WO2013080516A1 - 薄膜トランジスタ基板及びそれを備えた表示装置並びに薄膜トランジスタ基板の製造方法 - Google Patents
薄膜トランジスタ基板及びそれを備えた表示装置並びに薄膜トランジスタ基板の製造方法 Download PDFInfo
- Publication number
- WO2013080516A1 WO2013080516A1 PCT/JP2012/007581 JP2012007581W WO2013080516A1 WO 2013080516 A1 WO2013080516 A1 WO 2013080516A1 JP 2012007581 W JP2012007581 W JP 2012007581W WO 2013080516 A1 WO2013080516 A1 WO 2013080516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- film transistor
- semiconductor layer
- tft
- electrode
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims description 174
- 239000010409 thin film Substances 0.000 title claims description 74
- 238000000034 method Methods 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- 239000004065 semiconductor Substances 0.000 claims abstract description 256
- 239000010408 film Substances 0.000 claims description 202
- 238000005530 etching Methods 0.000 claims description 57
- 230000008569 process Effects 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 238000000059 patterning Methods 0.000 claims description 10
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 203
- 239000004973 liquid crystal related substance Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 230000001681 protective effect Effects 0.000 description 20
- 239000010936 titanium Substances 0.000 description 18
- 230000001603 reducing effect Effects 0.000 description 14
- 229910007541 Zn O Inorganic materials 0.000 description 13
- 230000007423 decrease Effects 0.000 description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052814 silicon oxide Inorganic materials 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910001882 dioxygen Inorganic materials 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- AKVPCIASSWRYTN-UHFFFAOYSA-N zinc oxygen(2-) silicon(4+) Chemical compound [Si+4].[O-2].[Zn+2].[O-2].[O-2] AKVPCIASSWRYTN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 240000006829 Ficus sundaica Species 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 1
- GESGREJFIPJZNJ-UHFFFAOYSA-N [O-2].[Zn+2].[In+3].[Cu+2] Chemical compound [O-2].[Zn+2].[In+3].[Cu+2] GESGREJFIPJZNJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- VGLYDBMDZXTCJA-UHFFFAOYSA-N aluminum zinc oxygen(2-) tin(4+) Chemical compound [O-2].[Al+3].[Sn+4].[Zn+2] VGLYDBMDZXTCJA-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- VNBHZCPTWIBWLW-UHFFFAOYSA-N copper zinc oxygen(2-) tin(4+) Chemical compound [O--].[O--].[O--].[O--].[Cu++].[Zn++].[Sn+4] VNBHZCPTWIBWLW-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- KWDQHOBTDNAILB-UHFFFAOYSA-N zinc oxygen(2-) silicon(4+) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[Si+4].[O-2].[O-2].[O-2].[O-2] KWDQHOBTDNAILB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41733—Source or drain electrodes for field effect devices for thin film transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
Definitions
- the present invention relates to a thin film transistor (TFT) substrate, a display device including the same, and a method for manufacturing the TFT substrate, and more particularly, a semiconductor layer made of an oxide semiconductor (hereinafter referred to as an oxide semiconductor layer) is used.
- the present invention relates to a measure for reducing the number of processes when a plurality of types of TFTs having different electrical characteristics are formed on the same substrate.
- a TFT using this oxide semiconductor layer can be formed at a relatively low temperature by sputtering or the like, and is easier to manufacture than a TFT using a semiconductor layer made of polycrystalline silicon (poly-Si). .
- the TFT can be applied not only to a pixel TFT constituting a pixel but also to a driver circuit TFT constituting a driver circuit. It can be integrated into the substrate.
- the operational reliability of the drive circuit, and hence the performance of the display device depends on the electrical characteristics of the TFT for the drive circuit, and the threshold voltage is particularly important.
- a negative gate voltage cannot often be applied to a drive circuit TFT in order to realize a space-saving design in response to a demand for a narrow frame of a display device. Therefore, if the threshold voltage of the driving circuit TFT is a negative voltage value, it is difficult to control the driving circuit, and even when the gate voltage is 0 V, a current flows between the source electrode and the drain electrode, so-called no-voltage. It will be in a Marie-on state and power consumption will increase. For this reason, the driving circuit TFT is required to have a characteristic that the threshold voltage is a positive voltage value.
- a negative gate voltage can be applied to the pixel TFT, and a slight normally-on state can be allowed. Therefore, a TFT having a negative threshold voltage can also be applied.
- a TFT having a negative threshold voltage value has characteristics in which an S value (subthreshold coefficient) is small and an on-current value is sufficiently large as compared with a TFT having a positive threshold voltage value. Therefore, the pixel TFT preferably has a characteristic that the threshold voltage is a negative voltage value.
- a semiconductor layer of a driver circuit TFT is formed of a stacked body of a first oxide semiconductor layer and a second oxide semiconductor layer, and a semiconductor layer of a pixel TFT is a second oxide semiconductor layer.
- a TFT substrate constituted by a third oxide semiconductor layer made of the same material as the physical semiconductor layer is disclosed.
- a metal thin film is formed on an insulating surface, the second oxide semiconductor layer is formed thereon, and the third oxide semiconductor layer is formed.
- an oxidation treatment such as a heat treatment is performed to oxidize part or all of the metal thin film to make the metal thin film a first oxide semiconductor layer.
- the present invention has been made in view of such a point, and the object of the present invention is to realize a TFT substrate having a plurality of types of TFTs having different electrical characteristics on the same substrate at a low cost by reducing the number of steps. There is to do.
- the present inventors have determined whether or not both ends of the oxide semiconductor layer are covered with the source electrode and the drain electrode over the entire channel width direction. It has been found that the threshold voltage of the TFT varies greatly depending on the reason.
- the threshold voltage of the TFT is adjusted by devising the layout of the oxide semiconductor layer and the source and drain electrodes.
- the present invention is directed to a TFT substrate including a plurality of types of TFTs having different electrical characteristics on the same substrate, a display device including the TFT substrate, and a manufacturing method of the TFT substrate. Is.
- the first invention is a TFT substrate, which is provided on the base substrate, and the source electrode and the drain electrode are respectively connected to the oxide semiconductor layer so as to be spaced apart from each other.
- the first TFT has a characteristic that the oxide semiconductor layer is covered over the entire channel width direction by the source electrode and the drain electrode, and the threshold voltage is relatively low.
- the physical semiconductor layer has a characteristic in which a threshold voltage is relatively high by protruding from at least one of the source electrode and the drain electrode to the outside in the channel width direction.
- the oxide semiconductor layer of the first TFT is partially covered by the source electrode and the drain electrode over the entire channel width direction. According to the layout of the first TFT, the oxide semiconductor layer is less susceptible to oxidation and reduction in processes such as film formation and annealing after the source electrode and drain electrode are formed. A decrease in concentration (electron density) is suppressed, and the threshold voltage is maintained at a relatively low state.
- the oxide semiconductor layer of the second TFT protrudes outward in the channel width direction from at least one of the source electrode and the drain electrode.
- the oxide semiconductor layer portion that protrudes from the source electrode and the drain electrode is subjected to an oxidizing action or a reducing action in a film forming process or an annealing process after the source electrode and the drain electrode are formed. Therefore, the carrier concentration (electron density) of the oxide semiconductor layer is lower than that of the first TFT due to the influence of the same action, and the threshold voltage becomes relatively high.
- the first TFT and the second TFT having different electrical characteristics can be manufactured on the same substrate due to the layout difference between the semiconductor layer and the source electrode and the drain electrode, so that it is not necessary to add a new photomask. There is no need to perform a special processing step in order to make the electrical characteristics different from those of the 2TFT. Therefore, according to the configuration of the first invention, a TFT substrate provided with the first TFT and the second TFT having different electrical characteristics on the same substrate can be realized at a low cost by reducing the number of steps.
- the second invention is characterized in that, in the TFT substrate of the first invention, the oxide semiconductor layer of the second TFT protrudes outward from both the source electrode and the drain electrode in the channel width direction.
- the other electrode causes a part of the oxide semiconductor layer to be entirely in the channel width direction.
- the oxide semiconductor layer portion exposed from the source electrode and the drain electrode has a large area as compared with the case of being covered over, and the threshold voltage of the second TFT becomes higher as the exposed area increases. This makes it possible to reliably set the threshold voltage of the second TFT to a positive voltage value.
- the oxide semiconductor layer surface of the first TFT and the second TFT covers the channel region below the source electrode and the drain electrode.
- An etching stopper film is provided.
- the first TFT and the second TFT are so-called etch stopper type TFTs having an etching stopper film covering the channel region of the oxide semiconductor layer.
- the source electrode and the drain electrode should be patterned by dry etching because the oxide semiconductor layer is easily dissolved in an acid-based etching solution generally used when both electrodes are patterned by wet etching. become.
- the etch stopper type TFT the channel region of the oxide semiconductor layer is protected by an etching stopper film covering the oxide semiconductor layer, and exposure to plasma or the like is prevented. As a result, the channel region is not damaged, and the characteristics of the first TFT and the second TFT are prevented from being deteriorated. Therefore, it is possible to make these TFTs exhibit excellent characteristics with a simple configuration.
- the etching stopper film provided on the first TFT covers the oxide semiconductor layer of the first TFT, and the portions corresponding to both ends of the oxide semiconductor layer Contact holes connecting the source and drain electrodes and the oxide semiconductor layer are formed respectively, and an etching stopper film provided in the second TFT also covers the oxide semiconductor layer of the second TFT, Contact holes for connecting the source and drain electrodes and the oxide semiconductor layer are formed at locations corresponding to both ends of the oxide semiconductor layer, respectively.
- the etching stopper film covers the oxide semiconductor layer portion other than the portion corresponding to the contact hole. According to the layout of the first TFT and the second TFT, not only the channel region but the entire oxide semiconductor layer is protected by the etching stopper film, and is not damaged by dry etching or the like for patterning the source electrode and the drain electrode. That's it. Thereby, characteristic degradation of the first TFT and the second TFT is prevented as much as possible.
- the contact hole of the etching stopper film provided in the first TFT is spaced from the outer edge of the oxide semiconductor layer to the inner side of the oxide semiconductor layer.
- At least one of the source electrode and the drain electrode of the first TFT is a portion corresponding to the semiconductor layer on the outer side in the channel width direction than the contact hole and is directed to the other electrode side toward the electrode side. It has the protrusion part which protrudes.
- the area of the overlapping portion of the source and drain electrodes and the oxide semiconductor layer is increased by the provision of the protruding portion, and the area of the oxide semiconductor layer portion exposed from both electrodes is increased.
- the area becomes small, and the threshold voltage of the first TFT becomes lower as the exposed area decreases. This makes it possible to reliably set the threshold voltage of the first TFT to a negative voltage value.
- the protrusions are formed in a pair at each of the oxide semiconductor layer corresponding portions on both outer sides in the channel width direction from the contact hole.
- the distance between the protrusions is Dp
- the opening width in the channel width direction of the contact hole connecting the electrode having each protrusion to the oxide semiconductor layer is W1
- the distance Dp between the pair of protrusions and The opening width W1 of the contact hole is set so as to satisfy the relationship of Dp> W1.
- the pair of projecting portions projects to the other electrode side from the connection portion between the electrode having these and the oxide semiconductor layer, and is provided on the oxide semiconductor layer through the etching stopper film. ing. For this reason, a pair of protrusion part functions as a top gate substantially, when a predetermined voltage is applied to the electrode which has these.
- the distance Dp between the pair of protrusions and the opening width W of the contact hole are set so as to satisfy the relationship of Dp> W1 as in the present invention, an excessive current is generated in the upper portion of the channel region. Flow is suppressed.
- the threshold voltage of the first TFT can be reduced to a desired value while ensuring a negative voltage value. TFT characteristics can be obtained.
- the seventh invention is characterized in that, in the TFT substrate of the fifth or sixth invention, the protrusion is formed on both the source electrode and the drain electrode of the first TFT.
- the area of the oxide semiconductor layer exposed from the source electrode and the drain electrode is made as small as possible, and the threshold voltage of the first TFT is more reliably set to a negative voltage value. Is possible.
- the contact hole of the etching stopper film provided in the second TFT is spaced from the outer edge of the oxide semiconductor layer to the inner side of the same layer.
- at least one of the source electrode and the drain electrode of the second TFT is a portion corresponding to the oxide semiconductor layer on the outer side in the channel width direction than the contact hole, and
- the other electrode side is characterized in that a notch part is formed by partially notching the electrode side.
- the area of the overlapping portion of the source and drain electrodes and the oxide semiconductor layer is reduced by the provision of the notch, and the area of the oxide semiconductor layer portion exposed from both electrodes is reduced.
- the area becomes large, and the threshold voltage of the second TFT becomes higher as the exposed area increases. This makes it possible to reliably set the threshold voltage of the second TFT to a positive voltage value.
- the notch portions are formed in a pair at portions corresponding to the oxide semiconductor layers on both outer sides in the channel width direction from the contact hole.
- the interval between the notches is Dn and the opening width in the channel width direction of the contact hole connecting the electrode in which each notch is formed to the oxide semiconductor layer is W2
- the interval between the pair of notches is set so as to satisfy the relationship of Dn> W2.
- the pair of notches are formed on the other electrode side of the connection portion between the electrode having these and the oxide semiconductor layer, and the gap between the pair of notches is on the other electrode side.
- the protruding portion is provided on the oxide semiconductor layer with the etching stopper film interposed therebetween.
- the protrusion between the notches substantially functions as a top gate when a predetermined voltage is applied to the electrode having the notch.
- the threshold voltage of the second TFT can be set to a desired positive value while ensuring the positive voltage value. TFT characteristics can be obtained.
- the tenth invention is characterized in that, in the TFT substrate of the eighth or ninth invention, the notch is formed in both the source electrode and the drain electrode of the second TFT.
- the area of the oxide semiconductor layer exposed from the source electrode and the drain electrode becomes as large as possible, and the threshold voltage of the second TFT is more reliably set to a positive voltage value. Is possible.
- the source electrode and the drain electrode of the first TFT and the second TFT are connected to the oxide semiconductor layer so as to partially overlap each other.
- the first TFT and the second TFT are so-called channel etch type TFTs that do not include an etching stopper film.
- This channel etch type TFT requires fewer photomasks as much as there is no etching stopper film, and is advantageous in terms of manufacturing cost as compared with the etch stopper type TFT.
- a twelfth invention is the TFT substrate according to any one of the first to eleventh inventions, wherein each of the oxide semiconductor layers is made of indium gallium tin oxide (IndiumInGallium Zinc Oxide; hereinafter referred to as In-Ga-Zn-O). It is characterized in that it is made of an oxide semiconductor of the type.
- In-Ga-Zn-O indiumInGallium Zinc Oxide
- each oxide semiconductor layer is made of an In—Ga—Zn—O-based oxide semiconductor
- the first TFT and the second TFT have high mobility, high reliability, and low off-current. Specific characteristics can be obtained specifically.
- a thirteenth invention is the TFT substrate according to any one of the first to twelfth inventions, wherein a plurality of gate wirings provided on the base substrate so as to extend in parallel with each other; A plurality of source lines provided so as to extend in parallel to each other in the intersecting direction, and the gate lines and the source lines that are provided at the intersections of the gate lines and the source lines, and connected to the corresponding gate lines and source lines
- the TFT further includes a driving circuit having a driving circuit TFT that is electrically connected to the gate wiring or the source wiring and drives the pixel TFT.
- the pixel TFT is composed of the first TFT
- the driver circuit TFT is composed of the second TFT.
- the pixel TFT is constituted by the first TFT having a relatively low threshold voltage. If the threshold voltage is adjusted to a negative voltage value, the first TFT has a small S value and a sufficiently large on-current value. Therefore, the first TFT can be suitably used for a pixel TFT.
- the driving circuit TFT is constituted by a second TFT having a relatively high threshold voltage. By adjusting the threshold voltage to a positive voltage value, the second TFT can ensure the operation reliability of the drive circuit and can avoid a normally-on state, thereby reducing power consumption. It can be suitably employed as a circuit TFT.
- the fourteenth aspect of the invention is a display device comprising the TFT substrate according to any one of the first to thirteenth aspects of the invention.
- the TFT substrate according to the first to thirteenth inventions can be realized at a low cost by reducing the number of steps in the TFT substrate having the first TFT and the second TFT having different electrical characteristics on the same substrate. Therefore, the display device having the above characteristics can be realized at a low cost by reducing the number of processes as a whole.
- a fifteenth aspect of the invention is a method of manufacturing the TFT substrate of the first aspect of the invention, in which a first conductive film is formed on the base substrate, and the first conductive film is patterned using a first photomask.
- a gate electrode forming step of forming a plurality of gate electrodes, a gate insulating film forming step of forming a gate insulating film so as to cover the gate electrode, and an oxide semiconductor formed on the gate insulating film A semiconductor layer in which the oxide semiconductor layer is formed so as to straddle the corresponding gate electrode through the gate insulating film by forming a semiconductor film and patterning the semiconductor film using a second photomask Forming an etching stopper film so as to cover the oxide semiconductor layer, and patterning the etching stopper film using a third photomask;
- the source electrode and the drain electrode constituting the first TFT are formed so as to cover both ends of the oxide semiconductor layer constituting the first TFT in the entire channel width direction. And at least one of the source electrode and the drain electrode constituting the second TFT is formed so as to overlap a part of the end portion of the oxide semiconductor layer constituting the second TFT in the channel width direction, The oxide semiconductor layer protrudes from the electrode in the channel width direction.
- the gate electrode is formed using the first photomask
- the oxide semiconductor layer is formed using the second photomask
- the etching stopper film is formed using the third photomask
- the fourth photomask is used.
- a source electrode and a drain electrode are formed using a mask, respectively, and a first TFT and a second TFT are fabricated as etch stopper TFTs using a total of four photomasks.
- the source electrode and the drain electrode constituting the first TFT are formed so as to cover both ends of the oxide semiconductor layer constituting the first TFT over the entire channel width direction, subsequent film formation treatment or annealing In a process such as treatment, the oxide semiconductor layer is unlikely to receive an oxidizing action and a reducing action. Accordingly, a decrease in carrier concentration (electron density) of the oxide semiconductor layer is suppressed, and the threshold voltage is maintained in a relatively low state.
- At least one of the source electrode and the drain electrode constituting the second TFT is formed so as to overlap a part in the channel width direction with respect to the end portion of the oxide semiconductor layer constituting the second TFT, and is oxidized from the electrode. Since the physical semiconductor layer protrudes in the channel width direction, the oxide semiconductor layer portion protruding from the source electrode and the drain electrode is likely to be oxidized or reduced in subsequent processes such as film formation and annealing. . As a result, the carrier concentration (electron density) of the oxide semiconductor layer is lower than that of the first TFT, and the threshold voltage is relatively high.
- the TFT substrate of the first invention including the etch stopper type first TFT and the second TFT having different electrical characteristics on the same substrate can be manufactured at low cost.
- a sixteenth aspect of the invention is a method for manufacturing a TFT substrate of the first aspect of the invention, wherein a first conductive film is formed on the base substrate, and the first conductive film is patterned using a first photomask.
- a gate electrode forming step of forming a plurality of gate electrodes, a gate insulating film forming step of forming a gate insulating film so as to cover the gate electrode, and an oxide semiconductor formed on the gate insulating film A semiconductor layer in which the oxide semiconductor layer is formed so as to straddle the corresponding gate electrode through the gate insulating film by forming a semiconductor film and patterning the semiconductor film using a second photomask Forming a second conductive film so as to cover the oxide semiconductor layer, and patterning the second conductive film using a third photomask, whereby the source electrode and the drain electrode are formed.
- a source-drain electrode forming step of forming a In the source / drain electrode formation step, the source electrode and the drain electrode constituting the first TFT are formed so as to cover both ends of the oxide semiconductor layer constituting the first TFT in the entire channel width direction. In addition, at least one of the source electrode and the drain electrode constituting the second TFT is formed so as to overlap a part of the oxide semiconductor layer constituting the second TFT in the channel width direction. A feature is that the semiconductor layer protrudes in the channel width direction.
- a gate electrode is formed using a first photomask
- an oxide semiconductor layer is formed using a second photomask
- a source electrode and a drain electrode are formed using a third photomask.
- the first TFT and the second TFT are manufactured as channel etch type TFTs using a total of three photomasks.
- the source electrode and the drain electrode constituting the first TFT are formed so as to cover both ends of the oxide semiconductor layer constituting the first TFT over the entire channel width direction, subsequent film formation treatment or annealing In a process such as treatment, the oxide semiconductor layer is unlikely to receive an oxidizing action and a reducing action. Accordingly, a decrease in carrier concentration (electron density) of the oxide semiconductor layer is suppressed, and the threshold voltage is maintained in a relatively low state.
- At least one of the source electrode and the drain electrode constituting the second TFT is formed so as to overlap a part in the channel width direction with respect to the end portion of the oxide semiconductor layer constituting the second TFT, and is oxidized from the electrode. Since the physical semiconductor layer protrudes in the channel width direction, the oxide semiconductor layer portion protruding from the source electrode and the drain electrode is likely to be oxidized or reduced in subsequent processes such as film formation and annealing. . As a result, the carrier concentration (electron density) of the oxide semiconductor layer is lower than that of the first TFT, and the threshold voltage is relatively high.
- the TFT substrate of the first invention including the channel etch type first TFT and the second TFT having different electrical characteristics on the same substrate can be manufactured at low cost.
- the seventeenth invention is characterized in that, in the TFT substrate manufacturing method of the fifteenth or sixteenth invention, the substrate on which the source electrode and the drain electrode are formed is annealed in an atmosphere containing oxygen.
- the oxide semiconductor layer portion including the channel region exposed from the source electrode and the drain electrode is exposed to plasma when forming both electrodes and in a processing process after forming both electrodes.
- oxygen vacancies are likely to occur due to oxygen desorption from the oxide semiconductor layer by the heat of the plasma.
- an increase in off current, a decrease in electron mobility, an increase in threshold voltage, and the like are caused, and even if an oxide semiconductor layer is used, the characteristics of the TFT are deteriorated.
- the substrate after the formation of the source electrode and the drain electrode is annealed in an atmosphere containing oxygen, the oxygen defect in the oxide semiconductor layer is thereby repaired, and the oxide semiconductor The characteristics of the first TFT and the second TFT using the layer can be stabilized.
- the first TFT has a characteristic in which both end sides of the oxide semiconductor layer are covered with the source electrode and the drain electrode over the entire channel width direction, and the threshold voltage is relatively high. Has a characteristic that the oxide semiconductor layer protrudes outward from at least one of the source electrode and the drain electrode in the channel width direction and has a relatively low threshold voltage. Therefore, the first TFT and the second TFT having different electrical characteristics on the same substrate.
- a TFT substrate having 2 TFTs and a display device having the TFT substrate can be realized at a low cost by reducing the number of steps.
- FIG. 1 is a plan view illustrating a schematic configuration of the liquid crystal display device according to the first embodiment.
- 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG.
- FIG. 3 is a plan view schematically showing a circuit configuration of the liquid crystal display device according to the first embodiment.
- FIG. 4 is an equivalent circuit diagram of one subpixel.
- FIG. 5 is a plan view showing the configuration of the pixel TFT in the first embodiment.
- FIG. 8 is a plan view showing the configuration of the driving circuit TFT according to the first embodiment.
- 9 is a cross-sectional view showing a cross-sectional structure taken along line IX-IX in FIG. 10 is a cross-sectional view showing a cross-sectional structure taken along line XX of FIG.
- FIG. 11 is a cross-sectional view showing a first gate electrode forming step in the method for manufacturing the TFT substrate of Embodiment 1.
- FIG. 12 is a cross-sectional view showing a gate insulating film forming step in the manufacturing method of the TFT substrate of Embodiment 1.
- FIG. 13 is a cross-sectional view showing a semiconductor layer forming step in the manufacturing method of the TFT substrate of Embodiment 1.
- FIG. 14 is a cross-sectional view showing an etching stopper film forming step in the TFT substrate manufacturing method of Embodiment 1.
- FIG. 15 is a cross-sectional view showing a source / drain electrode forming step in the manufacturing method of the TFT substrate of Embodiment 1.
- FIG. 16 is a plan view showing the configuration of the pixel TFT in the second embodiment. 17 is a cross-sectional view showing a cross-sectional structure taken along line XVII-XVII in FIG. 18 is a cross-sectional view showing a cross-sectional structure taken along line XVIII-XVIII in FIG.
- FIG. 19 is a plan view showing the configuration of the driving circuit TFT according to the second embodiment.
- FIG. 20 is a cross-sectional view showing a cross-sectional structure taken along line XX-XX in FIG. 21 is a cross-sectional view showing a cross-sectional structure taken along line XXI-XXI in FIG.
- FIG. 22 is a cross-sectional view showing a source / drain electrode forming step in the manufacturing method of the TFT substrate of Embodiment 2.
- FIG. 23 is a cross-sectional view illustrating a configuration of a pixel TFT in the third embodiment.
- FIG. 24 is a cross-sectional view illustrating a configuration of a driving circuit TFT according to the third embodiment.
- Embodiment 1 of the Invention an active matrix liquid crystal display device S will be described as an example of a display device including a TFT substrate according to the present invention.
- FIG. 1 is a schematic plan view of the liquid crystal display device S.
- FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along the line II-II in FIG.
- the liquid crystal display device S has a TFT substrate 1 and a counter substrate 2 arranged so as to face each other, and a frame-like shape that bonds the outer peripheral edges of the substrates 1 and 2 to each other.
- a sealing material 3 and a liquid crystal layer 4 enclosed and enclosed by the sealing material 3 between the TFT substrate 1 and the counter substrate 2 are provided.
- the liquid crystal display device S has a display area D for displaying an image in an area where the TFT substrate 1 and the counter substrate 2 overlap and inside the sealing material 3, that is, an area where the liquid crystal layer 4 is provided. Further, the liquid crystal display device S has a frame region F having a rectangular frame shape that is a non-display region around the display region D.
- a terminal region 1a for connecting an external circuit in which the TFT substrate 1 protrudes from the counter substrate 2 and the surface thereof is exposed to the outside.
- a wiring board (not shown) such as an FPC (Flexible Printed Circuit) is mounted on the terminal area 1a, and a display signal including image data corresponding to an image to be displayed from an external circuit via the wiring board. Is entered.
- the TFT substrate 1 and the counter substrate 2 are formed, for example, in a rectangular shape. As shown in FIG. 2, alignment films 5 and 6 are provided on the inner surfaces facing each other, and polarizing plates 7 and 8 are provided on the outer surfaces. Are provided. The polarizing plate 7 on the TFT substrate 1 and the polarizing plate 8 on the counter substrate 2 are different in transmission axis by 90 °.
- the liquid crystal layer 4 is made of a nematic liquid crystal material having electro-optical characteristics.
- FIG. 3 shows a block diagram of a circuit configuration in the liquid crystal display device S.
- the liquid crystal display device S is provided so as to extend in parallel to each other in the row direction (lateral direction in FIG. 3) with respect to the pixel array 11 constituting the display region D.
- a plurality of source lines 14 provided so as to extend in parallel with each other in the vertical direction in FIG. 3, a gate driver / CS driver 15 to which one end side of each of the gate lines 12 and each auxiliary capacitance line 13 is connected,
- a source driver 16 to which one end side of the source wiring 14 is connected is provided.
- the pixel array 11 includes a plurality of pixels P arranged in a matrix.
- Each pixel P is composed of a red (R), green (G), and blue (B) sub-pixel p1 as a set.
- Each of these subpixels p1 is partitioned by a gate wiring 12, an auxiliary capacitance wiring 13, and a source wiring 14. Further, each gate line 12 and each auxiliary capacitance line 13 and each source line 14 are insulated from each other because a gate insulating film 22 described later is interposed therebetween.
- FIG. 3 shows a state in which the three color sub-pixels p1 (R), p1 (G), and p1 (B) are arranged in a stripe pattern in a juxtaposed manner, but these three color sub-pixels p1 (R), Even if p1 (G) and p1 (B) are arranged in a delta arrangement, a mosaic arrangement (diagonal arrangement), or other arrangement, there is no influence on the gist of this patent.
- FIG. 4 shows an equivalent circuit of one subpixel p1.
- each subpixel p1 includes a pixel TFT 20A, a pixel electrode 17 connected to the pixel TFT 20A, an auxiliary capacitance Cs connected to the pixel electrode 17 and the auxiliary capacitance wiring 13, and A liquid crystal capacitor Clc formed between the pixel electrode 17 and a common electrode 40 described later is provided.
- the pixel TFT 20A is provided at each intersection of each gate line 12 and each source line 14, and is connected to the corresponding gate line 12 and source line 14 that form the intersection.
- the pixel electrode 17 is made of a transparent conductive oxide such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
- the gate driver / CS driver 15 is a circuit that controls the driving of each sub-pixel p1 via each gate line 12 and each auxiliary capacitance line 13.
- the source driver 16 is a circuit that controls input of a source signal to each sub-pixel p ⁇ b> 1 via each source line 14.
- Each of the gate driver / CS driver 15 and the source driver 16 includes a driving circuit TFT 20B for driving each of the pixel TFTs 20A, and constitutes a driving circuit of the present invention.
- the TFT substrate 1 includes an insulating substrate 10 such as a glass substrate as a base substrate.
- the pixel TFT 20A, the pixel electrode 17, the holding capacitor Cs, the gate wiring 12, the auxiliary capacitance wiring 13, A source wiring 14, a gate driver / CS driver 15, and a source driver 16 are provided, and the pixel TFT 20 ⁇ / b> A and the driving circuit TFT 20 ⁇ / b> B having different electrical characteristics are provided on the same substrate 10.
- FIG. 5 is a schematic plan view of the pixel TFT 20A.
- 6 is a cross-sectional view showing a cross-sectional structure taken along the line VI-VI in FIG. 7 is a cross-sectional view showing a cross-sectional structure taken along line VII-VII in FIG.
- the pixel TFT 20A has a bottom gate structure, and as shown in FIGS. 5 and 6, a gate electrode 21a provided on the insulating substrate 10 and a gate insulating film provided so as to cover the gate electrode 21a. 22, an oxide semiconductor layer 23 a provided so as to straddle the gate electrode 21 a through the gate insulating film 22, and a source electrode 25 a and a drain electrode connected to the oxide semiconductor layer 23 a at a distance from each other 26a.
- the pixel TFT 20A is covered with a protective insulating film 27. Although not shown, the pixel electrode 17 is formed on the protective insulating film 27. The pixel electrode 17 is connected to the drain electrode 26a of the pixel TFT 20A through a contact hole formed in the protective insulating film 27. It is connected.
- the pixel TFT 20A is constituted by the first TFT of the present invention.
- the gate electrode 21a is connected to the corresponding gate wiring 12 or constituted by a part of the corresponding gate wiring 12.
- the gate insulating film 22 is made of silicon oxide (SiO 2) or silicon nitride (SiN), is formed on substantially the entire surface of the substrate, and is composed of a common film with the gate insulating film 22 of the driving circuit TFT 20B described later.
- the oxide semiconductor layer 23a is made of an In—Ga—Zn—O-based oxide semiconductor. Accordingly, the pixel TFT 20A has good characteristics such as high mobility, high reliability, and low off-state current.
- the pixel TFT 20A of the present embodiment is configured as an etch stopper type TFT, and as shown in FIG. 6, etching is performed on the surface between the connection portions of the source electrode 25a and the drain electrode 26a in the oxide semiconductor layer 23a.
- a stopper film 24 is provided. The etching stopper film 24 is formed so as to cover the oxide semiconductor layer 23a except for the connection portion between the source electrode 25a and the drain electrode 26a.
- Contact holes 24a reaching the semiconductor layer 23a are formed at locations corresponding to both ends of the oxide semiconductor layer 23a in the etching stopper film 24, respectively. As shown in FIG. 5, each of these contact holes 24 a is formed so as to be accommodated in the corresponding portion of the oxide semiconductor layer 23 a with an interval from the outer edge of the oxide semiconductor layer 23 a to the inside of the same layer.
- the source electrode 25a and the drain electrode 26a are formed on the etching stopper film 24 and are connected to the oxide semiconductor layer 23a through the contact holes 24a.
- a channel region 23c is formed between the connection portions of the source electrode 25a and the drain electrode 26a in the oxide semiconductor layer 23a.
- the opposing surfaces of the source electrode 25a and the drain electrode 26a of the pixel TFT 20A are formed flush with each other.
- the source electrode 25a and the drain electrode 26a of the pixel TFT 20A cover both ends of the oxide semiconductor layer 23a over the entire channel width direction Dcw, as shown in FIGS.
- both end portions of the oxide semiconductor layer 23a are covered with the source electrode 25a and the drain electrode 26a over the entire channel width direction Dcw.
- the oxide semiconductor layer 23a is not easily subjected to an oxidizing action and a reducing action. Thereby, a decrease in the carrier concentration (electron density) of the oxide semiconductor layer 23a is suppressed, and the threshold voltage of the TFT 20A is adjusted to a negative voltage value.
- FIG. 8 is a schematic plan view of the driving circuit TFT 20B.
- 9 is a cross-sectional view showing a cross-sectional structure taken along line IX-IX in FIG. 10 is a cross-sectional view showing a cross-sectional structure taken along line XX of FIG.
- the drive circuit TFT 20B also has a bottom gate structure similar to the pixel TFT 20A, and covers the gate electrode 21b provided on the insulating substrate 10 and the gate electrode 21b as shown in FIGS.
- the gate insulating film 22 provided in this manner, the oxide semiconductor layer 23b provided across the gate electrode 21b through the gate insulating film 22, and the oxide semiconductor layer 23b are connected to be separated from each other Source electrode 25b and drain electrode 26b, which are covered with a protective insulating film 27.
- the oxide semiconductor layer 23b is made of an In—Ga—Zn—O-based oxide semiconductor.
- the driving circuit TFT 20B also has good characteristics such as high mobility, high reliability, and low off-state current.
- the drive circuit TFT 20B is also configured as an etch stopper type TFT similar to the pixel TFT 20A, and the contact hole 24b covers the oxide semiconductor layer 23b except for the connection portion between the source electrode 25b and the drain electrode 26b.
- An etching stopper film 24 is provided.
- the source electrode 25b and the drain electrode 26b are formed on the etching stopper film 24, and are connected to the oxide semiconductor layer 23b through the contact holes 24b.
- a channel region 23c is formed between the connection portions of the source electrode 25b and the drain electrode 26b in the oxide semiconductor layer 23b.
- the opposing surfaces of the source electrode 25b and the drain electrode 26b of the driving circuit TFT 20B in this embodiment are also formed flush with each other.
- the source electrode 25b and the drain electrode 26b of the driving circuit TFT 20B are spaced from the outer edge of the channel width direction Dcw to the inner side in the same direction at both ends of the oxide semiconductor layer 23b. They are formed so as to overlap each other, and both outer portions of the oxide semiconductor layer 23b of the driving circuit TFT 20B in the channel width direction Dcw protrude from the source electrode 25b and the drain electrode 26b.
- the oxide semiconductor layer 23b protrudes from the source electrode 25b and the drain electrode 26b to both outsides in the channel width direction Dcw, the source electrode 25b and the drain electrode 26b described later are formed.
- the oxide semiconductor layer 23b is more susceptible to an oxidizing action or a reducing action than the pixel TFT 20A. Thereby, the carrier concentration (electron density) of the oxide semiconductor layer 23b is lowered, and the threshold voltage of the TFT 20B is adjusted to a positive voltage value.
- the pixel TFT 20A and the driving circuit TFT 20B are electrically connected to the same substrate 10 due to the layout difference between the oxide semiconductor layers 23a and 23b, the source electrodes 25a and 25b, and the drain electrodes 26a and 26b. It is formed with different characteristics.
- the counter substrate 2 is an insulating substrate such as a glass substrate that is a base substrate, and a black matrix provided on the insulating substrate in a lattice shape so as to correspond to the gate wiring 12 and the source wiring 14.
- a plurality of color filters including, for example, a red layer, a green layer, and a blue layer provided so as to be periodically arranged corresponding to the sub-pixels p1 of each color between the lattices of the black matrix;
- a common electrode 40 provided so as to cover the color filter and a photo spacer provided in a columnar shape on the common electrode 40 are provided.
- each pixel TFT 20A is in an OFF state, a decrease in potential written to the pixel electrode 17 corresponding to the charge stored in the storage capacitor Cs is suppressed.
- the liquid crystal display device S an image is displayed by adjusting the light transmittance of the liquid crystal layer 4 by changing the alignment state of the liquid crystal molecules according to the magnitude of the voltage applied to the liquid crystal layer 4 in each sub-pixel p1.
- the TFT substrate 1 and the counter substrate 2 are respectively manufactured. After forming the alignment films 5 and 6 on the surfaces of both the substrates 1 and 2 by a printing method or the like, the sealing material 3 And a liquid crystal layer 4 is sealed between the substrates 1 and 2 to produce a bonded panel. And the polarizing plates 7 and 8 are affixed on the both outer surfaces of this bonding panel, and the liquid crystal display device S is completed by mounting a wiring board such as FPC on the terminal region 1a.
- a wiring board such as FPC
- the liquid crystal display device S according to the present invention is characterized by the configuration of the TFT substrate 1 and the manufacturing method thereof, the manufacturing method of the TFT substrate 1 will be described in detail below with reference to FIGS.
- FIG. 11 is a cross-sectional view showing the gate electrode forming step.
- FIG. 12 is a cross-sectional view showing a gate insulating film forming step.
- FIG. 13 is a cross-sectional view showing the semiconductor layer forming step.
- FIG. 14 is a cross-sectional view showing an etching stopper film forming step.
- FIG. 15 is a cross-sectional view showing a source / drain electrode forming step. 11 to 15 show the corresponding parts in FIGS. 6, 9, 7 and 10 in order from the left side in the figure. 6 and 9, the pixel TFT 20A and the drive circuit TFT 20B have the same structure, so that reference numerals for the drive circuit TFT 20B are written in parentheses.
- the manufacturing method of the TFT substrate 1 includes a gate electrode forming step, a gate insulating film forming step, a semiconductor layer forming step, an etching stopper film forming step, a source / drain electrode forming step, a protective insulating film forming step, It includes a pixel electrode forming step and a heat treatment step.
- a first conductive film is formed on a previously prepared insulating substrate 10 such as a glass substrate by sputtering, for example, molybdenum (Mo), titanium (Ti), aluminum ( A metal film 50 (eg, about 100 nm to 300 nm thick) made of Al), tantalum (Ta), chromium (Cr), or the like is formed.
- the metal film 50 is not limited to a single-layer metal film, and may be formed in a laminated structure such as a laminate (Ti / Al / Ti) in which a titanium film, an aluminum film, and a titanium film are sequentially laminated.
- the metal film 50 is patterned by photolithography using a first photomask. Specifically, first, a resist pattern is formed on the surface of the metal film 50 at the locations where the gate wiring 12, the gate electrodes 21a and 21b, and the auxiliary capacitance wiring 13 are formed using the first photomask. Reactive ion etching (hereinafter referred to as RIE) using chlorine-based gas, which is a kind of dry etching, is used as a mask, and thereafter the resist pattern is stripped and washed with a resist stripping solution. As a result, gate electrodes 21a and 21b are formed as shown in FIG. 11B, and simultaneously, the gate wiring 12 and the auxiliary capacitance wiring 13 are formed.
- RIE reactive ion etching
- a silicon oxide film or a silicon nitride film (for example, a temperature of about 200 ° C. to 400 ° C. is formed on the substrate on which the gate wiring 12, the gate electrodes 21a and 21b, and the auxiliary capacitance wiring 13 are formed by a plasma CVD (Chemical Vapor Deposition) method.
- a thickness of about 300 nm to 400 nm is formed to form a gate insulating film 22 as shown in FIG.
- the gate insulating film 22 may be formed in a stacked structure of a silicon oxide film and a silicon nitride film.
- a semiconductor film 51 made of an In—Ga—Zn—O-based oxide semiconductor is formed on the substrate on which the gate insulating film 22 is formed by sputtering.
- sccm 100 sccm to 300 sccm of (Ar) and 5 sccm to 20 sccm of oxygen gas (O 2 ) are introduced, respectively, and a semiconductor film 51 (for example, about 40 nm to 50 nm thick) is formed at 200 ° C. to 400 ° C. in a mixed gas atmosphere.
- sccm means “Standard Cubic Centimeters per Minute”, and is a unit indicating a flow rate (cc) per minute.
- the value of the gas flow rate described above is an example and depends on the size of the chamber and the substrate.
- the semiconductor film 51 is patterned by photolithography using a second photomask. Specifically, first, a resist pattern is formed on the surface of the semiconductor film 51 at the formation positions of the oxide semiconductor layers 23a and 23b using a second photomask, and the resist pattern is used as a mask to form oxalic acid. Then, wet etching is performed, and then the resist pattern is stripped and washed with a resist stripping solution. Thereby, as shown in FIG. 13B, the oxide semiconductor layers 23a and 23b are formed.
- a silicon oxide film or a silicon nitride film (for example, about 50 nm to 200 nm) is formed on the substrate on which the oxide semiconductor layers 23a and 23b are formed by sputtering or plasma CVD. This is used as an etching stopper film 24.
- the etching stopper film 24 is patterned by photolithography using a third photomask. Specifically, first, a resist pattern is formed on the surface of the etching stopper film 24 in a region other than where the contact holes 24a and 24b are formed using a third photomask, and RIE is performed using the resist pattern as a mask. After that, the resist pattern is stripped and washed with a resist stripper. As a result, as shown in FIG. 14B, contact holes 24a and 24b are formed in the etching stopper film 24, respectively.
- ⁇ Source / drain electrode formation process> molybdenum (Mo), titanium (Ti), aluminum (Al), or tantalum is used as the second conductive film on the substrate on which the etching stopper film 24 is formed, as shown in FIG.
- a metal film 52 (for example, about 100 nm to 300 nm thick) made of (Ta) or chromium (Cr) is formed.
- the metal film 52 may be formed in a laminated structure such as a laminated body (Ti / Al / Ti) in which a titanium film, an aluminum film, and a titanium film are sequentially laminated.
- the metal film 52 is patterned by photolithography using a fourth photomask. Specifically, first, a resist pattern is formed on the surface of the metal film 52 at the positions where the source wiring 14, the source electrodes 25a and 25b, and the drain electrodes 26a and 26b are formed using a fourth photomask. RIE is performed using the pattern as a mask, and then the resist pattern is stripped and washed with a resist stripper. As a result, as shown in FIG. 15B, source electrodes 25a and 25b and drain electrodes 26a and 26b are formed, and at the same time, the source wiring 14 is formed.
- the source electrode 25a and the drain electrode 26a constituting the pixel TFT 20A are formed so as to cover both ends of the oxide semiconductor layer 23a constituting the pixel TFT 20A in the channel width direction Dcw. Further, the source electrode 25b and the drain electrode 26b constituting the driving circuit TFT 20B are spaced from the outer edge of the channel width direction Dcw inward in the same direction with respect to the end of the oxide semiconductor layer 23b constituting the driving circuit TFT 20B.
- the oxide semiconductor layer 23b protrudes from both the electrodes 25b and 26b to both outer sides in the channel width direction Dcw.
- a silicon oxide film or a silicon nitride film (eg, a thickness of about 200 nm to 300 nm) is formed on the substrate on which the source wiring 14, the source electrodes 25a and 25b, and the drain electrodes 26a and 26b are formed by plasma CVD. This is used as a protective insulating film 27.
- the protective insulating film 27 may be formed in a stacked structure of a silicon oxide film and a silicon nitride film.
- this protective insulating film 27 is patterned by photolithography using a fifth photomask. Specifically, first, a resist pattern is formed on the surface of the protective insulating film 27 in a region other than the formation of each contact hole for connecting to the drain electrodes 26a and 26b using the fifth photomask. RIE is performed using the resist pattern as a mask, and then the resist pattern is stripped and washed with a resist stripping solution. Thereby, a contact hole is formed in the protective insulating film 27.
- ⁇ Pixel electrode formation process> A transparent conductive film (for example, having a thickness of about 50 nm to 150 nm) made of ITO or IZO is formed on the substrate on which the protective insulating film 27 is formed by a sputtering method. Next, this transparent conductive film is patterned by photolithography using a sixth photomask. Specifically, a resist pattern is formed at the formation position of each pixel electrode 17 on the surface of the transparent conductive film using a sixth photomask, and the transparent conductive film is formed with an oxalic acid solution using the resist pattern as a mask. The resist pattern is stripped and washed with a resist stripping solution. Thereby, each pixel electrode 17 is formed.
- ⁇ Heat treatment process> An annealing process is performed on the substrate on which the pixel electrode 17 is formed using an annealing chamber at a temperature of about 200 ° C. to 400 ° C. in an atmosphere containing oxygen gas (O 2) using oxygen gas (O 2) as a carrier gas, for example, for 1 hour. Perform for about 2 hours.
- O 2 oxygen gas
- the channel region 23c is free from oxygen defects.
- the region 23c undergoes an oxidation reaction, and oxygen defects in the channel region 23c are repaired.
- the TFT substrate 1 can be manufactured using a total of six photomasks.
- the pixel TFT 20A both ends of the oxide semiconductor layer 23a are covered with the source electrode 25a and the drain electrode 26a over the entire channel width direction Dcw, and the threshold voltage is adjusted to a negative voltage value.
- the oxide semiconductor layer 23b protrudes from the source electrode 25b and the drain electrode 26b to the outside in the channel width direction Dcw, and the threshold voltage is adjusted to a positive voltage value.
- the TFT substrate 1 including the pixel TFT 20A and the driving circuit TFT 20B having different electrical characteristics can be realized at a low cost by reducing the number of steps, and the liquid crystal display device S can be reduced in cost.
- Embodiment 2 of the Invention 16 to 21 show the second embodiment.
- the TFT substrate 1 and the liquid crystal display device S are configured in the same manner as in the first embodiment except that the configuration of the pixel TFT 20A and the drive circuit TFT 20B is different from that in the first embodiment. Only the pixel TFT 20A and the driving circuit TFT B, which are different from each other, will be described, and the same components are left to the description of the first embodiment based on FIGS. 1 to 15, and the detailed description thereof is omitted.
- the pixel TFT 20A and the drive circuit TFT 20B are configured as etch stopper TFTs. However, in the present embodiment, both the TFTs 20A and 20B are configured as etch channel TFTs. Yes.
- FIG. 16 is a schematic plan view of the pixel TFT 20A.
- 17 is a cross-sectional view showing a cross-sectional structure taken along line XVII-XVII in FIG. 18 is a cross-sectional view showing a cross-sectional structure taken along line XVIII-XVIII in FIG.
- the pixel TFT 20A of this embodiment has a bottom gate structure similar to that of Embodiment 1 described above, and the source electrode 25a and the drain electrode 26a are partly on the oxide semiconductor layer 23a. Directly connected by overlapping.
- the source electrode 25a and the drain electrode 26a directly cover both ends of the oxide semiconductor layer 23a over the entire channel width direction Dcw, as shown in FIGS.
- the threshold voltage of the TFT 20A is adjusted to a negative voltage value by suppressing the decrease in the carrier concentration (electron density) of the oxide semiconductor layer 23a during the manufacturing process, as in the first embodiment. Has been.
- FIG. 19 is a schematic plan view of the drive circuit TFT 20B.
- 20 is a cross-sectional view showing a cross-sectional structure taken along line XX-XX in FIG. 21 is a cross-sectional view showing a cross-sectional structure taken along line XXI-XXI in FIG.
- the drive circuit TFT 20B of this embodiment also has a bottom gate structure similar to that of Embodiment 1 described above, and the source electrode 25b and the drain electrode 26b are partly formed on the oxide semiconductor layer 23b. Are directly connected to each other.
- the source electrode 25b and the drain electrode 26b are partly directly spaced from the outer edge in the channel width direction Dcw to the inner side in the same direction at both ends of the oxide semiconductor layer 23b, as shown in FIGS.
- the two outer portions in the channel width direction Dcw of the oxide semiconductor layer 23b of the driving circuit TFT 20B protrude from the source electrode 25b and the drain electrode 26b.
- the carrier concentration (electron density) of the oxide semiconductor layer 23b is reduced, and the threshold voltage of the TFT 20B is adjusted to a positive voltage value.
- the manufacturing method of the TFT substrate 1 of the present embodiment includes a gate electrode forming step, a gate insulating film forming step, a semiconductor layer forming step, a source / drain electrode forming step, a protective insulating film forming step, and a pixel electrode forming step.
- a process and a heat treatment process are the same as those in the first embodiment, and thus detailed description thereof is omitted.
- a second conductive film is formed on the substrate on which the oxide semiconductor layers 23a and 23b are formed in the semiconductor layer formation step by sputtering, for example, molybdenum (Mo), titanium (
- a metal film 52 (for example, about 100 nm to 300 nm thick) made of Ti), aluminum (Al), tantalum (Ta), chromium (Cr), or the like is formed.
- the metal film 52 may be formed in a laminated structure such as a laminated body (Ti / Al / Ti) in which a titanium film, an aluminum film, and a titanium film are sequentially laminated.
- the metal film 52 is patterned by photolithography using a third photomask. Specifically, first, a resist pattern is formed on the surface of the metal film 52 at the positions where the source wiring 14, the source electrodes 25a and 25b, and the drain electrodes 26a and 26b are formed using a third photomask. RIE is performed using the pattern as a mask, and then the resist pattern is stripped and washed with a resist stripper. Thereby, source electrodes 25a and 25b and drain electrodes 26a and 26b are formed as shown in FIG. 22B, and at the same time, the source wiring 14 is formed.
- the source electrode 25a and the drain electrode 26a constituting the pixel TFT 20A are formed so as to cover both ends of the oxide semiconductor layer 23a constituting the pixel TFT 20A in the channel width direction Dcw. Further, the source electrode 25b and the drain electrode 26b constituting the driving circuit TFT 20B are spaced from the outer edge of the channel width direction Dcw inward in the same direction with respect to the end of the oxide semiconductor layer 23b constituting the driving circuit TFT 20B.
- the oxide semiconductor layer 23b protrudes from both the electrodes 25b and 26b to both outer sides in the channel width direction Dcw.
- a silicon oxide film or a silicon nitride film (eg, a thickness of about 200 nm to 300 nm) is formed on the substrate on which the source wiring 14, the source electrodes 25a and 25b, and the drain electrodes 26a and 26b are formed by plasma CVD. This is used as a protective insulating film 27.
- the protective insulating film 27 may be formed in a stacked structure of a silicon oxide film and a silicon nitride film.
- this protective insulating film 27 is patterned by photolithography using a fourth photomask. Specifically, first, a resist pattern is formed on the surface of the protective insulating film 27 in a region other than the formation of each contact hole for connecting to the drain electrodes 26a and 26b using the fourth photomask, RIE is performed using the resist pattern as a mask, and then the resist pattern is stripped and washed with a resist stripping solution. Thereby, a contact hole is formed in the protective insulating film 27.
- ⁇ Pixel electrode formation process> A transparent conductive film (for example, having a thickness of about 50 nm to 150 nm) made of ITO or IZO is formed on the substrate on which the protective insulating film 27 is formed by a sputtering method. Next, this transparent conductive film is patterned by photolithography using a fifth photomask. Specifically, a resist pattern is formed at the formation position of each pixel electrode 17 on the surface of the transparent conductive film using a fifth photomask, and the transparent conductive film is formed with oxalic acid solution using the resist pattern as a mask. The resist pattern is stripped and washed with a resist stripping solution. Thereby, each pixel electrode 17 is formed.
- ⁇ Heat treatment process> An annealing process is performed on the substrate on which the pixel electrode 17 is formed using an annealing chamber at a temperature of about 200 ° C. to 400 ° C. in an atmosphere containing oxygen gas (O 2) using oxygen gas (O 2) as a carrier gas, for example, for 1 hour. Perform for about 2 hours.
- O 2 oxygen gas
- the channel region 23c is free from oxygen defects.
- the region 23c undergoes an oxidation reaction, and oxygen defects in the channel region 23c are repaired.
- the TFT substrate 1 can be manufactured using a total of five photomasks.
- the pixel TFT 20A and the drive circuit TFT 20B are configured as channel etch type TFTs that do not include an etching stopper film, the number of photomasks can be reduced as much as there is no etching stopper film.
- the TFT substrate 1 and the liquid crystal display device S including the TFT substrate 1 can be manufactured at a lower cost than when both the TFTs 20A and 20B are configured as etch stopper TFTs.
- FIG. 23 is a schematic plan view showing the configuration of the pixel TFT 20A.
- FIG. 24 is a schematic plan view showing the configuration of the drive circuit TFT 20B.
- the opposing surfaces of the source electrodes 25a and 25b and the drain electrodes 26a and 26b of the pixel TFT 20A and the driving circuit TFT 20B are formed to be flush with each other.
- 20B source electrodes 25a, 25b and drain electrodes 26a, 26b are formed so that the opposing surfaces thereof are uneven.
- the pixel TFT 20A according to the present embodiment also has a bottom gate structure and is configured in an etch stopper type in which an etching stopper film 24 is provided, as in the first embodiment.
- each contact hole 24a formed in the etching stopper film 24 and connecting the source electrode 25a and drain electrode 26a of the pixel TFT 20A and the oxide semiconductor layer 23a is formed in the same shape and size. .
- the source electrode 25a and the drain electrode 26a of the pixel TFT 20A cover both ends of the oxide semiconductor layer 23a over the entire channel width direction Dcw.
- the threshold voltage of the TFT 20A is adjusted to a negative voltage value by suppressing the decrease in the carrier concentration (electron density) of the oxide semiconductor layer 23a during the manufacturing process, as in the first embodiment. Has been.
- the source electrode 25a of the pixel TFT 20A has a pair of projecting portions 25p projecting toward the drain electrode 26a on both ends of the channel width direction Dcw.
- Each of the protrusions 25p is provided outside the contact hole 24a connecting the source electrode 25a and the oxide semiconductor layer 23a outside the channel width direction Dcw, and a part of the width direction is disposed at a position corresponding to the oxide semiconductor layer 23a. Has been. Accordingly, the area of the overlapping portion between the source electrode 25a and the oxide semiconductor layer 23a is increased by the amount of the protrusion 25p.
- the drain electrode 26a also has a pair of projecting portions 26p projecting toward the source electrode 25a at both ends of the channel width direction Dcw.
- Each of the protrusions 26p is provided outside the contact hole 24a connecting the drain electrode 26a and the oxide semiconductor layer 23a outside the channel width direction Dcw, and a part of the width direction is disposed at a position corresponding to the oxide semiconductor layer 23a. Has been. Accordingly, the area of the overlapping portion between the drain electrode 26a and the oxide semiconductor layer 23a is also increased by the amount of the protrusion 26p.
- the pair of projecting portions 25p and 26p are disposed on the channel region 23c via the etching stopper film 24, when a voltage is applied between the source electrode 25a and the drain electrode 26a, the top is substantially the top. Acts as a gate. Therefore, if the distance between the pair of protrusions 25p and 26p is not set appropriately, an excess current flows to the upper portion of the channel region 23c, that is, the etching stopper film 24 side, and a portion corresponding to each contact hole 24a.
- the layout of the pixel TFT 20A is designed with reference to the distance Lsd between the source electrode 25a and the drain electrode 26a, there is a risk of deviating from desired TFT characteristics.
- the distance Dp between the pair of protrusions 26p in the drain electrode 26a and the opening width W1 in the channel width direction Dcw of the contact hole 24a are also set so as to satisfy the relationship of the above (formula 1), similarly to the source electrode 25a. ing.
- Desired TFT characteristics can be obtained while ensuring a negative voltage value.
- the drive circuit TFT 20B of this embodiment also has a bottom gate structure and is configured as an etch stopper type provided with an etching stopper film 24, as in the first embodiment.
- each contact hole 24b formed in the etching stopper film 24 and connecting the source electrode 25b and drain electrode 26b of the driving circuit TFT 20B and the oxide semiconductor layer 23b is formed in the same shape and size. Yes.
- the source electrode 25b and the drain electrode 26b of the driving circuit TFT 20B are formed so as to overlap with both ends of the oxide semiconductor layer 23b with a gap inward from the outer edge in the channel width direction Dcw. Both outer portions of the oxide semiconductor layer 23b of the circuit TFT 20B in the channel width direction Dcw protrude from the source electrode 25b and the drain electrode 26b.
- the carrier concentration (electron density) of the oxide semiconductor layer 23b is lowered during the manufacturing process, and the threshold voltage of the TFT 20B is adjusted to a positive voltage value, as in the first embodiment. ing.
- the source electrode 25b of the driving circuit TFT 20B is formed with a pair of cutout portions 25n in which the drain electrode 26b side is partially cutout at both ends of the channel width direction Dcw.
- Each of these notches 25n is formed outside the contact hole 24b connecting the source electrode 25a and the oxide semiconductor layer 23a outside the channel width direction Dcw. Accordingly, the area of the overlapping portion between the source electrode 25b and the oxide semiconductor layer 23b is reduced by the amount of the notch 25n.
- the drain electrode 26b is also formed with a pair of cutout portions 26n in which the source electrode 25b side is partially cut off at both ends of the channel width direction Dcw.
- Each of the notches 26n is formed outside the contact width 24b connecting the drain electrode 26b and the oxide semiconductor layer 23b outside the channel width direction Dcw. Accordingly, the area of the overlapping portion between the drain electrode 26b and the oxide semiconductor layer 23b is also reduced by the amount of the notch 26n.
- a projecting portion extending on the channel region 23c via the etching stopper film 24 is formed, so that a voltage is applied between the source electrode 25b and the drain electrode 26b.
- the projecting portion substantially functions as a top gate. Therefore, if the distance between the pair of notches 25n and 26n is not set appropriately, the current flowing in the upper portion of the channel region 23c decreases, and the source electrode 25b and the drain electrode corresponding to each contact hole 24b.
- the layout of the driving circuit TFT 20B is designed based on the distance Lsd between 26b, there is a risk of deviating from desired TFT characteristics.
- the distance Dn between the pair of notches 26n in the drain electrode 26b and the opening width W2 of the contact hole 24a in the channel width direction Dcw are set so as to satisfy the relationship of the above (formula 2), similarly to the source electrode 25b. ing.
- the driving circuit TFT 20B even when the layout of the driving circuit TFT 20B is designed based on the distance Lsd between the source electrode 25b and the drain electrode 26b corresponding to each contact hole 24b, the driving circuit TFT 20B is designed. For the above, it is possible to obtain desired TFT characteristics while ensuring that the threshold voltage is a positive voltage value.
- the TFT substrate 1 of the present embodiment can be manufactured by the same manufacturing method as that of the first embodiment.
- the areas of the overlapping portions of the source electrode 25a and the drain electrode 26a and the oxide semiconductor layer 23a are increased by the amount of the protrusions 25p and 26p.
- the area of the oxide semiconductor layer 23a exposed from 25a and 26a becomes a small area, and the threshold voltage becomes lower as the exposed area decreases. Since the distance between the pair of projecting portions 25p and 26p is set appropriately, the TFT characteristics for the pixel TFT 20A can be obtained while reliably setting the threshold voltage to a negative voltage value.
- the driving circuit TFT 20B the area where the source electrode 25b and the drain electrode 26b overlap with the oxide semiconductor layer 23b is reduced by the amount of the cutout portions 25n and 26n.
- the area of the exposed oxide semiconductor layer 23b becomes large, and the threshold voltage increases as the exposed area increases. Since the distance between the pair of notches 25n and 26n is set appropriately, the TFT characteristics for the drive circuit 20B can be obtained while ensuring the threshold voltage at a positive voltage value.
- both outer portions of the oxide semiconductor layer 23b in the channel width direction Dcw protrude from the source electrode 25b and the drain electrode 26b.
- the present invention is not limited to this. Absent.
- only one side portion in the channel width direction Dcw may protrude from the source electrode 25b and the drain electrode 26b, and the channel from only one side of the source electrode 25b and the drain electrode 26b.
- a configuration in which the outer portion of the width direction Dcw protrudes may be used.
- the oxide semiconductor layer 23b exposed from the source electrode 25b and the drain electrode 26b is oxidized or reduced in steps such as a film formation process and an annealing process after the source electrode 25b and the drain electrode 26b are formed.
- the carrier concentration (electron density) of the oxide semiconductor layer 23b can be reduced, and the threshold voltage can be adjusted to a positive voltage value.
- the threshold voltage of the pixel TFT 20A is adjusted to a negative voltage value
- the threshold voltage of the drive circuit TFT 20B is adjusted to a positive voltage value.
- the present invention is not limited to this. Absent.
- the threshold voltages of the pixel TFT 20A and the drive circuit TFT 20B may both be adjusted to a positive voltage value as long as they are adjusted to threshold voltages according to required electrical characteristics.
- the oxide semiconductor layers 23a and 23b are made of an In—Ga—Zn—O-based oxide semiconductor.
- the oxide semiconductor layers 23a and 23b are not limited to indium. Silicon zinc oxide (In-Si-Zn-O), indium aluminum zinc oxide (In-Al-Zn-O), tin silicon zinc oxide (Sn-Si-Zn-O), tin aluminum zinc Oxide (Sn—Al—Zn—O), tin gallium zinc oxide (Sn—Ga—Zn—O), gallium silicon zinc oxide (Ga—Si—Zn—O), gallium aluminum zinc oxide ( Ga—Al—Zn—O), indium copper zinc oxide (In—Cu—Zn—O), tin copper zinc oxide (Sn—Cu—Zn—O), tin oxide (Sn—O) system Indium oxide (In-O) may be made from other oxide semiconductor such systems.
- the liquid crystal display device S has been described as an example.
- the present invention is not limited to this, and is naturally applicable to other display devices such as an organic EL (ElectroLuminescence) display device and a plasma display device. can do.
- organic EL ElectroLuminescence
- the present invention is useful for a TFT substrate, a display device including the TFT substrate, and a method for manufacturing the TFT substrate, and in particular, a TFT substrate including a plurality of types of TFTs having different electrical characteristics on the same substrate. It is suitable for a TFT substrate that is desired to be realized at a low cost by reducing the number of processes, a display device including the TFT substrate, and a method for manufacturing the TFT substrate.
- S Liquid crystal display device Dsw Channel width direction 1 TFT substrate 10 Insulating substrate (base substrate) 12 Gate wiring 14 Source wiring 15 Gate driver / CS driver (drive circuit) 16 Source driver (drive circuit) 20A pixel TFT (first TFT) 20B Drive circuit TFT (second TFT) 21a, 21b Gate electrode 22 Gate insulating film 23 Oxide semiconductor layer 23c Channel region 24 Etching stopper film 24a, 24b Contact hole 25a, 25b Source electrode 26a, 26b Drain electrode 25p, 26p Protrusion 25n, 26n Notch 51 Metal film ( First conductive film) 52 Metal film (second conductive film)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
画素用TFT(20A)は、酸化物半導体層(23a)がソース電極(25a)及びドレイン電極(26a)によってチャネル幅方向(Dcw)の全体に亘って覆われて閾値電圧が相対的に低い特性を有し、駆動回路用TFT(20B)は、酸化物半導体層(23b)がソース電極(25b)及びドレイン電極(26b)からチャネル幅方向(Dcw)外側にはみ出して閾値電圧が相対的に高い特性を有する。
Description
本発明は、薄膜トランジスタ(Thin Film Transistor;TFT)基板及びそれを備えた表示装置並びにTFT基板の製造方法に関し、特に、酸化物半導体からなる半導体層(以下、酸化物半導体層と称する)を用いた電気特性が異なる複数種類のTFTを同一基板上に形成する際の工程数の削減対策に関するものである。
近年、液晶表示装置を構成するTFT基板では、画像の最小単位である各画素のスイッチング素子として、アモルファスシリコン(a-Si)からなる半導体層を用いた従来のTFTに代えて、酸化物半導体層を用い、高移動度、高信頼性及び低オフ電流などの良好な特性を有するTFTが提案されている。
この酸化物半導体層を用いたTFTは、スパッタリング法などによって比較的低温での成膜が可能であり、多結晶シリコン(poly-Si)からなる半導体層を用いたTFTよりも作製が容易である。当該酸化物半導体層を用いたTFTを表示装置に応用する場合には、画素を構成する画素用TFTのみならず駆動回路を構成する駆動回路用TFTにも適用することができ、駆動回路をTFT基板に一体的に作り込むことが可能である。
ところで、上記駆動回路の動作信頼性、ひいては表示装置の性能は、駆動回路用TFTの電気特性に左右され、そのうち特に閾値電圧が重要である。駆動回路では、表示装置の狭額縁化の要望から省スペース設計を実現するために、駆動回路用TFTにマイナスのゲート電圧を印加できない場合が多い。このため、駆動回路用TFTの閾値電圧がマイナスの電圧値であると、駆動回路として制御することが困難であり、ゲート電圧が0Vでもソース電極とドレイン電極との間に電流が流れる、いわゆるノーマリーオン状態となって、消費電力が増大してしまう。このことから、駆動回路用TFTには、閾値電圧がプラスの電圧値である特性を有することが必要とされる。
一方、画素用TFTには、マイナスのゲート電圧を印加することが可能であり、多少ノーマリーオン状態となることも許容できるため、閾値電圧がマイナスの電圧値であるTFTも適用することができる。閾値電圧がマイナスの電圧値であるTFTは、閾値電圧がプラスの電圧値であるTFTに比べて、S値(サブスレショルド係数)が小さく、オン電流値が十分に大きな特性を有する。このことから、画素用TFTは、閾値電圧がマイナスの電圧値である特性を有することが好ましい。
このように画素用TFTと駆動回路用TFTとでは要求される電気特性が異なるため、それぞれ要求される電気特性に応じて作り分けることが望ましい。そこで、電気特性が異なる複数種類のTFTを同一基板上に併せて作製可能なTFT基板の構成が従来から提案されている。
例えば、特許文献1には、駆動回路用TFTの半導体層が第1の酸化物半導体層と第2の酸化物半導体層との積層体によって構成され、画素用TFTの半導体層が第2の酸化物半導体層と同一材料からなる第3の酸化物半導体層によって構成されたTFT基板が開示されている。そして、同文献1には、このTFT基板の製造方法として、絶縁表面上に金属薄膜を形成し、その上に上記第2の酸化物半導体層を形成すると共に、上記第3の酸化物半導体層を形成し、その後に、加熱処理などの酸化処理を行うことにより金属薄膜の一部又は全部を酸化させて該金属薄膜を第1の酸化物半導体層とすることが開示されている。
しかしながら、特許文献1に開示のTFT基板を製造するには、第2及び第3の酸化物半導体層を形成するためのフォトマスクとは別個に金属薄膜を形成するためのフォトマスクが追加で必要となり、金属薄膜の成膜処理に加えて該金属薄膜の酸化処理などの複数の処理工程を追加する必要もある。このため、製造工程が煩雑になる上に、工程数が増えてコストアップになってしまう。
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、同一基板上に電気特性が異なる複数種類のTFTを備えたTFT基板を工程数を抑えて低コストに実現することにある。
本発明者らは、TFTの構成とその電気特性との関係について鋭意研鑽を重ねた結果、酸化物半導体層の両端側がソース電極及びドレイン電極によりチャネル幅方向の全体に亘って覆われているか否かによってTFTの閾値電圧が大きく変動することを見出した。
そこで、上記の目的を達成するために、この発明では、酸化物半導体層とソース電極及びドレイン電極とのレイアウトを工夫することにより、TFTの閾値電圧を調整するようにした。
具体的には、本発明は、同一基板上に電気特性が異なる複数種類のTFTを備えたTFT基板及びそれを備えた表示装置並びにTFT基板の製造方法を対象とし、以下の解決手段を講じたものである。
すなわち、第1の発明は、TFT基板であって、ベース基板と、該ベース基板上に設けられ、各々、ソース電極及びドレイン電極が酸化物半導体層に対して互いに離間して接続されて該酸化物半導体層における上記ソース電極及びドレイン電極の接続部分間にチャネル領域が形成された第1TFT及び第2TFTとを備えている。そして、上記第1TFTは、上記酸化物半導体層が上記ソース電極及びドレイン電極によってチャネル幅方向の全体に亘って覆われて閾値電圧が相対的に低い特性を有し、上記第2TFTは、上記酸化物半導体層が上記ソース電極及びドレイン電極の少なくとも一方からチャネル幅方向外側にはみ出して閾値電圧が相対的に高い特性を有していることを特徴とする。
この第1の発明では、第1TFTの酸化物半導体層が、ソース電極及びドレイン電極によってチャネル幅方向の全体に亘って部分的に覆われている。この第1TFTのレイアウトによると、ソース電極及びドレイン電極を形成した後における成膜処理やアニール処理などの工程において、酸化物半導体層が酸化作用及び還元作用を受けにくいので、酸化物半導体層のキャリア濃度(電子密度)の低下が抑えられ、閾値電圧が比較的低い状態に維持される。
他方、第2TFTの酸化物半導体層は、ソース電極及びドレイン電極の少なくとも一方からチャネル幅方向外側にはみ出している。この第2TFTのレイアウトによると、ソース電極及びドレイン電極を形成した後における成膜処理やアニール処理などの工程において、ソース電極及びドレイン電極からはみ出した酸化物半導体層部分が酸化作用や還元作用を受けやすいので、同作用の影響により第1TFTよりも酸化物半導体層のキャリア濃度(電子密度)が低下して、閾値電圧が比較的高い状態となる。
このように半導体層とソース電極及びドレイン電極のレイアウトの違いによって同一基板上に電気特性の異なる第1TFT及び第2TFTを作製できるので、新たなフォトマスクを追加せずに済み、これら第1TFTと第2TFTとの電気特性を異ならせるために特別な処理工程を行う必要もない。したがって、第1の発明の構成によれば、同一基板上に電気特性が異なる第1TFT及び第2TFTを備えたTFT基板を工程数を抑えて低コストに実現することができる。
第2の発明は、第1の発明のTFT基板において、上記第2TFTの酸化物半導体層は、上記ソース電極及びドレイン電極の両方からチャネル幅方向外側にはみ出していることを特徴とする。
この第2の発明によると、第2TFTの酸化物半導体層がソース電極及びドレイン電極の一方のみからはみ出している場合、換言すると他方の電極によって酸化物半導体層の一部がチャネル幅方向の全体に亘って覆われている場合に比べて、ソース電極及びドレイン電極から露出する酸化物半導体層部分が大面積になり、この露出面積の増大に応じて第2TFTの閾値電圧がより高くなる。これにより、第2TFTの閾値電圧を確実にプラスの電圧値にすることが可能になる。
第3の発明は、第1又は第2の発明のTFT基板において、上記第1TFT及び第2TFTの酸化物半導体層表面には、上記ソース電極及びドレイン電極よりも下層に上記チャネル領域を覆うようにエッチングストッパー膜が設けられていることを特徴とする。
この第3の発明では、第1TFT及び第2TFTが、酸化物半導体層のチャネル領域を覆うエッチングストッパー膜を備えた、いわゆるエッチストッパー型のTFTに構成されている。ここで、ソース電極及びドレイン電極は、酸化物半導体層がこれら両電極をウェットエッチングによりパターニングする場合に一般的に用いられる酸系のエッチング液に容易に溶解することから、ドライエッチングによりパターニングすることになる。その際、エッチストッパー型のTFTでは、酸化物半導体層のチャネル領域が、これを覆うエッチングストッパー膜によって保護され、プラズマ等に曝されることが防止される。これにより、チャネル領域がダメージを受けずに済み、第1TFT及び第2TFTの特性低下が防止されるので、これら両TFTに簡単な構成で優れた特性を発揮させることが可能になる。
第4の発明は、第3の発明のTFT基板において、上記第1TFTに設けられたエッチングストッパー膜は、当該第1TFTの酸化物半導体層を覆っており、該酸化物半導体層の両端部対応箇所に上記ソース電極及びドレイン電極と上記酸化物半導体層とを接続するコンタクトホールがそれぞれ形成され、上記第2TFTに設けられたエッチングストッパー膜も、当該第2TFTの酸化物半導体層を覆っており、該酸化物半導体層の両端部対応箇所に上記ソース電極及びドレイン電極と上記酸化物半導体層とを接続するコンタクトホールがそれぞれ形成されていることを特徴とする。
この第4の発明では、第1TFT及び第2TFTにおいて、エッチングストッパー膜がコンタクトホール対応箇所以外の酸化物半導体層部分を覆っている。これら第1TFT及び第2TFTのレイアウトによると、チャネル領域だけでなく酸化物半導体層の全体が、エッチングストッパー膜によって保護され、ソース電極及びドレイン電極をパターニングするためのドライエッチング等によりダメージを受けずに済む。これにより、第1TFT及び第2TFTの特性低下が可及的に防止される。
第5の発明は、第4の発明のTFT基板において、上記第1TFTに設けられたエッチングストッパー膜のコンタクトホールは、上記酸化物半導体層外縁から同層内側に間隔をあけて該酸化物半導体層対応箇所に収まるように形成され、上記第1TFTのソース電極及びドレイン電極の少なくとも一方は、上記コンタクトホールよりもチャネル幅方向外側の上記半導体層対応部分で且つ他方の電極側に該電極側に向かって突出する突出部を有していることを特徴とする。
この第5の発明では、ソース電極及びドレイン電極と酸化物半導体層との重なり合う部分の面積が突出部が設けられている分だけ増大し、これら両電極から露出する酸化物半導体層部分の面積が小面積になり、この露出面積の減少に応じて第1TFTの閾値電圧がより低くなる。これにより、第1TFTの閾値電圧を確実にマイナスの電圧値にすることが可能になる。
第6の発明は、第5の発明のTFT基板において、上記突出部は、上記コンタクトホールよりもチャネル幅方向両外側の各上記酸化物半導体層対応部分に一対に形成されており、上記一対の突出部間の間隔をDpとし、該各突出部を有する電極を上記酸化物半導体層に接続するコンタクトホールのチャネル幅方向の開口幅をW1としたとき、これら一対の突出部間の間隔Dp及びコンタクトホールの開口幅W1は、Dp>W1の関係を満たすように設定されていることを特徴とする。
この第6の発明では、一対の突出部がこれらを有する電極と酸化物半導体層との接続部分よりも他方の電極側に突出しており、エッチングストッパー膜を介して酸化物半導体層上に設けられている。このため、一対の突出部は、これらを有する電極に所定の電圧が印加されたときには、実質的にトップゲートとして機能する。
このとき、仮に、一対の突出部間の間隔Dp及びコンタクトホールの開口幅W1がDp≦W1の関係を満たすように設定されていると、チャネル領域の上部、つまりエッチングストッパー膜側に余計な電流が流れてしまう。このため、各コンタクトホール対応箇所のソース電極及びドレイン電極間の距離を基準として第1TFTのレイアウトを設計した場合には、所望のTFT特性から外れるおそれがある。
これに対して、本発明の如く、一対の突出部間の間隔Dp及びコンタクトホールの開口幅WがDp>W1の関係を満たすように設定されていれば、チャネル領域の上部に余計な電流が流れることが抑えられる。これにより、各コンタクトホール対応箇所のソース電極及びドレイン電極間の距離を基準として第1TFTのレイアウトを設計した場合にも、当該第1TFTについて、閾値電圧を確実にマイナスの電圧値にしながら、所望のTFT特性を得ることができる。
第7の発明は、第5又は第6の発明のTFT基板において、上記突出部は、上記第1TFTのソース電極及びドレイン電極の両方に形成されていることを特徴とする。
この第7の発明によると、ソース電極及びドレイン電極から露出する酸化物半導体層部分の面積が可及的に小面積になり、第1TFTの閾値電圧をよりいっそう確実にマイナスの電圧値にすることが可能になる。
第8の発明は、第4~第7の発明のいずれか1つのTFT基板において、上記第2TFTに設けられたエッチングストッパー膜のコンタクトホールは、上記酸化物半導体層外縁から同層内側に間隔をあけて該酸化物半導体層対応箇所に収まるように形成され、上記第2TFTのソース電極及びドレイン電極の少なくとも一方には、上記コンタクトホールよりもチャネル幅方向外側の上記酸化物半導体層対応部分で且つ他方の電極側に該電極側が一部切り欠かれた切欠部が形成されていることを特徴とする。
この第8の発明では、ソース電極及びドレイン電極と酸化物半導体層との重なり合う部分の面積が切欠部が設けられている分だけ減少し、これら両電極から露出する酸化物半導体層部分の面積が大面積になり、この露出面積の増大に応じて第2TFTの閾値電圧がより高くなる。これにより、第2TFTの閾値電圧を確実にプラスの電圧値にすることが可能になる。
第9の発明は、第8の発明のTFT基板において、上記切欠部は、上記コンタクトホールよりもチャネル幅方向両外側の各上記酸化物半導体層対応部分に一対に形成されており、上記一対の切欠部間の間隔をDnとし、該各切欠部が形成された電極を上記酸化物半導体層に接続するコンタクトホールのチャネル幅方向の開口幅をW2としたとき、これら一対の切欠部間の間隔Dn及びコンタクトホールの開口幅W2は、Dn>W2の関係を満たすように設定されていることを特徴とする。
この第9の発明では、一対の切欠部がこれらを有する電極と酸化物半導体層との接続部分よりも他方の電極側に形成されており、これら一対の切欠部間には他方の電極側に突出した突出部がエッチングストッパー膜を介して酸化物半導体層上に設けられている。この切欠部間の突出部は、これを有する電極に所定の電圧が印加されたときには、実質的にトップゲートとして機能する。
このとき、仮に、切欠部間の間隔Dn及びコンタクトホールの開口幅W2がDn≦W2の関係を満たすように設定されていると、チャネル領域の上部、つまりエッチングストッパー膜側に流れる電流が低下してしまう。このため、各コンタクトホール対応箇所におけるソース電極及びドレイン電極間の距離を基準として第2TFTのレイアウトを設計した場合には、所望のTFT特性から外れるおそれがある。
これに対して、本発明の如く、一対の切欠部間の間隔Dn及びコンタクトホールの開口幅W2がDp>W2の関係を満たすように設定されていれば、チャネル領域の上部に流れる電流の低下が抑えられる。これにより、各コンタクトホール対応箇所のソース電極及びドレイン電極間の距離を基準として第2TFTのレイアウトを設計した場合にも、当該第2TFTについて、閾値電圧を確実にプラスの電圧値にしながら、所望のTFT特性を得ることができる。
第10の発明は、第8又は第9の発明のTFT基板において、上記切欠部は、上記第2TFTのソース電極及びドレイン電極の両方に形成されていることを特徴とする。
この第10の発明によると、ソース電極及びドレイン電極から露出する酸化物半導体層部分の面積が可及的に大面積になり、第2TFTの閾値電圧をよりいっそう確実にプラスの電圧値にすることが可能になる。
第11の発明は、第1又は第2の発明のTFT基板において、上記第1TFT及び第2TFTのソース電極及びドレイン電極は、上記酸化物半導体層に一部を直接重ねて接続されていることを特徴とする。
この第11の発明では、第1TFT及び第2TFTがエッチングストッパー膜を備えない、いわゆるチャネルエッチ型のTFTに構成されている。このチャネルエッチ型のTFTは、エッチングストッパー膜がない分だけフォトマスクの枚数が少なくて済み、エッチストッパー型のTFTに比べて製造コストの面で有利である。
第12の発明は、第1~第11の発明のいずれか1つのTFT基板において、上記各酸化物半導体層は、インジウムガリウムスズ酸化物(Indium Gallium Zinc Oxide;以下、In-Ga-Zn-Oと称する)系の酸化物半導体によって形成されていることを特徴とする。
この第12の発明によると、各酸化物半導体層がIn-Ga-Zn-O系の酸化物半導体からなるので、第1TFT及び第2TFTにおいて、高移動度、高信頼性及び低オフ電流という良好な特性が具体的に得られる。
第13の発明は、第1~第12の発明のいずれか1つに記載のTFT基板において、上記ベース基板上に互いに平行に延びるように設けられた複数のゲート配線と、上記各ゲート配線と交差する方向に互いに平行に延びるように設けられた複数のソース配線と、上記ゲート配線と上記ソース配線の交差部に設けられ、対応する交差部をなすゲート配線及びソース配線に接続された画素用TFTと、上記ゲート配線又はソース配線に電気的に接続され、上記画素用TFTを駆動させるための駆動回路用TFTを有する駆動回路とをさらに備えている。そして、上記画素用TFTは、上記第1TFTによって構成され、上記駆動回路用TFTは、上記第2TFTによって構成されていることを特徴とする。
この第13の発明では、画素用TFTは、閾値電圧が相対的に低い第1TFTによって構成されている。第1TFTは、閾値電圧をマイナスの電圧値に調整すれば、S値が小さく、オン電流値が十分な大きな特性を有するので、画素用TFTに好適に採用することができる。一方、駆動回路用TFTは、閾値電圧が相対的に高い第2TFTによって構成されている。第2TFTは、閾値電圧をプラスの電圧値に調整すれば、駆動回路の動作信頼性を確保できると共に、ノーマリーオン状態となることを回避して低消費電力化を図ることができるので、駆動回路用TFTとして好適に採用することができる。
第14の発明は、表示装置であって、第1~第13の発明のいずれか1つのTFT基板を備えることを特徴とする。
この第14の発明によると、第1~第13の発明のTFT基板が同一基板上に電気特性が異なる第1TFT及び第2TFTを備えたTFT基板を工程数を抑えて低コストに実現可能であるという優れた特性を備えているので、これを備えた表示装置も全体として工程数を抑えて低コストに実現することができる。
第15の発明は、第1の発明のTFT基板を製造する方法であって、上記ベース基板上に第1導電膜を成膜し、該第1導電膜を第1のフォトマスクを用いてパターニングすることにより、複数のゲート電極を形成するゲート電極形成工程と、上記ゲート電極を覆うようにゲート絶縁膜を成膜するゲート絶縁膜成膜工程と、上記ゲート絶縁膜上に酸化物半導体からなる半導体膜を成膜し、該半導体膜を第2のフォトマスクを用いてパターニングすることにより、上記ゲート絶縁膜を介して対応する上記ゲート電極に跨るように上記酸化物半導体層を形成する半導体層形成工程と、上記酸化物半導体層を覆うようにエッチングストッパー膜を成膜し、該エッチングストッパー膜を第3のフォトマスクを用いてパターニングすることにより、上記酸化物半導体層におけるチャネル領域形成箇所の両外側部分を少なくとも一部露出させるように当該エッチングストッパー膜にコンタクトホールを形成するエッチングストッパー膜形成工程と、上記エッチングストッパー膜を覆うように第2導電膜を成膜し、該第2導電膜を第4のフォトマスクを用いてパターニングすることにより、上記ソース電極及びドレイン電極を形成するソース・ドレイン電極形成工程とを含んでいる。そして、上記ソース・ドレイン電極形成工程では、上記第1TFTを構成するソース電極及びドレイン電極を、当該第1TFTを構成する酸化物半導体層の両端部をチャネル幅方向の全体に亘って覆うように形成し、且つ、上記第2TFTを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2TFTを構成する酸化物半導体層の端部に対してチャネル幅方向の一部に重ねるように形成し、当該電極から上記酸化物半導体層がチャネル幅方向にはみ出した状態にすることを特徴とする。
この第15の発明では、第1のフォトマスクを用いてゲート電極が、第2のフォトマスクを用いて酸化物半導体層が、第3のフォトマスクを用いてエッチングストッパー膜が、第4のフォトマスクを用いてソース電極及びドレイン電極がそれぞれ形成され、計4枚のフォトマスクを用いて第1TFT及び第2TFTがエッチストッパー型のTFTとして作製される。
そして、第1TFTを構成するソース電極及びドレイン電極を、当該第1TFTを構成する酸化物半導体層の両端部をチャネル幅方向の全体に亘って覆うように形成するので、その後における成膜処理やアニール処理などの工程において、酸化物半導体層が酸化作用及び還元作用を受けにくい。これによって、酸化物半導体層のキャリア濃度(電子密度)の低下が抑えられ、閾値電圧が比較的低い状態に維持される。
さらに、第2TFTを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2TFTを構成する酸化物半導体層の端部に対してチャネル幅方向の一部に重ねるように形成し、当該電極から酸化物半導体層がチャネル幅方向にはみ出した状態にするので、その後における成膜処理やアニール処理などの工程において、ソース電極及びドレイン電極からはみ出した酸化物半導体層部分が酸化作用や還元作用を受けやすい。これによって、第1TFTよりも酸化物半導体層のキャリア濃度(電子密度)が低下して、閾値電圧が比較的高い状態となる。
このように、第15の発明によれば、同一基板上に電気特性が異なるエッチストッパー型の第1TFT及び第2TFTを備える第1の発明のTFT基板を低コストに製造することができる。
第16の発明は、第1の発明のTFT基板を製造する方法であって、上記ベース基板上に第1導電膜を成膜し、該第1導電膜を第1のフォトマスクを用いてパターニングすることにより、複数のゲート電極を形成するゲート電極形成工程と、上記ゲート電極を覆うようにゲート絶縁膜を成膜するゲート絶縁膜成膜工程と、上記ゲート絶縁膜上に酸化物半導体からなる半導体膜を成膜し、該半導体膜を第2のフォトマスクを用いてパターニングすることにより、上記ゲート絶縁膜を介して対応する上記ゲート電極に跨るように上記酸化物半導体層を形成する半導体層形成工程と、上記酸化物半導体層を覆うように第2導電膜を成膜し、該第2導電膜を第3のフォトマスクを用いてパターニングすることにより、上記ソース電極及びドレイン電極を形成するソース・ドレイン電極形成工程とを含んでいる。そして、上記ソース・ドレイン電極形成工程では、上記第1TFTを構成するソース電極及びドレイン電極を、当該第1TFTを構成する酸化物半導体層の両端側をチャネル幅方向の全体に亘って覆うように形成し、且つ、上記第2TFTを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2TFTを構成する酸化物半導体層のチャネル幅方向の一部に重ねるように形成し、当該電極から上記酸化物半導体層がチャネル幅方向にはみ出した状態にすることを特徴とする。
この第16の発明では、第1のフォトマスクを用いてゲート電極が、第2のフォトマスクを用いて酸化物半導体層が、第3のフォトマスクを用いてソース電極及びドレイン電極がそれぞれ形成され、計3枚のフォトマスクを用いて第1TFT及び第2TFTがチャネルエッチ型のTFTとして作製される。
そして、第1TFTを構成するソース電極及びドレイン電極を、当該第1TFTを構成する酸化物半導体層の両端部をチャネル幅方向の全体に亘って覆うように形成するので、その後における成膜処理やアニール処理などの工程において、酸化物半導体層が酸化作用及び還元作用を受けにくい。これによって、酸化物半導体層のキャリア濃度(電子密度)の低下が抑えられ、閾値電圧が比較的低い状態に維持される。
さらに、第2TFTを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2TFTを構成する酸化物半導体層の端部に対してチャネル幅方向の一部に重ねるように形成し、当該電極から酸化物半導体層がチャネル幅方向にはみ出した状態にするので、その後における成膜処理やアニール処理などの工程において、ソース電極及びドレイン電極からはみ出した酸化物半導体層部分が酸化作用や還元作用を受けやすい。これによって、第1TFTよりも酸化物半導体層のキャリア濃度(電子密度)が低下して、閾値電圧が比較的高い状態となる。
このように、第16の発明によれば、同一基板上に電気特性が異なるチャネルエッチ型の第1TFT及び第2TFTを備える第1の発明のTFT基板を低コストに製造することができる。
第17の発明は、第15又は第16の発明のTFT基板の製造方法において、上記ソース電極及びドレイン電極が形成された基板を、酸素を含む雰囲気中でアニール処理することを特徴とする。
TFT基板の製造工程においては、ソース電極及びドレイン電極から露出するチャネル領域を含む酸化物半導体層部分が、これら両電極を形成する際、及びこれら両電極を形成した後の処理工程でプラズマに曝された場合、該プラズマの熱により酸化物半導体層から酸素が脱離するなどして、酸素欠陥が発生しやすい。そうなると、オフ電流の上昇、電子移動度の低下、閾値電圧の上昇などを招いて、せっかく酸化半導体層を用いてもTFTの特性が低下してしまう。これに対し、この第17の発明では、ソース電極及びドレイン電極形成後の基板を酸素を含む雰囲気中でアニール処理するので、これにより、酸化物半導体層の酸素欠陥が修復され、該酸化物半導体層を用いた第1TFT及び第2TFTの特性を安定化させることができる。
本発明によれば、第1TFTは、酸化物半導体層の両端側がソース電極及びドレイン電極によりチャネル幅方向の全体に亘って覆われて閾値電圧が相対的に高い特性を有し、他方、第2TFTは、酸化物半導体層がソース電極及びドレイン電極の少なくとも一方からチャネル幅方向外側にはみ出して閾値電圧が相対的に低い特性を有しているので、同一基板上に電気特性が異なる第1TFT及び第2TFTを備えたTFT基板及びこれを備えた表示装置を工程数を抑えて低コストに実現することができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
《発明の実施形態1》
この実施形態1では、本発明に係るTFT基板を備える表示装置の一例として、アクティブマトリクス駆動方式の液晶表示装置Sについて説明する。
この実施形態1では、本発明に係るTFT基板を備える表示装置の一例として、アクティブマトリクス駆動方式の液晶表示装置Sについて説明する。
-液晶表示装置Sの構成-
液晶表示装置Sの構成を図1及び図2に示す。図1は、液晶表示装置Sの概略平面図である。図2は、図1のII-II線における断面構造を示す断面図である。
液晶表示装置Sの構成を図1及び図2に示す。図1は、液晶表示装置Sの概略平面図である。図2は、図1のII-II線における断面構造を示す断面図である。
液晶表示装置Sは、図1及び図2に示すように、互いに対向するように配置されたTFT基板1及び対向基板2と、これら両基板1,2の外周縁部同士を接着する枠状のシール材3と、TFT基板1と対向基板2との間にシール材3により囲まれて封入された液晶層4とを備えている。
この液晶表示装置Sは、TFT基板1と対向基板2とが重なる領域であってシール材3の内側、つまり液晶層4が設けられた領域に画像表示を行う表示領域Dを有している。また、液晶表示装置Sは、該表示領域Dの周囲に非表示領域である矩形枠状の額縁領域Fを有している。
この額縁領域Fの一辺側(図1で下辺側)には、TFT基板1が対向基板2から突出してその表面が外部に露出した外部回路接続用の端子領域1aが設けられている。この端子領域1aには、FPC(Flexible Printed Circuit)などの配線基板(不図示)が実装されており、該配線基板を介して外部回路から表示すべき画像に応じた画像データを含む表示用信号が入力されるようになっている。
TFT基板1及び対向基板2は、例えば矩形状に形成され、図2に示すように、互いに対向する内側表面に配向膜5,6がそれぞれ設けられていると共に、外側表面に偏光板7,8がそれぞれ設けられている。TFT基板1上の偏光板7と対向基板2上の偏光板8とは、透過軸が90°異なっている。液晶層4は、電気光学特性を有するネマチックの液晶材料などにより構成されている。
液晶表示装置Sにおける回路構成のブロック図を図3に示す。
液晶表示装置Sは、図3に示すように、上記表示領域Dを構成する画素アレイ11と、該画素アレイ11に対して行方向(図3で横方向)に互いに平行に延びるように設けられた複数のゲート配線12と、該各ゲート配線12に沿って互いに平行に延びるように設けられた複数の補助容量配線13と、これら各ゲート配線12及び各補助容量配線13に直交する列方向(図3で縦方向)に互いに平行に延びるように設けられた複数のソース配線14と、上記各ゲート配線12及び各補助容量配線13の一端側が接続されたゲートドライバ/CSドライバ15と、上記各ソース配線14の一端側が接続されたソースドライバ16とを備えている。
上記画素アレイ11は、複数の画素Pがマトリクス状に配列されてなる。各画素Pは、赤色(R)、緑色(G)及び青色(B)のサブ画素p1を一組として構成されている。これら各サブ画素p1は、ゲート配線12、補助容量配線13及びソース配線14によって区画されている。また、各ゲート配線12及び各補助容量配線13と各ソース配線14とは、それらの間に後述するゲート絶縁膜22が介在していることにより互いに絶縁された状態となっている。
なお、図3では3色のサブ画素p1(R),p1(G),p1(B)が並置方式でストライプ状に並ぶ様子を示しているが、これら3色のサブ画素p1(R),p1(G),p1(B)は、デルタ配列やモザイク配列(ダイアゴナル配列)、その他の並べ方であっても、本特許の趣旨に影響はない。
1サブ画素p1の等価回路を図4に示す。
各サブ画素p1には、図4に示すように、画素用TFT20Aと、該画素用TFT20Aに接続された画素電極17と、該画素電極17及び補助容量配線13に接続された補助容量Csと、画素電極17と後述する共通電極40との間に形成された液晶容量Clcとを備えている。
画素用TFT20Aは、各ゲート配線12と各ソース配線14との交差部毎に設けられ、対応する交差部をなすゲート配線12及びソース配線14に接続されている。画素電極17は、ITO(Indium Tin Oxide)又はIZO(Indium Zinc Oxide)などの透明導電酸化物からなる。
また、上記ゲートドライバ/CSドライバ15は、各ゲート配線12及び各補助容量配線13を介して各サブ画素p1の駆動を制御する回路である。上記ソースドライバ16は、各ソース配線14を介して各サブ画素p1へのソース信号の入力を制御する回路である。これらゲートドライバ/CSドライバ15及びソースドライバ16は、上記各画素用TFT20Aを駆動させるための駆動回路用TFT20Bをそれぞれ備えており、本発明の駆動回路を構成している。
<TFT基板1の構成>
TFT基板1は、ベース基板であるガラス基板などの絶縁性基板10を備え、該絶縁性基板10上に、上記画素用TFT20A、画素電極17、保持容量Cs、ゲート配線12、補助容量配線13、ソース配線14、ゲートドライバ/CSドライバ15及びソースドライバ16が設けられており、同一基板10上に電気特性が異なる画素用TFT20A及び駆動回路用TFT20Bを備えた構成となっている。
TFT基板1は、ベース基板であるガラス基板などの絶縁性基板10を備え、該絶縁性基板10上に、上記画素用TFT20A、画素電極17、保持容量Cs、ゲート配線12、補助容量配線13、ソース配線14、ゲートドライバ/CSドライバ15及びソースドライバ16が設けられており、同一基板10上に電気特性が異なる画素用TFT20A及び駆動回路用TFT20Bを備えた構成となっている。
<画素用TFT20Aの構成>
上記画素用TFT20Aの構成を図5~図7に示す。図5は、画素用TFT20Aの概略平面図である。図6は、図5のVI-VI線における断面構造を示す断面図である。図7は、図5のVII-VII線における断面構造を示す断面図である。
上記画素用TFT20Aの構成を図5~図7に示す。図5は、画素用TFT20Aの概略平面図である。図6は、図5のVI-VI線における断面構造を示す断面図である。図7は、図5のVII-VII線における断面構造を示す断面図である。
画素用TFT20Aは、ボトムゲート構造を有し、図5及び図6に示すように、絶縁性基板10上に設けられたゲート電極21aと、該ゲート電極21aを覆うように設けられたゲート絶縁膜22と、該ゲート絶縁膜22を介してゲート電極21aに跨るように設けられた酸化物半導体層23aと、該酸化物半導体層23aに対して互いに離間して接続されたソース電極25a及びドレイン電極26aとを備えている。
この画素用TFT20Aは、保護絶縁膜27によって覆われている。この保護絶縁膜27上には、図示しないが、上記画素電極17が形成されており、該画素電極17は当該保護絶縁膜27に形成されたコンタクトホールを介して画素用TFT20Aのドレイン電極26aに接続されている。画素用TFT20Aは、本発明の第1TFTによって構成されている。
上記ゲート電極21aは、対応するゲート配線12に接続されているか、又は対応するゲート配線12の一部により構成されている。上記ゲート絶縁膜22は、酸化シリコン(SiO2)又は窒化シリコン(SiN)からなり、基板略全面に形成されて後述の駆動回路用TFT20Bのゲート絶縁膜22と共通の膜で構成されている。上記酸化物半導体層23aは、In-Ga-Zn-O系の酸化物半導体からなる。これにより、画素用TFT20Aは、高移動度、高信頼性及び低オフ電流という良好な特性を有している。
また、本実施形態の画素用TFT20Aは、エッチストッパー型のTFTに構成されており、図6に示すように、酸化物半導体層23aにおけるソース電極25a及びドレイン電極26aの接続部分間の表面にエッチングストッパー膜24が設けられている。このエッチングストッパー膜24は、酸化物半導体層23aにおけるソース電極25a及びドレイン電極26aの接続部分以外を覆うように形成されている。
エッチングストッパー膜24における酸化物半導体層23aの両端部対応箇所には、同半導体層23aに達するコンタクトホール24aがそれぞれ形成されている。これら各コンタクトホール24aは、図5に示すように、酸化物半導体層23a外縁から同層内側に間隔をあけて該酸化物半導体層23a対応箇所に収まるように形成されている。
上記ソース電極25a及びドレイン電極26aは、エッチングストッパー膜24上に形成され、それぞれコンタクトホール24aを介して酸化物半導体層23aに接続されている。この酸化物半導体層23aにおけるソース電極25a及びドレイン電極26aの接続部分間には、チャネル領域23cが形成されている。本実施形態における画素用TFT20Aのソース電極25a及びドレイン電極26aの対向面はそれぞれ面一に形成されている。
そして、画素用TFT20Aのソース電極25a及びドレイン電極26aは、図5及び図7に示すように、酸化物半導体層23aの両端部をチャネル幅方向Dcwの全体に亘って覆っている。この画素用TFT20Aのレイアウトでは、酸化物半導体層23aの両端部がソース電極25a及びドレイン電極26aによってチャネル幅方向Dcwの全体に亘って覆われているので、後に詳述する、ソース電極25a及びドレイン電極26aを形成した後に行われる成膜処理やアニール処理などの工程において、酸化物半導体層23aが酸化作用及び還元作用を受けにくい。これによって、酸化物半導体層23aのキャリア濃度(電子密度)の低下を抑えて、同TFT20Aの閾値電圧がマイナスの電圧値に調整されている。
<駆動回路用TFT20Bの構成>
上記駆動回路用TFT20Bの構成を図8~図10に示す。図8は、駆動回路用TFT20Bの概略平面図である。図9は、図8のIX-IX線における断面構造を示す断面図である。図10は、図8のX-X線における断面構造を示す断面図である。
上記駆動回路用TFT20Bの構成を図8~図10に示す。図8は、駆動回路用TFT20Bの概略平面図である。図9は、図8のIX-IX線における断面構造を示す断面図である。図10は、図8のX-X線における断面構造を示す断面図である。
駆動回路用TFT20Bも、上記画素用TFT20Aと同様なボトムゲート構造を有し、図8及び図9に示すように、絶縁性基板10上に設けられたゲート電極21bと、該ゲート電極21bを覆うように設けられたゲート絶縁膜22と、該ゲート絶縁膜22を介してゲート電極21bに跨るように設けられた酸化物半導体層23bと、該酸化物半導体層23bに対して互いに離間して接続されたソース電極25b及びドレイン電極26bとを備え、保護絶縁膜27によって覆われている。上記酸化物半導体層23bは、In-Ga-Zn-O系の酸化物半導体からなる。これにより、駆動回路用TFT20Bも、高移動度、高信頼性及び低オフ電流という良好な特性を有している。
また、駆動回路用TFT20Bも、上記画素用TFT20Aと同様なエッチストッパー型のTFTに構成されており、酸化物半導体層23bにおけるソース電極25b及びドレイン電極26bの接続部分以外を覆うようにコンタクトホール24bを有するエッチングストッパー膜24が設けられている。上記ソース電極25b及びドレイン電極26bは、エッチングストッパー膜24上に形成され、それぞれコンタクトホール24bを介して酸化物半導体層23bに接続されている。この酸化物半導体層23bにおけるソース電極25b及びドレイン電極26bの接続部分間には、チャネル領域23cが形成されている。本実施形態における駆動回路用TFT20Bのソース電極25b及びドレイン電極26bの対向面もそれぞれ面一に形成されている。
そして、駆動回路用TFT20Bのソース電極25b及びドレイン電極26bは、図8及び図10に示すように、酸化物半導体層23bの両端部にチャネル幅方向Dcwの外縁から同方向内側に間隔をあけて一部を重ねるように形成されていて、駆動回路用TFT20Bの酸化物半導体層23bにおけるチャネル幅方向Dcwの両外側部分は、ソース電極25b及びドレイン電極26bからはみ出している。この駆動回路用TFT20Bのレイアウトでは、酸化物半導体層23bがソース電極25b及びドレイン電極26bからチャネル幅方向Dcw両外側にはみ出しているので、後に詳述する、ソース電極25b及びドレイン電極26bを形成した後に行われる成膜処理やアニール処理などの工程において、上記画素用TFT20Aに比べて酸化物半導体層23bが酸化作用や還元作用を受けやすい。これによって、酸化物半導体層23bのキャリア濃度(電子密度)を低下させて、同TFT20Bの閾値電圧がプラスの電圧値に調整されている。
このように、TFT基板1では、画素用TFT20A及び駆動回路用TFT20Bが、酸化物半導体層23a,23bとソース電極25a,25b及びドレイン電極26a,26bとのレイアウトの違いによって同一基板10上に電気特性を異ならせて形成されている。
<対向基板2の構成>
対向基板2は、図示しないが、ベース基板であるガラス基板などの絶縁性基板と、該絶縁性基板上に上記ゲート配線12及びソース配線14に対応するように格子状に設けられたブラックマトリクスと、該ブラックマトリクスの格子間に各色のサブ画素p1に対応させて周期的に配列するように設けられた例えば赤色層、緑色層及び青色層を含む複数色のカラーフィルタと、これらブラックマトリクス及び各カラーフィルタを覆うように設けられた共通電極40と、該共通電極40上に柱状に設けられたフォトスペーサとを備えている。
対向基板2は、図示しないが、ベース基板であるガラス基板などの絶縁性基板と、該絶縁性基板上に上記ゲート配線12及びソース配線14に対応するように格子状に設けられたブラックマトリクスと、該ブラックマトリクスの格子間に各色のサブ画素p1に対応させて周期的に配列するように設けられた例えば赤色層、緑色層及び青色層を含む複数色のカラーフィルタと、これらブラックマトリクス及び各カラーフィルタを覆うように設けられた共通電極40と、該共通電極40上に柱状に設けられたフォトスペーサとを備えている。
<液晶表示装置Sの作動>
上記構成の液晶表示装置Sでは、各サブ画素p1において、ゲートドライバ/CSドライバ15からゲート信号がゲート配線12を介してゲート電極21aに送られて、画素用TFT20Aがオン状態になったときに、ソースドライバ16からソース信号がソース配線14を介してソース電極25aに送られて、酸化物半導体層23a及びドレイン電極26aを介して、所定の電荷が画素電極17に書き込まれると共に保持容量Csに充電される。このとき、TFT基板1の各画素電極17と対向基板2の共通電極40との間において電位差が生じ、液晶層4に所定の電圧が印加される。また、各画素用TFT20Aがオフ状態のとき時には、保持容量Csに充電された電荷よってこれに対応する画素電極17に書き込まれた電位の低下が抑制される。そして、液晶表示装置Sでは、各サブ画素p1において、液晶層4に印加する電圧の大きさによって液晶分子の配向状態を変えることにより、液晶層4の光透過率を調整して画像が表示される。
上記構成の液晶表示装置Sでは、各サブ画素p1において、ゲートドライバ/CSドライバ15からゲート信号がゲート配線12を介してゲート電極21aに送られて、画素用TFT20Aがオン状態になったときに、ソースドライバ16からソース信号がソース配線14を介してソース電極25aに送られて、酸化物半導体層23a及びドレイン電極26aを介して、所定の電荷が画素電極17に書き込まれると共に保持容量Csに充電される。このとき、TFT基板1の各画素電極17と対向基板2の共通電極40との間において電位差が生じ、液晶層4に所定の電圧が印加される。また、各画素用TFT20Aがオフ状態のとき時には、保持容量Csに充電された電荷よってこれに対応する画素電極17に書き込まれた電位の低下が抑制される。そして、液晶表示装置Sでは、各サブ画素p1において、液晶層4に印加する電圧の大きさによって液晶分子の配向状態を変えることにより、液晶層4の光透過率を調整して画像が表示される。
-液晶表示装置Sの製造方法-
次に、上記液晶表示装置Sを製造する方法について、一例を挙げて説明する。
次に、上記液晶表示装置Sを製造する方法について、一例を挙げて説明する。
液晶表示装置Sを製造するには、TFT基板1及び対向基板2をそれぞれ製造し、これら両基板1,2を、その表面に印刷法などにより配向膜5,6を形成した後に、シール材3を介して貼り合わせると共に、両基板1,2の間に液晶層4を封入することにより貼合パネルを作製する。そして、この貼合パネルの外側両面に偏光板7,8を貼り付け、端子領域1aに対しFPCなどの配線基板を実装することによって、液晶表示装置Sが完成する。
本発明に係る液晶表示装置Sは、TFT基板1の構成及びその製造方法に特徴があるので、このTFT基板1の製造方法について、図11~図15を参照しながら、以下に詳述する。
図11は、ゲート電極形成工程を示す断面図である。図12は、ゲート絶縁膜成膜工程を示す断面図である。図13は、半導体層形成工程を示す断面図である。図14は、エッチングストッパー膜形成工程を示す断面図である。図15は、ソース・ドレイン電極形成工程を示す断面図である。なお、これら図11~図15では、図中左側から順に、図6並びに図9、図7及び図10対応箇所を示している。また、図6及び図9対応箇所を示す図中左側部分においては、画素用TFT20Aと駆動回路用TFT20Bの構造が同じであるので、駆動回路用TFT20Bに関する参照符合を括弧書きで記す。
TFT基板1の製造方法は、ゲート電極形成工程と、ゲート絶縁膜成膜工程と、半導体層形成工程と、エッチングストッパー膜形成工程と、ソース・ドレイン電極形成工程と、保護絶縁膜形成工程と、画素電極形成工程と、熱処理工程とを含む。
<ゲート電極形成工程>
まず、予め準備したガラス基板などの絶縁性基板10上に、スパッタリング法により、図11(a)に示すように、第1導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜50(例えば厚さ100nm~300nm程度)を成膜する。この金属膜50としては、単層の金属膜に限らず、例えばチタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
まず、予め準備したガラス基板などの絶縁性基板10上に、スパッタリング法により、図11(a)に示すように、第1導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜50(例えば厚さ100nm~300nm程度)を成膜する。この金属膜50としては、単層の金属膜に限らず、例えばチタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
次いで、この金属膜50を、第1のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、金属膜50表面に対して、第1のフォトマスクを用いてゲート配線12、ゲート電極21a,21b及び補助容量配線13の形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてドライエッチングの一種である塩素系ガスを用いた反応性イオンエッチング(Reactive Ion Etching;以下、RIEと称する)を行い、その後に、レジスト剥離液による上記レジストパターンの剥離及び洗浄を行う。これにより、図11(b)に示すようにゲート電極21a,21bを形成し、それと同時にゲート配線12及び補助容量配線13を形成する。
<ゲート絶縁膜成膜工程>
ゲート配線12、ゲート電極21a,21b及び補助容量配線13が形成された基板上に、プラズマCVD(ChemicalVapor Deposition)法により、200℃~400℃程度の温度にて酸化シリコン膜又は窒化シリコン膜(例えば厚さ300nm~400nm程度)を成膜して、図12に示すようにゲート絶縁膜22とする。このゲート絶縁膜22は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
ゲート配線12、ゲート電極21a,21b及び補助容量配線13が形成された基板上に、プラズマCVD(ChemicalVapor Deposition)法により、200℃~400℃程度の温度にて酸化シリコン膜又は窒化シリコン膜(例えば厚さ300nm~400nm程度)を成膜して、図12に示すようにゲート絶縁膜22とする。このゲート絶縁膜22は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
<半導体層形成工程>
ゲート絶縁膜22が形成された基板上に、スパッタリング法により、図13(a)に示すように、In-Ga-Zn-O系の酸化物半導体からなる半導体膜51を成膜する。具体的には、インジウム(In)、ガリウム(Ga)及び亜鉛(Zn)を含む酸化物(In2O3:Ga2O3:ZnO=1:1:1)をターゲットとし、不活性アルゴンガス(Ar)を100sccm~300sccm、及び酸素ガス(O2)を5sccm~20sccmそれぞれ導入し、これらの混合ガス雰囲気下で200℃~400℃にて半導体膜51(例えば厚さ40nm~50nm程度)を成膜する。ここで、「sccm」は、「Standard Cubic Centimeters per Minute」という意味であり、1分間当たり流量(cc)を示す単位である。なお、上述したガス流量の値は、一例であり、チャンバーや基板のサイズなどに依存するものである。
ゲート絶縁膜22が形成された基板上に、スパッタリング法により、図13(a)に示すように、In-Ga-Zn-O系の酸化物半導体からなる半導体膜51を成膜する。具体的には、インジウム(In)、ガリウム(Ga)及び亜鉛(Zn)を含む酸化物(In2O3:Ga2O3:ZnO=1:1:1)をターゲットとし、不活性アルゴンガス(Ar)を100sccm~300sccm、及び酸素ガス(O2)を5sccm~20sccmそれぞれ導入し、これらの混合ガス雰囲気下で200℃~400℃にて半導体膜51(例えば厚さ40nm~50nm程度)を成膜する。ここで、「sccm」は、「Standard Cubic Centimeters per Minute」という意味であり、1分間当たり流量(cc)を示す単位である。なお、上述したガス流量の値は、一例であり、チャンバーや基板のサイズなどに依存するものである。
続いて、この半導体膜51を、第2のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、半導体膜51表面に対して、第2のフォトマスクを用いて各酸化物半導体層23a,23bの形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてシュウ酸にてウェットエッチングを行い、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、図13(b)に示すように、各酸化物半導体層23a,23bを形成する。
<エッチングストッパー膜形成工程>
酸化物半導体層23a,23bが形成された基板上に、スパッタリング法又はプラズマCVD法により、図14(a)に示すように、酸化シリコン膜又は窒化シリコン膜(例えば50nm~200nm程度)を成膜し、これをエッチングストッパー膜24とする。
酸化物半導体層23a,23bが形成された基板上に、スパッタリング法又はプラズマCVD法により、図14(a)に示すように、酸化シリコン膜又は窒化シリコン膜(例えば50nm~200nm程度)を成膜し、これをエッチングストッパー膜24とする。
次いで、このエッチングストッパー膜24を、第3のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、エッチングストッパー膜24表面に対して、第3のフォトマスクを用いてコンタクトホール24a,24bの形成箇所以外の領域にレジストパターンを形成し、該レジストパターンをマスクとしてRIEを行い、その後に、レジスト剥離液による上記レジストパターンの剥離及び洗浄を行う。これにより、図14(b)に示すように、エッチングストッパー膜24に各コンタクトホール24a,24bを形成する。
<ソース・ドレイン電極形成工程>
エッチングストッパー膜24が形成された基板上に、スパッタリング法により、図15(a)に示すように、第2導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜52(例えば厚さ100nm~300nm程度)を成膜する。この金属膜52は、例えば、チタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
エッチングストッパー膜24が形成された基板上に、スパッタリング法により、図15(a)に示すように、第2導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜52(例えば厚さ100nm~300nm程度)を成膜する。この金属膜52は、例えば、チタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
次いで、この金属膜52を、第4のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、金属膜52表面に対して、第4のフォトマスクを用いてソース配線14、ソース電極25a,25b及びドレイン電極26a,26bの形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてRIEを行い、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、図15(b)に示すようにソース電極25a,25b及びドレイン電極26a,26bを形成し、それと同時にソース配線14を形成する。
このとき、画素用TFT20Aを構成するソース電極25a及びドレイン電極26aを、当該画素用TFT20Aを構成する酸化物半導体層23aの両端部をチャネル幅方向Dcwに覆うように形成する。また、駆動回路用TFT20Bを構成するソース電極25b及びドレイン電極26bを、当該駆動回路用TFT20Bを構成する酸化物半導体層23bの端部に対してチャネル幅方向Dcw外縁から同方向内側に間隔をあけて一部に重ねるように形成し、これら両電極25b,26bから酸化物半導体層23bがチャネル幅方向Dcw両外側にはみ出した状態にする。
<保護絶縁膜形成工程>
ソース配線14、ソース電極25a,25b及びドレイン電極26a,26bが形成された基板上に、プラズマCVD法により、酸化シリコン膜又は窒化シリコン膜(例えば厚さ200nm~300nm程度)を200℃~300℃にて成膜し、これを保護絶縁膜27とする。この保護絶縁膜27は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
ソース配線14、ソース電極25a,25b及びドレイン電極26a,26bが形成された基板上に、プラズマCVD法により、酸化シリコン膜又は窒化シリコン膜(例えば厚さ200nm~300nm程度)を200℃~300℃にて成膜し、これを保護絶縁膜27とする。この保護絶縁膜27は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
次いで、この保護絶縁膜27を、第5のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、保護絶縁膜27表面に対して、第5のフォトマスクを用いてドレイン電極26a,26bに接続するための各コンタクトホールの形成箇所以外の領域にレジストパターンを形成し、該レジストパターンをマスクとしてRIEを行い、その後に、レジスト剥離液による上記レジストパターンの剥離及び洗浄を行う。これにより、保護絶縁膜27にコンタクトホールを形成する。
<画素電極形成工程>
保護絶縁膜27が形成された基板上に、スパッタリング法により、ITO又はIZOからなる透明導電膜(例えば厚さ50nm~150nm程度)を成膜する。次いで、この透明導電膜を、第6のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、透明導電膜表面に対して、第6のフォトマスクを用いて各画素電極17の形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてシュウ酸液にて上記透明導電膜をウェットエッチングし、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、各画素電極17を形成する。
保護絶縁膜27が形成された基板上に、スパッタリング法により、ITO又はIZOからなる透明導電膜(例えば厚さ50nm~150nm程度)を成膜する。次いで、この透明導電膜を、第6のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、透明導電膜表面に対して、第6のフォトマスクを用いて各画素電極17の形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてシュウ酸液にて上記透明導電膜をウェットエッチングし、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、各画素電極17を形成する。
<熱処理工程>
画素電極17が形成された基板に対して、アニールチャンバーを用い、酸素ガス(O2)をキャリアガスとして、酸素ガス(O2)を含む雰囲気中で200℃~400℃程度のアニール処理を例えば1時間~2時間程度に亘って行う。これにより、これまでの工程における処理過程での熱などによって酸化物半導体層23a,23bのチャネル領域23cから酸素が脱離するなどして該チャネル領域23cに酸素欠陥が発生していても、チャネル領域23cが酸化反応を起こし、該チャネル領域23cの酸素欠陥が修復される。
画素電極17が形成された基板に対して、アニールチャンバーを用い、酸素ガス(O2)をキャリアガスとして、酸素ガス(O2)を含む雰囲気中で200℃~400℃程度のアニール処理を例えば1時間~2時間程度に亘って行う。これにより、これまでの工程における処理過程での熱などによって酸化物半導体層23a,23bのチャネル領域23cから酸素が脱離するなどして該チャネル領域23cに酸素欠陥が発生していても、チャネル領域23cが酸化反応を起こし、該チャネル領域23cの酸素欠陥が修復される。
以上のようにして、計6枚のフォトマスクを用いてTFT基板1を製造することができる。
-実施形態1の効果-
この実施形態1によると、画素用TFT20Aは、酸化物半導体層23aの両端部がソース電極25a及びドレイン電極26aによってチャネル幅方向Dcwの全体に亘って覆われて閾値電圧がマイナスの電圧値に調整され、他方、駆動回路用TFT20Bは、酸化物半導体層23bがソース電極25b及びドレイン電極26bからチャネル幅方向Dcw外側にはみ出して閾値電圧がプラスの電圧値に調整されているので、同一基板10上に好適な電気特性の異なる画素用TFT20A及び駆動回路用TFT20Bを備えたTFT基板1を工程数を抑えて低コストに実現することができ、ひいては液晶表示装置Sを低コスト化することができる。
この実施形態1によると、画素用TFT20Aは、酸化物半導体層23aの両端部がソース電極25a及びドレイン電極26aによってチャネル幅方向Dcwの全体に亘って覆われて閾値電圧がマイナスの電圧値に調整され、他方、駆動回路用TFT20Bは、酸化物半導体層23bがソース電極25b及びドレイン電極26bからチャネル幅方向Dcw外側にはみ出して閾値電圧がプラスの電圧値に調整されているので、同一基板10上に好適な電気特性の異なる画素用TFT20A及び駆動回路用TFT20Bを備えたTFT基板1を工程数を抑えて低コストに実現することができ、ひいては液晶表示装置Sを低コスト化することができる。
《発明の実施形態2》
図16~図21は、この実施形態2を示している。なお、以降の実施形態では、画素用TFT20A及び駆動回路用TFT20Bの構成が上記実施形態1と異なる他はTFT基板1及び液晶表示装置Sについて上記実施形態1と同様に構成されているので、構成の異なる画素用TFT20A及び駆動回路用TFTBについてのみ説明し、同一の構成箇所は図1~図15に基づく上記実施形態1の説明に譲ることにして、その詳細な説明を省略する。
図16~図21は、この実施形態2を示している。なお、以降の実施形態では、画素用TFT20A及び駆動回路用TFT20Bの構成が上記実施形態1と異なる他はTFT基板1及び液晶表示装置Sについて上記実施形態1と同様に構成されているので、構成の異なる画素用TFT20A及び駆動回路用TFTBについてのみ説明し、同一の構成箇所は図1~図15に基づく上記実施形態1の説明に譲ることにして、その詳細な説明を省略する。
上記実施形態1では、画素用TFT20A及び駆動回路用TFT20Bがエッチストッパー型のTFTに構成されているとしたが、本実施形態では、これら両TFT20A,20Bは、エッチチャネル型のTFTに構成されている。
<画素用TFT20Aの構成>
画素用TFT20Aの構成を図16~図18に示す。図16は、画素用TFT20Aの概略平面図である。図17は、図16のXVII-XVII線における断面構造を示す断面図である。図18は、図16のXVIII-XVIII線における断面構造を示す断面図である。
画素用TFT20Aの構成を図16~図18に示す。図16は、画素用TFT20Aの概略平面図である。図17は、図16のXVII-XVII線における断面構造を示す断面図である。図18は、図16のXVIII-XVIII線における断面構造を示す断面図である。
本実施形態の画素用TFT20Aは、図16及び図17に示すように、上記実施形態1と同様なボトムゲート構造を有し、ソース電極25a及びドレイン電極26aが酸化物半導体層23aに一部を直接重ねて接続されている。
そして、これらソース電極25a及びドレイン電極26aは、図16及び図18に示すように、酸化物半導体層23aの両端部をチャネル幅方向Dcwの全体に亘って直接覆っている。この画素用TFT20Aのレイアウトにより、上記実施形態1と同様に、製造過程での酸化物半導体層23aのキャリア濃度(電子密度)の低下を抑えて、同TFT20Aの閾値電圧がマイナスの電圧値に調整されている。
<駆動回路用TFT20Bの構成>
駆動回路用TFT20Bの構成を図19~図21に示す。図19は、駆動回路用TFT20Bの概略平面図である。図20は、図19のXX-XX線における断面構造を示す断面図である。図21は、図19のXXI-XXI線における断面構造を示す断面図である。
駆動回路用TFT20Bの構成を図19~図21に示す。図19は、駆動回路用TFT20Bの概略平面図である。図20は、図19のXX-XX線における断面構造を示す断面図である。図21は、図19のXXI-XXI線における断面構造を示す断面図である。
本実施形態の駆動回路用TFT20Bも、図19及び図20に示すように、上記実施形態1と同様なボトムゲート構造を有し、ソース電極25b及びドレイン電極26bが酸化物半導体層23bに一部を直接重ねて接続されている。
そして、これらソース電極25b及びドレイン電極26bは、図19及び図21に示すように、酸化物半導体層23bの両端部にチャネル幅方向Dcwの外縁から同方向内側に間隔をあけて一部を直接重ねるように形成されていて、駆動回路用TFT20Bの酸化物半導体層23bにおけるチャネル幅方向Dcwの両外側部分は、ソース電極25b及びドレイン電極26bからはみ出している。この駆動回路用TFT20Bのレイアウトにより、上記実施形態1と同様に、酸化物半導体層23bのキャリア濃度(電子密度)を低下させて、同TFT20Bの閾値電圧がプラスの電圧値に調整されている。
-TFT基板1の製造方法-
本実施形態のTFT基板1の製造方法は、ゲート電極形成工程と、ゲート絶縁膜成膜工程と、半導体層形成工程と、ソース・ドレイン電極形成工程と、保護絶縁膜形成工程と、画素電極形成工程と、熱処理工程とを含む。なお、ゲート電極形成工程、ゲート絶縁膜成膜工程及び半導体層形成工程については、上記実施形態1と同様であるので、その詳細な説明を省略する。
本実施形態のTFT基板1の製造方法は、ゲート電極形成工程と、ゲート絶縁膜成膜工程と、半導体層形成工程と、ソース・ドレイン電極形成工程と、保護絶縁膜形成工程と、画素電極形成工程と、熱処理工程とを含む。なお、ゲート電極形成工程、ゲート絶縁膜成膜工程及び半導体層形成工程については、上記実施形態1と同様であるので、その詳細な説明を省略する。
<ソース・ドレイン電極形成工程>
半導体層形成工程にて酸化物半導体層23a,23bが形成された基板上に、スパッタリング法により、図22(a)に示すように、第2導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜52(例えば厚さ100nm~300nm程度)を成膜する。この金属膜52は、例えば、チタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
半導体層形成工程にて酸化物半導体層23a,23bが形成された基板上に、スパッタリング法により、図22(a)に示すように、第2導電膜として、例えば、モリブデン(Mo)、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)又はクロム(Cr)などからなる金属膜52(例えば厚さ100nm~300nm程度)を成膜する。この金属膜52は、例えば、チタン膜、アルミニウム膜及びチタン膜が順に積層された積層体(Ti/Al/Ti)などの積層構造に形成してもよい。
次いで、この金属膜52を、第3のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、金属膜52表面に対して、第3のフォトマスクを用いてソース配線14、ソース電極25a,25b及びドレイン電極26a,26bの形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてRIEを行い、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、図22(b)に示すようにソース電極25a,25b及びドレイン電極26a,26bを形成し、それと同時にソース配線14を形成する。
このとき、画素用TFT20Aを構成するソース電極25a及びドレイン電極26aを、当該画素用TFT20Aを構成する酸化物半導体層23aの両端部をチャネル幅方向Dcwに覆うように形成する。また、駆動回路用TFT20Bを構成するソース電極25b及びドレイン電極26bを、当該駆動回路用TFT20Bを構成する酸化物半導体層23bの端部に対してチャネル幅方向Dcw外縁から同方向内側に間隔をあけて一部に重ねるように形成し、これら両電極25b,26bから酸化物半導体層23bがチャネル幅方向Dcw両外側にはみ出した状態にする。
<保護絶縁膜形成工程>
ソース配線14、ソース電極25a,25b及びドレイン電極26a,26bが形成された基板上に、プラズマCVD法により、酸化シリコン膜又は窒化シリコン膜(例えば厚さ200nm~300nm程度)を200℃~300℃にて成膜し、これを保護絶縁膜27とする。この保護絶縁膜27は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
ソース配線14、ソース電極25a,25b及びドレイン電極26a,26bが形成された基板上に、プラズマCVD法により、酸化シリコン膜又は窒化シリコン膜(例えば厚さ200nm~300nm程度)を200℃~300℃にて成膜し、これを保護絶縁膜27とする。この保護絶縁膜27は、酸化シリコン膜及び窒化シリコン膜の積層構造に形成してもよい。
次いで、この保護絶縁膜27を、第4のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、まず、保護絶縁膜27表面に対して、第4のフォトマスクを用いてドレイン電極26a,26bに接続するための各コンタクトホールの形成箇所以外の領域にレジストパターンを形成し、該レジストパターンをマスクとしてRIEを行い、その後に、レジスト剥離液による上記レジストパターンの剥離及び洗浄を行う。これにより、保護絶縁膜27にコンタクトホールを形成する。
<画素電極形成工程>
保護絶縁膜27が形成された基板上に、スパッタリング法により、ITO又はIZOからなる透明導電膜(例えば厚さ50nm~150nm程度)を成膜する。次いで、この透明導電膜を、第5のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、透明導電膜表面に対して、第5のフォトマスクを用いて各画素電極17の形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてシュウ酸液にて上記透明導電膜をウェットエッチングし、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、各画素電極17を形成する。
保護絶縁膜27が形成された基板上に、スパッタリング法により、ITO又はIZOからなる透明導電膜(例えば厚さ50nm~150nm程度)を成膜する。次いで、この透明導電膜を、第5のフォトマスクを用いたフォトリソグラフィーによりパターニングする。具体的には、透明導電膜表面に対して、第5のフォトマスクを用いて各画素電極17の形成箇所にレジストパターンを形成し、該レジストパターンをマスクとしてシュウ酸液にて上記透明導電膜をウェットエッチングし、その後に、レジスト剥離液により上記レジストパターンの剥離及び洗浄を行う。これにより、各画素電極17を形成する。
<熱処理工程>
画素電極17が形成された基板に対して、アニールチャンバーを用い、酸素ガス(O2)をキャリアガスとして、酸素ガス(O2)を含む雰囲気中で200℃~400℃程度のアニール処理を例えば1時間~2時間程度に亘って行う。これにより、これまでの工程における処理過程での熱などによって酸化物半導体層23a,23bのチャネル領域23cから酸素が脱離するなどして該チャネル領域23cに酸素欠陥が発生していても、チャネル領域23cが酸化反応を起こし、該チャネル領域23cの酸素欠陥が修復される。
画素電極17が形成された基板に対して、アニールチャンバーを用い、酸素ガス(O2)をキャリアガスとして、酸素ガス(O2)を含む雰囲気中で200℃~400℃程度のアニール処理を例えば1時間~2時間程度に亘って行う。これにより、これまでの工程における処理過程での熱などによって酸化物半導体層23a,23bのチャネル領域23cから酸素が脱離するなどして該チャネル領域23cに酸素欠陥が発生していても、チャネル領域23cが酸化反応を起こし、該チャネル領域23cの酸素欠陥が修復される。
以上のようにして、計5枚のフォトマスクを用いてTFT基板1を製造することができる。
-実施形態2の効果-
この実施形態2によると、画素用TFT20A及び駆動回路用TFT20Bがエッチングストッパー膜を備えない、チャネルエッチ型のTFTに構成されているので、エッチングストッパー膜がない分だけフォトマスクの枚数が少なくて済み、これら両TFT20A,20Bがエッチストッパー型のTFTに構成されている場合に比べて、TFT基板1及びこれを備えた液晶表示装置Sを低コストに製造することができる。
この実施形態2によると、画素用TFT20A及び駆動回路用TFT20Bがエッチングストッパー膜を備えない、チャネルエッチ型のTFTに構成されているので、エッチングストッパー膜がない分だけフォトマスクの枚数が少なくて済み、これら両TFT20A,20Bがエッチストッパー型のTFTに構成されている場合に比べて、TFT基板1及びこれを備えた液晶表示装置Sを低コストに製造することができる。
その他については、上記実施形態1と同様な効果を得ることができる。
《発明の実施形態3》
図23及び図24は、この実施形態3を示している。図23は、画素用TFT20Aの構成を示す概略平面図である。図24は、駆動回路用TFT20Bの構成を示す概略平面図である。
図23及び図24は、この実施形態3を示している。図23は、画素用TFT20Aの構成を示す概略平面図である。図24は、駆動回路用TFT20Bの構成を示す概略平面図である。
上記実施形態1では、画素用TFT20A及び駆動回路用TFT20Bのソース電極25a,25b及びドレイン電極26a,26bの対向面がそれぞれ面一に形成されているとしたが、本実施形態では、これら両TFT20A,20Bのソース電極25a,25b及びドレイン電極26a,26bの対向面がそれぞれ凹凸形状をなすように形成されている。
<画素用TFT20Aの構成>
本実施形態の画素用TFT20Aも、図23に示すように、上記実施形態1と同様に、ボトムゲート構造を有し、エッチングストッパー膜24が設けられたエッチストッパー型に構成されている。本実施形態では、エッチングストッパー膜24に形成された、画素用TFT20Aのソース電極25a及びドレイン電極26aと酸化物半導体層23aとを接続する各コンタクトホール24aが同形状且つ同サイズに形成されている。
本実施形態の画素用TFT20Aも、図23に示すように、上記実施形態1と同様に、ボトムゲート構造を有し、エッチングストッパー膜24が設けられたエッチストッパー型に構成されている。本実施形態では、エッチングストッパー膜24に形成された、画素用TFT20Aのソース電極25a及びドレイン電極26aと酸化物半導体層23aとを接続する各コンタクトホール24aが同形状且つ同サイズに形成されている。
画素用TFT20Aのソース電極25a及びドレイン電極26aは、酸化物半導体層23aの両端部をチャネル幅方向Dcwの全体に亘って覆っている。この画素用TFT20Aのレイアウトにより、上記実施形態1と同様に、製造過程での酸化物半導体層23aのキャリア濃度(電子密度)の低下を抑えて、同TFT20Aの閾値電圧がマイナスの電圧値に調整されている。
画素用TFT20Aのソース電極25aは、チャネル幅方向Dcw両端側にドレイン電極26a側に突出する一対の突出部25pを有している。これら各突出部25pは、ソース電極25aと酸化物半導体層23aとを接続するコンタクトホール24aよりもチャネル幅方向Dcw外側に設けられ、その幅方向の一部が酸化物半導体層23a対応箇所に配置されている。これにより、ソース電極25aと酸化物半導体層23aとの重なり合う部分の面積が突出部25pが設けられている分だけ増大されている。
一方、ドレイン電極26aも、チャネル幅方向Dcw両端側にソース電極25a側に突出する一対の突出部26pを有している。これら各突出部26pは、ドレイン電極26aと酸化物半導体層23aとを接続するコンタクトホール24aよりもチャネル幅方向Dcw外側に設けられ、その幅方向の一部が酸化物半導体層23a対応箇所に配置されている。これにより、ドレイン電極26aと酸化物半導体層23aとの重なり合う部分の面積も突出部26pが設けられている分だけ増大されている。
ここで、一対の突出部25p,26pは、エッチングストッパー膜24を介してチャネル領域23c上に配置されているため、ソース電極25a及びドレイン電極26a間に電圧が印加されたときには、実質的にトップゲートとして機能する。したがって、これら一対の突出部25p,26p間の間隔がそれぞれ適切に設定されていないと、チャネル領域23cの上部、つまりエッチングストッパー膜24側に余計な電流が流れてしまい、各コンタクトホール24a対応箇所のソース電極25a及びドレイン電極26a間の距離Lsdを基準として画素用TFT20Aのレイアウトを設計した場合には、所望のTFT特性から外れるおそれがある。
そこで、ソース電極25aにおける一対の突出部25p間の間隔をDpとし、ソース電極25aを酸化物半導体層23aに接続するコンタクトホール24aのチャネル幅方向Dcwの開口幅をW1としたとき、これら一対の突出部25p間の間隔Dp及びコンタクトホール24aの開口幅W1は、
Dp>W1・・・・・・(式1)
の関係を満たすように設定されている。
Dp>W1・・・・・・(式1)
の関係を満たすように設定されている。
また、ドレイン電極26aにおける一対の突出部26p間の間隔Dp及びコンタクトホール24aのチャネル幅方向Dcwの開口幅W1も、ソース電極25aと同様に、上記(式1)の関係を満たすように設定されている。
この画素用TFT20Aの構成によれば、各コンタクトホール24a対応箇所のソース電極25a及びドレイン電極26a間の距離Lsdを基準として当該画素用TFT20Aのレイアウトを設計した場合にも、画素用TFT20Aについて、閾値電圧を確実にマイナスの電圧値にしながら、所望のTFT特性を得ることができる。
<駆動回路用TFT20Bの構成>
本実施形態の駆動回路用TFT20Bも、図24に示すように、上記実施形態1と同様に、ボトムゲート構造を有し、エッチングストッパー膜24が設けられたエッチストッパー型に構成されている。本実施形態では、エッチングストッパー膜24に形成された、駆動回路用TFT20Bのソース電極25b及びドレイン電極26bと酸化物半導体層23bとを接続する各コンタクトホール24bが同形状且つ同サイズに形成されている。
本実施形態の駆動回路用TFT20Bも、図24に示すように、上記実施形態1と同様に、ボトムゲート構造を有し、エッチングストッパー膜24が設けられたエッチストッパー型に構成されている。本実施形態では、エッチングストッパー膜24に形成された、駆動回路用TFT20Bのソース電極25b及びドレイン電極26bと酸化物半導体層23bとを接続する各コンタクトホール24bが同形状且つ同サイズに形成されている。
駆動回路用TFT20Bのソース電極25b及びドレイン電極26bは、酸化物半導体層23bの両端部にチャネル幅方向Dcwの外縁から同方向内側に間隔をあけて一部を重ねるように形成されていて、駆動回路用TFT20Bの酸化物半導体層23bにおけるチャネル幅方向Dcwの両外側部分は、ソース電極25b及びドレイン電極26bからはみ出している。この駆動回路用TFT20Bのレイアウトにより、上記実施形態1と同様に、製造過程で酸化物半導体層23bのキャリア濃度(電子密度)を低下させて、同TFT20Bの閾値電圧がプラスの電圧値に調整されている。
駆動回路用TFT20Bのソース電極25bには、チャネル幅方向Dcw両端側にドレイン電極26b側が一部切り欠かれた一対の切欠部25nが形成されている。これら各切欠部25nは、ソース電極25aと酸化物半導体層23aとを接続するコンタクトホール24bよりもチャネル幅方向Dcw外側に形成されている。これにより、ソース電極25bと酸化物半導体層23bとの重なり合う部分の面積が切欠部25nが形成されている分だけ減少されている。
一方、ドレイン電極26bにも、チャネル幅方向Dcw両端側にソース電極25b側が一部切り欠かれた一対の切欠部26nが形成されている。これら各切欠部26nは、ドレイン電極26bと酸化物半導体層23bとを接続するコンタクトホール24bよりもチャネル幅方向Dcw外側に形成されている。これにより、ドレイン電極26bと酸化物半導体層23bとの重なり合う部分の面積も切欠部26nが形成されている分だけ減少されている。
ここで、一対の切欠部25n,26n間には、エッチングストッパー膜24を介してチャネル領域23c上に延びる突出部分が形成されているため、ソース電極25b及びドレイン電極26b間に電圧が印加されたときには、当該突出部分が実質的にトップゲートとして機能する。したがって、これら一対の切欠部25n,26n間の間隔がそれぞれ適切に設定されていないと、チャネル領域23cの上部に流れる電流が低下してしまい、各コンタクトホール24b対応箇所のソース電極25b及びドレイン電極26b間の距離Lsdを基準として駆動回路用TFT20Bのレイアウトを設計した場合には、所望のTFT特性から外れるおそれがある。
そこで、ソース電極25bにおける一対の切欠部25n間の間隔をDnとし、ソース電極25bを酸化物半導体層23bに接続するコンタクトホール24bのチャネル幅方向Dcwの開口幅をW2としたとき、これら切欠部25n間の間隔Dn及びコンタクトホール24bの開口幅W2は、
Dn>W2・・・・・(式2)
の関係を満たすように設定されている。
Dn>W2・・・・・(式2)
の関係を満たすように設定されている。
また、ドレイン電極26bにおける一対の切欠部26n間の間隔Dn及びコンタクトホール24aのチャネル幅方向Dcwの開口幅W2も、ソース電極25bと同様に、上記(式2)の関係を満たすように設定されている。
この駆動回路用TFT20Bの構成によれば、各コンタクトホール24b対応箇所のソース電極25b及びドレイン電極26b間の距離Lsdを基準として当該駆動回路用TFT20Bのレイアウトを設計した場合にも、駆動回路用TFT20Bについて、閾値電圧を確実にプラスの電圧値にしながら、所望のTFT特性を得ることができる。
本実施形態のTFT基板1は、上記実施形態1と同様な製造方法により製造することができる。
-実施形態3の効果-
この実施形態3によると、画素用TFT20Aにおいて、ソース電極25a及びドレイン電極26aと酸化物半導体層23aとの重なり合う部分の面積が突出部25p,26pが設けられている分だけ増大し、これら両電極25a,26aから露出する酸化物半導体層23a部分の面積が小面積になり、この露出面積の減少に応じて閾値電圧がより低くなる。そして、一対の突出部25p,26p間の間隔がそれぞれ適切に設定されているので、画素用TFT20Aについて、閾値電圧を確実にマイナスの電圧値にしながら、所望のTFT特性を得ることができる。
この実施形態3によると、画素用TFT20Aにおいて、ソース電極25a及びドレイン電極26aと酸化物半導体層23aとの重なり合う部分の面積が突出部25p,26pが設けられている分だけ増大し、これら両電極25a,26aから露出する酸化物半導体層23a部分の面積が小面積になり、この露出面積の減少に応じて閾値電圧がより低くなる。そして、一対の突出部25p,26p間の間隔がそれぞれ適切に設定されているので、画素用TFT20Aについて、閾値電圧を確実にマイナスの電圧値にしながら、所望のTFT特性を得ることができる。
また、駆動回路用TFT20Bにおいて、ソース電極25b及びドレイン電極26bと酸化物半導体層23bとの重なり合う部分の面積が切欠部25n,26nが設けられている分だけ減少し、これら両電極25b,26bから露出する酸化物半導体層23b部分の面積が大面積になり、この露出面積の増大に応じて閾値電圧がより高くなる。そして、一対の切欠部25n,26n間の間隔がそれぞれ適切に設定されているので、駆動回路用TFT20Bについて、閾値電圧を確実にプラスの電圧値にしながら、所望のTFT特性を得ることができる。
その他については、上記実施形態1と同様な効果を得ることができる。
《その他の実施形態》
上記各実施形態では、駆動回路用TFT20Bの構成について、酸化物半導体層23bにおけるチャネル幅方向Dcwの両外側部分がソース電極25b及びドレイン電極26bからはみ出しているとしたが、本発明はこれに限らない。駆動回路用TFT20Bの酸化物半導体層23bは、チャネル幅方向Dcwの片側部分のみがソース電極25b及びドレイン電極26bからはみ出していてもよく、また、ソース電極25b及びドレイン電極26bの一方側だけからチャネル幅方向Dcwの外側部分がはみ出している構成でも構わない。
上記各実施形態では、駆動回路用TFT20Bの構成について、酸化物半導体層23bにおけるチャネル幅方向Dcwの両外側部分がソース電極25b及びドレイン電極26bからはみ出しているとしたが、本発明はこれに限らない。駆動回路用TFT20Bの酸化物半導体層23bは、チャネル幅方向Dcwの片側部分のみがソース電極25b及びドレイン電極26bからはみ出していてもよく、また、ソース電極25b及びドレイン電極26bの一方側だけからチャネル幅方向Dcwの外側部分がはみ出している構成でも構わない。
このような構成でも、ソース電極25b及びドレイン電極26bを形成した後における成膜処理やアニール処理などの工程において、ソース電極25b及びドレイン電極26bから露出した酸化物半導体層23b部分が酸化作用や還元作用を受けやすいので、これにより、酸化物半導体層23bのキャリア濃度(電子密度)を低下させて、閾値電圧をプラスの電圧値に調整することができる。
また、上記各実施形態では、画素用TFT20Aの閾値電圧がマイナスの電圧値に調整され、駆動回路用TFT20Bの閾値電圧がプラスの電圧値に調整されているとしたが、本発明はこれに限らない。画素用TFT20A及び駆動回路用TFT20Bの閾値電圧は、両方ともプラスの電圧値に調整されていてもよく、それぞれ要求される電気特性に応じた閾値電圧に調整されていればよい。
また、上記実施形態1では、酸化物半導体層23a,23bがIn-Ga-Zn-O系の酸化物半導体からなるとしているが、これに限らず、当該酸化物半導体層23a,23bは、インジウムシリコン亜鉛酸化物(In-Si-Zn-O)系、インジウムアルミニウム亜鉛酸化物(In-Al-Zn-O)系、スズシリコン亜鉛酸化物(Sn-Si-Zn-O)系、スズアルミニウム亜鉛酸化物(Sn-Al-Zn-O)系、スズガリウム亜鉛酸化物(Sn-Ga-Zn-O)系、ガリウムシリコン亜鉛酸化物(Ga-Si-Zn-O)系、ガリウムアルミニウム亜鉛酸化物(Ga-Al-Zn-O)系、インジウム銅亜鉛酸化物(In-Cu-Zn-O)系、スズ銅亜鉛酸化物(Sn-Cu-Zn-O)系、スズ酸化物(Sn-O)系、インジウム酸化物(In-O)系などの他の酸化物半導体からなっていてもよい。
以上、本発明の好ましい実施形態について説明したが、本発明の技術的範囲は上記各実施形態に記載の範囲に限定されない。上記各実施形態が例示であり、それらの各構成要素や各処理プロセスの組合せに、さらにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば、上記各実施形態では、液晶表示装置Sを例に挙げて説明したが、本発明はこれに限らず、有機EL(ElectroLuminescence)表示装置やプラズマ表示装置などの他の表示装置にも勿論適用することができる。
以上説明したように、本発明は、TFT基板及びそれを備えた表示装置並びにTFT基板の製造方法について有用であり、特に、同一基板上に電気特性が異なる複数種類のTFTを備えたTFT基板を工程数を抑えて低コストに実現することが要望されるTFT基板及びそれを備えた表示装置並びにTFT基板の製造方法に適している。
S 液晶表示装置
Dsw チャネル幅方向
1 TFT基板
10 絶縁性基板(ベース基板)
12 ゲート配線
14 ソース配線
15 ゲートドライバ/CSドライバ(駆動回路)
16 ソースドライバ(駆動回路)
20A 画素用TFT(第1TFT)
20B 駆動回路用TFT(第2TFT)
21a,21b ゲート電極
22 ゲート絶縁膜
23 酸化物半導体層
23c チャネル領域
24 エッチングストッパー膜
24a,24b コンタクトホール
25a,25b ソース電極
26a,26b ドレイン電極
25p,26p 突出部
25n,26n 切欠部
51 金属膜(第1導電膜)
52 金属膜(第2導電膜)
Dsw チャネル幅方向
1 TFT基板
10 絶縁性基板(ベース基板)
12 ゲート配線
14 ソース配線
15 ゲートドライバ/CSドライバ(駆動回路)
16 ソースドライバ(駆動回路)
20A 画素用TFT(第1TFT)
20B 駆動回路用TFT(第2TFT)
21a,21b ゲート電極
22 ゲート絶縁膜
23 酸化物半導体層
23c チャネル領域
24 エッチングストッパー膜
24a,24b コンタクトホール
25a,25b ソース電極
26a,26b ドレイン電極
25p,26p 突出部
25n,26n 切欠部
51 金属膜(第1導電膜)
52 金属膜(第2導電膜)
Claims (17)
- ベース基板と、
上記ベース基板上に設けられ、各々、ソース電極及びドレイン電極が酸化物半導体からなる半導体層に対して互いに離間して接続されて該半導体層における上記ソース電極及びドレイン電極の接続部分間にチャネル領域が形成された第1薄膜トランジスタ及び第2薄膜トランジスタとを備え、
上記第1薄膜トランジスタは、上記半導体層が上記ソース電極及びドレイン電極によってチャネル幅方向の全体に亘って覆われて閾値電圧が相対的に低い特性を有し、
上記第2薄膜トランジスタは、上記半導体層が上記ソース電極及びドレイン電極の少なくとも一方からチャネル幅方向外側にはみ出して閾値電圧が相対的に高い特性を有している
ことを特徴とする薄膜トランジスタ基板。 - 請求項1に記載の薄膜トランジスタ基板において、
上記第2薄膜トランジスタの半導体層は、上記ソース電極及びドレイン電極の両方からチャネル幅方向外側にはみ出している
ことを特徴とする薄膜トランジスタ基板。 - 請求項1又は2に記載の薄膜トランジスタ基板において、
上記第1薄膜トランジスタ及び第2薄膜トランジスタの半導体層表面には、上記ソース電極及びドレイン電極よりも下層に上記チャネル領域を覆うようにエッチングストッパー膜が設けられている
ことを特徴とする薄膜トランジスタ基板。 - 請求項3に記載の薄膜トランジスタ基板において、
上記第1薄膜トランジスタに設けられたエッチングストッパー膜は、当該第1薄膜トランジスタの半導体層を覆っており、該半導体層の両端部対応箇所に上記ソース電極及びドレイン電極と上記半導体層とを接続するコンタクトホールがそれぞれ形成され、
上記第2薄膜トランジスタに設けられたエッチングストッパー膜も、当該第2薄膜トランジスタの半導体層を覆っており、該半導体層の両端部対応箇所に上記ソース電極及びドレイン電極と上記半導体層とを接続するコンタクトホールがそれぞれ形成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項4に記載の薄膜トランジスタ基板において、
上記第1薄膜トランジスタに設けられたエッチングストッパー膜のコンタクトホールは、上記半導体層外縁から同層内側に間隔をあけて該半導体層対応箇所に収まるように形成され、
上記第1薄膜トランジスタのソース電極及びドレイン電極の少なくとも一方は、上記コンタクトホールよりもチャネル幅方向外側の上記半導体層対応部分で且つ他方の電極側に該電極側に向かって突出する突出部を有している
ことを特徴とする薄膜トランジスタ基板。 - 請求項5に記載の薄膜トランジスタ基板において、
上記突出部は、上記コンタクトホールよりもチャネル幅方向両外側の各上記半導体層対応部分に一対に形成されており、
上記一対の突出部間の間隔をDpとし、該各突出部を有する電極を上記半導体層に接続するコンタクトホールのチャネル幅方向の開口幅をW1としたとき、これら一対の突出部間の間隔Dp及びコンタクトホールの開口幅W1は、
Dp>W1
の関係を満たすように設定されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項5又は6に記載の薄膜トランジスタ基板において、
上記突出部は、上記第1薄膜トランジスタのソース電極及びドレイン電極の両方に形成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項4~7のいずれか1項に記載の薄膜トランジスタ基板において、
上記第2薄膜トランジスタに設けられたエッチングストッパー膜のコンタクトホールは、上記半導体層外縁から同層内側に間隔をあけて該半導体層対応箇所に収まるように形成され、
上記第2薄膜トランジスタのソース電極及びドレイン電極の少なくとも一方には、上記コンタクトホールよりもチャネル幅方向外側の上記半導体層対応部分で且つ他方の電極側に該電極側が一部切り欠かれた切欠部が形成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項8に記載の薄膜トランジスタ基板において、
上記切欠部は、上記コンタクトホールよりもチャネル幅方向両外側の各上記半導体層対応部分に一対に形成されており、
上記一対の切欠部間の間隔をDnとし、該各切欠部が形成された電極を上記半導体層に接続するコンタクトホールのチャネル幅方向の開口幅をW2としたとき、これら一対の切欠部間の間隔Dn及びコンタクトホールの開口幅W2は、
Dn>W2
の関係を満たすように設定されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項8又は9に記載の薄膜トランジスタ基板において、
上記切欠部は、上記第2薄膜トランジスタのソース電極及びドレイン電極の両方に形成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項1又は2に記載の薄膜トランジスタ基板において、
上記第1薄膜トランジスタ及び第2薄膜トランジスタのソース電極及びドレイン電極は、上記半導体層に一部を直接重ねて接続されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項1~11のいずれか1項に記載の薄膜トランジスタ基板において、
上記各半導体層は、インジウムガリウムスズ酸化物系の酸化物半導体によって形成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項1~12のいずれか1項に記載の薄膜トランジスタ基板において、
上記ベース基板上に互いに平行に延びるように設けられた複数のゲート配線と、
上記各ゲート配線と交差する方向に互いに平行に延びるように設けられた複数のソース配線と、
上記ゲート配線と上記ソース配線の交差部に設けられ、対応する交差部をなすゲート配線及びソース配線に接続された画素用薄膜トランジスタと、
上記ゲート配線又はソース配線に電気的に接続され、上記画素用薄膜トランジスタを駆動させるための駆動回路用薄膜トランジスタを有する駆動回路とをさらに備え、 上記画素用薄膜トランジスタは、上記第1薄膜トランジスタによって構成され、
上記駆動回路用薄膜トランジスタは、上記第2薄膜トランジスタによって構成されている
ことを特徴とする薄膜トランジスタ基板。 - 請求項1~13のいずれか1項に記載の薄膜トランジスタ基板を備える
ことを特徴とする表示装置。 - 請求項1に記載の薄膜トランジスタ基板を製造する方法であって、
上記ベース基板上に第1導電膜を成膜し、該第1導電膜を第1のフォトマスクを用いてパターニングすることにより、複数のゲート電極を形成するゲート電極形成工程と、
上記ゲート電極を覆うようにゲート絶縁膜を成膜するゲート絶縁膜成膜工程と、
上記ゲート絶縁膜上に酸化物半導体からなる半導体膜を成膜し、該半導体膜を第2のフォトマスクを用いてパターニングすることにより、上記ゲート絶縁膜を介して対応する上記ゲート電極に跨るように上記半導体層を形成する半導体層形成工程と、
上記半導体層を覆うようにエッチングストッパー膜を成膜し、該エッチングストッパー膜を第3のフォトマスクを用いてパターニングすることにより、上記半導体層におけるチャネル領域形成箇所の両外側部分を少なくとも一部露出させるように当該エッチングストッパー膜にコンタクトホールを形成するエッチングストッパー膜形成工程と、
上記エッチングストッパー膜を覆うように第2導電膜を成膜し、該第2導電膜を第4のフォトマスクを用いてパターニングすることにより、上記ソース電極及びドレイン電極を形成するソース・ドレイン電極形成工程とを含み、
上記ソース・ドレイン電極形成工程では、上記第1薄膜トランジスタを構成するソース電極及びドレイン電極を、当該第1薄膜トランジスタを構成する半導体層の両端部をチャネル幅方向の全体に亘って覆うように形成し、且つ、上記第2薄膜トランジスタを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2薄膜トランジスタを構成する半導体層の端部に対してチャネル幅方向の一部に重ねるように形成し、当該電極から上記半導体層がチャネル幅方向にはみ出した状態にする
ことを特徴とする薄膜トランジスタ基板の製造方法。 - 請求項1に記載の薄膜トランジスタ基板を製造する方法であって、
上記ベース基板上に第1導電膜を成膜し、該第1導電膜を第1のフォトマスクを用いてパターニングすることにより、複数のゲート電極を形成するゲート電極形成工程と、
上記ゲート電極を覆うようにゲート絶縁膜を成膜するゲート絶縁膜成膜工程と、
上記ゲート絶縁膜上に酸化物半導体からなる半導体膜を成膜し、該半導体膜を第2のフォトマスクを用いてパターニングすることにより、上記ゲート絶縁膜を介して対応する上記ゲート電極に跨るように上記半導体層を形成する半導体層形成工程と、
上記半導体層を覆うように第2導電膜を成膜し、該第2導電膜を第3のフォトマスクを用いてパターニングすることにより、上記ソース電極及びドレイン電極を形成するソース・ドレイン電極形成工程とを含み、
上記ソース・ドレイン電極形成工程では、上記第1薄膜トランジスタを構成するソース電極及びドレイン電極を、当該第1薄膜トランジスタを構成する半導体層の両端側をチャネル幅方向の全体に亘って覆うように形成し、且つ、上記第2薄膜トランジスタを構成するソース電極及びドレイン電極の少なくとも一方を、当該第2薄膜トランジスタを構成する半導体層のチャネル幅方向の一部に重ねるように形成し、当該電極から上記半導体層がチャネル幅方向にはみ出した状態にする
ことを特徴とする薄膜トランジスタ基板の製造方法。 - 請求項15又は16に記載の薄膜トランジスタ基板の製造方法において、
上記ソース電極及びドレイン電極が形成された基板を、酸素を含む雰囲気中でアニール処理する
ことを特徴とする薄膜トランジスタ基板の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011264656 | 2011-12-02 | ||
JP2011-264656 | 2011-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080516A1 true WO2013080516A1 (ja) | 2013-06-06 |
Family
ID=48535011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/007581 WO2013080516A1 (ja) | 2011-12-02 | 2012-11-27 | 薄膜トランジスタ基板及びそれを備えた表示装置並びに薄膜トランジスタ基板の製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201330277A (ja) |
WO (1) | WO2013080516A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106298801A (zh) * | 2015-06-23 | 2017-01-04 | 三星显示有限公司 | 掩模、显示装置以及制造显示装置的方法 |
WO2017099024A1 (ja) * | 2015-12-09 | 2017-06-15 | シャープ株式会社 | アクティブマトリクス基板およびそれを備える液晶表示パネル |
WO2017131078A1 (ja) * | 2016-01-28 | 2017-08-03 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
CN108022978A (zh) * | 2016-11-04 | 2018-05-11 | 三星显示有限公司 | 薄膜晶体管及其制造方法 |
WO2018168984A1 (ja) * | 2017-03-17 | 2018-09-20 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
US10868043B2 (en) | 2018-09-12 | 2020-12-15 | Mitsubishi Electric Corporation | Thin film transistor substrate, method for manufacturing the same, and display apparatus |
US10976627B2 (en) * | 2015-12-01 | 2021-04-13 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel comprising same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9291866B2 (en) | 2014-03-28 | 2016-03-22 | Himax Display, Inc. | Liquid crystal display panel |
TWI556047B (zh) * | 2014-04-23 | 2016-11-01 | 立景光電股份有限公司 | 液晶顯示面板 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010171404A (ja) * | 2008-12-26 | 2010-08-05 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
JP2011135086A (ja) * | 2009-12-23 | 2011-07-07 | Samsung Electronics Co Ltd | 薄膜トランジスタ、その製造方法、およびそれを利用した表示基板 |
JP2011216721A (ja) * | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 電子装置 |
-
2012
- 2012-11-27 WO PCT/JP2012/007581 patent/WO2013080516A1/ja active Application Filing
- 2012-11-28 TW TW101144549A patent/TW201330277A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010171404A (ja) * | 2008-12-26 | 2010-08-05 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
JP2011135086A (ja) * | 2009-12-23 | 2011-07-07 | Samsung Electronics Co Ltd | 薄膜トランジスタ、その製造方法、およびそれを利用した表示基板 |
JP2011216721A (ja) * | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 電子装置 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10191331B2 (en) | 2015-06-23 | 2019-01-29 | Samsung Display Co., Ltd. | Mask and method of fabricating display device using the mask |
US10042210B2 (en) | 2015-06-23 | 2018-08-07 | Samsung Display Co., Ltd. | Mask and method of fabricating display device using the mask |
EP3109699A3 (en) * | 2015-06-23 | 2017-03-08 | Samsung Display Co., Ltd. | Mask and method of fabricating display device using the mask |
CN106298801B (zh) * | 2015-06-23 | 2022-02-25 | 三星显示有限公司 | 掩模、显示装置以及制造显示装置的方法 |
CN106298801A (zh) * | 2015-06-23 | 2017-01-04 | 三星显示有限公司 | 掩模、显示装置以及制造显示装置的方法 |
JP2017011266A (ja) * | 2015-06-23 | 2017-01-12 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | マスク及びこれを利用した表示装置の製造方法 |
US10976627B2 (en) * | 2015-12-01 | 2021-04-13 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel comprising same |
US20180356660A1 (en) * | 2015-12-09 | 2018-12-13 | Sharp Kabushiki Kaisha | Active matrix substrate and liquid crystal display panel provided with same |
WO2017099024A1 (ja) * | 2015-12-09 | 2017-06-15 | シャープ株式会社 | アクティブマトリクス基板およびそれを備える液晶表示パネル |
WO2017131078A1 (ja) * | 2016-01-28 | 2017-08-03 | シャープ株式会社 | アクティブマトリクス基板およびその製造方法 |
CN108022978A (zh) * | 2016-11-04 | 2018-05-11 | 三星显示有限公司 | 薄膜晶体管及其制造方法 |
CN108022978B (zh) * | 2016-11-04 | 2023-11-17 | 三星显示有限公司 | 薄膜晶体管及其制造方法 |
WO2018168984A1 (ja) * | 2017-03-17 | 2018-09-20 | シャープ株式会社 | アクティブマトリクス基板および表示装置 |
US10868043B2 (en) | 2018-09-12 | 2020-12-15 | Mitsubishi Electric Corporation | Thin film transistor substrate, method for manufacturing the same, and display apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW201330277A (zh) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080516A1 (ja) | 薄膜トランジスタ基板及びそれを備えた表示装置並びに薄膜トランジスタ基板の製造方法 | |
US20210288078A1 (en) | Display device | |
JP2023011584A (ja) | 液晶表示装置、電子機器 | |
JP2024072846A (ja) | 表示装置 | |
CN101752390B (zh) | 半导体装置 | |
KR101325053B1 (ko) | 박막 트랜지스터 기판 및 이의 제조 방법 | |
JP5133469B2 (ja) | 薄膜トランジスタ基板及びそれを備えた液晶表示装置並びに薄膜トランジスタ基板の製造方法 | |
US8598583B2 (en) | Thin film transistor panel and fabricating method thereof | |
JP5671948B2 (ja) | 薄膜トランジスタアレイ基板、及び液晶表示装置 | |
US20150287833A1 (en) | Semiconductor device, display device, and method for manufacturing semiconductor device and display device | |
WO2012008080A1 (ja) | 薄膜トランジスタ基板 | |
WO2014034617A1 (ja) | 回路基板及び表示装置 | |
JP5214858B2 (ja) | Tftアレイ基板及びその製造方法 | |
US10121801B2 (en) | TFT array substrate and manufacturing method thereof, and display device | |
JP2018074076A (ja) | 表示装置 | |
JP2016225661A (ja) | 薄膜トランジスタパネルの製造方法 | |
WO2015098183A1 (ja) | アクティブマトリクス基板の製造方法および表示装置の製造方法ならびに表示装置 | |
US20070058097A1 (en) | Liquid crystal display device and method for manufacturing the same | |
TW201234437A (en) | Semiconductor device and method for manufacturing the same | |
US20120248443A1 (en) | Active matrix substrate and method for manufacturing the same | |
KR20150063767A (ko) | 금속 산화물 반도체를 포함하는 박막 트랜지스터 기판 및 그 제조 방법 | |
KR20110124530A (ko) | 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 박막 트랜지스터 표시판 | |
US20130092923A1 (en) | Active matrix substrate and method for manufacturing the same | |
JP5727118B2 (ja) | 薄膜トランジスタ基板、その製造方法、及びこれを有する表示パネル | |
KR20140003506A (ko) | 박막 트랜지스터 기판 및 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853876 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12853876 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |