JP5965338B2 - スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 - Google Patents

スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 Download PDF

Info

Publication number
JP5965338B2
JP5965338B2 JP2013036607A JP2013036607A JP5965338B2 JP 5965338 B2 JP5965338 B2 JP 5965338B2 JP 2013036607 A JP2013036607 A JP 2013036607A JP 2013036607 A JP2013036607 A JP 2013036607A JP 5965338 B2 JP5965338 B2 JP 5965338B2
Authority
JP
Japan
Prior art keywords
thin film
sputtering
oxide
sputtering target
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013036607A
Other languages
English (en)
Other versions
JP2014037617A (ja
Inventor
一晃 江端
一晃 江端
麻美 西村
麻美 西村
望 但馬
望 但馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013036607A priority Critical patent/JP5965338B2/ja
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to PCT/JP2013/004356 priority patent/WO2014013728A1/ja
Priority to TW102125629A priority patent/TWI585227B/zh
Priority to KR1020157001016A priority patent/KR101726098B1/ko
Priority to CN201380037627.8A priority patent/CN104471103B/zh
Priority to US14/414,850 priority patent/US20150311071A1/en
Publication of JP2014037617A publication Critical patent/JP2014037617A/ja
Application granted granted Critical
Publication of JP5965338B2 publication Critical patent/JP5965338B2/ja
Priority to US16/147,424 priority patent/US11462399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Description

本発明は、スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法に関する。
薄膜トランジスタ(TFT)等の電界効果型トランジスタは、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等として広く用いられており、現在、最も多く実用されている電子デバイスである。なかでも、近年における表示装置のめざましい発展に伴い、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(EL)、フィールドエミッションディスプレイ(FED)等の各種の表示装置において、表示素子に駆動電圧を印加して表示装置を駆動させるスイッチング素子として、TFTが多用されている。
電界効果型トランジスタの主要部材である半導体層(チャンネル層)の材料としては、シリコン半導体化合物が最も広く用いられている。一般に、高速動作が必要な高周波増幅素子や集積回路用素子等には、シリコン単結晶が用いられている。一方、液晶駆動用素子等には、大面積化の要求から非晶質性シリコン半導体(アモルファスシリコン)が用いられている。
アモルファスシリコンの薄膜は、比較的低温で形成できるものの、結晶性の薄膜に比べてスイッチング速度が遅いため、表示装置を駆動するスイッチング素子として使用したときに、高速な動画の表示に追従できない場合がある。具体的に、解像度がVGAである液晶テレビでは、移動度が0.5〜1cm/Vsのアモルファスシリコンが使用可能であったが、解像度がSXGA、UXGA、QXGAあるいはそれ以上になると2cm/Vs以上の移動度が要求される。また、画質を向上させるため駆動周波数を上げるとさらに高い移動度が必要となる。
一方、結晶性のシリコン系薄膜は、移動度は高いものの、製造に際して多大なエネルギーと工程数を要する等の問題や、大面積化が困難という問題があった。例えば、シリコン系薄膜を結晶化する際に800℃以上の高温や、高価な設備を使用するレーザーアニールが必要である。また、結晶性のシリコン系薄膜は、通常TFTの素子構成がトップゲート構成に限定されるため、マスク枚数の削減等コストダウンが困難であった。
このような問題を解決するために、酸化インジウム、酸化亜鉛及び酸化ガリウムからなる酸化物半導体膜を使用した薄膜トランジスタが検討されている。一般に、酸化物半導体薄膜の作製は酸化物焼結体からなるターゲット(スパッタリングターゲット)を用いたスパッタリングで行われる。
例えば、一般式InGaZnO、InGaZnOで表されるホモロガス結晶構造を示す化合物からなるターゲットが知られている(特許文献1、2及び3)。しかしながら、このターゲットでは焼結密度(相対密度)を上げるために、酸化雰囲気で焼結する必要があるが、その場合、ターゲットの抵抗を下げるため、焼結後に高温での還元処理が必要であった。また、ターゲットを長期間使用していると、得られた膜の特性や成膜速度が大きく変化する、InGaZnOやInGaZnOの異常成長による異常放電が起きる、成膜時にパーティクルの発生が多い等の問題があった。異常放電が頻繁に起きると、プラズマ放電状態が不安定となり、安定した成膜が行われず、膜特性に悪影響を及ぼす。
一方、ガリウムを含まずに、酸化インジウム及び酸化亜鉛からなる非晶質酸化物半導体膜を用いた薄膜トランジスタも提案されている(特許文献4)。しかしながら、成膜時の酸素分圧を高くしないとTFTのノーマリーオフ動作を実現できないといった問題があった。
また、酸化スズを主成分としたIn−SnO−ZnO系酸化物に、TaやY、Siといった添加元素を含む光情報記録媒体の保護層用のスパッタリングターゲットが検討されている(特許文献5及び6)。しかしながら、これらターゲットは酸化物半導体用ではなく、また、絶縁性物質の凝集体が形成され易く、抵抗値が高くなってしまうことや異常放電が起こり易いという問題があった。
特開平8−245220号公報 特開2007−73312号公報 国際公開第2009/084537号パンフレット 国際公開第2005/088726号パンフレット 国際公開第2005/078152号パンフレット 国際公開第2005/078153号パンフレット
本発明の目的は、高密度かつ低抵抗なスパッタリングターゲットを提供することである。
本発明の他の目的は、高い電界効果移動度及び高い信頼性を有する薄膜トランジスタを提供することである。
本発明によれば、以下のスパッタリングターゲット等が提供される。
1.インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物からなり、
InAlO(ZnO)(mは0.1〜10)で表わされるホモロガス構造化合物を含み、前記インジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の原子比が、下記式(1)〜(4)を満たすスパッタリングターゲット。
0.10≦In/(In+Sn+Zn+Al)≦0.60 (1)
0.01≦Sn/(In+Sn+Zn+Al)≦0.30 (2)
0.10≦Zn/(In+Sn+Zn+Al)≦0.65 (3)
0.01≦Al/(In+Sn+Zn+Al)≦0.30 (4)
(式中、In,Sn,Zn及びAlは、それぞれスパッタリングターゲット中のインジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の物質量を示す。)
2.前記InAlO(ZnO)(mは0.1〜10)で表わされるホモロガス構造化合物が、InAlZnで表わされるホモロガス構造化合物及びInAlZnOで表わされるホモロガス構造化合物から選択される1以上である1に記載のスパッタリングターゲット。
3.ZnSnOで表わされるスピネル構造化合物を含む1又は2に記載のスパッタリングターゲット。
4.Inで表わされるビッグスバイト構造化合物を含まない1〜3のいずれかに記載のスパッタリングターゲット。
5.相対密度が98%以上である1〜4のいずれかに記載のスパッタリングターゲット。
6.バルク比抵抗が5mΩcm以下である1〜5のいずれかに記載のスパッタリングターゲット。
7.インジウム元素、スズ元素、亜鉛元素及びアルミニウム元素を含む酸化物の成形体を800℃から焼結温度まで昇温速度0.1〜2℃/分で昇温し、前記焼結温度で10〜50時間保持して焼結する工程を含み、前記焼結温度が1200℃〜1650℃の範囲であるスパッタリングターゲットの製造方法。
8.1〜6のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング法により成膜してなる酸化物半導体薄膜。
9.水分子、酸素分子及び亜酸化窒素分子から選択される1以上と希ガス原子を含有する混合気体の雰囲気下において、1〜6のいずれかに記載のスパッタリングターゲットをスパッタリング法で成膜する酸化物半導体薄膜の製造方法。
10.前記混合気体が、少なくとも希ガス原子及び水分子を含む混合気体である9に記載の酸化物半導体薄膜の製造方法。
11.前記混合気体に含まれる水分子の割合が分圧比で0.1%〜25%である10に記載の酸化物半導体薄膜の製造方法。
12.真空チャンバー内に所定の間隔を置いて並設された3枚以上の前記スパッタリングターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加し、少なくとも1つの交流電源からの出力を、この交流電源に分岐して接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜する9〜11のいずれかに記載の酸化物半導体薄膜の製造方法。
13.前記交流電源の交流パワー密度を3W/cm以上20W/cm以下とする12に記載の酸化物半導体薄膜の製造方法。
14.前記交流電源の周波数が10kHz〜1MHzである12又は13に記載の酸化物半導体薄膜の製造方法。
15.9〜14のいずれかに記載の酸化物半導体薄膜の製造方法により成膜された酸化物半導体薄膜をチャネル層として有する薄膜トランジスタ。
16.電界効果移動度が15cm/Vs以上である15に記載の薄膜トランジスタ。
17.15又は16に記載の薄膜トランジスタを備える表示装置。
本発明によれば、高密度かつ低抵抗なスパッタリングターゲットが提供できる。
本発明によれば、高い電界効果移動度及び高い信頼性を有する薄膜トランジスタが提供できる
本発明の一実施形態に用いるスパッタリング装置を示す図である。 実施例1で得られた焼結体のX線回折チャートを示す図である。
以下、本発明のスパッタリングターゲット等について詳細に説明するが、本発明は下記実施形態及び実施例に限定されない。
[スパッタリングターゲット]
本発明のスパッタリングターゲットは、インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物からなり、InAlO(ZnO)(mは0.1〜10)で表わされるホモロガス構造化合物を含む。
ホモロガス結晶構造は、異なる物質の結晶層を何層か重ね合わせた長周期を有する「自然超格子」構造からなる結晶である。結晶周期又は薄膜層の厚さがナノメーター程度の場合、ホモロガス構造化合物は、単一の物質あるいは均一に混ぜ合わせた混晶の性質とは異なる固有の特性を示すことができる。
本発明のスパッタリングターゲットは、InAlO(ZnO)で表わされるホモロガス構造化合物を含むことで、ターゲットの相対密度を高めることができ、ターゲット比抵抗を例えば5mΩcm以下とすることができる。ターゲットは、比抵抗が5mΩcm以下であることで異常放電を抑制することができる。
ホモロガス結晶構造をとる酸化物結晶としては、RAO(MO)で表される酸化物結晶が挙げられる。ここで、Rは、正三価の金属元素であり、例えば、In、Ga、Al、Fe、Bが挙げられる。Aは、Rとは異なる正三価の金属元素であり、例えば、Ga、Al、Feが挙げられる。Mは、正二価の金属元素であり、例えば、Zn、Mgが挙げられる。R、A及びMはそれぞれ同一金属元素であっても異なる金属元素であってもよい。また、mは、例えば、整数であり、好ましくは、0.1〜10、より好ましくは、0.5〜7、更に好ましくは、1〜3であることが適当である。
ターゲットが含むInAlO(ZnO)で表わされるホモロガス構造化合物は、1種単独又は2種以上の混合物でもよく、好ましくはInAlZnで表わされるホモロガス構造化合物及びInAlZnOで表わされるホモロガス構造化合物から選択される1以上である。
InAlZnで表わされるホモロガス構造化合物及びInAlZnOで表わされるホモロガス構造化合物は、いずれもRがInであり、AがAlであり、MがZnである場合に該当する。
ターゲット中のホモロガス構造化合物は、X線回折により確認することができ、例えばターゲットを粉砕したパウダー又はターゲットから直接測定したX線回折パターンが、組成比から想定されるホモロガス相の結晶構造X線回折パターンと一致することから確認できる。具体的には、JCPDS(Joint Committee of Powder Diffraction Standards)カードから得られるホモロガス相の結晶構造X線回折パターンと一致することから確認することができる。
尚、InAlZnOのホモロガス構造は、X線回折で、JCPDSデータベースのNo.40−0258のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。また、InAlZnのホモロガス構造は、JCPDSデータベースのNo.40−0259のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。
本発明のスパッタリングターゲットは、好ましくはZnSnOで表わされるスピネル構造化合物を含む。
スピネル構造とは、「結晶化学」(講談社、中平光興著、1973)等に開示されている通り、通常AB型あるいはABX型の構造をいい、このような結晶構造を有する化合物をスピネル構造化合物という。
一般にスピネル構造では、陰イオン(通常は酸素)が立方最密充填をしており、その四面体隙間及び八面体隙間の一部に陽イオンが存在している。尚、結晶構造中の原子やイオンが一部他の原子で置換された置換型固溶体、他の原子が格子間位置に加えられた侵入型固溶体もスピネル構造化合物に含まれる。
スパッタリングターゲットが、ZnSnOで表わされるスピネル構造化合物を含むことにより、ターゲットを構成する酸化物中の結晶の異常粒成長を抑制することができる。異常粒成長は、スパッタリング中の異常放電の原因となるおそれがある。
スパッタリングターゲット中のZnSnOで表わされるスピネル構造化合物の有無は、X線回折で確認できる。
ZnSnOで表わされるスピネル構造化合物は、JCPDSデータベースのNo.24−1470のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。
本発明のスパッタリングターゲットは、好ましくはInで表わされるビッグスバイト構造化合物を含まない。
ビックスバイト構造(あるいは希土類酸化物C型の結晶構造)とは、希土類酸化物C型あるいはMn(I)型酸化物とも言われる。「透明導電膜の技術」((株)オーム社出版、日本学術振興会、透明酸化物・光電子材料第166委員会編、1999)等に開示されている通り、化学量論比がM(Mは陽イオン、Xは陰イオンで通常酸素イオン)で、1つの単位胞はM:16分子、合計80個の原子(Mが32個、Xが48個)により構成されている。
Inで表わされるビッグスバイト構造化合物は、結晶構造中の原子やイオンが一部他の原子で置換された置換型固溶体、他の原子が格子間位置に加えられた侵入型固溶体も含む。
スパッタリングターゲット中のInで表わされるビッグスバイト構造化合物の有無は、X線回折で確認できる。
Inで表わされるビッグスバイト構造化合物は、JCPDS(Joint Committee on Powder Diffraction Standards)データベースのNo.06−0416のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。
本発明のスパッタリングターゲットを構成する、インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物は、下記原子比を満たす。酸化物が下記原子比を満たすことにより、ターゲットの相対密度が98%以上かつバルク抵抗が5mΩcm以下とすることができる。
0.10≦In/(In+Sn+Zn+Al)≦0.60 (1)
0.01≦Sn/(In+Sn+Zn+Al)≦0.30 (2)
0.10≦Zn/(In+Sn+Zn+Al)≦0.65 (3)
0.01≦Al/(In+Sn+Zn+Al)≦0.30 (4)
(式中、In,Sn,Zn及びAlは、それぞれスパッタリングターゲット中のインジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の物質量を示す。)
式(1)において、In元素の原子比が0.10未満である場合、スパッタリングターゲットのバルク抵抗値が高くなり、DCスパッタリングが不可能となるおそれがある。
一方、In元素の原子比が0.60超である場合、ターゲット中にInで表わされるビックスバイト構造化合物が生成するおそれがある。ターゲットがInAlZnOのホモロガス構造化合物、InAlZnのホモロガス構造化合物、ZnSnOのスピネル構造化合物以外にInのビックスバイト構造化合物を含む場合、結晶相ごとにスパッタされる速度が異なるため掘れ残りが生じ、異常放電が発生するおそれがある。また、焼結時にInの凝集部分で異常粒成長を起こし、気孔が残存し、焼結体全体の密度が向上しないおそれがある。
上記理由から、式(1)は、0.10≦In/(In+Sn+Zn+Al)≦0.60であり、好ましくは0.15≦In/(In+Sn+Zn+Al)≦0.50であり、より好ましくは0.20≦In/(In+Sn+Zn+Al)≦0.40である。
式(2)において、スズ元素の原子比が0.01未満である場合、酸化物密度が十分に向上せず、ターゲットのバルク抵抗値が高くなるおそれがある。一方、スズ元素の原子比が0.30超である場合、ターゲットから得られる薄膜のウェットエッチャントへの溶解性が低下し、ウェットエッチングが困難になるおそれがある。
上記理由から、式(2)は0.01≦Sn/(In+Sn+Zn+Al)≦0.30であり、好ましくは0.05≦Sn/(In+Sn+Zn+Al)≦0.25であり、さらに好ましくは、0.07≦Sn/(In+Sn+Zn+Al)≦0.18である。
式(3)において、亜鉛元素の原子比が0.10未満である場合、ターゲットから得られる薄膜が非晶質膜として安定しないおそれがある。一方、亜鉛元素の原子比が0.65超である場合、得られる薄膜のウェットエッチャントへの溶解速度が高くなりすぎ、ウェットエッチングが困難になるおそれがある。
上記理由から、式(3)は0.10≦Zn/(In+Sn+Zn+Al)≦0.65であり、好ましくは0.25≦Zn/(In+Sn+Zn+Al)≦0.60であり、より好ましくは、0.40≦Zn/(In+Sn+Zn+Al)≦0.60である。
式(4)において、アルミニウム元素の原子比が0.01未満である場合、ターゲット抵抗が十分に低下しないおそれがあるほか、ターゲットを用いてTFTのチャネル相を成膜した場合に、TFTの信頼性が劣化するおそれがある。一方、アルミニウム元素の原子比が0.30超である場合、ターゲット中にAlが生成し、異常放電が発生するおそれがある。
上記理由から、式(4)は0.01≦Al/(In+Sn+Zn+Al)≦0.30であり、好ましくは0.02≦Al/(In+Sn+Zn+Al)≦0.25であり、さらに好ましくは、0.02≦Al/(In+Sn+Zn+Al)≦0.15である。
ターゲットに含まれる各元素の原子比は、誘導結合プラズマ発光分析装置(ICP−AES)により、含有元素を定量分析して求めることができる。
具体的に、溶液試料をネブライザーで霧状にして、アルゴンプラズマ(約6000〜8000℃)に導入すると、試料中の元素は熱エネルギーを吸収して励起され、軌道電子が基底状態から高いエネルギー準位の軌道に移る。この軌道電子は10−7〜10−8秒程度で、より低いエネルギー準位の軌道に移る。この際にエネルギーの差を光として放射し発光する。この光は元素固有の波長(スペクトル線)を示すため、スペクトル線の有無により元素の存在を確認できる(定性分析)。
また、それぞれのスペクトル線の大きさ(発光強度)は試料中の元素数に比例するため、既知濃度の標準液と比較することで試料濃度を求めることができる(定量分析)。
定性分析で含有されている元素を特定後、定量分析で含有量を求め、その結果から各元素の原子比を求めることができる。
スパッタリングターゲットを構成する酸化物は、本発明の効果を損なわない範囲でIn、Sn、Zn及びAl以外の不可避不純物を含んでもよく、実質的にIn、Sn、Zn及びAlのみからなってもよい。
本発明のスパッタリングターゲットは、好ましくは相対密度が98%以上である。特に大型基板(1Gサイズ以上)にスパッタ出力を上げて酸化物半導体を成膜する場合は、相対密度が98%以上であることが好ましい。
相対密度が98%以上であれば、安定したスパッタリング状態が保たれる。大型基板でスパッタ出力を上げて成膜する場合は、相対密度が98%未満ではターゲット表面が黒化したり、異常放電が発生するおそれがある。相対密度は好ましくは98.5%以上、より好ましくは99%以上である。
ターゲットの相対密度は、アルキメデス法により測定できる。相対密度は、好ましくは100%以下である。100%を超える場合、金属粒子が焼結体に発生したり、低級酸化物が生成する場合があり、成膜時の酸素供給量を厳密に調整する必要が生じる。
また、後述する焼結後に、還元性雰囲気下での熱処理操作等の後処理工程等を行って密度を調整することもできる。還元性雰囲気は、アルゴン、窒素、水素等の雰囲気や、それらの混合気体雰囲気が用いることができる。
ターゲットのバルク比抵抗(導電性)は、好ましくは5mΩcm以下であり、より好ましくは3mΩcm以下である。ターゲットのバルク比抵抗が5mΩcm以下であることで、異常放電を抑制することができる。
上記バルク比抵抗は、抵抗率計を使用して四探針法に基づき測定することができる。
スパッタリングターゲットを構成する酸化物中の結晶の最大粒径は8μm以下であることが望ましい。結晶が粒径8μmを超えて成長するとノジュールの原因になるおそれがある。
スパッタによってターゲット表面が削られる場合、その削られる速度が結晶面の方向によって異なり、ターゲット表面に凹凸が発生する。この凹凸の大きさは焼結体中に存在する結晶粒径に依存している。大きい結晶粒径を有する酸化物からなるターゲットでは、その凹凸が大きくなり、その凸部分よりノジュールが発生すると考えられる。
スパッタリングターゲット中の結晶の最大粒径は、スパッタリングターゲットの形状が円形の場合、円の中心点(1箇所)と、その中心点で直交する2本の中心線上の中心点と周縁部との中間点(4箇所)の合計5箇所において、また、スパッタリングターゲットの形状が四角形の場合には、その中心点(1箇所)と、四角形の対角線上の中心点と角部との中間点(4箇所)の合計5箇所において100μm四方の枠内で観察される最大の粒子についてその最大径を測定し、これらの5箇所の枠内のそれぞれに存在する最大粒子の粒径の平均値で表す。粒径は、結晶粒の長径について測定する。結晶粒は走査型電子顕微鏡(SEM)により観察することができる。
[スパッタリングターゲットの製造方法]
本発明のスパッタリングターゲットの製造方法は、例えば以下の2工程を含む。
(1)原料化合物を混合し、成形して成形体とする工程
(2)上記成形体を焼結する工程
以下、これら工程について説明する。
(1)原料化合物を混合し、成形して成形体とする工程
原料化合物は特に制限されず、In、Sn、Zn及びAlから選択される元素を1以上含む化合物を使用することができ、使用する原料化合物の混合物が、下記原子比を満たせばよい。
0.10≦In/(In+Sn+Zn+Al)≦0.60 (1)
0.01≦Sn/(In+Sn+Zn+Al)≦0.30 (2)
0.10≦Zn/(In+Sn+Zn+Al)≦0.65 (3)
0.01≦Al/(In+Sn+Zn+Al)≦0.30 (4)
(式中、In,Sn,Zn及びAlは、それぞれインジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の物質量を示す。)
上記In、Sn、Zn及びAlから選択される元素を1以上含む化合物としては、例えば酸化インジウム、酸化スズ、酸化亜鉛及びアルミニウム金属の組み合わせや、酸化インジウム、酸化スズ、酸化亜鉛及び酸化アルミニウムの組合せ等が挙げられる。
尚、上記原料化合物は粉末であることが好ましい。
原料化合物は、酸化インジウム、酸化スズ、酸化亜鉛及び酸化アルミニウムの混合粉末であることが好ましい。
原料に単体金属を用いた場合、例えば、酸化インジウム、酸化スズ、酸化亜鉛及びアルミニウム金属の組み合わせを原料粉末として用いた場合、得られる焼結体中にアルミニウムの金属粒が存在し、成膜中にターゲット表面の金属粒が溶融してターゲットから放出されないことがあり、得られる膜の組成と焼結体の組成が大きく異なってしまう場合がある。
原料化合物が粉末である場合、当該原料粉末の平均粒径は、好ましくは0.1μm〜1.2μmであり、より好ましくは0.1μm〜1.0μmである。原料粉末の平均粒径はレーザー回折式粒度分布装置等で測定することができる。
例えば、平均粒径が0.1μm〜1.2μmのIn粉末、平均粒径が0.1μm〜1.2μmのSnO粉末、平均粒径が0.1μm〜1.2μmのZnO粉末及び平均粒径が0.1μm〜1.2μmのAl粉末を含んだ酸化物を原料粉末とし、これらを、上記式(1)〜(4)を満たす割合で調合するとよい。
原料化合物の混合、成形方法は特に限定されず、公知の方法を用いて行うことができる。例えば、酸化インジウム粉、酸化スズ粉、酸化亜鉛及び酸化アルミニウム粉を含んだ酸化物の混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形することで成形体が得られる。
混合については、湿式又は乾式によるボールミル、振動ミル、ビーズミル等を用いることができる。均一で微細な結晶粒及び空孔を得るには、短時間で凝集体の解砕効率が高く、添加物の分散状態も良好となるビーズミル混合法が最も好ましい。
ボールミルによって混合する場合、当該混合時間は、好ましくは15時間以上、より好ましくは19時間以上とする。混合時間が不足すると最終的に得られる焼結体中にAl等の高抵抗の化合物が生成するおそれがあるからである。
ビーズミルによって粉砕・混合する場合、当該混合時間は、装置の大きさ、処理するスラリー量によって異なるが、スラリー中の粒度分布がすべて1μm以下と均一になるように適宜調整するとよい。
また、どの混合手段の場合でも、混合する際にはバインダーを任意量だけ添加し、同時に混合を行うと好ましい。バインダーには、ポリビニルアルコール、酢酸ビニル等を用いることができる。
混合によって得られた原料粉末スラリーの造粒は、好ましくは急速乾燥造粒によって造粒粉とする。急速乾燥造粒するための装置としては、スプレードライヤが広く用いられている。具体的な乾燥条件は、乾燥するスラリーのスラリー濃度、乾燥に用いる熱風温度、風量等の諸条件により決定されるため、実施に際しては、予め最適条件を求めておくことが必要となる。
一方、造粒を自然乾燥によって行うと、原料粉末の比重差によって沈降速度が異なるため、In粉末、SnO粉末、ZnO粉末及びAl粉末の分離が起こり、均一な造粒粉が得られなくなるおそれがある。この不均一な造粒粉を用いて焼結体を作製すると、焼結体内部にAl等が存在して、スパッタリングにおける異常放電の原因となる場合がある。
得られた造粒粉に対して、通常、金型プレス又は冷間静水圧プレス(CIP)により、例えば1.2ton/cm以上の圧力を加えることによって、成形体とすることができる。
(2)成形体を焼結する工程
得られた成形物を1200〜1650℃の焼結温度で10〜50時間焼結して焼結体を得ることができる。
上記焼結温度は、好ましくは1350〜1600℃であり、より好ましくは1400〜1600℃であり、さらに好ましくは1450〜1600℃である。また、上記焼結時間は、好ましくは12〜40時間であり、より好ましくは13〜30時間である。
焼結温度が1200℃未満又は焼結時間が10時間未満であると、Al等がターゲット内部に形成され、異常放電の原因となるおそれがある。一方、焼成温度が1650℃を超えるか、又は、焼成時間が50時間を超えると、著しい結晶粒成長により平均結晶粒径の増大や、粗大空孔の発生を来たし、焼結体強度の低下や異常放電の原因となるおそれがある。
本発明で用いる焼結方法としては、常圧焼結法の他、ホットプレス、酸素加圧、熱間等方圧加圧等の加圧焼結法も採用することができる。ただし、製造コストの低減、大量生産の可能性、容易に大型の焼結体を製造できるといった観点から、常圧焼結法を採用することが好ましい。
常圧焼結法では、成形体を大気雰囲気、又は酸化ガス雰囲気、好ましくは酸化ガス雰囲気にて焼結する。酸化ガス雰囲気とは、好ましくは酸素ガス雰囲気である。酸素ガス雰囲気は、酸素濃度が、例えば10〜100体積%の雰囲気であることが好ましい。上記焼結体の製造方法においては、昇温過程にて酸素ガス雰囲気を導入することで、焼結体密度をより高くすることができる。
焼結に際しての昇温速度は、800℃から焼結温度(1200〜1650℃)までを0.1〜2℃/分とすることが好ましい。
インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物のスパッタリングターゲットにおいて、800℃から上の温度範囲は、焼結が最も進行する範囲である。この温度範囲での昇温速度が0.1℃/分より遅くなると、結晶粒成長が著しくなって、高密度化を達成することができないおそれがある。一方、昇温速度が2℃/分より速くなるとAl等がターゲット内部に析出するおそれがある。
800℃から焼結温度における昇温速度は、好ましくは0.1〜1.3℃/分、より好ましくは0.1〜1.1℃/分である。
上記焼成工程で得られた焼結体のバルク抵抗をターゲット全体で均一化するために、必要に応じて還元工程を設けてもよい。
還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元等が挙げられる。
還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素、又はこれらのガスと酸素との混合ガス等を用いることができる。また、不活性ガス中での焼成による還元処理の場合、窒素、アルゴン、又はこれらのガスと酸素との混合ガス等を用いることができる。
還元処理時の温度は、通常100〜800℃、好ましくは200〜800℃である。また、還元処理の時間は、通常0.01〜10時間、好ましくは0.05〜5時間である。
以上をまとめると、本発明に用いる焼結体の製造方法は、例えば、酸化インジウム粉と酸化スズ粉と酸化亜鉛粉及び酸化アルミニウム粉との混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形し、その後、得られた成形物を酸素雰囲気中、800℃から焼結温度までの昇温速度を0.1〜2℃/分とし、1200〜1650℃で10〜50時間焼成することで焼結体を得ることができる。
上記で得られた焼結体を加工することにより本発明のスパッタリングターゲットとすることができる。具体的には、焼結体をスパッタリング装置への装着に適した形状に切削加工することでスパッタリングターゲット素材とし、該ターゲット素材をバッキングプレートに接着することでスパッタリングターゲットとすることができる。
焼結体をターゲット素材とするには、焼結体を、例えば平面研削盤で研削して表面粗さRaが0.5μm以下の素材とする。ここで、さらにターゲット素材のスパッタ面に鏡面加工を施して、平均表面粗さRaが1000オングストローム以下としてもよい。
鏡面加工(研磨)は、機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、公知の研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングすることによって得ることができる。このような研磨方法には特に制限はない。
ターゲット素材の表面は200〜10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400〜5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番より小さい、又は10,000番より大きいダイヤモンド砥石を使用するとターゲット素材が割れやすくなるおそれがある。
ターゲット素材の表面粗さRaが0.5μm以下であり、方向性のない研削面を備えていることが好ましい。Raが0.5μmより大きい、又は研磨面に方向性があると、異常放電が起きたり、パーティクルが発生するおそれがある。
最後に、得られたターゲット素材を清浄処理する。清浄処理にはエアーブロー又は流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。
尚、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。この超音波洗浄は周波数25〜300KHzの間で多重発振させて行なう方法が有効である。例えば周波数25〜300KHzの間で、25KHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが好ましい。
ターゲット素材の厚みは通常2〜20mm、好ましくは3〜12mm、特に好ましくは4〜6mmである。
上記のようにして得られたターゲット素材をバッキングプレートへボンディングすることによって、スパッタリングターゲットを得ることができる。また、複数のターゲット素材を1つのバッキングプレートに取り付け、実質1つのターゲットとしてもよい。
本発明のスパッタリングターゲットは、上記の製造方法により、相対密度が98%以上かつバルク抵抗が5mΩcm以下とすることができ、スパッタリングする際には、異常放電の発生を抑制することができる。また、本発明のスパッタリングターゲットは、高品質の酸化物半導体薄膜を、効率的に、安価に、且つ省エネルギーで成膜することができる。
[酸化物半導体薄膜]
本発明のスパッタリングターゲットをスパッタリング法により成膜することで、本発明の酸化物半導体薄膜が得られる。
本発明の酸化物半導体薄膜は、インジウム、スズ、亜鉛、アルミニウム、酸素からなり、好ましくは、下記原子比(1)〜(4)を満たす。
0.10≦In/(In+Sn+Zn+Al)≦0.60 (1)
0.01≦Sn/(In+Sn+Zn+Al)≦0.30 (2)
0.10≦Zn/(In+Sn+Zn+Al)≦0.65 (3)
0.01≦Al/(In+Sn+Zn+Al)≦0.30 (4)
(式中、In,Sn,Zn及びAlは、それぞれ酸化物半導体薄膜中のインジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の物質量を示す。)
式(1)において、In元素の量が0.10未満であると、スパッタリングターゲットのバルク抵抗値が高くなるため、DCスパッタリングが不可能となる。一方、In元素の量が0.60超であると、成膜した膜をTFTのチャネル層に適用したときに信頼性が劣化するおそれがある。
式(2)において、Sn元素の量が0.01未満であると、ターゲット抵抗が上昇するため、スパッタ成膜中に異常放電が発生し成膜が安定化しないおそれがある。一方、Sn元素の量が0.30超であると、得られる薄膜のウェットエッチャントへの溶解性が低下するため、ウェットエッチングが困難になる。
式(3)において、Zn元素の量が0.10未満であると、得られる膜が非晶質膜として安定しないおそれがある。一方、Zn元素の量が0.65超であると、得られる薄膜のウェットエッチャントへの溶解速度が高すぎるため、ウェットエッチングが困難になる。
式(4)において、Al元素の量が0.01未満であると、成膜時の酸素分圧が上昇するおそれがある。Al元素は酸素との結合が強いため、成膜時の酸素分圧を下げることができる。また、チャネル相を成膜しTFTに適用した場合に信頼性が劣化するおそれがある。一方、Al元素の量が0.30超であると、ターゲット中にAlが生成し、スパッタ成膜時に異常放電が発生し、成膜が安定化しないおそれがある。
酸化物半導体薄膜のキャリア濃度は、通常1019/cm以下であり、好ましくは1013〜1018/cmであり、さらに好ましくは1014〜1018/cmであり、特に好ましくは1015〜1018/cmである。
酸化物層のキャリア濃度が1019cm−3より大きくなると、薄膜トランジスタ等の素子を構成した際に、漏れ電流が発生してしまうおそれがある。また、ノーマリーオンになってしまったり、on−off比が小さくなってしまったりすることにより、良好なトランジスタ性能が発揮できないおそれがある。さらに、キャリア濃度が1013cm−3未満となるとキャリア数が少ないため、TFTとして駆動しないおそれがある。
酸化物半導体薄膜のキャリア濃度は、ホール効果測定方法により測定することができる。
本発明のスパッタリングターゲットは、高い導電性を有することから成膜速度の速いDCスパッタリング法を適用することができる。
上記DCスパッタリング法に加えて、RFスパッタリング法、ACスパッタリング法、パルスDCスパッタリング法も適用することができ、異常放電のないスパッタリングが可能である。
酸化物半導体薄膜は、上記焼結体を用いて、蒸着法、スパッタリング法、イオンプレーティング法、パルスレーザー蒸着法等により作製することもできる。
スパッタリングガス(雰囲気)としては、アルゴン等の希ガス原子と酸化性ガスの混合ガスを用いることができる。酸化性ガスとはO、CO、O、HO、NO等が挙げられる。スパッタリングガスは、希ガス原子と、水分子、酸素分子及び亜酸化窒素分子から選ばれる一種以上の分子を含有する混合気体が好ましく、希ガス原子と、少なくとも水分子を含有する混合気体であることがより好ましい。
スパッタリング成膜時の酸素分圧比は0%以上40%未満とすることが好ましい。酸素分圧比が40%以上の条件で作製した薄膜は、大幅にキャリア濃度が低減しキャリア濃度が1013cm−3未満となるおそれがある。
好ましくは、酸素分圧比は0%〜30%、特に好ましくは0%〜20%である。
本発明における酸化物薄膜堆積時のスパッタガス(雰囲気)に含まれる水分子の分圧比、即ち、[HO]/([HO]+[希ガス]+[その他の分子])は、0.1〜25%であることが好ましい。
また、水の分圧比が25%を超えると、膜密度の低下が顕著となるため、Inの5s軌道の重なりが小さくなり移動度の低下を招くおそれがある。スパッタリング時の雰囲気中の水の分圧比は0.7〜13%がより好ましく、1〜6%が特に好ましい。
スパッタリングにより成膜する際の基板温度は、25〜120℃であることが好ましく、さらに好ましくは25〜100℃、特に好ましくは25〜90℃である。成膜時の基板温度が120℃よりも高いと成膜時に導入する酸素等の取り込みが減少し、加熱後の薄膜のキャリア濃度が1019/cmを超えるおそれがある。また、成膜時の基板温度が25℃よりも低いと薄膜の膜密度が低下し、TFTの移動度が低下するおそれがある。
スパッタリングによって得られた酸化物薄膜を、さらに150〜500℃に15分〜5時間保持してアニール処理を施すことが好ましい。成膜後のアニール処理温度は200℃以上450℃以下であることがより好ましく、250℃以上350℃以下であることがさらに好ましい。上記アニールを施すことにより、半導体特性が得られる。
また、加熱時の雰囲気は、特に限定されるわけではないが、キャリア制御性の観点から、大気雰囲気、酸素流通雰囲気が好ましい。
酸化物薄膜の後処理アニール工程においては、酸素の存在下又は不存在下でランプアニール装置、レーザーアニール装置、熱プラズマ装置、熱風加熱装置、接触加熱装置等を用いることができる。
スパッタリング時におけるターゲットと基板との間の距離は、基板の成膜面に対して垂直方向に好ましくは1〜15cmであり、さらに好ましくは2〜8cmである。この距離が1cm未満の場合、基板に到達するターゲット構成元素の粒子の運動エネルギーが大きくなり、良好な膜特性を得ることができないおそれがあるうえ、膜厚及び電気特性の面内分布が生じてしまうおそれがある。一方、ターゲットと基板との間隔が15cmを超える場合、基板に到達するターゲット構成元素の粒子の運動エネルギーが小さくなりすぎて、緻密な膜を得ることができず、良好な半導体特性を得ることができないおそれがある。
酸化物薄膜の成膜は、磁場強度が300〜1500ガウスの雰囲気下でスパッタリングすることが望ましい。磁場強度が300ガウス未満の場合、プラズマ密度が低くなるため高抵抗のスパッタリングターゲットの場合スパッタリングできなくなるおそれがある。一方、1500ガウス超の場合、膜厚及び膜中の電気特性の制御性が悪くなるおそれがある。
気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、好ましくは0.1〜3.0Paであり、さらに好ましくは0.1〜1.5Paであり、特に好ましくは0.1〜1.0Paである。スパッタ圧力が3.0Paを超える場合、スパッタ粒子の平均自由工程が短くなり、薄膜の密度が低下するおそれがある。また、スパッタ圧力が0.1Pa未満である場合、成膜時に膜中に微結晶が生成するおそれがある。尚、スパッタ圧力とは、アルゴン等の希ガス原子、水分子、酸素分子等を導入した後のスパッタ開始時の系内の全圧をいう。
薄膜トランジスタを製造する過程における、半導体基板のCu等の金属汚染を除去するため、並びに、ゲート絶縁膜表面のダングリングボンド等に起因する表面準位を低減させるために、半導体基板やゲート絶縁膜表面の洗浄を行うことが好ましい。
洗浄溶液としては、シアン(CN)含有溶液を用いることができる。洗浄に用いるシアン(CN)含有溶液は、シアン化水素(HCN)を、純水若しくは超純水、又は、アルコール系溶媒、ケトン系溶媒、ニトリル系溶媒、芳香族炭化水素系溶媒、四塩化炭素、エーテル系溶媒、脂肪族アルカン系溶媒、及びこれらの混合溶媒から選ばれる少なくとも1つの溶媒に溶解し、さらに所定濃度に希釈するとともに、アンモニア水溶液等で、溶液中の水素イオン濃度指数、いわゆるpH値を好ましくは9〜14の範囲に調整して用いることが好適である。
シアン(CN)含有量は、例えば100ppm以下であり、好ましくは1ppm〜10ppmであり、水素イオン濃度指数(pH)9〜14のシアン含有溶液を加熱して、50℃以下、好ましくは30℃〜40℃の範囲の所定温度において、半導体基板やゲート絶縁膜表面の洗浄処理することが好ましい。
HCN水溶液を用いることで、シアン化物イオン(CN)が基板表面上の銅と反応して[Cu(CN)を形成して汚染銅が除去される。[Cu(CN)はHCN水溶液中のCNイオンと反応し、pH10では[Cu(CN)3−として安定に存在する。CNイオンの錯イオン形成能は極めて大きく、極低濃度のHCN水溶液であっても、CNイオンが有効に反応して汚染銅の除去が可能である。
また、酸化物半導体薄膜の成膜を、次のような交流スパッタリングで行ってもよい。
真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、各ターゲットに対して交流電源から負電位及び正電位を交互に印加して、ターゲット上にプラズマを発生させて基板表面上に成膜する。
このとき、交流電源からの出力の少なくとも1つを、分岐して接続された2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら行う。即ち、上記交流電源からの出力の少なくとも1つを分岐して2枚以上のターゲットに接続し、隣り合うターゲットに異なる電位を印加しながら成膜を行う。
尚、交流スパッタリングによって酸化物半導体薄膜を成膜する場合も、例えば、希ガス原子と、水分子、酸素分子及び亜酸化窒素分子から選ばれる一以上の分子とを含有する混合気体の雰囲気下においてスパッタリングを行うことが好ましく、水分子を含有する混合気体の雰囲気下においてスパッタリングを行うことが特に好ましい。
ACスパッタリングで成膜した場合、工業的に大面積均一性に優れた酸化物層が得られると共に、ターゲットの利用効率の向上が期待できる。
また、1辺が1mを超える大面積基板にスパッタ成膜する場合には、たとえば特開2005−290550号公報記載のような大面積生産用のACスパッタ装置を使用することが好ましい。
特開2005−290550号公報記載のACスパッタ装置は、具体的には、真空槽と、真空槽内部に配置された基板ホルダと、この基板ホルダと対向する位置に配置されたスパッタ源とを有する。図1にACスパッタ装置のスパッタ源の要部を示す。スパッタ源は、複数のスパッタ部を有し、板状のターゲット31a〜31fをそれぞれ有し、各ターゲット31a〜31fのスパッタされる面をスパッタ面とすると、各スパッタ部はスパッタ面が同じ平面上に位置するように配置される。各ターゲット31a〜31fは長手方向を有する細長に形成され、各ターゲットは同一形状であり、スパッタ面の長手方向の縁部分(側面)が互いに所定間隔を空けて平行に配置される。従って、隣接するターゲット31a〜31fの側面は平行になる。
真空槽の外部には、交流電源17a〜17cが配置されており、各交流電源17a〜17cの二つの端子のうち、一方の端子は隣接する二つの電極のうちの一方の電極に接続され、他方の端子は他方の電極に接続されている。各交流電源17a〜17cの2つの端子は正負の異なる極性の電圧を出力するようになっており、ターゲット31a〜31fは電極に密着して取り付けられているので、隣接する2つのターゲット31a〜31fには互いに異なる極性の交流電圧が交流電源17a〜17cから印加される。従って、互いに隣接するターゲット31a〜31fのうち、一方が正電位に置かれる時には他方が負電位に置かれた状態になる。
電極のターゲット31a〜31fとは反対側の面には磁界形成手段40a〜40fが配置されている。各磁界形成手段40a〜40fは、外周がターゲット31a〜31fの外周と略等しい大きさの細長のリング状磁石と、リング状磁石の長さよりも短い棒状磁石とをそれぞれ有している。
各リング状磁石は、対応する1個のターゲット31a〜31fの真裏位置で、ターゲット31a〜31fの長手方向に対して平行に配置されている。上述したように、ターゲット31a〜31fは所定間隔を空けて平行配置されているので、リング状磁石もターゲット31a〜31fと同じ間隔を空けて配置されている。
ACスパッタで、酸化物ターゲットを用いる場合の交流パワー密度は、3W/cm以上、20W/cm以下が好ましい。パワー密度が3W/cm未満の場合、成膜速度が遅く、生産上経済的でない。20W/cmを超えると、ターゲットが破損するおそれがある。より好ましいパワー密度は3W/cm〜15W/cmである。
ACスパッタの周波数は10kHz〜1MHzの範囲が好ましい。10kHzを下回ると、騒音の問題が発生する。1MHzを超えるとプラズマが広がりすぎるため、所望のターゲット位置以外でスパッタが行われ、均一性が損なわれることがある。より好ましいACスパッタの周波数は20kHz〜500kHzである。
上記以外のスパッタリング時の条件等は、上述したものから適宜選択すればよい。
[薄膜トランジスタ及び表示装置]
上記の酸化物薄膜は、薄膜トランジスタに使用でき、特にチャネル層として好適に使用でき、本発明の酸化物半導体薄膜をチャネル層に用いた薄膜トランジスタは電界効果移動度15cm/Vs以上の高移動度、かつ高信頼性を示すことができる。
本発明の薄膜トランジスタは、上記の酸化物薄膜をチャネル層として有していれば、その素子構成は特に限定されず、公知の各種の素子構成を採用することができる。
本発明の薄膜トランジスタにおけるチャネル層の膜厚は、通常10〜300nm、好ましくは20〜250nm、より好ましくは30〜200nm、さらに好ましくは35〜120nm、特に好ましくは40〜80nmである。チャネル層の膜厚が10nm未満の場合、大面積に成膜した際の膜厚の不均一性により、作製したTFTの特性が面内で不均一になるおそれがある。一方、膜厚が300nm超の場合、成膜時間が長くなり工業的に採用できないおそれがある。
本発明の薄膜トランジスタのチャネル層は、アニール処理後に少なくともゲート電極と重なる領域において一部、結晶化していても良い。なお、結晶化するとは、非晶質の状態から結晶核が生成する又は結晶核が生成された状態から結晶粒が成長することをいう。特にバックチャネル側の一部を結晶化させたときは、プラズマプロセス(CVDプロセス等)に対して、耐還元性が向上しTFTの信頼性が改善する。
結晶化した領域は、例えば、透過型電子顕微鏡(TEM:Transmission Electron Microscope)の電子線回折像から確認することができる。
本発明の薄膜トランジスタにおけるチャネル層は、通常、N型領域で用いられるが、P型Si系半導体、P型酸化物半導体、P型有機半導体等の種々のP型半導体と組合せてPN接合型トランジスタ等の各種の半導体デバイスに利用することができる。
本発明の薄膜トランジスタは、上記チャネル層上に保護膜を備えることが好ましい。本発明の薄膜トランジスタにおける保護膜は、少なくともSiNを含有することが好ましい。SiNはSiOと比較して緻密な膜を形成できるため、TFTの劣化抑制効果が高いという利点を有する。
保護膜は、SiNの他に例えばSiO,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,HfO,CaHfO,PbTi ,BaTa,Sm,SrTiO又はAlN等の酸化物等を含むことができる。
本発明のインジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物薄膜は、Alを含有しているためCVDプロセスによる耐還元性が向上し、保護膜を作製するプロセスによりバックチャネル側が還元されにくく、保護膜としてSiNを用いることができる。
保護膜を形成する前に、チャネル層に対し、オゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような処理は、チャネル層を形成した後、保護膜を形成する前であれば、どのタイミングで行ってもよいが、保護膜を形成する直前に行うことが望ましい。このような前処理を行うことによって、チャネル層における酸素欠陥の発生を抑制することができる。
また、TFT駆動中に酸化物半導体膜中の水素が拡散すると、閾値電圧のシフトが起こりTFTの信頼性が低下するおそれがある。チャネル層に対し、オゾン処理、酸素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことにより、薄膜構造中においてIn−OHの結合が安定化され酸化物半導体膜中の水素の拡散を抑制することができる。
なお、本実施形態のフォトリソグラフィ工程において、レジストを塗布する前に、酸化物半導体膜表面に、膜厚が数nm程度の絶縁膜を形成してもよい。この工程により酸化物半導体膜とレジストとが直接接触することを回避することが可能であり、レジストに含まれている不純物が酸化物半導体膜中に侵入するのを防止できる。
薄膜トランジスタは、通常、基板、ゲート電極、ゲート絶縁層、有機半導体層(チャネル層)、ソース電極及びドレイン電極を備える。チャネル層については上述した通りであり、基板については公知の材料を用いることができる。
本発明の薄膜トランジスタにおけるゲート絶縁膜を形成する材料にも特に制限はなく、一般に用いられている材料を任意に選択できる。具体的には、例えば、SiO,SiN,Al,Ta,TiO,MgO,ZrO,CeO,KO,LiO,NaO,RbO,Sc,Y,HfO,CaHfO,PbTi ,BaTa,SrTiO,Sm,AlN等の化合物を用いることができる。これらのなかでも、好ましくはSiO,SiN,Al,Y,HfO,CaHfOであり、より好ましくはSiO,SiN,HfO,Alである。
ゲート絶縁膜は、例えばプラズマCVD(Chemical Vapor Deposition;化学気相成長)法により形成することができる。
プラズマCVD法によりゲート絶縁膜を形成し、その上にチャネル層を成膜した場合、ゲート絶縁膜中の水素がチャネル層に拡散し、チャネル層の膜質低下やTFTの信頼性低下を招くおそれがある。チャネル層の膜質低下やTFTの信頼性低下を防ぐために、チャネル層を成膜する前にゲート絶縁膜に対してオゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような前処理を行うことによって、チャネル層の膜質の低下やTFTの信頼性低下を防ぐことができる。
尚、上記の酸化物の酸素数は、必ずしも化学量論比と一致していなくともよく、例えば、SiOでもSiOでもよい。
ゲート絶縁膜は、異なる材料からなる2層以上の絶縁膜を積層した構造でもよい。また、ゲート絶縁膜は、結晶質、多結晶質、非晶質のいずれであってもよいが、工業的に製造しやすい多結晶質又は非晶質であることが好ましい。
本発明の薄膜トランジスタにおけるドレイン電極、ソース電極及びゲート電極の各電極を形成する材料に特に制限はなく、一般に用いられている材料を任意に選択することができる。例えば、ITO,IZO,ZnO,SnO等の透明電極や、Al,Ag,Cu,Cr,Ni,Mo,Au,Ti,Ta等の金属電極、又はこれらを含む合金の金属電極を用いることができる。
S値は、トランスファ特性の結果から、Log(Id)―Vgのグラフを作製し、この傾きの逆数から導出することができる。S値の単位は、V/decadeであり、小さな値であることが好ましい。S値は0.8V/dec以下が好ましく、0.5V/dec以下がより好ましく、0.3V/dec以下がさらに好ましく、0.2V/dec以下が特に好ましい。0.8V/dec以下だと駆動電圧が小さくなり消費電力を低減できる可能性がある。特に、有機ELディスプレイで用いる場合は、直流駆動のためS値を0.3V/dec以下にすると消費電力を大幅に低減できるため好ましい。
尚、S値(SwingFactor)とは、オフ状態からゲート電圧を増加させた際に、オフ状態からオン状態にかけてドレイン電流が急峻に立ち上がるが、この急峻さを示す値である。下記式で定義されるように、ドレイン電流が1桁(10倍)上昇するときのゲート電圧の増分をS値とする。
S値=dVg/dlog(Ids)
S値が小さいほど急峻な立ち上がりとなる(「薄膜トランジスタ技術のすべて」、鵜飼育弘著、2007年刊、工業調査会)。S値が大きいと、オンからオフに切り替える際に高いゲート電圧をかける必要があり、消費電力が大きくなるおそれがある。
チャネル層に適用されるIn、Sn、Zn、Alからなる酸化物薄膜は、有機酸系エッチング液(例えば蓚酸エッチング液)でウェットエッチングでき、かつ無機酸系ウェットエッチング液(例えばリン酸/硝酸/酢酸の混酸ウェットエッチング液:PAN)には溶けにくく、電極に使用するMo(モリブデン)やAl(アルミニウム)等とのウェットエッチングの選択比が大きい。そのため、In、Sn、Zn、Alからなる酸化物薄膜をチャネル層に用いることで、チャネルエッチ型の薄膜トランジスタを作製することができる。
ドレイン電極、ソース電極及びゲート電極の各電極は、異なる2層以上の導電層を積層した多層構造とすることもできる。特にソース・ドレイン電極は低抵抗配線への要求が強いため、AlやCu等の良導体をTiやMo等の密着性に優れた金属でサンドイッチして使用してもよい。
本発明の薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、差動増幅回路等各種の集積回路にも適用できる。さらに、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、抵抗素子にも適応できる。
本発明の薄膜トランジスタの構成は、ボトムゲート、ボトムコンタクト、トップコンタクト等公知の構成を制限なく採用することができる。
特にボトムゲート構成が、アモルファスシリコンやZnOの薄膜トランジスタに比べ高い性能が得られるので有利である。ボトムゲート構成は、製造時のマスク枚数を削減しやすく、大型ディスプレイ等の用途の製造コストを低減しやすいため好ましい。
本発明の薄膜トランジスタは、表示装置に好適に用いることができる。
大面積のディスプレイ用としては、チャンネルエッチ型のボトムゲート構成の薄膜トランジスタが特に好ましい。チャンネルエッチ型のボトムゲート構成の薄膜トランジスタは、フォトリソ工程時のフォトマスクの数が少なく低コストでディスプレイ用パネルを製造できる。中でも、チャンネルエッチ型のボトムゲート構成及びトップコンタクト構成の薄膜トランジスタが移動度等の特性が良好で工業化しやすいため特に好ましい。
実施例1−8
[酸化物焼結体の製造]
原料粉体として下記の酸化物粉末を使用した。下記酸化物粉末の平均粒径としてメジアン径D50を採用し、当該平均粒径は、レーザー回折式粒度分布測定装置SALD−300V(島津製作所製)で測定した。
酸化インジウム粉 :平均粒径0.98μm
酸化スズ粉 :平均粒径0.98μm
酸化亜鉛粉 :平均粒径0.96μm
酸化アルミニウム粉:平均粒径0.98μm
上記の粉体を、表1に示す原子比となるように秤量し、均一に微粉砕混合後、成形用バインダーを加えて造粒した。次に、この原料混合粉を金型へ均一に充填し、コールドプレス機にてプレス圧140MPaで加圧成形した。
このようにして得た成形体を、表1に示す昇温速度(800℃から焼結温度)、焼結温度及び焼結時間で、焼結炉で焼結して焼結体を製造した。昇温中は酸素雰囲気、その他は大気中(雰囲気)とし、降温速度は15℃/分とした。
[焼結体の分析]
得られた焼結体の相対密度をアルキメデス法により測定した。実施例1〜8の焼結体は相対密度98%以上であることを確認した。
また、得られた焼結体のバルク比抵抗(導電性)を抵抗率計(三菱化学(株)製、ロレスタ)を使用して四探針法(JIS R 1637)に基づき測定した。結果を表1に示す。表1に示すように実施例1〜8の焼結体のバルク比抵抗は、5mΩcm以下であった。
得られた焼結体についてICP−AES分析を行い、表1に示す原子比であることを確認した。
また、得られた焼結体についてX線回折測定装置(XRD)により結晶構造を調べた。実施例1で得られた焼結体のX線回折チャートを図2に示す。
チャートを分析した結果、実施例1の焼結体にはInAlZnのホモロガス構造とZnSnOのスピネル構造が観測された。結晶構造はJCPDS(Joint Committee of Powder Diffraction Standards)カードで確認することができる。
XRDの結果から、実施例2−8に関してもInAlZn及び/又はInAlZnOのホモロガス構造とZnSnOのスピネル構造が観測された。InAlZnのホモロガス構造は、JCPDSカードNo.40−0259であり、ZnSnOのスピネル構造は、JCPDSカードNo.24−1470である。実施例2では、InAlZnとZnSnOに加えて、InAlZnOが観測された。InAlZnOのホモロガス構造は、JCPDSカードNo.40−0258である。
実施例1−8の焼結体には、異常放電の原因となるInは観測されなかった。
XRDの測定条件は以下の通りである。
・装置:(株)リガク製Ultima−III
・X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ−θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
実施例1−8の焼結体について、電子線マイクロアナライザ(EPMA)測定により得られた焼結体のSnやAlの分散を調べたところ、8μm以上のSnやAlの集合体は観測されなかった。実施例1〜8の焼結体は、分散性、均一性が極めて優れていることが分かった。
EPMAの測定条件は以下の通りである。
装置名:JXA−8200(日本電子株式会社)
加速電圧:15kV
照射電流:50nA
照射時間(1点当りの):50mS
[スパッタリングターゲットの製造]
実施例1〜8で得られた焼結体の表面を平面研削盤で研削し、側辺をダイヤモンドカッターで切断し、バッキングプレートに貼り合わせ、それぞれ直径4インチのスパッタリングターゲットを作製した。また、実施例1、4、6については、それぞれ幅200mm、長さ1700mm、厚さ10mmの6枚のターゲットをACスパッタリング成膜用に作製した。
[異常放電の有無の確認]
得られた直径4インチのスパッタリングターゲットをDCスパッタリング装置に装着し、雰囲気としてアルゴンガスにHOガスを分圧比で2%添加した混合ガスを使用し、スパッタ圧0.4Pa、基板温度を室温とし、DC出力400Wにて、10kWh連続スパッタを行った。スパッタ中の電圧変動をデータロガーに蓄積し、異常放電の有無を確認した。結果を表1に示す。
尚、上記異常放電の有無は、電圧変動をモニターして異常放電を検出することにより行った。具体的には、5分間の測定時間中に発生する電圧変動がスパッタ運転中の定常電圧の10%以上あった場合を異常放電とした。特にスパッタ運転中の定常電圧が0.1秒間に±10%変動する場合は、スパッタ放電の異常放電であるマイクロアークが発生しており、素子の歩留まりが低下し、量産化に適さないおそれがある。
[ノジュール発生の有無の確認]
得られた直径4インチのスパッタリングターゲットを用いて、雰囲気としてアルゴンガスに水素ガスを分圧比で3%添加した混合ガスを使用し、40時間連続してスパッタリングを行い、ノジュールの発生の有無を確認した。その結果、実施例1−8のスパッタリングターゲット表面において、ノジュールは観測されなかった。
尚、スパッタ条件は、スパッタ圧0.4Pa、DC出力100W、基板温度は室温とした。水素ガスは、ノジュールの発生を促進するために雰囲気ガスに添加した。
ノジュールは、スパッタリング後のターゲット表面の変化を実体顕微鏡により50倍に拡大して観察し、視野3mm中に発生した20μm以上のノジュールについて数平均を計測する方法を採用した。発生したノジュール数を表1に示す。
比較例1及び2
表1に示す原子比で原料粉末を混合し、表1に示す昇温速度(800℃から焼結温度)、焼結温度、焼結時間で焼結した他は、実施例1−8と同様に焼結体及びスパッタリングターゲットを製造し、評価した。結果を表1に示す。
比較例1及び2のスパッタリングターゲットにおいて、スパッタ時に異常放電が発生し、ターゲット表面にはノジュールが観測された。また、比較例1及び2のターゲットには、Inのビックスバイト構造、InAlZn及びInAlZnOのホモロガス構造とZnSnOのスピネル構造が観測された。Inのビックスバイト構造は、カードJCPDSNo.06−0416で確認することができる。
Inのビックスバイト構造が、比較例1及び2のターゲット中に存在しており、焼結時にInの凝集部分で異常粒成長を起こし、気孔が残存し、焼結体全体の密度が向上していない可能性が考えられる。
比較例1及び2のスパッタリングターゲットでは、昇温速度(800℃から焼結温度)を2℃/分超としたため、ターゲットの相対密度は98%未満、バルク抵抗は5mΩcm超であった。
Figure 0005965338
実施例9−16
[酸化物半導体薄膜の成膜]
マグネトロンスパッタリング装置に、実施例1−8で作製した表2に示す組成の4インチターゲットを装着し、基板としてスライドガラス(コーニング社製♯1737)をそれぞれ装着した。DCマグネトロンスパッタリング法により、下記の条件でスライドガラス上に膜厚50nmの非晶質膜を成膜した。
成膜時には、表2に示す分圧比(%)でArガス、Oガス及びHOガスを導入した。非晶質膜を形成した基板を大気中、300℃で60分加熱して酸化物半導体薄膜を形成した。
スパッタ条件は以下の通りである。
基板温度:25℃
到達圧力:8.5×10−5Pa
雰囲気ガス:Arガス、Oガス、HOガス(分圧は表2を参照)
スパッタ圧力(全圧):0.4Pa
投入電力:DC100W
S(基板)−T(ターゲット)距離:70mm
[酸化物半導体薄膜の評価]
酸化物半導体薄膜を形成した基板をResiTest8300型(東陽テクニカ社製)にセットし、室温でホール効果を評価した。また、ICP−AES分析により、酸化物薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
また、X線回折測定装置(リガク製Ultima−III)により結晶構造を調べた。
実施例9−16では、薄膜堆積直後は回折ピークが観測されず非晶質であることを確認した。また、大気下で300℃×60分加熱処理(アニール)後も回折ピークが観測されず非晶質であることを確認した。
XRDの測定条件は以下の通りである。
装置:(株)リガク製Ultima−III
X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
2θ−θ反射法、連続スキャン(1.0°/分)
サンプリング間隔:0.02°
スリット DS、SS:2/3°、RS:0.6mm
[薄膜トランジスタの製造]
基板として、膜厚100nmの熱酸化膜付きの導電性シリコン基板を使用した。熱酸化膜がゲート絶縁膜として機能し、導電性シリコン部がゲート電極として機能する。
ゲート絶縁膜上に表2及び3に示す条件でスパッタ成膜し、膜厚50nmの非晶質薄膜を作製した。レジストとしてOFPR♯800(東京応化工業株式会社製)を使用し、塗布、プレベーク(80℃、5分)、露光した。現像後、ポストベーク(120℃、5分)し、シュウ酸にてエッチングし、所望の形状にパターニングした。熱風加熱炉内にて300℃で60分加熱処理(アニール処理)を行った。
その後、Mo(100nm)をスパッタ成膜により成膜し、リフトオフ法によりソース/ドレイン電極を所望の形状にパターニングした。表2及び3に示すように保護膜を形成する前段階の処理として、酸化物半導体膜に対し、亜酸化窒素プラズマ処理を施し、プラズマCVD法(PECVD)にてSiOを成膜して保護膜とした。フッ酸を用いてコンタクトホールを開口し、薄膜トランジスタを作製した。
作製した薄膜トランジスタについて、電界効果移動度(μ)、S値及び閾値電圧(Vth)を評価した。これらの結果を表2及び3に示す。
これらの特性値は、半導体パラメーターアナライザー(ケースレーインスツルメンツ株式会社製4200SCS)を用い、室温、遮光環境下(シールドボックス内)で測定した。
盛装したトランジスタについて、ドレイン電圧(Vd)を1V及びゲート電圧(Vg)を−15〜20Vとして伝達特性を評価した。これらの結果を表2及び3に示す。
電界効果移動度(μ)は、線形移動度から算出し、Vg−μの最大値で定義した。
作製した薄膜トランジスタに対して、DCバイアスストレス試験を行った。表2及び3に、Vg=15V、Vd=15VのDCストレス(ストレス温度80℃下)を10000秒印加した前後における、TFTトランスファ特性の変化を示す。
実施例9−16の薄膜トランジスタは、閾値電圧の変動が非常に小さく、DCストレスに対して影響を受けにくいことが分かった。
比較例3及び4
比較例1及び2で作製した4インチターゲットを用いて、表3に示すスパッタ条件、加熱(アニーリング)処理条件及び保護膜形成前処理に従い、実施例9−16と同様にして、酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表3に示す。
表2及び3が示すように、比較例3及び4の素子は電界効果移動度が15cm/Vs未満であり、実施例9−16の素子と比べて大幅に低いことが分かった。また、比較例3及び4の薄膜トランジスタは、DCバイアスストレス試験の結果、閾値電圧が1V以上変動し、著しい特性の劣化が生じていることが分かった。
Figure 0005965338
Figure 0005965338
実施例17−19
表4に示すスパッタ条件、アニール条件に従い、実施例9−16と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表4に示す。実施例17−19では、DCスパッタリングの代わりにACスパッタリングにより成膜を実施している。
上記ACスパッタリングは、特開2005−290550号公報に開示された、図1に示す装置を用いて行った。
例えば実施例17では、実施例1で作製した幅200mm、長さ1700mm、厚さ10mmの6枚のターゲット31a〜31fを用い、各ターゲット31a〜31fを基板の幅方向に平行に、距離が2mmになるように配置した。磁界形成手段40a〜40fの幅はターゲット31a〜31fと同じ200mmであった。
ガス供給系からスパッタガスであるAr、及びHOをそれぞれ系内に導入した。スパッタリング条件は、0.5Pa、交流電源のパワーは3W/cm(=10.2kW/3400cm)とし、周波数は10kHzとした。当該条件で10秒成膜し、得られた薄膜の膜厚を測定すると12nmであった。成膜速度は72nm/分と高速であり、量産に適している。
薄膜が形成されたガラス基板を電気炉に入れ、空気中300℃、60分(大気雰囲気下)の条件で熱処理後、1cmのサイズに切出し、4探針法によるホール測定を行った。その結果、キャリア濃度が2.62×1017cm−3となり、十分半導体化していることが確認できた。また、XRD測定から薄膜堆積直後は非晶質であり、空気中300℃、60分後も非晶質であることを確認した。また、ICP−AES分析により、酸化物薄膜に含まれる各元素の原子比が成膜に用いたスパッタリングの原子比と同じであることを確認した。
尚、実施例18及び19では、実施例1で作製したターゲットの代わりに、それぞれ実施例4及び6で作製したターゲットを用いた。
比較例5
実施例1、4及び6で作製したターゲットの代わりに、比較例1で作製したターゲットを用い、表4に示すスパッタ条件、アニール条件に従い、実施例17−19と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。結果を表4に示す。
表4に示すように、比較例5の素子は電界効果移動度が15cm/Vs未満であり、実施例17−19と比べて大幅に低いことが分かる。
Figure 0005965338
実施例20−29
[薄膜トランジスタの製造]
基板として、膜厚100nmの熱酸化膜付きの導電性シリコン基板を使用した。熱酸化膜がゲート絶縁膜として機能し、導電性シリコン部がゲート電極として機能する。熱酸化膜付きの導電性シリコン基板を1ppm,pH10の極低濃度のHCN水溶液(洗浄液)により洗浄した。温度は30℃に設定して洗浄を行った。
実施例20−29として、それぞれ、実施例1−8、1、2で作製したターゲットを用い、表5及び表6に示すスパッタ条件、アニール条件に従い、ゲート絶縁膜上に膜厚50nmの非晶質薄膜を作製した。レジストとしてOFPR♯800(東京応化工業株式会社製)を使用し、塗布、プレベーク(80℃、5分)、露光した。現像後、ポストベーク(120℃、5分)し、シュウ酸にてエッチングし、所望の形状にパターニングした。その後熱風加熱炉内にて実施例20−26の素子については、450℃で60分加熱処理(アニール処理)を行い、実施例27−29の素子については、300℃で60分加熱処理(アニール処理)を行った。
その後、Mo(200nm)をスパッタ成膜により成膜した。チャネルエッチによりソース/ドレイン電極を所望の形状にパターニングした。その後、表5及び6に示すように保護膜を形成する前段階の処理として、酸化物半導体膜に対し、亜酸化窒素プラズマ処理を施し、プラズマCVD法(PECVD)にてSiOを成膜して保護膜とした。フッ酸を用いてコンタクトホールを開口し、バックチャネルエッチ型の薄膜トランジスタを作製した。
保護膜付き薄膜トランジスタのチャネル層に対して、断面TEM(透過電子顕微鏡;Transmission Electron Microscope)を用いて電子線回折パターンによる結晶性評価を行った。装置は、日立製電界放出型透過電子顕微鏡 HF−2100を利用した。
実施例20−26の素子のチャネル層について断面TEM解析を行った結果、フロントチャネル側は回折パターンが観測されず、非晶質であったが、バックチャネル側に一部、回折パターンが観測され、結晶化している領域を有することが分かった。一方、実施例27−29の素子については、フロントチャネル側、バックチャネル側ともに回折パターンは観測されず、非晶質であることを確認した。
盛装したトランジスタについて、ドレイン電圧(Vd)を1V及びゲート電圧(Vg)を−15〜20Vとして伝達特性を評価した。これらの結果を表5及び表6に示す。
電界効果移動度(μ)は、線形移動度から算出し、Vg−μの最大値で定義した。
作製した薄膜トランジスタに対して、DCバイアスストレス試験を行った。表5に、Vg=15V、Vd=15VのDCストレス(ストレス温度80℃下)を10000秒印加した前後における、TFTトランスファ特性の変化を示す。
実施例20−29の薄膜トランジスタは、閾値電圧の変動が非常に小さく、DCストレスに対して影響を受けにくいことが分かった。
比較例6及び7
比較例6及び7においても実施例20−29と同様にして熱酸化膜付きの導電性シリコン基板を用いたが、HCN水溶液(洗浄液)による洗浄を行わなかった。
比較例1及び2で作製したターゲットを用い、表6に示すスパッタ条件、アニール条件に従い、チャネルに亜酸化窒素プラズマ処理を行わない他は実施例20−29と同様にしてバックチャネルエッチ型薄膜トランジスタを作製し、評価した。結果を表6に示す。
表5及び6に示すように、比較例6及び7のバックチャネルエッチ型薄膜トランジスタは電界効果移動度が15cm/Vs未満であり、実施例20−29のバックチャネルエッチ型薄膜トランジスタと比べて大幅に低いことが分かる。
また、比較例6及び7の素子のチャネル層について断面TEM解析を行った結果、フロントチャネル側、バックチャネル側ともに回折パターンは観測されず、非晶質であることを確認した。
Figure 0005965338
Figure 0005965338
本発明のスパッタリングターゲットを用いて得られる薄膜トランジスタは、表示装置、特に大面積のディスプレイ用として用いることができる。
31a〜31f:ターゲット
40a〜40f:磁界形成手段
17a〜17c:交流電源

Claims (16)

  1. インジウム元素(In)、スズ元素(Sn)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物からなり、
    InAlO(ZnO)(mは0.1〜10)で表わされるホモロガス構造化合物を含み、In で表わされるビッグスバイト構造化合物を含まない、前記インジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の原子比が、下記式(1)〜(4)を満たすスパッタリングターゲット。
    0.10≦In/(In+Sn+Zn+Al)≦0.60 (1)
    0.01≦Sn/(In+Sn+Zn+Al)≦0.30 (2)
    0.10≦Zn/(In+Sn+Zn+Al)≦0.65 (3)
    0.01≦Al/(In+Sn+Zn+Al)≦0.30 (4)
    (式中、In,Sn,Zn及びAlは、それぞれスパッタリングターゲット中のインジウム元素、スズ元素、亜鉛元素及びアルミニウム元素の物質量を示す。)
  2. 前記InAlO(ZnO)(mは0.1〜10)で表わされるホモロガス構造化合物が、InAlZnで表わされるホモロガス構造化合物及びInAlZnOで表わされるホモロガス構造化合物から選択される1以上である請求項1に記載のスパッタリングターゲット。
  3. ZnSnOで表わされるスピネル構造化合物を含む請求項1又は2に記載のスパッタリングターゲット。
  4. 相対密度が98%以上である請求項1〜のいずれかに記載のスパッタリングターゲット。
  5. バルク比抵抗が5mΩcm以下である請求項1〜のいずれかに記載のスパッタリングターゲット。
  6. インジウム元素、スズ元素、亜鉛元素及びアルミニウム元素を含む酸化物の成形体を800℃から焼結温度まで昇温速度0.1〜2℃/分で昇温し、前記焼結温度で10〜50時間保持して焼結する工程を含み、前記焼結温度が1200℃〜1650℃の範囲である、請求項1〜5のいずれかに記載のスパッタリングターゲットの製造方法。
  7. 請求項1〜のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング法により成膜する、酸化物半導体薄膜の製造方法
  8. 水分子、酸素分子及び亜酸化窒素分子から選択される1以上と希ガス原子を含有する混合気体の雰囲気下において、請求項1〜のいずれかに記載のスパッタリングターゲットをスパッタリング法で成膜する酸化物半導体薄膜の製造方法。
  9. 前記混合気体が、少なくとも希ガス原子及び水分子を含む混合気体である請求項に記載の酸化物半導体薄膜の製造方法。
  10. 前記混合気体に含まれる水分子の割合が分圧比で0.1%〜25%である請求項に記載の酸化物半導体薄膜の製造方法。
  11. 真空チャンバー内に所定の間隔を置いて並設された3枚以上の前記スパッタリングターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加し、少なくとも1つの交流電源からの出力を、この交流電源に分岐して接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜する請求項8〜10のいずれかに記載の酸化物半導体薄膜の製造方法。
  12. 前記交流電源の交流パワー密度を3W/cm以上20W/cm以下とする請求項11に記載の酸化物半導体薄膜の製造方法。
  13. 前記交流電源の周波数が10kHz〜1MHzである請求項11又は12に記載の酸化物半導体薄膜の製造方法。
  14. 水分子、酸素分子及び亜酸化窒素分子から選択される1以上と希ガス原子を含有する混合気体の雰囲気下において、請求項1〜5のいずれかに記載のスパッタリングターゲットをスパッタリング法で成膜し、得られた酸化物半導体薄膜をチャネル層として用いる薄膜トランジスタの製造方法。
  15. 電界効果移動度が15cm/Vs以上である請求項14に記載の薄膜トランジスタの製造方法
  16. 水分子、酸素分子及び亜酸化窒素分子から選択される1以上と希ガス原子を含有する混合気体の雰囲気下において、請求項1〜5のいずれかに記載のスパッタリングターゲットをスパッタリング法で成膜し、得られた酸化物半導体薄膜をチャネル層とする薄膜トランジスタを製造する工程、及び
    該薄膜トランジスタを表示装置に組み込む工程
    を有する表示装置の製造方法。
JP2013036607A 2012-07-17 2013-02-27 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 Active JP5965338B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013036607A JP5965338B2 (ja) 2012-07-17 2013-02-27 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
TW102125629A TWI585227B (zh) 2012-07-17 2013-07-17 A sputtering target, an oxide semiconductor thin film, and the like
KR1020157001016A KR101726098B1 (ko) 2012-07-17 2013-07-17 스퍼터링 타겟, 산화물 반도체 박막 및 그들의 제조 방법
CN201380037627.8A CN104471103B (zh) 2012-07-17 2013-07-17 溅射靶、氧化物半导体薄膜及它们的制造方法
PCT/JP2013/004356 WO2014013728A1 (ja) 2012-07-17 2013-07-17 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
US14/414,850 US20150311071A1 (en) 2012-07-17 2013-07-17 Sputtering target, oxide semiconductor thin film, and method for producing oxide semiconductor thin film
US16/147,424 US11462399B2 (en) 2012-07-17 2018-09-28 Sputtering target, oxide semiconductor thin film, and method for producing oxide semiconductor thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012158629 2012-07-17
JP2012158629 2012-07-17
JP2013036607A JP5965338B2 (ja) 2012-07-17 2013-02-27 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Publications (2)

Publication Number Publication Date
JP2014037617A JP2014037617A (ja) 2014-02-27
JP5965338B2 true JP5965338B2 (ja) 2016-08-03

Family

ID=49948570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036607A Active JP5965338B2 (ja) 2012-07-17 2013-02-27 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Country Status (6)

Country Link
US (2) US20150311071A1 (ja)
JP (1) JP5965338B2 (ja)
KR (1) KR101726098B1 (ja)
CN (1) CN104471103B (ja)
TW (1) TWI585227B (ja)
WO (1) WO2014013728A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312384B (zh) 2016-06-15 2022-12-30 伊士曼化工公司 物理气相沉积的生物传感器组件
JP7096816B2 (ja) 2016-09-16 2022-07-06 イーストマン ケミカル カンパニー 物理蒸着によって製造されるバイオセンサー電極
WO2018052713A1 (en) 2016-09-16 2018-03-22 Eastman Chemical Company Biosensor electrodes prepared by physical vapor deposition
JP7133572B2 (ja) * 2017-06-22 2022-09-08 イーストマン ケミカル カンパニー 電気化学センサーのための物理蒸着電極
US20200235247A1 (en) * 2017-08-01 2020-07-23 Idemitsu Kosan Co.,Ltd. Sputtering target, oxide semiconductor thin film, thin film transistor, and electronic device
TWI777013B (zh) * 2017-12-28 2022-09-11 日商三井金屬鑛業股份有限公司 氧化物燒結體、濺鍍靶及氧化物薄膜
CN108642458A (zh) * 2018-06-20 2018-10-12 江苏瑞尔光学有限公司 一种ito镀膜靶材及其制备方法
US11760650B2 (en) * 2018-08-01 2023-09-19 Idemitsu Kosan Co.,Ltd. Compound
JP7158316B2 (ja) * 2019-03-05 2022-10-21 Jx金属株式会社 スパッタリングターゲット及びその製造方法
GB202005318D0 (en) * 2020-04-09 2020-05-27 Spts Technologies Ltd Deposition method
KR102271465B1 (ko) 2021-03-12 2021-07-01 대한민국 시료 채취장치
KR102563859B1 (ko) 2021-04-06 2023-08-03 연세대학교 산학협력단 원자층 증착 기반의 박막 내 인위적 조성 조절을 통한 고효율 수소 차단 제어막 형성 방법

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677593B1 (en) 1992-12-15 2000-03-22 Idemitsu Kosan Company Limited Transparent conductive film, transparent conductive base material, and conductive material
JP3947575B2 (ja) 1994-06-10 2007-07-25 Hoya株式会社 導電性酸化物およびそれを用いた電極
CA2202430C (en) * 1996-04-12 2007-07-03 Junichi Ebisawa Oxide film, laminate and methods for their production
JP3423896B2 (ja) 1999-03-25 2003-07-07 科学技術振興事業団 半導体デバイス
WO2003040441A1 (en) * 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
WO2004079038A1 (ja) * 2003-03-04 2004-09-16 Nikko Materials Co., Ltd. スパッタリングターゲット、光情報記録媒体用薄膜及びその製造方法
EP1717335A4 (en) 2004-02-17 2010-07-21 Nippon Mining Co SPUTTERTARGET, OPTICAL INFORMATION RECORDING MATERIAL AND MANUFACTURING METHOD THEREFOR
EP1985725B1 (en) 2004-02-17 2013-04-10 JX Nippon Mining & Metals Corporation Thin film in anoptical information recording medium and process for producing the same
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
CN102867855B (zh) 2004-03-12 2015-07-15 独立行政法人科学技术振兴机构 薄膜晶体管及其制造方法
US7427776B2 (en) * 2004-10-07 2008-09-23 Hewlett-Packard Development Company, L.P. Thin-film transistor and methods
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
KR101244092B1 (ko) * 2005-09-01 2013-03-18 이데미쓰 고산 가부시키가이샤 투명 도전막, 투명 전극, 및 전극 기판 및 그의 제조 방법
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
US8304359B2 (en) * 2005-09-27 2012-11-06 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and transparent electrode for touch panel
US7807515B2 (en) * 2006-05-25 2010-10-05 Fuji Electric Holding Co., Ltd. Oxide semiconductor, thin-film transistor and method for producing the same
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
JP5237557B2 (ja) * 2007-01-05 2013-07-17 出光興産株式会社 スパッタリングターゲット及びその製造方法
EP2471972B1 (en) 2006-12-13 2014-01-29 Idemitsu Kosan Co., Ltd. Sputtering target
JP5244331B2 (ja) * 2007-03-26 2013-07-24 出光興産株式会社 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
CN101663762B (zh) * 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
CN101911303B (zh) * 2007-12-25 2013-03-27 出光兴产株式会社 氧化物半导体场效应晶体管及其制造方法
WO2009084537A1 (ja) 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. a-IGZO酸化物薄膜の製造方法
US8455371B2 (en) 2008-05-22 2013-06-04 Idemitsu Kosan Co., Ltd. Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
US9028726B2 (en) * 2008-09-25 2015-05-12 Jx Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
TWI549198B (zh) * 2008-12-26 2016-09-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
KR101952065B1 (ko) * 2009-11-06 2019-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
CN104485341A (zh) * 2009-11-06 2015-04-01 株式会社半导体能源研究所 半导体装置
KR101975741B1 (ko) * 2009-11-13 2019-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 타깃 재료의 포장 방법 및 타깃의 장착 방법
KR20220116369A (ko) * 2009-11-13 2022-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이 표시 장치를 구비한 전자 기기
JP5690063B2 (ja) * 2009-11-18 2015-03-25 出光興産株式会社 In−Ga−Zn系酸化物焼結体スパッタリングターゲット及び薄膜トランジスタ
KR20120099483A (ko) * 2010-01-15 2012-09-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 구동하는 방법
CN102742015A (zh) * 2010-02-01 2012-10-17 日本电气株式会社 无定形氧化物薄膜、使用所述无定形氧化物薄膜的薄膜晶体管及其制造方法
WO2011132418A1 (ja) * 2010-04-22 2011-10-27 出光興産株式会社 成膜方法
KR101672344B1 (ko) * 2010-05-20 2016-11-04 삼성전자주식회사 광센싱 회로, 상기 광센싱 회로의 구동 방법, 및 상기 광센싱 회로를 채용한 광센싱 장치
KR101671952B1 (ko) * 2010-07-23 2016-11-04 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
WO2012029612A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
JP2013070010A (ja) * 2010-11-26 2013-04-18 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP5864054B2 (ja) * 2010-12-28 2016-02-17 株式会社半導体エネルギー研究所 半導体装置
KR101906974B1 (ko) * 2011-04-25 2018-10-12 삼성전자주식회사 광센싱 장치 및 그 구동 방법
KR101810608B1 (ko) * 2011-06-22 2017-12-21 삼성전자주식회사 광센싱 장치 및 그 구동 방법, 광센싱 장치를 포함하는 광터치 스크린 장치
TW201304989A (zh) 2011-07-20 2013-02-01 Hon Hai Prec Ind Co Ltd 車輛安全控制系統及方法
JP6013685B2 (ja) * 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 半導体装置
KR101854187B1 (ko) * 2011-07-28 2018-05-08 삼성전자주식회사 광센싱 장치 및 그 구동 방법, 광센싱 장치를 포함하는 광터치 스크린 장치
US9178076B2 (en) * 2011-08-11 2015-11-03 Idemitsu Kosan Co., Ltd. Thin-film transistor
TW201322341A (zh) * 2011-11-21 2013-06-01 Ind Tech Res Inst 半導體元件以及其製造方法
JP6212869B2 (ja) * 2012-02-06 2017-10-18 三菱マテリアル株式会社 酸化物スパッタリングターゲット

Also Published As

Publication number Publication date
WO2014013728A1 (ja) 2014-01-23
TWI585227B (zh) 2017-06-01
TW201410903A (zh) 2014-03-16
KR20150031440A (ko) 2015-03-24
US20150311071A1 (en) 2015-10-29
CN104471103A (zh) 2015-03-25
JP2014037617A (ja) 2014-02-27
CN104471103B (zh) 2017-05-24
US11462399B2 (en) 2022-10-04
US20190035626A1 (en) 2019-01-31
KR101726098B1 (ko) 2017-04-11

Similar Documents

Publication Publication Date Title
JP5965338B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP5301021B2 (ja) スパッタリングターゲット
WO2014073210A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6284710B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6622855B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP2014214359A (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP2014218706A (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6059513B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6353369B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
WO2014112369A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法
JP2013127118A (ja) スパッタリングターゲット
JP6141332B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6188712B2 (ja) スパッタリングターゲット
JP6470352B2 (ja) 酸化物半導体薄膜
JP6006055B2 (ja) スパッタリングターゲット
JP6052967B2 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150