2016-01-07
JP6219439B2 (ja) 2017-10-25
TWI475616B (zh) 2015-03-01
TWI549198B (zh) 2016-09-11
KR20110068964A (ko) 2011-06-22
KR20160121479A (ko) 2016-10-19
JP2010171404A (ja) 2010-08-05
KR20100076894A (ko) 2010-07-06
CN102214660B (zh) 2015-01-28
US20240072176A1 (en) 2024-02-29
JP6039614B2 (ja) 2016-12-07
US20100163868A1 (en) 2010-07-01
KR101266342B1 (ko) 2013-05-22
JP6661718B2 (ja) 2020-03-11
CN102194893A (zh) 2011-09-21
CN103985765A (zh) 2014-08-13
US9711651B2 (en) 2017-07-18
JP2023174774A (ja) 2023-12-08
JP5723464B2 (ja) 2015-05-27
TW201145405A (en) 2011-12-16
JP2016164999A (ja) 2016-09-08
KR101328424B1 (ko) 2013-11-14
TW201145407A (en) 2011-12-16
TWI474408B (zh) 2015-02-21
JP6405413B2 (ja) 2018-10-17
JP5785685B2 (ja) 2015-09-30
KR101666000B1 (ko) 2016-10-13
TWI654689B (zh) 2019-03-21
US20110210328A1 (en) 2011-09-01
JP2011228715A (ja) 2011-11-10
JP6181693B2 (ja) 2017-08-16
KR20110069759A (ko) 2011-06-23
CN102214660A (zh) 2011-10-12
US20210336060A1 (en) 2021-10-28
CN107104107B (zh) 2021-06-08
KR101760249B1 (ko) 2017-07-21
JP6879653B2 (ja) 2021-06-02
US20170317215A1 (en) 2017-11-02
TW201145406A (en) 2011-12-16
CN107104107A (zh) 2017-08-29
US20110215318A1 (en) 2011-09-08
KR20110069760A (ko) 2011-06-23
JP2019024100A (ja) 2019-02-14
US8222092B2 (en) 2012-07-17
CN102214680B (zh) 2014-12-10
CN102194893B (zh) 2017-05-24
TW201521121A (zh) 2015-06-01
KR20110068965A (ko) 2011-06-22
US20200185530A1 (en) 2020-06-11
US20110215319A1 (en) 2011-09-08
TW201145408A (en) 2011-12-16
JP2017163160A (ja) 2017-09-14
TWI501319B (zh) 2015-09-21
KR101328423B1 (ko) 2013-11-14

Similar Documents

Publication Publication Date Title
JP7474901B2 (ja) 表示装置
KR20100108245A (ko) 반도체 장치 및 그 제작 방법
KR20100086938A (ko) 반도체 장치 및 그 제작 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170719

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180718

Year of fee payment: 6