JP2886617B2 - Recognition method of position and orientation of moving object - Google Patents

Recognition method of position and orientation of moving object

Info

Publication number
JP2886617B2
JP2886617B2 JP2123500A JP12350090A JP2886617B2 JP 2886617 B2 JP2886617 B2 JP 2886617B2 JP 2123500 A JP2123500 A JP 2123500A JP 12350090 A JP12350090 A JP 12350090A JP 2886617 B2 JP2886617 B2 JP 2886617B2
Authority
JP
Japan
Prior art keywords
light
moving body
reflected
traveling
reflecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2123500A
Other languages
Japanese (ja)
Other versions
JPH0419586A (en
Inventor
卓也 中谷
佳子 岡村
俊弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2123500A priority Critical patent/JP2886617B2/en
Publication of JPH0419586A publication Critical patent/JPH0419586A/en
Application granted granted Critical
Publication of JP2886617B2 publication Critical patent/JP2886617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】[Industrial applications]

本発明は移動体の位置及び進行方向の方位を検出する
ための移動体の位置方位認識方法に関する。
The present invention relates to a method of recognizing the position and orientation of a moving object for detecting the position and the direction of the traveling direction of the moving object.

【従来の技術】[Prior art]

たとえば工場内の無人搬送車や、住宅内の人間を補助
するような移動車、建設現場における施工用移動車等の
移動体を所定のコースに沿って走行させるにあたり、移
動体そのものが自身の位置及び進行方向の方位(基準方
位に対するずれ)を認識して走行できるようにすれば、
移動体の走行制御がきわめて簡便になる。 そしてこのような移動体の位置方位認識方法として、
特開昭62−172215号公報に示されたものがある。これは
移動体に搭載した二組の発光受光手段と、移動体の進行
経路の環境中に設置されて上記二組の発光受光手段から
夫々発射された光を各発光受光手段に戻す一対の再帰的
光反射手段とからなる位置認識手段及び移動体の移動距
離(速度)検出手段と、この位置認識手段とは別の手段
として設けられた方位認識手段とから構成されている。
For example, when moving a mobile object such as an automatic guided vehicle in a factory, a mobile vehicle that assists humans in a house, or a construction mobile vehicle at a construction site along a predetermined course, the mobile object itself is located at its own position. If you can travel by recognizing the direction of the traveling direction (deviation from the reference direction),
The traveling control of the moving body becomes extremely simple. And as a method of recognizing the position and orientation of such a moving object,
There is one disclosed in Japanese Patent Application Laid-Open No. Sho 62-172215. This involves two sets of light emitting and receiving means mounted on the moving body, and a pair of recursive lights installed in the environment of the traveling path of the moving body and returning light respectively emitted from the two sets of light emitting and receiving means to each light emitting and receiving means. It comprises a position recognizing means comprising a passive light reflecting means and a moving distance (speed) detecting means of the moving body, and an azimuth recognizing means provided as a means different from the position recognizing means.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかし、上記従来例においては、位置認識手段と移動
距離検出手段のほかに、別途方位認識手段が必要となっ
ているために、更に簡略化された機材で位置方位の認識
ができるものが望まれている。 本発明はこのような点に鑑み為されたものであり、そ
の目的とするところは移動体の位置及び移動方向を簡便
に認識することができる移動体の位置方位認識方法を提
供するにある。
However, in the above-mentioned conventional example, in addition to the position recognizing means and the moving distance detecting means, a separate azimuth recognizing means is required. Therefore, a device capable of recognizing the position and azimuth with more simplified equipment is desired. ing. The present invention has been made in view of such a point, and an object of the present invention is to provide a method for recognizing the position and orientation of a moving object that can easily recognize the position and moving direction of the moving object.

【課題を解決するための手段】[Means for Solving the Problems]

しかして本発明は、移動体から所定の角度をなす2本
の扇状光ビームを投射し、移動体の進行経路に基準方向
に対して一定の関係で設置した一対の再帰的光反射手段
で上記各光ビームを反射させて、各光ビームについての
再帰的光反射手段による総計4つの反射光を移動体上の
各光ビーム用の受光手段で受光し、これら4つの反射光
の受光タイミングと、移動体が備える走行距離検出手段
からの上記受光タイミング間の走行距離情報とから、上
記4つの反射光のうちの最後に受光手段で受光された反
射光の受光位置を既知である上記再帰的光反射手段の位
置に対する相対位置として演算で求めるとともに、移動
体の進行方向である方位を上記基準方向に対する値とし
て演算で求めることに特徴を有している。 [作用] 本発明によれば、移動体の位置はもちろん、別途方位
認識手段を必要とすることなく、方位も認識することが
できる。 [実施例] 以下本発明を図示の実施例に基づいて詳述すると、第
1図及び第2図において、1は自走式の移動体であり、
この移動体1の上面には2組の発光受光手段2,3が設置
されている。これら発光受光手段2,3は、共に上方に向
けて扇状の光ビームA,Bを投射するもので、発光受光手
段2が投射する平面状の光ビームAは、ここでは第2図
(a)に示すように、移動体1の進行方向Yに対して直
角をなすように、そして発光受光手段3が投射する平面
状の光ビームBは上記光ビームAに対して平面視で角度
ψをなすようにされている。 そして、この移動体1の進行経路の環境中、ここでは
移動体1が床面を走行する室内の天井面には、一対の光
反射手段4,5が所定の間隔dlをおいて設置されている。
これら光反射手段4,5としては、入射した光を同じ方向
に返す再帰的光反射手段、たとえば第4図に示すコーナ
ーキューブ(コーナーキューブプリズムとも称す)が使
用される。 第3図は上記発光受光手段2,3の一例を示すもので、
ケース20内に配された鏡筒21の内部には、奥から順に半
導体レーザ22、ビームスプリッタ23、シリンドリカル型
のレンズ24、そして1/4波長板25が設けられ、またビー
ムスプリッタ23の側面と対向するように受光器26が設け
られている。半導体レーザ22から出た直線光は、ビーム
スプリッタ23を経てレンズ24に入り、レンズ24において
扇状のビームに変換された後、1/4波長板25を通じて上
方に向けて投射される。 また、上記光反射手段4,5で反射されて帰ってきた反
射光は、再度1/4波長板25を通過する際に発射された光
と位相が半波長ずれたものとされた後、レンズ24におい
て直線光に戻され、そしてビームスプリッタ23において
上記位相のずれの故に受光器26側へと反射され、受光器
26に入射する。 尚、移動体1はその走行車輪の回転数等から少なくと
も走行距離を測定することができるものとする。また、
上記一対の光反射手段4,5は、この両者を結ぶ線が移動
体1の進行についての基準方位Xと直交するように配置
されるものとする。更に、発光受光手段2,3が夫々投射
する扇状の光ビームA,Bの各投射角度αは、第2図
(b)に示すように、天井面に配された一対の光反射手
段4,5を共に見込む範囲内にあるようにされている。 次に動作について説明する。まず移動体1の方位(基
準方位Xからのずれ角度θ)の認識から説明すると、移
動体1の進行に伴って、発光受光手段2による光ビーム
Aがいずれかの光反射手段4,5で反射することによる反
射光を発光受光手段2が最初にうける時点をa,他方の光
反射手段5,4による反射光を発光受光手段2が次に受け
る時間をbとし、発光受光手段3による光ビームBがい
ずれかの光反射手段4,5で反射することによる反射光を
発光受光手段3が最初に受ける時点をc,他方の光反射手
段5,4による反射光を発光受光手段3が次に受ける時点
をdとすれば、第5図に示す場合、移動体1が図中イ点
からロ点まで移動する間に、まずc点を経て、a点、b
点、そしてd点を通過することになり、この時、発光受
光手段2,3における受光器26,26は、移動体1の進行に伴
い、第6図に示すパルスPc,Pa,Pb,Pdを順に発すること
になる。 ここにおいて、基準方位Xに対する進行方向Yのずれ
角度θは、両光反射手段4,5を結ぶ線と光ビームAとが
なす角度もθとなるために、a点からb点に至る間の移
動体1の走行距離をl1とする時、 で算出することができる。dlは前述のように両光反射手
段4,5の間の距離であり、l1は上記パルスPa,Pbが生じる
間の移動距離としてデータを得ることができる。 もっともここで得られる角度θは、正負(基準方位X
に対して右にずれているのか左にずれているのか)の判
別がつかないが、第7図に示すように、基準方位Xに対
するずれが逆方向で角度は同じである場合を考えると、
この場合、パルスPa,Pb,Pc,Pdは第8図に示すようにな
り、そしてこの場合、発光受光手段2による光ビームA
が二つ光反射手段4,5による反射光を順次受けるa点か
らb点までの間の走行距離l1は第5図に示した場合と同
じであるものの、光ビームAに対して光ビームBが前述
のように角度ψをもつようにされているために、発光受
光手段3が光ビームBのいずれかの光反射手段4,5によ
る反射光をまず受けて(c点を通過して)から他方の光
反射手段5,4による反射光を受ける(d点を通過する)
までの間の走行距離l2が第5図に示した場合と異なるこ
とになる。 つまり、発光受光手段2の受光パルスPa,Pb間の走行
距離l1及び発光受光手段3の受光パルスPc,Pd間の走行
距離l2と、ずれ角度θとの間に、光ビームA,B相互間の
角度ψに応じた第9図に示す相関があるために、ずれ角
度θについて、正負の判別を行うことができるものであ
る。もちろん、走行距離l1が0である時には、移動体1
は基準方位Xに対するずれ角度θが0°であり、走行距
離l2が0である時には、ずれ角度θが−ψであることに
なる。 次に、移動体1の位置の認識であるが、一対のの光反
射手段4,5を結ぶ線上の任意の一点(図では中点)を原
点として、第5図に示すようにx,y軸を定めた時、この
第5図中のd点の座標(x,y)は単純に幾何学的な計算
として求めることができる。 すなわち、b点とd点との間の移動体1の走行距離を
第10図に示すようにl4とすれば、第10図中のの
各距離が であることから、 となる。 第5図に示す場合以外の時についても、同様に幾何学
的に位置を求めることができる。 尚、ここでは発光受光手段2,3が上方に向けて光ビー
ムA,Bを発するとともに、光反射手段4,5が移動体1の上
方に配された場合について説明したが、これに限るもの
ではなく、移動体1が空中を移動する場合など、光ビー
ムA,Bを下方に、光反射手段4,5を移動体1の下方に配置
してもよいものである。 更に、光反射手段4,5として、第4図(c)に示すよ
うに、各光反射手段4,5に個別のマスクパターンを描く
ことでデジタルコードマークを付して、光反射手段4,5
で反射する光ビームA,Bの反射光の波形に固有の情報が
のるようにしておけば、複数対の光反射手段4,5を配置
して順次移動体1を誘導することが容易となる。
Thus, the present invention projects two fan-shaped light beams at a predetermined angle from the moving body, and a pair of recursive light reflecting means installed on the traveling path of the moving body in a fixed relation to the reference direction. Each light beam is reflected, and a total of four reflected lights by the recursive light reflecting means for each light beam are received by the light receiving means for each light beam on the moving body, and the light receiving timing of these four reflected lights; The recursive light having a known light receiving position of the last reflected light of the four reflected lights received by the light receiving means from the traveling distance information between the light receiving timings from the traveling distance detecting means provided in the moving body. The method is characterized in that it is obtained by calculation as a relative position with respect to the position of the reflection means, and the azimuth which is the traveling direction of the moving body is calculated as a value with respect to the reference direction. [Operation] According to the present invention, it is possible to recognize not only the position of the moving object but also the azimuth without requiring a separate azimuth recognition means. [Embodiment] Hereinafter, the present invention will be described in detail with reference to the illustrated embodiment. In FIGS. 1 and 2, reference numeral 1 denotes a self-propelled moving body;
On the upper surface of the moving body 1, two sets of light emitting and receiving means 2, 3 are provided. Both the light emitting and receiving means 2 and 3 project fan-shaped light beams A and B upward, and the planar light beam A projected by the light emitting and receiving means 2 is shown in FIG. As shown in the figure, the plane light beam B projected by the light emitting and receiving means 3 forms an angle ψ in plan view with respect to the light beam A so as to be perpendicular to the traveling direction Y of the moving body 1. It has been like that. Then, in the environment of the traveling path of the moving body 1, here, a pair of light reflecting means 4, 5 is installed at a predetermined interval dl on the ceiling surface of the room where the moving body 1 travels on the floor surface. I have.
As these light reflecting means 4 and 5, a recursive light reflecting means for returning incident light in the same direction, for example, a corner cube (also called a corner cube prism) shown in FIG. 4 is used. FIG. 3 shows an example of the light emitting and receiving means 2, 3.
Inside the lens barrel 21 arranged in the case 20, a semiconductor laser 22, a beam splitter 23, a cylindrical lens 24, and a quarter-wave plate 25 are provided in order from the back, and a side surface of the beam splitter 23 is provided. A light receiver 26 is provided so as to be opposed. The linear light emitted from the semiconductor laser 22 enters a lens 24 via a beam splitter 23, is converted into a fan-shaped beam by the lens 24, and is projected upward through a quarter-wave plate 25. The reflected light reflected back by the light reflecting means 4 and 5 is again shifted in phase by half a wavelength from the light emitted when passing through the quarter-wave plate 25, and then the lens The light is returned to the linear light at 24, and is reflected at the beam splitter 23 toward the light receiver 26 due to the above-mentioned phase shift.
It is incident on 26. The moving body 1 can measure at least the traveling distance from the number of revolutions of the traveling wheels and the like. Also,
The pair of light reflecting means 4 and 5 are arranged so that a line connecting them is orthogonal to the reference azimuth X for the traveling of the moving body 1. Further, each of the projection angles α of the fan-shaped light beams A and B projected by the light emitting and receiving means 2 and 3, respectively, is equal to a pair of light reflecting means 4 and 4 arranged on the ceiling surface as shown in FIG. It is made to be in the range where 5 is expected together. Next, the operation will be described. First, the recognition of the azimuth of the moving body 1 (the deviation angle θ from the reference azimuth X) will be described. As the moving body 1 travels, the light beam A from the light emitting and receiving means 2 is reflected by one of the light reflecting means 4 and 5. Let a be the time point at which the light emitting and receiving means 2 first receives the reflected light due to the reflection, and let b be the time at which the light emitting and receiving means 2 receives the reflected light from the other light reflecting means 5 and 4 next. The time point c at which the light-emitting and light-receiving means 3 first receives light reflected by the beam B reflected by one of the light-reflecting means 4 and 5, and the light-emitting and light-receiving means 3 receives the light reflected by the other light reflecting means 5 and 4 next. In the case shown in FIG. 5, when the moving body 1 moves from the point A to the point B in FIG.
Point and then point d. At this time, the light receivers 26, 26 in the light emitting and receiving means 2, 3 are driven by the pulses Pc, Pa, Pb, Pd shown in FIG. Will be issued in order. Here, the deviation angle θ of the traveling direction Y with respect to the reference azimuth X is between the point a and the point b since the angle between the light beam A and the line connecting the two light reflecting means 4 and 5 is also θ. when the travel distance of the moving body 1 and l 1, Can be calculated. dl is the distance between two light reflecting means 4 and 5 as described above, l 1 can obtain data as a moving distance between the above-mentioned pulse Pa, Pb occurs. However, the angle θ obtained here is positive or negative (reference azimuth X
Is shifted to the right or to the left), but as shown in FIG. 7, considering the case where the shift with respect to the reference azimuth X is in the opposite direction and the angle is the same,
In this case, the pulses Pa, Pb, Pc and Pd are as shown in FIG. 8, and in this case, the light beam A
There although mileage l 1 between point a sequentially receiving the light reflected by the two light reflecting means 4 and 5 to the point b is the same as that shown in FIG. 5, the light beam with respect to the light beam A Since B has the angle ψ as described above, the light emitting and receiving means 3 first receives the light beam B reflected by any of the light reflecting means 4 and 5 (passing through the point c, ) Receives the reflected light from the other light reflecting means 5, 4 (passes through point d)
The running distance l2 between the two is different from the case shown in FIG. That is, the light receiving pulse Pa of emission light receiving unit 2, the light receiving pulses Pc mileage l 1 and emitting the light receiving means 3 between Pb, the travel distance l 2 between Pd, between the deviation angle theta, the light beam A, B Since there is a correlation shown in FIG. 9 corresponding to the mutual angle ψ, it is possible to determine whether the deviation angle θ is positive or negative. Of course, when the traveling distance l 1 is 0, the moving object 1
Indicates that the deviation angle θ with respect to the reference azimuth X is 0 °, and when the traveling distance l 2 is 0, the deviation angle θ is −ψ. Next, regarding the recognition of the position of the moving body 1, as shown in FIG. 5, x, y as shown in FIG. 5 are set with an arbitrary point (middle point in the figure) on the line connecting the pair of light reflecting means 4, 5 as the origin. When the axis is determined, the coordinates (x, y) of point d in FIG. 5 can be obtained simply as a geometric calculation. In other words, if l 4 as shown in FIG. 10 the travel distance of the moving body 1 between the point b and point d, the distance of in Figure 10 is From Becomes At times other than the case shown in FIG. 5, the position can be similarly obtained geometrically. Here, the case where the light emitting and receiving means 2, 3 emits the light beams A, B upward and the light reflecting means 4, 5 are arranged above the moving body 1 has been described, but the present invention is not limited to this. Instead, for example, when the moving body 1 moves in the air, the light beams A and B may be arranged below, and the light reflecting means 4 and 5 may be arranged below the moving body 1. Further, as shown in FIG. 4 (c), each light reflecting means 4, 5 is provided with a digital code mark by drawing an individual mask pattern. Five
If information specific to the waveforms of the reflected light beams A and B reflected by the light source is provided, it is easy to arrange a plurality of pairs of light reflecting means 4 and 5 to sequentially guide the moving body 1. Become.

【発明の効果】【The invention's effect】

以上のように本発明においては、移動体から所定の角
度をなす2本の扇状光ビームを投射し、移動体の進行経
路に基準方向に対して一定の関係で設置した一対の再帰
的光反射手段で上記各光ビームを反射させて、各光ビー
ムについての再帰的光反射手段による総計4つの反射光
を移動体上の各光ビーム用の受光手段で受光し、これら
4つの反射光の受光タイミングと、移動体が備える走行
距離検出手段からの上記受光タイミング間の走行距離情
報とから、上記4つの反射光のうちの最後に受光手段で
受光された反射光の受光位置を既知である上記再帰的光
反射手段の位置に対する相対位置として演算で求めると
ともに、移動体の進行方向である方位を上記基準方向に
対する値として演算で求めるものであり、このために2
つの扇状光ビームと光反射手段並びに移動体の走行距離
から、別途専用の方位認識手段を必要とすることなく、
方位も認識することができるものである。
As described above, in the present invention, two fan-shaped light beams at a predetermined angle are projected from the moving body, and a pair of recursive light reflections set on the traveling path of the moving body in a fixed relation to the reference direction. Means for reflecting each of the light beams, receiving a total of four reflected lights by the recursive light reflecting means for each light beam at the light receiving means for each light beam on the moving body, and receiving these four reflected lights From the timing and the travel distance information between the light reception timings from the travel distance detection means included in the moving body, the light receiving position of the reflected light received by the light receiving means last among the four reflected lights is known. In addition to calculating the relative position with respect to the position of the recursive light reflecting means by calculation, the azimuth that is the traveling direction of the moving body is calculated by calculating as a value with respect to the reference direction.
From the two fan-shaped light beams, the light reflecting means and the traveling distance of the moving body, there is no need for a separate dedicated direction recognizing means,
The direction can also be recognized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明一実施例の概略を示す斜視図、第2図
(a)(b)は同上の平面図と正面図、第3図は発光受
光手段の断面図、第4図(a)(b)(c)は再帰的光
反射手段の一例の正面図と平面図と説明図、第5図は方
位認識のための動作説明図、第6図は同上の受光パルス
のタイムチャート、第7図は他の場合の動作説明図、第
8図は同上の受光パルスのタイムチャート、第9図は角
度の正負判定の説明図、第10図は位置認識のための動作
説明図であって、1は移動体、2,3は発光受光手段、4,5
は光反射手段を示す。
1 is a perspective view schematically showing an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are a plan view and a front view of the same, FIG. 3 is a sectional view of a light emitting and receiving means, and FIG. (B) and (c) are a front view, a plan view, and an explanatory view of an example of a recursive light reflecting means, FIG. 5 is an explanatory view of an operation for azimuth recognition, FIG. FIG. 7 is an explanatory diagram of the operation in another case, FIG. 8 is a time chart of the received light pulse, FIG. 9 is an explanatory diagram of the positive / negative determination of the angle, and FIG. 10 is an explanatory diagram of the operation for position recognition. 1 is a moving object, 2 and 3 are light emitting and receiving means, 4, 5
Denotes light reflecting means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津村 俊弘 大阪府大阪市住吉区我孫子3丁目7番21 号 (56)参考文献 特開 昭60−233712(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01S 5/00 - 5/30 G05D 1/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiro Tsumura 3-7-21 Abiko, Sumiyoshi-ku, Osaka-shi, Osaka (56) References JP-A-60-233712 (JP, A) (58) Fields investigated ( Int.Cl. 6 , DB name) G01S 5/00-5/30 G05D 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】移動体から所定の角度をなす2本の扇状光
ビームを投射し、移動体の進行経路に基準方向に対して
一定の関係で設置した一対の再帰的光反射手段で上記各
光ビームを反射させて、各光ビームについての再帰的光
反射手段による総計4つの反射光を移動体上の各光ビー
ム用の受光手段で受光し、これら4つの反射光の受光タ
イミングと、移動体が備える走行距離検出手段からの上
記受光タイミング間の走行距離情報とから、上記4つの
反射光のうちの最後に受光手段で受光された反射光の受
光位置を既知である上記再帰的光反射手段の位置に対す
る相対位置として演算で求めるとともに、移動体の進行
方向である方位を上記基準方向に対する値として演算で
求めることを特徴とする移動体の位置方位認識方法。
1. A pair of recursive light reflecting means, which project two fan-shaped light beams at a predetermined angle from a moving body and are disposed on the traveling path of the moving body in a fixed relation to a reference direction. The light beams are reflected, and a total of four reflected lights by the recursive light reflecting means for each light beam are received by the light beam receiving means for each light beam on the moving body. The recursive light reflection wherein the light receiving position of the last reflected light of the four reflected lights received by the light receiving means is known from the traveling distance information between the light receiving timings from the traveling distance detecting means provided in the body. A method for recognizing a position and orientation of a moving object, wherein the position and orientation of the moving object are obtained by calculation as a relative position with respect to the position of the means, and the azimuth which is the traveling direction of the moving object is calculated as a value with respect to the reference direction.
JP2123500A 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object Expired - Lifetime JP2886617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123500A JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123500A JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Publications (2)

Publication Number Publication Date
JPH0419586A JPH0419586A (en) 1992-01-23
JP2886617B2 true JP2886617B2 (en) 1999-04-26

Family

ID=14862160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123500A Expired - Lifetime JP2886617B2 (en) 1990-05-14 1990-05-14 Recognition method of position and orientation of moving object

Country Status (1)

Country Link
JP (1) JP2886617B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
EP2548489B1 (en) 2006-05-19 2016-03-09 iRobot Corporation Removing debris from cleaning robots
KR101339513B1 (en) 2007-05-09 2013-12-10 아이로보트 코퍼레이션 Autonomous coverage robot

Also Published As

Publication number Publication date
JPH0419586A (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US4855915A (en) Autoguided vehicle using reflective materials
CA2307206C (en) Method and device for association of anonymous reflectors to detected angle positions
US5812267A (en) Optically based position location system for an autonomous guided vehicle
CA1268525A (en) Position sensing system for a moving object
CN1330929C (en) Position determining apparatus and rotary laser apparatus used with same
US7274461B2 (en) Optical lens system and position measurement system using the same
JPH06506297A (en) spatial positioning system
JPH02103413A (en) Apparatus for detecting steering position of self-propelled vehicle
JP2886617B2 (en) Recognition method of position and orientation of moving object
JP3340606B2 (en) Guidance method and guidance system for mobile robot
JP3265449B2 (en) Distance sensor
JPH02122307A (en) Dynamic control/guide system
JP2899060B2 (en) lighting equipment
JPH01212384A (en) Object detector by laser beam
TW202102818A (en) Auxiliary positioning system with reflective sticker
JP3491182B2 (en) Moving body position recognition method and moving body position recognition device
JP2772678B2 (en) Moving Guidance System for Moving Objects
JPS62126313A (en) Method for detecting propelling position of self-propelling robot
JPH06109846A (en) Optical distance-measuring apparatus
JPH01163806A (en) Road surface environment detector for moving robot
JPH047716A (en) Steering control device for autonomous traveling vehicle
CN114903375A (en) Obstacle positioning method and device and sports equipment
JPH03225511A (en) Steering controller for self-traveling vehicle
JP3028943B2 (en) Infrared wide-angle sensor and automatic tracking system
JPH03105207A (en) Position detecting apparatus for moving object

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12