ES2562824T3 - Autonomous compact covering robot - Google Patents

Autonomous compact covering robot Download PDF

Info

Publication number
ES2562824T3
ES2562824T3 ES12195264.2T ES12195264T ES2562824T3 ES 2562824 T3 ES2562824 T3 ES 2562824T3 ES 12195264 T ES12195264 T ES 12195264T ES 2562824 T3 ES2562824 T3 ES 2562824T3
Authority
ES
Spain
Prior art keywords
robot
chassis
sensor
shock
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES12195264.2T
Other languages
Spanish (es)
Inventor
Mark Schnittman
Zivthan A. Dubrovsky
Jeffrey W. Mammen
Aaron Solochek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iRobot Corp
Original Assignee
iRobot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39720746&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2562824(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by iRobot Corp filed Critical iRobot Corp
Application granted granted Critical
Publication of ES2562824T3 publication Critical patent/ES2562824T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/30Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction
    • A47L11/302Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/34Machines for treating carpets in position by liquid, foam, or vapour, e.g. by steam
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • A47L11/4025Means for emptying
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4041Roll shaped surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/408Means for supplying cleaning or surface treating agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0466Rotating tools
    • A47L9/0477Rolls
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/02Nozzles
    • A47L9/04Nozzles with driven brushes or agitators
    • A47L9/0461Dust-loosening tools, e.g. agitators, brushes
    • A47L9/0488Combinations or arrangements of several tools, e.g. edge cleaning tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/12Floor surfacing or polishing machines motor-driven with reciprocating or oscillating tools
    • A47L11/125Floor surfacing or polishing machines motor-driven with reciprocating or oscillating tools with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/145Floor surfacing or polishing machines motor-driven with rotating tools with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/10Floor surfacing or polishing machines motor-driven
    • A47L11/14Floor surfacing or polishing machines motor-driven with rotating tools
    • A47L11/16Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes
    • A47L11/161Floor surfacing or polishing machines motor-driven with rotating tools the tools being disc brushes with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/02Floor surfacing or polishing machines
    • A47L11/20Floor surfacing or polishing machines combined with vacuum cleaning devices
    • A47L11/201Floor surfacing or polishing machines combined with vacuum cleaning devices with supply of cleaning agents
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • A47L11/282Floor-scrubbing machines, motor-driven having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/292Floor-scrubbing machines characterised by means for taking-up dirty liquid having rotary tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/30Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4044Vacuuming or pick-up tools; Squeegees
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

Robot autónomo de cubrimiento (100, 101) que comprende: un chasis (200) que tiene partes delantera y posterior (210, 220), definiendo la parte delantera (210) una forma sustancialmente rectangular y definiendo la parte posterior (220) una forma arqueada; un sistema de accionamiento (400) portado por el chasis configurado para maniobrar el robot (100, 101) sobre una superficie de limpieza; ruedas motrices accionadas de manera diferencial derecha e izquierda (410, 420); un conjunto de limpieza (500) montado en la parte delantera del chasis (200); un compartimento de basura (610) dispuesto adyacente al conjunto de limpieza (500) y configurado para recibir residuos agitados por el conjunto de limpieza (500); un sensor antichoque configurado para detectar movimiento en múltiples direcciones; caracterizado por que el conjunto de limpieza (500) comprende: un primer cepillo de rodillo (510) montado de manera giratoria cerca del borde frontal (202) del chasis (200); y un segundo cepillo de rodillo (520) montado de manera giratoria sustancialmente paralelo al primer cepillo de rodillo (510) y por detrás de este, girando los cepillos de rodillo primero y segundo (510, 520) en direcciones opuestas.Autonomous covering robot (100, 101) comprising: a chassis (200) having front and rear parts (210, 220), the front part (210) defining a substantially rectangular shape and the rear part (220) defining a shape arched a drive system (400) carried by the chassis configured to maneuver the robot (100, 101) on a cleaning surface; right and left differentially driven drive wheels (410, 420); a cleaning assembly (500) mounted on the front of the chassis (200); a garbage compartment (610) disposed adjacent to the cleaning assembly (500) and configured to receive agitated waste by the cleaning assembly (500); an anti-shock sensor configured to detect movement in multiple directions; characterized in that the cleaning assembly (500) comprises: a first roller brush (510) rotatably mounted near the front edge (202) of the chassis (200); and a second roller brush (520) rotatably mounted substantially parallel to and behind the first roller brush (510), rotating the first and second roller brushes (510, 520) in opposite directions.

Description

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

DESCRIPCIONDESCRIPTION

Robot autonomo de cubrimiento compacto Campo tecnicoAutonomous compact covering robot Technical field

La presente invencion se refiere a robots autonomos de cubrimiento para la limpieza de suelos u otras superficies. AntecedentesThe present invention relates to autonomous covering robots for cleaning floors or other surfaces. Background

Los robots autonomos son robots que pueden realizar tareas deseadas en ambientes no estructurados sin gma humana continua. Muchas clases de robots son autonomos en algun grado. Diferentes robots pueden ser autonomos en diferentes formas. Un robot autonomo de cubrimiento cruza una superficie de trabajo sin gma humana continua para realizar una o mas tareas. En el campo de la robotica orientada al hogar, a la oficina y/o al consumidor, se han adoptado ampliamente robots moviles que realizan funciones domesticas tales como aspirar, lavar el suelo, vigilar, cortar el cesped y otras tareas.Autonomous robots are robots that can perform desired tasks in unstructured environments without continuous human gma. Many kinds of robots are autonomous in some degree. Different robots can be autonomous in different ways. An autonomous covering robot crosses a work surface without continuous human gma to perform one or more tasks. In the field of home, office and / or consumer-oriented robotics, mobile robots that perform domestic functions such as vacuuming, washing the floor, monitoring, mowing and other tasks have been widely adopted.

Robots moviles para la limpieza de suelos se han descrito, por ejemplo, en el documento de patente US 6.883.201 de Jones et al. ("JONES"), que describe un robot autonomo para la limpieza de suelos que cruza un suelo mientras retira residuos usando cepillos giratorios, aspiradoras u otros mecanismos de limpieza. JONES describe ademas un robot que tiene un diseno generalmente redondo soportado por tres ruedas, que pueden girar libremente para maniobrar, entre otras cosas, alrededor de obstaculos.Mobile robots for floor cleaning have been described, for example, in US Pat. No. 6,883,201 by Jones et al. ("JONES"), which describes an autonomous floor cleaning robot that crosses a floor while removing waste using rotating brushes, vacuum cleaners or other cleaning mechanisms. JONES also describes a robot that has a generally round design supported by three wheels, which can rotate freely to maneuver, among other things, around obstacles.

La publicacion de patente internacional WO 03/024292 A2 describe un colector de polvo de tipo de suelo desplazable que comprende al menos un accionador electromotriz, un recipiente colector de polvo y una cubierta de proteccion. La forma basica del dispositivo difiere de la de un drculo. Con miras a producir el colector de polvo de tipo de suelo desplazable mencionado anteriormente, y en concreto, con miras a mejorar su funcion de limpieza, su forma basica consiste en una seccion circular y en una seccion con una forma que tiende a ser rectangular. La seccion rectangular esta dispuesta aguas arriba en la direccion de desplazamiento.International Patent Publication WO 03/024292 A2 describes a dust collector of movable soil type comprising at least one electromotive actuator, a dust collector container and a protective cover. The basic shape of the device differs from that of a circle. With a view to producing the dust collector of movable soil type mentioned above, and in particular, with a view to improving its cleaning function, its basic form consists of a circular section and a section with a shape that tends to be rectangular. The rectangular section is arranged upstream in the direction of travel.

La publicacion de patente de EE. UU. n.° 2004/0187249 A1 muestra un robot autonomo de limpieza de suelos que comprende un modulo con cabezal de limpieza autoajustable que incluye un conjunto de cepillo de dos etapas que tiene unos cepillos asimetricos que giran uno al contrario que el otro y un conjunto de aspiracion adyacente, aunque independiente, de modo que la eficiencia y capacidad limpiadora del modulo con cabezal de limpieza autoajustable esta optimizado al mismo tiempo que minimiza los requisitos de consumo de este. El robot autonomo de limpieza de suelos incluye ademas un conjunto de cepillos laterales para dirigir el material particulado fuera de la camisa del robot y en el modulo con cabezal de limpieza autoajustable.U.S. Patent Publication UU. No. 2004/0187249 A1 shows an autonomous floor cleaning robot that comprises a module with a self-adjusting cleaning head that includes a two-stage brush assembly that has asymmetric brushes that rotate one as opposed to the other and a set of adjacent aspiration, although independent, so that the efficiency and cleaning capacity of the module with self-adjusting cleaning head is optimized while minimizing its consumption requirements. The autonomous floor cleaning robot also includes a set of side brushes to direct the particulate material out of the robot's jacket and in the module with a self-adjusting cleaning head.

ResumenSummary

La invencion se refiere a un robot autonomo de cubrimiento como se expone en la reivindicacion 1. En las reivindicaciones dependientes 2 a 15, se describen realizaciones preferidas.The invention relates to an autonomous covering robot as set forth in claim 1. Preferred embodiments are described in dependent claims 2 to 15.

A continuacion, se describe un robot movil compacto para la limpieza de suelos, encimeras y otras superficies relacionadas, tales como baldosas, suelos de madera o enmoquetados. El robot tiene un diseno frontal rectangular que facilita la limpieza a lo largo de bordes de pared o en esquinas. En un ejemplo, el robot incluye tanto una seccion redondeada como una seccion rectangular, en el que un mecanismo de limpieza dentro de la seccion rectangular esta dispuesto proximalmente a esquinas laterales opuestas de la seccion rectangular. Como ventaja, el robot puede maniobrar con el fin poner la seccion rectangular al mismo nivel que una esquina de pared o un borde de pared, con el mecanismo de limpieza extendiendose hacia la esquina de pared o el borde de pared.Next, a compact mobile robot for cleaning floors, countertops and other related surfaces, such as tiles, wooden floors or carpeting, is described. The robot has a rectangular front design that facilitates cleaning along wall edges or corners. In one example, the robot includes both a rounded section and a rectangular section, in which a cleaning mechanism within the rectangular section is arranged proximally to opposite lateral corners of the rectangular section. As an advantage, the robot can maneuver in order to place the rectangular section at the same level as a wall corner or a wall edge, with the cleaning mechanism extending towards the wall corner or the wall edge.

En otro aspecto, un robot autonomo de cubrimiento incluye un chasis que tiene unas partes delantera y posterior, y un sistema de accionamiento portado por la parte posterior del chasis. La parte delantera define una forma sustancialmente rectangular y la parte posterior define una forma arqueada. El sistema de accionamiento esta configurado para maniobrar el robot sobre una superficie de limpieza e incluye ruedas motrices derecha e izquierda accionadas de manera diferencial por motores correspondientes derecho e izquierdo. El robot incluye un controlador en comunicacion con el sistema de accionamiento. El controlador esta configurado para maniobrar el robot a fin de que pivote sobre sf mismo. El robot incluye un conjunto de limpieza montado en la parte delantera del chasis e incluye un primer cepillo de rodillo montado de manera giratoria sustancialmente cerca de un borde delantero del chasis y un segundo cepillo de rodillo montado de manera giratoria sustancialmente paralelo al primer cepillo de rodillo y por detras del mismo. Los cepillos de rodillo primero y segundo giran en direcciones opuestas. Un compartimento de basura esta dispuesto por detras del conjunto de limpieza y esta configurado para recibir los residuos agitados mediante el conjunto de limpieza. Una cubierta del compartimento de basura esta unida de manera pivotante a una parte inferior del chasis y esta configurada de modo que gire entre una primera posicion cerrada, que proporciona el cierre de una abertura definida por el compartimento de basura y una segunda posicion abierta que proporciona acceso a la abertura del compartimento de basura. El robot incluye una liberacion deIn another aspect, an autonomous covering robot includes a chassis that has front and rear parts, and a drive system carried by the rear of the chassis. The front part defines a substantially rectangular shape and the rear part defines an arched shape. The drive system is configured to maneuver the robot on a cleaning surface and includes right and left drive wheels differentially driven by corresponding right and left motors. The robot includes a controller in communication with the drive system. The controller is configured to maneuver the robot so that it pivots on itself. The robot includes a cleaning assembly mounted on the front of the chassis and includes a first roller brush mounted rotatably substantially near a leading edge of the chassis and a second roller brush mounted rotatably substantially parallel to the first roller brush and behind it. The first and second roller brushes rotate in opposite directions. A garbage compartment is arranged behind the cleaning set and is configured to receive agitated waste through the cleaning set. A garbage compartment cover is pivotally attached to a lower part of the chassis and is configured to rotate between a first closed position, which provides the closure of an opening defined by the garbage compartment and a second open position that provides access to the trash compartment opening. The robot includes a release of

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

cubierta del compartimento de basura configurada para controlar el movimiento de la cubierta del compartimento de basura entre sus posiciones primera y segunda. Un asa esta dispuesta en el chasis. La liberacion de cubierta del compartimento de basura se puede accionar desde sustancialmente cerca del asa. Un cuerpo esta unido de manera flexible al chasis y sustancialmente cubre el chasis. El cuerpo se puede mover en relacion con el asa y el chasis. El robot incluye un sensor antichoque en comunicacion con el controlador y configurado para detectar movimiento en multiples direcciones. El contacto con el cuerpo se traslada al sensor antichoque para su deteccion. El controlador se configura para alterar una direccion de desplazamiento del robot en respuesta a una senal recibida del sensor antichoque.Garbage compartment cover configured to control the movement of the garbage compartment cover between its first and second positions. A handle is arranged in the chassis. The cover release of the garbage compartment can be operated from substantially close to the handle. A body is flexibly attached to the chassis and substantially covers the chassis. The body can move in relation to the handle and the chassis. The robot includes an anti-shock sensor in communication with the controller and configured to detect movement in multiple directions. Contact with the body is transferred to the anti-shock sensor for detection. The controller is configured to alter a direction of travel of the robot in response to a signal received from the anti-shock sensor.

Aplicaciones de este aspecto de la descripcion pueden incluir una o mas de las siguientes caractensticas. En algunas aplicaciones, el sensor antichoque incluye una base del sensor, una carcasa del sensor, situada adyacente a la base del sensor y unida al cuerpo, un emisor, alojado en la carcasa del sensor, y al menos tres detectores portados en la base del sensor. El emisor emite una senal a la base del sensor y los detectores detectan la senal emitida. El movimiento de la carcasa del sensor provoca el movimiento de la senal emitida sobre los detectores.Applications of this aspect of the description may include one or more of the following features. In some applications, the anti-shock sensor includes a sensor base, a sensor housing, located adjacent to the sensor base and attached to the body, a transmitter, housed in the sensor housing, and at least three detectors carried at the base of the sensor. sensor. The emitter emits a signal to the sensor base and the detectors detect the emitted signal. The movement of the sensor housing causes the movement of the signal emitted on the detectors.

En algunas aplicaciones, el robot incluye una grna parachoques configurada para confinar los movimientos del cuerpo a lo largo de dos direcciones. La grna parachoques puede incluir dos surcos ortogonales definidos en el cuerpo y configurados para recibir un pasador grna dispuesto en el chasis.In some applications, the robot includes a large bumper configured to confine body movements along two directions. The bumper handle can include two orthogonal grooves defined in the body and configured to receive a large pin arranged in the chassis.

El robot puede incluir una rueda loca dispuesta sobre la cubierta del compartimento de basura. En algunos ejemplos, la parte posterior del chasis define una forma sustancialmente semicircular y la rueda loca esta situada al menos a 1/3 del radio de la parte posterior con forma sustancialmente semicircular por delante de las ruedas motrices.The robot can include a crazy wheel arranged on the cover of the garbage compartment. In some examples, the rear of the chassis defines a substantially semicircular shape and the idler wheel is located at least 1/3 of the radius of the substantially semicircular shaped rear in front of the drive wheels.

En ejemplos espedficos, las ruedas motrices estan dispuestas a menos de 9 cm por detras del conjunto de limpieza. El robot puede incluir una fuente de alimentacion dispuesta en la parte posterior del chasis, sustancialmente entre las ruedas derecha e izquierda. La fuente de alimentacion esta dispuesta adyacente y por detras del compartimento de basura. El conjunto de limpieza comprende ademas un motor de los cepillos configurado para accionar los cepillos de rodillo primero y segundo. En algunos ejemplos, el motor de los cepillos esta dispuesto sustancialmente cerca de un borde delantero del chasis. El primer cepillo de rodillo puede estar dispuesto sustancialmente cerca del borde delantero del chasis.In specific examples, the drive wheels are arranged less than 9 cm behind the cleaning assembly. The robot may include a power supply arranged at the rear of the chassis, substantially between the right and left wheels. The power supply is arranged adjacently and behind the garbage compartment. The cleaning assembly further comprises a brush motor configured to drive the first and second roller brushes. In some examples, the brush motor is arranged substantially near a leading edge of the chassis. The first roller brush may be disposed substantially near the leading edge of the chassis.

Aplicaciones de la descripcion pueden incluir una o mas de las siguientes caractensticas. En algunas aplicaciones, las ruedas motrices derecha e izquierda estan montadas de manera giratoria en la parte posterior del chasis y el sistema de accionamiento es capaz de maniobrar el robot para pivotar sobre sf mismo. Preferiblemente, la parte posterior del chasis define una forma arqueada; sin embargo, tambien son posibles otras formas, tales como rectangular o poligonal. En algunos ejemplos, la parte posterior del chasis define una forma sustancialmente semicircular y los ejes de las ruedas motrices derecha e izquierda estan dispuestos sobre o por detras de un eje central definido por la parte posterior del chasis. En algunas aplicaciones, el chasis y el cuerpo juntos tienen una longitud menor de 23 cm y una anchura menor de 19 cm.Applications of the description may include one or more of the following features. In some applications, the right and left drive wheels are rotatably mounted on the rear of the chassis and the drive system is capable of maneuvering the robot to pivot on itself. Preferably, the back of the chassis defines an arcuate shape; however, other shapes, such as rectangular or polygonal, are also possible. In some examples, the rear of the chassis defines a substantially semicircular shape and the axes of the right and left driving wheels are arranged on or behind a central axis defined by the rear of the chassis. In some applications, the chassis and body together have a length of less than 23 cm and a width of less than 19 cm.

En algunas aplicaciones, el robot incluye al menos un sensor de proximidad portado por un lado dominante del robot. El al menos un sensor de proximidad responde a un obstaculo sustancialmente cerca del cuerpo. El controlador cambia una direccion de desplazamiento en respuesta a una senal recibida desde el al menos un sensor de proximidad.In some applications, the robot includes at least one proximity sensor carried by a dominant side of the robot. The at least one proximity sensor responds to an obstacle substantially close to the body. The controller changes a direction of travel in response to a signal received from the at least one proximity sensor.

En algunas aplicaciones, el robot incluye al menos un sensor de desnivel portado por una parte delantera del cuerpo y dispuesto sustancialmente cerca de un borde delantero del cuerpo. El al menos un sensor de desnivel responde a un posible desnivel por adelante del robot. El sistema de accionamiento cambia una direccion de desplazamiento en respuesta a una senal recibida desde el sensor de desnivel que indica un posible desnivel. En algunos ejemplos, unos sensores de desnivel delanteros derecho e izquierdo estan dispuestos en esquinas correspondientes derecha e izquierda de una parte delantera del robot. Esto permite al robot detectar el momento en el que oscila cualquiera de las esquinas delanteras sobre un borde de desnivel, a fin de evitar que las ruedas motrices se acerquen al borde de desnivel. En algunas aplicaciones, el robot incluye al menos un sensor de desnivel portado por una parte posterior del cuerpo y dispuesto sustancialmente cerca del borde posterior del cuerpo. El al menos un sensor de desnivel responde a un posible desnivel por detras del robot. El sistema de accionamiento cambia una direccion de desplazamiento en respuesta a una senal recibida desde el sensor de desnivel que indica un posible desnivel. En algunos ejemplos, unos sensores de desnivel posteriores derecho e izquierdo estan dispuestos directamente por detras de las ruedas motrices derecha e izquierda. Esto permite al robot detectar un borde de desnivel mientras se desplaza marcha atras en un angulo o en un arco, en el que la rueda motriz puede encontrar el borde de desnivel antes que la parte central posterior del robot.In some applications, the robot includes at least one slope sensor carried by a front part of the body and arranged substantially near a leading edge of the body. The at least one slope sensor responds to a possible slope ahead of the robot. The drive system changes a direction of travel in response to a signal received from the uneven sensor indicating a possible unevenness. In some examples, right and left front slope sensors are arranged in corresponding right and left corners of a front part of the robot. This allows the robot to detect the moment at which any of the front corners oscillates on an uneven edge, in order to prevent the driving wheels from approaching the uneven edge. In some applications, the robot includes at least one uneven sensor carried by a rear part of the body and arranged substantially near the rear edge of the body. The at least one slope sensor responds to a possible slope behind the robot. The drive system changes a direction of travel in response to a signal received from the uneven sensor indicating a possible unevenness. In some examples, right and left rear slope sensors are arranged directly behind the right and left drive wheels. This allows the robot to detect an uneven edge while traveling in reverse gear at an angle or in an arc, in which the driving wheel can find the uneven edge before the rear central part of the robot.

En algunas aplicaciones, el robot incluye una rueda loca dispuesta sobre la cubierta del compartimento de basura. Preferiblemente, la parte posterior del chasis define una forma sustancialmente semicircular, que permite que el robot gire sobre sf mismo sin atrapar ninguna porcion de la parte posterior del chasis en un obstaculo detectado. La rueda loca esta situada al menos a un tercio del radio de la parte posterior con forma sustancialmente semicircular por delante de las ruedas motrices. En algunos ejemplos, la rueda loca es un detector de estasis que incluye unIn some applications, the robot includes a crazy wheel arranged on the garbage compartment cover. Preferably, the back of the chassis defines a substantially semicircular shape, which allows the robot to rotate on itself without trapping any portion of the back of the chassis in a detected obstacle. The idler wheel is located at least one third of the radius of the rear with a substantially semicircular shape in front of the driving wheels. In some examples, the crazy wheel is a stasis detector that includes a

iman dispuesto en o sobre la rueda loca, y un detector de iman dispuesto adyacente a la rueda para detectar el iman a medida que gira la rueda loca.magnet arranged in or on the crazy wheel, and a magnet detector arranged adjacent to the wheel to detect the magnet as the crazy wheel rotates.

En otros aspectos mas generales que se pueden combinar con cualquiera de las aplicaciones anteriores, un robot autonomo de cubrimiento incluye un chasis y un sistema de accionamiento portado por el chasis. El sistema de 5 accionamiento esta configurado para maniobrar el robot sobre una superficie de limpieza. En algunos ejemplos, el sistema de accionamiento incluye ruedas motrices accionadas de manera diferencial derecha e izquierda; sin embargo, tambien se pueden aplicar otros medios de accionamiento de robot, tales como pistas de direccion deslizante. En algunos ejemplos, el chasis tiene partes delantera y posterior, con la parte delantera definiendo una forma sustancialmente rectangular. Opcionalmente, la parte posterior puede definir una forma arqueada.In other more general aspects that can be combined with any of the above applications, an autonomous covering robot includes a chassis and a drive system carried by the chassis. The 5 drive system is configured to maneuver the robot on a cleaning surface. In some examples, the drive system includes differentially driven right and left drive wheels; however, other robot drive means, such as sliding direction tracks, can also be applied. In some examples, the chassis has front and rear parts, with the front part defining a substantially rectangular shape. Optionally, the back can define an arched shape.

10 En algunas aplicaciones, el robot incluye un conjunto de limpieza montado en la parte delantera del chasis (por ejemplo, sustancialmente cerca de un borde delantero del chasis). Un compartimiento de basura esta dispuesto adyacente al conjunto de limpieza y configurado para recibir residuos agitados por el conjunto de limpieza. En algunos ejemplos, una cubierta de compartimento de basura esta unida de manera pivotante al robot y esta configurada para girar entre una primera posicion cerrada, que proporciona el cierre de una abertura definida por el 15 compartimento de basura, y una segunda posicion abierta, que proporciona el acceso a la abertura de compartimento de basura. En otros ejemplos, la cubierta de compartimento de basura esta unida de manera deslizable al robot y se desliza entre la primera posicion cerrada y la segunda posicion abierta.10 In some applications, the robot includes a cleaning assembly mounted on the front of the chassis (for example, substantially near a leading edge of the chassis). A garbage compartment is arranged adjacent to the cleaning set and configured to receive agitated waste by the cleaning set. In some examples, a garbage compartment cover is pivotally attached to the robot and is configured to rotate between a first closed position, which provides the closure of an opening defined by the garbage compartment, and a second open position, which Provides access to the trash compartment opening. In other examples, the garbage compartment cover is slidably attached to the robot and slides between the first closed position and the second open position.

En algunas aplicaciones, un cuerpo esta fijado al chasis. El cuerpo puede adaptarse al perfil del chasis. En algunos ejemplos, el cuerpo es flexible o esta fijado de manera movil al chasis. El robot puede incluir un asa para transportar 20 el robot. El asa puede estar dispuesta en el cuerpo o en el chasis. Si el asa esta dispuesta en el chasis, se permite que el cuerpo se mueva con respecto al asa y / o al chasis. El robot puede incluir una liberacion de cubierta de compartimento de basura configurada para controlar el movimiento de la cubierta de compartimento de basura entre sus posiciones primera y segunda. Preferiblemente, la liberacion de cubierta de compartimento se puede accionar desde sustancialmente cerca del asa. Sin embargo, la liberacion de cubierta de compartimento de basura se puede 25 accionar desde sustancialmente cerca de o sobre la cubierta de compartimento de basura.In some applications, a body is attached to the chassis. The body can adapt to the profile of the chassis. In some examples, the body is flexible or is movably attached to the chassis. The robot may include a handle for transporting the robot. The handle can be arranged on the body or on the chassis. If the handle is arranged in the chassis, the body is allowed to move with respect to the handle and / or the chassis. The robot may include a garbage compartment cover release configured to control the movement of the garbage compartment cover between its first and second positions. Preferably, the compartment cover release can be operated from substantially close to the handle. However, the release of the garbage compartment cover can be operated from substantially near or on the garbage compartment cover.

En algunas aplicaciones, el robot incluye un sensor antichoque, que puede estar configurado para detectar el movimiento en multiples direcciones. En algunos ejemplos, el contacto con el cuerpo se traslada al sensor antichoque para la deteccion. El robot puede incluir un controlador configurado para modificar una direccion de desplazamiento del robot en respuesta a una senal recibida desde el sensor antichoque. En algunos ejemplos, el 30 robot incluye un acelerometro en comunicacion con el controlador, de manera que el controlador controla el sistema de accionamiento en respuesta a una senal recibida desde el acelerometro.In some applications, the robot includes an anti-shock sensor, which can be configured to detect movement in multiple directions. In some examples, contact with the body is transferred to the anti-shock sensor for detection. The robot may include a controller configured to modify a direction of travel of the robot in response to a signal received from the anti-shock sensor. In some examples, the robot includes an accelerometer in communication with the controller, so that the controller controls the drive system in response to a signal received from the accelerometer.

Los detalles de una o mas aplicaciones de la descripcion se exponen en los dibujos que se acompanan y en la siguiente descripcion. Otras caractensticas, objetos y ventajas quedaran claros a partir de la descripcion y los dibujos, y de las reivindicaciones.The details of one or more applications of the description are set forth in the accompanying drawings and in the following description. Other features, objects and advantages will be clear from the description and drawings, and from the claims.

35 Descripcion de los dibujos35 Description of the drawings

La figura 1 es una vista en perspectiva superior de un robot autonomo de cubrimiento compacto.Figure 1 is a top perspective view of an autonomous robot with a compact covering.

La figura 2 es una vista en perspectiva inferior del robot que se muestra en la figura 1.Figure 2 is a bottom perspective view of the robot shown in Figure 1.

La figura 3 es una vista superior del robot que se muestra en la figura 1.Figure 3 is a top view of the robot shown in Figure 1.

La figura 4 es una vista inferior del robot que se muestra en la figura 1.Figure 4 is a bottom view of the robot shown in Figure 1.

40 La figura 5 es una vista despiezada del aspecto superior que se muestra en la figura 1.40 Figure 5 is an exploded view of the upper aspect shown in Figure 1.

La figura 6 es una vista frontal del robot que se muestra en la figura 1.Figure 6 is a front view of the robot shown in Figure 1.

La figura 7 es una vista posterior del robot que se muestra en la figura 1.Figure 7 is a rear view of the robot shown in Figure 1.

La figura 8 es una vista lateral izquierda del robot que se muestra en la figura 1, con una cubierta de compartimento de basura en su posicion abierta.Figure 8 is a left side view of the robot shown in Figure 1, with a garbage compartment cover in its open position.

45 La figura 9 es una vista lateral derecha del robot que se muestra en la figura 1.45 Figure 9 is a right side view of the robot shown in Figure 1.

La figura 10 es una vista en perspectiva superior de un robot autonomo de cubrimiento compacto.Figure 10 is a top perspective view of an autonomous robot of compact coverage.

La figura 11A es una vista lateral de un detector de estasis.Figure 11A is a side view of a stasis detector.

La figura 11B es una vista superior esquematica de un robot autonomo de cubrimiento compacto.Figure 11B is a schematic top view of an autonomous robot of compact coverage.

55

1010

15fifteen

20twenty

2525

3030

3535

La figura 11C es una vista esquematica lateral de un robot autonomo de cubrimiento compacto.Figure 11C is a schematic side view of an autonomous robot of compact coverage.

La figura 12A es una vista superior de un robot autonomo de cubrimiento compacto deslizandose a lo largo de una pared.Figure 12A is a top view of an autonomous robot with a compact cover sliding along a wall.

La figura 12B es una vista superior de un robot autonomo de cubrimiento compacto chocando con una pared.Figure 12B is a top view of an autonomous robot with a compact covering colliding with a wall.

La figura 13A es una vista superior esquematica de un robot autonomo de cubrimiento compacto con una grna de parachoques.Figure 13A is a schematic top view of an autonomous robot with a compact cover and a bumper handle.

La figura 13B es una vista en seccion lateral de un sensor antichoque.Figure 13B is a side sectional view of an anti-shock sensor.

La figura 13C es una vista superior esquematica de un sistema de sensor antichoque con una grna de parachoques. La figura 13D es una vista en perspectiva de un sistema de sensor antichoque.Figure 13C is a schematic top view of an anti-shock sensor system with a bumper handle. Figure 13D is a perspective view of an anti-shock sensor system.

La figura 14 es un diagrama de contorno sombreado de la vista del robot de limpieza compacto que se muestra en la figura 3.Figure 14 is a shaded outline diagram of the view of the compact cleaning robot shown in Figure 3.

La figura 15 es una vista en perspectiva despiezada de un sensor omnidireccional.Figure 15 is an exploded perspective view of an omnidirectional sensor.

La figura 16 es una vista lateral del sensor omnidireccional que se muestra en la figura 15.Figure 16 is a side view of the omnidirectional sensor shown in Figure 15.

La figura 17 es una vista en perspectiva superior de un robot autonomo de cubrimiento compacto.Figure 17 is a top perspective view of an autonomous robot of compact coverage.

La figura 18 es una vista en perspectiva inferior del robot que se muestra en la figura 17.Figure 18 is a bottom perspective view of the robot shown in Figure 17.

La figura 19 es una vista superior del robot que se muestra en la figura 17.Figure 19 is a top view of the robot shown in Figure 17.

La figura 20 es una vista inferior del robot que se muestra en la figura 17.Figure 20 is a bottom view of the robot shown in Figure 17.

La figura 21 es una vista despiezada del aspecto superior que se muestra en la figura 17.Figure 21 is an exploded view of the upper aspect shown in Figure 17.

La figura 22 es una vista frontal del robot que se muestra en la figura 17.Figure 22 is a front view of the robot shown in Figure 17.

La figura 23 es una vista posterior del robot que se muestra en la figura 17.Figure 23 is a rear view of the robot shown in Figure 17.

La figura 24 es una vista lateral izquierda del robot que se muestra en la figura 17, con una cubierta de compartimento de basura en su posicion abierta.Figure 24 is a left side view of the robot shown in Figure 17, with a garbage compartment cover in its open position.

La figura 25 es una vista lateral derecha del robot que se muestra en la figura 17.Figure 25 is a right side view of the robot shown in Figure 17.

La figura 26 es una vista oblicua de un robot de limpieza compacto que tiene forma rectangular, cruzando un bordeFigure 26 is an oblique view of a compact cleaning robot that is rectangular in shape, crossing an edge

de pared.of wall.

La figura 27 es una vista en planta de un robot de limpieza compacto que navega a ras hacia una esquina de pared.Figure 27 is a plan view of a compact cleaning robot that navigates flush towards a wall corner.

La figura 28 es una vista en planta de un robot redondo que navega hacia una esquina de pared, ilustrando un espacio que no puede cruzar el robot.Figure 28 is a plan view of a round robot that navigates towards a wall corner, illustrating a space that the robot cannot cross.

Las figuras 29 a 32 proporcionan en conjunto una vista esquematica de un circuito de control para un robot autonomo de cubrimiento.Figures 29 to 32 together provide a schematic view of a control circuit for an autonomous covering robot.

La figura 33 es una vista esquematica de una arquitectura de software para un sistema de comportamiento de robot autonomo de cubrimiento.Figure 33 is a schematic view of a software architecture for an autonomous covering robot behavior system.

Los sfmbolos de referencia similares en los diferentes dibujos indican elementos similares.Similar reference symbols in the different drawings indicate similar elements.

Descripcion detalladaDetailed description

Refiriendonos a las figuras 1a 3, un robot autonomo de cubrimiento 100 incluye un chasis 200 que tiene una parte delantera 210 y una parte posterior 220. La parte delantera 210 del chasis 200 define una forma sustancialmente rectangular. En el ejemplo mostrado, la parte posterior 220 del chasis 200 define una forma arqueada (por ejemplo, en el ejemplo mostrado, la parte posterior 220 es redondeada); sin embargo, la parte posterior 220 puede definir tambien otras formas, tales como, aunque no limitadas a, rectangular, triangular, puntiaguda, o formas onduladas.Referring to Figures 1 to 3, an autonomous covering robot 100 includes a chassis 200 having a front part 210 and a rear part 220. The front part 210 of the chassis 200 defines a substantially rectangular shape. In the example shown, the back 220 of the chassis 200 defines an arcuate shape (for example, in the example shown, the back 220 is rounded); however, the back 220 may also define other shapes, such as, but not limited to, rectangular, triangular, pointed, or wavy shapes.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

Refiriendonos a las figuras 1 y 5, el robot 100 incluye un cuerpo 300 configurado para seguir sustancialmente los contornos del chasis 200. El cuerpo 300 puede estar conectado de manera flexible al chasis 200 (por ejemplo, mediante un resorte o elemento elastico), para que se mueva sobre el chasis 200. En algunos ejemplos, un asa 330 esta dispuesta en o definida por una parte superior del cuerpo 300. En otros ejemplos, el asa 330 esta asegurada en o se extiende desde una pieza de montaje 332, que esta asegurada en una parte superior 205 del chasis 200. La pieza de montaje 332 puede ser extrafole e intercambiable por otras piezas de montaje 332 que tienen diferentes disposiciones o portan otros componentes (por ejemplo, diferentes asas 330 y / o sensores). El cuerpo 300 se mueve con respecto a la pieza de montaje 332 y al chasis 200. En el ejemplo mostrado, el cuerpo 300 flota por debajo de la pieza de montaje 332. La pieza de montaje 332 puede ser circular y estar dimensionada para ser desplazada desde una abertura respectiva definida por una parte superior (305) del cuerpo 300, a fin de proporcionar un lfmite de desplazamiento de 360° para el movimiento del cuerpo (por ejemplo, entre 2 y 4 mm de movimiento de parachoques) debido al contacto con el cuerpo (por ejemplo, a lo largo de una parte inferior 303 del cuerpo 300 (vease la figura 8)). El robot 100 (incluyendo el chasis 200 y el cuerpo 300) tiene un tamano compacto con una longitud de menos de 23 cm y una anchura de menos de 19 cm.Referring to Figures 1 and 5, the robot 100 includes a body 300 configured to substantially follow the contours of the chassis 200. The body 300 can be flexibly connected to the chassis 200 (for example, by means of a spring or elastic element), for that moves on the chassis 200. In some examples, a handle 330 is arranged in or defined by an upper part of the body 300. In other examples, the handle 330 is secured in or extends from a mounting piece 332, which is secured on an upper part 205 of the chassis 200. The mounting part 332 can be extrafole and interchangeable with other mounting parts 332 that have different arrangements or carry other components (for example, different handles 330 and / or sensors). The body 300 moves with respect to the mounting piece 332 and the chassis 200. In the example shown, the body 300 floats below the mounting piece 332. The mounting piece 332 can be circular and sized to be displaced. from a respective opening defined by an upper part (305) of the body 300, in order to provide a 360 ° displacement limit for the movement of the body (for example, between 2 and 4 mm of bumper movement) due to contact with the body (for example, along a lower part 303 of the body 300 (see Figure 8)). The robot 100 (including the chassis 200 and the body 300) has a compact size with a length of less than 23 cm and a width of less than 19 cm.

Refiriendonos a las figuras 4 y 5, el robot 100 incluye un sistema de accionamiento 400 portado por el chasis 200 y configurado para maniobrar el robot 100 sobre una superficie de limpieza. En el ejemplo mostrado, el sistema de accionamiento 400 incluye ruedas motrices derecha e izquierda 410 y 420, respectivamente, que son accionadas de manera diferencial por motores de accionamiento correspondientes derecho e izquierdo 412 y 422, respectivamente. Los motores de accionamiento 412, 422 estan montados por encima de sus respectivas ruedas motrices 410, 420, en el ejemplo mostrado, para ayudar a mantener el tamano compacto del robot 100. Sin embargo, otras aplicaciones incluyen tener los motores de accionamiento 412, 422 montados adyacentes (por ejemplo, coaxialmente con) a sus respectivas ruedas motrices 410, 420. En algunos ejemplos, el robot incluye una caja de cambios 414, 424 acoplada entre la rueda motriz 410, 420 y su respectivo motor de accionamiento 412, 422. Las cajas de cambios 414, 424 y los motores de accionamiento 412, 422 estan configurados para propulsar el robot a una velocidad maxima de entre aproximadamente 200 mm/s y aproximadamente 400 mm/s (preferiblemente 306 mm/s) y con una aceleracion maxima de aproximadamente 500 mm/s2. En algunas aplicaciones, los ejes centrales de las ruedas motrices 410, 420 estan dispuestos a menos de 9 cm (preferiblemente 8 cm) por detras de un conjunto de limpieza 500, que se describira a continuacion. El robot 100 incluye un controlador 450 en comunicacion con el sistema de accionamiento 400. El controlador 450 esta configurado para maniobrar el robot 100 para que pivote sobre sf mismo.Referring to Figures 4 and 5, the robot 100 includes a drive system 400 carried by the chassis 200 and configured to maneuver the robot 100 on a cleaning surface. In the example shown, the drive system 400 includes right and left drive wheels 410 and 420, respectively, which are differentially driven by corresponding right and left drive motors 412 and 422, respectively. The drive motors 412, 422 are mounted above their respective drive wheels 410, 420, in the example shown, to help maintain the compact size of the robot 100. However, other applications include having the drive motors 412, 422 mounted adjacent (for example, coaxially with) to their respective drive wheels 410, 420. In some examples, the robot includes a gearbox 414, 424 coupled between the drive wheel 410, 420 and its respective drive motor 412, 422. The gearboxes 414, 424 and the drive motors 412, 422 are configured to propel the robot at a maximum speed of between approximately 200 mm / s and approximately 400 mm / s (preferably 306 mm / s) and with a maximum acceleration of approximately 500 mm / s2. In some applications, the central axes of the drive wheels 410, 420 are arranged less than 9 cm (preferably 8 cm) behind a cleaning assembly 500, which will be described below. The robot 100 includes a controller 450 in communication with the drive system 400. The controller 450 is configured to maneuver the robot 100 to pivot on itself.

La ventaja del robot cilmdrico convencional con ruedas motrices dispuestas en el diametro del robot es que su giro no se va a ver obstaculizado en presencia de obstaculos. Esto permite una estrategia de escape simple y eficaz, girar sobre sf mismo hasta que no se detecten objetos por delante del robot. Si el robot no es cilmdrico o los ejes de rotacion de rueda no estan en un diametro del robot, entonces las fuerzas normales y tangenciales sobre el robot cambian a medida que el robot gira mientras entra en contacto con un objeto. Para asegurar que tal robot no convencional sea capaz de escapar de una colision arbitraria, las fuerzas y pares aplicados al robot por el medioambiente no pueden combinarse con las fuerzas y los pares generados por el robot para detener el movimiento del robot. En la practica esto significa que la forma del robot debe tener una anchura constante (dentro de la distancia compatible con la cubierta) y que las ruedas de robot tienen que ser capaces de moverse lateralmente. Formas particulares demandan entonces diferentes requisitos para fuerzas maximas de ruedas laterales y para un coeficiente de friccion medioambiental permisible maximo. Sin embargo, el robot 100 actualmente descrito, en algunos ejemplos, tiene una parte delantera rectangular 210 para permitir la limpieza completa en las esquinas.The advantage of the conventional cylindrical robot with drive wheels arranged on the robot diameter is that its rotation will not be hindered in the presence of obstacles. This allows a simple and effective escape strategy, turn on itself until no objects are detected in front of the robot. If the robot is not cylindrical or the wheel rotation axes are not in a diameter of the robot, then the normal and tangential forces on the robot change as the robot rotates while it comes into contact with an object. To ensure that such an unconventional robot is able to escape an arbitrary collision, the forces and torques applied to the robot by the environment cannot be combined with the forces and torques generated by the robot to stop the robot's movement. In practice this means that the robot's shape must have a constant width (within the distance compatible with the cover) and that the robot wheels have to be able to move laterally. Particular forms then demand different requirements for maximum lateral wheel forces and for a maximum permissible environmental friction coefficient. However, the robot 100 currently described, in some examples, has a rectangular front part 210 to allow complete cleaning at the corners.

Haciendo referencia de nuevo al ejemplo mostrado en la figura 4, un cfrculo perfilado 221 que define el perfil sustancialmente semicircular de la parte posterior 220 del chasis 200 se extiende dentro de la parte delantera 210 del chasis 200 y tiene un eje central 223. Las ruedas motrices 410, 420 estan situadas sobre o sustancialmente cerca del eje central 223 del cfrculo perfilado 221. En el ejemplo mostrado, las ruedas motrices 410, 420 estan colocadas ligeramente por detras del eje central 223 del cfrculo perfilado 221. Al colocar las ruedas motrices 410, 420 en o por detras del eje central 223 del cfrculo perfilado 221, el robot 100 puede girar sobre sf mismo sin atrapar la parte posterior 220 del chasis 200 sobre un obstaculo.Referring again to the example shown in Figure 4, a profiled circle 221 defining the substantially semicircular profile of the back 220 of the chassis 200 extends within the front part 210 of the chassis 200 and has a central axle 223. The wheels drives 410, 420 are located on or substantially near the central axis 223 of the profiled circle 221. In the example shown, the drive wheels 410, 420 are positioned slightly behind the central axis 223 of the profiled circle 221. When positioning the driving wheels 410 , 420 in or behind the central axis 223 of the profiled circle 221, the robot 100 can rotate on itself without trapping the rear part 220 of the chassis 200 over an obstacle.

Refiriendonos a las figuras 2, 4 y 5 a 9, el robot 100 incluye un conjunto de limpieza 500 montado en la parte delantera 210 del chasis 200, sustancialmente cerca de un borde delantero 202 del chasis 200. En los ejemplos mostrados, el conjunto de limpieza 500 incluye unos cepillos de rodillo primero y segundo 510, 520 montados de manera giratoria sustancialmente paralelos entre sf Los cepillos de rodillo 510, 520 son accionados por un motor de limpieza 530 acoplado a una parte media de los cepillos de rodillo 510, 520 mediante una caja de cambios 532. El motor de limpieza 530 se coloca por encima de los cepillos de rodillo 510, 520 para confinar el conjunto de limpieza 500 en la parte delantera 210 del chasis 200 y para ayudar a mantener un robot compacto con un tamano relativamente pequeno. Cada cepillo de rodillo 510, 520 puede incluir un cepillo extremo 540 dispuesto en cada extremo longitudinal 512, 514, 522, 524 del cepillo de rodillo 510, 520. Cada cepillo extremo 540 esta dispuesto en un angulo $ con un eje longitudinal 513, 523 definido por el cepillo de rodillo 510, 520 de entre 0° y aproximadamente 90° (de preferencia 45°). El cepillo extremo 540 se extiende mas alla del chasis 200 y del cuerpo 300 (por ejemplo, mas alla de los bordes laterales derecho e izquierdo respectivos 306, 308) para agitar residuos enReferring to Figures 2, 4 and 5 to 9, the robot 100 includes a cleaning assembly 500 mounted at the front 210 of the chassis 200, substantially near a leading edge 202 of the chassis 200. In the examples shown, the assembly of cleaning 500 includes first and second roller brushes 510, 520 rotatably mounted substantially parallel to each other Roller brushes 510, 520 are driven by a cleaning motor 530 coupled to a middle part of roller brushes 510, 520 by a gearbox 532. The cleaning motor 530 is placed above the roller brushes 510, 520 to confine the cleaning assembly 500 at the front 210 of the chassis 200 and to help maintain a compact robot with a relatively size small. Each roller brush 510, 520 may include an end brush 540 disposed at each longitudinal end 512, 514, 522, 524 of the roller brush 510, 520. Each end brush 540 is arranged at an angle $ with a longitudinal axis 513, 523 defined by roller brush 510, 520 between 0 ° and approximately 90 ° (preferably 45 °). The end brush 540 extends beyond the chassis 200 and the body 300 (for example, beyond the respective right and left side edges 306, 308) to stir debris into

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

o a lo largo de objetos adyacentes al robot 100 (por ejemplo, para limpiar las paredes). Otras aplicaciones del conjunto de limpieza 500 se describiran mas adelante con referencia a otra aplicacion del robot 100.or along objects adjacent to the robot 100 (for example, to clean the walls). Other applications of the cleaning assembly 500 will be described later with reference to another application of the robot 100.

Refiriendonos a las figuras 1 a 5, 8 y 10, el robot 100 incluye un conjunto de compartimento de basura 600 dispuesto adyacente al conjunto de limpieza 500 y configurado para recibir residuos agitados por el conjunto de limpieza 500. En algunos ejemplos, el chasis 200 define una camara de residuos o compartimento de basura 610 (vease la figura 10). En otros ejemplos, un compartimento de basura 610 esta dispuesto debajo del chasis y colocado para recibir residuos agitados por el conjunto de limpieza 500. En los ejemplos mostrados, el compartimento de basura 610 esta colocado sustancialmente entre el conjunto de limpieza 500 y el sistema de accionamiento 400. En concreto, el compartimento de basura 610 esta por delante de las ruedas motrices 410, 420 y por detras de los cepillos de rodillo 510, 520.Referring to Figures 1 to 5, 8 and 10, the robot 100 includes a garbage compartment assembly 600 disposed adjacent to the cleaning assembly 500 and configured to receive agitated waste by the cleaning assembly 500. In some examples, the chassis 200 define a waste chamber or garbage compartment 610 (see figure 10). In other examples, a garbage compartment 610 is disposed under the chassis and placed to receive agitated waste by the cleaning assembly 500. In the examples shown, the garbage compartment 610 is placed substantially between the cleaning assembly 500 and the cleaning system. drive 400. Specifically, the garbage compartment 610 is in front of the drive wheels 410, 420 and behind the roller brushes 510, 520.

Preferiblemente, la camara de residuos / compartimento de basura 610 esta definido por, y por tanto formado como una sola pieza con, el chasis 200. En una configuracion alternativa, el robot 101 puede incluir un cartucho o bolsa modular extrafble que sirve como camara de residuos / compartimento de basura 610, de tal manera que el usuario puede eliminar los residuos retirando y vaciando el cartucho o bolsa. El cartucho o bolsa 610 esta asegurado al chasis 200 de manera extrafble.Preferably, the waste chamber / trash compartment 610 is defined by, and therefore formed as a single piece with, the chassis 200. In an alternative configuration, the robot 101 may include a removable modular cartridge or bag that serves as the chamber of waste / garbage compartment 610, so that the user can eliminate waste by removing and emptying the cartridge or bag. The cartridge or bag 610 is secured to the chassis 200 in a removable manner.

Una cubierta de compartimento de basura 620 esta unida de manera pivotante a una parte inferior 203 del chasis 200 y configurada para girar entre una primera posicion cerrada, que proporciona el cierre de una abertura 612 definida por el compartimento de basura 610, y una segunda posicion abierta, que proporciona acceso a la abertura de compartimento de basura 610. En algunos ejemplos, la cubierta de compartimento de basura 620 esta conectada de manera liberable al chasis 200 mediante una o mas bisagras 622. El conjunto de compartimento de basura 600 incluye una liberacion de cubierta de compartimento de basura 630 configurada para controlar el movimiento de la cubierta de compartimento de basura 620 entre sus posiciones primera y segunda. La liberacion de cubierta de compartimento de basura 630 esta configurada para moverse entre una primera posicion de bloqueo, que bloquea la cubierta de compartimento de basura 620 en su primera posicion cerrada, y una segunda posicion, de desbloqueo que permite que la cubierta de compartimento de basura 620 se mueva a su segunda posicion abierta (vease la figura 8). La liberacion de cubierta de compartimento de basura 630 se puede accionar desde sustancialmente cerca de o en el asa 330, permitiendo asf el accionamiento de la liberacion de cubierta de compartimento de basura 630 mientras se sostiene el asa 330. Esto permite a un usuario coger el robot 100 por el asa 330 con una mano, mantener el robot 100 sobre un contenedor de basura (no mostrado), y accionar la liberacion de cubierta de compartimento de basura 630 con la misma mano que sostiene el asa 330 para liberar la cubierta de compartimento de basura 620 y vaciar el contenido del compartimento de basura 610 en el contenedor de basura. En algunas aplicaciones, la liberacion de cubierta de compartimento de basura 630 es un fiador apretado por resorte o un boton de cierre que se puede seleccionar presionando hacia abajo (por ejemplo, un boton) o tirando hacia arriba (por ejemplo, un activador).A garbage compartment cover 620 is pivotally attached to a bottom 203 of the chassis 200 and configured to rotate between a first closed position, which provides the closure of an opening 612 defined by the garbage compartment 610, and a second position open, which provides access to the garbage compartment opening 610. In some examples, the garbage compartment cover 620 is releasably connected to the chassis 200 by one or more hinges 622. The garbage compartment assembly 600 includes a release of garbage compartment cover 630 configured to control the movement of garbage compartment cover 620 between its first and second positions. The trash compartment cover release 630 is configured to move between a first lock position, which locks the trash compartment cover 620 in its first closed position, and a second, unlocked position that allows the compartment compartment cover Trash 620 moves to its second open position (see Figure 8). The release of the garbage compartment cover 630 can be operated from substantially near or on the handle 330, thereby allowing the operation of the garbage compartment cover release 630 while holding the handle 330. This allows a user to take the robot 100 by the handle 330 with one hand, hold the robot 100 on a garbage container (not shown), and actuate the release of the garbage compartment cover 630 with the same hand that holds the handle 330 to release the compartment cover of garbage 620 and empty the contents of the garbage compartment 610 into the garbage container. In some applications, the garbage compartment cover release 630 is a spring-loaded latch or closure button that can be selected by pressing down (for example, a button) or by pulling up (for example, an activator).

El robot 100 incluye una fuente de alimentacion 160 (por ejemplo, una batena) en comunicacion con el sistema de accionamiento 400 y / o el controlador 450, y asegurada de manera desmontable al chasis 200. En los ejemplos mostrados en las figuras 2, 4, 5, y 7 y 8, la fuente de alimentacion 160 es recibida por un receptaculo de alimentacion 260 definido por la parte posterior 220 del chasis 200. En algunos ejemplos, la fuente de alimentacion 160 se coloca sustancialmente debajo del controlador 450 y entre las ruedas motrices derecha e izquierda 410, 420, mientras se extiende hacia adelante una distancia suficiente para colocar un centro de gravedad del robot 100 sustancialmente en el centro del chasis 200 o sustancialmente entre un primer eje transversal 415 definido por las ruedas motrices 410, 420 y un segundo eje transversal 425 definido por una rueda libre 722 (por ejemplo, una rueda de estasis 722) (vease la figura 4). Si el peso de la fuente de alimentacion 160 se coloca demasiado lejos por detras, no habra suficiente peso sobre el conjunto de limpieza 500, permitiendo que la parte delantera 210 del chasis 200 se incline hacia arriba. Al ser un robot compacto 100 con un tamano relativamente pequeno, la disposicion de componentes sobre y dentro del chasis 200 es importante para lograr el tamano compacto del robot 100 sin que deje de ser funcional. Refiriendonos a las figuras 5 y 8, la camara de residuos / compartimento de basura 610 impide la colocacion por delante de la fuente de alimentacion 160 (por ejemplo, la fuente de alimentacion 160 se limita a su colocacion en la parte posterior 210 del chasis 200). Sin embargo, la fuente de alimentacion 160 se coloca entre las ruedas motrices 410, 420 y lo mas adelante posible, sustancialmente colindando con el compartimento de basura 610, a fin de colocar el centro de gravedad del robot por delante del primer eje transversal 415 definido por las ruedas motrices 410, 420. Al colocar el centro de gravedad por delante de las ruedas motrices 410, 420, es menos probable que el robot 100 se incline hacia arriba y hacia atras (por ejemplo, cuando sobrepasa umbrales).The robot 100 includes a power supply 160 (for example, a battery) in communication with the drive system 400 and / or the controller 450, and detachably secured to the chassis 200. In the examples shown in Figures 2, 4 , 5, and 7 and 8, the power supply 160 is received by a power receptacle 260 defined by the back 220 of the chassis 200. In some examples, the power supply 160 is placed substantially below the controller 450 and between the right and left drive wheels 410, 420, while extending forward enough distance to place a center of gravity of the robot 100 substantially in the center of the chassis 200 or substantially between a first transverse axis 415 defined by the driving wheels 410, 420 and a second transverse axle 425 defined by a freewheel 722 (for example, a stasis wheel 722) (see Figure 4). If the weight of the power supply 160 is placed too far behind, there will not be enough weight on the cleaning assembly 500, allowing the front part 210 of the chassis 200 to tip up. Being a compact robot 100 with a relatively small size, the arrangement of components on and inside the chassis 200 is important to achieve the compact size of the robot 100 while remaining functional. Referring to figures 5 and 8, the waste chamber / garbage compartment 610 prevents the placement in front of the power supply 160 (for example, the power supply 160 is limited to its placement on the back 210 of the chassis 200 ). However, the power supply 160 is placed between the drive wheels 410, 420 and as far as possible, substantially adjacent to the garbage compartment 610, in order to place the center of gravity of the robot in front of the first defined transverse axis 415 by the driving wheels 410, 420. By placing the center of gravity in front of the driving wheels 410, 420, the robot 100 is less likely to lean up and back (for example, when it exceeds thresholds).

Refiriendonos a las figuras 1a 11, el robot 100 incluye un sistema de sensor de navegacion 700 en comunicacion con el controlador 450 que permite que el robot 100 sea consciente de su entorno / medioambiente y reaccione de maneras previstas o se comporte de acuerdo con la percepcion detectada de su entorno / medioambiente. Una descripcion de un control de comportamiento se puede encontrar en detalle en Jones, Flyun & Seiger, Mobile Robots: Inspiration to Implementacion, segunda edicion, 1999, AK Peters, Ltd. El sistema de sensor de navegacion 700 incluye uno o mas sensores de desnivel 710, un detector de estasis 720, un sensor de proximidad 730, al menos un sensor antichoque 800, y / o un receptor omnidireccional 900. Con el uso de entradas procedentes delReferring to figures 1 to 11, the robot 100 includes a navigation sensor system 700 in communication with the controller 450 that allows the robot 100 to be aware of its environment / environment and react in intended ways or behave according to the perception detected from its environment / environment. A description of a behavior control can be found in detail in Jones, Flyun & Seiger, Mobile Robots: Inspiration to Implementation, second edition, 1999, AK Peters, Ltd. The 700 navigation sensor system includes one or more elevation sensors 710, a stasis detector 720, a proximity sensor 730, at least one anti-shock sensor 800, and / or an omnidirectional receiver 900. With the use of inputs from the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

sistema de sensor de navegacion 700, el controlador 450 genera ordenes a realizar por el robot 100. Como resultado de ello, el robot 100 es capaz de limpiar superficies de manera autonoma.Navigation sensor system 700, the controller 450 generates orders to be performed by the robot 100. As a result, the robot 100 is capable of cleaning surfaces autonomously.

Los sensores de desnivel 710 pueden utilizarse para detectar el momento en el que el robot 100 se encuentra con el borde del suelo o de la superficie de trabajo, por ejemplo, cuando se encuentra con un conjunto de escaleras. El robot 100 puede tener comportamientos que hagan que tome una decision, por ejemplo, cambiar la direccion de la marcha, cuando detecta un borde. En los ejemplos mostrados en las figuras 2, 4, 5 y 10, el cuerpo 300 del robot 100 aloja cuatro sensores de desnivel 710 a lo largo de un penmetro del cuerpo 300, con dos sensores de desnivel 710 sustancialmente a lo largo de un borde delantero 302 de una parte delantera 310 del cuerpo 300 (preferentemente cerca de esquinas exteriores delanteras o bordes laterales) y dos sensores de desnivel 710 sustancialmente a lo largo de un borde posterior 304 de una parte posterior 320 del cuerpo 300 (preferentemente cerca de esquinas exteriores posteriores o bordes laterales) (vease la figura 4). Cada sensor de desnivel 710 incluye un emisor 712 que envfa una senal y un receptor 714 configurado para detectar una senal reflejada. En algunas aplicaciones, los sensores de desnivel 1074 pueden instalarse dentro de un aparato de montaje que estabiliza y protege el sensor y que posiciona el sensor para que apunte hacia la ventana instalada en la parte inferior del aparato de montaje. Juntos, el sensor, el aparato de montaje y la ventana comprenden una unidad de sensor de desnivel. La fiabilidad del sensor de desnivel 710 puede aumentarse mediante la reduccion de acumulacion de polvo. En algunas aplicaciones, una ventana puede ser instalada en la parte inferior del aparato de montaje que incluye un escudo montado dentro de una moldura inclinada compuesta de un material que impide la acumulacion de polvo, tal como un material antiestatico. El componente de escudo y la moldura se pueden soldar juntos. Para facilitar aun mas la reduccion de acumulacion de polvo y suciedad, el escudo se puede montar inclinado para permitir que la suciedad se deslice hacia fuera mas facilmente. En algunas aplicaciones, un sensor de desnivel secundario 710 puede estar presente detras de sensores de desnivel existentes 710 para detectar bordes de suelo en caso de que falle un sensor de desnivel principal 710.The slope sensors 710 can be used to detect the moment in which the robot 100 meets the edge of the floor or the work surface, for example, when it encounters a set of stairs. The robot 100 may have behaviors that make it a decision, for example, to change the direction of the march, when it detects an edge. In the examples shown in Figures 2, 4, 5 and 10, the body 300 of the robot 100 houses four slope sensors 710 along a penimeter of the body 300, with two slope sensors 710 substantially along an edge front 302 of a front part 310 of the body 300 (preferably near front outer corners or side edges) and two slope sensors 710 substantially along a rear edge 304 of a rear part 320 of the body 300 (preferably near outside corners rear or side edges) (see figure 4). Each slope sensor 710 includes a transmitter 712 that sends a signal and a receiver 714 configured to detect a reflected signal. In some applications, the slope sensors 1074 can be installed inside a mounting device that stabilizes and protects the sensor and positions the sensor so that it points towards the window installed at the bottom of the mounting device. Together, the sensor, the mounting apparatus and the window comprise an uneven sensor unit. The reliability of the slope sensor 710 can be increased by reducing dust accumulation. In some applications, a window may be installed in the lower part of the mounting apparatus that includes a shield mounted within an inclined molding composed of a material that prevents the accumulation of dust, such as an antistatic material. The shield component and the molding can be welded together. To further facilitate the reduction of dust and dirt accumulation, the shield can be mounted inclined to allow dirt to slide out more easily. In some applications, a secondary slope sensor 710 may be present behind existing slope sensors 710 to detect ground edges in the event that a main slope sensor 710 fails.

Robots que definen formas de anchura constante pueden girar sobre sf mismos alrededor de su centroide de la forma correspondiente. Una forma de anchura constante es una forma plana convexa cuya anchura, medida por la distancia entre dos lmeas paralelas opuestas que tocan su lfmite, es la misma independientemente de la direccion de esas dos lmeas paralelas. La anchura de la forma en una direccion dada se define como la distancia perpendicular entre los paralelos perpendiculares a esta direccion. El triangulo de Reuleaux es el ejemplo mas simple (despues del cfrculo) de formas de anchura constante. Sin embargo, en los ejemplos mostrados, el robot 100 tiene una parte delantera 210 del chasis 200 con forma rectangular, y por tanto no tiene un robot de anchura constante, que puede evitar que el robot gire sobre sf mismo para escapar de varias posiciones de atasco, tales como, entre otras, situaciones de cafda. Las situaciones de cafda surgen cuando el robot 100 desciende por un pasillo estrecho (con paredes laterales) o una plancha (con desniveles laterales) que es ligeramente mas ancha que el robot 100. Cuando el robot 100 llega al final del pasillo o plancha solo puede escapar saliendo marcha atras del pasillo o retirandose de la plancha. Si el robot 100 intenta girar sobre sf mismo (por ejemplo, girar 180°), una de las esquinas del robot chocara con una pared o caera en un desnivel. En el caso de desniveles, la colocacion de sensores de desnivel 710 sustancialmente a lo largo de un borde posterior 304 del cuerpo 300 o de un borde posterior 204 del chasis 200 permite que el robot 100 retorne de manera inteligente para escapar sin caer en un desnivel. Del mismo modo, el sensor antichoque 800, que se describira a continuacion, detecta golpes posteriores, permitiendo que el robot 100 salga de pasillos estrechos.Robots that define shapes of constant width can rotate on themselves around their centroid accordingly. A constant width shape is a convex flat shape whose width, measured by the distance between two opposite parallel lines that touch its limit, is the same regardless of the direction of those two parallel lines. The width of the shape in a given direction is defined as the perpendicular distance between the parallels perpendicular to this direction. The Reuleaux triangle is the simplest example (after the circle) of shapes of constant width. However, in the examples shown, the robot 100 has a front part 210 of the chassis 200 with a rectangular shape, and therefore does not have a robot of constant width, which can prevent the robot from rotating on itself to escape various positions of jam, such as, among others, coffee situations. Coffee situations arise when the robot 100 descends down a narrow aisle (with side walls) or an iron (with side slopes) that is slightly wider than the robot 100. When the robot 100 reaches the end of the aisle or iron, it can only escape by running back down the aisle or withdrawing from the iron. If the robot 100 tries to rotate on itself (for example, rotate 180 °), one of the corners of the robot will collide with a wall or fall on a slope. In the case of unevenness, the placement of uneven sensors 710 substantially along a rear edge 304 of the body 300 or a rear edge 204 of the chassis 200 allows the robot 100 to return intelligently to escape without falling into a slope . Similarly, the anti-shock sensor 800, which will be described below, detects subsequent shocks, allowing the robot 100 to exit narrow aisles.

Refiriendonos a las figuras 2, 4, 5 y 11A, el detector de estasis 720 indica el momento en el que el robot 100 esta en movimiento o parado. En los ejemplos mostrados, el detector de estasis 720 incluye una rueda de estasis 722 con un iman 724 embebido en o dispuesto sobre la rueda 722. Un receptor magnetico 726 (por ejemplo, un inductor) esta colocado adyacente a la rueda 722 para detectar el paso del iman 724. El receptor magnetico 726 proporciona una senal de salida al controlador 450 que indica cuando pasa el iman 724 por el receptor magnetico 726. El controlador 450 puede estar configurado para determinar la velocidad a la que se desplaza el robot 100 y la distancia que recorre el mismo en base a la senal de salida del receptor magnetico 726 y la circunferencia de la rueda de estasis 722. En otras aplicaciones, el detector de estasis 720 incluye una rueda de estasis 722 con una superficie circunferencial que tiene al menos dos caractensticas de reflexion diferentes (por ejemplo, blanco y negro). Un par emisor y receptor de estasis (por ejemplo, infrarrojos) esta dispuesto adyacente a la rueda de estasis 722. El emisor de estasis esta configurado para emitir una senal a la superficie circunferencial de la rueda de estasis 722, y el receptor de estasis esta configurado para detectar o recibir una senal reflejada de la superficie circunferencial de la rueda de estasis 722. El detector de estasis 720 supervisa las transiciones entre estados de reflexion y estados de no reflexion para determinar si el robot 100 se esta moviendo, y tal vez incluso la velocidad de movimiento.Referring to figures 2, 4, 5 and 11A, the stasis detector 720 indicates the moment in which the robot 100 is in motion or stopped. In the examples shown, the stasis detector 720 includes a stasis wheel 722 with a magnet 724 embedded in or disposed on the wheel 722. A magnetic receiver 726 (for example, an inductor) is positioned adjacent the wheel 722 to detect the wheel 722. step of the magnet 724. The magnetic receiver 726 provides an output signal to the controller 450 which indicates when the magnet 724 passes through the magnetic receiver 726. The controller 450 may be configured to determine the speed at which the robot 100 travels and the distance that it travels based on the output signal of the magnetic receiver 726 and the circumference of the stasis wheel 722. In other applications, the stasis detector 720 includes a stasis wheel 722 with a circumferential surface having at least two different reflection characteristics (for example, black and white). A stasis emitter and receiver pair (for example, infrared) is arranged adjacent to the stasis wheel 722. The stasis transmitter is configured to emit a signal to the circumferential surface of the stasis wheel 722, and the stasis receiver is configured to detect or receive a reflected signal from the circumferential surface of the stasis wheel 722. The stasis detector 720 monitors transitions between states of reflection and states of non-reflection to determine if robot 100 is moving, and perhaps even The speed of movement.

Una vez mas, debido a la naturaleza compacta del robot 100 y a la colocacion compacta de componentes, la rueda de estasis 722 actua como una tercera rueda para un contacto estable con el suelo. Si la rueda de estasis 722 se colocara delante del conjunto de limpieza 500, tendna que ser una rueda orientable, en lugar de una rueda direccional, lo que arrastrana un arco cuando el robot 100 girase. Sin embargo, la necesidad de una parte delantera rectangular 210 del chasis 200, a fin de limpiar completamente las esquinas, prohfbe la colocacion de la rueda de estasis 722 por delante del conjunto de limpieza 500 (lo que, por ejemplo, resultana en una forma distinta de laAgain, due to the compact nature of the robot 100 and the compact placement of components, the stasis wheel 722 acts as a third wheel for stable ground contact. If the stasis wheel 722 were placed in front of the cleaning assembly 500, it would have to be an adjustable wheel, instead of a directional wheel, which drags an arc when the robot 100 rotates. However, the need for a rectangular front part 210 of the chassis 200, in order to completely clean the corners, prohibits the placement of the stasis wheel 722 in front of the cleaning assembly 500 (which, for example, results in a shape different from the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

rectangular). Se necesita una rueda por delante de las ruedas motrices 410, 420 para levantar la parte delantera 210 del chasis 200 a una altura adecuada para la limpieza y la rotacion de los cepillos.rectangular). A wheel is needed in front of the drive wheels 410, 420 to lift the front part 210 of the chassis 200 to a height suitable for cleaning and rotating the brushes.

Refiriendonos de nuevo a la figura 4, la rueda de estasis 722 esta dispuesta en la cubierta de compartimento de basura 620, justo por detras del conjunto de limpieza 500 y por delante del sistema de accionamiento 400 y de la fuente de alimentacion 160. La rueda de estasis / loca 722 esta colocada por delante de las ruedas motrices 410, 420, por delante del eje central 223 del cfrculo perfilado 221, y dentro del cfrculo perfilado 221. Esta colocacion de la rueda de estasis 722 permite al robot 100 girar sobre sf mismo sin arrastrar sustancialmente la rueda de estasis 722 a traves de su direccion de rodamiento, mientras que tambien proporciona soporte y estabilidad a la parte delantera 210 del chasis 200. Preferiblemente, la rueda de estasis 722 se coloca al menos a un tercio del radio del eje central 223. La colocacion por delante de la rueda de estasis 722 y de la fuente de alimentacion 160 queda obstruida por el conjunto de limpieza 500. Como resultado de ello, la disminucion del tamano del conjunto de limpieza 500 permitina la colocacion de la rueda de estasis 722 y de la fuente de alimentacion 160 mas por delante, o una disminucion de la longitud total del robot 100.Referring again to Figure 4, the stasis wheel 722 is arranged in the garbage compartment cover 620, just behind the cleaning assembly 500 and in front of the drive system 400 and the power supply 160. The wheel of stasis / loca 722 is placed in front of the drive wheels 410, 420, in front of the central axis 223 of the profiled circle 221, and inside the profiled circle 221. This placement of the stasis wheel 722 allows the robot 100 to rotate on sf without substantially dragging the stasis wheel 722 through its bearing direction, while also providing support and stability to the front part 210 of the chassis 200. Preferably, the stasis wheel 722 is placed at least one third of the radius of the central axis 223. The placement in front of the stasis wheel 722 and the power supply 160 is obstructed by the cleaning assembly 500. As a result, the decrease in size No of the cleaning assembly 500 allowed the placement of the stasis wheel 722 and the power supply 160 further ahead, or a decrease in the total length of the robot 100.

Los ejemplos mostrados en las figuras 11B y 11C ilustran la colocacion de componentes en el robot 100 para lograr una morfologfa compacta asf como una estabilidad de movimiento. Cuando LD = espesor de detector de desnivel plano 710A, 710B, CH = longitud de delante hacia atras de cabeza de limpieza 500, WB = distancia entre ejes, RD = longitud de delante hacia atras de detector de desnivel inclinado 710C, 710D, WT = distancia entre ruedas, y CR = radio circular (> A distancia entre ruedas), el robot en forma de lapida 100 tiene una longitud que es: 1) mayor que LD + CH + wB + CR y 2) Igual o menor que 1,4 CR, donde 3) RD <A CR, WB > 1/3 CR, CG esta dentro de WB. La colocacion de los componentes para satisfacer la relacion anterior, situa el centro de gravedad 105 del robot por delante de las ruedas motrices 410, 420 y dentro del radio circular CR. Las figuras tambien ilustran la colocacion de dos de los componentes mas pesados, que incluyen la fuente de alimentacion 160 que tiene un centro de gravedad 165 y el motor de cepillo 515 que tiene un centro de gravedad 517. El motor de cepillo 515 se coloca lo mas adelante posible para situar su centro de gravedad 517 lo mas adelante posible, a fin de compensar el peso de la fuente de alimentacion 160. Del mismo modo, la fuente de alimentacion 160 se coloca lo mas adelante posible para situar tambien su centro de gravedad 165 lo mas adelante posible. Sin embargo, la colocacion por delante de la fuente de alimentacion 160 queda obstruida en general por el conjunto de limpieza 500 y el compartimento de basura 610.The examples shown in Figures 11B and 11C illustrate the placement of components in the robot 100 to achieve a compact morphology as well as a movement stability. When LD = thickness of flat slope detector 710A, 710B, CH = length from front to back of cleaning head 500, WB = wheelbase, RD = length from front to back of slope sensor inclined 710C, 710D, WT = wheelbase, and CR = circular radius (> Distance between wheels), the tombstone-shaped robot 100 has a length that is: 1) greater than LD + CH + wB + CR and 2) Equal to or less than 1, 4 CR, where 3) RD <A CR, WB> 1/3 CR, CG is inside WB. The placement of the components to satisfy the above relationship places the center of gravity 105 of the robot in front of the driving wheels 410, 420 and within the circular radius CR. The figures also illustrate the placement of two of the heaviest components, which include the power supply 160 having a center of gravity 165 and the brush motor 515 having a center of gravity 517. The brush motor 515 is placed as as far as possible to locate its center of gravity 517 as far as possible, in order to compensate for the weight of the power supply 160. Similarly, the power supply 160 is positioned as far as possible to also position its center of gravity 165 as far as possible. However, the placement in front of the power supply 160 is generally obstructed by the cleaning assembly 500 and the garbage compartment 610.

Refiriendonos a las figuras 1, 5 y 9, el sensor de proximidad 730 se puede usar para determinar el momento en el que un obstaculo se encuentra cerca de o proximo al robot 100. El sensor de proximidad 730 puede ser, por ejemplo, una luz infrarroja o un sensor ultrasonico que proporciona una senal cuando un objeto esta dentro de un rango dado del robot 100. En los ejemplos mostrados, el sensor de proximidad 730 esta dispuesto en un lado (por ejemplo, el lado derecho) del robot 100 para detectar el momento en el que un objeto, tal como una pared, esta proximo a ese lado.Referring to Figures 1, 5 and 9, the proximity sensor 730 can be used to determine the moment when an obstacle is near or close to the robot 100. The proximity sensor 730 can be, for example, a light infrared or an ultrasonic sensor that provides a signal when an object is within a given range of the robot 100. In the examples shown, the proximity sensor 730 is arranged on one side (for example, the right side) of the robot 100 to detect the moment when an object, such as a wall, is next to that side.

En una aplicacion preferida, segun se muestra, el lado del robot 100 que tiene el sensor de proximidad 730 es el lado dominante del robot 100, que en este caso es el lado derecho con respecto a una direccion principal de marcha 105. En algunos ejemplos, el sensor de proximidad de pared 730 es un sensor de luz infrarroja compuesto de un par emisor y detector colimado de forma que un volumen finito de interseccion se produce en la posicion esperada de una pared. Este punto de enfoque esta aproximadamente tres pulgadas por delante de las ruedas motrices 410, 420 en la direccion de movimiento hacia adelante del robot. La gama radial de deteccion de pared es de aproximadamente 0,75 pulgadas. El sensor de proximidad 730 puede usarse para ejecutar comportamientos de seguimiento de pared, cuyos ejemplos se describen en el documento de patente US 6.809.490.In a preferred application, as shown, the side of the robot 100 having the proximity sensor 730 is the dominant side of the robot 100, which in this case is the right side with respect to a main direction of travel 105. In some examples , the wall proximity sensor 730 is an infrared light sensor composed of a collimated emitter and detector pair so that a finite volume of intersection occurs in the expected position of a wall. This focus point is approximately three inches ahead of the drive wheels 410, 420 in the direction of forward movement of the robot. The radial range of wall detection is approximately 0.75 inches. Proximity sensor 730 can be used to execute wall tracking behaviors, the examples of which are described in US 6,809,490.

En algunas aplicaciones, el sensor de proximidad 730 incluye un emisor y un detector dispuestos sustancialmente paralelos. El emisor tiene un campo de emision proyectado sustancialmente paralelo a un campo de deteccion del detector. El sensor de proximidad 730 proporciona una senal al controlador 450, que determina una distancia a un objeto detectado (por ejemplo, una pared). El sensor de proximidad 730 necesita ser calibrado para detectar y permitir que el controlador 450 determine con precision una distancia del objeto. Para calibrar el sensor de proximidad 730 al albedo (por ejemplo, color o reflectividad) de un objeto adyacente, el robot 100 choca con el objeto por su lado dominante y registra una caractenstica de reflexion. En el ejemplo de un emisor y detector de infrarrojos, el controlador 450 registra una intensidad de reflexion en el momento del contacto con el objeto, que se supone que es una pared. En base a la intensidad de reflexion registrada en la distancia de calibracion conocida entre el borde del cuerpo 300 y el sensor de proximidad 730, el controlador 450 puede determinar a partir de entonces una distancia a la pared mientras se desplaza a lo largo de la pared. El controlador 450 puede aplicar servocontrol en los motores de accionamiento 412, 422 para desplazarse a una cierta distancia desde la pared, y por tanto seguir la pared. El robot 100 puede girar de manera periodica hacia la pared para chocar lateralmente contra la pared y volver a calibrar el sensor de proximidad 730. Si el sensor de proximidad 730 detecta una ausencia de la pared, el robot 100 puede decidir volver a calibrar el sensor de proximidad 730 al reconocer de nuevo la pared.In some applications, the proximity sensor 730 includes a transmitter and a detector arranged substantially parallel. The emitter has a projected emission field substantially parallel to a detector detection field. Proximity sensor 730 provides a signal to controller 450, which determines a distance to a detected object (for example, a wall). The proximity sensor 730 needs to be calibrated to detect and allow the controller 450 to accurately determine a distance from the object. To calibrate the proximity sensor 730 to the albedo (for example, color or reflectivity) of an adjacent object, the robot 100 collides with the object on its dominant side and registers a reflection characteristic. In the example of an infrared emitter and detector, the controller 450 registers a reflection intensity at the time of contact with the object, which is supposed to be a wall. Based on the intensity of reflection recorded in the known calibration distance between the edge of the body 300 and the proximity sensor 730, the controller 450 can then determine a distance to the wall as it travels along the wall . The controller 450 can apply servo control on the drive motors 412, 422 to travel a certain distance from the wall, and therefore follow the wall. The robot 100 may rotate periodically towards the wall to collide laterally against the wall and recalibrate the proximity sensor 730. If the proximity sensor 730 detects an absence of the wall, the robot 100 may decide to recalibrate the sensor of proximity 730 when recognizing the wall again.

El robot 100 puede seguir activamente la pared sobre su lado dominante utilizando el sensor de proximidad 730. El robot 100 puede seguir pasivamente la pared sobre su lado no dominante (o sobre el lado dominante si el sensor de proximidad 730 no esta presente o activo). Despues de chocar con un objeto (por ejemplo, detectado por el sensorThe robot 100 can actively follow the wall on its dominant side using the proximity sensor 730. The robot 100 can passively follow the wall on its non-dominant side (or on the dominant side if the proximity sensor 730 is not present or active) . After colliding with an object (for example, detected by the sensor

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

antichoque 800), el robot 100 puede suponer que el objeto es una pared y girar para seguir la pared. El robot 100 puede retornar antes de girar, a fin de no atrapar una esquina delantera del cuerpo 300 en el objeto / pared, reactivando asf el sensor antichoque 800 en una direccion hacia adelante. Despues de girar (por ejemplo, aproximadamente 90°), el robot 100 se desplaza recto (por ejemplo, a lo largo de la pared) y gira ligeramente hacia la pared, para deslizarse a lo largo de la pared. El robot 100 puede detectar que se esta deslizando a lo largo de la pared mediante la deteccion de un choque lateral a traves del sensor antichoque multidireccional 800, que se describira a continuacion. El robot 100 puede continuar para seguir la pared pasivamente hasta que el sensor antichoque 800 ya no detecte un choque lateral en el lado que sigue la pared actual del robot 100 durante un determinado penodo de tiempo.anti-shock 800), the robot 100 may assume that the object is a wall and rotate to follow the wall. The robot 100 can return before turning, so as not to trap a front corner of the body 300 in the object / wall, thus reactivating the shock sensor 800 in a forward direction. After turning (for example, approximately 90 °), the robot 100 travels straight (for example, along the wall) and turns slightly towards the wall, to slide along the wall. The robot 100 can detect that it is sliding along the wall by detecting a lateral collision through the multi-directional anti-shock sensor 800, which will be described below. The robot 100 can continue to passively follow the wall until the anti-shock sensor 800 no longer detects a side collision on the side that follows the current wall of the robot 100 for a certain period of time.

El robot 100 puede seguir pasivamente la pared debido en parte a sus lados planos del cuerpo 300 y a la colocacion posterior de las ruedas motrices 410, 420. Los lados planos permiten que el robot 100 se deslice a lo largo de la pared (por ejemplo, sustancialmente paralelo a la pared). La colocacion de las ruedas motrices 410, 420 en la parte posterior 220 del chasis 200 permite que el robot 100 haga oscilar su parte delantera 210 del chasis 200 hacia la pared, para deslizarse a lo largo de la pared. Refiriendonos a la figura 12A, el robot 100 se mueve hacia adelante mientras que, estando en contacto con una pared 30, es sometido a dos fuerzas, una fuerza perpendicular a la pared, Fn, y una fuerza tangencial a la pared, Ft. Estas fuerzas crean pares opuestos alrededor de un punto a medio camino entre las ruedas, el centro de rotacion natural del robot. Se puede mostrar que el par, t, es:The robot 100 can passively follow the wall due in part to its flat sides of the body 300 and to the rear placement of the drive wheels 410, 420. The flat sides allow the robot 100 to slide along the wall (for example, substantially parallel to the wall). The placement of the drive wheels 410, 420 on the back 220 of the chassis 200 allows the robot 100 to swing its front part 210 of the chassis 200 toward the wall, to slide along the wall. Referring to Figure 12A, the robot 100 moves forward while, being in contact with a wall 30, it is subjected to two forces, a force perpendicular to the wall, Fn, and a tangential force to the wall, Ft. forces create opposite pairs around a point halfway between the wheels, the robot's natural center of rotation. It can be shown that the pair, t, is:

t = rF(cos0sen0 - pseno20t = rF (cos0sen0 - pseno20

Donde p es el coeficiente de friccion entre la pared y el robot. Dado un valor para p, hay algun angulo cntico 0c, donde los pares estan equilibrados. Para 0 < 0c el primer termino a la derecha de la ecuacion es mas grande y el robot tiende a alinearse con la pared. Si 0 > 0c, entonces el segundo termino es mas grande y el robot 100 tiende a girar hacia la pared.Where p is the coefficient of friction between the wall and the robot. Given a value for p, there is some quantum angle 0c, where the pairs are balanced. For 0 <0c the first term to the right of the equation is larger and the robot tends to align with the wall. If 0> 0c, then the second term is larger and the robot 100 tends to turn towards the wall.

Ciertas geometnas de robot, tales como la forma de lapida del robot descrito, pueden alcanzar valores utiles para 0c. Hay que tener en cuenta que la geometna cilmdrica estandar tiene 0c = n / 2 independientemente del angulo de aproximacion del robot a la pared. Por tanto, el seguimiento pasivo de la pared no se puede lograr con esta configuracion. Para seguir pasivamente la pared con exito, el desplazamiento entre el eje de rotacion natural de robot y el punto de contacto con la pared debe ser lo mas adelante posible cuando el movimiento del robot esta alineado con la pared. Ademas, la altura maxima de escalon de la pared que permite la recuperacion pasiva es un factor importante y se ve afectado por la forma robot.Certain robot geometries, such as the tombstone shape of the described robot, can reach useful values for 0c. Keep in mind that the standard cylindrical geometry has 0c = n / 2 regardless of the approach angle of the robot to the wall. Therefore, passive wall tracking cannot be achieved with this configuration. To passively follow the wall successfully, the displacement between the robot's natural rotation axis and the point of contact with the wall must be as far as possible when the robot's movement is aligned with the wall. In addition, the maximum step height of the wall that allows passive recovery is an important factor and is affected by the robot form.

En algunos ejemplos, el robot 100 puede seguir semipasivamente la pared. El robot 100 sigue la pared sobre su lado dominante, que tiene el sensor de proximidad lateral 730. Despues de detectar un objeto, que se supone que es una pared, ya sea mediante el sensor antichoque 800 o el sensor de proximidad 730, el robot 100 gira para alinear el lado dominante del robot 100 con la pared prevista. El robot 100 procede entonces a desplazarse a lo largo de la pared, mientras gira ligeramente hacia la pared a fin de deslizarse a lo largo de la pared. El robot 160 se mantiene en contacto con la pared mediante la deteccion de contacto con la pared a traves del sensor antichoque 800 o del sensor de proximidad 730 y el controlador 450 aplica servocontrol o los motores de accionamiento 412, 422 para desplazarse en consecuencia a lo largo de la pared.In some examples, the robot 100 can semi-passively follow the wall. The robot 100 follows the wall on its dominant side, which has the lateral proximity sensor 730. After detecting an object, which is supposed to be a wall, either by means of the anti-shock sensor 800 or the proximity sensor 730, the robot 100 rotates to align the dominant side of the robot 100 with the intended wall. The robot 100 then proceeds to move along the wall, while turning slightly towards the wall in order to slide along the wall. Robot 160 is kept in contact with the wall by detecting contact with the wall through the anti-shock sensor 800 or the proximity sensor 730 and the controller 450 applies servo control or the drive motors 412, 422 to move accordingly wall length

En algunos ejemplos, como se muestra en la figura 12B, el robot 100 incluye un elemento de contacto 180 (por ejemplo, un rodillo, un cojinete, un casquillo, o un punto de contacto blando) dispuesto en una o ambas de las esquinas delanteras del robot 100 para ayudar en el seguimiento de la pared. Preferiblemente, el elemento de contacto 180 esta al menos dispuesto en la esquina delantera del lado dominante del robot 100. A medida que el robot 100 se mueve a lo largo de la pared, se pone en contacto con el elemento de contacto 180, en lugar de simplemente deslizarse a lo largo de la pared. En algunas aplicaciones, el elemento de contacto 180 es un cepillo lateral que mira a lo largo de un eje vertical y se extiende mas alla del cuerpo 300. El cepillo lateral mantiene un espacio intermedio entre una pared y el cuerpo de robot 300.In some examples, as shown in Figure 12B, the robot 100 includes a contact element 180 (for example, a roller, a bearing, a bushing, or a soft contact point) disposed in one or both of the front corners of the robot 100 to help in tracking the wall. Preferably, the contact element 180 is at least arranged in the front corner of the dominant side of the robot 100. As the robot 100 moves along the wall, it contacts the contact element 180, instead of simply sliding along the wall. In some applications, the contact element 180 is a side brush that looks along a vertical axis and extends beyond the body 300. The side brush maintains an intermediate space between a wall and the robot body 300.

El sensor antichoque 800 se utiliza para determinar el momento en el que el robot 100 encuentra ffsicamente un objeto. Tales sensores pueden utilizar una propiedad ffsica tal como una capacitancia o un desplazamiento ffsico dentro del robot 100 para determinar el momento en el que se encuentra un obstaculo. En algunas aplicaciones, el sensor antichoque 800 incluye sensores de contacto dispuestos alrededor de la periferia del cuerpo 300. En aplicaciones preferidas, el sensor antichoque 800 esta configurado para detectar el movimiento del cuerpo 300 sobre el chasis 200. Con referencia a las figuras 5, 10 y 13A - 13D, el cuerpo 300 del robot 100 funciona como un parachoques y esta acoplado de manera flexible al chasis 200 mediante uno o mas elementos elasticos 309 (por ejemplo, resortes, pasadores flexibles, espigas elastomericas, etc) (vease la figura 5). Los elementos elasticos 309 permiten que el cuerpo de estilo de parachoques 300 se mueva en al menos dos direcciones (preferiblemente tres direcciones). En algunos ejemplos, el sensor antichoque 800 incluye una base de sensor antichoque 810 que porta al menos tres (preferiblemente cuatro) detectores 820 (por ejemplo, detectores de luz infrarroja, tales como fotodetectores) espaciados uniformemente sobre la base de sensor antichoque 810. En el ejemplo mostrado, la base de sensor antichoque 810 es una placa de circuito impreso que porta los detectores 820. La placa de circuito impreso - base de sensor antichoque 810 esta en comunicacion con y puede portar el controlador 450. El sensorThe anti-shock sensor 800 is used to determine the moment at which the robot 100 physically finds an object. Such sensors may use a physical property such as a capacitance or a physical displacement within the robot 100 to determine the moment at which an obstacle is encountered. In some applications, the anti-shock sensor 800 includes contact sensors arranged around the periphery of the body 300. In preferred applications, the anti-shock sensor 800 is configured to detect movement of the body 300 on the chassis 200. With reference to Figures 5, 10 and 13A-13D, the body 300 of the robot 100 functions as a bumper and is flexibly coupled to the chassis 200 by one or more elastic elements 309 (for example, springs, flexible pins, elastomeric pins, etc.) (see figure 5). The elastic elements 309 allow the bumper style body 300 to move in at least two directions (preferably three directions). In some examples, the anti-shock sensor 800 includes an anti-shock sensor base 810 that carries at least three (preferably four) detectors 820 (eg, infrared light detectors, such as photodetectors) evenly spaced on the anti-shock sensor base 810. In the example shown, the anti-shock sensor base 810 is a printed circuit board that carries the detectors 820. The printed circuit board - anti-shock sensor base 810 is in communication with and can carry the controller 450. The sensor

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

antichoque 800 incluye un revestimiento de sensor antichoque 830 que define una cavidad 832 que esta colocada sobre y cubre la base de sensor antichoque 810. El revestimiento de sensor antichoque 830 aloja un emisor 840 (por ejemplo, un emisor de luz o un emisor de luz infrarroja), que emite una senal 842 (por ejemplo, luz) a traves de un orificio 834 definido por el revestimiento de sensor antichoque 830 a traves de una pared 836 de la cavidad 832. El orificio 834 colima la senal 842, a fin de tener una trayectoria dirigida. A medida que el revestimiento de sensor antichoque 830 se mueve sobre la base de sensor antichoque 810, la senal 842 se mueve sobre los detectores 820, lo que proporciona senales correspondientes al controlador 450 (por ejemplo, proporcionales a la intensidad de senal). En base a las senales de detector, el controlador 450 esta configurado para determinar la direccion de movimiento del cuerpo 300 sobre el chasis 200, y opcionalmente la velocidad de movimiento. El sensor antichoque 800 puede detectar 360 grados de movimiento del revestimiento de sensor antichoque 830 sobre la base de sensor antichoque 810. El sistema de accionamiento 400 y / o el controlador 450 estan configurados para cambiar una direccion de desplazamiento del robot 100 en respuesta a la senal o senales del detector recibidas desde los detectores 820.Anti-shock 800 includes an anti-shock sensor coating 830 that defines a cavity 832 that is placed on and covers the anti-shock sensor base 810. The anti-shock sensor coating 830 houses an emitter 840 (for example, a light emitter or a light emitter). infrared), which emits a signal 842 (for example, light) through a hole 834 defined by the anti-shock sensor coating 830 through a wall 836 of the cavity 832. The hole 834 collides the signal 842, in order to Have a directed trajectory. As the anti-shock sensor coating 830 moves on the basis of the anti-shock sensor 810, the signal 842 moves over the detectors 820, which provides signals corresponding to the controller 450 (for example, proportional to the signal intensity). Based on the detector signals, the controller 450 is configured to determine the direction of movement of the body 300 on the chassis 200, and optionally the movement speed. The anti-shock sensor 800 can detect 360 degrees of movement of the anti-shock sensor coating 830 on the basis of the anti-shock sensor 810. The drive system 400 and / or the controller 450 are configured to change a direction of travel of the robot 100 in response to the detector signal or signals received from detectors 820.

En el ejemplo mostrado en las figuras 13A y 13C, el sensor antichoque 800 incluye una grna de parachoques 850 que grna el cuerpo 300 a lo largo de dos direcciones de movimiento. Como se senalo anteriormente, el cuerpo 300 se acopla al chasis mediante elementos elasticos 309 que permiten que el cuerpo 300 sea desplazado tanto por traslacion como por rotacion. La grna de parachoques 850 puede estar configurada como una "T", en forma de cruz o como una ranura o ranuras perpendiculares 852 formadas en un elemento que se mueve con el parachoques 300 (con respecto al chasis 300), acoplado a al menos un pasador de grna 854 en el chasis 200 que no se mueve (con respecto al chasis 200). En otras aplicaciones, la grna de parachoques 850 esta definida en una parte del chasis 200 y el pasador de grna 854 esta asegurado al cuerpo de parachoques 300. Cuando el parachoques 300 se desplaza, la grna de parachoques 850 tiende a guiar el parachoques 300 en esa zona a lo largo de un brazo de la grna de parachoques 850, lo que permite "trasladar" choques tal cual y tiende a reducir de otro modo componentes rotacionales o transformar la rotacion en traslacion, mejorando la deteccion del sensor antichoque 800.In the example shown in Figures 13A and 13C, the anti-shock sensor 800 includes a bumper crane 850 that grinds the body 300 along two directions of movement. As noted above, the body 300 is coupled to the chassis by elastic elements 309 that allow the body 300 to be displaced both by translation and rotation. The bumper crane 850 may be configured as a "T", in the form of a cross or as a perpendicular groove or grooves 852 formed in an element that moves with the bumper 300 (with respect to the chassis 300), coupled to at least one crane pin 854 in chassis 200 that does not move (with respect to chassis 200). In other applications, the bumper crane 850 is defined in a part of the chassis 200 and the crane pin 854 is secured to the bumper body 300. When the bumper 300 moves, the bumper crane 850 tends to guide the bumper 300 in that area along an arm of the bumper crane 850, which allows "to move" crashes as is and tends to reduce rotational components or transform the rotation into translation, improving the detection of the anti-shock sensor 800.

En los ejemplos mostrados en las figuras 5, 10 y 13D, el sensor antichoque 800 incluye un brazo conector de parachoques 850 asegurado entre el revestimiento de sensor antichoque 830 y el cuerpo de estilo de parachoques 300. El brazo conector de parachoques 850 traslada el movimiento del cuerpo 300 al revestimiento de sensor antichoque 830. El revestimiento de sensor antichoque 830 esta asegurado a la base de sensor antichoque 710 y esta compuesto de un material elastico de manera que el revestimiento de sensor antichoque 830 se puede mover mediante deformacion elastica con respecto a la base de sensor antichoque 810. En otros ejemplos, el revestimiento de sensor antichoque 830 se coloca sobre la base de sensor antichoque 710 y se le permite moverse libremente con respecto a la base de sensor antichoque 810.In the examples shown in Figures 5, 10 and 13D, the anti-shock sensor 800 includes a bumper connector arm 850 secured between the anti-shock sensor liner 830 and the bumper style body 300. The bumper connector arm 850 transfers movement from the body 300 to the anti-shock sensor coating 830. The anti-shock sensor coating 830 is secured to the anti-shock sensor base 710 and is composed of an elastic material so that the anti-shock sensor coating 830 can be moved by elastic deformation with respect to the anti-shock sensor base 810. In other examples, the anti-shock sensor coating 830 is placed on the anti-shock sensor base 710 and is allowed to move freely with respect to the anti-shock sensor base 810.

El robot 100 tiene una direccion de marcha hacia adelante y porta el receptor omnidireccional 900 en una parte superior 305 del cuerpo 300 por encima de la parte delantera 202 del chasis 200. La figura 1 ilustra un ejemplo de posicion del receptor omnidireccional 900 en el robot 100, siendo la parte mas alta del robot 100. El receptor omnidireccional 900 puede usarse para detectar el momento en el que el robot 100 esta muy proximo a un faro de navegacion (no mostrado). Por ejemplo, el receptor omnidireccional 900 puede transmitir una senal a un sistema de control que indica la fuerza de una emision, donde una senal mas fuerte indica mayor proximidad a un faro de navegacion.The robot 100 has a forward direction and carries the omnidirectional receiver 900 in an upper part 305 of the body 300 above the front part 202 of the chassis 200. Figure 1 illustrates an example of the position of the omnidirectional receiver 900 in the robot 100, being the highest part of the robot 100. The omnidirectional receiver 900 can be used to detect the moment when the robot 100 is very close to a navigation beacon (not shown). For example, the omnidirectional receiver 900 can transmit a signal to a control system that indicates the strength of an emission, where a stronger signal indicates greater proximity to a navigation beacon.

Las figuras 14 a 16 muestran vistas en perspectiva, lateral y en corte del receptor omnidireccional 900. El receptor omnidireccional 900 incluye un alojamiento 910, un reflector conico 920 y un receptor de emisiones 930. El alojamiento 910 tiene una parte superior 912 y una cavidad interior 916. La parte superior 912 puede permitir una transmision de una emision a la cavidad interior 916. El reflector conico 920 esta situado en una superficie superior de la cavidad 916 para reflejar emisiones que inciden sobre la parte superior 912 del alojamiento 910 hacia la cavidad interior 916. El receptor de emisiones 930 esta situado en la cavidad interior 916 debajo del reflector conico 920. En algunas aplicaciones, el receptor omnidireccional 900 esta configurado para recibir transmisiones de luz infrarroja (IR). En tales casos, una grna 940 (por ejemplo, un tubo de luz) puede guiar emisiones reflejadas en el reflector conico 920 y canalizarlas hacia el receptor de emisiones 930.Figures 14 to 16 show perspective, side and sectional views of the omnidirectional receiver 900. The omnidirectional receiver 900 includes a housing 910, a conical reflector 920 and an emission receiver 930. The housing 910 has an upper part 912 and a cavity inner 916. The upper part 912 may allow a transmission of an emission to the inner cavity 916. The conical reflector 920 is located on an upper surface of the cavity 916 to reflect emissions that impact the upper part 912 of the housing 910 towards the cavity interior 916. The emission receiver 930 is located in the internal cavity 916 below the conical reflector 920. In some applications, the omnidirectional receiver 900 is configured to receive infrared (IR) light transmissions. In such cases, a gate 940 (for example, a light tube) can guide emissions reflected in the conical reflector 920 and channel them to the emission receiver 930.

El controlador 450 puede estar configurado para propulsar el robot 100 de acuerdo con un ajuste de rumbo y un ajuste de velocidad. Las senales recibidas desde el sistema de sensor de navegacion 700 pueden ser utilizadas por un sistema de control para emitir ordenes que tienen que ver con obstaculos, tales como cambiar la velocidad o el rumbo ordenados del robot 100. Por ejemplo, una senal procedente del sensor de proximidad 730, debida a una pared cercana puede dar como resultado que el sistema de control emita una orden para reducir la velocidad. En otro ejemplo, una senal de colision procedente del sensor antichoque 800 debida a un encuentro con un obstaculo puede hacer que el sistema de control emita una orden para cambiar de rumbo. En otros casos, el ajuste de velocidad del robot 100 se puede reducir en respuesta al sensor de contacto y / o el ajuste de rumbo del robot 100 se puede cambiar en respuesta al sensor de proximidad 730.The controller 450 may be configured to propel the robot 100 according to a heading setting and a speed setting. The signals received from the navigation sensor system 700 can be used by a control system to issue commands that have to do with obstacles, such as changing the speed or heading of the robot 100. For example, a signal from the sensor of proximity 730, due to a nearby wall may result in the control system issuing an order to reduce speed. In another example, a collision signal from the crash sensor 800 due to an encounter with an obstacle can cause the control system to issue an order to change course. In other cases, the speed setting of the robot 100 can be reduced in response to the contact sensor and / or the heading setting of the robot 100 can be changed in response to the proximity sensor 730.

El controlador 450 puede incluir una primera rutina de comportamiento independiente configurada para ajustar la configuracion de velocidad del robot 100; y una segunda rutina de comportamiento independiente configurada para cambiar la configuracion de rumbo del robot 100, en el que las rutinas de comportamiento independientes primera yThe controller 450 may include a first independent behavior routine configured to adjust the speed setting of the robot 100; and a second independent behavior routine configured to change the course configuration of the robot 100, in which the independent behavior routines first and

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

segunda estan configuradas para ejecutarse al mismo tiempo y de manera redproca de forma independiente. La primera rutina de comportamiento independiente puede estar configurada para sondear el sensor de proximidad 730, y la segunda rutina de comportamiento independiente puede estar configurada para sondear el sensor antichoque 800. Aunque las aplicaciones del robot 100 descritas en este documento pueden usar control basado, solo en parte o sin basarse en absoluto, en el comportamiento, el control basado en el comportamiento es eficaz para controlar el robot a fin de que sea solido (es decir, para que no se quede atascado o para que no falle), asf como seguro.Second, they are configured to run at the same time and in a separate way. The first independent behavior routine may be configured to probe the proximity sensor 730, and the second independent behavior routine may be configured to probe the anti-shock sensor 800. Although the robot applications 100 described in this document may use based control, only partly or without relying on the behavior, the behavior-based control is effective to control the robot so that it is solid (that is, so that it does not get stuck or so that it does not fail), as well as safe .

Las figuras 17 a 25 ilustran otra aplicacion del robot autonomo de cubrimiento 101. El robot 101 incluye un chasis 200 que tiene una parte delantera 210 y una parte posterior 220, y un cuerpo 300 que tiene una parte delantera 301 y una parte posterior 303 configuradas para seguir sustancialmente los contornos del chasis 200. La parte delantera 210 del chasis 200 define una forma sustancialmente rectangular y la parte posterior 220 define una forma elfptica. La parte delantera 301 del cuerpo 300 puede estar conectada de manera flexible al chasis 200. Un asa 330 esta dispuesta en, o definida por, una parte superior 305 de la parte posterior 303 del cuerpo 300.Figures 17 to 25 illustrate another application of the autonomous covering robot 101. The robot 101 includes a chassis 200 having a front part 210 and a rear part 220, and a body 300 having a front part 301 and a rear part 303 configured. to substantially follow the contours of the chassis 200. The front part 210 of the chassis 200 defines a substantially rectangular shape and the rear part 220 defines an elliptical shape. The front part 301 of the body 300 may be flexibly connected to the chassis 200. A handle 330 is arranged in, or defined by, an upper part 305 of the rear part 303 of the body 300.

En una configuracion ejemplar, el diseno del robot 101 tiene un diametro de alrededor de 15 cm, una altura deIn an exemplary configuration, the design of the robot 101 has a diameter of about 15 cm, a height of

alrededor de 7,5 cm, y funciona con energfa de batena para limpiar durante aproximadamente seis horas antes de necesitar recarga. Tambien, por ejemplo, el robot 101 puede limpiar eficazmente el suelo de una habitacion individual de tamano medio en unos 45 minutos, o varias zonas mas pequenas.around 7.5 cm, and it works with bat energy to clean for approximately six hours before needing recharging. Also, for example, the robot 101 can effectively clean the floor of a medium-sized single room in about 45 minutes, or several smaller areas.

Refiriendonos a las figuras 18, 20 y 21, el robot 101 incluye un sistema de accionamiento 400 portado por el chasis 200, como se describe anteriormente. En la aplicacion mostrada, los motores de accionamiento 412, 422 estan dispuestos adyacentes y en lmea (por ejemplo, coaxialmente) con sus respectivas ruedas motrices 410 y 420. EnReferring to Figures 18, 20 and 21, the robot 101 includes a drive system 400 carried by the chassis 200, as described above. In the application shown, the drive motors 412, 422 are arranged adjacently and in line (for example, coaxially) with their respective drive wheels 410 and 420. In

algunos ejemplos, el robot incluye una caja de cambios 414, 424 acoplada entre la rueda motriz 410, 420 y susome examples, the robot includes a gearbox 414, 424 coupled between the drive wheel 410, 420 and its

respectivo motor de accionamiento 412, 422. El robot 101 incluye un controlador 450 en comunicacion con el sistema de accionamiento 400. El controlador 450 esta configurado para maniobrar el robot 101 a fin de que pivote sobre sf mismo.respective drive motor 412, 422. The robot 101 includes a controller 450 in communication with the drive system 400. The controller 450 is configured to maneuver the robot 101 so that it pivots on itself.

El robot 101 incluye un conjunto de limpieza 500 montado en la parte delantera 210 del chasis 200, e incluye un primer cepillo de rodillo delantero 510 montado de manera giratoria sustancialmente cerca de y sustancialmente paralelo al borde delantero 202 del chasis 200. El conjunto de limpieza 500 incluye unos cepillos de rodillo laterales segundo y tercero 550, 560 montados de manera giratoria perpendicularmente al cepillo de rodillo delantero 510 sustancialmente cerca de los bordes laterales derecho e izquierdo correspondientes 306, 308 del cuerpo 300. Los cepillos de rodillo 510, 550, 560 son accionados por un motor de limpieza 530 acoplado a los cepillos de rodillo 510, 550, 560 mediante una caja de cambios 532. El motor de limpieza 530 esta colocado por detras del cepillo de rodillo delantero 510 y entre los cepillos de rodillo laterales 550, 560.Robot 101 includes a cleaning assembly 500 mounted on the front 210 of the chassis 200, and includes a first front roller brush 510 rotatably mounted substantially close to and substantially parallel to the leading edge 202 of the chassis 200. The cleaning assembly 500 includes second and third side roller brushes 550, 560 rotatably mounted perpendicularly to the front roller brush 510 substantially close to the corresponding right and left side edges 306, 308 of the body 300. Roller brushes 510, 550, 560 they are driven by a cleaning motor 530 coupled to the roller brushes 510, 550, 560 by a gearbox 532. The cleaning motor 530 is positioned behind the front roller brush 510 and between the side roller brushes 550, 560

El robot 101, en una aplicacion preferida, incluye un solo tipo de mecanismo de limpieza. Por ejemplo, el robot 101 mostrado en la figura 18 incluye rodillos de cepillos de cerdas para el cepillo de rodillo delantero 510 y los cepillos de rodillo laterales 550, 560. Los rodillos de cepillos de cerdas pueden ser similares a los rodillos de cepillos encontrados en el robot SCOOBA® comercializado, por ejemplo, por iRobot Corporation; o pueden ser similares a los tipos de cepillo R2 o R3 utilizados en el robot Roomba®, como ejemplos adicionales. En una aplicacion, el cepillo no recoge pelos o fibras largos que tendenan a enrollarse firmemente alrededor del cepillo, a fin de minimizar la frecuencia de mantenimiento requerido por el usuario para la eliminacion de residuos del cepillo. Alternativamente, el robot 101 puede incluir dos o mas variedades de mecanismo de limpieza, tales como aspiracion y cepillos de cerdas, entre otros.Robot 101, in a preferred application, includes a single type of cleaning mechanism. For example, the robot 101 shown in Figure 18 includes bristle brush rollers for the front roller brush 510 and the side roller brushes 550, 560. The bristle brush rollers may be similar to the brush rollers found in the SCOOBA® robot marketed, for example, by iRobot Corporation; or they can be similar to the types of R2 or R3 brush used in the Roomba® robot, as additional examples. In one application, the brush does not pick up long hairs or fibers that tend to wrap tightly around the brush, in order to minimize the frequency of maintenance required by the user for the removal of brush residue. Alternatively, the robot 101 may include two or more varieties of cleaning mechanism, such as aspiration and bristle brushes, among others.

En algunos de los ejemplos, el cepillo de rodillo delantero 510 y los cepillos de rodillo laterales 550, 560 giran cada uno alrededor de un eje horizontal paralelo a la superficie de trabajo, proporcionando asf un conjunto de limpieza horizontal 500, aunque la anchura principal de trabajo del robot de cubrimiento 100 puede incluir cepillos verticalmente giratorios, sin cepillos si hay un aspirador, un cepillo oscilante, un elemento de correa circulante, y otras aplicaciones de limpieza conocidas. Cada cepillo de rodillo 510, 520, 550, 560 puede tener un cuerpo cilmdrico que define un eje longitudinal de rotacion. Las cerdas estan fijadas radialmente al cuerpo cilmdrico, y, en algunos ejemplos, se fijan aletas flexibles longitudinalmente a lo largo del cuerpo cilmdrico. A medida que el cepillo de rodillo 510, 520, 550, 560 gira, las cerdas y las aletas flexibles mueven residuos sobre la superficie de trabajo, dirigiendolos hacia el compartimento de basura 610 en el robot 100. En ejemplos que incluyen una unidad de aspiracion, los cepillos 510, 520, 550, 560 pueden tambien dirigir residuos o suciedad hacia una trayectoria de aspiracion por debajo del robot de limpieza 100. En el caso de un robot de limpieza en humedo, los cepillos 510, 520, 550, 560 pueden tener en su lugar una funcion de cepillado, y un aspirador u otro colector puede recoger residuos fluidos despues del cepillado.In some of the examples, the front roller brush 510 and the side roller brushes 550, 560 each rotate about a horizontal axis parallel to the work surface, thus providing a horizontal cleaning assembly 500, although the main width of The work of the covering robot 100 may include vertically rotating brushes, without brushes if there is a vacuum cleaner, an oscillating brush, a circulating belt element, and other known cleaning applications. Each roller brush 510, 520, 550, 560 can have a cylindrical body that defines a longitudinal axis of rotation. The bristles are radially fixed to the cylindrical body, and, in some examples, flexible fins are fixed longitudinally along the cylindrical body. As the roller brush 510, 520, 550, 560 rotates, the bristles and flexible fins move debris over the work surface, directing them to the garbage compartment 610 in the robot 100. In examples that include a suction unit , brushes 510, 520, 550, 560 can also direct debris or dirt towards an aspiration path below the cleaning robot 100. In the case of a wet cleaning robot, brushes 510, 520, 550, 560 can have a brushing function in place, and a vacuum cleaner or other collector can collect fluid residue after brushing.

En los ejemplos mostrados, los componentes eficaces del conjunto de limpieza 500, tales como los cepillos 510, 550, 560, estan dispuestos hacia las esquinas delanteras extremas de la parte delantera 210 del chasis 200. Como resultado de ello, el area del suelo que puede cubrir la parte delantera rectangular 210 del chasis 200 se maximiza, y partes del suelo que no estan cubiertas se minimizan, como se ilustra en la figura 27.In the examples shown, the effective components of the cleaning assembly 500, such as brushes 510, 550, 560, are disposed towards the extreme front corners of the front part 210 of the chassis 200. As a result, the area of the floor that It can cover the rectangular front part 210 of the chassis 200 is maximized, and parts of the ground that are not covered are minimized, as illustrated in Figure 27.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

Al incluir unicamente un solo mecanismo de limpieza, tal como el conjunto de limpieza 500, en lugar de una combinacion de dos o mas variedades de mecanismo de limpieza (tal como, por ejemplo, un cepillo de rodillo y un aspirador; o mecanismos de limpieza en humedo y en seco, que pueden requerir dos o mas camaras de almacenamiento, entre otros), el robot 101 puede hacerse mas compacto con respecto a otra forma.By only including a single cleaning mechanism, such as cleaning assembly 500, instead of a combination of two or more varieties of cleaning mechanism (such as, for example, a roller brush and a vacuum cleaner; or cleaning mechanisms in wet and dry, which may require two or more storage chambers, among others), the robot 101 can be made more compact with respect to another form.

Refiriendonos a las figuras 18, 20, 21 y 24, el robot 101 incluye un conjunto de compartimento de basura 600, como se describe anteriormente. En los ejemplos mostrados, el chasis 200 define la camara de residuos o compartimento de basura 610, que se coloca entre el conjunto de limpieza 500 y el sistema de accionamiento 400. En ejemplos espedficos, el compartimento de basura 610 esta por delante de las ruedas motrices 410, 420 y por detras del cepillo de rodillo delantero 510. A medida que el cepillo de rodillo delantero 510 y los cepillos de rodillo laterales 550, 560 giran contra el suelo, agitan residuos y barren los residuos hacia el interior de una camara de residuos / compartimento de basura 610 dentro del robot 101 a traves de una hendidura de admision u otra abertura adecuada que va desde los cepillos de rodillo 510, 550, 560 hasta la camara de residuos 610.Referring to figures 18, 20, 21 and 24, the robot 101 includes a garbage compartment assembly 600, as described above. In the examples shown, the chassis 200 defines the waste chamber or garbage compartment 610, which is placed between the cleaning assembly 500 and the drive system 400. In specific examples, the garbage compartment 610 is in front of the wheels drives 410, 420 and behind the front roller brush 510. As the front roller brush 510 and the side roller brushes 550, 560 rotate against the ground, they stir debris and sweep the debris into a chamber of waste / trash compartment 610 inside the robot 101 through an intake groove or other suitable opening that goes from roller brushes 510, 550, 560 to the waste chamber 610.

La cubierta de compartimento de basura 620, en el ejemplo mostrado, esta conectada de manera liberable al chasis 200 mediante una o mas bisagras 622 (por ejemplo, una bisagra integral, una espiga y un enchufe, etc.). En algunas aplicaciones, la liberacion de cubierta de compartimento de basura 630 se puede accionar desde sustancialmente cerca de o en el asa 330, lo que permite el accionamiento de la liberacion de cubierta de compartimento de basura 630 mientras se sostiene el asa 330. En otras aplicaciones, la liberacion de cubierta de compartimento de basura 630 se puede accionar desde cerca de o en la cubierta de compartimento de basura 620, de tal manera que un usuario sostiene el asa 330 con una mano y abre la cubierta de compartimento de basura 620 liberando la cubierta de compartimento de basura 630 con la otra mano (vease la figura 24). En algunas aplicaciones, la liberacion de cubierta de compartimento 630 es un fiador apretado por resorte o un boton de cierre que se puede seleccionar presionando hacia abajo (por ejemplo, un boton,) o tirando hacia arriba (por ejemplo, un activador).The garbage compartment cover 620, in the example shown, is releasably connected to the chassis 200 by one or more hinges 622 (for example, an integral hinge, a spike and a plug, etc.). In some applications, the release of the garbage compartment cover 630 can be operated from substantially near or in the handle 330, which allows the operation of the garbage compartment cover release 630 while holding the handle 330. In others applications, the release of the garbage compartment cover 630 can be operated from near or in the garbage compartment cover 620, such that a user holds the handle 330 with one hand and opens the garbage compartment cover 620 by releasing the garbage compartment cover 630 with the other hand (see figure 24). In some applications, compartment cover release 630 is a spring-loaded latch or closure button that can be selected by pressing down (for example, a button) or by pulling up (for example, an activator).

En los ejemplos mostrados, el robot 101 incluye un asa 330 dispuesta en o definida por una parte superior 305 del cuerpo 300. Un usuario puede agarrar el asa 330 para levantar el robot 101 y transportarlo manualmente. Ademas, el robot 101 puede incluir uno o mas botones 632 proximos al asa 330. El boton 632 se puede manejar con una mano, mientras la mano del usuario agarra el robot 101 por el asa 330. El boton 632 esta configurado para accionar una liberacion de cubierta de compartimento de basura 630, que puede funcionar para controlar el mantenimiento de la cubierta de compartimento de basura 620 en su posicion cerrada y liberar la cubierta de compartimento de basura 620 para que se mueva a su posicion abierta. En un ejemplo, como se ilustra en la figura 24, cuando el usuario aprieta el boton 632, la liberacion de cubierta de compartimento de basura 630 se desengancha y la cubierta de compartimento de basura 620 oscila para abrirse alrededor de las bisagras 622. Con la cubierta de compartimento de basura 620 en su posicion abierta, el contenido de la camara de residuos / compartimento de basura 610 puede salir del robot 101 debido a la fuerza de la gravedad. El robot 101 tambien puede incluir un resorte para asegurar que la cubierta de compartimento de basura 620 se abra, por ejemplo, en caso de que el peso de los residuos en la camara de residuos 610 sea insuficiente para hacer oscilar la cubierta de compartimento de basura 620 para que se abra.In the examples shown, the robot 101 includes a handle 330 arranged in or defined by an upper part 305 of the body 300. A user can grab the handle 330 to lift the robot 101 and transport it manually. In addition, the robot 101 can include one or more buttons 632 near the handle 330. The button 632 can be operated with one hand, while the user's hand grabs the robot 101 by the handle 330. The button 632 is configured to trigger a release. of garbage compartment cover 630, which can function to control the maintenance of the garbage compartment cover 620 in its closed position and release the garbage compartment cover 620 so that it moves to its open position. In one example, as illustrated in Figure 24, when the user presses button 632, the release of garbage compartment cover 630 is disengaged and garbage compartment cover 620 oscillates to open around hinges 622. With the Garbage compartment cover 620 in its open position, the contents of the waste chamber / garbage compartment 610 may leave the robot 101 due to the force of gravity. The robot 101 may also include a spring to ensure that the garbage compartment cover 620 is opened, for example, in case the weight of the waste in the waste chamber 610 is insufficient to swing the garbage compartment cover 620 to open.

El robot 101 incluye una fuente de alimentacion 160 (por ejemplo, una batena) en comunicacion con el sistema de accionamiento 400 y / o el controlador 450, y asegurada de manera desmontable al chasis 200. En los ejemplos mostrados en las figuras 20 y 21, la fuente de alimentacion 160 es recibida por un receptaculo de alimentacion 260 definido por la parte posterior 220 del chasis 200. Una cubierta de fuente alimentacion 262 esta asegurada de forma liberable al chasis 200 para sostener y / o cubrir la fuente de alimentacion 160 en el receptaculo de alimentacion 260. En los ejemplos mostrados, la fuente de alimentacion 160 esta colocada en la parte posterior 220 del chasis 200, por detras de las ruedas motrices 410, 420. En esta posicion, el peso de la fuente de alimentacion 160 compensa el peso del conjunto de limpieza 500 para colocar un centro de gravedad del robot 101 sustancialmente alrededor de un centro del chasis 200.The robot 101 includes a power supply 160 (for example, a battery) in communication with the drive system 400 and / or the controller 450, and detachably secured to the chassis 200. In the examples shown in Figures 20 and 21 , the power supply 160 is received by a power receptacle 260 defined by the back 220 of the chassis 200. A power supply cover 262 is releasably secured to the chassis 200 to hold and / or cover the power supply 160 in the power receptacle 260. In the examples shown, the power supply 160 is positioned at the rear 220 of the chassis 200, behind the driving wheels 410, 420. In this position, the weight of the power supply 160 compensates the weight of the cleaning assembly 500 to place a center of gravity of the robot 101 substantially around a center of the chassis 200.

Las dimensiones compactas del robot 101 permiten que el robot 101 navegue por debajo de posibles obstaculos, tales como sillas, mesas, sofas, u otros objetos de la casa, y lleve a cabo la limpieza de suelos en estas areas diffciles de alcanzar. Ademas, el robot 101 puede incluir un sensor de separacion dispuesto sobre una superficie superior del mismo, tal como un telemetro sonar o un diodo sensible a la luz, que escanea directamente por encima de la cabeza. Cuando el sensor de separacion detecta la presencia de un objeto dentro de una distancia umbral, tal como, por ejemplo, dos pies, el robot 101 puede continuar moviendose hasta que el espacio por encima de la cabeza este libre. En consecuencia, el robot 101 puede evitar llegar a "perderse" por debajo de los muebles, por ejemplo, fuera de la vista del usuario.The compact dimensions of the robot 101 allow the robot 101 to navigate beneath possible obstacles, such as chairs, tables, sofas, or other objects in the house, and perform floor cleaning in these hard-to-reach areas. In addition, the robot 101 may include a separation sensor disposed on an upper surface thereof, such as a sonar telemeter or a light-sensitive diode, which scans directly above the head. When the separation sensor detects the presence of an object within a threshold distance, such as, for example, two feet, the robot 101 can continue moving until the space above the head is free. Consequently, the robot 101 can avoid getting "lost" under the furniture, for example, out of the user's view.

A medida que el sistema de accionamiento 400 impulsa el robot 101 sobre el suelo, el cepillo de rodillo delantero 510 gira preferentemente en la misma direccion que las ruedas motrices 410, 420, aunque a un ritmo mas rapido que la velocidad del robot 101 cuando cruza el suelo, para barrer residuos hacia el interior de la camara de residuos 610. Ademas, los cepillos laterales 550, 560 tambien barren residuos hacia dentro al mismo tiempo. En un ejemplo, las cerdas de los cepillos 510, 550, 560 pueden extenderse hacia abajo aproximadamente de 0,015 a 0,025 pulgadas mas alla de la extension de las ruedas 410, 420, mientras giran a una velocidad de entre aproximadamente 600 y aproximadamente 1.600 RPM.As the drive system 400 drives the robot 101 on the ground, the front roller brush 510 preferably rotates in the same direction as the drive wheels 410, 420, although at a faster rate than the speed of the robot 101 when it crosses the floor, to sweep waste into the waste chamber 610. In addition, the side brushes 550, 560 also sweep waste inwards at the same time. In one example, the bristles of brushes 510, 550, 560 can extend down approximately 0.015 to 0.025 inches beyond the extension of the wheels 410, 420, while rotating at a speed of between about 600 and about 1,600 RPM.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

El diseno del robot 101 puede hacerse mas compacto omitiendo una rueda orientable u otra estructura de soporte. Debido a la anchura del rodillo de cepillo delantero 510, as^ como de los cepillos laterales 550, 560 dispuestos en caras laterales opuestas del robot 101, el robot 101 puede omitir una tercera rueda orientable o rueda libre, aparte de las ruedas motrices 410, 420 sin afectar de manera significativa al equilibrio o a la estabilidad del robot 101. Alternativamente, el robot 101 puede incluir ademas cojinetes de soporte 490, como se muestra en las figuras 18, 20 y 22 a 25, dispuestos proximos a las esquinas opuestas extremas de la parte delantera 210 del chasis 200. Los cojinetes de soporte 490 pueden incluir un unico elemento ngido de un material suave y / o autolubricante, tal como politetrafluoroetileno o un polfmero de polioximetileno; o, los cojinetes de soporte 490 pueden incluir un cojinete de rodillos o cualquier otro mecanismo adecuado para evitar que el robot 101 se incline o pierda el equilibrio proporcionando al mismo tiempo poca resistencia a la friccion a medida que el robot 101 cruza el suelo.The design of the robot 101 can be made more compact by omitting an adjustable wheel or other support structure. Due to the width of the front brush roller 510, as well as the side brushes 550, 560 arranged on opposite side faces of the robot 101, the robot 101 can omit a third steerable wheel or freewheel, apart from the drive wheels 410, 420 without significantly affecting the balance or stability of the robot 101. Alternatively, the robot 101 may also include support bearings 490, as shown in Figures 18, 20 and 22 to 25, arranged close to the opposite opposite corners of the front part 210 of the chassis 200. The support bearings 490 may include a single nidged element of a soft and / or self-lubricating material, such as polytetrafluoroethylene or a polyoxymethylene polymer; or, the support bearings 490 may include a roller bearing or any other suitable mechanism to prevent the robot 101 from tilting or losing balance while providing little friction resistance as the robot 101 crosses the ground.

Refiriendonos a la figura 21, el robot 101 incluye un sistema de sensor de navegacion 700 en comunicacion con el controlador 450 que permite que el robot 101 sea consciente de su entorno / medioambiente y reaccione de maneras previstas o se comporte de acuerdo con la percepcion detectada de su entorno / medioambiente. En el ejemplo mostrado, el sistema de sensor de navegacion 700 incluye uno o mas sensores antichoque 800 y / o un detector de estasis 720. Con el uso de entradas procedentes del sistema de sensor de navegacion 700, el controlador 450 genera ordenes a realizar por el robot 101. Como resultado de ello, el robot 101 es capaz de limpiar superficies de manera autonoma.Referring to Figure 21, the robot 101 includes a navigation sensor system 700 in communication with the controller 450 that allows the robot 101 to be aware of its environment / environment and react in intended ways or behave according to the perceptions detected. of its environment / environment. In the example shown, the navigation sensor system 700 includes one or more anti-shock sensors 800 and / or a stasis detector 720. With the use of inputs from the navigation sensor system 700, the controller 450 generates orders to be performed by the robot 101. As a result, the robot 101 is capable of cleaning surfaces autonomously.

El sensor antichoque 800 se utiliza para determinar el momento en el que el robot 100 encuentra ffsicamente un objeto. Tales sensores pueden utilizar una propiedad ffsica tal como una capacitancia o un desplazamiento ffsico dentro del robot 100 para determinar el momento en el que se encuentra un obstaculo. En el ejemplo mostrado en la figura 21, el sensor antichoque 800 es un interruptor de contacto dispuesto alrededor de la periferia de la parte delantera 210 del chasis 200, entre el chasis 200 y la parte delantera 301 del cuerpo 300. La parte delantera 301 del cuerpo 300 esta fijada de manera flexible o deslizable al chasis 200 en un modo que permite que el contacto con un obstaculo sea trasladado al sensor o sensores antichoque 800. En aplicaciones preferidas, el robot incluye sensores antichoque 800 dispuestos en las esquinas delanteras del chasis 200, con al menos un sensor antichoque 800 dispuesto a cada lado de cada esquina, permitiendo asf que el robot 100 determine una direccion y / o una ubicacion de una colision. La parte delantera 301 del cuerpo 300 actua como un solo parachoques mecanico con sensores 800 sustancialmente en los dos extremos del parachoques para detectar el movimiento del parachoques. Cuando la parte delantera 301 del cuerpo 300 se comprime, la temporizacion entre eventos de sensor se utiliza para calcular el angulo aproximado en el que el robot 101 se pone en contacto con el obstaculo. Cuando la parte delantera 301 del cuerpo 300 se comprime desde el lado derecho, el sensor antichoque derecho detecta el primer choque, seguido por el sensor antichoque izquierdo, debido a la compatibilidad del parachoques y a la geometna del detector antichoque. De esta manera, el angulo de choque se puede aproximar con solo dos sensores antichoque.The anti-shock sensor 800 is used to determine the moment at which the robot 100 physically finds an object. Such sensors may use a physical property such as a capacitance or a physical displacement within the robot 100 to determine the moment at which an obstacle is encountered. In the example shown in Figure 21, the anti-shock sensor 800 is a contact switch disposed around the periphery of the front part 210 of the chassis 200, between the chassis 200 and the front part 301 of the body 300. The front part 301 of the body 300 is flexibly or slidably fixed to the chassis 200 in a way that allows contact with an obstacle to be transferred to the shock sensor or sensors 800. In preferred applications, the robot includes 800 shock sensors arranged in the front corners of the chassis 200 , with at least one anti-shock sensor 800 arranged on each side of each corner, thus allowing the robot 100 to determine a direction and / or a location of a collision. The front part 301 of the body 300 acts as a single mechanical bumper with sensors 800 substantially at the two ends of the bumper to detect the movement of the bumper. When the front part 301 of the body 300 is compressed, the timing between sensor events is used to calculate the approximate angle at which the robot 101 contacts the obstacle. When the front part 301 of the body 300 is compressed from the right side, the right anti-shock sensor detects the first shock, followed by the left anti-shock sensor, due to the compatibility of the bumper and the geometry of the anti-shock detector. In this way, the angle of shock can be approximated with only two shock sensors.

Ya que el robot 101 preferiblemente tiene una forma compacta y ligera, el impulso realizado por el robot 101 puede ser mas ligero que el de un robot de tamano estandar. En consecuencia, el robot 101 incluye preferiblemente "toque suave" o sensores antichoque sin contacto. Por ejemplo, el robot 101 puede incluir uno o mas acelerometros 458 en comunicacion con el controlador 450 (vease la figura 21) para supervisar la aceleracion del robot a lo largo de al menos un eje horizontal. Cuando se detecta que la aceleracion supera un umbral preestablecido, el robot 101 puede responder como si hubiera sido activado un interruptor de parachoques. Como resultado de ello, el robot 101 puede omitir un sensor antichoque de tipo interruptor de contacto tradicional.Since the robot 101 preferably has a compact and lightweight shape, the impulse made by the robot 101 may be lighter than that of a standard size robot. Accordingly, the robot 101 preferably includes "soft touch" or contactless shock sensors. For example, the robot 101 may include one or more accelerometers 458 in communication with the controller 450 (see Figure 21) to monitor the acceleration of the robot along at least one horizontal axis. When it is detected that the acceleration exceeds a preset threshold, the robot 101 can respond as if a bumper switch had been activated. As a result, the robot 101 may omit a traditional contact switch type anti-shock sensor.

En algunos ejemplos, el robot 101 puede utilizar el acelerometro 458 como un detector de estasis 720. Como beneficio, el procesamiento de datos de acelerometro para la deteccion de estasis puede requerir solo una tasa de procesamiento de aproximadamente 30 hercios. Por ejemplo, a medida que el robot 101 se mueve sobre un suelo, las vibraciones hacen que el acelerometro 458 detecte la aceleracion de un perfil de amplitud determinado. Sin embargo, cuando el robot 101 deja de moverse, ya sea debido a un estado normal o a que ha sido bloqueado por un obstaculo, la amplitud de las vibraciones detectadas por el acelerometro 458 disminuye en consecuencia. Por lo tanto, el robot 101 puede responder a tal disminucion de aceleracion de acuerdo, por ejemplo, con un comportamiento de estasis-escape. Al supervisar un unico acelerometro 458 con fines de deteccion de choques y / o de deteccion de estasis, el robot 101 puede omitir interruptores de choque y / u otro hardware de deteccion de estasis, requiriendo asf posiblemente menos espacio a bordo del robot 101.In some examples, the robot 101 may use the accelerometer 458 as a stasis detector 720. As a benefit, the processing of accelerometer data for stasis detection may require only a processing rate of approximately 30 hertz. For example, as the robot 101 moves on a floor, the vibrations cause the accelerometer 458 to detect the acceleration of a given amplitude profile. However, when the robot 101 stops moving, either due to a normal state or to which it has been blocked by an obstacle, the amplitude of the vibrations detected by the accelerometer 458 decreases accordingly. Therefore, the robot 101 can respond to such a decrease in acceleration according, for example, with a stasis-escape behavior. By monitoring a single accelerometer 458 for purposes of shock detection and / or stasis detection, the robot 101 may omit shock switches and / or other stasis detection hardware, thus possibly requiring less space on board the robot 101.

Refiriendonos a las figuras 26 a 28, el robot 100, 101 puede navegar sobre superficies de suelo, tales como baldosas, suelos de madera o enmoquetados, mientras recoge residuos del suelo y los introduce en la camara de residuos / compartimento de basura 610. Cuando el robot 100, 101 navega hacia una esquina, el cepillo de rodillo delantero 510 y los cepillos extremos 540 o los cepillos de rodillo laterales 550, 560, respectivamente, pueden limpiar con eficacia un area que este al mismo nivel que los lados de la esquina. En cambio, un robot con un contorno redondeado 10, tal como se ilustra en la figura 28, puede acercarse a una esquina 9220 aunque no se puede mover al mismo nivel que las paredes 9241, 9242 que intersectan en la esquina 9220. Como resultado de ello, el robot con un contorno redondeado 10 no puede limpiar eficazmente el area en forma de cuna 9290 que colinda con la esquina 9290. Como se ilustra en la figura 26, el robot 100, 101 puede navegar a lo largo de una trayectoria recta permaneciendo al mismo tiempo sustancialmente al mismo nivel que un borde de pared 9210, en el que una pared 9421 intersecta el suelo 9250. El robot 100, 101 incluye preferiblemente uno o mas sensoresReferring to figures 26 to 28, the robot 100, 101 can navigate on floor surfaces, such as tiles, wood or carpeted floors, while collecting waste from the floor and introducing them into the waste chamber / garbage compartment 610. When the robot 100, 101 navigates to a corner, the front roller brush 510 and the end brushes 540 or the side roller brushes 550, 560, respectively, can effectively clean an area that is at the same level as the sides of the corner . Instead, a robot with a rounded contour 10, as illustrated in Figure 28, can approach a corner 9220 although it cannot be moved to the same level as the walls 9241, 9242 that intersect at corner 9220. As a result of the robot with a rounded contour 10 cannot effectively clean the cradle-shaped area 9290 that borders corner 9290. As illustrated in Figure 26, the robot 100, 101 can navigate along a straight path while remaining at the same time substantially at the same level as a wall edge 9210, in which a wall 9421 intersects the floor 9250. The robot 100, 101 preferably includes one or more sensors

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

antichoque 800, 1800 dispuestos o activos dentro de la parte delantera 210 del chasis 200; y a medida que el robot 100, 101 toca la pared 9241, el robot 100, 101 puede ajustar su rumbo a fin de desplazarse, por ejemplo, sustancialmente paralelo a la pared 9241.shock absorber 800, 1800 arranged or active within the front part 210 of the chassis 200; and as the robot 100, 101 touches the wall 9241, the robot 100, 101 can adjust its course in order to move, for example, substantially parallel to the wall 9241.

El funcionamiento del robot 101 es controlado de preferencia por un microcontrolador 450, tal como un FREESCALE® QG8 u otro microcontrolador adecuado para recibir una entrada de los sensores del robot y accionar los motores u otros dispositivos de salida del robot 101. Como se ilustra en las figuras 29 a 32, por ejemplo, el microcontrolador 450 recibe la entrada desde el sensor antichoque 800 y envfa senales de control a los motores de accionamiento 412, 422 acoplados a las ruedas motrices derecha e izquierda 410, 420. Alternativamente, puede utilizarse un microprocesador u otro sistema de circuitos de control. El robot 101 puede ejecutar software de control basado en el comportamiento; o puede funcionar, entre otras cosas, de acuerdo con bucles de control simples de un unico subproceso.The operation of the robot 101 is preferably controlled by a microcontroller 450, such as a FREESCALE® QG8 or other microcontroller suitable for receiving an input from the sensors of the robot and driving the motors or other output devices of the robot 101. As illustrated in Figures 29 to 32, for example, the microcontroller 450 receives the input from the anti-shock sensor 800 and sends control signals to the drive motors 412, 422 coupled to the right and left drive wheels 410, 420. Alternatively, a microprocessor or other control circuit system. Robot 101 can execute behavior-based control software; or it can work, among other things, according to simple control loops of a single thread.

El contorno rectangular de la parte delantera 210 del chasis 200 puede hacer que las esquinas del mismo choquen con obstaculos que podnan no ser detectados por los sensores antichoque o los sensores de desnivel, a diferencia de los robots de contorno redondeado que pueden girar libremente sin ese riesgo, el robot 101 responde preferentemente a choques detectados mientras gira sobre sf mismo deteniendo la rotacion y volviendo directamente marcha atras. Como resultado de esto, puede ser menos probable que el robot 101 se quede totalmente encajado o atascado, a pesar de las esquinas cuadradas de la parte delantera 210 del chasis 200. Alternativamente, el robot 101 puede comportarse de acuerdo con el software de control que en general es similar al de los robots ROOMBA® o SCOOBA®, como ejemplos.The rectangular contour of the front part 210 of the chassis 200 can cause the corners thereof to collide with obstacles that may not be detected by the anti-shock sensors or the uneven sensors, unlike rounded contour robots that can rotate freely without that At risk, the robot 101 responds preferentially to shocks detected while turning on itself, stopping the rotation and going backwards directly. As a result, it may be less likely that the robot 101 will remain fully engaged or stuck, despite the square corners of the front part 210 of the chassis 200. Alternatively, the robot 101 may behave according to the control software that in general it is similar to the ROOMBA® or SCOOBA® robots, as examples.

De acuerdo con otro ejemplo, el robot 100, 101 puede volver automaticamente a un soporte o estacion base para su almacenamiento despues de completar un ciclo de limpieza. El robot 100, 101 tambien puede incluir una interfaz electrica para recargar las batenas de a bordo. Ademas, el soporte o estacion base puede incluir un receptaculo colocado por debajo de una posicion "inicial" del robot 100, 101. Cuando el robot 100, 101 se interconecta al soporte y se detiene en la posicion inicial, el robot 100, 101 puede accionar automaticamente la liberacion de cubierta de compartimento de basura 630 y evacuar los residuos de la camara de residuos 610 en el receptaculo del soporte situado debajo del robot 100, 101.According to another example, the robot 100, 101 can automatically return to a stand or base station for storage after completing a cleaning cycle. The robot 100, 101 may also include an electrical interface to recharge the on-board bats. In addition, the support or base station may include a receptacle placed below an "initial" position of the robot 100, 101. When the robot 100, 101 is interconnected to the support and stops at the initial position, the robot 100, 101 may Automatically activate the release of the garbage compartment cover 630 and evacuate the waste from the waste chamber 610 in the support receptacle located below the robot 100, 101.

En aplicaciones de robot que utilizan el receptor omnidireccional 900, la estacion base puede incluir un emisor de haz omnidireccional y dos emisores de campo de navegacion. El robot 100 puede maniobrar hacia la estacion base detectando y avanzando a lo largo de uno de los bordes laterales de campo de los campos superpuestos alineados con una direccion de acoplamiento hasta que se acople en la estacion base. El robot 100 puede detectar las emisiones de la estacion base con el receptor omnidireccional 900 y maniobrar para detectar un borde de campo lateral exterior de al menos una emision de campo. El robot 100 puede entonces avanzar a lo largo del borde de campo lateral exterior hasta el borde de campo lateral alineado de los campos superpuestos. Al detectar el borde de campo lateral alineado, el robot 100 avanza a lo largo del borde de campo lateral alineado hasta que se acopla en la estacion base.In robot applications using the omnidirectional receiver 900, the base station may include an omnidirectional beam emitter and two navigation field emitters. The robot 100 can maneuver towards the base station by detecting and advancing along one of the lateral field edges of the overlapping fields aligned with a coupling direction until it engages in the base station. The robot 100 can detect the emissions from the base station with the omnidirectional receiver 900 and maneuver to detect an outer lateral field edge of at least one field emission. The robot 100 can then advance along the outer side field edge to the aligned side field edge of the overlapping fields. Upon detecting the aligned side field edge, the robot 100 advances along the aligned side field edge until it engages in the base station.

La figura 33 es un diagrama de bloques que muestra una arquitectura de software de comportamiento dentro del controlador 450. La arquitectura de software de comportamiento incluye comportamientos orientados a objetivos. El robot 100, 101 emplea una arquitectura de software y control que tiene una serie de comportamientos que son ejecutados por un mediador 1005 en el controlador 450. El mediador 1005 ejecuta ordenes en accionadores de motor 1010 en comunicacion con cada motor de accionamiento 412, 422. Un comportamiento se introduce en el mediador 1005 en respuesta a un evento de sensor. En una aplicacion, todos los comportamientos tienen una prioridad relativa fija con respecto a otro. El mediador 1005 (en este caso) reconoce condiciones de habilitacion, teniendo tales comportamientos un conjunto completo de condiciones de habilitacion, y selecciona el comportamiento que tiene la mayor prioridad entre aquellos que han cumplido las condiciones de habilitacion. El diagrama mostrado en la figura 33 no refleja necesariamente la jerarqrna de prioridad (fija) del robot 100, 101. En orden decreciente de prioridad, los comportamientos son generalmente clasificados como comportamientos de escape y / o evasion (tales como evitar un desnivel o escapar de una esquina) y comportamientos de trabajo (por ejemplo, seguir la pared, rebotar o conducirse en lmea recta). El movimiento del robot 100, 101, si es que hay, se produce mientras se modera un comportamiento. Si hay mas de un comportamiento en el mediador 1005, se ejecuta el comportamiento con una mayor prioridad, siempre y cuando se cumplan las correspondientes condiciones requeridas. Por ejemplo, un comportamiento de evasion de desnivel 1400 no sera ejecutado a menos que un sensor de deteccion de desnivel haya detectado un desnivel, aunque la ejecucion del comportamiento de evasion de desnivel 1400 siempre tiene prioridad sobre la ejecucion de otros comportamientos que tambien han cumplido condiciones de habilitacion.Figure 33 is a block diagram showing a behavior software architecture within controller 450. The behavior software architecture includes goal-oriented behaviors. Robot 100, 101 employs a software and control architecture that has a series of behaviors that are executed by a mediator 1005 on controller 450. Mediator 1005 executes orders on motor actuators 1010 in communication with each drive motor 412, 422 A behavior is introduced in the mediator 1005 in response to a sensor event. In one application, all behaviors have a fixed relative priority over another. Mediator 1005 (in this case) recognizes enabling conditions, such behaviors having a complete set of enabling conditions, and selects the behavior that has the highest priority among those who have fulfilled the enabling conditions. The diagram shown in Figure 33 does not necessarily reflect the hierarchy of priority (fixed) of the robot 100, 101. In decreasing order of priority, the behaviors are generally classified as escape and / or evasion behaviors (such as avoiding unevenness or escape of a corner) and work behaviors (for example, following the wall, bouncing or driving in a straight line). The movement of the robot 100, 101, if there is one, occurs while a behavior is moderated. If there is more than one behavior in the mediator 1005, the behavior is executed with a higher priority, as long as the corresponding required conditions are met. For example, a 1400 drop evasion behavior will not be executed unless a drop detection sensor has detected a drop, although the execution of the 1400 drop evasion behavior always has priority over the execution of other behaviors that have also met enabling conditions.

Los comportamientos reactivos tienen, como condiciones de habilitacion o activadores de los mismos, varios sensores y detecciones de fenomenos, aunque, en general, no estados (arbitrarios) de una secuencia. Como se muestra en la figura 33, estos incluyen sensores para la evasion y deteccion de obstaculos, tales como sensores de desnivel 710, un detector de estasis 720, un sensor de proximidad lateral 730, un sensor antichoque 800, y / o un receptor omnidireccional 900 (por ejemplo, para la deteccion de una senal de pared virtual (que en su lugar puede ser considerado como un activador de cubrimiento)). Los sensores de este tipo son supervisados y acondicionadosThe reactive behaviors have, as enabling conditions or activators thereof, several sensors and detections of phenomena, although, in general, no (arbitrary) states of a sequence. As shown in Figure 33, these include sensors for evasion and obstacle detection, such as uneven sensors 710, a stasis sensor 720, a lateral proximity sensor 730, an anti-shock sensor 800, and / or an omnidirectional receiver 900 (for example, for the detection of a virtual wall signal (which can instead be considered as a covering activator)). Sensors of this type are monitored and conditioned.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

por filtros, acondicionamiento, y sus accionadores, que pueden generar las condiciones de habilitacion, asf como datos de registro que ayudan al comportamiento a actuar de manera predecible y en toda la informacion disponible (por ejemplo, conversion a senales “verdaderas/falsas” de un bit que registran el angulo de probabilidad de impacto o incidencia en base a las diferencias de tiempo o a la fuerza de un grupo de sensores, o informacion historica, promedio, frecuencia, o informacion de varianza).by filters, conditioning, and their actuators, which can generate the enabling conditions, as well as registration data that help the behavior to act in a predictable manner and in all the available information (for example, conversion to “true / false” signals of a bit that records the angle of probability of impact or incidence based on time differences or the strength of a group of sensors, or historical information, average, frequency, or variance information).

Se pueden representar sensores ffsicos reales en la arquitectura mediante sensores “virtuales” sintetizados desde el acondicionamiento y los accionadores. Otros sensores “virtuales” se sintetizan a partir de propiedades ffsicas detectables o interpretadas, proprioceptivas o interpretadas sobre el robot 100, 101 tales como sobrecorriente de una condicion de motor, estasis o atasco del robot 100, 101, estado de carga de batena a traves de coulometna, y otros sensores virtuales “virtual N”.Actual physical sensors can be represented in the architecture using “virtual” sensors synthesized from the conditioning and actuators. Other "virtual" sensors are synthesized from physical properties detectable or interpreted, proprioceptive or interpreted on the robot 100, 101 such as overcurrent of an engine condition, stasis or jamming of the robot 100, 101, state of battery charge through of coulometna, and other virtual sensors "virtual N".

En algunas aplicaciones, el robot 100 incluye los siguientes comportamientos enumerados en orden de prioridad de mayor a menor: 1) Grupo de Interfaz de Usuario 1100, 2) Grupo de Pruebas de Fabrica 1200, 3) Grupo de Seguimiento de Choque Marcha atras 1300, 4) Grupo de Evasion de Desnivel 1400, 5) Rebote Posterior 1500, 6) Grupo de Seguimiento de Choque 1600, 7) Rebote 1700, y 8) Desplazamiento 1800. Un grupo de comportamiento se refiere a un conjunto de comportamientos que trabajan juntos para aplicar un comportamiento global. Por ejemplo, el comportamiento de "Grupo de Interfaz de Usuario" es un conjunto de tres comportamientos que manipulan la interfaz de usuario mientras el robot esta en reposo.In some applications, the robot 100 includes the following behaviors listed in order of priority from highest to lowest: 1) User Interface Group 1100, 2) Factory Test Group 1200, 3) Shock Tracking Group March 1300, 4) 1400 Elevation Evasion Group, 5) 1500 Rear Bounce, 6) 1600 Shock Tracking Group, 7) 1700 Bounce, and 8) 1800 Displacement. A behavior group refers to a set of behaviors that work together to Apply a global behavior. For example, the "User Interface Group" behavior is a set of three behaviors that manipulate the user interface while the robot is at rest.

El robot puede incluir una interfaz de usuario 370, que es un solo boton de limpieza / encendido en los ejemplos mostrados en las figuras 1 y 17, para permitir a un usuario interactuar con el robot 100. Los siguientes subcomportamientos del comportamiento de grupo de interfaz de usuario 1100, con prioridad de mayor a menor, ejecutan la interfaz de usuario 370 aplicada como un solo boton de limpieza / encendido: 1) Usuario Inactivo 1110, 2) Usuario Inicia 1120, y 3) Usuario no hace nada 1130. Los siguientes subcomportamientos del comportamiento de Grupo de Pruebas de Fabrica 1200, con prioridad de mayor a menor, aplican un modo de pruebas de fabrica para fines de control de calidad: 1) Pruebas de fabrica Completas 1210, 2) Pruebas de Fabrica Avanzan 1220, y 3) Prueba de Fabrica 1230.The robot may include a user interface 370, which is a single cleaning / power button in the examples shown in Figures 1 and 17, to allow a user to interact with the robot 100. The following sub-behaviors of the interface group behavior of user 1100, with priority from highest to lowest, execute the user interface 370 applied as a single cleaning / power button: 1) Inactive User 1110, 2) User Starts 1120, and 3) User does nothing 1130. The following Behavioral subgroups of Factory Test Group 1200, with priority from highest to lowest, apply a factory test mode for quality control purposes: 1) Complete factory tests 1210, 2) Factory tests Advance 1220, and 3 ) Factory Test 1230.

Los siguientes subcomportamientos, a los que se les da prioridad de mayor a menor, aplican el comportamiento de escape de Seguimiento de Choque Marcha Atras 1300: 1) Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310, 2) Giro de Seguimiento de Choque Marcha Atras 1320, y 3) Arco de Seguimiento de Choque Marcha Atras 1330. Debido a la forma rectangular de la parte delantera 210 del chasis 200, es posible que el robot 100 se desplace a un espacio demasiado estrecho para girar en el mismo (por ejemplo, un espacio de aparcamiento). Estas areas de confinamiento se conocen como canones. El termino "canon" se refiere genericamente a cualquier fuente de confinamiento estrecha. Si un desnivel restringe de manera similar el robot 100 a un espacio estrecho, esto se conoce como plancha. Ya que la estrategia para escapar de estos obstaculos de confinamiento es la misma, los datos del sensor de desnivel direccional y del sensor antichoque se anaden a un conjunto de cuatro sensores de "confinamiento direccional", que son la base para la descripcion que viene a continuacion. Los cuatro sensores son delantero-izquierdo, delantero-derecho, posterior-izquierdo y posterior-derecho. La direccion de un seguimiento de choque marcha atras es en sentido horario si el comportamiento del Arco de Seguimiento de Choque Marcha atras 1330 acciona el robot 100 hacia atras mientras gira en sentido horario. La direccion de un seguimiento de choque marcha atras es en sentido antihorario si el comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330 acciona el robot 100 hacia atras mientras gira en sentido antihorario.The following subbehaviors, which are given priority from highest to lowest, apply the behavior of Shock Tracking Escape March 1300: 1) Swing of Shock Tracking Escape March 1310, 2) Run Shock Tracking Turn Back 1320, and 3) Crash Tracking Arch Reverse 1330. Due to the rectangular shape of the front part 210 of the chassis 200, it is possible that the robot 100 moves to a space too narrow to rotate in it (for example , a parking space). These areas of confinement are known as canons. The term "canon" refers generically to any source of narrow confinement. If a slope similarly restricts the robot 100 to a narrow space, this is known as an iron. Since the strategy to escape these obstacles of confinement is the same, the data of the directional slope sensor and the anti-shock sensor are added to a set of four "directional confinement" sensors, which are the basis for the description that comes to continuation. The four sensors are front-left, front-right, rear-left and rear-right. The direction of a rearward crash tracking is clockwise if the behavior of the Shock Tracking Arc Reversing 1330 drives the robot 100 backwards while turning clockwise. The direction of a backward shock tracking is counterclockwise if the behavior of the Shock Tracking Arc Reverse 1330 drives the robot 100 backwards while turning counterclockwise.

El comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310 hace que el robot 100 gire sobre sf mismo con suficiente avance angular para deducir la presencia de un canon. La condicion de activacion para el comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310 se evalua al final del comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320. Despues de que se arma el comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310, este se ejecuta una vez y luego se desactiva hasta que se arma nuevamente mediante el comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320. Al comienzo del comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310, se establece un angulo de escape en un numero aleatorio de entre 120 y 160 grados. El robot 100 a continuacion gira sobre sf mismo en la direccion opuesta a la direccion de seguimiento de choque hacia atras hasta que obtenga el angulo de escape. Si no aparece ninguna fuente de confinamiento direccional posterior mientras gira sobre sf mismo, el robot 100 se mueve hacia adelante para evitarlas. Si se encuentra una fuente de confinamiento direccional delantera, se suspende el giro sobre sf mismo. Despues de completar el giro sobre sf mismo, el exito del escape se determina en el siguiente orden. En primer lugar, el giro sobre sf mismo fue suspendido debido a la deteccion de una fuente de confinamiento delantera, el avance angular del giro sobre sf mismo se compara con un angulo de escape mmimo que se calcula mediante la generacion de un numero aleatorio de entre 80 y 120 grados. Si el avance angular no sobrepasa esta cantidad, realiza una maniobra similar para el comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320. Esto se hace para devolver al robot 100 de nuevo a una orientacion conducente a continuar el seguimiento de choque marcha atras. En segundo lugar, si el giro sobre sf mismo fue suspendido debido a la deteccion de una fuente de confinamiento delantera, y el avance angular sobrepasaba el angulo mmimo de escape calculado por encima, aunque inferior al angulo de escape calculado al principio delThe Crash Tracking Exhaust Oscillation behavior Back 1310 causes the robot 100 to rotate on itself with sufficient angular advance to deduce the presence of a canon. The activation condition for the Shock Tracking Exhaust Swing Behavior Behind 1310 is evaluated at the end of the Shock Tracking Spin Behavior Behind 1320. After the Shock Tracking Escape Swing behavior is armed. Back 1310, this is executed once and then deactivated until it is armed again by the behavior of Crash Tracking Turn Back 1320. At the beginning of the Crash Tracking Escape Swing behavior Back 1310, an angle is established escape at a random number between 120 and 160 degrees. The robot 100 then rotates on itself in the direction opposite to the direction of the crash tracking backwards until it obtains the escape angle. If no subsequent directional confinement source appears while turning on itself, the robot 100 moves forward to avoid them. If a source of front directional confinement is found, the rotation on itself is suspended. After completing the turn on itself, the success of the escape is determined in the following order. First, the turn on itself was suspended due to the detection of a source of front confinement, the angular advance of the turn on itself is compared with a minimum escape angle that is calculated by generating a random number between 80 and 120 degrees. If the angular advance does not exceed this amount, perform a similar maneuver for the Reverse Shock Tracking Turn behavior 1320. This is done to return the robot 100 back to an orientation conducive to continuing the rearward shock tracking. Secondly, if the turn on itself was suspended due to the detection of a source of front confinement, and the angular advance exceeded the minimum exhaust angle calculated above, although less than the escape angle calculated at the beginning of the

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

comportamiento, se hace lo siguiente. La activacion de seguimiento de choque marcha atras se cancela, y se activa un seguimiento de choque hacia adelante si la fuente de confinamiento que detuvo el giro era un choque. Esto mejora las posibilidades de que el robot 100 encuentre su camino de salida de un sitio estrecho sin detectar un nuevo canon y reactivando el seguimiento de choque marcha atras. En tercer lugar, si el giro sobre sf mismo se completa debido a que ha logrado el angulo de escape calculado en el inicio del comportamiento, se cancela la activacion de seguimiento de choque marcha atras.behavior, the following is done. The reverse tracking shock activation is canceled, and forward shock tracking is activated if the source of confinement that stopped the turn was a crash. This improves the chances that the robot 100 will find its way out of a narrow site without detecting a new canon and reactivating the backward crash tracking. Thirdly, if the turn on itself is completed because it has achieved the calculated escape angle at the beginning of the behavior, the backward shock tracking activation is canceled.

El comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320 trata de orientar el robot 100 con respecto a un obstaculo de manera que pueda avanzar hacia adelante mientras forma de nuevo un arco hacia el obstaculo. Simplemente girando sobre sf mismo, como hana un robot circular, no es suficiente para el robot 100 ya que la parte delantera rectangular 210 del chasis 200, en algun momento, chocana con el obstaculo y evitana que el robot 100 siguiera girando sobre sf mismo. Para evitar este problema, el robot 100, en su lugar sigue un arco estrecho para mantener un espacio desde el obstaculo. El comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320 que comienza despues del retorno a lo largo de un arco que se realiza en el comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330, termina como resultado de la activacion del parachoques posterior. La primera tarea del comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320 es liberar el parachoques 300 del golpe posterior. Esto se realiza accionando del robot 100 hacia adelante hasta que el parachoques 300 se libere. Mientras se hace esto, se manipulan fuentes de confinamiento delanteras de la siguiente manera. Una fuente de confinamiento delantera izquierda hace que el robot 100 gire en sentido horario. Una fuente de confinamiento delantera derecha hace que el robot 100 gire en sentido antihorario. Despues de que se libera el parachoques 300, el robot 100 calcula un radio de arco aleatorio restringido y el avance angular que debe seguir en la direccion hacia adelante con el fin de reorientar el robot 100 para la proxima repeticion del comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330. El robot 100 se desplaza a lo largo de este arco hasta que logra el avance angular calculado. Mientras se hace esto, el robot 100 responde al sensor de confinamiento delantero 710, 730, 800 (por ejemplo, sensor de desnivel 710, sensor de proximidad 730 y / o sensor antichoque 800) en el lado opuesto del robot 100 con respecto al obstaculo que esta siguiendo. Cuando se detecta esto, el robot 100 gira sobre sf mismo en la misma direccion de rotacion que el arco que esta siguiendo. El comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320 termina cuando logra el avance angular calculado o se activa el sensor de confinamiento delantero 710, 730, 800 en el mismo lado del robot 100 que el obstaculo que esta siguiendo. Al final del comportamiento, se utiliza un generador de numero aleatorio para decidir si se activa, o no, un comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310. Como mmimo, la probabilidad de activar el comportamiento de Oscilacion de Escape de Seguimiento de Choque Marcha Atras 1310 sera de aproximadamente 20%. Si el avance angular del comportamiento de Giro de Seguimiento de Choque Marcha Atras 1320 fuera de entre aproximadamente 2 y aproximadamente 5 grados, la probabilidad aumentana a aproximadamente 50%. Si el avance angular es inferior a 2 grados, la probabilidad es de aproximadamente 100%.The Crash Tracking Turn behavior Behind 1320 attempts to orient the robot 100 with respect to an obstacle so that it can move forward while reshaping an arc towards the obstacle. Simply turning on itself, as a circular robot does, is not enough for the robot 100 since the rectangular front part 210 of the chassis 200, at some point, collides with the obstacle and prevents the robot 100 from continuing to turn on itself. To avoid this problem, the robot 100, instead follows a narrow arc to maintain a space from the obstacle. The Behavior of the Crash Tracking Turn March 1320 that begins after the return along an arc that is performed in the behavior of the Shock Tracking Arc March 1330, ends as a result of the activation of the rear bumper. The first task of the Behavior of Crash Tracking Turn Back 1320 is to release the bumper 300 from the rear hit. This is done by driving the robot 100 forward until the bumper 300 is released. While this is being done, front confinement sources are manipulated as follows. A left front confinement source causes the robot 100 to rotate clockwise. A source of right front confinement causes the robot 100 to rotate counterclockwise. After the bumper 300 is released, the robot 100 calculates a restricted random arc radius and the angular advance that must be followed in the forward direction in order to reorient the robot 100 for the next repetition of the Tracking Arc behavior of Shock March 1330. Robot 100 travels along this arc until it achieves the calculated angular advance. While this is being done, the robot 100 responds to the front confinement sensor 710, 730, 800 (for example, slope sensor 710, proximity sensor 730 and / or shock sensor 800) on the opposite side of the robot 100 with respect to the obstacle What is he following? When this is detected, the robot 100 rotates on itself in the same direction of rotation as the arc it is following. The Behavior of the Crash Tracking Turn Back 1320 ends when the calculated angular advance is achieved or the front confinement sensor 710, 730, 800 is activated on the same side of the robot 100 as the obstacle it is following. At the end of the behavior, a random number generator is used to decide whether or not to activate a Crash Tracking Escape Oscillation behavior Back 1310. As a minimum, the probability of activating the Tracking Escape Oscillation behavior of Shock March 1310 will be approximately 20%. If the angular advance of the 1320 Crash Track Tracking Turn behavior is between approximately 2 and approximately 5 degrees, the probability will increase to approximately 50%. If the angular advance is less than 2 degrees, the probability is approximately 100%.

El comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330 trata de avanzar hacia adelante mientras mantiene un obstaculo cerca de un lado del robot 100 desplazandose hacia atras en un arco que comienza poco pronunciado y se hace cada vez mas agudo a medida que transcurre el tiempo en el comportamiento. El comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330 se ejecuta cuando el robot 100 esta en el modo de seguimiento de choque marcha atras 1300 y no se ha activado ninguno de los otros comportamientos de seguimiento de choque marcha atras 1310, 1320. Mientras se desplaza por el arco, el robot 100 respondera al sensor de confinamiento delantero 710, 730, 800 (por ejemplo, sensor de desnivel 710, sensor de proximidad 730, y / o sensor antichoque 800) en el lado opuesto del robot 100 con respecto al obstaculo. Este hace esto girando sobre sf mismo en la direccion de rotacion opuesta al arco que esta siguiendo. El comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330 termina cuando se activa un sensor de confinamiento posterior 710, 800 (por ejemplo, sensor de desnivel 710 y / o sensor antichoque 800) o el arco ha hecho mas de 120 grados de avance angular.The behavior of the Shock Follow Up Arc 1330 tries to move forward while maintaining an obstacle near one side of the robot 100, moving backwards in an arc that begins with little pronouncing and becomes increasingly sharp as time goes by in behavior The Reverse Shock Tracking Arc Behavior 1330 is executed when the robot 100 is in the 1300, 1320 backward crash tracking mode and none of the other crash tracking behaviors have been activated 1310, 1320. While moving through the arc, the robot 100 will respond to the front confinement sensor 710, 730, 800 (for example, slope sensor 710, proximity sensor 730, and / or shock sensor 800) on the opposite side of the robot 100 with respect to the obstacle. He does this by turning on himself in the direction of rotation opposite the arc he is following. The behavior of the Shock Follow Up Arc 1330 ends when a rear confinement sensor 710, 800 is activated (for example, 710 slope sensor and / or 800 shock sensor) or the arc has made more than 120 degrees of angular advance .

El comportamiento de Grupo de Evasion de Desnivel 1400 es un conjunto de comportamientos de escape que incluyen los siguientes subcomportamientos, con prioridad de mayor a menor: 1) Parte Posterior de Evasion de Desnivel 1410, y 2) Evasion de Desnivel 1420. Refiriendonos a la figura 4, en las aplicaciones preferidas, el robot 100 tiene cuatro sensores de desnivel 710 colocados en los extremos delantero derecho, delantero izquierdo, posterior derecho y posterior izquierdo del robot 100. Los sensores de desnivel delantero derecho y delantero izquierdo 710A, 710b detectan el momento en el que las respectivas esquinas delanteras del robot 100 se mueven sobre un desnivel. Ya que el sistema de accionamiento 400 esta colocado por detras del conjunto de limpieza 500, que se encuentra cerca del borde delantero, el robot 100 puede retornar antes de que una cantidad apreciable del robot 100 se mueva sobre el borde de desnivel. Los sensores de desnivel posterior derecho y posterior izquierdo 710C, 710D estan colocados directamente por detras de las respectivas ruedas motrices derecha e izquierda 410, 420. Como resultado de ello, los sensores de desnivel posterior derecho y posterior izquierdo 710C, 710d detectan el momento en el que una parte posterior del robot 100 se mueve sobre un borde de desnivel antes de que las ruedas motrices 410, 420 se muevan sobre el borde de desnivel, a fin de evitar el desplazamiento marcha atras en la inclinacion de un desnivel. Si el robot 100 incluyera sensores de desnivel posteriores 710 solo a lo largo de una parte central de la parte posterior 220 del chasis 200, el robot 100 podna desplazarse marcha atras angularmente y mover una rueda motriz 410, 420 sobre un borde de desnivel antes de detectar el borde de desnivel.The behavior of the 1400 Elevation Evasion Group is a set of escape behaviors that include the following sub-behaviors, with priority from highest to lowest: 1) Rear of the 1410 Elevation Evasion, and 2) 1420 Elevation Evasion. Figure 4, in preferred applications, the robot 100 has four slope sensors 710 placed at the front right, left front, rear right and rear left ends of the robot 100. The right front and front left slope sensors 710A, 710b detect the moment in which the respective front corners of the robot 100 move on a slope. Since the drive system 400 is positioned behind the cleaning assembly 500, which is located near the leading edge, the robot 100 can return before an appreciable amount of the robot 100 moves over the uneven edge. The right rear and left rear slope sensors 710C, 710D are positioned directly behind the respective right and left drive wheels 410, 420. As a result, the right rear and left rear slope sensors 710C, 710d detect the moment at the one that a rear part of the robot 100 moves on an uneven edge before the driving wheels 410, 420 move on the uneven edge, in order to prevent the displacement from moving backwards in the inclination of an unevenness. If the robot 100 would include rear elevation sensors 710 only along a central part of the rear part 220 of the chassis 200, the robot 100 could move backwards angularly and move a driving wheel 410, 420 over an uneven edge before Detect the edge of the slope.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

6060

El comportamiento de Parte Posterior de Evasion de Desnivel 1410 se ejecuta siempre que se activan los sensores de desnivel posteriores 710C, 710D. Los sensores de desnivel delanteros 710A, 710B tambien se manipulan en este comportamiento 1410, ya que tienen mayor prioridad que la Evasion de Desnivel 1420. Al inicio del comportamiento de Parte Posterior de Evasion de Desnivel 1410, se selecciona una direccion de escape en el sentido horario o antihorario. La decision se toma en el siguiente orden. 1) Si se activa el sensor de desnivel delantero izquierdo 710B, establecer sentido horario. 2) Si se activa el sensor de desnivel delantero derecho 710A, establecer sentido antihorario. 3) Si se activa el sensor de desnivel posterior derecho 710C, establecer sentido horario. 4) Si se activa el sensor de desnivel posterior izquierdo 710D, establecer sentido antihorario. Despues de establecer la direccion, el robot 100 gira en la direccion especificada a lo largo de un arco que esta centrado en una rueda motriz 410, 420. Durante el desplazamiento, los sensores de desnivel delanteros 710 se supervisan y se utilizan para cambiar la direccion de desplazamiento de la siguiente manera. Si se activa el sensor de desnivel delantero derecho 710A, el robot 100 gira sobre sf mismo en sentido antihorario. Si se activa el sensor de desnivel delantero izquierdo 710B, el robot 100 gira sobre sf mismo en sentido horario. El robot 100 continua desplazandose como se describe anteriormente hasta que no se activan ambos sensores de desnivel posteriores 710C, 710D.The Backward Evasion behavior of Slope 1410 is executed whenever the rear slope sensors 710C, 710D are activated. The forward elevation sensors 710A, 710B are also manipulated in this behavior 1410, since they have a higher priority than the Evasion of Elevation 1420. At the beginning of the behavior of Rear Evasion of Elevation 1410, an escape direction is selected in the direction Schedule or counterclockwise. The decision is made in the following order. 1) If the left front slope sensor 710B is activated, set clockwise. 2) If the right front slope sensor 710A is activated, set counterclockwise. 3) If the right rear slope sensor 710C is activated, set clockwise. 4) If the 710D left rear slope sensor is activated, set counterclockwise. After setting the direction, the robot 100 rotates in the specified direction along an arc that is centered on a driving wheel 410, 420. During the movement, the front elevation sensors 710 are monitored and used to change the direction Scroll as follows. If the right front slope sensor 710A is activated, the robot 100 turns on itself counterclockwise. If the left front slope sensor 710B is activated, the robot 100 turns on itself clockwise. Robot 100 continues to move as described above until both rear elevation sensors 710C, 710D are not activated.

El comportamiento de Evasion de Desnivel 1420 solo manipula los sensores desnivel delanteros 710A, 710B del robot 100 y por lo general se ejecuta cuando el robot 100 se esta desplazando hacia adelante. Al inicio del comportamiento de Evasion de Desnivel 1420, se elige una direccion de escape en base a que sensores de desnivel delanteros 710A, 710B se han activado. Si solo se activa el sensor de desnivel delantero izquierdo 710B, se elige la direccion de escape en sentido horario. Si solo se activa el sensor de desnivel delantero derecho 710A, se elige la direccion de escape en sentido antihorario. Si se activan ambos sensores desnivel delanteros 710A, 710B, la direccion de escape se selecciona de manera aleatoria. Un angulo de escape se elige de manera aleatoria de entre aproximadamente 25 grados y aproximadamente 50 grados. El comportamiento de Evasion de Desnivel 1420 comienza retornando recto hasta que no se activan ambos sensores de desnivel delanteros 710A, 710B. A continuacion, el robot 100 gira sobre sf mismo hasta que logre el angulo de escape. Si alguno de los sensores de desnivel delanteros 710A, 710B se reactiva como parte del giro sobre sf mismo, todo el comportamiento de Evasion de Desnivel 1420 se reactiva y por tanto se vuelve a ejecutar.The Dropout Evasion behavior 1420 only manipulates the front elevation sensors 710A, 710B of the robot 100 and usually runs when the robot 100 is moving forward. At the beginning of the Evasion of Drop of Elevation 1420, an escape direction is chosen based on which front elevation sensors 710A, 710B have been activated. If only the left front slope sensor 710B is activated, the escape direction is chosen clockwise. If only the right front slope sensor 710A is activated, the exhaust direction is selected counterclockwise. If both front elevation sensors 710A, 710B are activated, the escape direction is selected randomly. An escape angle is chosen randomly between approximately 25 degrees and approximately 50 degrees. The Dropout Evasion behavior 1420 begins by returning straight until both front elevation sensors 710A, 710B are not activated. Next, the robot 100 turns on itself until it reaches the exhaust angle. If any of the front elevation sensors 710A, 710B is reactivated as part of the turn on itself, all the behavior of Evasion of Elevation 1420 is reactivated and therefore re-executed.

El comportamiento de rebote posterior 1500 se ejecuta cuando el parachoques 300 se activa desde la direccion posterior. Esto sucede con mas frecuencia cuando el robot 100 se desplaza marcha atras para liberar la parte delantera del parachoques 300 como parte del comportamiento de rebote 1700. El robot 100 se desplaza hacia adelante hasta que se libera el parachoques 300, y luego continua hacia adelante otros 5 mm con el fin de reducir la posibilidad de que el giro sobre sf mismo a realizar no reactive un choque posterior. Una direccion de rotacion para el giro sobre sf mismo se decide en funcion de la direccion del golpe del parachoques posterior original. Si el golpe viene del lado posterior derecho del robot 100, se elige el sentido antihorario. Si el choque viene del lado posterior izquierdo del robot 100, se elige el sentido horario. Si el choque viene de la parte central de la parte posterior, la direccion se elige de manera aleatoria. Un angulo de escape se elige de manera aleatoria de entre aproximadamente 10 grados y aproximadamente 200 grados. El robot 100 gira en la direccion elegida hasta que logre el angulo de escape.The rear bounce behavior 1500 is executed when the bumper 300 is activated from the rear direction. This happens more frequently when the robot 100 moves in reverse to release the front part of the bumper 300 as part of the rebound behavior 1700. The robot 100 moves forward until the bumper 300 is released, and then continues forward other 5 mm in order to reduce the possibility that the turn on itself will not reactivate a subsequent shock. A rotation direction for the turn on itself is decided based on the direction of the original rear bumper hit. If the blow comes from the right rear side of the robot 100, the counterclockwise direction is chosen. If the crash comes from the left rear side of the robot 100, the clockwise direction is chosen. If the shock comes from the central part of the back, the address is chosen randomly. An escape angle is chosen randomly between approximately 10 degrees and approximately 200 degrees. Robot 100 rotates in the chosen direction until it reaches the exhaust angle.

El Grupo de Seguimiento de Choque 1600 incluye los siguientes subcomportamientos con prioridad de mayor a menor: 1. Alineamiento de Pared de Seguimiento de Choque 1610, 2. Arco de Seguimiento de Choque 1620. El seguimiento de choque se utiliza para escapar de zonas sucias y limpiarlas. Tambien se utiliza para seguir una pared con el objetivo de hacer circular el robot 100 de manera uniforme a traves de su espacio de suelo.The Shock Tracking Group 1600 includes the following sub-behaviors with priority from highest to lowest: 1. Shock Tracking Wall Alignment 1610, 2. Shock Tracking Arch 1620. Shock tracking is used to escape from dirty areas and clean them It is also used to follow a wall in order to circulate the robot 100 evenly through its floor space.

El comportamiento de Alineamiento de Pared de Seguimiento de Choque 1610 esta disenado para alinear el lateral del robot 100 con un obstaculo tal como una pared. Si la direccion de seguimiento de choque es en sentido horario, el objetivo es tener el lado izquierdo del robot contra la pared. Si la direccion es en sentido antihorario, el objetivo es tener el lado derecho del robot contra la pared. Cuando se habilita el seguimiento de choque, el comportamiento de Alineamiento de Pared de Seguimiento de Choque 1610 comienza cuando se activa un choque frontal. La ubicacion del golpe de parachoques se utiliza para decidir hasta que punto el robot 100 debe girar sobre sf mismo antes de realizar otra repeticion del comportamiento de Arco de Seguimiento de Choque 1620. Si el parachoques 300 se activa en el lado del parachoques 300 que no debe estar cerca del obstaculo, el robot 100 establece un objetivo de giro sobre sf mismo de entre unos 25 grados y unos 45 grados. Este incremento mayor ahorra tiempo en el proceso de alineacion. Si el parachoques 300 se activa en el lado que debe estar cerca del obstaculo, el robot 100 gira sobre sf mismo en la direccion que hace oscilar el parachoques 300 aun mas hacia el obstaculo. El objetivo de esta maniobra es ver si el parachoques 300 tiende a permanecer acoplado o se libera. Si se libera, esto sugiere que el robot 100 aun no esta en un angulo muy poco pronunciado con respecto a la pared, y se selecciona un objetivo de giro sobre sf mismo de entre aproximadamente 5 grados y aproximadamente 25 grados. De otro modo, es probable que el robot 100 este en un angulo poco pronunciado con respecto a la pared y se seleccione un objetivo de giro sobre sf mismo de entre aproximadamente 1 grado y aproximadamente 5 grados. Si se ha seleccionado un objetivo de giro sobre sf mismo mayor de 5 grados, el robot 100 retorna hasta que se libere el parachoques 300. El robot 100 gira sobre sf mismo en la direccion que hace oscilar la parte delantera del robot 100 alejandose del obstaculo hasta que se logre el angulo fijado como objetivo. Si el parachoques 300 se reactiva durante el giro sobre sf mismo, el robot 100 retorna lo suficiente para liberarlo.The Shock Tracking Wall Alignment behavior 1610 is designed to align the side of the robot 100 with an obstacle such as a wall. If the shock tracking direction is clockwise, the objective is to have the left side of the robot against the wall. If the direction is counterclockwise, the objective is to have the right side of the robot against the wall. When shock tracking is enabled, the Shock Tracking Wall Alignment behavior 1610 begins when a frontal crash is activated. The location of the bumper strike is used to decide to what extent the robot 100 must turn on itself before performing another repetition of the Shock Track Arc 1620 behavior. If the bumper 300 is activated on the side of the bumper 300 that does not must be close to the obstacle, the robot 100 sets a turning target on itself between about 25 degrees and about 45 degrees. This larger increase saves time in the alignment process. If the bumper 300 is activated on the side that should be close to the obstacle, the robot 100 rotates on itself in the direction that the bumper 300 swings further towards the obstacle. The purpose of this maneuver is to see if the bumper 300 tends to remain engaged or is released. If released, this suggests that the robot 100 is not yet at a very low angle to the wall, and a rotation target on itself of between about 5 degrees and about 25 degrees is selected. Otherwise, it is likely that the robot 100 is at a slightly steep angle with respect to the wall and a rotation target on itself of between about 1 degree and about 5 degrees is selected. If a rotation target on itself greater than 5 degrees has been selected, the robot 100 returns until the bumper 300 is released. The robot 100 rotates on itself in the direction that the front of the robot 100 swings away from the obstacle. until the target angle is achieved. If the bumper 300 is reactivated during the rotation on itself, the robot 100 returns sufficiently to release it.

55

1010

15fifteen

20twenty

2525

3030

3535

4040

45Four. Five

50fifty

5555

El comportamiento de Arco de Seguimiento de Choque se ejecuta cuando se habilita el modo de seguimiento de choque 1600 y no esta activado el Alineamiento de Pared de Seguimiento de Choque 1610. El robot 100, al principio, se desplaza hacia adelante siguiendo un arco poco pronunciado con el fin de avanzar hacia adelante. A medida que transcurre mas tiempo, el arco se estrecha gradualmente para poner al robot 100 de nuevo en contacto con el obstaculo. Esto permite que el obstaculo sea seguido de cerca, lo que puede ayudar al robot 100 a encontrar su camino alrededor de sf mismo. Si se selecciona el modo de seguimiento de choque 1600 para maniobrar a traves de la suciedad, el robot 100 puede continuar formando un arco sin un golpe de parachoques en un maximo de alrededor de 100 grados de avance angular. En ese punto, el seguimiento de choque 1600 se considera terminado debido a que el robot se escapa. Si se selecciona el modo de seguimiento de choque 1600 para ayudar a hacer circular el robot 100 a traves de su espacio, puede continuar formando un arco sin un golpe de parachoques en un maximo de alrededor de 210 grados para permitir el giro en esquinas de pared. En ese punto, la pared se considera perdida y termina el comportamiento de seguimiento de choque 1600.The Shock Tracking Arc behavior is executed when the shock tracking mode 1600 is enabled and the Shock Tracking Wall Alignment 1610 is not activated. The robot 100, at first, moves forward following a shallow arc. in order to move forward. As more time passes, the arc gradually narrows to bring the robot 100 back into contact with the obstacle. This allows the obstacle to be followed closely, which can help the robot 100 find its way around itself. If shock tracking mode 1600 is selected to maneuver through dirt, the robot 100 can continue to form an arc without a bumper strike at a maximum of about 100 degrees of angular advance. At that point, shock tracking 1600 is considered terminated because the robot escapes. If the 1600 crash tracking mode is selected to help circulate the robot 100 through its space, it can continue to form an arc without a bumper strike at a maximum of about 210 degrees to allow rotation in wall corners . At that point, the wall is considered lost and the shock tracking behavior 1600 ends.

El comportamiento de rebote 1700 se ejecuta cuando el parachoques 300 se activa desde la direccion frontal. El robot 100 se desplaza hacia atras hasta que el parachoques 300 se libera. Luego continua hacia atras otros 30 mm con el fin de reducir la posibilidad de que el giro sobre sf mismo a realizar no reactive el parachoques 300 desde la parte delantera. Este gran espacio libre adicional se requiere debido a que la forma rectangular de la parte delantera del parachoques 300 crea la posibilidad de que la esquina del parachoques 300 oscile para ponerse en contacto con el obstaculo al girar sobre sf mismo. Una direccion de rotacion para el giro sobre sf mismo se decide en funcion de la direccion del golpe frontal original en el parachoques 300. Si el golpe viene del lado delantero derecho del robot 100, se elige el sentido antihorario. Si el choque viene del lado delantero izquierdo del robot 100, se elige el sentido horario. Si el choque es en la parte central de la parte delantera, la direccion se elige de manera aleatoria. Un angulo de escape se elige de manera aleatoria de entre aproximadamente 10 grados y aproximadamente 200 grados. El robot 100 gira en la direccion elegida hasta que logra el angulo de escape.The rebound behavior 1700 is executed when the bumper 300 is activated from the front direction. Robot 100 moves backwards until bumper 300 is released. Then continue back another 30 mm in order to reduce the possibility that the turn on itself will not reactivate the bumper 300 from the front. This large additional clearance is required because the rectangular shape of the front part of the bumper 300 creates the possibility that the corner of the bumper 300 oscillates to contact the obstacle when turning on itself. A direction of rotation for the rotation on its own is decided based on the direction of the original frontal blow on the bumper 300. If the blow comes from the right front side of the robot 100, the counterclockwise direction is chosen. If the crash comes from the left front side of the robot 100, the clockwise direction is chosen. If the crash is in the central part of the front, the address is chosen randomly. An escape angle is chosen randomly between approximately 10 degrees and approximately 200 degrees. Robot 100 rotates in the chosen direction until it achieves the escape angle.

El comportamiento de desplazamiento 1800 puede funcionar cuando ningun otro comportamiento este activo. El robot 100 se desplaza en lmea recta hasta que experimenta un evento que activa otro comportamiento.The offset behavior 1800 can function when no other behavior is active. Robot 100 moves in a straight line until it experiences an event that triggers another behavior.

El robot 100 mantiene procesos simultaneos 2000, procesos "paralelos" que no son generalmente considerados comportamientos reactivos. Como se ha senalado, filtros y acondicionamientos 2400 y accionadores 2500, pueden interpretar y enviar senales en bruto. Estos procesos no se consideran comportamientos reactivos, y ejercen un control no directo sobre los accionadores de motor u otros actuadores.Robot 100 maintains simultaneous processes 2000, "parallel" processes that are not generally considered reactive behaviors. As noted, filters and 2400 conditioners and 2500 actuators can interpret and send raw signals. These processes are not considered reactive behaviors, and exert non-direct control over motor actuators or other actuators.

Algunos procesos paralelos 2000 son importantes para facilitar la activacion y ejecucion de diversos comportamientos. Estos procesos son maquinas de estados finitos de software que se evaluan a una frecuencia de, por ejemplo, 64 Hertz. El periodo se conoce como el intervalo de procesamiento.Some parallel processes 2000 are important to facilitate the activation and execution of various behaviors. These processes are software finite state machines that are evaluated at a frequency of, for example, 64 Hertz. The period is known as the processing interval.

En algunas aplicaciones, el robot 100 incluye un proceso de Deteccion de Canon 2100, que ayuda a identificar canones. Un canon se anuncia mediante la supervision de cuatro senales. Cada una de estas senales se evalua en cada intervalo de procesamiento. Cuando la senal de entrada es verdadera, la senal de salida se convierte en verdadera. La senal de salida se convierte en falsa despues de 100 intervalos de procesamiento consecutivos de la senal de entrada siendo falsa. Las cuatro senales de entrada se evaluan de la siguiente manera: 1) El sensor de desnivel delantero izquierdo 710B esta activo y el sensor de desnivel delantero derecho 710A esta inactivo, o el sensor de desnivel posterior izquierdo 710D esta activo y el sensor de desnivel posterior derecho 710C esta inactivo. 2) El sensor de desnivel delantero derecho 710A esta activo y el sensor de desnivel delantero izquierdo 710B esta inactivo o el sensor de desnivel posterior derecho 710C esta activo y el sensor de desnivel posterior izquierdo 710D esta inactivo. 3) El parachoques 300 es comprimido por el lado delantero izquierdo del robot 100. 4) El parachoques 300 es comprimido por el lado delantero derecho del robot 100. Las versiones procesadas de estas senales se denominan, respectivamente, de la siguiente manera: 1) desnivel-izquierdo-se-mantiene; 2) desnivel-derecho-se mantiene; 3) choque-izquierdo-se mantiene; y 4) choque-derecho-se mantiene. Un canon se detecta cuando desnivel-izquierdo-se mantiene o choque-izquierdo-se mantiene son verdaderos mientras que desnivel-derecho-se mantiene o choque-derecho se mantiene son verdaderos. Cuando se detecta un canon, se habilita el Grupo de Seguimiento de Choque Marcha Atras 1300.In some applications, the robot 100 includes a Canon 2100 Detection process, which helps identify canons. A canon is announced by the supervision of four signals. Each of these signals is evaluated in each processing interval. When the input signal is true, the output signal becomes true. The output signal becomes false after 100 consecutive processing intervals of the input signal being false. The four input signals are evaluated as follows: 1) The left front slope sensor 710B is active and the right front slope sensor 710A is inactive, or the left rear slope sensor 710D is active and the rear slope sensor Right 710C is inactive. 2) The right front slope sensor 710A is active and the left front slope sensor 710B is inactive or the right rear slope sensor 710C is active and the left rear slope sensor 710D is inactive. 3) The bumper 300 is compressed on the left front side of the robot 100. 4) The bumper 300 is compressed on the right front side of the robot 100. The processed versions of these signals are called, respectively, as follows: 1) left-slope-is maintained; 2) uneven-right-maintained; 3) left-shock-remains; and 4) shock-right-is maintained. A canon is detected when left-slope-is maintained or left-shock-is maintained are true while right-slope-is maintained or right-shock is maintained are true. When a canon is detected, the Crash Tracking Group Back 1300 is enabled.

En algunas aplicaciones, el robot 100 incluye un proceso de Avance hacia Adelante 2200. En el proceso de Avance hacia Adelante 2200, cada intervalo de procesamiento, el avance hacia adelante del robot 100 se anade a un acumulador, mientras se resta una cantidad de distancia fija que corresponde a 1 milfmetro. Cuando este acumulador alcanza los 100 milfmetros, el avance hacia adelante se declara como verdadero. Al acumulador no se le permite superar los 200 milfmetros. Cuando el avance hacia adelante es verdadero durante 10 segundos, se permite que el Grupo de Seguimiento de Choque Marcha Atras 1300 escape del ambiente excesivamente sucio por el que esta pasando el robot 100.In some applications, the robot 100 includes a Forward Advance 2200 process. In the Forward Advance 2200 process, each processing interval, the forward advance of the robot 100 is added to an accumulator, while a distance amount is subtracted fixed corresponding to 1 millimeter. When this accumulator reaches 100 millimeters, the forward feed is declared as true. The accumulator is not allowed to exceed 200 millimeters. When the forward feed is true for 10 seconds, the 1300 Reverse Shock Tracking Group is allowed to escape from the excessively dirty environment that the robot 100 is going through.

En algunas aplicaciones, el robot 100 incluye un proceso de Avance de Arco de Seguimiento de Choque Marcha Atras 2300. Mientras que el robot 100 esta en el modo de seguimiento de choque marcha atras 1300, el avance hacia adelante de cada repeticion del comportamiento de Arco de Seguimiento de Choque Marcha Atras 1330 se alimenta a un filtro de paso bajo. Al comienzo de un seguimiento de choque marcha atras, este filtro se inicializaIn some applications, the robot 100 includes a 2300 Reverse Shock Tracking Arc Advance process. While the robot 100 is in the 1300 reverse shock tracking mode, the forward movement of each repetition of the Arc behavior Shock Tracking March 1330 is fed to a low pass filter. At the beginning of a reverse shock tracking, this filter is initialized

para 60 miKmetros. Cuando la salida cae por debajo de 50 miKmetros, el arco que avanza se considera deficiente. Esto activa una palanca en la direccion de seguimiento de choque marcha atras, es decir el lado del robot 100 en el que se supone que esta el obstaculo principal.for 60 miKmeters. When the output falls below 50 miKmeters, the advancing arc is considered deficient. This activates a lever in the rearward direction of shock tracking, that is the side of the robot 100 on which the main obstacle is supposed to be.

Se han descrito varias aplicaciones. Sin embargo, se entendera que se pueden hacer varias modificaciones sin 5 apartarse del ambito de aplicacion de la descripcion. En consecuencia, otras aplicaciones estan dentro del campo de aplicacion de las siguientes reivindicaciones.Several applications have been described. However, it will be understood that several modifications can be made without departing from the scope of the description. Consequently, other applications are within the scope of the following claims.

Claims (15)

55 1010 15fifteen 20twenty 2525 3030 3535 4040 45Four. Five REIVINDICACIONES 1. Robot autonomo de cubrimiento (100, 101) que comprende:1. Autonomous covering robot (100, 101) comprising: un chasis (200) que tiene partes delantera y posterior (210, 220), definiendo la parte delantera (210) una forma sustancialmente rectangular y definiendo la parte posterior (220) una forma arqueada;a chassis (200) having front and rear parts (210, 220), the front part (210) defining a substantially rectangular shape and the rear part (220) defining an arched shape; un sistema de accionamiento (400) portado por el chasis configurado para maniobrar el robot (100, 101) sobre una superficie de limpieza;a drive system (400) carried by the chassis configured to maneuver the robot (100, 101) on a cleaning surface; ruedas motrices accionadas de manera diferencial derecha e izquierda (410, 420); un conjunto de limpieza (500) montado en la parte delantera del chasis (200);right and left differentially driven drive wheels (410, 420); a cleaning assembly (500) mounted on the front of the chassis (200); un compartimento de basura (610) dispuesto adyacente al conjunto de limpieza (500) y configurado para recibir residuos agitados por el conjunto de limpieza (500);a garbage compartment (610) disposed adjacent to the cleaning assembly (500) and configured to receive agitated waste by the cleaning assembly (500); un sensor antichoque configurado para detectar movimiento en multiples direcciones; caracterizado por que el conjunto de limpieza (500) comprende:an anti-shock sensor configured to detect movement in multiple directions; characterized in that the cleaning assembly (500) comprises: un primer cepillo de rodillo (510) montado de manera giratoria cerca del borde frontal (202) del chasis (200); ya first roller brush (510) rotatably mounted near the front edge (202) of the chassis (200); Y un segundo cepillo de rodillo (520) montado de manera giratoria sustancialmente paralelo al primer cepillo de rodillo (510) y por detras de este, girando los cepillos de rodillo primero y segundo (510, 520) en direcciones opuestas.a second roller brush (520) rotatably mounted substantially parallel to the first roller brush (510) and behind it, rotating the first and second roller brushes (510, 520) in opposite directions. 2. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el conjunto de limpieza (500) comprende ademas un motor del cepillo (515) configurado para accionar los cepillos de rodillo primero y segundo (510, 520), estando dispuesto el motor del cepillo (515) cerca del borde delantero (202) del chasis (200).2. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the cleaning assembly (500) further comprises a brush motor (515) configured to drive the first and second roller brushes (510, 520), the brush motor (515) being arranged near the leading edge (202) of the chassis (200). 3. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que la parte posterior (220) del chasis (200) define una forma sustancialmente semicircular y los ejes de las ruedas motrices derecha e izquierda (410, 420) estan dispuestos en un eje central (223), definido en la parte posterior (220) del chasis (200), o por detras de este.3. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the rear part (220) of the chassis (200) defines a substantially semicircular shape and the axes of the right and left driving wheels (410, 420) are arranged in a central axis (223), defined at the rear (220) of the chassis (200), or behind it. 4. El robot autonomo de cubrimiento (100, 101) de acuerdo con la reivindicacion 3, en el que las ruedas motrices (410, 420) estan dispuestas a menos de 9 cm por detras del conjunto de limpieza (500).4. The autonomous covering robot (100, 101) according to claim 3, wherein the drive wheels (410, 420) are arranged less than 9 cm behind the cleaning assembly (500). 5. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el chasis (200) y un cuerpo (300) del robot tienen conjuntamente una longitud menor de 23 cm y una anchura menor de 19 cm.5. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the chassis (200) and a body (300) of the robot together have a length less than 23 cm and a width less than 19 cm 6. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende ademas una fuente de alimentacion (160) dispuesta en la parte posterior (220) del chasis (200) sustancialmente entre las ruedas motrices derecha e izquierda (410, 420).6. The autonomous covering robot (100, 101) according to any of the preceding claims, further comprising a power supply (160) arranged at the rear (220) of the chassis (200) substantially between the right drive wheels and left (410, 420). 7. El robot autonomo de cubrimiento (100, 101) de acuerdo con la reivindicacion 6, en el que la fuente de alimentacion (160) esta dispuesta adyacente al compartimento de basura (610) y por detras de este.7. The autonomous covering robot (100, 101) according to claim 6, wherein the power supply (160) is arranged adjacent to the garbage compartment (610) and behind it. 8. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende ademas al menos un sensor de proximidad (730) portado por un lado dominante del robot (100, 101), el o los sensores de proximidad (730) reaccionan ante un obstaculo sustancialmente cerca de un cuerpo (300) del robot, donde un controlador (450) del robot esta configurado para alterar una direccion de desplazamiento en respuesta a una senal recibida desde el o los sensores de proximidad (730).8. The autonomous covering robot (100, 101) according to any of the preceding claims, further comprising at least one proximity sensor (730) carried by a dominant side of the robot (100, 101), the sensor (s) proximity (730) react to an obstacle substantially close to a body (300) of the robot, where a robot controller (450) is configured to alter a direction of travel in response to a signal received from the proximity sensor (s) ( 730). 9. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende ademas:9. The autonomous covering robot (100, 101) according to any of the preceding claims, further comprising: al menos un sensor de desnivel (710) portado por una parte delantera (310) de un cuerpo (300) del robot y dispuesto sustancialmente cerca de un borde delantero (302) del cuerpo (300), donde el o los sensores de desnivel (710) reaccionan frente a un desnivel potencial por delante del robot (100, 101), donde el sistema de accionamiento (400) esta configurado para alterar una direccion de desplazamiento en respuesta a una senal recibida desde el sensor de desnivel (710) que indica un desnivel potencial; yat least one uneven sensor (710) carried by a front part (310) of a robot body (300) and disposed substantially near a leading edge (302) of the body (300), where the uneven sensor (s) ( 710) react to a potential slope in front of the robot (100, 101), where the drive system (400) is configured to alter a direction of travel in response to a signal received from the slope sensor (710) that indicates a potential slope; Y 55 1010 15fifteen 20twenty 2525 3030 3535 al menos un sensor de desnivel (710) portado por una parte posterior (320) del cuerpo (300) del robot y dispuesto sustancialmente cerca de un borde posterior (304) del cuerpo (300), donde el o los sensores de desnivel (710) reaccionan frente a un desnivel potencial por detras del robot (100, 101), donde el sistema de accionamiento (400) esta configurado para alterar una direccion de desplazamiento en respuesta a una senal recibida desde el sensor de desnivel (710) que indica un desnivel potencial.at least one uneven sensor (710) carried by a rear part (320) of the body (300) of the robot and disposed substantially near a rear edge (304) of the body (300), where the uneven sensor (710) ) react to a potential slope behind the robot (100, 101), where the drive system (400) is configured to alter a direction of travel in response to a signal received from the slope sensor (710) indicating a potential slope. 10. El robot autonomo de cubrimiento (100, 101) de acuerdo con la reivindicacion 9, que comprende unos sensores de desnivel frontales derecho e izquierdo (710A, 710B) dispuestos en las esquinas derecha e izquierda respectivas de una parte delantera (210, 310) del robot (100, 101) y unos sensores de desnivel posteriores derecho e izquierdo (710C, 710D) dispuestos directamente por detras de las ruedas motrices derecha e izquierda (410, 420) respectivas.10. The autonomous covering robot (100, 101) according to claim 9, comprising right and left front slope sensors (710A, 710B) arranged in the respective right and left corners of a front part (210, 310 ) of the robot (100, 101) and right and left rear slope sensors (710C, 710D) arranged directly behind the respective right and left drive wheels (410, 420). 11. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el robot (100, 101) emplea una arquitectura de control y software que tiene diferentes comportamientos que se ejecutan mediante un mediador (1005) en un controlador (450) del robot, y11. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the robot (100, 101) employs a control and software architecture that has different behaviors that are executed by a mediator (1005 ) on a robot controller (450), and en el que uno de los comportamientos se ejecuta cuando se disparan los sensores de desnivel posteriores (710A, 710B) del robot,in which one of the behaviors is executed when the rear elevation sensors (710A, 710B) of the robot are triggered, en el que preferentemente si se dispara un sensor de desnivel izquierdo, el robot (100, 101) se dispone de modo que gire en sentido horario y si se dispara un sensor de desnivel derecho, el robot (100, 101) se dispone de modo que gire en sentido antihorario.in which preferably if a left drop sensor is triggered, the robot (100, 101) is arranged so that it rotates clockwise and if a right drop sensor is triggered, the robot (100, 101) is arranged so Turn counterclockwise. 12. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que la parte posterior (220) del chasis (200) define una forma sustancialmente semicircular y el robot (100, 101) comprende ademas una rueda loca (722) situada al menos a 1/3 del radio de la parte posterior (220) con forma sustancialmente semicircular por delante de las ruedas motrices (410, 420),12. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the rear part (220) of the chassis (200) defines a substantially semicircular shape and the robot (100, 101) further comprises a crazy wheel (722) located at least 1/3 of the radius of the rear (220) substantially semicircular in front of the driving wheels (410, 420), en el que preferentemente la rueda loca (722) comprende un detector de estasis (720) que comprende: un iman (724) dispuesto en la rueda loca (722) o sobre esta; ywherein preferably the idler wheel (722) comprises a stasis detector (720) comprising: a magnet (724) disposed in or on the idler wheel (722); Y un detector de imanes (726) dispuesto adyacente a la rueda loca (722) para detectar el iman (724) mientras gira la rueda loca (722).a magnet detector (726) arranged adjacent to the crazy wheel (722) to detect the magnet (724) while turning the crazy wheel (722). 13. El robot autonomo de cubrimiento (100, 101) de acuerdo con la reivindicacion 1, en el que el sensor antichoque (800) esta configurado de modo que detecte choques frontales, laterales y posteriores.13. The autonomous covering robot (100, 101) according to claim 1, wherein the anti-shock sensor (800) is configured to detect frontal, side and rear shocks. 14. El robot autonomo de cubrimiento (100, 101) de acuerdo con la reivindicacion 1, en el que cada cepillo de rodillo (510, 520) comprende unos cepillos extremos derecho e izquierdo (540) que se extienden desde los extremos respectivos (512, 514, 522, 524) del cepillo de rodillo (510, 520) mas alla de una prolongacion lateral del cuerpo (300), extendiendose cada cepillo extremo (540) con un angulo O de entre 0° y aproximadamente 90° con relacion a un eje longitudinal (513, 523) definido por el cepillo de rodillo (510, 520).14. The autonomous covering robot (100, 101) according to claim 1, wherein each roller brush (510, 520) comprises right and left end brushes (540) extending from the respective ends (512 , 514, 522, 524) of the roller brush (510, 520) beyond a lateral extension of the body (300), each end brush (540) extending with an angle O between 0 ° and approximately 90 ° relative to a longitudinal axis (513, 523) defined by the roller brush (510, 520). 15. El robot autonomo de cubrimiento (100, 101) de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el conjunto de limpieza (500) comprende ademas unos cepillos de rodillo derecho e izquierdo (550, 560) montados de manera giratoria ortogonalmente con relacion al cepillo frontal (510), sustancialmente cerca de los bordes laterales derecho e izquierdo (306, 308) respectivos del chasis (200).15. The autonomous covering robot (100, 101) according to any of the preceding claims, wherein the cleaning assembly (500) further comprises right and left roller brushes (550, 560) rotatably mounted orthogonally in relation to the front brush (510), substantially close to the respective right and left side edges (306, 308) of the chassis (200).
ES12195264.2T 2007-05-09 2008-05-09 Autonomous compact covering robot Active ES2562824T3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91706507P 2007-05-09 2007-05-09
US917065P 2007-05-09
US93869907P 2007-05-17 2007-05-17
US938699P 2007-05-17

Publications (1)

Publication Number Publication Date
ES2562824T3 true ES2562824T3 (en) 2016-03-08

Family

ID=39720746

Family Applications (3)

Application Number Title Priority Date Filing Date
ES12195256.8T Active ES2559128T3 (en) 2007-05-09 2008-05-09 Autonomous compact covering robot
ES12195264.2T Active ES2562824T3 (en) 2007-05-09 2008-05-09 Autonomous compact covering robot
ES12195252T Active ES2571739T3 (en) 2007-05-09 2008-05-09 Autonomous compact covering robot

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES12195256.8T Active ES2559128T3 (en) 2007-05-09 2008-05-09 Autonomous compact covering robot

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES12195252T Active ES2571739T3 (en) 2007-05-09 2008-05-09 Autonomous compact covering robot

Country Status (6)

Country Link
US (15) US20080281470A1 (en)
EP (10) EP2995235B1 (en)
JP (12) JP2010526594A (en)
KR (15) KR101339513B1 (en)
ES (3) ES2559128T3 (en)
WO (2) WO2008141131A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109508020A (en) * 2018-12-28 2019-03-22 南京香宁国际人工智能和智能制造研究院有限公司 Robot ambulation route automatic obstacle-avoiding method, system and robot

Families Citing this family (590)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US20040162637A1 (en) 2002-07-25 2004-08-19 Yulun Wang Medical tele-robotic system with a master remote station with an arbitrator
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
KR101812021B1 (en) * 2011-09-30 2017-12-27 삼성전자주식회사 Robot cleaner
US7813836B2 (en) 2003-12-09 2010-10-12 Intouch Technologies, Inc. Protocol for a remotely controlled videoconferencing robot
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
JP2007530978A (en) 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド Position estimation method and apparatus using reflected light source
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8077963B2 (en) 2004-07-13 2011-12-13 Yulun Wang Mobile robot with a head-based movement mapping scheme
EP1841349A2 (en) 2004-11-23 2007-10-10 S.C. Johnson & Son, Inc. Device and methods of providing air purification in combination with cleaning of surfaces
EP2145573B1 (en) 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US9198728B2 (en) 2005-09-30 2015-12-01 Intouch Technologies, Inc. Multi-camera mobile teleconferencing platform
KR101300492B1 (en) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 Coverage robot mobility
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot system
ES2623920T3 (en) 2005-12-02 2017-07-12 Irobot Corporation Robot system
EP2548489B1 (en) 2006-05-19 2016-03-09 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8849679B2 (en) 2006-06-15 2014-09-30 Intouch Technologies, Inc. Remote controlled robot system that provides medical images
US9160783B2 (en) 2007-05-09 2015-10-13 Intouch Technologies, Inc. Robot system that operates through a network firewall
KR101339513B1 (en) 2007-05-09 2013-12-10 아이로보트 코퍼레이션 Autonomous coverage robot
US10875182B2 (en) 2008-03-20 2020-12-29 Teladoc Health, Inc. Remote presence system mounted to operating room hardware
US8179418B2 (en) 2008-04-14 2012-05-15 Intouch Technologies, Inc. Robotic based health care system
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US8961695B2 (en) 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
US9193065B2 (en) 2008-07-10 2015-11-24 Intouch Technologies, Inc. Docking system for a tele-presence robot
US9842192B2 (en) 2008-07-11 2017-12-12 Intouch Technologies, Inc. Tele-presence robot system with multi-cast features
US8340819B2 (en) 2008-09-18 2012-12-25 Intouch Technologies, Inc. Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9254898B2 (en) * 2008-11-21 2016-02-09 Raytheon Company Hull robot with rotatable turret
US9440717B2 (en) 2008-11-21 2016-09-13 Raytheon Company Hull robot
US8342281B2 (en) * 2008-11-21 2013-01-01 Raytheon Company Hull robot steering system
US9138891B2 (en) * 2008-11-25 2015-09-22 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
US8463435B2 (en) 2008-11-25 2013-06-11 Intouch Technologies, Inc. Server connectivity control for tele-presence robot
CN101766915A (en) * 2008-12-31 2010-07-07 鸿富锦精密工业(深圳)有限公司 Electronic toy
US8849680B2 (en) 2009-01-29 2014-09-30 Intouch Technologies, Inc. Documentation through a remote presence robot
NL1036587C2 (en) * 2009-02-17 2010-08-18 Lely Patent Nv DEVICE FOR MOVING MATERIAL LOCATED ON A FLOOR.
NL1036581C2 (en) 2009-02-17 2010-08-18 Lely Patent Nv DEVICE FOR REMOVING MANURE FROM IN PARTICULAR A CLOSED FLOOR.
CN101822905A (en) * 2009-03-03 2010-09-08 鸿富锦精密工业(深圳)有限公司 Electronic toy
US8897920B2 (en) 2009-04-17 2014-11-25 Intouch Technologies, Inc. Tele-presence robot system with software modularity, projector and laser pointer
JP5543137B2 (en) * 2009-06-03 2014-07-09 株式会社ダイフク Voice control device for car wash machine
US8774970B2 (en) 2009-06-11 2014-07-08 S.C. Johnson & Son, Inc. Trainable multi-mode floor cleaning device
EP2260750A3 (en) * 2009-06-12 2014-04-23 Samsung Electronics Co., Ltd. Robot cleaner and method of controlling traveling thereof
TWI419671B (en) * 2009-08-25 2013-12-21 Ind Tech Res Inst Cleaning dev ice with sweeping and vacuuming functions
US8384755B2 (en) 2009-08-26 2013-02-26 Intouch Technologies, Inc. Portable remote presence robot
US11399153B2 (en) 2009-08-26 2022-07-26 Teladoc Health, Inc. Portable telepresence apparatus
US8393286B2 (en) * 2009-09-18 2013-03-12 Raytheon Company Hull robot garage
CN102039595B (en) * 2009-10-09 2013-02-27 泰怡凯电器(苏州)有限公司 Self-moving ground handling robot and facing ground handling control method thereof
US8393421B2 (en) * 2009-10-14 2013-03-12 Raytheon Company Hull robot drive system
CN104970741B (en) * 2009-11-06 2017-08-29 艾罗伯特公司 Method and system for surface to be completely covered by autonomous humanoid robot
KR20110054472A (en) * 2009-11-17 2011-05-25 엘지전자 주식회사 Robot cleaner and controlling method thereof
USD625477S1 (en) * 2010-01-06 2010-10-12 Evolution Robotics Robotic cleaner
US9310806B2 (en) * 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
US8316499B2 (en) 2010-01-06 2012-11-27 Evolution Robotics, Inc. Apparatus for holding a cleaning sheet in a cleaning implement
USD625060S1 (en) * 2010-01-06 2010-10-05 Evolution Robotics Robotic cleaner
USD625059S1 (en) * 2010-01-06 2010-10-05 Evolution Robotics Robotic cleaner
US8715586B2 (en) 2010-01-11 2014-05-06 The Boeing Company Methods and systems for dispersing decontamination products
US11154981B2 (en) 2010-02-04 2021-10-26 Teladoc Health, Inc. Robot user interface for telepresence robot system
CN105147193B (en) 2010-02-16 2018-06-12 艾罗伯特公司 Vacuum brush
US8670017B2 (en) 2010-03-04 2014-03-11 Intouch Technologies, Inc. Remote presence system including a cart that supports a robot face and an overhead camera
WO2012002860A1 (en) * 2010-07-02 2012-01-05 Husqvarna Ab Battery powered tool
NL1037957C2 (en) * 2010-05-12 2011-11-15 Lely Patent Nv VEHICLE FOR MOVING FOOD.
US8386112B2 (en) 2010-05-17 2013-02-26 Raytheon Company Vessel hull robot navigation subsystem
US10343283B2 (en) 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
US10808882B2 (en) 2010-05-26 2020-10-20 Intouch Technologies, Inc. Tele-robotic system with a robot face placed on a chair
JP6010722B2 (en) * 2010-08-01 2016-10-19 ライフラボ株式会社 Robot vacuum cleaner, dust discharge station and multi-stage cyclone vacuum cleaner
US9075416B2 (en) * 2010-09-21 2015-07-07 Toyota Jidosha Kabushiki Kaisha Mobile body
CN201993643U (en) * 2010-10-11 2011-09-28 洋通工业股份有限公司 Guiding device for enabling self-propelled dust collector to move toward charging seat
CN201840415U (en) * 2010-10-11 2011-05-25 洋通工业股份有限公司 Self-propelled dust collector with detachable fan
KR101527417B1 (en) * 2010-10-27 2015-06-17 삼성전자 주식회사 Bumper structure of cleaning robot
AU2011326344A1 (en) * 2010-11-12 2013-07-04 Jason James Mordey Material clearing machine
US9264664B2 (en) 2010-12-03 2016-02-16 Intouch Technologies, Inc. Systems and methods for dynamic bandwidth allocation
US8903548B2 (en) * 2010-12-16 2014-12-02 Pepperl + Fuchs Gmbh Position finding system
US9746558B2 (en) * 2010-12-20 2017-08-29 Mattel, Inc. Proximity sensor apparatus for a game device
DE102011003064A1 (en) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Method for processing a surface by means of a robot vehicle
AU2011254078B2 (en) 2010-12-29 2014-05-22 Bissell Inc. Suction nozzle with obstacle sensor
CN107422723B (en) * 2010-12-30 2021-08-24 美国iRobot公司 Overlay robot navigation
US20120167917A1 (en) * 2011-01-03 2012-07-05 Gilbert Jr Duane L Autonomous coverage robot
TWI423779B (en) * 2011-01-28 2014-01-21 Micro Star Int Co Ltd Cleaning robot and control method thereof
US9323250B2 (en) 2011-01-28 2016-04-26 Intouch Technologies, Inc. Time-dependent navigation of telepresence robots
US8965579B2 (en) 2011-01-28 2015-02-24 Intouch Technologies Interfacing with a mobile telepresence robot
PL394570A1 (en) 2011-04-15 2012-10-22 Robotics Inventions Spólka Z Ograniczona Odpowiedzialnoscia Robot for raised floors and method for raised floor maintenance
US10769739B2 (en) 2011-04-25 2020-09-08 Intouch Technologies, Inc. Systems and methods for management of information among medical providers and facilities
CN106889947B (en) * 2011-04-29 2020-03-10 艾罗伯特公司 Autonomous mobile robot for cleaning a cleaning surface
AU2015202827B2 (en) * 2011-04-29 2016-05-12 Irobot Corporation An autonomous mobile robot for cleaning with a front roller in a first horizontal plane positioned above a second horizontal plane of a rear roller
US11471020B2 (en) 2011-04-29 2022-10-18 Irobot Corporation Robotic vacuum cleaning system
KR101760950B1 (en) * 2011-05-17 2017-07-24 엘지전자 주식회사 Controlling mehtod of network system
US20140139616A1 (en) 2012-01-27 2014-05-22 Intouch Technologies, Inc. Enhanced Diagnostics for a Telepresence Robot
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
TWI436179B (en) * 2011-07-22 2014-05-01 Ememe Robot Co Ltd Autonomous electronic device and method of controlling motion of the autonomous electronic device thereof
US8800101B2 (en) * 2011-07-25 2014-08-12 Lg Electronics Inc. Robot cleaner and self testing method of the same
US20140182079A1 (en) * 2011-08-23 2014-07-03 Koninklijke Philips N.V. Cleaning device for cleaning a surface comprising a brush and a squeegee element
KR101287474B1 (en) * 2011-09-07 2013-07-18 엘지전자 주식회사 Mobile robot, and system and method for remotely controlling the same
WO2013036284A1 (en) * 2011-09-07 2013-03-14 Irobot Corporation Sonar system for remote vehicle
GB2494447B (en) * 2011-09-09 2014-02-26 Dyson Technology Ltd Autonomous surface treating appliance
GB2494442B (en) * 2011-09-09 2013-12-25 Dyson Technology Ltd Autonomous vacuum cleaner
RU2604456C2 (en) * 2011-10-03 2016-12-10 Конинклейке Филипс Н.В. Device for surface cleaning
KR101907161B1 (en) * 2011-10-06 2018-10-15 삼성전자주식회사 Robot cleaner
US8836751B2 (en) 2011-11-08 2014-09-16 Intouch Technologies, Inc. Tele-presence system with a user interface that displays different communication links
WO2013071190A1 (en) * 2011-11-11 2013-05-16 Evolution Robotics, Inc. Scaling vector field slam to large environments
TW201330609A (en) * 2012-01-06 2013-07-16 Hon Hai Prec Ind Co Ltd Intelligent tracking device
JP2013146302A (en) * 2012-01-17 2013-08-01 Sharp Corp Self-propelled electronic device
KR101984214B1 (en) * 2012-02-09 2019-05-30 삼성전자주식회사 Apparatus and method for controlling cleaning in rototic cleaner
CN103284653B (en) * 2012-03-02 2017-07-14 恩斯迈电子(深圳)有限公司 Cleaning robot and control method thereof
US9146560B2 (en) 2012-03-30 2015-09-29 Irobot Corporation System and method for implementing force field deterrent for robot
CN103356122A (en) * 2012-04-05 2013-10-23 科沃斯机器人科技(苏州)有限公司 Glass cleaning device
TWM435906U (en) * 2012-04-06 2012-08-21 Uni Ring Tech Co Ltd
US8902278B2 (en) 2012-04-11 2014-12-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9251313B2 (en) 2012-04-11 2016-02-02 Intouch Technologies, Inc. Systems and methods for visualizing and managing telepresence devices in healthcare networks
US8965623B2 (en) 2012-05-11 2015-02-24 International Business Machines Corporation Automated cleaning in a sensor network
GB2502132B (en) * 2012-05-17 2014-11-05 Dyson Technology Ltd Autonomous vacuum cleaner
WO2013176758A1 (en) 2012-05-22 2013-11-28 Intouch Technologies, Inc. Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices
US9361021B2 (en) 2012-05-22 2016-06-07 Irobot Corporation Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US9020641B2 (en) 2012-06-07 2015-04-28 Samsung Electronics Co., Ltd. Obstacle sensing module and cleaning robot including the same
KR101402477B1 (en) * 2012-06-20 2014-06-03 (주)마미로봇 Robot cleaner having function of disinfecting floor
CN103505140B (en) * 2012-06-28 2016-12-21 科沃斯机器人股份有限公司 Glass cleaning device
CN102715867B (en) * 2012-07-10 2014-06-25 深圳市银星智能科技股份有限公司 Intelligent vacuum cleaner
CN103565344B (en) 2012-08-08 2017-04-19 科沃斯机器人股份有限公司 Self-moving robot and walking method thereof
KR102142162B1 (en) 2012-08-27 2020-09-14 에이비 엘렉트로룩스 Robot positioning system
CN103622643A (en) * 2012-08-29 2014-03-12 科沃斯机器人科技(苏州)有限公司 Automatic moving cleaning device
US8855914B1 (en) 2012-08-31 2014-10-07 Neato Robotics, Inc. Method and apparatus for traversing corners of a floored area with a robotic surface treatment apparatus
US20140081504A1 (en) * 2012-09-14 2014-03-20 Raytheon Company Autonomous Hull Navigation
JP5885147B2 (en) * 2012-09-21 2016-03-15 アイロボット コーポレイション Automatic robot
AU349618S (en) * 2012-09-24 2013-07-04 Dyson Technology Ltd A vacuum cleaner
TWM451103U (en) * 2012-10-30 2013-04-21 Agait Technology Corp Walking device
US8972061B2 (en) 2012-11-02 2015-03-03 Irobot Corporation Autonomous coverage robot
EP2730204B1 (en) * 2012-11-09 2016-12-28 Samsung Electronics Co., Ltd. Robot cleaner
US9615714B2 (en) * 2012-11-09 2017-04-11 Samsung Electronics Co., Ltd. Autonomous cleaning device
CN102910269B (en) * 2012-11-16 2015-04-29 张家港同宇智能机电科技有限公司 Robot for brushing ship body
KR101428877B1 (en) * 2012-12-05 2014-08-14 엘지전자 주식회사 A robot cleaner
PL401996A1 (en) * 2012-12-11 2014-06-23 Robotics Inventions Spółka Z Ograniczoną Odpowiedzialnością Collision control system of robot with an obstacle, the robot equipped with such a system and method for controlling a robot collision with an obstacle
US9428897B2 (en) * 2012-12-17 2016-08-30 Fluidmaster, Inc. Touchless activation of a toilet
US9903130B2 (en) * 2012-12-22 2018-02-27 Maytronics Ltd. Autonomous pool cleaning robot with an external docking station
AU2015230722B2 (en) * 2012-12-28 2017-06-29 Irobot Corporation Autonomous coverage robot
US9282867B2 (en) * 2012-12-28 2016-03-15 Irobot Corporation Autonomous coverage robot
US9483055B2 (en) * 2012-12-28 2016-11-01 Irobot Corporation Autonomous coverage robot
US9178370B2 (en) * 2012-12-28 2015-11-03 Irobot Corporation Coverage robot docking station
CN103065540B (en) * 2012-12-31 2014-08-20 黑龙江大学 Intelligent wrecker
US9375847B2 (en) 2013-01-18 2016-06-28 Irobot Corporation Environmental management systems including mobile robots and methods using same
JP6409003B2 (en) * 2013-01-18 2018-10-17 アイロボット コーポレイション Method using robot and computer-readable storage medium thereof
US9233472B2 (en) 2013-01-18 2016-01-12 Irobot Corporation Mobile robot providing environmental mapping for household environmental control
GB201301578D0 (en) * 2013-01-29 2013-03-13 Dyson Technology Ltd Mobile robot
TWI508692B (en) * 2013-02-08 2015-11-21 Self-propelled trailing machine
US9326654B2 (en) * 2013-03-15 2016-05-03 Irobot Corporation Roller brush for surface cleaning robots
KR102020215B1 (en) * 2013-03-23 2019-09-10 삼성전자주식회사 Robot cleaner and method for controlling the same
JP5892098B2 (en) * 2013-03-25 2016-03-23 三菱電機株式会社 Self-propelled vacuum cleaner
CN105101855A (en) 2013-04-15 2015-11-25 伊莱克斯公司 Robotic vacuum cleaner with protruding sidebrush
EP2986192B1 (en) * 2013-04-15 2021-03-31 Aktiebolaget Electrolux Robotic vacuum cleaner
JP2014212846A (en) * 2013-04-23 2014-11-17 日立アプライアンス株式会社 Vacuum cleaner and suction tool
CN104216404B (en) * 2013-05-31 2017-02-15 科沃斯机器人股份有限公司 Self-moving device and control method thereof
US9314924B1 (en) * 2013-06-14 2016-04-19 Brain Corporation Predictive robotic controller apparatus and methods
DE102013106294B4 (en) 2013-06-18 2024-02-08 Vorwerk & Co. Interholding Gmbh Automatically movable device
KR20150006996A (en) * 2013-07-10 2015-01-20 엘에스산전 주식회사 A charger for electric vehicle
KR101410519B1 (en) * 2013-07-24 2014-07-04 주식회사 모뉴엘 Wheels for Robot Vacuum Cleaner
KR101520043B1 (en) * 2013-07-24 2015-05-14 에브리봇 주식회사 Wet cloth cleaning robot
KR102083188B1 (en) 2013-07-29 2020-03-02 삼성전자주식회사 Cleaning robot and method for controlling the same
CN104414573B (en) * 2013-08-23 2017-12-22 科沃斯机器人股份有限公司 Window cleaning device
WO2015035201A1 (en) * 2013-09-05 2015-03-12 Harvest Automation, Inc. Roller assembly for autonomous mobile robots
USD744178S1 (en) * 2013-09-26 2015-11-24 Samsung Electronics Co., Ltd. Cleaner
USD745757S1 (en) * 2013-09-26 2015-12-15 Samsung Electronics Co., Ltd. Robot cleaner
USD744708S1 (en) * 2013-09-26 2015-12-01 Samsung Electronics Co., Ltd. Cleaner brush
USD745233S1 (en) * 2013-09-26 2015-12-08 Samsung Electronics Co., Ltd. Robot cleaner
USD744709S1 (en) * 2013-09-26 2015-12-01 Samsung Electronics Co., Ltd. Robot cleaner body
USD744181S1 (en) * 2013-09-26 2015-11-24 Samsung Electronics Co., Ltd. Robot cleaner
USD746005S1 (en) * 2013-09-26 2015-12-22 Samsung Electronics Co., Ltd. Robot cleaner
JP6141162B2 (en) * 2013-09-27 2017-06-07 株式会社Lixil Antibacterial treatment agent for water-related members, antibacterial treatment method and water-related member
JP6154275B2 (en) 2013-09-27 2017-06-28 株式会社Lixil Antibacterial / antiviral coating and method for forming antibacterial / antiviral coating
US9300430B2 (en) 2013-10-24 2016-03-29 Harris Corporation Latency smoothing for teleoperation systems
US9144907B2 (en) * 2013-10-24 2015-09-29 Harris Corporation Control synchronization for high-latency teleoperation
US9427127B2 (en) * 2013-11-12 2016-08-30 Irobot Corporation Autonomous surface cleaning robot
US11272822B2 (en) 2013-11-12 2022-03-15 Irobot Corporation Mobile floor cleaning robot with pad holder
US9615712B2 (en) 2013-11-12 2017-04-11 Irobot Corporation Mobile floor cleaning robot
CN105120726B (en) * 2013-11-12 2018-06-08 美国iRobot公司 cleaning pad
CN103750788B (en) * 2013-11-28 2016-03-02 余姚市精诚高新技术有限公司 A kind of tool horizontally set drives the automatic concrete finishing trowel of worm screw
CA3092838C (en) 2013-12-02 2022-08-30 Austin Star Detonator Company Method and apparatus for wireless blasting
WO2015094553A1 (en) 2013-12-18 2015-06-25 Irobot Corporation Autonomous mobile robot
ES2675786T3 (en) 2013-12-19 2018-07-12 Aktiebolaget Electrolux Adaptive speed control of rotary side brush
WO2015094052A1 (en) 2013-12-19 2015-06-25 Husqvarna Ab Obstacle detection for a robotic working tool
JP6638988B2 (en) 2013-12-19 2020-02-05 アクチエボラゲット エレクトロルックス Robot vacuum cleaner with side brush and moving in spiral pattern
JP6687286B2 (en) 2013-12-19 2020-04-22 アクチエボラゲット エレクトロルックス Robot cleaner and landmark recognition method
KR102099495B1 (en) 2013-12-19 2020-04-09 에이비 엘렉트로룩스 Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
EP3084538B1 (en) 2013-12-19 2017-11-01 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
WO2015090437A1 (en) * 2013-12-20 2015-06-25 Aktiebolaget Electrolux Autonomous cleaner
KR102116595B1 (en) 2013-12-20 2020-06-05 에이비 엘렉트로룩스 Dust container
JP6207388B2 (en) * 2013-12-27 2017-10-04 シャープ株式会社 Self-propelled vacuum cleaner
JP6218610B2 (en) * 2014-01-06 2017-10-25 三菱重工工作機械株式会社 Chip cleaning robot
KR102137524B1 (en) * 2014-02-13 2020-07-24 삼성전자주식회사 Robot cleaner
US9510717B2 (en) * 2014-02-18 2016-12-06 Joseph Y. Ko Self-moving dust suction apparatus to facalitate cleaning
EP2912981B1 (en) 2014-02-28 2019-09-04 Samsung Electronics Co., Ltd. Autonomous cleaner
US9215962B2 (en) 2014-03-13 2015-12-22 Ecovacs Robotics, Inc. Autonomous planar surface cleaning robot
WO2015154822A1 (en) * 2014-04-11 2015-10-15 Husqvarna Ab Improved robotic working tool
JP6404348B2 (en) * 2014-06-25 2018-10-17 株式会社未来機械 Self-propelled robot
JP6167316B2 (en) * 2014-06-30 2017-07-26 パナソニックIpマネジメント株式会社 Autonomous traveling vacuum cleaner
AU2015285065B2 (en) * 2014-07-01 2018-07-05 Samsung Electronics Co., Ltd. Cleaning robot and controlling method thereof
KR102138724B1 (en) * 2014-07-01 2020-07-28 삼성전자주식회사 Cleaning robot and controlling method thereof
KR102272187B1 (en) * 2014-07-01 2021-07-06 삼성전자주식회사 Cleaning robot and controlling method thereof
WO2016005171A1 (en) * 2014-07-07 2016-01-14 Carl Freudenberg Kg Movable device
JP6513709B2 (en) 2014-07-10 2019-05-15 アクチエボラゲット エレクトロルックス Method of detecting measurement error in robot type cleaning device, robot type cleaning device, computer program and computer program product
US9901234B1 (en) * 2014-10-24 2018-02-27 Bobsweep Inc. Robotic vacuum with rotating cleaning apparatus
US11576543B2 (en) 2014-07-18 2023-02-14 Ali Ebrahimi Afrouzi Robotic vacuum with rotating cleaning apparatus
DE102014111217A1 (en) * 2014-08-06 2016-02-11 Vorwerk & Co. Interholding Gmbh Floor cleaning device for dry and damp cleaning and method for operating a self-propelled floor cleaning device
JP6453583B2 (en) * 2014-08-20 2019-01-16 東芝ライフスタイル株式会社 Electric vacuum cleaner
AU360825S (en) 2014-08-28 2015-03-30 Dyson Technology Ltd Vacuum cleaner
JP2016047220A (en) * 2014-08-28 2016-04-07 株式会社東芝 Vacuum cleaner
AU360831S (en) 2014-08-28 2015-03-30 Dyson Technology Ltd Vacuum cleaner
AU360829S (en) 2014-08-28 2015-03-30 Dyson Technology Ltd Vacuum cleaner
AU360979S (en) 2014-08-28 2015-04-08 Dyson Technology Ltd Vacuum cleaner
AU360807S (en) 2014-08-28 2015-03-26 Dyson Technology Ltd Vacuum cleaner
AU360827S (en) 2014-08-28 2015-03-30 Dyson Technology Ltd Vacuum cleaner
AU360824S (en) 2014-08-28 2015-03-30 Dyson Technology Ltd Vacuum cleaner
JP6621129B2 (en) * 2014-08-28 2019-12-18 東芝ライフスタイル株式会社 Electric vacuum cleaner
GB2529847B (en) * 2014-09-03 2018-12-19 Dyson Technology Ltd A mobile Robot with Independently Adjustable Light Sources
GB2529846B (en) 2014-09-03 2019-02-20 Dyson Technology Ltd Illumination Control of a Vision System for a Mobile Robot
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
JP6443897B2 (en) 2014-09-08 2018-12-26 アクチエボラゲット エレクトロルックス Robot vacuum cleaner
US9651458B2 (en) * 2014-09-19 2017-05-16 Swisslog Logistics Inc. Method and system for auto safety verification of AGV sensors
USD748878S1 (en) 2014-09-25 2016-02-02 Irobot Corporation Robot
USD734576S1 (en) 2014-09-25 2015-07-14 Irobot Corporation Robot
USD738585S1 (en) 2014-09-25 2015-09-08 Irobot Corporation Robot
USD782139S1 (en) 2014-09-25 2017-03-21 Irobot Corporation Cleaning pad
USD734907S1 (en) 2014-09-25 2015-07-21 Irobot Corporation Robot
US11347239B1 (en) 2014-10-01 2022-05-31 AI Incorporated System and method for establishing virtual boundaries for robotic devices
US10579066B1 (en) * 2015-03-30 2020-03-03 AI Incorporated System and method for establishing virtual boundaries for robotic devices
US10463219B2 (en) 2014-10-03 2019-11-05 Makita Corporation Self-propelled, dust-collecting robot
JP2016073396A (en) * 2014-10-03 2016-05-12 株式会社マキタ Self propelled dust collection robot
EP3205250B1 (en) * 2014-10-10 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. Autonomous travel-type cleaner
US9798328B2 (en) 2014-10-10 2017-10-24 Irobot Corporation Mobile robot area cleaning
JP2017213009A (en) 2014-10-10 2017-12-07 パナソニックIpマネジメント株式会社 Autonomous travel type cleaner
DE102014115463A1 (en) * 2014-10-23 2016-04-28 Miele & Cie. Kg Shock protection device, body and housing for a vacuum cleaner robot, vacuum cleaner robot, method for manufacturing a housing for a vacuum cleaner robot and method for protecting and housing a body of a vacuum cleaner robot
CN105629972B (en) * 2014-11-07 2018-05-18 科沃斯机器人股份有限公司 Guiding virtual wall system
US10377035B2 (en) 2014-11-19 2019-08-13 Positec Technology (China) Co., Ltd Self-moving robot
US9519289B2 (en) * 2014-11-26 2016-12-13 Irobot Corporation Systems and methods for performing simultaneous localization and mapping using machine vision systems
US9751210B2 (en) 2014-11-26 2017-09-05 Irobot Corporation Systems and methods for performing occlusion detection
WO2016091291A1 (en) 2014-12-10 2016-06-16 Aktiebolaget Electrolux Using laser sensor for floor type detection
US9788698B2 (en) 2014-12-10 2017-10-17 Irobot Corporation Debris evacuation for cleaning robots
US10568483B2 (en) 2014-12-12 2020-02-25 Irobot Corporation Cleaning system for autonomous robot
CN114668335A (en) 2014-12-12 2022-06-28 伊莱克斯公司 Side brush and robot dust catcher
KR102326401B1 (en) 2014-12-16 2021-11-16 에이비 엘렉트로룩스 Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
CA2972252C (en) 2014-12-24 2023-02-28 Irobot Corporation Evacuation station
KR102312095B1 (en) * 2014-12-26 2021-10-13 엘지전자 주식회사 Autonomous mobile cleaner and method of contorlling the same
JP2016077855A (en) * 2015-01-06 2016-05-16 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
JP6706882B2 (en) * 2015-01-20 2020-06-10 シャープ株式会社 Self-propelled vacuum cleaner
KR102324204B1 (en) * 2015-01-23 2021-11-10 삼성전자주식회사 Robot cleaner and control method thereof
US9757004B2 (en) 2015-02-12 2017-09-12 Irobot Corporation Liquid management for floor-traversing robots
US20170173485A1 (en) * 2015-02-12 2017-06-22 Geeknet, Inc. Reconfigurable brick building system and structure
KR101659037B1 (en) * 2015-02-16 2016-09-23 엘지전자 주식회사 Robot cleaner, remote controlling system and method of the same
USD774263S1 (en) 2015-03-03 2016-12-13 Irobot Corporation Floor cleaning roller core
JP6735066B2 (en) * 2015-03-17 2020-08-05 シャープ株式会社 Self-propelled electronic device
US9665095B1 (en) 2015-03-19 2017-05-30 Amazon Technologies, Inc. Systems and methods for removing debris from warehouse floors
US9682483B1 (en) * 2015-03-19 2017-06-20 Amazon Technologies, Inc. Systems and methods for removing debris from warehouse floors
US9868211B2 (en) 2015-04-09 2018-01-16 Irobot Corporation Restricting movement of a mobile robot
US9918605B2 (en) 2015-04-09 2018-03-20 Irobot Corporation Wall following robot
JP6743828B2 (en) 2015-04-17 2020-08-19 アクチエボラゲット エレクトロルックス Robot vacuum and method for controlling the robot vacuum
KR101649665B1 (en) * 2015-04-29 2016-08-30 엘지전자 주식회사 Moving robot and controlling method thereof
CN107636548B (en) * 2015-05-12 2021-08-13 三星电子株式会社 Robot and control method thereof
AU2016267570B2 (en) 2015-05-27 2019-01-03 Mtd Products Inc. Self-cleaning mower blade assembly
US9505140B1 (en) 2015-06-02 2016-11-29 Irobot Corporation Contact sensors for a mobile robot
DE102015108823A1 (en) * 2015-06-03 2016-12-08 Miele & Cie. Kg Cleaning device for a self-propelled soil cultivation device
USD794089S1 (en) 2015-06-05 2017-08-08 Mtd Products Inc Wheel
USD758455S1 (en) 2015-06-05 2016-06-07 Mtd Products Inc Robotic mower body
USD797530S1 (en) 2015-06-05 2017-09-19 Mtd Products Inc Blade
USD760806S1 (en) 2015-06-05 2016-07-05 Mtd Products Inc Robotic mower
DE102015109775B3 (en) * 2015-06-18 2016-09-22 RobArt GmbH Optical triangulation sensor for distance measurement
JP6603495B2 (en) 2015-07-01 2019-11-06 株式会社Lixil Antibacterial and antiviral coating agent
KR101666905B1 (en) * 2015-07-03 2016-10-17 엘지전자 주식회사 Cleaner and Controlling method for the same
TWI617907B (en) * 2015-07-30 2018-03-11 Yan cheng xiang Robot for automatically adjusting moving path and method thereof
JP6428535B2 (en) * 2015-08-28 2018-11-28 トヨタ自動車株式会社 Mobile robot and calibration method thereof
KR101784074B1 (en) 2015-09-03 2017-11-06 엘지전자 주식회사 Sensing apparatus
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
DE102015114883A1 (en) 2015-09-04 2017-03-09 RobArt GmbH Identification and localization of a base station of an autonomous mobile robot
TWI631924B (en) * 2015-09-14 2018-08-11 東芝生活電器股份有限公司 Electrical sweeping device
KR101692737B1 (en) * 2015-09-23 2017-01-04 엘지전자 주식회사 Robot Cleaner
KR101678443B1 (en) * 2015-09-23 2016-12-06 엘지전자 주식회사 Robot Cleaner
US10496262B1 (en) * 2015-09-30 2019-12-03 AI Incorporated Robotic floor-cleaning system manager
EP3356836B1 (en) * 2015-10-01 2022-06-29 California Institute of Technology Systems and methods for monitoring characteristics of energy units
USD792198S1 (en) 2015-10-29 2017-07-18 Mtd Products Inc Caster wheel
DE102015119501A1 (en) 2015-11-11 2017-05-11 RobArt GmbH Subdivision of maps for robot navigation
DE102015119865B4 (en) 2015-11-17 2023-12-21 RobArt GmbH Robot-assisted processing of a surface using a robot
US10081106B2 (en) 2015-11-24 2018-09-25 X Development Llc Safety system for integrated human/robotic environments
DE102015121666B3 (en) 2015-12-11 2017-05-24 RobArt GmbH Remote control of a mobile, autonomous robot
FR3046191B1 (en) * 2015-12-23 2018-02-09 Maxime Puech POOL CLEANING ROBOT AND METHOD FOR DETECTING IMMOBILIZATION OF SUCH A ROBOT
CN105467881A (en) * 2015-12-25 2016-04-06 河池学院 Control system of Tai Chi robot
EP3389464B1 (en) 2016-01-16 2019-06-19 Diversey, Inc. Floor cleaning device
US10595697B2 (en) 2016-02-02 2020-03-24 Tennant Company Surface maintenance machine with skirting to allow particulate pickup
US10444757B2 (en) 2016-02-03 2019-10-15 Positec Power Tools (Suzhou) Co., Ltd. Self-moving device and control method therefor
DE102016102644A1 (en) * 2016-02-15 2017-08-17 RobArt GmbH Method for controlling an autonomous mobile robot
USD781349S1 (en) 2016-02-16 2017-03-14 Mtd Products Inc Robotic mower housing
USD795299S1 (en) 2016-02-16 2017-08-22 Mtd Products Inc Blade
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
US10802495B2 (en) * 2016-04-14 2020-10-13 Deka Products Limited Partnership User control device for a transporter
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
CN105662284B (en) * 2016-03-01 2018-04-06 常州信息职业技术学院 Intelligent movable house keeper and its method of work based on Internet of Things
US10368711B1 (en) * 2016-03-03 2019-08-06 AI Incorporated Method for developing navigation plan in a robotic floor-cleaning device
USD833096S1 (en) 2016-03-14 2018-11-06 Irobot Corporation Cleaning pad
TWM526228U (en) * 2016-03-15 2016-07-21 Lumiplus Technology Suzhou Co Ltd Charging station and charging system
WO2017157421A1 (en) 2016-03-15 2017-09-21 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
GB2549192B (en) * 2016-03-31 2020-06-24 Boeing Co Systems for cleaning interior portions of a vehicle
US10793291B2 (en) * 2016-03-31 2020-10-06 The Boeing Company Systems and methods for cleaning interior portions of a vehicle
FR3050053B1 (en) * 2016-04-06 2018-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF CALCULATING THE AUTONOMY OF A GAS DISTRIBUTION SET
CN105982611A (en) * 2016-04-14 2016-10-05 北京小米移动软件有限公司 Self-cleaning device
CA3021508C (en) 2016-04-20 2020-09-08 Mtd Products Inc Low-energy blade system having a quick-attach mechanism
CN107346107A (en) * 2016-05-04 2017-11-14 深圳光启合众科技有限公司 Diversified motion control method and system and the robot with the system
CA3023107A1 (en) 2016-05-06 2017-11-09 Mtd Products Inc Autonomous mower navigation system and method
CN109068908B (en) 2016-05-11 2021-05-11 伊莱克斯公司 Robot cleaning device
EP3459417B1 (en) * 2016-05-20 2023-05-17 LG Electronics Inc. Robot cleaner
US10441128B2 (en) 2016-05-20 2019-10-15 Lg Electronics Inc. Autonomous cleaner
US10398276B2 (en) 2016-05-20 2019-09-03 Lg Electronics Inc. Autonomous cleaner
WO2017200343A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
US10362916B2 (en) * 2016-05-20 2019-07-30 Lg Electronics Inc. Autonomous cleaner
WO2017200345A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
WO2017200351A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
WO2017200348A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
WO2017200353A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
WO2017200346A1 (en) 2016-05-20 2017-11-23 엘지전자 주식회사 Robot cleaner
US10481611B2 (en) 2016-05-20 2019-11-19 Lg Electronics Inc. Autonomous cleaner
KR102478279B1 (en) * 2016-05-25 2022-12-15 엘지전자 주식회사 Apparatus for outputting sound
CN105867386A (en) * 2016-05-30 2016-08-17 深圳乐行天下科技有限公司 Robot navigation system and method
KR102549125B1 (en) * 2016-06-10 2023-06-30 삼성전자주식회사 Robot cleaner
DE102016110817A1 (en) 2016-06-13 2017-12-14 Wessel-Werk Gmbh Suction robot with side suction pipes
JP6774790B2 (en) * 2016-06-17 2020-10-28 シャープ株式会社 Wireless charging system for self-propelled vacuum cleaners
KR101654014B1 (en) * 2016-06-21 2016-09-06 주식회사 파인로보틱스 Mop cleaner robot
CN107544485A (en) * 2016-06-24 2018-01-05 苏州宝时得电动工具有限公司 Intelligent mobile instrument and its control method
EP3597024B1 (en) 2016-06-24 2021-03-24 MTD Products Inc High-efficiency cutting system
CN105962858B (en) * 2016-06-28 2018-10-12 佛山科学技术学院 A kind of obstacle crossing type robot for cleaning external wall
EP3508049B1 (en) * 2016-06-30 2022-08-24 Techtronic Outdoor Products Technology Limited An autonomous lawn mower
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
JP2018007849A (en) * 2016-07-14 2018-01-18 日立アプライアンス株式会社 Vacuum cleaner
KR101903022B1 (en) * 2016-07-14 2018-10-01 엘지전자 주식회사 Robot Cleaner
CN106125736B (en) * 2016-08-01 2020-08-11 京东方科技集团股份有限公司 Robot navigation method, robot and system
USD795300S1 (en) 2016-08-23 2017-08-22 Mtd Products Inc Blade
USD848488S1 (en) 2016-08-23 2019-05-14 Mtd Products Inc Robotic mower housing
WO2018039890A1 (en) 2016-08-30 2018-03-08 深圳市智意科技有限公司 Seal structure for waste liquid collecting tank
EP3957507A1 (en) 2016-09-09 2022-02-23 Dematic Corp. Automated guided vehicle
AU2017101247A6 (en) * 2016-09-16 2017-11-02 Bissell Inc. Autonomous vacuum cleaner
CN107865612A (en) * 2016-09-27 2018-04-03 杭州匠龙机器人科技有限公司 Intellective dust collector
US10722775B2 (en) * 2016-09-27 2020-07-28 Adidas Ag Robotic training systems and methods
CN106383516A (en) * 2016-09-27 2017-02-08 成都普诺思博科技有限公司 Mobile robot bottom control system
CN106214055A (en) * 2016-09-29 2016-12-14 深圳市宇辰智能科技有限公司 A kind of robot for cleaning wall surfaces
CN106214056A (en) * 2016-09-29 2016-12-14 深圳市宇辰智能科技有限公司 A kind of Multifunctional cleaning robot
JP7063534B2 (en) * 2016-10-13 2022-05-09 日立グローバルライフソリューションズ株式会社 Self-propelled electric vacuum cleaner
US10732127B2 (en) * 2016-10-26 2020-08-04 Pixart Imaging Inc. Dirtiness level determining system and surface cleaning machine
US10292554B2 (en) 2016-10-28 2019-05-21 Irobot Corporation Mobile cleaning robot with a bin
JP2018068825A (en) * 2016-11-01 2018-05-10 三菱電機株式会社 Self-propelled vacuum cleaner
JP7071798B2 (en) * 2016-11-18 2022-05-19 日立グローバルライフソリューションズ株式会社 Vacuum cleaner
CN106618399A (en) * 2016-11-23 2017-05-10 安徽南博机器人有限公司 Intelligent floor-washing robot
CN106774319B (en) * 2016-12-14 2020-07-31 智易行科技(武汉)有限公司 Multi-sensor self-walking universal intelligent chassis
US10456002B2 (en) 2016-12-22 2019-10-29 Irobot Corporation Cleaning bin for cleaning robot
US10653282B2 (en) 2016-12-23 2020-05-19 Lg Electronics Inc. Cleaning robot
KR101939752B1 (en) 2016-12-30 2019-01-17 (유)광일산업 vegetation growth cotrol apparatus
US10375880B2 (en) 2016-12-30 2019-08-13 Irobot Corporation Robot lawn mower bumper system
KR101918994B1 (en) * 2017-01-02 2019-02-08 엘지전자 주식회사 Lawn mower robot
US10159181B2 (en) * 2017-02-02 2018-12-25 Robin Technologies, Inc. Automated secure door for robotic mower
CN106864422A (en) * 2017-02-21 2017-06-20 华中农业大学 Intelligent domestic automobile washing machine people
CN106873592A (en) * 2017-02-25 2017-06-20 彭曙光 One kind can avoidance vehicle chassis inspection machine people
US11709489B2 (en) 2017-03-02 2023-07-25 RobArt GmbH Method for controlling an autonomous, mobile robot
EP3592178B1 (en) 2017-03-10 2024-02-21 SharkNinja Operating LLC Agitator with debrider and hair removal
CN206953993U (en) * 2017-04-14 2018-02-02 深圳市中驱电机有限公司 Wheel hub motor
SE541866C2 (en) * 2017-04-18 2020-01-02 Husqvarna Ab Method for detecting lifting of a self-propelled robotic tool and a self-propelled robotic tool
US11862302B2 (en) 2017-04-24 2024-01-02 Teladoc Health, Inc. Automated transcription and documentation of tele-health encounters
CN107041720B (en) * 2017-04-27 2019-11-29 台州云造智能科技有限公司 A kind of multi-function robot cleaned based on dining room
US10905298B2 (en) * 2017-05-03 2021-02-02 Shenzhen Silver Star Intelligent Technology Co., Ltd. Cleaning equipment
US11284702B2 (en) 2017-05-15 2022-03-29 Sharkninja Operating Llc Side brush with bristles at different lengths and/or angles for use in a robot cleaner and side brush deflectors
US11202542B2 (en) 2017-05-25 2021-12-21 Sharkninja Operating Llc Robotic cleaner with dual cleaning rollers
US11103113B2 (en) * 2017-05-25 2021-08-31 Irobot Corporation Brush for autonomous cleaning robot
JP7243967B2 (en) 2017-06-02 2023-03-22 アクチエボラゲット エレクトロルックス Method for Detecting Level Differences on a Surface in Front of a Robotic Cleaning Device
US10595698B2 (en) 2017-06-02 2020-03-24 Irobot Corporation Cleaning pad for cleaning robot
JP6335372B2 (en) * 2017-06-22 2018-05-30 シャープ株式会社 Self-propelled electronic device
KR102085338B1 (en) * 2017-07-14 2020-03-05 에브리봇 주식회사 A robot cleaner and driving control method thereof
CN107440612A (en) * 2017-07-19 2017-12-08 深圳市晓控通信科技有限公司 A kind of sweeping robot for being capable of the dead ends of cleanning and automatic garbage spilling
US10483007B2 (en) 2017-07-25 2019-11-19 Intouch Technologies, Inc. Modular telehealth cart with thermal imaging and touch screen user interface
CN107397509A (en) * 2017-07-27 2017-11-28 无锡昊瑜节能环保设备有限公司 A kind of energy-saving sweeping robot of automatic dust removing
KR102014141B1 (en) 2017-08-07 2019-10-21 엘지전자 주식회사 Robot Cleaner
KR102024089B1 (en) 2017-08-07 2019-09-23 엘지전자 주식회사 Robot Cleaner
KR102011827B1 (en) 2017-08-07 2019-08-19 엘지전자 주식회사 Robot Cleaner And Controlling Method Thereof
KR102021828B1 (en) 2017-08-07 2019-09-17 엘지전자 주식회사 Cleaner
KR102033936B1 (en) 2017-08-07 2019-10-18 엘지전자 주식회사 Robot Cleaner
KR102014142B1 (en) 2017-08-07 2019-08-26 엘지전자 주식회사 Robot Cleaner
KR102000068B1 (en) 2017-08-07 2019-07-15 엘지전자 주식회사 Cleaner
KR102014140B1 (en) 2017-08-07 2019-08-26 엘지전자 주식회사 Robot Cleaner
USD860560S1 (en) * 2017-08-08 2019-09-17 Samsung Electronics Co., Ltd. Robot cleaner
USD860558S1 (en) * 2017-08-08 2019-09-17 Samsung Electronics Co., Ltd. Robot cleaner
USD860561S1 (en) * 2017-08-08 2019-09-17 Samsung Electronics Co., Ltd. Robot cleaner
DE102017118402A1 (en) * 2017-08-11 2019-02-14 Vorwerk & Co. Interholding Gmbh Self-propelled soil tillage implement
CN107482717B (en) * 2017-08-14 2023-07-18 深圳市优必选科技有限公司 Robot charging base and robot system
WO2019035050A1 (en) 2017-08-16 2019-02-21 Sharkninja Operating, Llc Robotic vacuum
US11636944B2 (en) 2017-08-25 2023-04-25 Teladoc Health, Inc. Connectivity infrastructure for a telehealth platform
DE102017120218A1 (en) * 2017-09-01 2019-03-07 RobArt GmbH MOTION PLANNING FOR AUTONOMOUS MOBILE ROBOTS
CN111163671B (en) 2017-09-07 2022-08-23 尚科宁家运营有限公司 Robot cleaner
US11426038B2 (en) 2017-09-11 2022-08-30 Sharkninja Operating Llc Cleaning device
JP2020533028A (en) 2017-09-11 2020-11-19 シャークニンジャ オペレーティング エルエルシー Cleaning device
USD868408S1 (en) * 2017-09-15 2019-11-26 Beijing Rockrobo Technology Co., Ltd. Tank
KR20200058400A (en) 2017-09-26 2020-05-27 에이비 엘렉트로룩스 Control the movement of the robot cleaning device
CA3073820A1 (en) 2017-10-06 2019-04-11 Mtd Products Inc High-efficiency lawn maintenance tool and high-efficiency cutting blade
US11274929B1 (en) * 2017-10-17 2022-03-15 AI Incorporated Method for constructing a map while performing work
WO2019083291A1 (en) * 2017-10-25 2019-05-02 엘지전자 주식회사 Artificial intelligence moving robot which learns obstacles, and control method therefor
CN108013838B (en) * 2017-10-31 2020-12-11 北京视觉世界科技有限公司 Monitoring method, device and equipment for cleaning equipment and storage medium
JP1610339S (en) * 2017-11-02 2018-08-06
KR20190054517A (en) * 2017-11-13 2019-05-22 삼성전자주식회사 Cleaner
US11614744B2 (en) * 2017-11-14 2023-03-28 Positec Power Tools (Suzhou) Co., Ltd. Self-moving apparatus and method for controlling same
CN107899976B (en) * 2017-11-15 2019-12-03 合肥京东方光电科技有限公司 A kind of cleaning device
USD848691S1 (en) * 2017-11-15 2019-05-14 Steven M Antler Bristles of a brush
USD848694S1 (en) * 2017-11-15 2019-05-14 Steven M Antler Bristles of a brush
US20190142233A1 (en) * 2017-11-16 2019-05-16 Irobot Corporation Washable bin for a robot vacuum cleaner
CN109808789A (en) * 2017-11-21 2019-05-28 富泰华工业(深圳)有限公司 Wheeled mobile robot it is anti-walk deflection device
CN109835171A (en) * 2017-11-24 2019-06-04 富泰华工业(深圳)有限公司 The fixed device of the driving wheel of wheeled mobile robot
USD896858S1 (en) * 2017-12-14 2020-09-22 The Hi-Tech Robotic Systemz Ltd Mobile robot
USD907084S1 (en) * 2017-12-14 2021-01-05 The Hi-Tech Robotic Systemz Ltd Mobile robot
USD906390S1 (en) * 2017-12-14 2020-12-29 The Hi-Tech Robotic Systemz Ltd Mobile robot
US11395571B2 (en) * 2017-12-18 2022-07-26 Techtronic Floor Care Technology Limited Surface cleaning device with triggerless fluid distribution mechanism
US11382477B2 (en) 2017-12-18 2022-07-12 Techtronic Floor Care Technology Limited Surface cleaning device with automated control
US11219347B2 (en) 2017-12-22 2022-01-11 Bissell Inc. Robotic cleaner
AU2018102050A4 (en) 2017-12-22 2019-01-17 Bissell Inc. Robotic cleaner with sweeper and rotating dusting pads
EP3505959A1 (en) 2017-12-29 2019-07-03 Acconeer AB An autonomous mobile cleaning robot
USD879851S1 (en) * 2017-12-29 2020-03-31 Beijing Geekplus Technology Co., Ltd. Robot
US10795377B2 (en) 2018-01-03 2020-10-06 AI Incorporated Method for autonomously controlling speed of components and functions of a robot
US10905297B2 (en) 2018-01-05 2021-02-02 Irobot Corporation Cleaning head including cleaning rollers for cleaning robots
US10878294B2 (en) * 2018-01-05 2020-12-29 Irobot Corporation Mobile cleaning robot artificial intelligence for situational awareness
KR102045003B1 (en) 2018-01-25 2019-11-14 엘지전자 주식회사 Controlling Method of Robot Cleaner
US11568236B2 (en) 2018-01-25 2023-01-31 The Research Foundation For The State University Of New York Framework and methods of diverse exploration for fast and safe policy improvement
DE102018201615B4 (en) * 2018-02-02 2023-05-17 BSH Hausgeräte GmbH Household robot and method for determining the distance of a household robot from a surface
US11154170B2 (en) * 2018-02-07 2021-10-26 Techtronic Floor Care Technology Limited Autonomous vacuum operation in response to dirt detection
CN110215153B (en) * 2018-03-02 2024-03-26 科沃斯机器人股份有限公司 Cleaning robot and operation control method thereof
USD879852S1 (en) * 2018-03-15 2020-03-31 Beijing Geekplus Technology Co., Ltd. Mobile robot
JP2019163001A (en) * 2018-03-20 2019-09-26 シャープ株式会社 Movable body
USD855080S1 (en) * 2018-03-23 2019-07-30 Amazon Technologies, Inc. Mobile drive unit
JP2018122136A (en) * 2018-04-09 2018-08-09 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
US10617299B2 (en) 2018-04-27 2020-04-14 Intouch Technologies, Inc. Telehealth cart that supports a removable tablet with seamless audio/video switching
US10595696B2 (en) 2018-05-01 2020-03-24 Sharkninja Operating Llc Docking station for robotic cleaner
CN108443465B (en) * 2018-05-09 2023-12-12 广东顺德奥为德科技有限公司 Anti-winding structure of side brush
US10706563B2 (en) * 2018-05-15 2020-07-07 Qualcomm Incorporated State and position prediction of observed vehicles using optical tracking of wheel rotation
CN108685528B (en) * 2018-05-18 2020-07-28 江苏昊科汽车空调有限公司 Cleaning device of robot sweeps floor
JP7047594B2 (en) 2018-05-23 2022-04-05 トヨタ自動車株式会社 Autonomous mobiles, their collision position detection methods, and programs
JP2019201880A (en) * 2018-05-23 2019-11-28 株式会社マキタ Robot dust collector
JP2019207463A (en) * 2018-05-28 2019-12-05 株式会社日立製作所 Robot, behavior detection server, and behavior detection system
WO2019237031A1 (en) 2018-06-07 2019-12-12 Deka Products Limited Partnership System and method for distributed utility service execution
USD929478S1 (en) 2018-06-15 2021-08-31 Mobile Industrial Robots A/S Mobile robot having an illuminated region
USD907677S1 (en) * 2018-06-15 2021-01-12 Mobile Industrial Robots A/S Mobile robot
US11666933B2 (en) * 2018-06-21 2023-06-06 Revolutionice Inc. Automated painting system with zero-turn radius robotic base
JP7163422B2 (en) * 2018-06-22 2022-10-31 ビッセル インク. surface cleaner and tray
CN109349964B (en) * 2018-07-04 2021-04-02 安徽省徽腾智能交通科技有限公司泗县分公司 Indoor floor cleaning method
KR20210032482A (en) 2018-07-20 2021-03-24 샤크닌자 오퍼레이팅 엘엘씨 Robot cleaner debris removal docking station
CN110786784B (en) * 2018-08-01 2022-09-06 尚科宁家运营有限公司 Robot vacuum cleaner
CN108968799A (en) * 2018-08-09 2018-12-11 苏州海力电器有限公司 Dust catcher with double round brush
USD911406S1 (en) * 2018-08-17 2021-02-23 Grey Orange Pte. Ltd Robot for moving articles within a facility
USD888346S1 (en) * 2018-08-23 2020-06-23 Chengdu Saiguo Iot Technology Co., Ltd. Pet feeder
US10921819B2 (en) 2018-08-28 2021-02-16 Asi Technologies, Inc. Automated guided vehicle system and automated guided vehicle for use therein
KR102168363B1 (en) * 2018-08-29 2020-10-22 엘지전자 주식회사 Guidance robot
US11039725B2 (en) 2018-09-05 2021-06-22 Irobot Corporation Interface for robot cleaner evacuation
US10824159B2 (en) 2018-09-07 2020-11-03 Irobot Corporation Autonomous floor-cleaning robot having obstacle detection force sensors thereon and related methods
CN109259663B (en) * 2018-10-10 2021-01-29 海宁强鑫家私有限公司 Dust collection device capable of preventing forward leather sofa from dust removal and tearing damage
KR20210080399A (en) * 2018-10-19 2021-06-30 비쎌 인코포레이티드 Surface cleaning device with proximity triggered user interface
KR20210079300A (en) * 2018-10-22 2021-06-29 피아지오 패스트 포워드 인코포레이티드 Mobile carrier with replaceable cargo
CN109106296B (en) * 2018-10-24 2023-08-25 高启嘉 Floor cleaning machine
USD899475S1 (en) * 2018-10-31 2020-10-20 Hangzhou Hikrobot Technology Co., Ltd Automatic guided transport vehicle
AU2019370468A1 (en) 2018-11-01 2021-05-20 Sharkninja Operating Llc Cleaning device
CN109367653A (en) * 2018-11-01 2019-02-22 华南智能机器人创新研究院 A kind of 4 wheel driven robot chassis of the floating type avoidance in interior
KR20200055819A (en) * 2018-11-08 2020-05-22 현대자동차주식회사 Service robot and method for operating thereof
JP2022507062A (en) * 2018-11-09 2022-01-18 ▲広▼▲東▼美的白色家▲電▼技▲術▼▲創▼新中心有限公司 Floor cleaning robot
CN109483192B (en) * 2018-11-26 2019-11-12 北京卫星制造厂有限公司 A kind of spatial truss unit quick fit system and method based on robot
USD892187S1 (en) 2018-11-30 2020-08-04 Mtd Products Inc Robotic mower
CH715633A2 (en) * 2018-12-12 2020-06-15 Kemaro Ag Device and method for automatically performing an activity, in particular for cleaning dirty surfaces.
US11426044B1 (en) 2018-12-18 2022-08-30 Sharkninja Operating Llc Cleaning device
US20200187737A1 (en) 2018-12-18 2020-06-18 Sharkninja Operating Llc Cleaning device
CN111345742B (en) * 2018-12-21 2022-03-22 苏州宝时得电动工具有限公司 Cleaning robot and control method
WO2020125758A1 (en) * 2018-12-21 2020-06-25 苏州宝时得电动工具有限公司 Cleaning robot and control method
KR102335633B1 (en) * 2019-01-02 2021-12-07 엘지전자 주식회사 mobile robot
KR20210098562A (en) 2019-01-02 2021-08-11 엘지전자 주식회사 mobile robot
CN109512344A (en) * 2019-01-04 2019-03-26 云鲸智能科技(东莞)有限公司 A kind of mobile robot
TWI698211B (en) * 2019-01-15 2020-07-11 燕成祥 Full-floating contact changing device of cleaning robot
USD909440S1 (en) * 2019-01-28 2021-02-02 Tata Consultancy Services Limited Cobot mounting platform
USD889517S1 (en) 2019-01-31 2020-07-07 Mtd Products Inc Robotic mower body
CN111493743B (en) * 2019-01-31 2022-03-08 好样科技有限公司 Cleaning machine and path planning method thereof
JP7198104B2 (en) 2019-02-06 2022-12-28 株式会社マキタ Cleaner
SE544283C2 (en) * 2019-02-20 2022-03-22 Husqvarna Ab Robotic work tool and method for collision handling
USD936719S1 (en) * 2019-02-20 2021-11-23 Lg Electronics Inc. Home hub robot
US11109727B2 (en) 2019-02-28 2021-09-07 Irobot Corporation Cleaning rollers for cleaning robots
JP7280719B2 (en) * 2019-03-05 2023-05-24 東芝ライフスタイル株式会社 autonomous vacuum cleaner
JP7224967B2 (en) 2019-03-05 2023-02-20 株式会社マキタ upright dust collector
TWD211374S (en) * 2019-03-18 2021-05-11 大陸商北京小米移動軟件有限公司 Sweeper
JP7460328B2 (en) 2019-03-20 2024-04-02 Thk株式会社 Mobile robot, mobile robot control system, and mobile robot control method
JP7231469B2 (en) * 2019-04-19 2023-03-01 東芝ライフスタイル株式会社 autonomous vacuum cleaner
US11559182B2 (en) 2019-04-25 2023-01-24 Bissell Inc. Autonomous floor cleaner with drive wheel assembly
CN109997704B (en) * 2019-05-13 2023-10-20 哈尔滨天河自动化设备有限公司 Clear excrement robot in pig house
CN214231225U (en) * 2019-06-05 2021-09-21 尚科宁家运营有限公司 Robot cleaner and cleaning pad for robot cleaner
US11552488B2 (en) 2019-06-07 2023-01-10 Te Connectivity Solutions Gmbh Charging system for a mobile device
CA3082300C (en) 2019-06-10 2022-04-19 Bissell Inc. Autonomous floor cleaner with carry handle
JP7231503B2 (en) 2019-06-28 2023-03-01 株式会社マキタ Optical sensor and robot dust collector
KR20190087355A (en) * 2019-07-05 2019-07-24 엘지전자 주식회사 Method for driving cleaning robot and cleaning robot which drives using regional human activity data
KR102305206B1 (en) * 2019-07-11 2021-09-28 엘지전자 주식회사 Robot cleaner for cleaning in consideration of floor state through artificial intelligence and operating method thereof
CN110250987B (en) * 2019-07-24 2021-01-29 郑州邦浩电子科技有限公司 Window cleaning robot with edge detection function
WO2021021628A1 (en) * 2019-07-26 2021-02-04 Sharkninja Operating Llc Side brushes for a robotic vacuum cleaner
US11547262B2 (en) * 2019-07-31 2023-01-10 Lg Electronics Inc. Cleaner
KR102314535B1 (en) * 2019-07-31 2021-10-18 엘지전자 주식회사 The moving robot
KR102293657B1 (en) * 2019-07-31 2021-08-24 엘지전자 주식회사 Moving Robot
CN110448230A (en) * 2019-08-09 2019-11-15 湛江维尔科技服务有限公司 A kind of intelligent domestic clears up sweeping robot automatically
USD940771S1 (en) * 2019-08-15 2022-01-11 Beijing Xiaomi Mobile Software Co., Ltd. Robot vacuum cleaner
US11974813B1 (en) * 2019-08-26 2024-05-07 Verily Life Sciences Llc Efficiency of robotic surgeries via surgical procedure data analysis
DE102019213539A1 (en) 2019-09-05 2021-03-11 Henkel Ag & Co. Kgaa A cleaning robot comprising a cleaning cloth and a cleaning agent
CN210931170U (en) * 2019-09-09 2020-07-07 宁波博瑞德凯国际贸易有限公司 Improved electric cleaner
CN110623592A (en) * 2019-09-17 2019-12-31 奇鋐科技股份有限公司 Multifunctional cleaning device
KR20210036736A (en) * 2019-09-26 2021-04-05 엘지전자 주식회사 Robot Cleaner And Controlling Method Thereof
KR20210037802A (en) * 2019-09-27 2021-04-07 엘지전자 주식회사 Robotic Cleaner
US11395568B2 (en) 2019-10-14 2022-07-26 Asia Vital Components Co., Ltd. Multifunctional cleaning device
JP7369592B2 (en) * 2019-10-30 2023-10-26 株式会社マキタ Detection device and robot dust collector
CN110802637A (en) * 2019-10-30 2020-02-18 深圳市优必选科技股份有限公司 Robot and shell structure thereof
US11219345B2 (en) 2019-10-31 2022-01-11 Sharkninja Operating Llc Replacement head for a vacuum
US11266283B2 (en) 2019-10-31 2022-03-08 Sharkninja Operating Llc Replacement head for a vacuum
US11452414B2 (en) 2019-10-31 2022-09-27 Sharkninja Operating Llc Replacement head for a vacuum
US20210153705A1 (en) * 2019-11-25 2021-05-27 Sharkninja Operating Llc Cleaning device
USD930298S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930300S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
USD930299S1 (en) * 2019-11-28 2021-09-07 Samsung Electronics Co., Ltd. Robot vacuum cleaner
CN113261877A (en) * 2020-02-17 2021-08-17 苏州宝时得电动工具有限公司 Cleaning robot
US20210251444A1 (en) * 2020-02-19 2021-08-19 Bissell Inc. Surface cleaning apparatus with damp cleaning
US11179014B2 (en) 2020-02-19 2021-11-23 Sharkninja Operating Llc Cleaning device system and method for use
KR20210117810A (en) * 2020-03-20 2021-09-29 엘지전자 주식회사 Robot vacuum cleaner
US20210323156A1 (en) * 2020-04-17 2021-10-21 Brain Corporation Systems and methods for quantitatively measuring wheel slippage in differential drive robots
DE102020111411A1 (en) * 2020-04-27 2021-10-28 Arcus Elektrotechnik Alois Schiffmann Gmbh CAPACITIVE VOLTAGE TESTER
US11717587B2 (en) 2020-05-08 2023-08-08 Robust AI, Inc. Ultraviolet cleaning trajectory modeling
CN111759241B (en) * 2020-06-24 2021-10-15 湖南格兰博智能科技有限责任公司 Sweeping path planning and navigation control method for sweeping robot
CN111685669A (en) * 2020-07-22 2020-09-22 西北工业大学 Robot of sweeping floor with anticollision function and convenient to detach maintenance
KR102473746B1 (en) * 2020-07-22 2022-12-02 삼성전자주식회사 Cleaning robot and controlling method thereof
CN111774859B (en) * 2020-07-29 2022-06-28 四川极速智能科技有限公司 Assembly device and robot of robot front end vision subassembly
USD943222S1 (en) * 2020-09-10 2022-02-08 Shenzhen Leben Technology Co., Ltd. Pet feeder
ES2899453A1 (en) * 2020-09-10 2022-03-11 Cecotec Res And Development Sl Operating procedure for cleaning robot and/or disinfection with ozone generation (Machine-translation by Google Translate, not legally binding)
US11794993B2 (en) 2020-10-19 2023-10-24 Jamison F. Gavin Autonomously propelled waste receptacle and associated methods
CN112428846B (en) * 2020-10-22 2022-04-19 浙江晨泰科技股份有限公司 Charging pile capable of preventing charging head from falling off
CN112304035A (en) * 2020-10-30 2021-02-02 皖江工学院 Intelligent ground dehumidification machine and working method thereof
DE102020132203A1 (en) 2020-12-03 2022-06-09 Vorwerk & Co. Interholding Gesellschaft mit beschränkter Haftung Self-propelled tillage implement having a plurality of fall sensors
DE102020132205A1 (en) 2020-12-03 2022-06-09 Vorwerk & Co. Interholding Gesellschaft mit beschränkter Haftung Self-propelled tillage implement with at least one fall sensor
CN112549078A (en) * 2020-12-03 2021-03-26 诸暨市创新弹簧有限公司 Accurate comprehensive industrial robot maintenance detection device
CN112596527B (en) * 2020-12-17 2023-10-24 珠海一微半导体股份有限公司 Robot clamping detection method based on slope structure, chip and cleaning robot
US11486071B2 (en) * 2020-12-21 2022-11-01 Brian A. WALKER Spray device and method for use thereof
USD967883S1 (en) * 2021-01-06 2022-10-25 Grey Orange International Inc. Robot for handling goods in a facility
IT202100002459A1 (en) * 2021-02-04 2022-08-04 Ing Ferretti S R L DEVICE FOR CLEANING A BODY, PREFERABLY A FORM OF A DAIRY PRODUCT.
CA207237S (en) 2021-02-10 2022-08-05 Beijing Roborock Tech Co Ltd Supporting plate for cleaning pad for robotic vacuum cleaner
CN112790672B (en) * 2021-02-10 2022-08-26 北京石头创新科技有限公司 Automatic cleaning equipment control method and device, medium and electronic equipment
US11486152B2 (en) * 2021-03-04 2022-11-01 American Mammoth Tool Co. Pressure device for adjoining dovetailed flooring material
WO2022194387A1 (en) 2021-03-19 2022-09-22 Alfred Kärcher SE & Co. KG Self-driving and self-steering floor-cleaning device, and floor-cleaning system having a floor-cleaning device of this type
CN113100669B (en) * 2021-04-08 2023-02-21 云鲸智能(深圳)有限公司 Cleaning robot, method of controlling the same, and computer-readable storage medium
CN113110531B (en) * 2021-04-19 2021-11-12 飞马滨(青岛)智能科技有限公司 Automatic wall-adhering method for underwater robot and ship to be washed
USD971272S1 (en) 2021-06-25 2022-11-29 Mtd Products Inc Robotic mower body
USD971271S1 (en) 2021-06-25 2022-11-29 Mtd Products Inc Robotic mower
CN113585141B (en) * 2021-06-28 2023-04-21 苏州爱之爱清洁电器科技有限公司 Screwing self-locking connecting device for detachable sewage pipeline of cleaning machine and implementation method
CN113499002B (en) * 2021-07-05 2023-03-31 广州科语机器人有限公司 Cleaning system and control method of cleaning base station
US20230009583A1 (en) * 2021-07-07 2023-01-12 Nilfisk A/S Edge cleaning by robotic cleaning machine
CN113477592A (en) * 2021-07-13 2021-10-08 苏州热工研究院有限公司 Cleaning device and method for secondary side hard sludge of steam generator
USD980874S1 (en) 2021-07-23 2023-03-14 Mtd Products Inc Robotic mower body
USD980873S1 (en) 2021-07-23 2023-03-14 Mtd Products Inc Robotic mower
CN113854908B (en) * 2021-09-30 2022-12-23 易宝软件有限公司 Self-cleaning method of floor cleaning machine, electronic equipment and computer storage medium
IL287154A (en) * 2021-10-11 2023-05-01 BEN ZEEV Nir Water-efficient surface cleaning method and system
DE102021130801A1 (en) 2021-11-24 2023-05-25 Audi Aktiengesellschaft Loading robot and method for operating a loading robot
US11884223B2 (en) 2021-12-01 2024-01-30 Google Llc Ground vehicle bumper system
CN114371696B (en) * 2021-12-06 2024-02-27 深圳市普渡科技有限公司 Mobile device, control method, robot, and storage medium
US11937760B2 (en) 2022-02-03 2024-03-26 Black & Decker, Inc. Vacuum cleaner and cleaning accessory for a vacuum cleaner
US11678781B1 (en) 2022-02-03 2023-06-20 Black & Decker, Inc. Vacuum cleaner and cleaning accessory for a vacuum cleaner
US11950748B2 (en) 2022-02-03 2024-04-09 Black & Decker, Inc. Vacuum cleaner and cleaning accessory for a vacuum cleaner
US20230284848A1 (en) 2022-02-03 2023-09-14 Black & Decker, Inc. Vacuum Cleaner and Cleaning Accessory for a Vacuum Cleaner
DE102022102924A1 (en) 2022-02-08 2023-08-10 Alfred Kärcher SE & Co. KG Floor cleaning device with movable scraper element
DE202022101313U1 (en) 2022-02-08 2022-06-20 Alfred Kärcher SE & Co. KG Floor cleaning device with movable scraper element
WO2023151833A1 (en) 2022-02-08 2023-08-17 Alfred Kärcher SE & Co. KG Floor cleaning device with a sweeping device and method for operating a floor cleaning device
DE102022133009A1 (en) 2022-02-08 2023-08-10 Alfred Kärcher SE & Co. KG Floor cleaning device with pivot bearing device with counter bearing
WO2023152163A1 (en) 2022-02-08 2023-08-17 Alfred Kärcher SE & Co. KG Floor cleaning device with a pivot bearing unit with an abutment
DE202022101312U1 (en) 2022-02-08 2022-06-20 Alfred Kärcher SE & Co. KG Floor cleaning device with cassette
DE102022102937A1 (en) 2022-02-08 2023-08-10 Alfred Kärcher SE & Co. KG Floor cleaning device with dirt fluid tank
DE102022102918A1 (en) 2022-02-08 2023-08-10 Alfred Kärcher SE & Co. KG Floor cleaning device with cassette
DE202022101314U1 (en) 2022-02-08 2022-06-20 Alfred Kärcher SE & Co. KG Floor cleaning device with dirt fluid tank
TWI831237B (en) * 2022-06-08 2024-02-01 旺玖科技股份有限公司 Device for executing motor recognition and protection and vacuum cleaner using the same
WO2024002287A1 (en) * 2022-07-01 2024-01-04 深圳尼宝科技有限公司 Cleaning device
US20240041285A1 (en) * 2022-08-02 2024-02-08 Irobot Corp Mobile cleaning robot suspension
CN115336937B (en) * 2022-08-17 2023-12-29 深圳朝晖兴科技有限公司 Obstacle avoidance navigation device of laboratory automatic cleaning robot
DE102022124120A1 (en) 2022-09-20 2024-03-21 Alfred Kärcher SE & Co. KG Floor cleaning device with a basin and method for operating a floor cleaning device

Family Cites Families (1386)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US462995A (en) * 1891-11-10 Ratchet-wrench
US724605A (en) * 1901-10-07 1903-04-07 William F Norman Valve for bucket-bottoms.
US1480662A (en) * 1922-09-11 1924-01-15 Ansel M Caine Fountain scrubbing machine
US1546071A (en) * 1923-12-14 1925-07-14 Springfield Motor Sweeper Comp Gutter brush for street sweepers
NL28010C (en) 1928-01-03
US1780221A (en) 1930-05-08 1930-11-04 Buchmann John Brush
FR722755A (en) 1930-09-09 1932-03-25 Machine for dusting, stain removal and cleaning of laid floors and carpets
GB381622A (en) 1931-07-16 1932-10-13 Frederick Aubrey Norris Improvements in or connected with vacuum cleaner installations
US1970302A (en) 1932-09-13 1934-08-14 Charles C Gerhardt Brush
US2136324A (en) 1934-09-05 1938-11-08 Simon Louis John Apparatus for cleansing floors and like surfaces
GB449815A (en) 1935-02-21 1936-07-06 Richard Norman Booth Improvements in and relating to vacuum cleaning installations
US2302111A (en) 1940-11-26 1942-11-17 Air Way Electric Appl Corp Vacuum cleaner
US2353621A (en) 1941-10-13 1944-07-11 Ohio Citizens Trust Company Dust indicator for air-method cleaning systems
US2770825A (en) 1951-09-10 1956-11-20 Bissell Carpet Sweeper Co Carpet sweeper and brush cleaning combs therefor
GB702426A (en) 1951-12-28 1954-01-13 Bissell Carpet Sweeper Co Improvements in or relating to carpet sweepers
US2930055A (en) * 1957-12-16 1960-03-29 Burke R Fallen Floor wax dispensing and spreading unit
US3888181A (en) 1959-09-10 1975-06-10 Us Army Munition control system
US3119369A (en) 1960-12-28 1964-01-28 Ametek Inc Device for indicating fluid flow
US3166138A (en) * 1961-10-26 1965-01-19 Jr Edward D Dunn Stair climbing conveyance
US3208094A (en) * 1964-01-10 1965-09-28 Frank L Pilkington Liquid spreading device
US3550714A (en) 1964-10-20 1970-12-29 Mowbot Inc Lawn mower
US3375375A (en) 1965-01-08 1968-03-26 Honeywell Inc Orientation sensing means comprising photodetectors and projected fans of light
US3381652A (en) 1965-10-21 1968-05-07 Nat Union Electric Corp Visual-audible alarm for a vacuum cleaner
DE1503746B1 (en) 1965-12-23 1970-01-22 Bissell Gmbh Carpet sweeper
US3333564A (en) 1966-06-28 1967-08-01 Sunbeam Corp Vacuum bag indicator
US3569727A (en) 1968-09-30 1971-03-09 Bendix Corp Control means for pulse generating apparatus
SE320779B (en) 1968-11-08 1970-02-16 Electrolux Ab
JPS5046239Y1 (en) 1969-08-12 1975-12-27
JPS5023269B1 (en) 1969-12-16 1975-08-06
US3649981A (en) * 1970-02-25 1972-03-21 Wayne Manufacturing Co Curb travelling sweeper vehicle
US3989311A (en) 1970-05-14 1976-11-02 Debrey Robert J Particle monitoring apparatus
US3674316A (en) 1970-05-14 1972-07-04 Robert J De Brey Particle monitor
CA916867A (en) * 1970-06-03 1972-12-19 Horst Elias Sweeper
US3845831A (en) 1970-08-11 1974-11-05 Martin C Vehicle for rough and muddy terrain
US3690559A (en) 1970-09-16 1972-09-12 Robert H Rudloff Tractor mounted pavement washer
DE2049136A1 (en) 1970-10-07 1972-04-13 Bosch Gmbh Robert vehicle
CA908697A (en) 1971-01-21 1972-08-29 Bombardier Jerome Suspension for tracked vehicles
ES403465A1 (en) 1971-05-26 1975-05-01 Tecneco Spa Device for measuring the opacity of smokes
US3678882A (en) 1971-05-28 1972-07-25 Nat Union Electric Corp Combination alarm and filter bypass device for a suction cleaner
DE2128842C3 (en) 1971-06-11 1980-12-18 Robert Bosch Gmbh, 7000 Stuttgart Fuel electrode for electrochemical fuel elements
SE362784B (en) 1972-02-11 1973-12-27 Electrolux Ab
JPS5257527Y2 (en) 1972-04-03 1977-12-27
US4175892A (en) 1972-05-10 1979-11-27 Brey Robert J De Particle monitor
DE2228778A1 (en) 1972-06-13 1974-01-03 Schoppe Fritz METHOD AND DEVICE FOR INDEPENDENT MACHINING OF A LIMITED AREA
US3809004A (en) 1972-09-18 1974-05-07 W Leonheart All terrain vehicle
FR2211202B3 (en) 1972-12-21 1976-10-15 Haaga Hermann
US3863285A (en) 1973-07-05 1975-02-04 Hiroshi Hukuba Carpet sweeper
JPS5042076U (en) 1973-08-16 1975-04-28
JPS5046246U (en) 1973-08-28 1975-05-09
JPS5230606Y2 (en) 1973-09-13 1977-07-13
US3851349A (en) 1973-09-26 1974-12-03 Clarke Gravely Corp Floor scrubber flow divider
GB1473109A (en) 1973-10-05 1977-05-11
US4119900A (en) 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
IT1021244B (en) * 1974-09-10 1978-01-30 Ceccato & Co ROTARY BRUSH WITH VERTICAL SHAFT FOR VEHICLE WASHING SYSTEMS IN GENERAL
JPS5040519Y1 (en) 1974-10-17 1975-11-19
JPS5321869Y2 (en) 1974-11-08 1978-06-07
US4012681A (en) 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US3989931A (en) 1975-05-19 1976-11-02 Rockwell International Corporation Pulse count generator for wide range digital phase detector
SE394077B (en) 1975-08-20 1977-06-06 Electrolux Ab DEVICE BY DUST CONTAINER.
JPS5933511B2 (en) 1976-02-19 1984-08-16 増田 将翁 Internal grinding machine for cylindrical workpieces
US4099284A (en) 1976-02-20 1978-07-11 Tanita Corporation Hand sweeper for carpets
JPS5714726Y2 (en) 1976-07-10 1982-03-26
JPS5316183A (en) 1976-07-28 1978-02-14 Hitachi Ltd Fluid pressure driving device
JPS5321869U (en) 1976-07-31 1978-02-23
JPS5321869A (en) * 1976-08-13 1978-02-28 Sharp Corp Simplified cleaner with dust removing means
JPS53110257U (en) 1977-02-07 1978-09-04
JPS53110257A (en) 1977-03-08 1978-09-26 Matsushita Electric Ind Co Ltd Automatic vacuum cleaner
US4618213A (en) 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
JPS6038912B2 (en) 1977-05-24 1985-09-03 ソニー株式会社 Signal processing method
JPS6026312B2 (en) 1977-06-23 1985-06-22 三菱電機株式会社 Laterally excited gas circulation type laser oscillation device
SE401890B (en) 1977-09-15 1978-06-05 Electrolux Ab VACUUM CLEANER INDICATOR DEVICE
US4198727A (en) 1978-01-19 1980-04-22 Farmer Gary L Baseboard dusters for vacuum cleaners
FR2416480A1 (en) 1978-02-03 1979-08-31 Thomson Csf RADIANT SOURCE LOCATION DEVICE AND STEERING TRACKING SYSTEM INCLUDING SUCH A DEVICE
JPS54119306A (en) 1978-03-09 1979-09-17 Kawasaki Steel Co Method and apparatus for spraying water to blast furnace top
US4196727A (en) 1978-05-19 1980-04-08 Becton, Dickinson And Company See-through anesthesia mask
EP0007790A1 (en) 1978-08-01 1980-02-06 Imperial Chemical Industries Plc Driverless vehicle carrying non-directional detectors auto-guided by light signals
EP0007789B1 (en) 1978-08-01 1984-03-14 Imperial Chemical Industries Plc Driverless vehicle carrying directional detectors auto-guided by light signals
USD258901S (en) 1978-10-16 1981-04-14 Douglas Keyworth Wheeled figure toy
JPS595315B2 (en) 1978-10-31 1984-02-03 東和精工株式会社 Lower tag attaching device
JPS6110585Y2 (en) 1978-12-13 1986-04-04
JPS5588749A (en) 1978-12-26 1980-07-04 Sumitomo Electric Industries Percutaneous* simultaneous measuring sensor of concentration of oxygen in blood and quantity of blood flow that circulate in affected part
GB2038615B (en) 1978-12-31 1983-04-13 Nintendo Co Ltd Self-moving type vacuum cleaner
US4373804A (en) 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5164579A (en) 1979-04-30 1992-11-17 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination
US4297578A (en) 1980-01-09 1981-10-27 Carter William R Airborne dust monitor
US4367403A (en) * 1980-01-21 1983-01-04 Rca Corporation Array positioning system with out-of-focus solar cells
US4305234A (en) 1980-02-04 1981-12-15 Flo-Pac Corporation Composite brush
US4492058A (en) 1980-02-14 1985-01-08 Adolph E. Goldfarb Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability
US4369543A (en) * 1980-04-14 1983-01-25 Jen Chen Remote-control radio vacuum cleaner
US4328546A (en) * 1980-04-15 1982-05-04 Sun Electric Corporation Apparatus for evaluating the performance of an internal combustion engine using exhaust gas emission data
US4309578A (en) * 1980-06-09 1982-01-05 Porta Systems Corp. Telephone ringer load simulator
JPS5714726A (en) 1980-07-01 1982-01-26 Minolta Camera Co Ltd Measuring device for quantity of light
JPS5715853A (en) 1980-07-01 1982-01-27 Shinko Electric Co Ltd Linear motor type nonmagnetic metal selector
JPS595315Y2 (en) 1980-09-13 1984-02-17 講三 鈴木 Nose ring for friend fishing
JPS5764217A (en) 1980-10-07 1982-04-19 Canon Inc Automatic focusing camera
JPS5933511Y2 (en) 1980-10-14 1984-09-18 日本鋼管株式会社 helical scum skimmer
JPS5771968A (en) 1980-10-21 1982-05-06 Nagasawa Seisakusho Button lock
JPS603251Y2 (en) 1980-12-24 1985-01-29 株式会社岡村製作所 Cabinet with revolving door
US4401909A (en) 1981-04-03 1983-08-30 Dickey-John Corporation Grain sensor using a piezoelectric element
US4482960A (en) 1981-11-20 1984-11-13 Diffracto Ltd. Robot tractors
US4769700A (en) 1981-11-20 1988-09-06 Diffracto Ltd. Robot tractors
JPS57196155A (en) 1981-05-27 1982-12-02 Hitachi Koki Co Ltd Distributor
JPS5814730A (en) 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body
USD278733S (en) 1981-08-25 1985-05-07 Tomy Kogyo Company, Incorporated Animal-like figure toy
US4416033A (en) 1981-10-08 1983-11-22 The Hoover Company Full bag indicator
US4652917A (en) 1981-10-28 1987-03-24 Honeywell Inc. Remote attitude sensor using single camera and spiral patterns
JPS58100840A (en) 1981-12-12 1983-06-15 Canon Inc Finder of camera
US4818213A (en) * 1982-04-12 1989-04-04 Roy Siegfried S Injection blow molding
JPS58213586A (en) 1982-06-04 1983-12-12 Toshiba Corp Phase synthesis device
JPS595315A (en) 1982-07-02 1984-01-12 Hitachi Ltd Moving type device for automatic monitoring and checking work
CH656665A5 (en) 1982-07-05 1986-07-15 Sommer Schenk Ag METHOD AND CLEANING DEVICE FOR CLEANING A WATER BASIN.
JPS5914711A (en) 1982-07-13 1984-01-25 株式会社クボタ Unmanned running working vehicle
GB2128842B (en) 1982-08-06 1986-04-16 Univ London Method of presenting visual information
JPS5933511A (en) 1982-08-19 1984-02-23 Fanuc Ltd Accelerating and decelerating device
US4445245A (en) 1982-08-23 1984-05-01 Lu Ning K Surface sweeper
JPS5933511U (en) 1982-08-24 1984-03-01 三菱電機株式会社 Safety device for self-driving trolleys
US4624026A (en) 1982-09-10 1986-11-25 Tennant Company Surface maintenance machine with rotary lip
US4556313A (en) 1982-10-18 1985-12-03 United States Of America As Represented By The Secretary Of The Army Short range optical rangefinder
JPS5994005A (en) 1982-11-22 1984-05-30 Mitsubishi Electric Corp Position detector for unmanned self-travelling truck
JPS5999308A (en) 1982-11-30 1984-06-08 Komatsu Ltd Distance measuring sensor
JPS5994005U (en) 1982-12-16 1984-06-26 株式会社古川製作所 Device that manipulates bags with multiple suction cups
JPS59112311A (en) 1982-12-20 1984-06-28 Komatsu Ltd Guiding method of unmanned moving body
JPS5999308U (en) 1982-12-23 1984-07-05 三菱電機株式会社 Fasteners for lighting fixture covers
JPS59120124A (en) * 1982-12-28 1984-07-11 松下電器産業株式会社 Electric cleaner
JPS59131668A (en) 1983-01-17 1984-07-28 Takeda Chem Ind Ltd Plastisol composition of vinyl chloride resin
JPS59112311U (en) 1983-01-17 1984-07-28 九州日立マクセル株式会社 Cassette type cleaning device for magnetic heads
CH646044A5 (en) 1983-01-26 1984-11-15 Gottfried Gremminger SURFACE CLEANING DEVICE.
JPS59120124U (en) 1983-02-02 1984-08-13 三菱鉛筆株式会社 injection mold
JPS59131668U (en) 1983-02-24 1984-09-04 日本原子力研究所 piezoelectric valve
JPS59164973A (en) 1983-03-10 1984-09-18 Nippon Tsushin Gijutsu Kk Pair type measuring head for robot
US4481692A (en) 1983-03-29 1984-11-13 Gerhard Kurz Operating-condition indicator for vacuum cleaners
JPS59184917A (en) 1983-04-05 1984-10-20 Tsubakimoto Chain Co Guiding method of unmanned truck
US4575211A (en) 1983-04-18 1986-03-11 Canon Kabushiki Kaisha Distance measuring device
JPS59164973U (en) 1983-04-20 1984-11-05 株式会社 ミタチ音響製作所 Drive mechanism of linear tracking arm
DE3317376A1 (en) 1983-05-13 1984-11-15 Diehl GmbH & Co, 8500 Nürnberg Safety circuit for a projectile fuzing circuit
JPS59212924A (en) 1983-05-17 1984-12-01 Mitsubishi Electric Corp Position detector for traveling object
US4477998A (en) 1983-05-31 1984-10-23 You Yun Long Fantastic wall-climbing toy
JPS59226909A (en) 1983-06-07 1984-12-20 Kobe Steel Ltd Positioning method of automotive robot
US4513469A (en) * 1983-06-13 1985-04-30 Godfrey James O Radio controlled vacuum cleaner
JPS603251U (en) 1983-06-21 1985-01-11 スズキ株式会社 Cylinder head cooling system
JPS6026312U (en) 1983-07-29 1985-02-22 キヤノン株式会社 Retaining ring
JPS6089213A (en) 1983-10-19 1985-05-20 Komatsu Ltd Detecting method for position and direction of unmanned truck
DE3478824D1 (en) 1983-10-26 1989-08-03 Automax Kk Control system for mobile robot
US4700301A (en) 1983-11-02 1987-10-13 Dyke Howard L Method of automatically steering agricultural type vehicles
JPS6089213U (en) 1983-11-26 1985-06-19 小畑 邦夫 thin film gloves
JPS60118912U (en) 1984-01-18 1985-08-12 アルプス電気株式会社 Code wheel of reflective optical rotary encoder
DE3404202A1 (en) 1984-02-07 1987-05-14 Wegmann & Co Device for the remotely controlled guidance of armoured combat vehicles
DE3431164A1 (en) 1984-02-08 1985-08-14 Gerhard 7262 Althengstett Kurz VACUUM CLEANER
DE3431175C2 (en) 1984-02-08 1986-01-09 Gerhard 7262 Althengstett Kurz Protective device for dust collection devices
US4712740A (en) 1984-03-02 1987-12-15 The Regina Co., Inc. Venturi spray nozzle for a cleaning device
HU191301B (en) 1984-03-23 1987-02-27 Richter Gedeon Vegyeszeti Gyar Rt,Hu Process for preparing 1-/hydroxy-methyl/-1,6,7,11b-tetrahydro-2h,4h-/1,3/-oxazino- or -thiazino/4,3-a/isoquinoline -derivatives
US4626995A (en) 1984-03-26 1986-12-02 Ndc Technologies, Inc. Apparatus and method for optical guidance system for automatic guided vehicle
JPS60162832U (en) 1984-04-04 1985-10-29 楯 節男 Exhaust duct
JPS60211510A (en) 1984-04-05 1985-10-23 Komatsu Ltd Position detecting method of mobile body
JPS60217576A (en) 1984-04-12 1985-10-31 Nippon Gakki Seizo Kk Disc case
DE3413793A1 (en) 1984-04-12 1985-10-24 Brown, Boveri & Cie Ag, 6800 Mannheim DRIVE FOR A SWITCH
US4832098A (en) 1984-04-16 1989-05-23 The Uniroyal Goodrich Tire Company Non-pneumatic tire with supporting and cushioning members
JPS60171252U (en) * 1984-04-20 1985-11-13 三洋電機株式会社 vacuum cleaner
US4620285A (en) 1984-04-24 1986-10-28 Heath Company Sonar ranging/light detection system for use in a robot
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
ZA853615B (en) 1984-05-31 1986-02-26 Ici Plc Vehicle guidance means
JPS60259895A (en) 1984-06-04 1985-12-21 Toshiba Corp Multi tube type super heat steam returning device
US4638445A (en) * 1984-06-08 1987-01-20 Mattaboni Paul J Autonomous mobile robot
JPS6123221A (en) 1984-07-11 1986-01-31 Oki Electric Ind Co Ltd Guiding system of mobile truck
JPS6170407A (en) 1984-08-08 1986-04-11 Canon Inc Instrument for measuring distance
JPS6190697A (en) 1984-10-09 1986-05-08 松下電器産業株式会社 Clothing dryer
JPS6197712A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Target of infrared-ray tracking robot
JPS6197711A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Infrared-ray tracking robot system
IT8423851V0 (en) 1984-11-21 1984-11-21 Cavalli Alfredo MULTI-PURPOSE HOUSEHOLD APPLIANCE PARTICULARLY FOR CLEANING FLOORS, CARPETS AND CARPETS ON THE WORK AND SIMILAR.
JPS61160366A (en) 1984-12-30 1986-07-21 Shinwa Seisakusho:Kk Loading platform adjusting equipment for cart
GB8502506D0 (en) 1985-01-31 1985-03-06 Emi Ltd Smoke detector
JPS61190607A (en) 1985-02-18 1986-08-25 Toyoda Mach Works Ltd Numerically controlled machine tool provided with abnormality stop function
US4679152A (en) 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
DE3676221D1 (en) 1985-05-01 1991-01-31 Nippon Denso Co OPTICAL DUST DETECTOR.
USD292223S (en) 1985-05-17 1987-10-06 Showscan Film Corporation Toy robot or the like
JPS6215336A (en) 1985-06-21 1987-01-23 Murata Mach Ltd Automatically running type cleaning truck
FR2583701B1 (en) 1985-06-21 1990-03-23 Commissariat Energie Atomique VARIABLE GEOMETRY CRAWLER VEHICLE
US4860653A (en) * 1985-06-28 1989-08-29 D. J. Moorhouse Detonator actuator
US4662854A (en) 1985-07-12 1987-05-05 Union Electric Corp. Self-propellable toy and arrangement for and method of controlling the movement thereof
IT206218Z2 (en) * 1985-07-26 1987-07-13 Dulevo Spa MOTOR SWEEPER WITH REMOVABLE CONTAINER
JPH026312Y2 (en) 1985-08-30 1990-02-15
US4831684A (en) * 1985-08-31 1989-05-23 Morningfield Limited Cleaning vehicles
JPS6255760A (en) 1985-09-04 1987-03-11 Fujitsu Ltd Transaction system for reenter transmission of transfer accumulation closing data
SE451770B (en) * 1985-09-17 1987-10-26 Hyypae Ilkka Kalevi KIT FOR NAVIGATION OF A LARGE VESSEL IN ONE PLAN, EXTRA A TRUCK, AND TRUCK FOR EXTENDING THE KIT
JPH0752104B2 (en) 1985-09-25 1995-06-05 松下電工株式会社 Reflective photoelectric switch
JPS6274018A (en) 1985-09-27 1987-04-04 Kawasaki Heavy Ind Ltd Operating method for converter waste gas treatment device
DE3534621A1 (en) 1985-09-28 1987-04-02 Interlava Ag VACUUM CLEANER
JPH0421069Y2 (en) 1985-09-30 1992-05-14
NO864109L (en) 1985-10-17 1987-04-21 Knepper Hans Reinhard PROCEDURE FOR AUTOMATIC LINING OF AUTOMATIC FLOOR CLEANING MACHINES AND FLOOR CLEANING MACHINE FOR PERFORMING THE PROCEDURE.
JPH0319408Y2 (en) 1985-10-19 1991-04-24
JPS6270709U (en) 1985-10-22 1987-05-06
JPS62120510A (en) 1985-11-21 1987-06-01 Hitachi Ltd Control method for automatic cleaner
US4909972A (en) * 1985-12-02 1990-03-20 Britz Johannes H Method and apparatus for making a solid foamed tire core
DE3642051A1 (en) 1985-12-10 1987-06-11 Canon Kk METHOD FOR THREE-DIMENSIONAL INFORMATION PROCESSING AND DEVICE FOR RECEIVING THREE-DIMENSIONAL INFORMATION ABOUT AN OBJECT
JPS62154008A (en) 1985-12-27 1987-07-09 Hitachi Ltd Travel control method for self-travel robot
US4654924A (en) 1985-12-31 1987-04-07 Whirlpool Corporation Microcomputer control system for a canister vacuum cleaner
US4698591A (en) 1986-01-03 1987-10-06 General Electric Company Method for magnetic field gradient eddy current compensation
JPH0724640B2 (en) * 1986-01-16 1995-03-22 三洋電機株式会社 Vacuum cleaner
JPS62120510U (en) 1986-01-24 1987-07-31
EP0231419A1 (en) 1986-02-05 1987-08-12 Interlava AG Indicating and function controlling optical unit for a vacuum cleaner
US4817000A (en) 1986-03-10 1989-03-28 Si Handling Systems, Inc. Automatic guided vehicle system
JPS62154008U (en) 1986-03-19 1987-09-30
GB8607365D0 (en) 1986-03-25 1986-04-30 Roneo Alcatel Ltd Electromechanical drives
JPS62164431U (en) 1986-04-08 1987-10-19
USD298766S (en) 1986-04-11 1988-11-29 Playtime Products, Inc. Toy robot
JPS62263508A (en) 1986-05-12 1987-11-16 Sanyo Electric Co Ltd Autonomous type work track
JPH0782385B2 (en) 1986-05-12 1995-09-06 三洋電機株式会社 Mobile guidance device
US4710020A (en) 1986-05-16 1987-12-01 Denning Mobil Robotics, Inc. Beacon proximity detection system for a vehicle
US4777416A (en) 1986-05-16 1988-10-11 Denning Mobile Robotics, Inc. Recharge docking system for mobile robot
US4829442A (en) 1986-05-16 1989-05-09 Denning Mobile Robotics, Inc. Beacon navigation system and method for guiding a vehicle
JPS62189057U (en) 1986-05-22 1987-12-01
US4955714A (en) 1986-06-26 1990-09-11 Stotler James G System for simulating the appearance of the night sky inside a room
JPH0351023Y2 (en) 1986-07-02 1991-10-31
US4752799A (en) 1986-07-07 1988-06-21 Honeywell Inc. Optical proximity sensing optics
FR2601443B1 (en) 1986-07-10 1991-11-29 Centre Nat Etd Spatiales POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS
JPH07102204B2 (en) * 1986-09-25 1995-11-08 株式会社マキタ Brush cleaner
FI74829C (en) 1986-10-01 1988-03-10 Allaway Oy Method for controlling a plant such as vacuum cleaner, central vacuum cleaner, mechanical air conditioning system or the like.
KR940002923B1 (en) 1986-10-08 1994-04-07 가부시키가이샤 히타치세이사쿠쇼 Method and apparatus for operating vacuum cleaner
US4920060A (en) 1986-10-14 1990-04-24 Hercules Incorporated Device and process for mixing a sample and a diluent
US4796198A (en) 1986-10-17 1989-01-03 The United States Of America As Represented By The United States Department Of Energy Method for laser-based two-dimensional navigation system in a structured environment
JPS6371857U (en) * 1986-10-28 1988-05-13
EP0265542A1 (en) 1986-10-28 1988-05-04 Richard R. Rathbone Optical navigation system
IE59553B1 (en) * 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus
JPH0732742B2 (en) * 1986-11-07 1995-04-12 松下電器産業株式会社 Self-propelled vacuum cleaner
JPH07120196B2 (en) * 1986-11-18 1995-12-20 三洋電機株式会社 Direction control method for moving vehicles
US4733430A (en) * 1986-12-09 1988-03-29 Whirlpool Corporation Vacuum cleaner with operating condition indicator system
US4733431A (en) 1986-12-09 1988-03-29 Whirlpool Corporation Vacuum cleaner with performance monitoring system
FR2620070A2 (en) 1986-12-11 1989-03-10 Jonas Andre AUTOBULATED MOBILE UNIT AND CLEANING APPARATUS SUCH AS A VACUUM COMPRISING SUCH A UNIT
JPS63158032A (en) * 1986-12-22 1988-07-01 三洋電機株式会社 Moving working vehicle with cord reel
US4735136A (en) 1986-12-23 1988-04-05 Whirlpool Corporation Full receptacle indicator for compactor
CA1311852C (en) 1987-01-09 1992-12-22 James R. Allard Knowledge acquisition tool for automated knowledge extraction
JPS63183032A (en) 1987-01-26 1988-07-28 松下電器産業株式会社 Cleaning robot
JPS63203483A (en) 1987-02-18 1988-08-23 Res Dev Corp Of Japan Active adaptation type crawler travel vehicle
US4855915A (en) 1987-03-13 1989-08-08 Dallaire Rodney J Autoguided vehicle using reflective materials
US4818875A (en) 1987-03-30 1989-04-04 The Foxboro Company Portable battery-operated ambient air analyzer
JPH0786767B2 (en) 1987-03-30 1995-09-20 株式会社日立製作所 Travel control method for self-propelled robot
KR900003080B1 (en) 1987-03-30 1990-05-07 마쓰시다덴기산교 가부시기가이샤 Nozzle of electric-cleaners
JPS63158032U (en) 1987-04-03 1988-10-17
DK172087A (en) 1987-04-03 1988-10-04 Rotowash Scandinavia APPLIANCES FOR WATER CLEANING OF FLOOR OR WALL SURFACES
JPS63183032U (en) 1987-05-15 1988-11-25
JP2606842B2 (en) 1987-05-30 1997-05-07 株式会社東芝 Electric vacuum cleaner
IL82731A (en) 1987-06-01 1991-04-15 El Op Electro Optic Ind Limite System for measuring the angular displacement of an object
SE464837B (en) 1987-06-22 1991-06-17 Arnex Hb PROCEDURE AND DEVICE FOR LASER OPTICAL NAVIGATION
JPH0816241B2 (en) 1987-07-07 1996-02-21 三菱マテリアル株式会社 Powder compression molding method for molded article having boss and flange
JPH0759702B2 (en) 1987-09-07 1995-06-28 三菱電機株式会社 Guest-host liquid crystal composition
US4858132A (en) 1987-09-11 1989-08-15 Ndc Technologies, Inc. Optical navigation system for an automatic guided vehicle, and method
KR910009450B1 (en) 1987-10-16 1991-11-16 문수정 Superconducting coils and method of manufacturing the same
JPH01118752A (en) 1987-10-31 1989-05-11 Shimadzu Corp Method for introducing sample for icp emission analysis
GB8728508D0 (en) 1987-12-05 1988-01-13 Brougham Pickard J G Accessory unit for vacuum cleaner
DE3779649D1 (en) 1987-12-16 1992-07-09 Hako Gmbh & Co HAND-MADE SWEEPER.
JPH01162454A (en) 1987-12-18 1989-06-26 Fujitsu Ltd Sub-rate exchanging system
JPH01180010A (en) 1988-01-08 1989-07-18 Sanyo Electric Co Ltd Moving vehicle
US5002145A (en) 1988-01-29 1991-03-26 Nec Corporation Method and apparatus for controlling automated guided vehicle
US5024529A (en) 1988-01-29 1991-06-18 Synthetic Vision Systems, Inc. Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
US4891762A (en) * 1988-02-09 1990-01-02 Chotiros Nicholas P Method and apparatus for tracking, mapping and recognition of spatial patterns
DE3803824A1 (en) 1988-02-09 1989-08-17 Gerhard Kurz INSTALLATION DEVICE FOR SENSORS AND SENSORS
US4782550A (en) 1988-02-12 1988-11-08 Von Schrader Company Automatic surface-treating apparatus
US4851661A (en) 1988-02-26 1989-07-25 The United States Of America As Represented By The Secretary Of The Navy Programmable near-infrared ranging system
US4905151A (en) * 1988-03-07 1990-02-27 Transitions Research Corporation One dimensional image visual system for a moving vehicle
JPH026312A (en) 1988-03-12 1990-01-10 Kao Corp Composite material of metallic sulfide carbon and production thereof
DE3812633A1 (en) 1988-04-15 1989-10-26 Daimler Benz Ag METHOD FOR CONTACTLESS RESISTANCE MEASUREMENT
JP2583958B2 (en) * 1988-04-20 1997-02-19 松下電器産業株式会社 Floor nozzle for vacuum cleaner
US4919489A (en) 1988-04-20 1990-04-24 Grumman Aerospace Corporation Cog-augmented wheel for obstacle negotiation
US4977618A (en) 1988-04-21 1990-12-11 Photonics Corporation Infrared data communications
US4919224A (en) 1988-05-16 1990-04-24 Industrial Technology Research Institute Automatic working vehicular system
JPH01175669U (en) 1988-05-23 1989-12-14
US4887415A (en) 1988-06-10 1989-12-19 Martin Robert L Automated lawn mower or floor polisher
KR910006887B1 (en) 1988-06-15 1991-09-10 마쯔시다덴기산교 가부시기가이샤 Dust detector for vacuum cleaner
JPH026312U (en) 1988-06-27 1990-01-17
JP2627776B2 (en) 1988-07-12 1997-07-09 油谷重工株式会社 Display device for grease pressure management of bearings
JPH0540519Y2 (en) 1988-07-15 1993-10-14
GB8817039D0 (en) 1988-07-18 1988-08-24 Martecon Uk Ltd Improvements in/relating to polymer filled tyres
US4857912A (en) 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system
USD318500S (en) 1988-08-08 1991-07-23 Monster Robots Inc. Monster toy robot
JPH0226312U (en) 1988-08-09 1990-02-21
KR910006885B1 (en) 1988-08-15 1991-09-10 미쯔비시 덴끼 가부시기가이샤 Floor detector for vacuum cleaners
US5040116A (en) 1988-09-06 1991-08-13 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4954962A (en) 1988-09-06 1990-09-04 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4932831A (en) 1988-09-26 1990-06-12 Remotec, Inc. All terrain mobile robot
US4933864A (en) 1988-10-04 1990-06-12 Transitions Research Corporation Mobile robot navigation employing ceiling light fixtures
JPH02188414A (en) 1988-10-25 1990-07-24 Mitsui Toatsu Chem Inc Method for purifying gaseous nitrogen trifluoride
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
JPH0546239Y2 (en) 1988-10-31 1993-12-02
US4962453A (en) 1989-02-07 1990-10-09 Transitions Research Corporation Autonomous vehicle for working on a surface and method of controlling same
JPH0779791B2 (en) 1988-11-07 1995-08-30 松下電器産業株式会社 Vacuum cleaner
GB2225221A (en) 1988-11-16 1990-05-30 Unilever Plc Nozzle arrangement on robot vacuum cleaning machine
JPH0824652B2 (en) * 1988-12-06 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
JPH063251Y2 (en) 1988-12-13 1994-01-26 極東工業株式会社 Pipe support
DE3914306A1 (en) 1988-12-16 1990-06-28 Interlava Ag DEVICE FOR REGULATING AND / OR DISPLAYING THE OPERATION OF VACUUM CLEANERS
IT1228112B (en) 1988-12-21 1991-05-28 Cavi Pirelli S P A M Soc METHOD AND OPTICAL SENSOR FOR DETERMINING THE POSITION OF A MOBILE BODY
US4918441A (en) 1988-12-22 1990-04-17 Ford New Holland, Inc. Non-contact sensing unit for row crop harvester guidance system
US4893025A (en) 1988-12-30 1990-01-09 Us Administrat Distributed proximity sensor system having embedded light emitters and detectors
US4967862A (en) 1989-03-13 1990-11-06 Transitions Research Corporation Tether-guided vehicle and method of controlling same
JPH06105781B2 (en) 1989-04-25 1994-12-21 住友電気工業株式会社 Method of manufacturing integrated circuit
JP2815606B2 (en) 1989-04-25 1998-10-27 株式会社トキメック Control method of concrete floor finishing robot
JP2520732B2 (en) 1989-04-25 1996-07-31 株式会社テック Vacuum cleaner suction body
US4971591A (en) 1989-04-25 1990-11-20 Roni Raviv Vehicle with vacuum traction
US5154617A (en) 1989-05-09 1992-10-13 Prince Corporation Modular vehicle electronic system
US5182833A (en) 1989-05-11 1993-02-02 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner
JPH0313611A (en) 1989-06-07 1991-01-22 Toshiba Corp Automatic cleaner
FR2648071B1 (en) 1989-06-07 1995-05-19 Onet SELF-CONTAINED METHOD AND APPARATUS FOR AUTOMATIC FLOOR CLEANING BY EXECUTING PROGRAMMED MISSIONS
US5051906A (en) 1989-06-07 1991-09-24 Transitions Research Corporation Mobile robot navigation employing retroreflective ceiling features
JPH03129328A (en) 1989-06-27 1991-06-03 Victor Co Of Japan Ltd Electromagnetic radiation flux scanning device and display device
US4961303A (en) 1989-07-10 1990-10-09 Ford New Holland, Inc. Apparatus for opening conditioning rolls
JPH0351023A (en) 1989-07-20 1991-03-05 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US5127128A (en) 1989-07-27 1992-07-07 Goldstar Co., Ltd. Cleaner head
US5144715A (en) 1989-08-18 1992-09-08 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner and method of determining type of floor surface being cleaned thereby
US4961304A (en) 1989-10-20 1990-10-09 J. I. Case Company Cotton flow monitoring system for a cotton harvester
US5045769A (en) 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
US5033291A (en) 1989-12-11 1991-07-23 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
JP2714588B2 (en) 1989-12-13 1998-02-16 株式会社ブリヂストン Tire inspection device
IL92720A (en) 1989-12-15 1993-02-21 Neta Holland Toothbrush
JPH03186243A (en) 1989-12-15 1991-08-14 Matsushita Electric Ind Co Ltd Upright type vacuum cleaner
US5063846A (en) 1989-12-21 1991-11-12 Hughes Aircraft Company Modular, electronic safe-arm device
JPH03197758A (en) 1989-12-25 1991-08-29 Yokohama Rubber Co Ltd:The Soundproof double floor
JPH03201903A (en) 1989-12-28 1991-09-03 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Autonomic traveling system for field working vehicle
US5093956A (en) 1990-01-12 1992-03-10 Royal Appliance Mfg. Co. Snap-together housing
US5647554A (en) 1990-01-23 1997-07-15 Sanyo Electric Co., Ltd. Electric working apparatus supplied with electric power through power supply cord
US5187662A (en) 1990-01-24 1993-02-16 Honda Giken Kogyo Kabushiki Kaisha Steering control system for moving vehicle
US5084934A (en) 1990-01-24 1992-02-04 Black & Decker Inc. Vacuum cleaners
US5020186A (en) 1990-01-24 1991-06-04 Black & Decker Inc. Vacuum cleaners
US5115538A (en) 1990-01-24 1992-05-26 Black & Decker Inc. Vacuum cleaners
US4956891A (en) 1990-02-21 1990-09-18 Castex Industries, Inc. Floor cleaner
JP3149430B2 (en) 1990-02-22 2001-03-26 松下電器産業株式会社 Upright vacuum cleaner
US5049802A (en) 1990-03-01 1991-09-17 Caterpillar Industrial Inc. Charging system for a vehicle
DE69108082T2 (en) 1990-04-10 1995-08-10 Matsushita Electric Ind Co Ltd Vacuum cleaner with careful control.
FI911633A (en) 1990-04-27 1991-10-28 Fujisawa Pharmaceutical Co FOERFARANDE FOER FRAMSTAELLNING AV ALKANSULFONANILIDDERIVAT.
US5018240A (en) 1990-04-27 1991-05-28 Cimex Limited Carpet cleaner
US5170352A (en) 1990-05-07 1992-12-08 Fmc Corporation Multi-purpose autonomous vehicle with path plotting
JP2886617B2 (en) 1990-05-14 1999-04-26 松下電工株式会社 Recognition method of position and orientation of moving object
US5111401A (en) 1990-05-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Navigational control system for an autonomous vehicle
JPH08393Y2 (en) 1990-06-01 1996-01-10 株式会社豊田自動織機製作所 Air supply device in jet loom
US5142985A (en) 1990-06-04 1992-09-01 Motorola, Inc. Optical detection device
US5109566A (en) 1990-06-28 1992-05-05 Matsushita Electric Industrial Co., Ltd. Self-running cleaning apparatus
JPH04227507A (en) 1990-07-02 1992-08-17 Nec Corp Method for forming and keeping map for moving robot
JPH0474285A (en) 1990-07-17 1992-03-09 Medama Kikaku:Kk Position detecting and display device for specific person or object
JPH0484921A (en) 1990-07-27 1992-03-18 Mitsubishi Electric Corp Vacuum cleaner
US5093955A (en) 1990-08-29 1992-03-10 Tennant Company Combined sweeper and scrubber
US5307273A (en) 1990-08-29 1994-04-26 Goldstar Co., Ltd. Apparatus and method for recognizing carpets and stairs by cleaning robot
CA2092294C (en) 1990-09-24 2002-12-10 Andre Colens Continuous, self-contained mowing system
US5202742A (en) 1990-10-03 1993-04-13 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
US5086535A (en) 1990-10-22 1992-02-11 Racine Industries, Inc. Machine and method using graphic data for treating a surface
US5204814A (en) 1990-11-13 1993-04-20 Mobot, Inc. Autonomous lawn mower
KR930001457B1 (en) 1990-11-16 1993-02-27 삼성전자 주식회사 Out-put control unit for a vacuum cleaner using a vibration sensor
JPH0542088A (en) 1990-11-26 1993-02-23 Matsushita Electric Ind Co Ltd Controller for electric system
JPH0824655B2 (en) 1990-11-26 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
KR930000081B1 (en) 1990-12-07 1993-01-08 주식회사 금성사 Cleansing method of electric vacuum cleaner
US5136675A (en) 1990-12-20 1992-08-04 General Electric Company Slewable projection system with fiber-optic elements
US5098262A (en) 1990-12-28 1992-03-24 Abbott Laboratories Solution pumping system with compressible pump cassette
US5062819A (en) 1991-01-28 1991-11-05 Mallory Mitchell K Toy vehicle apparatus
US5524320A (en) * 1991-02-01 1996-06-11 Zachhuber; Kurt Floor scrubbing machine
JP2983658B2 (en) 1991-02-14 1999-11-29 三洋電機株式会社 Electric vacuum cleaner
US5094311A (en) 1991-02-22 1992-03-10 Gmfanuc Robotics Corporation Limited mobility transporter
US5327952A (en) 1991-03-08 1994-07-12 The Goodyear Tire & Rubber Company Pneumatic tire having improved wet traction
US5173881A (en) 1991-03-19 1992-12-22 Sindle Thomas J Vehicular proximity sensing system
JP3148270B2 (en) 1991-03-20 2001-03-19 日立機電工業株式会社 Automatic guided vehicle power supply device
US5165064A (en) 1991-03-22 1992-11-17 Cyberotics, Inc. Mobile robot guidance and navigation system
US5105550A (en) 1991-03-25 1992-04-21 Wilson Sporting Goods Co. Apparatus for measuring golf clubs
FI92973C (en) 1991-05-06 1995-02-10 Planmeca Oy Procedure and apparatus for panoramic X-ray photography
US5321614A (en) 1991-06-06 1994-06-14 Ashworth Guy T D Navigational control apparatus and method for autonomus vehicles
US5400244A (en) 1991-06-25 1995-03-21 Kabushiki Kaisha Toshiba Running control system for mobile robot provided with multiple sensor information integration system
KR930005714B1 (en) 1991-06-25 1993-06-24 주식회사 금성사 Attratus and method for controlling speed of suction motor in vacuum cleaner
US5560065A (en) 1991-07-03 1996-10-01 Tymco, Inc. Broom assisted pick-up head
US5152202A (en) 1991-07-03 1992-10-06 The Ingersoll Milling Machine Company Turning machine with pivoted armature
DE4122280C2 (en) 1991-07-05 1994-08-18 Henkel Kgaa Mobile floor cleaning machine
EP0522200B1 (en) 1991-07-10 1998-05-13 Samsung Electronics Co., Ltd. Mobile monitoring device
JP2795384B2 (en) 1991-07-24 1998-09-10 株式会社テック Vacuum cleaner suction body
JP2682910B2 (en) 1991-08-07 1997-11-26 株式会社クボタ Position detection device for work vehicle guidance
JPH0542076A (en) * 1991-08-09 1993-02-23 Matsushita Electric Ind Co Ltd Floor nozzle for electric cleaner
JPH0546246A (en) 1991-08-10 1993-02-26 Nec Home Electron Ltd Cleaning robot and its travelling method
JPH0546239A (en) * 1991-08-10 1993-02-26 Nec Home Electron Ltd Autonomously travelling robot
KR930003937Y1 (en) 1991-08-14 1993-06-25 주식회사 금성사 Apparatus for detecting suction dirt for vacuum cleaner
US5442358A (en) 1991-08-16 1995-08-15 Kaman Aerospace Corporation Imaging lidar transmitter downlink for command guidance of underwater vehicle
US5227985A (en) 1991-08-19 1993-07-13 University Of Maryland Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object
JP2705384B2 (en) 1991-08-22 1998-01-28 日本電気株式会社 Magnetic disk assembly
JP2520732Y2 (en) 1991-08-22 1996-12-18 住友ベークライト株式会社 Ultrasonic horn
JP2738610B2 (en) 1991-09-07 1998-04-08 富士重工業株式会社 Travel control device for self-propelled bogie
JP2901112B2 (en) 1991-09-19 1999-06-07 矢崎総業株式会社 Vehicle periphery monitoring device
DE4131667C2 (en) 1991-09-23 2002-07-18 Schlafhorst & Co W Device for removing thread remnants
JP3198553B2 (en) 1991-10-07 2001-08-13 松下電器産業株式会社 Electric vacuum cleaner
US5239720A (en) 1991-10-24 1993-08-31 Advance Machine Company Mobile surface cleaning machine
JP2555263Y2 (en) 1991-10-28 1997-11-19 日本電気ホームエレクトロニクス株式会社 Cleaning robot
SG72641A1 (en) 1991-11-05 2000-05-23 Seiko Epson Corp Micro robot
JPH05150829A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for automatic vehicle
JPH05150827A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for unattended vehicle
JP2650234B2 (en) 1991-12-19 1997-09-03 株式会社リコー Indoor communication system
JPH0554620U (en) 1991-12-26 1993-07-23 株式会社小松エスト Load sweeper gutta brush pressing force adjustment device
KR940006561B1 (en) 1991-12-30 1994-07-22 주식회사 금성사 Auto-drive sensor for vacuum cleaner
US5222786A (en) 1992-01-10 1993-06-29 Royal Appliance Mfg. Co. Wheel construction for vacuum cleaner
IL100633A (en) 1992-01-12 1999-04-11 Israel State Large area movement robot
JP3076122B2 (en) 1992-01-13 2000-08-14 オリンパス光学工業株式会社 camera
DE4201596C2 (en) 1992-01-22 2001-07-05 Gerhard Kurz Floor nozzle for vacuum cleaners
EP0554978A2 (en) 1992-01-22 1993-08-11 Acushnet Company Monitoring system to measure flight characteristics of moving sports object
JPH063251U (en) 1992-01-31 1994-01-18 日本電気ホームエレクトロニクス株式会社 Cleaning robot
US5502638A (en) 1992-02-10 1996-03-26 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
US5276618A (en) * 1992-02-26 1994-01-04 The United States Of America As Represented By The Secretary Of The Navy Doorway transit navigational referencing system
JP3104372B2 (en) 1992-03-03 2000-10-30 井関農機株式会社 Grain processing equipment
US5568589A (en) 1992-03-09 1996-10-22 Hwang; Jin S. Self-propelled cleaning machine with fuzzy logic control
JPH05257533A (en) 1992-03-12 1993-10-08 Tokimec Inc Method and device for sweeping floor surface by moving robot
JP3397336B2 (en) 1992-03-13 2003-04-14 神鋼電機株式会社 Unmanned vehicle position / direction detection method
KR940004375B1 (en) 1992-03-25 1994-05-23 삼성전자 주식회사 Drive system for automatic vacuum cleaner
JP3055298B2 (en) * 1992-04-07 2000-06-26 松下電器産業株式会社 Vacuum cleaner suction tool
JPH05285861A (en) 1992-04-07 1993-11-02 Fujita Corp Marking method for ceiling
US5277064A (en) 1992-04-08 1994-01-11 General Motors Corporation Thick film accelerometer
DE4213038C1 (en) 1992-04-21 1993-07-15 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart, De
JPH0816776B2 (en) 1992-04-27 1996-02-21 富士写真フイルム株式会社 Method for manufacturing disc for controlling winding diameter of photo film
JPH05302836A (en) 1992-04-27 1993-11-16 Yashima Denki Co Ltd Encoder having eight-pole magnetized ball
JPH05312514A (en) 1992-05-11 1993-11-22 Yashima Denki Co Ltd Encoder equipped with light reflecting/absorbing ball
FR2691093B1 (en) 1992-05-12 1996-06-14 Univ Joseph Fourier ROBOT FOR GUIDANCE OF GESTURES AND CONTROL METHOD.
DE4217093C1 (en) 1992-05-22 1993-07-01 Siemens Ag, 8000 Muenchen, De
GB2267360B (en) 1992-05-22 1995-12-06 Octec Ltd Method and system for interacting with floating objects
GB9211146D0 (en) * 1992-05-26 1992-07-08 O C S Group Limited Improvements in window cleaning
US5206500A (en) 1992-05-28 1993-04-27 Cincinnati Microwave, Inc. Pulsed-laser detection with pulse stretcher and noise averaging
JPH05341904A (en) 1992-06-12 1993-12-24 Yashima Denki Co Ltd Encoder provided with hall element and magnetized ball
US5637973A (en) 1992-06-18 1997-06-10 Kabushiki Kaisha Yaskawa Denki Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
JPH063251A (en) 1992-06-18 1994-01-11 Hitachi Ltd Method for analyzing porosity in porous body
US6615434B1 (en) 1992-06-23 2003-09-09 The Kegel Company, Inc. Bowling lane cleaning machine and method
JPH064130A (en) 1992-06-23 1994-01-14 Sanyo Electric Co Ltd Cleaning robot
IL102314A0 (en) 1992-06-25 1993-01-14 Elscint Ltd Gray scale windowing
US5279672A (en) * 1992-06-29 1994-01-18 Windsor Industries, Inc. Automatic controlled cleaning machine
US5303448A (en) 1992-07-08 1994-04-19 Tennant Company Hopper and filter chamber for direct forward throw sweeper
US5331713A (en) 1992-07-13 1994-07-26 White Consolidated Industries, Inc. Floor scrubber with recycled cleaning solution
JPH0638912A (en) 1992-07-22 1994-02-15 Matsushita Electric Ind Co Ltd Dust detecting device for vacuum cleaner
JPH06154143A (en) * 1992-08-07 1994-06-03 Johnson Kk Floor washing machine
US5410479A (en) 1992-08-17 1995-04-25 Coker; William B. Ultrasonic furrow or crop row following sensor
JPH0662991A (en) 1992-08-21 1994-03-08 Yashima Denki Co Ltd Vacuum cleaner
JPH06105781A (en) * 1992-09-30 1994-04-19 Sanyo Electric Co Ltd Self-mobile vacuum cleaner
US5613269A (en) 1992-10-26 1997-03-25 Miwa Science Laboratory Inc. Recirculating type cleaner
US5324948A (en) 1992-10-27 1994-06-28 The United States Of America As Represented By The United States Department Of Energy Autonomous mobile robot for radiologic surveys
US5548511A (en) 1992-10-29 1996-08-20 White Consolidated Industries, Inc. Method for controlling self-running cleaning apparatus
JPH06137828A (en) 1992-10-29 1994-05-20 Kajima Corp Detecting method for position of obstacle
JPH06149350A (en) 1992-10-30 1994-05-27 Johnson Kk Guidance system for self-traveling car
US5319828A (en) 1992-11-04 1994-06-14 Tennant Company Low profile scrubber
US5369838A (en) 1992-11-16 1994-12-06 Advance Machine Company Automatic floor scrubber
US5261139A (en) 1992-11-23 1993-11-16 Lewis Steven D Raised baseboard brush for powered floor sweeper
USD345707S (en) 1992-12-18 1994-04-05 U.S. Philips Corporation Dust sensor device
GB2273865A (en) 1992-12-19 1994-07-06 Fedag A vacuum cleaner with an electrically driven brush roller
US5284452A (en) * 1993-01-15 1994-02-08 Atlantic Richfield Company Mooring buoy with hawser tension indicator system
US5491670A (en) * 1993-01-21 1996-02-13 Weber; T. Jerome System and method for sonic positioning
US5315227A (en) 1993-01-29 1994-05-24 Pierson Mark V Solar recharge station for electric vehicles
US5310379A (en) 1993-02-03 1994-05-10 Mattel, Inc. Multiple configuration toy vehicle
DE9303254U1 (en) 1993-03-05 1993-09-30 Raimondi Srl Machine for washing tiled surfaces
JP3931254B2 (en) 1993-03-30 2007-06-13 スリーエム カンパニー Multi-surface cleaning composition and method of use thereof
US5451135A (en) 1993-04-02 1995-09-19 Carnegie Mellon University Collapsible mobile vehicle
JP2551316B2 (en) 1993-04-09 1996-11-06 株式会社日立製作所 panel
US5345649A (en) 1993-04-21 1994-09-13 Whitlow William T Fan brake for textile cleaning machine
US5352901A (en) 1993-04-26 1994-10-04 Cummins Electronics Company, Inc. Forward and back scattering loss compensated smoke detector
US5435405A (en) 1993-05-14 1995-07-25 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
US5363935A (en) 1993-05-14 1994-11-15 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
JPH06327598A (en) 1993-05-21 1994-11-29 Tokyo Electric Co Ltd Intake port body for vacuum cleaner
JP2555263B2 (en) 1993-06-03 1996-11-20 株式会社コクブ nail
US5440216A (en) 1993-06-08 1995-08-08 Samsung Electronics Co., Ltd. Robot cleaner
US5460124A (en) 1993-07-15 1995-10-24 Perimeter Technologies Incorporated Receiver for an electronic animal confinement system
IT1264951B1 (en) 1993-07-20 1996-10-17 Anna Maria Boesi ASPIRATING APPARATUS FOR CLEANING SURFACES
DE9311014U1 (en) 1993-07-23 1993-09-02 Kurz Gerhard Floor nozzle for vacuum cleaners
JPH0747046A (en) 1993-08-03 1995-02-21 Matsushita Electric Ind Co Ltd Self-mobile electric vacuum cleaner
KR0140499B1 (en) 1993-08-07 1998-07-01 김광호 Vacuum cleaner and control method
US5510893A (en) 1993-08-18 1996-04-23 Digital Stream Corporation Optical-type position and posture detecting device
JP3486923B2 (en) 1993-08-24 2004-01-13 松下電器産業株式会社 Vacuum cleaner
US5586063A (en) 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
CA2128676C (en) 1993-09-08 1997-12-23 John D. Sotack Capacitive sensor
KR0161031B1 (en) 1993-09-09 1998-12-15 김광호 Position error correction device of robot
JPH0784696A (en) 1993-09-10 1995-03-31 Canon Inc Information processor and its controlling method
KR100197676B1 (en) 1993-09-27 1999-06-15 윤종용 Robot cleaner
JP2657203B2 (en) 1993-10-01 1997-09-24 中小企業事業団 Aqueous printing ink composition
JP3319093B2 (en) 1993-11-08 2002-08-26 松下電器産業株式会社 Mobile work robot
GB9323316D0 (en) 1993-11-11 1994-01-05 Crowe Gordon M Motorized carrier
DE4338841C2 (en) 1993-11-13 1999-08-05 Axel Dickmann lamp
GB2284957B (en) 1993-12-14 1998-02-18 Gec Marconi Avionics Holdings Optical systems for the remote tracking of the position and/or orientation of an object
JP2594880B2 (en) 1993-12-29 1997-03-26 西松建設株式会社 Autonomous traveling intelligent work robot
US5511147A (en) 1994-01-12 1996-04-23 Uti Corporation Graphical interface for robot
JPH07222705A (en) 1994-02-10 1995-08-22 Fujitsu General Ltd Floor cleaning robot
BE1008777A6 (en) * 1994-02-11 1996-08-06 Solar And Robotics Sa Power system of mobile autonomous robots.
SE502428C2 (en) 1994-02-21 1995-10-16 Electrolux Ab Nozzle
US5608306A (en) 1994-03-15 1997-03-04 Ericsson Inc. Rechargeable battery pack with identification circuit, real time clock and authentication capability
JP3201903B2 (en) 1994-03-18 2001-08-27 富士通株式会社 Semiconductor logic circuit and semiconductor integrated circuit device using the same
JPH07262025A (en) 1994-03-18 1995-10-13 Fujitsu Ltd Execution control system
JPH07311041A (en) 1994-03-22 1995-11-28 Minolta Co Ltd Position detector
JP3530954B2 (en) 1994-03-24 2004-05-24 清之 竹迫 Far-infrared sterilizer
US5646494A (en) 1994-03-29 1997-07-08 Samsung Electronics Co., Ltd. Charge induction apparatus of robot cleaner and method thereof
SE502834C2 (en) 1994-03-29 1996-01-29 Electrolux Ab Method and apparatus for detecting obstacles in self-propelled apparatus
KR970000582B1 (en) 1994-03-31 1997-01-14 삼성전자 주식회사 Method for controlling driving of a robot cleaner
JPH07270518A (en) 1994-03-31 1995-10-20 Komatsu Ltd Distance measuring instrument
JPH07265240A (en) 1994-03-31 1995-10-17 Hookii:Kk Wall side cleaning body for floor cleaner
JPH07281742A (en) 1994-04-04 1995-10-27 Kubota Corp Traveling controller for beam light guided work vehicle
JP3293314B2 (en) * 1994-04-14 2002-06-17 ミノルタ株式会社 Cleaning robot
DE4414683A1 (en) 1994-04-15 1995-10-19 Vorwerk Co Interholding Cleaning device
US5455982A (en) 1994-04-22 1995-10-10 Advance Machine Company Hard and soft floor surface cleaning apparatus
US5802665A (en) 1994-04-25 1998-09-08 Widsor Industries, Inc. Floor cleaning apparatus with two brooms
US5485653A (en) * 1994-04-25 1996-01-23 Windsor Industries, Inc. Floor cleaning apparatus
ES2134475T3 (en) 1994-05-10 1999-10-01 Heinrich Iglseder PROCEDURE TO DETECT PARTICLES IN A TWO-PHASE CURRENT, USE OF THE PROCEDURE AND DUST VACUUM CLEANER.
US5507067A (en) 1994-05-12 1996-04-16 Newtronics Pty Ltd. Electronic vacuum cleaner control system
JPH07319542A (en) 1994-05-30 1995-12-08 Minolta Co Ltd Self-traveling work wagon
JPH07313417A (en) 1994-05-30 1995-12-05 Minolta Co Ltd Self-running working car
SE514791C2 (en) 1994-06-06 2001-04-23 Electrolux Ab Improved method for locating lighthouses in self-propelled equipment
JP3051023B2 (en) 1994-06-10 2000-06-12 東芝セラミックス株式会社 Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
US5735959A (en) 1994-06-15 1998-04-07 Minolta Co, Ltd. Apparatus spreading fluid on floor while moving
JPH08256960A (en) 1995-01-24 1996-10-08 Minolta Co Ltd Working device
US5636402A (en) 1994-06-15 1997-06-10 Minolta Co., Ltd. Apparatus spreading fluid on floor while moving
JPH08322774A (en) 1995-03-24 1996-12-10 Minolta Co Ltd Working apparatus
JPH08393A (en) 1994-06-16 1996-01-09 Okamura Corp Adjustment device for breadthwise space between chair armrests
JPH084921A (en) 1994-06-23 1996-01-12 Kubota Corp Swing type check valve
JPH0816776A (en) 1994-06-30 1996-01-19 Tokyo Koku Keiki Kk Graphic display circuit equipped with smoothing processing circuit
JP3346513B2 (en) 1994-07-01 2002-11-18 ミノルタ株式会社 Map storage method and route creation method using the map
BE1008470A3 (en) 1994-07-04 1996-05-07 Colens Andre Device and automatic system and equipment dedusting sol y adapted.
JPH0822322A (en) 1994-07-07 1996-01-23 Johnson Kk Method and device for controlling floor surface cleaning car
JP2569279B2 (en) 1994-08-01 1997-01-08 コナミ株式会社 Non-contact position detection device for moving objects
CA2137706C (en) 1994-12-09 2001-03-20 Murray Evans Cutting mechanism
US5551525A (en) 1994-08-19 1996-09-03 Vanderbilt University Climber robot
JP3296105B2 (en) 1994-08-26 2002-06-24 ミノルタ株式会社 Autonomous mobile robot
US5454129A (en) 1994-09-01 1995-10-03 Kell; Richard T. Self-powered pool vacuum with remote controlled capabilities
JP3197758B2 (en) 1994-09-13 2001-08-13 日本電信電話株式会社 Optical coupling device and method of manufacturing the same
JPH0884696A (en) 1994-09-16 1996-04-02 Fuji Heavy Ind Ltd Cleaning robot control method and device therefor
JP3188116B2 (en) 1994-09-26 2001-07-16 日本輸送機株式会社 Self-propelled vacuum cleaner
JPH0889449A (en) 1994-09-27 1996-04-09 Kunihiro Michihashi Suctional structure
US6188643B1 (en) * 1994-10-13 2001-02-13 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
JPH08123548A (en) 1994-10-24 1996-05-17 Minolta Co Ltd Autonomous traveling vehicle
US5546631A (en) 1994-10-31 1996-08-20 Chambon; Michael D. Waterless container cleaner monitoring system
GB9422911D0 (en) 1994-11-14 1995-01-04 Moonstone Technology Ltd Capacitive touch detectors
US5505072A (en) 1994-11-15 1996-04-09 Tekscan, Inc. Scanning circuit for pressure responsive array
US5560077A (en) 1994-11-25 1996-10-01 Crotchett; Diane L. Vacuum dustpan apparatus
JP3396977B2 (en) 1994-11-30 2003-04-14 松下電器産業株式会社 Mobile work robot
GB9500943D0 (en) 1994-12-01 1995-03-08 Popovich Milan M Optical position sensing system
US5710506A (en) * 1995-02-07 1998-01-20 Benchmarq Microelectronics, Inc. Lead acid charger
KR100384194B1 (en) 1995-03-22 2003-08-21 혼다 기켄 고교 가부시키가이샤 Adsorption wall walking device
JP3201208B2 (en) 1995-03-23 2001-08-20 ミノルタ株式会社 Autonomous vehicles
US5634237A (en) 1995-03-29 1997-06-03 Paranjpe; Ajit P. Self-guided, self-propelled, convertible cleaning apparatus
IT236779Y1 (en) 1995-03-31 2000-08-17 Dulevo Int Spa SUCTION AND FILTER SWEEPER MACHINE
JPH08286744A (en) 1995-04-14 1996-11-01 Minolta Co Ltd Autonomous running vehicle
US5947225A (en) 1995-04-14 1999-09-07 Minolta Co., Ltd. Automatic vehicle
JPH08286741A (en) 1995-04-14 1996-11-01 Minolta Co Ltd Autonomous running vehicle
GB2300082B (en) 1995-04-21 1999-09-22 British Aerospace Altitude measuring methods
JP3887678B2 (en) 1995-04-21 2007-02-28 フォルベルク・ウント・ツェーオー、インターホールディング・ゲーエムベーハー Attachment of vacuum cleaner for wet surface cleaning
US5537711A (en) 1995-05-05 1996-07-23 Tseng; Yu-Che Electric board cleaner
SE9501810D0 (en) 1995-05-16 1995-05-16 Electrolux Ab Scratch of elastic material
IL113913A (en) 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
JPH08326025A (en) 1995-05-31 1996-12-10 Tokico Ltd Cleaning robot
US5655658A (en) 1995-05-31 1997-08-12 Eastman Kodak Company Cassette container having effective centering capability
US5781697A (en) 1995-06-02 1998-07-14 Samsung Electronics Co., Ltd. Method and apparatus for automatic running control of a robot
US5608944A (en) * 1995-06-05 1997-03-11 The Hoover Company Vacuum cleaner with dirt detection
US5935333A (en) 1995-06-07 1999-08-10 The Kegel Company Variable speed bowling lane maintenance machine
IT1275326B (en) 1995-06-07 1997-08-05 Bticino Spa MECHANICAL AND ELECTRIC CONNECTION SYSTEM BETWEEN ELECTRONIC DEVICES SUITABLE FOR INTEGRATION IN BUILT-IN ELECTRICAL EQUIPMENT
JPH08335112A (en) 1995-06-08 1996-12-17 Minolta Co Ltd Mobile working robot system
JPH08339297A (en) 1995-06-12 1996-12-24 Fuji Xerox Co Ltd User interface device
JP2640736B2 (en) 1995-07-13 1997-08-13 株式会社エイシン技研 Cleaning and bowling lane maintenance machines
WO1997004414A2 (en) 1995-07-20 1997-02-06 Dallas Semiconductor Corporation An electronic micro identification circuit that is inherently bonded to a someone or something
US5555587A (en) 1995-07-20 1996-09-17 The Scott Fetzer Company Floor mopping machine
JPH0943901A (en) 1995-07-28 1997-02-14 Dainippon Ink & Chem Inc Manufacture of electrophotographic toner
JPH0944240A (en) 1995-08-01 1997-02-14 Kubota Corp Guide device for moving vehicle
JPH0947413A (en) 1995-08-08 1997-02-18 Minolta Co Ltd Cleaning robot
US5814808A (en) 1995-08-28 1998-09-29 Matsushita Electric Works, Ltd. Optical displacement measuring system using a triangulation including a processing of position signals in a time sharing manner
USD375592S (en) 1995-08-29 1996-11-12 Aktiebolaget Electrolux Vacuum cleaner
JPH0966855A (en) 1995-09-04 1997-03-11 Minolta Co Ltd Crawler vehicle
EP0861312A1 (en) 1995-09-06 1998-09-02 S.C.JOHNSON &amp; SON, INC. Fully diluted hard surface cleaners containing small amounts of certain acids
JPH0981742A (en) 1995-09-13 1997-03-28 Sharp Corp Method and device for measuring resolution
JP4014662B2 (en) 1995-09-18 2007-11-28 ファナック株式会社 Robot teaching operation panel
JP3152622B2 (en) 1995-09-19 2001-04-03 光雄 藤井 Wiper cleaning method and device
US5819008A (en) 1995-10-18 1998-10-06 Rikagaku Kenkyusho Mobile robot sensor system
US5995449A (en) 1995-10-20 1999-11-30 Baker Hughes Inc. Method and apparatus for improved communication in a wellbore utilizing acoustic signals
SE505115C2 (en) 1995-10-27 1997-06-30 Electrolux Ab Vacuum cleaner nozzle comprising a brush nozzle and method for effecting suction along the front edge of the brush nozzle, seen in the direction of movement
KR0133745B1 (en) 1995-10-31 1998-04-24 배순훈 Dust meter device of a vacuum cleaner
US6167587B1 (en) 1997-07-09 2001-01-02 Bissell Homecare, Inc. Upright extraction cleaning machine
US6041472A (en) * 1995-11-06 2000-03-28 Bissell Homecare, Inc. Upright water extraction cleaning machine
US5867861A (en) 1995-11-13 1999-02-09 Kasen; Timothy E. Upright water extraction cleaning machine with two suction nozzles
US5777596A (en) 1995-11-13 1998-07-07 Symbios, Inc. Touch sensitive flat panel display
US5996167A (en) 1995-11-16 1999-12-07 3M Innovative Properties Company Surface treating articles and method of making same
JPH09145309A (en) 1995-11-20 1997-06-06 Kenichi Suzuki Position detection system
JP3025348U (en) 1995-11-30 1996-06-11 株式会社トミー Traveling body
JPH09160644A (en) 1995-12-06 1997-06-20 Fujitsu General Ltd Control method for floor cleaning robot
US6049620A (en) 1995-12-15 2000-04-11 Veridicom, Inc. Capacitive fingerprint sensor with adjustable gain
KR970032722A (en) 1995-12-19 1997-07-22 최진호 Cordless cleaner
JPH09179685A (en) 1995-12-22 1997-07-11 Fujitsu Ltd Wireless optical pointing device and light emitting indicator and optical signal detector to be used for the device
JPH09179625A (en) 1995-12-26 1997-07-11 Hitachi Electric Syst:Kk Method for controlling traveling of autonomous traveling vehicle and controller therefor
JPH09179100A (en) 1995-12-27 1997-07-11 Sharp Corp Picture display device
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US6373573B1 (en) 2000-03-13 2002-04-16 Lj Laboratories L.L.C. Apparatus for measuring optical characteristics of a substrate and pigments applied thereto
US5989700A (en) 1996-01-05 1999-11-23 Tekscan Incorporated Pressure sensitive ink means, and methods of use
JPH09185410A (en) 1996-01-08 1997-07-15 Hitachi Electric Syst:Kk Method and device for controlling traveling of autonomous traveling vehicle
US5784755A (en) 1996-01-18 1998-07-28 White Consolidated Industries, Inc. Wet extractor system
US5611106A (en) 1996-01-19 1997-03-18 Castex Incorporated Carpet maintainer
JPH09192069A (en) 1996-01-19 1997-07-29 Fujitsu General Ltd Floor surface washing wheel
US6220865B1 (en) 1996-01-22 2001-04-24 Vincent J. Macri Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements
US6830120B1 (en) 1996-01-25 2004-12-14 Penguin Wax Co., Ltd. Floor working machine with a working implement mounted on a self-propelled vehicle for acting on floor
JPH09204223A (en) 1996-01-29 1997-08-05 Minolta Co Ltd Autonomous mobile working vehicle
US6574536B1 (en) 1996-01-29 2003-06-03 Minolta Co., Ltd. Moving apparatus for efficiently moving on floor with obstacle
JP3237500B2 (en) * 1996-01-29 2001-12-10 ミノルタ株式会社 Autonomous mobile work vehicle
JP3423523B2 (en) 1996-01-31 2003-07-07 アマノ株式会社 Squeegee for floor washer
JP3660042B2 (en) 1996-02-01 2005-06-15 富士重工業株式会社 Cleaning robot control method
DE19605573C2 (en) 1996-02-15 2000-08-24 Eurocopter Deutschland Three-axis rotary control stick
DE19605780A1 (en) 1996-02-16 1997-08-21 Branofilter Gmbh Detection device for filter bags in vacuum cleaners
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
JP3697768B2 (en) 1996-02-21 2005-09-21 神鋼電機株式会社 Automatic charging system
US5659918A (en) 1996-02-23 1997-08-26 Breuer Electric Mfg. Co. Vacuum cleaner and method
EP0847549B1 (en) 1996-03-06 1999-09-22 GMD-Forschungszentrum Informationstechnik GmbH Autonomous mobile robot system for sensor-based and map-based navigation in pipe networks
JPH09244730A (en) 1996-03-11 1997-09-19 Komatsu Ltd Robot system and controller for robot
JPH09251318A (en) 1996-03-18 1997-09-22 Minolta Co Ltd Level difference sensor
BE1013948A3 (en) 1996-03-26 2003-01-14 Egemin Naanloze Vennootschap MEASURING SYSTEM FOR POSITION OF THE KEYS OF A VEHICLE AND ABOVE sensing device.
JPH09263140A (en) * 1996-03-27 1997-10-07 Minolta Co Ltd Unmanned service car
JPH09265319A (en) 1996-03-28 1997-10-07 Minolta Co Ltd Autonomously traveling vehicle
US5732401A (en) 1996-03-29 1998-03-24 Intellitecs International Ltd. Activity based cost tracking systems
JPH09269807A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
JPH09269810A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
US5735017A (en) 1996-03-29 1998-04-07 Bissell Inc. Compact wet/dry vacuum cleaner with flexible bladder
JPH09266871A (en) * 1996-04-03 1997-10-14 Fuji Heavy Ind Ltd Method for controlling cleaning robot
US5972876A (en) 1996-10-17 1999-10-26 Robbins; Michael H. Low odor, hard surface cleaner with enhanced soil removal
US5814591A (en) 1996-04-12 1998-09-29 The Clorox Company Hard surface cleaner with enhanced soil removal
SE509317C2 (en) 1996-04-25 1999-01-11 Electrolux Ab Nozzle arrangement for a self-propelled vacuum cleaner
US5935179A (en) 1996-04-30 1999-08-10 Aktiebolaget Electrolux System and device for a self orienting device
SE506372C2 (en) 1996-04-30 1997-12-08 Electrolux Ab Self-propelled device
SE506907C2 (en) 1996-04-30 1998-03-02 Electrolux Ab Self-orientating device system and device
DE19617986B4 (en) 1996-05-04 2004-02-26 Ing. Haaga Werkzeugbau Kg sweeper
US5742975A (en) 1996-05-06 1998-04-28 Windsor Industries, Inc. Articulated floor scrubber
SE9601742L (en) 1996-05-07 1997-11-08 Besam Ab Ways to determine the distance and position of an object
JP3343027B2 (en) 1996-05-17 2002-11-11 アマノ株式会社 Squeegee for floor washer
US5831597A (en) 1996-05-24 1998-11-03 Tanisys Technology, Inc. Computer input device for use in conjunction with a mouse input device
JPH09319431A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JPH09315061A (en) 1996-06-03 1997-12-09 Minolta Co Ltd Ic card and ic card-mounting apparatus
JPH09319432A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Mobile robot
JPH09319434A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JPH09324875A (en) * 1996-06-03 1997-12-16 Minolta Co Ltd Tank
JP3493539B2 (en) 1996-06-03 2004-02-03 ミノルタ株式会社 Traveling work robot
JPH09325812A (en) 1996-06-05 1997-12-16 Minolta Co Ltd Autonomous mobile robot
US6065182A (en) 1996-06-07 2000-05-23 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
US5983448A (en) 1996-06-07 1999-11-16 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
JP3581911B2 (en) 1996-06-07 2004-10-27 コニカミノルタホールディングス株式会社 Mobile vehicle
US6101671A (en) 1996-06-07 2000-08-15 Royal Appliance Mfg. Co. Wet mop and vacuum assembly
US5709007A (en) 1996-06-10 1998-01-20 Chiang; Wayne Remote control vacuum cleaner
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
KR100202079B1 (en) 1996-06-21 1999-06-15 윤종용 Detecting and separating method of multiplex syncronous signal
WO1997050218A1 (en) 1996-06-26 1997-12-31 Philips Electronics N.V. Trellis coded qam using rate compatible, punctured, convolutional codes
WO1997049324A2 (en) * 1996-06-26 1997-12-31 Matsushita Home Appliance Corporation Of America Extractor with twin, counterrotating agitators
JPH1019542A (en) 1996-07-08 1998-01-23 Keyence Corp Measuring device
US5812267A (en) 1996-07-10 1998-09-22 The United States Of America As Represented By The Secretary Of The Navy Optically based position location system for an autonomous guided vehicle
US6142252A (en) 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
JP3395874B2 (en) 1996-08-12 2003-04-14 ミノルタ株式会社 Mobile vehicle
US5926909A (en) 1996-08-28 1999-07-27 Mcgee; Daniel Remote control vacuum cleaner and charging system
US5756904A (en) 1996-08-30 1998-05-26 Tekscan, Inc. Pressure responsive sensor having controlled scanning speed
JPH10105236A (en) * 1996-09-30 1998-04-24 Minolta Co Ltd Positioning device for traveling object and its method
US5829095A (en) 1996-10-17 1998-11-03 Nilfisk-Advance, Inc. Floor surface cleaning machine
DE19643465C2 (en) 1996-10-22 1999-08-05 Bosch Gmbh Robert Control device for an optical sensor, in particular a rain sensor
JPH10117973A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous moving vehicle
JPH10118963A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous mobil vehicle
DE19644570C2 (en) 1996-10-26 1999-11-18 Kaercher Gmbh & Co Alfred Mobile floor cleaning device
US5815884A (en) 1996-11-27 1998-10-06 Yashima Electric Co., Ltd. Dust indication system for vacuum cleaner
DE69607629T2 (en) 1996-11-29 2000-10-19 Yashima Electric Co vacuum cleaner
JP3525658B2 (en) 1996-12-12 2004-05-10 松下電器産業株式会社 Operation controller for air purifier
US5974348A (en) 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
US5940346A (en) 1996-12-13 1999-08-17 Arizona Board Of Regents Modular robotic platform with acoustic navigation system
JPH10177414A (en) 1996-12-16 1998-06-30 Matsushita Electric Ind Co Ltd Device for recognizing traveling state by ceiling picture
US5987696A (en) 1996-12-24 1999-11-23 Wang; Kevin W. Carpet cleaning machine
US6146278A (en) 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
JP2001508572A (en) 1997-01-22 2001-06-26 シーメンス アクチエンゲゼルシヤフト Docking positioning method and apparatus for self-contained mobile device
US6076226A (en) 1997-01-27 2000-06-20 Robert J. Schaap Controlled self operated vacuum cleaning system
JP3375843B2 (en) 1997-01-29 2003-02-10 本田技研工業株式会社 Robot autonomous traveling method and autonomous traveling robot control device
JP3731021B2 (en) 1997-01-31 2006-01-05 株式会社トプコン Position detection surveying instrument
JP3323772B2 (en) 1997-02-13 2002-09-09 本田技研工業株式会社 Autonomous mobile robot with deadlock prevention device
US5942869A (en) 1997-02-13 1999-08-24 Honda Giken Kogyo Kabushiki Kaisha Mobile robot control device
US5819367A (en) 1997-02-25 1998-10-13 Yashima Electric Co., Ltd. Vacuum cleaner with optical sensor
JPH10240343A (en) 1997-02-27 1998-09-11 Minolta Co Ltd Autonomously traveling vehicle
AU723440B2 (en) 1997-02-28 2000-08-24 E.I. Du Pont De Nemours And Company Apparatus having a belt agitator for agitating a cleaning agent into a carpet
JPH10240342A (en) 1997-02-28 1998-09-11 Minolta Co Ltd Autonomous traveling vehicle
DE19708955A1 (en) 1997-03-05 1998-09-10 Bosch Siemens Hausgeraete Multifunctional suction cleaning device
US5995884A (en) 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
US5860707A (en) 1997-03-13 1999-01-19 Rollerblade, Inc. In-line skate wheel
ES2205458T3 (en) 1997-03-18 2004-05-01 Solar And Robotics S.A. IMPROVEMENTS FOR A ROBOTIC COURT.
WO1998041822A1 (en) 1997-03-20 1998-09-24 Crotzer David R Dust sensor apparatus
US5767437A (en) 1997-03-20 1998-06-16 Rogers; Donald L. Digital remote pyrotactic firing mechanism
JPH10260727A (en) 1997-03-21 1998-09-29 Minolta Co Ltd Automatic traveling working vehicle
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
JPH10292655A (en) * 1997-04-16 1998-11-04 Hitachi Plant Eng & Constr Co Ltd Cleaning device for bottom part of water tank
US6119457A (en) 1997-04-23 2000-09-19 Isuzu Ceramics Research Institute Co., Ltd. Heat exchanger apparatus using porous material, and ceramic engine provided with supercharger driven by thermal energy recorded from exhaust gas by the same apparatus
JPH10295595A (en) 1997-04-23 1998-11-10 Minolta Co Ltd Autonomously moving work wagon
US5987383C1 (en) 1997-04-28 2006-06-13 Trimble Navigation Ltd Form line following guidance system
US6557104B2 (en) 1997-05-02 2003-04-29 Phoenix Technologies Ltd. Method and apparatus for secure processing of cryptographic keys
US6108031A (en) 1997-05-08 2000-08-22 Kaman Sciences Corporation Virtual reality teleoperated remote control vehicle
KR200155821Y1 (en) 1997-05-12 1999-10-01 최진호 Remote controller of vacuum cleaner
JPH10314088A (en) * 1997-05-15 1998-12-02 Fuji Heavy Ind Ltd Self-advancing type cleaner
JPH10314078A (en) * 1997-05-15 1998-12-02 Fuji Heavy Ind Ltd Controller for cleaning system
CA2290348A1 (en) 1997-05-19 1998-11-26 Creator Ltd. Apparatus and methods for controlling household appliances
US6070290A (en) 1997-05-27 2000-06-06 Schwarze Industries, Inc. High maneuverability riding turf sweeper and surface cleaning apparatus
DE69831181T2 (en) 1997-05-30 2006-05-18 British Broadcasting Corp. location
GB2326353B (en) 1997-06-20 2001-02-28 Wong T K Ass Ltd Toy
JPH1115941A (en) 1997-06-24 1999-01-22 Minolta Co Ltd Ic card, and ic card system including the same
US6009358A (en) 1997-06-25 1999-12-28 Thomas G. Xydis Programmable lawn mower
JPH1118752A (en) 1997-07-05 1999-01-26 Masaru Motonaga Aloe vinegar and its production
US6032542A (en) 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
US6438793B1 (en) 1997-07-09 2002-08-27 Bissell Homecare, Inc. Upright extraction cleaning machine
US6192548B1 (en) 1997-07-09 2001-02-27 Bissell Homecare, Inc. Upright extraction cleaning machine with flow rate indicator
US6131237A (en) 1997-07-09 2000-10-17 Bissell Homecare, Inc. Upright extraction cleaning machine
US5905209A (en) 1997-07-22 1999-05-18 Tekscan, Inc. Output circuit for pressure sensor
AU9068698A (en) 1997-07-23 1999-02-16 Horst Jurgen Duschek Method for controlling an unmanned transport vehicle and unmanned transport vehicle system therefor
US5950408A (en) 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US5821730A (en) 1997-08-18 1998-10-13 International Components Corp. Low cost battery sensing technique
US6226830B1 (en) 1997-08-20 2001-05-08 Philips Electronics North America Corp. Vacuum cleaner with obstacle avoidance
JP3489976B2 (en) 1997-08-21 2004-01-26 株式会社コプロス Circular shaft excavator
JPH1165655A (en) 1997-08-26 1999-03-09 Minolta Co Ltd Controller for mobile object
US5998953A (en) 1997-08-22 1999-12-07 Minolta Co., Ltd. Control apparatus of mobile that applies fluid on floor
EP0939598B2 (en) 1997-08-25 2013-03-20 Koninklijke Philips Electronics N.V. Electrical surface treatment device with an acoustic surface type detector
JPH1156705A (en) 1997-08-27 1999-03-02 Tec Corp Suction aperture assembly for vacuum cleaner
TW410593U (en) 1997-08-29 2000-11-01 Sanyo Electric Co Suction head for electric vacuum cleaner
JPH1185269A (en) 1997-09-08 1999-03-30 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Guide control device for moving vehicle
US6199181B1 (en) 1997-09-09 2001-03-06 Perfecto Technologies Ltd. Method and system for maintaining restricted operating environments for application programs or operating systems
US6023814A (en) * 1997-09-15 2000-02-15 Imamura; Nobuo Vacuum cleaner
SE510524C2 (en) 1997-09-19 1999-05-31 Electrolux Ab Electronic demarcation system
WO1999016078A1 (en) 1997-09-19 1999-04-01 Hitachi, Ltd. Synchronous integrated circuit device
KR19990025888A (en) 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
US5933102A (en) 1997-09-24 1999-08-03 Tanisys Technology, Inc. Capacitive sensitive switch method and system
JPH11102220A (en) 1997-09-26 1999-04-13 Minolta Co Ltd Controller for moving body
JPH11102219A (en) 1997-09-26 1999-04-13 Minolta Co Ltd Controller for moving body
US6076026A (en) 1997-09-30 2000-06-13 Motorola, Inc. Method and device for vehicle control events data recording and securing
US20010032278A1 (en) 1997-10-07 2001-10-18 Brown Stephen J. Remote generation and distribution of command programs for programmable devices
SE511504C2 (en) 1997-10-17 1999-10-11 Apogeum Ab Method and apparatus for associating anonymous reflectors to detected angular positions
US5974365A (en) 1997-10-23 1999-10-26 The United States Of America As Represented By The Secretary Of The Army System for measuring the location and orientation of an object
DE19747318C1 (en) 1997-10-27 1999-05-27 Kaercher Gmbh & Co Alfred Cleaning device
US5943730A (en) 1997-11-24 1999-08-31 Tennant Company Scrubber vac-fan seal
JP4458664B2 (en) 1997-11-27 2010-04-28 ソーラー・アンド・ロボティクス Improvement of mobile robot and its control system
US6532404B2 (en) 1997-11-27 2003-03-11 Colens Andre Mobile robots and their control system
GB2331919B (en) 1997-12-05 2002-05-08 Bissell Inc Handheld extraction cleaner
JPH11175149A (en) 1997-12-10 1999-07-02 Minolta Co Ltd Autonomous traveling vehicle
GB2332283A (en) 1997-12-10 1999-06-16 Nec Technologies Coulometric battery state of charge metering
JPH11174145A (en) 1997-12-11 1999-07-02 Minolta Co Ltd Ultrasonic range finding sensor and autonomous driving vehicle
US6055042A (en) 1997-12-16 2000-04-25 Caterpillar Inc. Method and apparatus for detecting obstacles using multiple sensors for range selective detection
JP3426487B2 (en) 1997-12-22 2003-07-14 本田技研工業株式会社 Cleaning robot
JPH11178764A (en) 1997-12-22 1999-07-06 Honda Motor Co Ltd Traveling robot
SE511254C2 (en) 1998-01-08 1999-09-06 Electrolux Ab Electronic search system for work tools
SE523080C2 (en) 1998-01-08 2004-03-23 Electrolux Ab Docking system for self-propelled work tools
US6003196A (en) 1998-01-09 1999-12-21 Royal Appliance Mfg. Co. Upright vacuum cleaner with cyclonic airflow
US6099091A (en) 1998-01-20 2000-08-08 Letro Products, Inc. Traction enhanced wheel apparatus
US5967747A (en) 1998-01-20 1999-10-19 Tennant Company Low noise fan
US5984880A (en) 1998-01-20 1999-11-16 Lander; Ralph H Tactile feedback controlled by various medium
JP3479212B2 (en) 1998-01-21 2003-12-15 本田技研工業株式会社 Control method and device for self-propelled robot
JP3597384B2 (en) 1998-06-08 2004-12-08 シャープ株式会社 Electric vacuum cleaner
CA2251295C (en) 1998-01-27 2002-08-20 Sharp Kabushiki Kaisha Electric vacuum cleaner
US6030464A (en) * 1998-01-28 2000-02-29 Azevedo; Steven Method for diagnosing, cleaning and preserving carpeting and other fabrics
JP3051023U (en) 1998-01-29 1998-08-11 株式会社鈴機商事 Track pad
JPH11213157A (en) 1998-01-29 1999-08-06 Minolta Co Ltd Camera mounted mobile object
DE19804195A1 (en) 1998-02-03 1999-08-05 Siemens Ag Path planning procedure for a mobile unit for surface processing
US6272936B1 (en) 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
SE9800583D0 (en) 1998-02-26 1998-02-26 Electrolux Ab Nozzle
US6036572A (en) 1998-03-04 2000-03-14 Sze; Chau-King Drive for toy with suction cup feet
US6026539A (en) * 1998-03-04 2000-02-22 Bissell Homecare, Inc. Upright vacuum cleaner with full bag and clogged filter indicators thereon
ITTO980209A1 (en) 1998-03-12 1998-06-12 Cavanna Spa PROCEDURE FOR COMMANDING THE OPERATION OF MACHINES FOR THE TREATMENT OF ARTICLES, FOR EXAMPLE FOR THE PACKAGING OF PRODUCTS
JPH11282533A (en) 1998-03-26 1999-10-15 Sharp Corp Mobile robot system
US6263989B1 (en) 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
JP3479215B2 (en) 1998-03-27 2003-12-15 本田技研工業株式会社 Self-propelled robot control method and device by mark detection
KR100384980B1 (en) 1998-04-03 2003-06-02 마츠시타 덴끼 산교 가부시키가이샤 Rotational brush device and electric instrument using same
US6023813A (en) * 1998-04-07 2000-02-15 Spectrum Industrial Products, Inc. Powered floor scrubber and buffer
US6041471A (en) 1998-04-09 2000-03-28 Madvac International Inc. Mobile walk-behind sweeper
US6154279A (en) 1998-04-09 2000-11-28 John W. Newman Method and apparatus for determining shapes of countersunk holes
JPH11295412A (en) 1998-04-09 1999-10-29 Minolta Co Ltd Apparatus for recognizing position of mobile
AUPP299498A0 (en) 1998-04-15 1998-05-07 Commonwealth Scientific And Industrial Research Organisation Method of tracking and sensing position of objects
US6233504B1 (en) 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
DE19820628C1 (en) 1998-05-08 1999-09-23 Kaercher Gmbh & Co Alfred Roller mounting or carpet sweeper
JP3895464B2 (en) 1998-05-11 2007-03-22 株式会社東海理化電機製作所 Data carrier system
IL124413A (en) 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
EP2306229A1 (en) 1998-05-25 2011-04-06 Panasonic Corporation Range finder device and camera
ES2207955T3 (en) 1998-07-20 2004-06-01 THE PROCTER &amp; GAMBLE COMPANY ROBOTIC SYSTEM.
US6941199B1 (en) 1998-07-20 2005-09-06 The Procter & Gamble Company Robotic system
JP2000047728A (en) 1998-07-28 2000-02-18 Denso Corp Electric charging controller in moving robot system
US6108859A (en) 1998-07-29 2000-08-29 Alto U. S. Inc. High efficiency squeegee
EP1098587A1 (en) 1998-07-31 2001-05-16 Volker Sommer Household robot for the automatic suction of dust from the floor surfaces
US6112143A (en) 1998-08-06 2000-08-29 Caterpillar Inc. Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine
EP1105782A2 (en) 1998-08-10 2001-06-13 Siemens Aktiengesellschaft Method and device for determining a path around a defined reference position
JP2000056831A (en) 1998-08-12 2000-02-25 Minolta Co Ltd Moving travel vehicle
US6088020A (en) 1998-08-12 2000-07-11 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Haptic device
US6491127B1 (en) 1998-08-14 2002-12-10 3Com Corporation Powered caster wheel module for use on omnidirectional drive systems
JP2000056006A (en) 1998-08-14 2000-02-25 Minolta Co Ltd Position recognizing device for mobile
JP3478476B2 (en) * 1998-08-18 2003-12-15 シャープ株式会社 Cleaning robot
JP2000066722A (en) 1998-08-19 2000-03-03 Minolta Co Ltd Autonomously traveling vehicle and rotation angle detection method
JP2000075925A (en) 1998-08-28 2000-03-14 Minolta Co Ltd Autonomous traveling vehicle
US6216307B1 (en) 1998-09-25 2001-04-17 Cma Manufacturing Co. Hand held cleaning device
US20020104963A1 (en) 1998-09-26 2002-08-08 Vladimir Mancevski Multidimensional sensing system for atomic force microscopy
JP2000102499A (en) 1998-09-30 2000-04-11 Kankyo Co Ltd Vacuum cleaner with rotary brush
US6108269A (en) 1998-10-01 2000-08-22 Garmin Corporation Method for elimination of passive noise interference in sonar
CA2251243C (en) 1998-10-21 2006-12-19 Robert Dworkowski Distance tracking control system for single pass topographical mapping
DE19849978C2 (en) 1998-10-29 2001-02-08 Erwin Prasler Self-propelled cleaning device
KR100610235B1 (en) 1998-11-30 2006-08-09 소니 가부시끼 가이샤 Robot device and control method thereof
JP3980205B2 (en) 1998-12-17 2007-09-26 コニカミノルタホールディングス株式会社 Work robot
GB2344884A (en) 1998-12-18 2000-06-21 Notetry Ltd Light Detection Apparatus - eg for a robotic cleaning device
GB2344747B (en) 1998-12-18 2002-05-29 Notetry Ltd Autonomous vacuum cleaner
GB2344745B (en) 1998-12-18 2002-06-05 Notetry Ltd Vacuum cleaner
GB2344750B (en) 1998-12-18 2002-06-26 Notetry Ltd Vacuum cleaner
GB2344751B (en) 1998-12-18 2002-01-09 Notetry Ltd Vacuum cleaner
GB9827779D0 (en) 1998-12-18 1999-02-10 Notetry Ltd Improvements in or relating to appliances
US6513046B1 (en) 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
GB2344888A (en) 1998-12-18 2000-06-21 Notetry Ltd Obstacle detection system
US6108076A (en) 1998-12-21 2000-08-22 Trimble Navigation Limited Method and apparatus for accurately positioning a tool on a mobile machine using on-board laser and positioning system
US6339735B1 (en) * 1998-12-29 2002-01-15 Friendly Robotics Ltd. Method for operating a robot
KR200211751Y1 (en) 1998-12-31 2001-02-01 송영소 Dust collection tester for vacuum cleaner
US6145159A (en) * 1999-01-08 2000-11-14 Royal Appliance Mfg. Co. Combination dirty fluid tank and nozzle for a carpet extractor
US6154917A (en) 1999-01-08 2000-12-05 Royal Appliance Mfg. Co. Carpet extractor housing
US6238451B1 (en) 1999-01-08 2001-05-29 Fantom Technologies Inc. Vacuum cleaner
DE19900484A1 (en) 1999-01-08 2000-08-10 Wap Reinigungssysteme Measuring system for residual dust monitoring for safety vacuums
US6282526B1 (en) 1999-01-20 2001-08-28 The United States Of America As Represented By The Secretary Of The Navy Fuzzy logic based system and method for information processing with uncertain input data
US6167332A (en) 1999-01-28 2000-12-26 International Business Machines Corporation Method and apparatus suitable for optimizing an operation of a self-guided vehicle
US6124694A (en) 1999-03-18 2000-09-26 Bancroft; Allen J. Wide area navigation for a robot scrubber
JP3513419B2 (en) 1999-03-19 2004-03-31 キヤノン株式会社 Coordinate input device, control method therefor, and computer-readable memory
US6338013B1 (en) * 1999-03-19 2002-01-08 Bryan John Ruffner Multifunctional mobile appliance
JP2000275321A (en) 1999-03-25 2000-10-06 Ushio U-Tech Inc Method and system for measuring position coordinate of traveling object
JP4198262B2 (en) 1999-03-29 2008-12-17 富士重工業株式会社 Position adjustment mechanism of dust absorber in floor cleaning robot
DE19931014B4 (en) 1999-05-03 2007-04-19 Volkswagen Ag Distance sensor for a motor vehicle
US6415203B1 (en) 1999-05-10 2002-07-02 Sony Corporation Toboy device and method for controlling the same
US6737591B1 (en) 1999-05-25 2004-05-18 Silverbrook Research Pty Ltd Orientation sensing device
US6202243B1 (en) * 1999-05-26 2001-03-20 Tennant Company Surface cleaning machine with multiple control positions
GB2350696A (en) 1999-05-28 2000-12-06 Notetry Ltd Visual status indicator for a robotic machine, eg a vacuum cleaner
US6261379B1 (en) 1999-06-01 2001-07-17 Fantom Technologies Inc. Floating agitator housing for a vacuum cleaner head
AU772590B2 (en) * 1999-06-08 2004-04-29 Diversey, Inc. Floor cleaning apparatus
JP3598881B2 (en) 1999-06-09 2004-12-08 株式会社豊田自動織機 Cleaning robot
JP2000342498A (en) 1999-06-09 2000-12-12 Toyota Autom Loom Works Ltd Cleaning robot
JP4132415B2 (en) 1999-06-09 2008-08-13 株式会社豊田自動織機 Cleaning robot
DE50015873D1 (en) 1999-06-11 2010-04-08 Abb Research Ltd SYSTEM FOR A MULTIPLE OF ACTUATORS MAKING MACHINE
US6446302B1 (en) 1999-06-14 2002-09-10 Bissell Homecare, Inc. Extraction cleaning machine with cleaning control
DE60011266T2 (en) 1999-06-17 2005-01-20 Solar And Robotics S.A. AUTOMATIC DEVICE FOR COLLECTING OBJECTS
AU6065700A (en) 1999-06-30 2001-01-31 Nilfisk-Advance, Inc. Riding floor scrubber
JP4165965B2 (en) 1999-07-09 2008-10-15 フィグラ株式会社 Autonomous work vehicle
US6611738B2 (en) 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
GB9917232D0 (en) 1999-07-23 1999-09-22 Notetry Ltd Method of operating a floor cleaning device
GB9917348D0 (en) * 1999-07-24 1999-09-22 Procter & Gamble Robotic system
US6283034B1 (en) 1999-07-30 2001-09-04 D. Wayne Miles, Jr. Remotely armed ammunition
US6677938B1 (en) 1999-08-04 2004-01-13 Trimble Navigation, Ltd. Generating positional reality using RTK integrated with scanning lasers
JP3700487B2 (en) 1999-08-30 2005-09-28 トヨタ自動車株式会社 Vehicle position detection device
EP1091273B1 (en) 1999-08-31 2005-10-05 Swisscom AG Mobile robot and method for controlling a mobile robot
JP2001087182A (en) 1999-09-20 2001-04-03 Mitsubishi Electric Corp Vacuum cleaner
US6480762B1 (en) 1999-09-27 2002-11-12 Olympus Optical Co., Ltd. Medical apparatus supporting system
JP3568837B2 (en) 1999-09-30 2004-09-22 アマノ株式会社 Floor cleaning cleaner
DE19948974A1 (en) 1999-10-11 2001-04-12 Nokia Mobile Phones Ltd Method for recognizing and selecting a tone sequence, in particular a piece of music
US6530102B1 (en) 1999-10-20 2003-03-11 Tennant Company Scrubber head anti-vibration mounting
GB2355391A (en) * 1999-10-20 2001-04-25 Notetry Ltd Cyclonic vacuum cleaner with a horizontal, or substantially horizontal, separator
JP4207336B2 (en) 1999-10-29 2009-01-14 ソニー株式会社 Charging system for mobile robot, method for searching for charging station, mobile robot, connector, and electrical connection structure
JP2001121455A (en) 1999-10-29 2001-05-08 Sony Corp Charge system of and charge control method for mobile robot, charge station, mobile robot and its control method
JP2001216482A (en) 1999-11-10 2001-08-10 Matsushita Electric Ind Co Ltd Electric equipment and portable recording medium
JP2003515210A (en) 1999-11-18 2003-04-22 ザ プロクター アンド ギャンブル カンパニー Household cleaning robot
US6548982B1 (en) 1999-11-19 2003-04-15 Regents Of The University Of Minnesota Miniature robotic vehicles and methods of controlling same
US6374155B1 (en) 1999-11-24 2002-04-16 Personal Robotics, Inc. Autonomous multi-platform robot system
US6362875B1 (en) 1999-12-10 2002-03-26 Cognax Technology And Investment Corp. Machine vision system and method for inspection, homing, guidance and docking with respect to remote objects
DE19960591A1 (en) * 1999-12-16 2001-06-21 Laser & Med Tech Gmbh Wall and floor cavitation cleaner
US6263539B1 (en) 1999-12-23 2001-07-24 Taf Baig Carpet/floor cleaning wand and machine
JP4019586B2 (en) 1999-12-27 2007-12-12 富士電機リテイルシステムズ株式会社 Store management system, information management method, and computer-readable recording medium recording a program for causing a computer to execute the method
JP2001197008A (en) 2000-01-13 2001-07-19 Tsubakimoto Chain Co Mobile optical communication system, photodetection device, optical communication device, and carrier device
US6467122B2 (en) * 2000-01-14 2002-10-22 Bissell Homecare, Inc. Deep cleaner with tool mount
US6146041A (en) 2000-01-19 2000-11-14 Chen; He-Jin Sponge mop with cleaning tank attached thereto
US6332400B1 (en) 2000-01-24 2001-12-25 The United States Of America As Represented By The Secretary Of The Navy Initiating device for use with telemetry systems
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US7155308B2 (en) 2000-01-24 2006-12-26 Irobot Corporation Robot obstacle detection system
US6594844B2 (en) * 2000-01-24 2003-07-22 Irobot Corporation Robot obstacle detection system
GB2358843B (en) * 2000-02-02 2002-01-23 Logical Technologies Ltd An autonomous mobile apparatus for performing work within a pre-defined area
US6418586B2 (en) 2000-02-02 2002-07-16 Alto U.S., Inc. Liquid extraction machine
JP2001289939A (en) 2000-02-02 2001-10-19 Mitsubishi Electric Corp Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
US6421870B1 (en) 2000-02-04 2002-07-23 Tennant Company Stacked tools for overthrow sweeping
DE10006493C2 (en) 2000-02-14 2002-02-07 Hilti Ag Method and device for optoelectronic distance measurement
US6276478B1 (en) 2000-02-16 2001-08-21 Kathleen Garrubba Hopkins Adherent robot
DE10007864A1 (en) 2000-02-21 2001-08-30 Wittenstein Gmbh & Co Kg Detecting, determining, locating at least one object and/or space involves transmitting spatial coordinates and/or coordinates of any object in space to robot to orient it
WO2001062173A2 (en) 2000-02-25 2001-08-30 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6285930B1 (en) 2000-02-28 2001-09-04 Case Corporation Tracking improvement for a vision guidance system
US6278918B1 (en) 2000-02-28 2001-08-21 Case Corporation Region of interest selection for a vision guidance system
US6490539B1 (en) 2000-02-28 2002-12-03 Case Corporation Region of interest selection for varying distances between crop rows for a vision guidance system
JP2001265437A (en) 2000-03-16 2001-09-28 Figla Co Ltd Traveling object controller
JP2001258807A (en) 2000-03-16 2001-09-25 Sharp Corp Self-traveling vacuum cleaner
US6443509B1 (en) 2000-03-21 2002-09-03 Friendly Robotics Ltd. Tactile sensor
US6540424B1 (en) 2000-03-24 2003-04-01 The Clorox Company Advanced cleaning system
JP3895092B2 (en) 2000-03-24 2007-03-22 富士通株式会社 Communications system
JP2001275908A (en) 2000-03-30 2001-10-09 Matsushita Seiko Co Ltd Cleaning device
JP4032603B2 (en) 2000-03-31 2008-01-16 コニカミノルタセンシング株式会社 3D measuring device
JP2001277163A (en) 2000-04-03 2001-10-09 Sony Corp Device and method for controlling robot
US20010045883A1 (en) 2000-04-03 2001-11-29 Holdaway Charles R. Wireless digital launch or firing system
JP4480843B2 (en) * 2000-04-03 2010-06-16 ソニー株式会社 Legged mobile robot, control method therefor, and relative movement measurement sensor for legged mobile robot
AU2001253151A1 (en) 2000-04-04 2001-10-15 Irobot Corporation Wheeled platforms
US6870792B2 (en) 2000-04-04 2005-03-22 Irobot Corporation Sonar Scanner
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
KR100332984B1 (en) 2000-04-24 2002-04-15 이충전 Combine structure of edge brush in a vaccum cleaner type upright
DE10020503A1 (en) 2000-04-26 2001-10-31 Bsh Bosch Siemens Hausgeraete Machining appliance incorporates vacuum generator between machining appliance and machined surface, with support and working appliance
JP2001306170A (en) 2000-04-27 2001-11-02 Canon Inc Image processing device, image processing system, method for restricting use of image processing device and storage medium
US6769004B2 (en) 2000-04-27 2004-07-27 Irobot Corporation Method and system for incremental stack scanning
US6845297B2 (en) * 2000-05-01 2005-01-18 Irobot Corporation Method and system for remote control of mobile robot
CA2407992C (en) 2000-05-01 2010-07-20 Irobot Corporation Method and system for remote control of mobile robot
US6741054B2 (en) 2000-05-02 2004-05-25 Vision Robotics Corporation Autonomous floor mopping apparatus
US6633150B1 (en) 2000-05-02 2003-10-14 Personal Robotics, Inc. Apparatus and method for improving traction for a mobile robot
JP2001320781A (en) 2000-05-10 2001-11-16 Inst Of Physical & Chemical Res Support system using data carrier system
US6454036B1 (en) 2000-05-15 2002-09-24 ′Bots, Inc. Autonomous vehicle navigation system and method
US6854148B1 (en) 2000-05-26 2005-02-15 Poolvernguegen Four-wheel-drive automatic swimming pool cleaner
US6481515B1 (en) 2000-05-30 2002-11-19 The Procter & Gamble Company Autonomous mobile surface treating apparatus
US6385515B1 (en) 2000-06-15 2002-05-07 Case Corporation Trajectory path planner for a vision guidance system
US6629028B2 (en) 2000-06-29 2003-09-30 Riken Method and system of optical guidance of mobile body
US6397429B1 (en) * 2000-06-30 2002-06-04 Nilfisk-Advance, Inc. Riding floor scrubber
JP3833903B2 (en) * 2000-07-11 2006-10-18 株式会社東芝 Manufacturing method of semiconductor device
US6539284B2 (en) 2000-07-25 2003-03-25 Axonn Robotics, Llc Socially interactive autonomous robot
EP1176487A1 (en) * 2000-07-27 2002-01-30 Gmd - Forschungszentrum Informationstechnik Gmbh Autonomously navigating robot system
US6571422B1 (en) 2000-08-01 2003-06-03 The Hoover Company Vacuum cleaner with a microprocessor-based dirt detection circuit
KR100391179B1 (en) * 2000-08-02 2003-07-12 한국전력공사 Teleoperated mobile cleanup device for highly radioactive fine waste
US6720879B2 (en) 2000-08-08 2004-04-13 Time-N-Space Technology, Inc. Animal collar including tracking and location device
JP2002073170A (en) 2000-08-25 2002-03-12 Matsushita Electric Ind Co Ltd Movable working robot
US6832407B2 (en) 2000-08-25 2004-12-21 The Hoover Company Moisture indicator for wet pick-up suction cleaner
US7388879B2 (en) 2000-08-28 2008-06-17 Sony Corporation Communication device and communication method network system and robot apparatus
JP3674481B2 (en) 2000-09-08 2005-07-20 松下電器産業株式会社 Self-propelled vacuum cleaner
US7040869B2 (en) 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media
KR20020022444A (en) 2000-09-20 2002-03-27 김대홍 Fuselage and wings and model plane using the same
US20050255425A1 (en) 2000-09-21 2005-11-17 Pierson Paul R Mixing tip for dental materials
US6502657B2 (en) 2000-09-22 2003-01-07 The Charles Stark Draper Laboratory, Inc. Transformable vehicle
EP1191166A1 (en) 2000-09-26 2002-03-27 The Procter & Gamble Company Process of cleaning the inner surface of a water-containing vessel
US6674259B1 (en) 2000-10-06 2004-01-06 Innovation First, Inc. System and method for managing and controlling a robot competition
USD458318S1 (en) 2000-10-10 2002-06-04 Sharper Image Corporation Robot
US6658693B1 (en) 2000-10-12 2003-12-09 Bissell Homecare, Inc. Hand-held extraction cleaner with turbine-driven brush
US6690993B2 (en) 2000-10-12 2004-02-10 R. Foulke Development Company, Llc Reticle storage system
US6457206B1 (en) 2000-10-20 2002-10-01 Scott H. Judson Remote-controlled vacuum cleaner
NO313533B1 (en) 2000-10-30 2002-10-21 Torbjoern Aasen Mobile robot
US6615885B1 (en) 2000-10-31 2003-09-09 Irobot Corporation Resilient wheel structure
JP2002307354A (en) 2000-11-07 2002-10-23 Sega Toys:Kk Electronic toy
US6496754B2 (en) 2000-11-17 2002-12-17 Samsung Kwangju Electronics Co., Ltd. Mobile robot and course adjusting method thereof
AUPR154400A0 (en) 2000-11-17 2000-12-14 Duplex Cleaning Machines Pty. Limited Robot machine
US6572711B2 (en) 2000-12-01 2003-06-03 The Hoover Company Multi-purpose position sensitive floor cleaning device
US6571415B2 (en) 2000-12-01 2003-06-03 The Hoover Company Random motion cleaner
SE0004465D0 (en) 2000-12-04 2000-12-04 Abb Ab Robot system
JP4084921B2 (en) 2000-12-13 2008-04-30 日産自動車株式会社 Chip removal device for broaching machine
US6684511B2 (en) 2000-12-14 2004-02-03 Wahl Clipper Corporation Hair clipping device with rotating bladeset having multiple cutting edges
JP3946499B2 (en) 2000-12-27 2007-07-18 フジノン株式会社 Method for detecting posture of object to be observed and apparatus using the same
US6661239B1 (en) 2001-01-02 2003-12-09 Irobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
US6388013B1 (en) 2001-01-04 2002-05-14 Equistar Chemicals, Lp Polyolefin fiber compositions
US6444003B1 (en) 2001-01-08 2002-09-03 Terry Lee Sutcliffe Filter apparatus for sweeper truck hopper
JP4479101B2 (en) 2001-01-12 2010-06-09 パナソニック株式会社 Self-propelled vacuum cleaner
JP2002204768A (en) 2001-01-12 2002-07-23 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US6658325B2 (en) 2001-01-16 2003-12-02 Stephen Eliot Zweig Mobile robotic with web server and digital radio links
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US7024278B2 (en) 2002-09-13 2006-04-04 Irobot Corporation Navigational control system for a robotic device
ATE357869T1 (en) 2001-01-25 2007-04-15 Koninkl Philips Electronics Nv ROBOT FOR VACUUMING SURFACE USING A CIRCULAR MOVEMENT
FR2820216B1 (en) 2001-01-26 2003-04-25 Wany Sa METHOD AND DEVICE FOR DETECTING OBSTACLE AND MEASURING DISTANCE BY INFRARED RADIATION
ITMI20010193A1 (en) 2001-02-01 2002-08-01 Pierangelo Bertola CRUSHER COLLECTION BRUSH WITH MEANS PERFECTED FOR THE HOLDING OF DIRT COLLECTION
ITFI20010021A1 (en) 2001-02-07 2002-08-07 Zucchetti Ct Sistemi S P A AUTOMATIC VACUUM CLEANING APPARATUS FOR FLOORS
USD471243S1 (en) 2001-02-09 2003-03-04 Irobot Corporation Robot
US6530117B2 (en) 2001-02-12 2003-03-11 Robert A. Peterson Wet vacuum
US6810305B2 (en) 2001-02-16 2004-10-26 The Procter & Gamble Company Obstruction management system for robots
JP4438237B2 (en) 2001-02-22 2010-03-24 ソニー株式会社 Receiving apparatus and method, recording medium, and program
DE60201020T3 (en) * 2001-02-24 2008-05-15 Dyson Technology Ltd., Malmesbury COLLECTION CHAMBER FOR A VACUUM CLEANER
SE518483C2 (en) 2001-02-28 2002-10-15 Electrolux Ab Wheel suspension for a self-cleaning cleaner
SE518482C2 (en) 2001-02-28 2002-10-15 Electrolux Ab Obstacle detection system for a self-cleaning cleaner
DE10110907A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred Floor cleaning device
DE10110906A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred sweeper
DE10110905A1 (en) 2001-03-07 2002-10-02 Kaercher Gmbh & Co Alfred Soil cultivation device, in particular floor cleaning device
SE0100926L (en) 2001-03-15 2002-10-01 Electrolux Ab Proximity sensing system for an autonomous device and ultrasonic sensor
US6842318B2 (en) 2001-03-15 2005-01-11 Microsemi Corporation Low leakage input protection device and scheme for electrostatic discharge
SE0100924D0 (en) 2001-03-15 2001-03-15 Electrolux Ab Energy-efficient navigation of an autonomous surface treatment apparatus
SE518683C2 (en) 2001-03-15 2002-11-05 Electrolux Ab Method and apparatus for determining the position of an autonomous apparatus
KR100922506B1 (en) 2001-03-16 2009-10-20 비젼 로보틱스 코포레이션 Autonomous canister vacuum cleaner, system thereof and method of vacuum cleaning using the same
SE523318C2 (en) 2001-03-20 2004-04-13 Ingenjoers N D C Netzler & Dah Camera based distance and angle gauges
JP3849442B2 (en) 2001-03-27 2006-11-22 株式会社日立製作所 Self-propelled vacuum cleaner
DE10116892A1 (en) 2001-04-04 2002-10-17 Outokumpu Oy Process for conveying granular solids
US7328196B2 (en) 2003-12-31 2008-02-05 Vanderbilt University Architecture for multiple interacting robot intelligences
JP2002369778A (en) 2001-04-13 2002-12-24 Yashima Denki Co Ltd Dust detecting device and vacuum cleaner
RU2220643C2 (en) 2001-04-18 2004-01-10 Самсунг Гванджу Электроникс Ко., Лтд. Automatic cleaning apparatus, automatic cleaning system and method for controlling of system (versions)
KR100437372B1 (en) 2001-04-18 2004-06-25 삼성광주전자 주식회사 Robot cleaning System using by mobile communication network
AU767561B2 (en) 2001-04-18 2003-11-13 Samsung Kwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for reconnecting to external recharging device
US6929548B2 (en) 2002-04-23 2005-08-16 Xiaoling Wang Apparatus and a method for more realistic shooting video games on computers or similar devices
FR2823842B1 (en) 2001-04-24 2003-09-05 Romain Granger MEASURING METHOD FOR DETERMINING THE POSITION AND ORIENTATION OF A MOBILE ASSEMBLY, AND DEVICE FOR CARRYING OUT SAID METHOD
JP2002323926A (en) * 2001-04-24 2002-11-08 Toshiba Tec Corp Autonomous travel vehicle
US6687571B1 (en) 2001-04-24 2004-02-03 Sandia Corporation Cooperating mobile robots
US6408226B1 (en) 2001-04-24 2002-06-18 Sandia Corporation Cooperative system and method using mobile robots for testing a cooperative search controller
US6438456B1 (en) 2001-04-24 2002-08-20 Sandia Corporation Portable control device for networked mobile robots
JP2002323925A (en) 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Moving working robot
US6540607B2 (en) 2001-04-26 2003-04-01 Midway Games West Video game position and orientation detection system
US20020159051A1 (en) 2001-04-30 2002-10-31 Mingxian Guo Method for optical wavelength position searching and tracking
US7809944B2 (en) 2001-05-02 2010-10-05 Sony Corporation Method and apparatus for providing information for decrypting content, and program executed on information processor
US6487474B1 (en) 2001-05-10 2002-11-26 International Business Machines Corporation Automated data storage library with multipurpose slots providing user-selected control path to shared robotic device
JP2002333920A (en) 2001-05-11 2002-11-22 Figla Co Ltd Movement controller for traveling object for work
US6711280B2 (en) 2001-05-25 2004-03-23 Oscar M. Stafsudd Method and apparatus for intelligent ranging via image subtraction
WO2002096184A1 (en) 2001-05-28 2002-12-05 Solar & Robotics Sa Improvement to a robotic lawnmower
JP4802397B2 (en) 2001-05-30 2011-10-26 コニカミノルタホールディングス株式会社 Image photographing system and operation device
US6763282B2 (en) * 2001-06-04 2004-07-13 Time Domain Corp. Method and system for controlling a robot
JP2002355206A (en) 2001-06-04 2002-12-10 Matsushita Electric Ind Co Ltd Traveling vacuum cleaner
JP3356170B1 (en) 2001-06-05 2002-12-09 松下電器産業株式会社 Cleaning robot
JP2002366227A (en) 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd Movable working robot
JP4017840B2 (en) 2001-06-05 2007-12-05 松下電器産業株式会社 Self-propelled vacuum cleaner
US6901624B2 (en) 2001-06-05 2005-06-07 Matsushita Electric Industrial Co., Ltd. Self-moving cleaner
US6670817B2 (en) 2001-06-07 2003-12-30 Heidelberger Druckmaschinen Ag Capacitive toner level detection
WO2002101018A2 (en) * 2001-06-11 2002-12-19 Fred Hutchinson Cancer Research Center Methods for inducing reversible stasis
ES2660836T3 (en) * 2001-06-12 2018-03-26 Irobot Corporation Multi-code coverage method and system for an autonomous robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US6507773B2 (en) 2001-06-14 2003-01-14 Sharper Image Corporation Multi-functional robot with remote and video system
US6473167B1 (en) 2001-06-14 2002-10-29 Ascension Technology Corporation Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
US6685092B2 (en) 2001-06-15 2004-02-03 Symbol Technologies, Inc. Molded imager optical package and miniaturized linear sensor-based code reading engines
JP2003005296A (en) 2001-06-18 2003-01-08 Noritsu Koki Co Ltd Photographic processing device
US6604021B2 (en) 2001-06-21 2003-08-05 Advanced Telecommunications Research Institute International Communication robot
JP2003010076A (en) 2001-06-27 2003-01-14 Figla Co Ltd Vacuum cleaner
JP4553524B2 (en) 2001-06-27 2010-09-29 フィグラ株式会社 Liquid application method
US6600844B2 (en) * 2001-06-29 2003-07-29 Hrl Laboratories, Llc Highly linear electro-optic delay generator for all-optical pulse-position modulation
JP2004530723A (en) 2001-06-29 2004-10-07 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing methacrolein from isobutane
JP2003015740A (en) 2001-07-04 2003-01-17 Figla Co Ltd Traveling controller for traveling object for work
US6622465B2 (en) 2001-07-10 2003-09-23 Deere & Company Apparatus and method for a material collection fill indicator
JP2003030543A (en) 2001-07-11 2003-01-31 Dainippon Printing Co Ltd Campaign participant management server
JP4601215B2 (en) 2001-07-16 2010-12-22 三洋電機株式会社 Cryogenic refrigerator
US20030233870A1 (en) 2001-07-18 2003-12-25 Xidex Corporation Multidimensional sensing system for atomic force microscopy
US20030015232A1 (en) * 2001-07-23 2003-01-23 Thomas Nguyen Portable car port
JP2003036116A (en) 2001-07-25 2003-02-07 Toshiba Tec Corp Autonomous travel robot
US6735811B2 (en) 2001-07-30 2004-05-18 Tennant Company Cleaning liquid dispensing system for a hard floor surface cleaner
US6671925B2 (en) * 2001-07-30 2004-01-06 Tennant Company Chemical dispenser for a hard floor surface cleaner
US6585827B2 (en) 2001-07-30 2003-07-01 Tennant Company Apparatus and method of use for cleaning a hard floor surface utilizing an aerated cleaning liquid
US7051399B2 (en) * 2001-07-30 2006-05-30 Tennant Company Cleaner cartridge
JP2003038401A (en) 2001-08-01 2003-02-12 Toshiba Tec Corp Cleaner
JP2003038402A (en) 2001-08-02 2003-02-12 Toshiba Tec Corp Cleaner
JP2003047579A (en) 2001-08-06 2003-02-18 Toshiba Tec Corp Vacuum cleaner
KR100420171B1 (en) 2001-08-07 2004-03-02 삼성광주전자 주식회사 Robot cleaner and system therewith and method of driving thereof
FR2828589B1 (en) 2001-08-07 2003-12-05 France Telecom ELECTRIC CONNECTION SYSTEM BETWEEN A VEHICLE AND A CHARGING STATION OR THE LIKE
US6580246B2 (en) * 2001-08-13 2003-06-17 Steven Jacobs Robot touch shield
JP2003061882A (en) 2001-08-28 2003-03-04 Matsushita Electric Ind Co Ltd Self-propelled vacuum cleaner
US20030168081A1 (en) 2001-09-06 2003-09-11 Timbucktoo Mfg., Inc. Motor-driven, portable, adjustable spray system for cleaning hard surfaces
JP2003084994A (en) 2001-09-12 2003-03-20 Olympus Optical Co Ltd Medical system
DE10242257C5 (en) 2001-09-14 2017-05-11 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device, and combination of such a collecting device and a base station
EP1437958B1 (en) * 2001-09-14 2005-11-16 Vorwerk & Co. Interholding GmbH Automatically displaceable floor-type dust collector and combination of said collector and a base station
JP2003079550A (en) 2001-09-17 2003-03-18 Toshiba Tec Corp Cleaning device
JP2003179556A (en) 2001-09-21 2003-06-27 Casio Comput Co Ltd Information transmission method, information transmission system, imaging apparatus and information transmission method
IL145680A0 (en) 2001-09-26 2002-06-30 Friendly Robotics Ltd Robotic vacuum cleaner
EP1441632B1 (en) 2001-09-26 2013-05-01 F. Robotics Acquisitions Ltd. Robotic vacuum cleaner
US6624744B1 (en) 2001-10-05 2003-09-23 William Neil Wilson Golf cart keyless control system
US6980229B1 (en) 2001-10-16 2005-12-27 Ebersole Jr John F System for precise rotational and positional tracking
GB0126497D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
GB0126492D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
DE10155271A1 (en) 2001-11-09 2003-05-28 Bosch Gmbh Robert Common rail injector
US6776817B2 (en) 2001-11-26 2004-08-17 Honeywell International Inc. Airflow sensor, system and method for detecting airflow within an air handling system
JP2003167628A (en) 2001-11-28 2003-06-13 Figla Co Ltd Autonomous traveling service car
KR100449710B1 (en) 2001-12-10 2004-09-22 삼성전자주식회사 Remote pointing method and apparatus therefor
JP3626724B2 (en) 2001-12-14 2005-03-09 株式会社日立製作所 Self-propelled vacuum cleaner
US6860206B1 (en) 2001-12-14 2005-03-01 Irobot Corporation Remote digital firing system
JP3986310B2 (en) 2001-12-19 2007-10-03 シャープ株式会社 Parent-child type vacuum cleaner
JP3907169B2 (en) 2001-12-21 2007-04-18 富士フイルム株式会社 Mobile robot
JP2003190064A (en) 2001-12-25 2003-07-08 Duskin Co Ltd Self-traveling vacuum cleaner
US7335271B2 (en) 2002-01-02 2008-02-26 Lewis & Clark College Adhesive microstructure and method of forming same
US6886651B1 (en) 2002-01-07 2005-05-03 Massachusetts Institute Of Technology Material transportation system
USD474312S1 (en) 2002-01-11 2003-05-06 The Hoover Company Robotic vacuum cleaner
WO2003062852A1 (en) 2002-01-18 2003-07-31 Hitachi,Ltd. Radar device
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
EP1331537B1 (en) 2002-01-24 2005-08-03 iRobot Corporation Method and system for robot localization and confinement of workspace
US6674687B2 (en) 2002-01-25 2004-01-06 Navcom Technology, Inc. System and method for navigation using two-way ultrasonic positioning
US6856811B2 (en) 2002-02-01 2005-02-15 Warren L. Burdue Autonomous portable communication network
US6844606B2 (en) 2002-02-04 2005-01-18 Delphi Technologies, Inc. Surface-mount package for an optical sensing device and method of manufacture
JP2003241836A (en) 2002-02-19 2003-08-29 Keio Gijuku Control method and apparatus for free-running mobile unit
US6735812B2 (en) 2002-02-22 2004-05-18 Tennant Company Dual mode carpet cleaning apparatus utilizing an extraction device and a soil transfer cleaning medium
US6756703B2 (en) 2002-02-27 2004-06-29 Chi Che Chang Trigger switch module
US7860680B2 (en) 2002-03-07 2010-12-28 Microstrain, Inc. Robotic system for powering and interrogating sensors
JP3812463B2 (en) 2002-03-08 2006-08-23 株式会社日立製作所 Direction detecting device and self-propelled cleaner equipped with the same
JP3863447B2 (en) 2002-03-08 2006-12-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Authentication system, firmware device, electrical device, and authentication method
US6658354B2 (en) 2002-03-15 2003-12-02 American Gnc Corporation Interruption free navigator
JP2002360482A (en) 2002-03-15 2002-12-17 Matsushita Electric Ind Co Ltd Self-propelled cleaner
JP4058974B2 (en) * 2002-03-19 2008-03-12 松下電器産業株式会社 Self-propelled equipment
WO2003081392A2 (en) 2002-03-21 2003-10-02 Rapistan System Advertising Corp. Graphical system configuration program for material handling
JP4032793B2 (en) 2002-03-27 2008-01-16 ソニー株式会社 Charging system, charging control method, robot apparatus, charging control program, and recording medium
US7103457B2 (en) 2002-03-28 2006-09-05 Dean Technologies, Inc. Programmable lawn mower
JP2004001162A (en) 2002-03-28 2004-01-08 Fuji Photo Film Co Ltd Pet robot charging system, receiving arrangement, robot, and robot system
JP2003296855A (en) 2002-03-29 2003-10-17 Toshiba Corp Monitoring device
KR20030082040A (en) 2002-04-16 2003-10-22 삼성광주전자 주식회사 Robot cleaner
JP2003304992A (en) 2002-04-17 2003-10-28 Hitachi Ltd Self-running type vacuum cleaner
US20040030570A1 (en) * 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for leader-follower model of mobile robotic system aggregation
US20040030571A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance
AU2003272193A1 (en) 2002-04-22 2004-01-19 Neal Solomon System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance
US20040068416A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, method and apparatus for implementing a mobile sensor network
US20040068415A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for coordination of and targeting for mobile robotic vehicles
US20040030448A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for managing external computation and sensor resources applied to mobile robotic network
US20040068351A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for integrating behavior-based approach into hybrid control model for use with mobile robotic vehicles
JP2003310509A (en) 2002-04-23 2003-11-05 Hitachi Ltd Mobile cleaner
JP2002366226A (en) * 2002-04-24 2002-12-20 Matsushita Electric Ind Co Ltd Movable device
US6691058B2 (en) 2002-04-29 2004-02-10 Hewlett-Packard Development Company, L.P. Determination of pharmaceutical expiration date
US7113847B2 (en) 2002-05-07 2006-09-26 Royal Appliance Mfg. Co. Robotic vacuum with removable portable vacuum and semi-automated environment mapping
US6836701B2 (en) 2002-05-10 2004-12-28 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
JP2003330543A (en) 2002-05-17 2003-11-21 Toshiba Tec Corp Charging type autonomous moving system
JP2003340759A (en) 2002-05-20 2003-12-02 Sony Corp Robot device and robot control method, recording medium and program
GB0211644D0 (en) 2002-05-21 2002-07-03 Wesby Philip B System and method for remote asset management
JP2005528967A (en) 2002-06-06 2005-09-29 インストルメンタリウム コーポレーション Method and system for selectively monitoring activity in a tracking environment
JP4195968B2 (en) * 2002-06-14 2008-12-17 パナソニック株式会社 Self-propelled vacuum cleaner
DE10226853B3 (en) 2002-06-15 2004-02-19 Kuka Roboter Gmbh Method for limiting the force of a robot part
US6967275B2 (en) 2002-06-25 2005-11-22 Irobot Corporation Song-matching system and method
KR100483548B1 (en) 2002-07-26 2005-04-15 삼성광주전자 주식회사 Robot cleaner and system and method of controlling thereof
KR100556612B1 (en) 2002-06-29 2006-03-06 삼성전자주식회사 Apparatus and method of localization using laser
DE10231390A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Suction device for cleaning purposes
DE10231386B4 (en) 2002-07-08 2004-05-06 Alfred Kärcher Gmbh & Co. Kg Sensor device and self-propelled floor cleaning device with a sensor device
DE10231387A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Floor cleaning device
DE10231384A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Method for operating a floor cleaning system and floor cleaning system for applying the method
DE10231391A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Tillage system
DE10231388A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Tillage system
US20050150519A1 (en) 2002-07-08 2005-07-14 Alfred Kaercher Gmbh & Co. Kg Method for operating a floor cleaning system, and floor cleaning system for use of the method
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US6741364B2 (en) 2002-08-13 2004-05-25 Harris Corporation Apparatus for determining relative positioning of objects and related methods
US20040031113A1 (en) * 2002-08-14 2004-02-19 Wosewick Robert T. Robotic surface treating device with non-circular housing
US7085623B2 (en) 2002-08-15 2006-08-01 Asm International Nv Method and system for using short ranged wireless enabled computers as a service tool
US7162056B2 (en) 2002-08-16 2007-01-09 Evolution Robotics, Inc. Systems and methods for the automated sensing of motion in a mobile robot using visual data
USD478884S1 (en) 2002-08-23 2003-08-26 Motorola, Inc. Base for a cordless telephone
US7103447B2 (en) 2002-09-02 2006-09-05 Sony Corporation Robot apparatus, and behavior controlling method for robot apparatus
US7054716B2 (en) 2002-09-06 2006-05-30 Royal Appliance Mfg. Co. Sentry robot system
US20040143919A1 (en) 2002-09-13 2004-07-29 Wildwood Industries, Inc. Floor sweeper having a viewable receptacle
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
JP3875941B2 (en) 2002-09-30 2007-01-31 三菱電機株式会社 Vehicle travel support device and method for providing vehicle travel support service
JP3938581B2 (en) 2002-10-01 2007-06-27 富士通株式会社 robot
JP2004123040A (en) 2002-10-07 2004-04-22 Figla Co Ltd Omnidirectional moving vehicle
US6871115B2 (en) 2002-10-11 2005-03-22 Taiwan Semiconductor Manufacturing Co., Ltd Method and apparatus for monitoring the operation of a wafer handling robot
US7303010B2 (en) 2002-10-11 2007-12-04 Intelligent Robotic Corporation Apparatus and method for an autonomous robotic system for performing activities in a well
US7054718B2 (en) 2002-10-11 2006-05-30 Sony Corporation Motion editing apparatus and method for legged mobile robot and computer program
US6804579B1 (en) * 2002-10-16 2004-10-12 Abb, Inc. Robotic wash cell using recycled pure water
KR100492577B1 (en) 2002-10-22 2005-06-03 엘지전자 주식회사 Suction head of robot cleaner
KR100459465B1 (en) 2002-10-22 2004-12-03 엘지전자 주식회사 Dust suction structure of robot cleaner
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
KR100466321B1 (en) 2002-10-31 2005-01-14 삼성광주전자 주식회사 Robot cleaner, system thereof and method for controlling the same
KR100468107B1 (en) 2002-10-31 2005-01-26 삼성광주전자 주식회사 Robot cleaner system having external charging apparatus and method for docking with the same apparatus
KR100500842B1 (en) * 2002-10-31 2005-07-12 삼성광주전자 주식회사 Robot cleaner, system thereof and method for controlling the same
JP2004148021A (en) 2002-11-01 2004-05-27 Hitachi Home & Life Solutions Inc Self-traveling cleaner
US6774098B2 (en) 2002-11-06 2004-08-10 Lhtaylor Associates Methods for removing stains from fabrics using tetrapotassium EDTA
US7079924B2 (en) 2002-11-07 2006-07-18 The Regents Of The University Of California Vision-based obstacle avoidance
JP2004160102A (en) 2002-11-11 2004-06-10 Figla Co Ltd Vacuum cleaner
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
US7032469B2 (en) 2002-11-12 2006-04-25 Raytheon Company Three axes line-of-sight transducer
JP2004174228A (en) 2002-11-13 2004-06-24 Figla Co Ltd Self-propelled work robot
US20050209736A1 (en) 2002-11-13 2005-09-22 Figla Co., Ltd. Self-propelled working robot
KR100542340B1 (en) 2002-11-18 2006-01-11 삼성전자주식회사 home network system and method for controlling home network system
JP2004166968A (en) * 2002-11-20 2004-06-17 Zojirushi Corp Self-propelled cleaning robot
US7320149B1 (en) 2002-11-22 2008-01-22 Bissell Homecare, Inc. Robotic extraction cleaner with dusting pad
US7346428B1 (en) 2002-11-22 2008-03-18 Bissell Homecare, Inc. Robotic sweeper cleaner with dusting pad
JP3885019B2 (en) 2002-11-29 2007-02-21 株式会社東芝 Security system and mobile robot
US7496665B2 (en) 2002-12-11 2009-02-24 Broadcom Corporation Personal access and control of media peripherals on a media exchange network
JP4838978B2 (en) 2002-12-16 2011-12-14 アイロボット コーポレイション Autonomous floor cleaning robot
JP4069293B2 (en) * 2002-12-16 2008-04-02 三菱電機株式会社 Self-propelled vacuum cleaner
GB2396407A (en) 2002-12-19 2004-06-23 Nokia Corp Encoder
JP3731123B2 (en) 2002-12-20 2006-01-05 新菱冷熱工業株式会社 Object position detection method and apparatus
DE10262191A1 (en) 2002-12-23 2006-12-14 Alfred Kärcher Gmbh & Co. Kg Mobile tillage implement
DE10261788B3 (en) 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
JP3884377B2 (en) 2002-12-27 2007-02-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray equipment
JP2004219185A (en) 2003-01-14 2004-08-05 Meidensha Corp Electrical inertia evaluation device for dynamometer and its method
US20040148419A1 (en) 2003-01-23 2004-07-29 Chen Yancy T. Apparatus and method for multi-user entertainment
US7146682B2 (en) 2003-01-31 2006-12-12 The Hoover Company Powered edge cleaner
JP2004237392A (en) 2003-02-05 2004-08-26 Sony Corp Robotic device and expression method of robotic device
JP2004237075A (en) 2003-02-06 2004-08-26 Samsung Kwangju Electronics Co Ltd Robot cleaner system provided with external charger and connection method for robot cleaner to external charger
KR100485696B1 (en) 2003-02-07 2005-04-28 삼성광주전자 주식회사 Location mark detecting method for a robot cleaner and a robot cleaner using the same method
GB2398394B (en) 2003-02-14 2006-05-17 Dyson Ltd An autonomous machine
JP2004267236A (en) 2003-03-05 2004-09-30 Hitachi Ltd Self-traveling type vacuum cleaner and charging device used for the same
US20040181706A1 (en) 2003-03-13 2004-09-16 Chen Yancy T. Time-controlled variable-function or multi-function apparatus and methods
US20050010331A1 (en) * 2003-03-14 2005-01-13 Taylor Charles E. Robot vacuum with floor type modes
KR100492590B1 (en) * 2003-03-14 2005-06-03 엘지전자 주식회사 Auto charge system and return method for robot
US20040200505A1 (en) 2003-03-14 2004-10-14 Taylor Charles E. Robot vac with retractable power cord
US7805220B2 (en) 2003-03-14 2010-09-28 Sharper Image Acquisition Llc Robot vacuum with internal mapping system
US20040236468A1 (en) 2003-03-14 2004-11-25 Taylor Charles E. Robot vacuum with remote control mode
US7801645B2 (en) 2003-03-14 2010-09-21 Sharper Image Acquisition Llc Robotic vacuum cleaner with edge and object detection system
JP2004275468A (en) 2003-03-17 2004-10-07 Hitachi Home & Life Solutions Inc Self-traveling vacuum cleaner and method of operating the same
JP2004351191A (en) * 2003-03-31 2004-12-16 Takayuki Sekijima Steam ejection cleaning apparatus
JP3484188B1 (en) 2003-03-31 2004-01-06 貴幸 関島 Steam injection cleaning device
JP2004304714A (en) 2003-04-01 2004-10-28 Sony Corp Information processing system, information processing apparatus, information processing method, and program
KR20040086940A (en) 2003-04-03 2004-10-13 엘지전자 주식회사 Mobile robot in using image sensor and his mobile distance mesurement method
US7627197B2 (en) 2003-04-07 2009-12-01 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
KR100486737B1 (en) 2003-04-08 2005-05-03 삼성전자주식회사 Method and apparatus for generating and tracing cleaning trajectory for home cleaning robot
KR100488524B1 (en) 2003-04-09 2005-05-11 삼성전자주식회사 Charging equipment for robot
US7057120B2 (en) 2003-04-09 2006-06-06 Research In Motion Limited Shock absorbent roller thumb wheel
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
JP2004329598A (en) 2003-05-08 2004-11-25 Matsushita Electric Ind Co Ltd Suction tool for vacuum cleaner and vacuum cleaner using it
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US7533435B2 (en) * 2003-05-14 2009-05-19 Karcher North America, Inc. Floor treatment apparatus
US6888333B2 (en) 2003-07-02 2005-05-03 Intouch Health, Inc. Holonomic platform for a robot
US7133746B2 (en) * 2003-07-11 2006-11-07 F Robotics Acquistions, Ltd. Autonomous machine for docking with a docking station and method for docking
DE10331874A1 (en) 2003-07-14 2005-03-03 Robert Bosch Gmbh Remote programming of a program-controlled device
DE10333395A1 (en) 2003-07-16 2005-02-17 Alfred Kärcher Gmbh & Co. Kg Floor Cleaning System
AU2004202836B2 (en) * 2003-07-24 2006-03-09 Samsung Gwangju Electronics Co., Ltd. Dust Receptacle of Robot Cleaner
KR100507928B1 (en) 2003-07-24 2005-08-17 삼성광주전자 주식회사 Robot cleaner
AU2004202834B2 (en) * 2003-07-24 2006-02-23 Samsung Gwangju Electronics Co., Ltd. Robot Cleaner
KR20050012047A (en) 2003-07-24 2005-01-31 삼성광주전자 주식회사 Robot cleaner having a rotating damp cloth
KR20050012049A (en) * 2003-07-24 2005-01-31 삼성광주전자 주식회사 Robot cleaner and system thereof
KR100478681B1 (en) 2003-07-29 2005-03-25 삼성광주전자 주식회사 an robot-cleaner equipped with floor-disinfecting function
CN2637136Y (en) 2003-08-11 2004-09-01 泰怡凯电器(苏州)有限公司 Self-positioning mechanism for robot
CN100436082C (en) 2003-08-12 2008-11-26 株式会社国际电气通信基础技术研究所 Communication robot control system
US7027893B2 (en) 2003-08-25 2006-04-11 Ati Industrial Automation, Inc. Robotic tool coupler rapid-connect bus
US20070061041A1 (en) 2003-09-02 2007-03-15 Zweig Stephen E Mobile robot with wireless location sensing apparatus
US7174238B1 (en) 2003-09-02 2007-02-06 Stephen Eliot Zweig Mobile robotic system with web server and digital radio links
RU2370324C2 (en) * 2003-09-05 2009-10-20 Брансвик Боулинг Энд Биллиардс Корпорэйшн Device and method of bowling trek maintenance using precise feed injectors
US7784147B2 (en) 2003-09-05 2010-08-31 Brunswick Bowling & Billiards Corporation Bowling lane conditioning machine
JP4300516B2 (en) 2003-09-16 2009-07-22 株式会社大樹 Sorting method for mixed waste such as earth and sand
US7225501B2 (en) 2003-09-17 2007-06-05 The Hoover Company Brush assembly for a cleaning device
JP2005088179A (en) 2003-09-22 2005-04-07 Honda Motor Co Ltd Autonomous mobile robot system
US7159271B2 (en) * 2003-09-29 2007-01-09 Electrolux Home Care Products Ltd. Wet extractor cleaning device fluid tank arrangement
US7030768B2 (en) 2003-09-30 2006-04-18 Wanie Andrew J Water softener monitoring device
JP3960291B2 (en) 2003-10-07 2007-08-15 ヤマハ株式会社 Data transfer device and program
JP2005135400A (en) 2003-10-08 2005-05-26 Figla Co Ltd Self-propelled working robot
WO2005036292A1 (en) 2003-10-08 2005-04-21 Figla Co.,Ltd. Self-propelled working robot
TWM247170U (en) 2003-10-09 2004-10-21 Cheng-Shiang Yan Self-moving vacuum floor cleaning device
JP2005118354A (en) 2003-10-17 2005-05-12 Matsushita Electric Ind Co Ltd House interior cleaning system and operation method
US7392566B2 (en) 2003-10-30 2008-07-01 Gordon Evan A Cleaning machine for cleaning a surface
JP2005142800A (en) 2003-11-06 2005-06-02 Nec Corp Terminal for monitoring and network monitor system
EP1530339B1 (en) 2003-11-07 2008-03-05 Harman Becker Automotive Systems GmbH Method and apparatuses for access control to encrypted data services for a vehicle entertainment and information processing device
DE10357636B4 (en) 2003-12-10 2013-05-08 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device
DE10357637A1 (en) * 2003-12-10 2005-07-07 Vorwerk & Co. Interholding Gmbh Self-propelled or traveling sweeper and combination of a sweeper with a base station
DE10357635B4 (en) 2003-12-10 2013-10-31 Vorwerk & Co. Interholding Gmbh Floor cleaning device
US7201786B2 (en) 2003-12-19 2007-04-10 The Hoover Company Dust bin and filter for robotic vacuum cleaner
KR20050063546A (en) 2003-12-22 2005-06-28 엘지전자 주식회사 Robot cleaner and operating method thereof
ITMI20032565A1 (en) 2003-12-22 2005-06-23 Calzoni Srl OPTICAL DEVICE INDICATOR OF PLANATA ANGLE FOR AIRCRAFT
GB2409559A (en) 2003-12-24 2005-06-29 Peter Frost-Gaskin Fire alarm with separately powered smoke and heat detectors
EP1553472A1 (en) 2003-12-31 2005-07-13 Alcatel Remotely controlled vehicle using wireless LAN
KR20050072300A (en) * 2004-01-06 2005-07-11 삼성전자주식회사 Cleaning robot and control method thereof
US7624473B2 (en) 2004-01-07 2009-12-01 The Hoover Company Adjustable flow rate valve for a cleaning apparatus
JP2005210199A (en) 2004-01-20 2005-08-04 Alps Electric Co Ltd Inter-terminal connection method in radio network
AU2004316156B2 (en) 2004-01-21 2010-09-02 Irobot Corporation Method of docking an autonomous robot
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
DE102004004505B9 (en) 2004-01-22 2010-08-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
KR20110009270A (en) 2004-01-28 2011-01-27 아이로보트 코퍼레이션 Debris sensor for cleaning apparatus
US20050183230A1 (en) 2004-01-30 2005-08-25 Funai Electric Co., Ltd. Self-propelling cleaner
JP2005211364A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211365A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Autonomous traveling robot cleaner
JP2005211494A (en) * 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211360A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211493A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211496A (en) * 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
DE602005017749D1 (en) 2004-02-03 2009-12-31 F Robotics Acquisitions Ltd ROBOT DOCKING STATION AND ROBOT FOR USE THEREOF
JP2005218560A (en) * 2004-02-04 2005-08-18 Funai Electric Co Ltd Self-propelled vacuum cleaner
WO2005077244A1 (en) 2004-02-04 2005-08-25 S. C. Johnson & Son, Inc. Surface treating device with cartridge-based cleaning system
DE602005024365D1 (en) 2004-02-06 2010-12-09 Koninkl Philips Electronics Nv SYSTEM AND METHOD FOR A HIBERNATION MODE FOR BARK EQUIPMENT
JP2005224265A (en) 2004-02-10 2005-08-25 Funai Electric Co Ltd Self-traveling vacuum cleaner
JP2005224263A (en) 2004-02-10 2005-08-25 Funai Electric Co Ltd Self-traveling cleaner
DE102004007677B4 (en) 2004-02-16 2011-11-17 Miele & Cie. Kg Suction nozzle for a vacuum cleaner with a dust flow indicator
JP2005230032A (en) * 2004-02-17 2005-09-02 Funai Electric Co Ltd Autonomous running robot cleaner
KR100561863B1 (en) 2004-02-19 2006-03-16 삼성전자주식회사 Navigation method and navigation apparatus using virtual sensor for mobile robot
DE102004010827B4 (en) 2004-02-27 2006-01-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
KR100571834B1 (en) 2004-02-27 2006-04-17 삼성전자주식회사 Method and apparatus of detecting dust on the floor in a robot for cleaning
US7287298B2 (en) * 2004-03-05 2007-10-30 Tennant Low profile side squeegee assembly
JP4309785B2 (en) 2004-03-08 2009-08-05 フィグラ株式会社 Electric vacuum cleaner
US20050273967A1 (en) 2004-03-11 2005-12-15 Taylor Charles E Robot vacuum with boundary cones
US20060020369A1 (en) * 2004-03-11 2006-01-26 Taylor Charles E Robot vacuum cleaner
US7360277B2 (en) 2004-03-24 2008-04-22 Oreck Holdings, Llc Vacuum cleaner fan unit and access aperture
JP2007530978A (en) 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド Position estimation method and apparatus using reflected light source
WO2005098475A1 (en) 2004-03-29 2005-10-20 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
US7535071B2 (en) 2004-03-29 2009-05-19 Evolution Robotics, Inc. System and method of integrating optics into an IC package
US7148458B2 (en) 2004-03-29 2006-12-12 Evolution Robotics, Inc. Circuit for estimating position and orientation of a mobile object
US7603744B2 (en) * 2004-04-02 2009-10-20 Royal Appliance Mfg. Co. Robotic appliance with on-board joystick sensor and associated methods of operation
US7617557B2 (en) 2004-04-02 2009-11-17 Royal Appliance Mfg. Co. Powered cleaning appliance
JP2005296511A (en) 2004-04-15 2005-10-27 Funai Electric Co Ltd Self-propelled vacuum cleaner
US7640624B2 (en) 2004-04-16 2010-01-05 Panasonic Corporation Of North America Dirt cup with dump door in bottom wall and dump door actuator on top wall
JP2005309700A (en) * 2004-04-20 2005-11-04 Sanyo Electric Co Ltd Self-traveling object, traveling object control method and computer program
TWI258259B (en) 2004-04-20 2006-07-11 Jason Yan Automatic charging system of mobile robotic electronic device
TWI262777B (en) 2004-04-21 2006-10-01 Jason Yan Robotic vacuum cleaner
US7041029B2 (en) 2004-04-23 2006-05-09 Alto U.S. Inc. Joystick controlled scrubber
USD510066S1 (en) 2004-05-05 2005-09-27 Irobot Corporation Base station for robot
JP2005346700A (en) 2004-05-07 2005-12-15 Figla Co Ltd Self-propelled working robot
US7208697B2 (en) 2004-05-20 2007-04-24 Lincoln Global, Inc. System and method for monitoring and controlling energy usage
JP4163150B2 (en) 2004-06-10 2008-10-08 日立アプライアンス株式会社 Self-propelled vacuum cleaner
US9008835B2 (en) * 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7778640B2 (en) 2004-06-25 2010-08-17 Lg Electronics Inc. Method of communicating data in a wireless mobile communication system
US7254864B2 (en) 2004-07-01 2007-08-14 Royal Appliance Mfg. Co. Hard floor cleaner
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
JP2006026028A (en) 2004-07-14 2006-02-02 Sanyo Electric Co Ltd Cleaner
JP2006031503A (en) * 2004-07-20 2006-02-02 Sharp Corp Autonomous travel vehicle
US20060020370A1 (en) * 2004-07-22 2006-01-26 Shai Abramson System and method for confining a robot
US6993954B1 (en) 2004-07-27 2006-02-07 Tekscan, Incorporated Sensor equilibration and calibration system and method
JP4201747B2 (en) 2004-07-29 2008-12-24 三洋電機株式会社 Self-propelled vacuum cleaner
DE102004038074B3 (en) 2004-07-29 2005-06-30 Alfred Kärcher Gmbh & Co. Kg Self-propelled cleaning robot for floor surfaces has driven wheel rotated in arc about eccentric steering axis upon abutting obstacle in movement path of robot
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
JP2004337632A (en) * 2004-07-29 2004-12-02 Matsushita Electric Ind Co Ltd Self-propelled cleaner
KR101012375B1 (en) 2004-07-30 2011-02-09 엘지전자 주식회사 Suction nozzle for vacuum cleaner
KR100641113B1 (en) 2004-07-30 2006-11-02 엘지전자 주식회사 Mobile robot and his moving control method
JP4268911B2 (en) 2004-08-04 2009-05-27 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100601960B1 (en) 2004-08-05 2006-07-14 삼성전자주식회사 Simultaneous localization and map building method for robot
DE102004041021B3 (en) 2004-08-17 2005-08-25 Alfred Kärcher Gmbh & Co. Kg Floor cleaning system with self-propelled, automatically-controlled roller brush sweeper and central dirt collection station, reverses roller brush rotation during dirt transfer and battery charging
GB0418376D0 (en) 2004-08-18 2004-09-22 Loc8Tor Ltd Locating system
US20060042042A1 (en) 2004-08-26 2006-03-02 Mertes Richard H Hair ingestion device and dust protector for vacuum cleaner
US20080184518A1 (en) 2004-08-27 2008-08-07 Sharper Image Corporation Robot Cleaner With Improved Vacuum Unit
KR100664053B1 (en) * 2004-09-23 2007-01-03 엘지전자 주식회사 Cleaning tool auto change system and method for robot cleaner
KR100677252B1 (en) * 2004-09-23 2007-02-02 엘지전자 주식회사 Remote observation system and method in using robot cleaner
DE102004046383B4 (en) 2004-09-24 2009-06-18 Stein & Co Gmbh Device for brushing roller of floor care appliances
DE102005044617A1 (en) 2004-10-01 2006-04-13 Vorwerk & Co. Interholding Gmbh Method for the care and / or cleaning of a floor covering and flooring and Bodenpflege- and or cleaning device for this purpose
US7430462B2 (en) 2004-10-20 2008-09-30 Infinite Electronics Inc. Automatic charging station for autonomous mobile machine
US8078338B2 (en) 2004-10-22 2011-12-13 Irobot Corporation System and method for behavior based control of an autonomous vehicle
USD526753S1 (en) 2004-10-26 2006-08-15 Funai Electric Company Limited Electric vacuum cleaner
KR100656701B1 (en) 2004-10-27 2006-12-13 삼성광주전자 주식회사 Robot cleaner system and Method for return to external charge apparatus
JP4485320B2 (en) 2004-10-29 2010-06-23 アイシン精機株式会社 Fuel cell system
JP4074285B2 (en) 2004-10-29 2008-04-09 モレックス インコーポレーテッド Flat cable insertion structure and insertion method
KR100575708B1 (en) 2004-11-11 2006-05-03 엘지전자 주식회사 Distance detection apparatus and method for robot cleaner
KR20060059006A (en) 2004-11-26 2006-06-01 삼성전자주식회사 Method and apparatus of self-propelled mobile unit with obstacle avoidance during wall-following
JP4277214B2 (en) 2004-11-30 2009-06-10 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100664059B1 (en) * 2004-12-04 2007-01-03 엘지전자 주식회사 Obstacle position recognition apparatus and method in using robot cleaner
WO2006061133A1 (en) 2004-12-09 2006-06-15 Alfred Kärcher Gmbh & Co. Kg Cleaning robot
DE102005019908A1 (en) 2004-12-09 2006-06-14 Alfred Kärcher Gmbh & Co. Kg Automatic floor cleaning robot has control sensors and sender receiver unit for control and interrogation of operating condition
US7870637B2 (en) * 2004-12-10 2011-01-18 Techtronic Floor Care Technology Limited Stacked tank arrangement for a cleaning apparatus
KR100588061B1 (en) 2004-12-22 2006-06-09 주식회사유진로보틱스 Cleaning robot having double suction device
US20060143295A1 (en) 2004-12-27 2006-06-29 Nokia Corporation System, method, mobile station and gateway for communicating with a universal plug and play network
JP4601419B2 (en) * 2004-12-27 2010-12-22 花王株式会社 Suction nozzle for wet vacuum cleaner
KR100499770B1 (en) 2004-12-30 2005-07-07 주식회사 아이오. 테크 Network based robot control system
KR100588059B1 (en) 2005-01-03 2006-06-09 주식회사유진로보틱스 A non-contact close obstacle detection device for a cleaning robot
US7904990B1 (en) * 2005-01-07 2011-03-15 Bissell Homecare Inc. Extraction cleaning with alternating fluid distribution
JP4243594B2 (en) * 2005-01-31 2009-03-25 パナソニック電工株式会社 Cleaning robot
JP2006227673A (en) 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Autonomous travel device
GB2423240B (en) * 2005-02-17 2008-10-22 Bissell Homecare Inc Surface cleaning apparatus with cleaning fluid supply
US7620476B2 (en) * 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
EP2145573B1 (en) * 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) * 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US20060200281A1 (en) 2005-02-18 2006-09-07 Andrew Ziegler Autonomous surface cleaning robot for wet and dry cleaning
US7389156B2 (en) 2005-02-18 2008-06-17 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
KR100661339B1 (en) * 2005-02-24 2006-12-27 삼성광주전자 주식회사 Automatic cleaning apparatus
KR100654676B1 (en) * 2005-03-07 2006-12-08 삼성광주전자 주식회사 Mobile robot having body sensor
ES2238196B1 (en) 2005-03-07 2006-11-16 Electrodomesticos Taurus, S.L. BASE STATION WITH VACUUM ROBOT.
JP2006247467A (en) 2005-03-08 2006-09-21 Figla Co Ltd Self-travelling working vehicle
US20060207053A1 (en) * 2005-03-15 2006-09-21 Beynon Merlin D Vacuum and cleaning apparatus
JP2006260161A (en) 2005-03-17 2006-09-28 Figla Co Ltd Self-propelled working robot
KR100657530B1 (en) * 2005-03-31 2006-12-14 엘지전자 주식회사 A device for detecting lift of automatic travelling robot
JP4533787B2 (en) 2005-04-11 2010-09-01 フィグラ株式会社 Work robot
JP2006296697A (en) 2005-04-20 2006-11-02 Figla Co Ltd Cleaning robot
KR100624387B1 (en) * 2005-04-25 2006-09-20 엘지전자 주식회사 Robot system which can designate a movement area
TWI278731B (en) 2005-05-09 2007-04-11 Infinite Electronics Inc Self-propelled apparatus for virtual wall system
US20060259494A1 (en) 2005-05-13 2006-11-16 Microsoft Corporation System and method for simultaneous search service and email search
US7578020B2 (en) 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
US7389166B2 (en) * 2005-06-28 2008-06-17 S.C. Johnson & Son, Inc. Methods to prevent wheel slip in an autonomous floor cleaner
JP4492462B2 (en) 2005-06-30 2010-06-30 ソニー株式会社 Electronic device, video processing apparatus, and video processing method
US20070006404A1 (en) * 2005-07-08 2007-01-11 Gooten Innolife Corporation Remote control sweeper
JP2007014668A (en) 2005-07-11 2007-01-25 Funai Electric Co Ltd Self-propelled cleaner
JP4630146B2 (en) 2005-07-11 2011-02-09 本田技研工業株式会社 Position management system and position management program
US20070017061A1 (en) * 2005-07-20 2007-01-25 Jason Yan Steering control sensor for an automatic vacuum cleaner
JP2007034866A (en) 2005-07-29 2007-02-08 Hitachi Appliances Inc Travel control method for moving body and self-propelled cleaner
US20070028574A1 (en) * 2005-08-02 2007-02-08 Jason Yan Dust collector for autonomous floor-cleaning device
US7456596B2 (en) 2005-08-19 2008-11-25 Cisco Technology, Inc. Automatic radio site survey using a robot
USD548411S1 (en) 2005-08-29 2007-08-07 Bsh Bosch Und Siemens Hausgeraete Gmbh Robot vacuum cleaner
KR20070027916A (en) 2005-08-30 2007-03-12 삼성광주전자 주식회사 Robot cleaner enable to detect slipping state
US8483881B2 (en) 2005-09-02 2013-07-09 Neato Robotics, Inc. Localization and mapping system and method for a robotic device
DE102005046639A1 (en) 2005-09-29 2007-04-05 Vorwerk & Co. Interholding Gmbh Automatically displaceable floor dust collector, has passive wheel is monitored for its movement and measure is initiated when intensity of movement of passive wheel changes
DE102005046813A1 (en) 2005-09-30 2007-04-05 Vorwerk & Co. Interholding Gmbh Household appliance e.g. floor dust collecting device, operating method for room, involves arranging station units that transmit radio signals, in addition to base station, and orienting household appliance in room by processing signals
DE102005046913A1 (en) 2005-10-01 2007-04-05 GM Global Technology Operations, Inc., Detroit Connector for e.g. pressure pipeline in fuel supply system, has sealing surface formed at pipe line and/or at connecting nut by pressing operation, where connecting nut comprising tubular extension in area outside of sealing surface
JP4477565B2 (en) 2005-10-04 2010-06-09 シャープ株式会社 Dust collector and vacuum cleaner provided with the same
WO2007060949A1 (en) 2005-11-25 2007-05-31 K.K. Dnaform Method for detection and amplification of nucleic acid
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot system
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
ATE442618T1 (en) 2005-12-02 2009-09-15 Irobot Corp COVER ROBOT MOBILITY
ES2623920T3 (en) 2005-12-02 2017-07-12 Irobot Corporation Robot system
KR101290367B1 (en) * 2005-12-02 2013-07-26 아이로보트 코퍼레이션 Autonomous coverage robot navigation system
KR101300492B1 (en) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 Coverage robot mobility
US7568259B2 (en) 2005-12-13 2009-08-04 Jason Yan Robotic floor cleaner
ATE458437T1 (en) * 2005-12-20 2010-03-15 Wessel Werk Gmbh SELF-PROPELLED VACUUM CLEANING DEVICE
DE202005019993U1 (en) 2005-12-20 2006-02-23 Wessel-Werk Gmbh & Co. Kg A floor cleaning vacuum cleaner has a built-in self propelling system and rechargeable batteries
KR100683074B1 (en) * 2005-12-22 2007-02-15 (주)경민메카트로닉스 Robot cleaner
TWI290881B (en) 2005-12-26 2007-12-11 Ind Tech Res Inst Mobile robot platform and method for sensing movement of the same
TWM294301U (en) * 2005-12-27 2006-07-21 Supply Internat Co Ltd E Self-propelled vacuum cleaner with dust collecting structure
US7539557B2 (en) 2005-12-30 2009-05-26 Irobot Corporation Autonomous mobile robot
KR20070074146A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
KR20070074147A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
US7953526B2 (en) * 2006-01-18 2011-05-31 I-Guide Robotics, Inc. Robotic vehicle controller
JP2007209392A (en) * 2006-02-07 2007-08-23 Funai Electric Co Ltd Self-traveling type vacuum cleaner
WO2007092322A2 (en) * 2006-02-07 2007-08-16 Nilfisk-Advance, Inc. Squeegee assembly
JP2007213180A (en) 2006-02-08 2007-08-23 Figla Co Ltd Movable body system
EP1836941B1 (en) 2006-03-14 2014-02-12 Toshiba TEC Kabushiki Kaisha Electric vacuum cleaner
WO2007109624A2 (en) 2006-03-17 2007-09-27 Irobot Corporation Robot confinement
CA2541635A1 (en) 2006-04-03 2007-10-03 Servo-Robot Inc. Hybrid sensing apparatus for adaptive robotic processes
US7861366B2 (en) 2006-04-04 2011-01-04 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station
KR20070104989A (en) 2006-04-24 2007-10-30 삼성전자주식회사 Robot cleaner system and method to eliminate dust thereof
EP2548489B1 (en) 2006-05-19 2016-03-09 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US7211980B1 (en) 2006-07-05 2007-05-01 Battelle Energy Alliance, Llc Robotic follow system and method
EP1897476B1 (en) 2006-09-05 2010-06-09 LG Electronics Inc. Cleaning robot
US7408157B2 (en) 2006-09-27 2008-08-05 Jason Yan Infrared sensor
US7318248B1 (en) * 2006-11-13 2008-01-15 Jason Yan Cleaner having structures for jumping obstacles
US20090102296A1 (en) 2007-01-05 2009-04-23 Powercast Corporation Powering cell phones and similar devices using RF energy harvesting
JP5285861B2 (en) 2007-02-22 2013-09-11 新光電子株式会社 Tuning fork vibrator for load conversion
KR101339513B1 (en) * 2007-05-09 2013-12-10 아이로보트 코퍼레이션 Autonomous coverage robot
US20080302586A1 (en) 2007-06-06 2008-12-11 Jason Yan Wheel set for robot cleaner
JP2009015611A (en) 2007-07-05 2009-01-22 Figla Co Ltd Charging system, charging unit, and system for automatically charging moving robot
JP5040519B2 (en) 2007-08-14 2012-10-03 ソニー株式会社 Image processing apparatus, image processing method, and program
US20090048727A1 (en) 2007-08-17 2009-02-19 Samsung Electronics Co., Ltd. Robot cleaner and control method and medium of the same
KR101330734B1 (en) 2007-08-24 2013-11-20 삼성전자주식회사 Robot cleaner system having robot cleaner and docking station
CA2693506A1 (en) 2007-08-31 2009-03-05 Element Six (Production) (Pty) Ltd Ultrahard diamond composites
JP5091604B2 (en) 2007-09-26 2012-12-05 株式会社東芝 Distribution evaluation method, product manufacturing method, distribution evaluation program, and distribution evaluation system
FR2923465B1 (en) 2007-11-13 2013-08-30 Valeo Systemes Thermiques Branche Thermique Habitacle LOADING AND UNLOADING DEVICE FOR HANDLING TROLLEY.
JP5150827B2 (en) 2008-01-07 2013-02-27 株式会社高尾 A gaming machine with speaker breakage detection function
JP5042076B2 (en) 2008-03-11 2012-10-03 新明和工業株式会社 Suction device and suction wheel
JP5046239B2 (en) 2008-03-28 2012-10-10 住友大阪セメント株式会社 Organic inorganic composite
CN102083352B (en) * 2008-04-24 2014-10-15 艾罗伯特公司 Application of localization, positioning & navigation systems for robotic enabled mobile products
JP5054620B2 (en) 2008-06-17 2012-10-24 未来工業株式会社 Ventilation valve
JP5023269B2 (en) 2008-08-22 2012-09-12 サンノプコ株式会社 Surfactant and coating composition containing the same
USD593265S1 (en) 2008-12-02 2009-05-26 Bissell Homecare, Inc. Robotic vacuum cleaner
JP2010198552A (en) 2009-02-27 2010-09-09 Konica Minolta Holdings Inc Driving state monitoring device
JP5046246B2 (en) 2009-03-31 2012-10-10 サミー株式会社 Pachinko machine
TWI399190B (en) 2009-05-21 2013-06-21 Ind Tech Res Inst Cleaning apparatus and detecting method thereof
JP5302836B2 (en) 2009-09-28 2013-10-02 黒崎播磨株式会社 Stopper control type immersion nozzle
CN102905812B (en) 2010-07-30 2014-04-09 株式会社小松制作所 Method for manufacturing branched pipe and apparatus for manufacturing branched pipe
JP5312514B2 (en) 2011-04-28 2013-10-09 上銀科技股▲分▼有限公司 Crossed roller bearing
CN106889947B (en) 2011-04-29 2020-03-10 艾罗伯特公司 Autonomous mobile robot for cleaning a cleaning surface
WO2013007273A1 (en) 2011-07-08 2013-01-17 Cardionovum Sp.Z.O.O. Balloon surface coating
JP5257533B2 (en) 2011-09-26 2013-08-07 ダイキン工業株式会社 Power converter
JP5257527B2 (en) 2012-02-03 2013-08-07 日立電線株式会社 Photoelectric composite transmission module
JP6003251B2 (en) 2012-06-06 2016-10-05 ブラザー工業株式会社 Exposure equipment
KR101438603B1 (en) 2012-10-05 2014-09-05 현대자동차 주식회사 Cooling system for vehicle
JP6154143B2 (en) 2013-01-25 2017-06-28 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method
JP6026312B2 (en) 2013-02-15 2016-11-16 株式会社ファンケル Foam cosmetic
JP6379623B2 (en) 2013-05-13 2018-08-29 株式会社ジェイテクト Cutting apparatus and cutting method
JP6327598B2 (en) 2013-10-30 2018-05-23 株式会社オカムラ Chair
JP6293095B2 (en) 2015-07-06 2018-03-14 ショット日本株式会社 Airtight terminal with fuse
US10144090B2 (en) 2015-07-17 2018-12-04 Shanghai Seeyao Electronics Co., Ltd. Process and device for simultaneous laser welding
EP4233638A3 (en) * 2015-10-30 2024-01-24 The Ergo Baby Carrier, Inc. Adjustable child carrier
JP6789972B2 (en) 2015-11-27 2020-11-25 Hoya株式会社 Manufacturing method for mask blank substrate, substrate with multilayer reflective film, reflective mask blank and reflective mask, and semiconductor device
JP7059702B2 (en) 2018-03-09 2022-04-26 横浜ゴム株式会社 Rubber composition for tires and pneumatic tires

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109508020A (en) * 2018-12-28 2019-03-22 南京香宁国际人工智能和智能制造研究院有限公司 Robot ambulation route automatic obstacle-avoiding method, system and robot

Also Published As

Publication number Publication date
KR101458752B1 (en) 2014-11-05
KR101301834B1 (en) 2013-08-29
JP2014193418A (en) 2014-10-09
JP2012045403A (en) 2012-03-08
KR101393196B1 (en) 2014-05-08
EP2644074A1 (en) 2013-10-02
US20150020326A1 (en) 2015-01-22
EP2574264B1 (en) 2016-03-02
US8726454B2 (en) 2014-05-20
US20170079499A1 (en) 2017-03-23
US11498438B2 (en) 2022-11-15
US20080276408A1 (en) 2008-11-13
JP2010526594A (en) 2010-08-05
US20120265346A1 (en) 2012-10-18
EP2995236B1 (en) 2022-10-05
JP2014111190A (en) 2014-06-19
US20190008351A1 (en) 2019-01-10
KR20100029753A (en) 2010-03-17
WO2008141186A2 (en) 2008-11-20
JP5474023B2 (en) 2014-04-16
KR101314438B1 (en) 2013-10-07
US8370985B2 (en) 2013-02-12
US20120011668A1 (en) 2012-01-19
US8239992B2 (en) 2012-08-14
US20130117952A1 (en) 2013-05-16
KR101529848B1 (en) 2015-06-17
US20190246862A1 (en) 2019-08-15
JP2014131768A (en) 2014-07-17
KR101452676B1 (en) 2014-10-22
KR20120115417A (en) 2012-10-17
KR20140041964A (en) 2014-04-04
KR20140101009A (en) 2014-08-18
KR20100022036A (en) 2010-02-26
KR20100049703A (en) 2010-05-12
EP3031375B1 (en) 2021-11-03
JP6063904B2 (en) 2017-01-18
EP2155032B1 (en) 2015-12-02
KR101160393B1 (en) 2012-06-26
KR20130128485A (en) 2013-11-26
US11072250B2 (en) 2021-07-27
JP2015051336A (en) 2015-03-19
JP2012096042A (en) 2012-05-24
WO2008141131A3 (en) 2009-05-14
EP2570065B1 (en) 2015-11-25
EP2995235A1 (en) 2016-03-16
WO2008141186A3 (en) 2009-05-14
EP2155032A2 (en) 2010-02-24
US20140215735A1 (en) 2014-08-07
US20080276407A1 (en) 2008-11-13
KR101519685B1 (en) 2015-05-12
US11014460B2 (en) 2021-05-25
KR101345528B1 (en) 2013-12-27
JP5144752B2 (en) 2013-02-13
KR101414321B1 (en) 2014-07-01
US20180116479A1 (en) 2018-05-03
JP2017080449A (en) 2017-05-18
KR101295448B1 (en) 2013-08-09
KR20100054877A (en) 2010-05-25
US9480381B2 (en) 2016-11-01
JP5926310B2 (en) 2016-05-25
EP2995236A1 (en) 2016-03-16
JP2012110725A (en) 2012-06-14
JP2012176279A (en) 2012-09-13
JP5514258B2 (en) 2014-06-04
JP6999123B2 (en) 2022-01-18
US20080281470A1 (en) 2008-11-13
KR20100051133A (en) 2010-05-14
KR20100054878A (en) 2010-05-25
KR20140022472A (en) 2014-02-24
JP2014131753A (en) 2014-07-17
KR20140101008A (en) 2014-08-18
US8839477B2 (en) 2014-09-23
EP2148604B1 (en) 2014-06-04
EP2781178A1 (en) 2014-09-24
KR20140123110A (en) 2014-10-21
ES2559128T3 (en) 2016-02-10
KR101505380B1 (en) 2015-03-23
EP2574265A1 (en) 2013-04-03
JP5926304B2 (en) 2016-05-25
KR101339513B1 (en) 2013-12-10
JP2010526596A (en) 2010-08-05
KR20120099122A (en) 2012-09-06
US10299652B2 (en) 2019-05-28
US10070764B2 (en) 2018-09-11
EP2781178B1 (en) 2021-04-21
EP2574264A1 (en) 2013-04-03
US20120265343A1 (en) 2012-10-18
ES2571739T3 (en) 2016-05-26
EP2995235B1 (en) 2021-08-11
US20120011669A1 (en) 2012-01-19
EP3031375A1 (en) 2016-06-15
US20220009363A1 (en) 2022-01-13
WO2008141131A2 (en) 2008-11-20
US8347444B2 (en) 2013-01-08
EP2574265B1 (en) 2015-10-14
JP6215189B2 (en) 2017-10-18
KR101168481B1 (en) 2012-07-26
EP2148604A2 (en) 2010-02-03
EP2570065A1 (en) 2013-03-20
US8438695B2 (en) 2013-05-14
KR20120012833A (en) 2012-02-10

Similar Documents

Publication Publication Date Title
ES2562824T3 (en) Autonomous compact covering robot
ES2522926T3 (en) Autonomous Cover Robot
ES2378138T3 (en) Robot covering mobility
CN111163671B (en) Robot cleaner
US8032978B2 (en) Robotic cleaning device