JPS62120510A - Control method for automatic cleaner - Google Patents

Control method for automatic cleaner

Info

Publication number
JPS62120510A
JPS62120510A JP60259895A JP25989585A JPS62120510A JP S62120510 A JPS62120510 A JP S62120510A JP 60259895 A JP60259895 A JP 60259895A JP 25989585 A JP25989585 A JP 25989585A JP S62120510 A JPS62120510 A JP S62120510A
Authority
JP
Japan
Prior art keywords
obstacle
vacuum cleaner
area
map
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60259895A
Other languages
Japanese (ja)
Other versions
JPH0582602B2 (en
Inventor
Junji Shiokawa
淳司 塩川
Hitoshi Ogasawara
均 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60259895A priority Critical patent/JPS62120510A/en
Publication of JPS62120510A publication Critical patent/JPS62120510A/en
Publication of JPH0582602B2 publication Critical patent/JPH0582602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To attain the complete cleaning by driving zigzag an automatic cleaner within a room for production of a map showing the cleaned areas and a map showing the positions of obstacles and moving the cleaner to the nucleaned areas for zigzag drive as soon as said both maps are produced. CONSTITUTION:A room to be cleaned is enclosed by walls (ab, bc, cd and da) and an obstacle limited by sides (ef, fg, gh and he) exists in this room. An automatic cleaner is started at a start point A and moved straight and inverted at the side (cd) with a prescribed shift equal to pitch width (p). This inversion is carried out every time the cleaner gets close to walls or the obstacle. Then the driven areas are stored for production of a map to show the cleaned areas and a map to show the position of the obstacle. An uncleaned area is detected out of the map at a point B and a specific point D is decided. Then a route of points B-C-D is calculated and the cleaner is shifted to the point D. Thus the cleaner is driven zigzag in the same way. In such a way, the room can be completely cleaned.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自律走行して掃除を行う自動掃除機に係り、
特に障害物のある室内を無駄なく掃除するに好適な自動
掃除機の制御方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an automatic vacuum cleaner that autonomously runs and cleans;
In particular, the present invention relates to a method of controlling an automatic vacuum cleaner suitable for cleaning a room with obstacles without waste.

〔発明の背景〕[Background of the invention]

自律走行をして掃除を行う自動掃除機の一例として、例
えば特開昭55−97608号に開示されるものがある
。この従来例では、直進中超音波送受信機を用いて前方
の1iilW物を填知すると、1ピツチずれて1806
方向を変えて、また直進するという走行をくり返し、壁
際まで来て掃除を完了するというものであった。しかし
、この方法では、室内に障害物がある場合、それをくま
なく掃除することができないという欠点があった。
An example of an automatic vacuum cleaner that autonomously runs and cleans is disclosed in Japanese Patent Application Laid-Open No. 55-97608. In this conventional example, when an ultrasonic transmitter/receiver is used to detect a 1IILW object in front of the object while traveling straight, it shifts by 1 pitch and becomes 1806 points.
The vehicle would change direction and then go straight again until it reached the wall and completed the cleaning. However, this method has the disadvantage that if there are obstacles in the room, it cannot be thoroughly cleaned.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を解消し、障害物
が置かれていても、室内の掃除を自律的にくまなく行な
うことを可能とした自動掃除機の制御方法を提供す為に
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a control method for an automatic vacuum cleaner that eliminates the drawbacks of the above-mentioned prior art and makes it possible to autonomously and thoroughly clean a room even when obstacles are placed. be.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、壁や障害物を検
知しつつ直進走行と壁や障害物での走行方向の転換を繰
り返して自動掃除機をジグザグ走行させ、かつ、該走行
とともに、該掃除機が掃除した領域の地図と壁や障害物
の位置を示す地図を形成し、該掃除機が走行することが
できなくなったときに、障害物などによって生じた未掃
除領域を該地図から検出し、該掃除機を未掃除領域に移
動させてジグザグ走行させるようにした点に特徴がある
In order to achieve this object, the present invention causes an automatic vacuum cleaner to travel in a zigzag pattern by repeatedly traveling straight and changing the traveling direction at walls and obstacles while detecting walls and obstacles, and, along with the traveling, A map of the area cleaned by the vacuum cleaner and a map showing the locations of walls and obstacles are created, and when the vacuum cleaner can no longer move, the area that has not been cleaned due to obstacles etc. is determined from the map. The feature is that the vacuum cleaner is detected and moved to the uncleaned area in a zigzag motion.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による自動掃除機の制御方法の一実施例
を処理手順で概略的に示した流れ図である。また第2図
は障害物が置かれた室内をこの実施例によって自動掃除
機が移動する走行軌跡を示した模式図であって、掃除す
べき室内は夫々壁である辺i;T>、 Fm、 Ea、
 il’aで囲まれた領域であり、この室内に辺in、
 rg、 iT+、 5’iで囲まれる障害物があるも
のとする。
FIG. 1 is a flowchart schematically showing a processing procedure of an embodiment of a method for controlling an automatic vacuum cleaner according to the present invention. FIG. 2 is a schematic diagram showing the trajectory of the automatic vacuum cleaner according to this embodiment in a room where obstacles are placed, and the room to be cleaned has walls i; T>, Fm. , Ea,
It is an area surrounded by il'a, and in this room there are edges in,
Assume that there is an obstacle surrounded by rg, iT+, and 5'i.

第1図に示した実施例の処理手順を、第2図の模式図と
照らし合わせて説明する。
The processing procedure of the embodiment shown in FIG. 1 will be explained in comparison with the schematic diagram in FIG. 2.

処理101:まず、自動掃除機を、出発地点Aより出発
させて直進させる。この自動掃除機が辺dで表わす壁際
まで来ると、これを一旦停止させる。
Process 101: First, the automatic vacuum cleaner is started from starting point A and moved straight. When this automatic vacuum cleaner comes to the wall represented by side d, it is temporarily stopped.

そして、自己の走行(掃除)していない方何へ所定のピ
ッチ幅pずらして方向を反転させ、逆方向へ直進させる
。この走行方向の反転は壁や障害物に近づく毎に行なわ
せ、直進走行と方向反転とをくり返えさせる。
Then, the vehicle is shifted by a predetermined pitch width p toward the direction that it is not traveling (cleaning), reverses its direction, and runs straight in the opposite direction. This reversal of the traveling direction is performed every time the vehicle approaches a wall or obstacle, and the traveling straight and the direction reversal are repeated.

処理102:処理101に於゛C2壁際などで停止後、
ピッチpだけずれる事ができなくなると(すなわち、地
点Bに来た時)、行き止まりと判定し、処理103へと
制御を移す。
Process 102: After stopping near the C2 wall in Process 101,
When it becomes impossible to deviate by the pitch p (that is, when reaching point B), it is determined that a dead end has occurred, and control is transferred to process 103.

この地点Aから地点Bへの移動の間に、自動掃除機は、
自ら走行(掃除)した領域を記憶し、さらに障害物や室
内の壁の位置情報を記憶して掃除した領域の地図や、壁
、障害物の地図を形成する。
During this movement from point A to point B, the automatic vacuum cleaner:
It memorizes the area it has traveled (cleaned) and also stores the position information of obstacles and walls in the room to create a map of the cleaned area, walls, and obstacles.

処理103:まず、自己の掃除した領域を表わす地図を
もとに、まだ掃除をしていない領域(未掃除エリア)が
あるかどうかを検索する。この場合自動掃除機は、自己
が移動した横方向、縦方向の最大の範囲を判定し、これ
ら範囲で決まる4角形の領域を掃除すべき領域とし、こ
の掃除すべき領域から実際に掃除した領域を除いた領域
を未掃除エリアと判定する。第2図では、自動掃除機が
横方向にaからbまで移動し、また、縦方向にaからd
まで移動するから、頂点a、b、c、dで決まる4角の
領域が掃除すべき領域であり、頂点e。
Process 103: First, based on the map showing the area that the user has cleaned, it is searched to see if there is an area that has not been cleaned yet (uncleaned area). In this case, the automatic vacuum cleaner determines the maximum range in the horizontal and vertical directions that it has moved, sets the rectangular area determined by these ranges as the area to be cleaned, and starts from this area to the area actually cleaned. The area excluding the area is determined to be an uncleaned area. In Figure 2, the automatic vacuum cleaner moves horizontally from a to b, and vertically from a to d.
Therefore, the four corner areas determined by vertices a, b, c, and d are the areas to be cleaned, and the apex e.

f、j、lで決まる4角の領域が未掃除エリアである。The four corner areas determined by f, j, and l are the uncleaned areas.

そして未掃除エリアが見つかると、次に、壁や障害物の
位置を表わす地図からそのエリアに障害物があるか否か
を検索する。そして、そこに障害物があれば、未掃除エ
リアから障害物を除いた領域を実際に掃除すべきエリア
とする。未掃除エリアが無ければ制御を終了し、未掃除
エリアがあれば制御を処理104に移す。第2図では、
実際に掃除すべき未掃除エリアは頂点り、  g、  
j、  iで決まる4角い領域である。
When an uncleaned area is found, the system searches a map showing the locations of walls and obstacles to see if there are any obstacles in that area. If there is an obstacle there, the area obtained by removing the obstacle from the uncleaned area is set as the area to be actually cleaned. If there is no uncleaned area, the control is terminated, and if there is an uncleaned area, the control is transferred to process 104. In Figure 2,
The uncleaned area that should actually be cleaned is at its peak, g.
It is a square area determined by j and i.

処理104:まず、未掃除エリアの特定な地点りを決定
し、停止地点Bから移動するこの地点りまでの走行径路
を算出する。ここで、地点B−地点C−地点りの経路を
算出したとすると、自動掃除機を、この算出した径路に
従って誘導し、地点りへ到達後、処理101の制御を行
なう、そして再び以上の処理をくり返す。
Process 104: First, a specific point in the uncleaned area is determined, and a traveling route from stopping point B to this point is calculated. Here, if a route from point B to point C to point is calculated, the automatic vacuum cleaner is guided along this calculated route, and after reaching the point, the control of process 101 is performed, and the above process is performed again. Repeat.

以上の手順で制御を行えば、自動掃除機は室内をくまな
く動いて掃除を行う事ができる。
If you control it using the steps above, the automatic vacuum cleaner will be able to move and clean the entire room.

次に、このように制御可能な自動掃除機について説明す
る。
Next, an automatic vacuum cleaner that can be controlled in this manner will be described.

第3図は、この自動掃除機の構成を示す側断面図、また
、第4図は第3図におけるA+−At線線断断面図あり
、1は自動掃除機、2.3は車輪、4.5は車輪軸、6
,7は車輪2,3を駆動するモータ、8.9はモータ6
.7の回軸数を低減する減速機、10.11は車輪2.
3の回転数を計測す′るためのロータリエンコーダ、1
2.13.14.15.16.17は減速機8,9とロ
ータリエンコーダ10.11をそれぞれ車輪軸4.5に
結合する傘歯車、18.19はモータ6.7の回転速度
を電気信号に変換するりコシエネレータ、20.21は
タコジェネレータ18゜19より出力される電気信号を
もとにモータ6.7の速度を制御する速度制御装置、2
2は掃除機の吸口部、23は真空掃除機本体、24は自
動掃除機1のヨー角速度を検出するためのジャイロ装置
、25は回転しながら超音波を送受信して自動掃除機1
と障害物や壁までの距離と方位を測定できる、いわゆる
レーダの構成を成す障害物検出装置、26は走行制御を
行う制御装置、27は全システムに電力を供給する蓄電
池である。
FIG. 3 is a side sectional view showing the configuration of this automatic vacuum cleaner, and FIG. 4 is a sectional view taken along the line A+-At in FIG. .5 is the wheel axle, 6
, 7 is the motor that drives the wheels 2 and 3, 8.9 is the motor 6
.. 7 is a reducer that reduces the number of rotations, 10.11 is a wheel 2.
Rotary encoder for measuring the rotation speed of 3, 1
2.13.14.15.16.17 are bevel gears that connect the reducers 8, 9 and rotary encoder 10.11 to the wheel shaft 4.5, and 18.19 is an electrical signal that indicates the rotational speed of the motor 6.7. 20.21 is a speed control device that controls the speed of the motor 6.7 based on the electric signal output from the tachogenerator 18.
2 is a suction part of the vacuum cleaner, 23 is a main body of the vacuum cleaner, 24 is a gyro device for detecting the yaw angular velocity of the automatic vacuum cleaner 1, and 25 is a gyro device for transmitting and receiving ultrasonic waves while rotating to connect the automatic cleaner 1
26 is a control device that performs travel control; 27 is a storage battery that supplies power to the entire system.

同図において、制御装置26は障害物検出装f25゜ジ
ャイロ装置24.ロータリエンコーダ10.11からの
データを処理して、自動掃除機1の位置、方位及び障害
物、壁の位置などを検出して記憶し、かつ上記の位置、
方位などの情報をもとに、予め入力しである掃除走行プ
ログラムを実行するための、マイクロプロセッサ(CP
U)、掃除走行プログラムを記述したROM、変数や、
自動掃除機1が掃除した領域を表わす地図(以下、掃除
地図という)、壁や障害物の位置を表わす地図(以下、
障害物地図という)を一時的に蓄えておくRAM。
In the figure, the control device 26 includes an obstacle detection device f25° gyro device 24. The data from the rotary encoder 10.11 is processed to detect and store the position and direction of the automatic vacuum cleaner 1, as well as the position of obstacles, walls, etc.;
A microprocessor (CP) is used to run a cleaning program that is input in advance based on information such as direction.
U), ROM in which the cleaning running program is written, variables,
A map showing the area cleaned by the automatic vacuum cleaner 1 (hereinafter referred to as the cleaning map), a map showing the locations of walls and obstacles (hereinafter referred to as the cleaning map)
RAM that temporarily stores the obstacle map.

入出力信号処理回路(インターフェース)から構成され
たものである。
It consists of an input/output signal processing circuit (interface).

また、第5図は、第3図に示した自動掃除機のシステム
ブロック図であって、26aは制御装置26のCPUで
、ROM26bに記憶された走行制御プログラムを呼び
だし、プログラムに従って処理を実行する。26cは変
数や走行制御に必要な地図を一時的に記憶しておくRA
Mである。26dは制御装置26に接続された外部の周
辺機器からの信号をCP 026a内に取り込むための
電気信号に変換し、また、CP U26aから出力され
る電気信号を外部機器に入力するための電気信号に変換
するためのインターフェース回路である。
Further, FIG. 5 is a system block diagram of the automatic vacuum cleaner shown in FIG. 3, in which 26a is a CPU of the control device 26, which calls up a travel control program stored in the ROM 26b and executes processing according to the program. . 26c is an RA that temporarily stores variables and maps necessary for driving control.
It is M. 26d converts a signal from an external peripheral device connected to the control device 26 into an electric signal for inputting into the CPU 026a, and also converts an electric signal output from the CPU 26a into an electric signal for inputting it to an external device. This is an interface circuit for converting to

次に、自動掃除機1の走行中における、自己位置の計測
と障害物の位置計測方法について簡単に説明する。
Next, a method for measuring the self-position and the position of an obstacle while the automatic cleaner 1 is running will be briefly described.

第6図は自動掃除機1がX−Y座標系を移動している状
態を示す模式図である。ここでは、説明を簡単にするた
めに、車輪2と車輪3だけを示し、これらの中間点の位
置を自動掃除機の位置とする。
FIG. 6 is a schematic diagram showing a state in which the automatic cleaner 1 is moving in the X-Y coordinate system. Here, in order to simplify the explanation, only wheels 2 and 3 are shown, and the position of the intermediate point between them is assumed to be the position of the automatic cleaner.

同図において、自動掃除機lがある時刻で地点(xト1
+ Yムーυにあり、方位角がθト、であるとし、単位
時間Δを経過したのち、地点(Xl、Yりに移動して方
位角がθ長になったとする。また、左車輪2の単位時間
Δtの移動距離をΔL□とし、右車輪3の移動距離をΔ
L riとすると、単位時間Δtにおける自動掃除機1
の変位角Δθ1.および移動距離ΔLiは、次式で表わ
される。
In the same figure, the automatic vacuum cleaner l is at a point (xt1) at a certain time.
Assume that the vehicle is located at + Y mu υ and the azimuth is θ, and after a unit time Δ has passed, it moves to the point (Xl, Y) and the azimuth becomes θ length. Let the moving distance in unit time Δt be ΔL□, and the moving distance of the right wheel 3 be Δ
If L ri, automatic vacuum cleaner 1 in unit time Δt
The displacement angle Δθ1. and the moving distance ΔLi is expressed by the following equation.

ここでの角度θは反時計まわりを正方向とし、Δω〃は
移動車の単位時間Δtにおける旋回角速度である。
Here, the angle θ is counterclockwise as the positive direction, and Δω is the turning angular velocity of the mobile vehicle per unit time Δt.

従って、自動掃除機1が地点(XL−0Yt−t)に達
するまでの移動距離をLl−l、地点(Xl−1。
Therefore, the moving distance of the automatic vacuum cleaner 1 to reach the point (XL-0Yt-t) is Ll-l, and the point (Xl-1).

Y(−1)と地点(Xt、Yt)の直線距離をΔLとす
ると、単位時間Δを経過した時の全移動距離り。
If the straight line distance between Y(-1) and the point (Xt, Yt) is ΔL, then the total distance traveled after a unit time Δ has passed.

方位角θ□および地点(Xl 、Yt )は夫々次式%
式% 全移動距離  Ll−Lム−1+ΔL8  ・・・(3
)方位角 θ1−θト、+Δθ1 ・・・(4)・・・
(6) 従って、自動掃除機1の初期地点(X6 、 YO)と
初期方位θ。が明らかであれば、自動掃除機1の任意の
地点(Xi、 Yt )および方位角θ1は、初期地点
より累積する事より次式で表わされる。
The azimuth angle θ□ and the point (Xl, Yt) are each calculated by the following formula %
Formula % Total travel distance Ll-Lmu-1+ΔL8...(3
) Azimuth angle θ1-θ, +Δθ1...(4)...
(6) Therefore, the initial point (X6, YO) and initial orientation θ of the automatic vacuum cleaner 1. If it is clear, the arbitrary point (Xi, Yt) and azimuth θ1 of the automatic cleaner 1 can be expressed by the following equation by accumulating from the initial point.

Xl−x、+Σ ΔX、         ・+71n
=1 但し、Δtは微小であるとする。
Xl-x, +Σ ΔX, ・+71n
=1 However, it is assumed that Δt is minute.

上記の式において、左右の車輪2.3の移動距離ΔL□
、ΔLriはロータリエンコーダ10と11のパルス数
をカウントする事により、また、角速度Δω、はジャイ
ロ24の出力から得る事ができる。
In the above formula, the moving distance ΔL□ of the left and right wheels 2.3
, ΔLri can be obtained by counting the number of pulses of the rotary encoders 10 and 11, and the angular velocity Δω can be obtained from the output of the gyro 24.

また、第6図において、障害物検出装置25が、座標(
Xs 、 Ys )にあった障害物を検出したとする。
In addition, in FIG. 6, the obstacle detection device 25 detects the coordinates (
Suppose that an obstacle located at Xs, Ys) is detected.

なお、障害物検出装置25は、指向性の強い超音波ビー
ムを発進し、障害物に当たってはね返ってくる超音波を
受信するもので、超音波ビームが壁や障害物の面に対し
て垂直に当たった場合あるいは壁や障害物のコーナ部に
当たった場合のみ受信するレーダの構成をなすものであ
る。
The obstacle detection device 25 emits a highly directional ultrasonic beam and receives the ultrasonic waves that bounce off an obstacle. The radar is configured to receive signals only when the beam hits a corner of a wall or obstacle.

第6図に示す様に、自動掃除機1の方位角がθ直の時点
で、自動掃除機工から角度α、距Hr=sの場所に検出
された障害物の座標(Xi 、 Ys )は次式をもっ
て与えられる。
As shown in Fig. 6, when the azimuth angle of the automatic vacuum cleaner 1 is θ, the coordinates (Xi, Ys) of the obstacle detected at the angle α and distance Hr=s from the automatic vacuum cleaner are as follows. It is given by the formula.

なお障害物までの距離L!は、超音波ビームを発信して
から受信するまでの時間を計測する事により得られる。
Furthermore, the distance to the obstacle is L! can be obtained by measuring the time from transmitting an ultrasound beam to receiving it.

超音波ビームの伝播速度をVUS、送信して受信するま
での時間をticとすると、障害物までの距離し、は で示される。また、角度αは、車輪回転数を計測するロ
ータリエンコーダ10、又はIfと同じものを、障害物
検出装置250回転軸に連結しておけば、容易に得る事
ができる。
If the propagation speed of the ultrasonic beam is VUS, and the time from transmission to reception is tic, then the distance to the obstacle is expressed by . Further, the angle α can be easily obtained by connecting the rotary encoder 10 that measures the wheel rotation speed, or the same as If, to the rotating shaft of the obstacle detection device 250.

次に、障害物地図、および掃除地図の作成方法を説明す
る。
Next, a method for creating an obstacle map and a cleaning map will be explained.

第7図は、制御装置26のRA M26cのメモリエリ
アであり、Adl 、Ad2 、Ad3はメモリに割り
当てられた番地を示すもので、AdLは先に示した自動
掃除機1の自己位置計測や障害物計測の計算のために一
時的にデータや変数を記憶しておくための変数エリアの
先頭番地である。Ad2はFil書物地図の記憶に割り
当てられたメモリエリアの先頭番地である。また、Ad
3は掃除地図の記憶に割り当てられたメモリエリアの先
頭番地である。第8図は第7図における地図を記憶する
メモリエリアの拡大図、第9図はこのメモリエリアに掃
除地図を形成して格納する方法を示す模式図である。
FIG. 7 shows the memory area of the RAM 26c of the control device 26, where Adl, Ad2, and Ad3 indicate the addresses assigned to the memory, and AdL indicates the self-position measurement and failure of the automatic vacuum cleaner 1 shown above. This is the starting address of the variable area for temporarily storing data and variables for physical measurement calculations. Ad2 is the starting address of the memory area allocated to store the Fil book map. Also, Ad
3 is the starting address of the memory area allocated to store the cleaning map. FIG. 8 is an enlarged view of the memory area for storing the map in FIG. 7, and FIG. 9 is a schematic diagram showing a method of forming and storing a cleaning map in this memory area.

第7図に示す掃除地図や障害物地図を格納するR A 
M26cのメモリエリアは、第8図に示す様に、X方向
にH個、Y方向に7個ずつ区分された一辺Δaの正方形
の多数の微小エリアの二次元の配列とする。そして、こ
れら微小エリアに番地が付され、各番地により、実際に
自動掃除機1が走行する床面上の位置と微小エリアとを
対応させる。自動掃除機1が使用開始される初期状態で
は、初期値として、各微小エリアに0”ビットを書き込
んでおく、障害物などが在る地点(Xs 、 Ys )
が前述した方法で求められると、その地点(X、。
R A that stores the cleaning map and obstacle map shown in Figure 7.
As shown in FIG. 8, the memory area of the M26c is a two-dimensional array of a large number of square minute areas with each side Δa divided into H pieces in the X direction and 7 pieces in the Y direction. Addresses are assigned to these minute areas, and each address makes the minute area correspond to a position on the floor where the automatic cleaner 1 actually runs. In the initial state when the automatic vacuum cleaner 1 starts to be used, a 0" bit is written in each micro area as an initial value, indicating the location where an obstacle is located (Xs, Ys)
is determined using the method described above, then the point (X, .

Y、)に当たる番地の微小エリアに“1”ビットを書き
込んで行く、その微小エリアの番地A adsは、自動
掃除機1の起点となる微小エリアの番地をAd2とする
と、 Adds =Ad2+Xs /Δa+(Ys/Δa’)
XH・・・αコ で得る事ができる。この様にして障害物地図はRAM2
6c上に記tαできる。
The address Aads of the minute area where "1" bit is written in the minute area corresponding to the address corresponding to Y,) is as follows: Adds = Ad2+Xs /Δa+( Ys/Δa')
XH...Can be obtained with α. In this way, the obstacle map is stored in RAM2.
tα can be written on 6c.

掃除地図の場合も同様であり、自己の位置(Xl。The same is true for the cleaning map, where the self position (Xl.

Yl)が先の計測方法で計算されれば、その地点(Xt
、 Yt )に当たる番地AddiはAddi =Ad
3+Xt /Δa十(Yi/Δa)XH・・・αa で計算されるので、その番地の微小エリアに“1”ビッ
トを書き込んで行けば良い。ただし、第9図に示す様に
、掃除地図の場合は、掃除機の吸口部22(第3図)の
幅に対応した複数の番地の微小エリアに一度に“1”ビ
ットを書き込んで行く、こうする事により、自己の掃除
した場所を記憶させる事ができる。なお、第9図に於て
、lは自動掃除機、2.3は車輪である。
If Yl) is calculated using the above measurement method, that point (Xt
, Yt) is Addi=Ad
Since it is calculated as 3+Xt/Δa+(Yi/Δa)XH...αa, it is sufficient to write a "1" bit into the minute area at that address. However, as shown in Fig. 9, in the case of a cleaning map, "1" bit is written at once in minute areas of multiple addresses corresponding to the width of the suction part 22 (Fig. 3) of the vacuum cleaner. By doing this, you can remember the places you have cleaned. In addition, in FIG. 9, 1 is an automatic cleaner, and 2.3 is a wheel.

以上の様にして各地図が得られるが、第1図をより具体
的に示した第10図により、この実施例をさらに具体的
に説明する。なお、第10図において処理82〜S16
は第1図の処理101に対応し、処理SIO,S11.
  S13.  S14は同じく処理102に対応し、
処理S17. 318は同じく処理103に対応し、処
理S19.  S20は同じく処理104に対応する。
Although each map is obtained in the above manner, this embodiment will be explained in more detail with reference to FIG. 10, which shows FIG. 1 more specifically. In addition, in FIG. 10, processing 82 to S16
corresponds to process 101 in FIG. 1, and processes SIO, S11.
S13. S14 also corresponds to process 102,
Processing S17. 318 also corresponds to process 103, and process S19. S20 also corresponds to process 104.

Sl:まず、RA M26c内の、自己(自動掃除機)
の位置、方向のデータを初期設定するとともに、障害物
地図、掃除地図を記憶するメモリエリアの各番地の微小
エリアに“O”ビットを書き込み、障害物などで自動掃
除機1を旋回する方向を決める変数UTを“0”とする
Sl: First, self (automatic vacuum cleaner) in RAM M26c
In addition to initializing the position and direction data, an "O" bit is written in a small area at each address in the memory area that stores obstacle maps and cleaning maps, and the direction in which the automatic vacuum cleaner 1 should be rotated when an obstacle is encountered is determined. The variable UT to be determined is set to "0".

S2:ジャイロ24とロータリエンコーダ10.11の
データをインターフェース回路26dを通じてCPU2
6aに取り込み、そのデータにより、先述した位置計測
方法に従って自動掃除機1の位置と方位Xt+Yi、θ
正を算出しく式(3)〜(9)を用いる)、RAM26
cに記憶する。
S2: Data from the gyro 24 and rotary encoder 10.11 is sent to the CPU 2 through the interface circuit 26d.
6a, and from that data, the position and orientation of the automatic vacuum cleaner 1, Xt+Yi, θ, are determined according to the position measurement method described above.
To calculate the positive value, use formulas (3) to (9)), RAM26
Store in c.

S3:次に、障害物検出装置25で障害物などを検知さ
れると、障害物検出装置25から得られるデ 、−タを
もとに、自動掃除機1と障害物までの距離り、と角度(
方向)αを先の計測方法に従って求め、さらに障害物の
位置データ(Xs 、 Ys )を、S2で求めたX、
、yi 、  θ遥の情報を用い、先の式aの、αυよ
り求める。そして、式α湯に従って、障害物地図を構成
する番地Addsを算出し、RAM 26cのメモリエ
リアのその番地に障害物データとして“1”を書き込み
、障害物地図を形成して。
S3: Next, when an obstacle is detected by the obstacle detection device 25, the distance between the automatic vacuum cleaner 1 and the obstacle is determined based on the data obtained from the obstacle detection device 25. angle(
Direction) α is obtained according to the previous measurement method, and the position data (Xs, Ys) of the obstacle is calculated using the X, Ys, obtained in S2.
, yi, and θharuka, it is determined from αυ in the above equation a. Then, according to formula α, the address Adds constituting the obstacle map is calculated, and "1" is written as obstacle data at that address in the memory area of the RAM 26c, thereby forming the obstacle map.

いく。go.

S4:S2で求めた自己位置データXi、Yiをもとに
、前記した要領で、掃除地図を作成する。
S4: Based on the self-position data Xi and Yi obtained in S2, a cleaning map is created in the manner described above.

S5:自動掃除機1の走行方向に障害物があるか否かを
、第11図の様に、RA M26c上に作成された障害
物地図を検索して判断させる。移動中の自動掃除機の位
置(Xi 、 Yi )は処1s2によって求められて
いるから、今、座標軸Y軸と平行な向きに自動掃除機1
が向いていた場合を例にとると、自己の座標(Xi 、
Yt )から、所定の閾値ΔVだけ離れた場所(Xi 
、Yt +ΔV)に対応した障害物地図の番地を中心と
し、横一列に一定数の番地の微小エリア内容が障害物デ
ータである“1”なる値が書き込まれているか検索する
S5: Whether or not there is an obstacle in the running direction of the automatic cleaner 1 is determined by searching the obstacle map created on the RAM 26c as shown in FIG. Since the position (Xi, Yi) of the automatic vacuum cleaner during movement is determined by processing 1s2, we now move the automatic vacuum cleaner 1 in a direction parallel to the coordinate axis Y-axis.
For example, if the self-coordinates (Xi,
A place (Xi
, Yt + ΔV), and a search is made to see if the value "1", which is obstacle data, is written in the minute area contents of a certain number of addresses in a horizontal row, centering on the address of the obstacle map corresponding to .

そして、“1”なる値がなければ前方に障害物はないと
判断し、“1”が書き込まれていれば、前方に障害物あ
りと判断する。
If there is no value of "1", it is determined that there is no obstacle ahead, and if "1" is written, it is determined that there is an obstacle ahead.

S5’:S5で障害物なしと判断すると、S5と同様に
、今度は位置(Xi 、Y、+ΔV)に対応した掃除地
図のメモリエリアの番地を中心に横一列で一定数の番地
の微小エリアの内容が、掃除したというデータである“
1”があるかどうか検索する。この処理で一度掃除した
領域へは自動掃除機1は進入しない事になる。
S5': When it is determined that there are no obstacles in S5, similarly to S5, this time a small area of a fixed number of addresses in a horizontal row centered on the address of the memory area of the cleaning map corresponding to the position (Xi, Y, +ΔV) is created. The content is the data that it was cleaned.
1". In this process, the automatic vacuum cleaner 1 will not enter the area that has been cleaned once.

S6:S5およびS5’で前方に障害物などがなく、か
つ掃除してないと判断した場合は、自動掃除機1が直進
する様に、CP U26aからインターフェース回路2
6dを経て速度制御回路20.21へ速度指令を出力し
、モータ6.7を駆動して車輪2.3を回転させる。
S6: If it is determined in S5 and S5' that there are no obstacles ahead and that cleaning is not being performed, the interface circuit 2 is sent from the CPU 26a so that the automatic vacuum cleaner 1 moves straight.
A speed command is output to the speed control circuit 20.21 via the speed control circuit 6d, and the motor 6.7 is driven to rotate the wheel 2.3.

S7:S5で前方に障害物あり、または35’で前方が
掃除した場所であると判断した場合は、自動掃除機1を
停止させる様に、CP LJ26aよりインターフェー
ス26dを介して速度制御回路20゜21に速度指令を
出力しモータ6.7を停止させる。
S7: If it is determined that there is an obstacle ahead in S5 or that the area in front is the area to be cleaned in 35', the speed control circuit 20° is activated from the CP LJ 26a via the interface 26d to stop the automatic vacuum cleaner 1. A speed command is output to 21 to stop the motor 6.7.

S8:自動掃除機1の後記するUターンの方向の優先方
向を決める変数UTの値が“0”か否かを判定する。
S8: Determine whether the value of a variable UT that determines the priority direction of a U-turn (to be described later) of the automatic vacuum cleaner 1 is "0".

Sl変数UTが“0′″のとき変数UTを1とする。When the Sl variable UT is "0'", the variable UT is set to 1.

S10:そして自動掃除機1が右Uターンできるか否か
を判定する。第12図は右Uターン時の地図検索を示す
模式図である。同図に示す様に、本実施例では、右Uタ
ーンの場合、一度自動掃除機1の右車輪2を図の様に左
車輪3を中心にして2′の位置に来る様に後退させ、次
いで、右車輪2′を中心にして左車輪3を回転させて、
自動掃除機を1′に示す姿勢にする。この場合、CPU
26aより、インターフェース26dを介して速度制御
回路20.21へ速度指令を送り、モータ6.7を駆動
する。こうする事によって、自動掃除機1が往復走行を
行う時、その吸口部22(第3図)は一定のずれ幅をも
って移動する事になるとともに、第12図に示した様に
、既に掃除された部分と幅0..たけオーバーラツプし
て移動するこになるので吸い残しを防ぐ効果がある。ま
た、左Uターンも右Uターンとは全く左右対称に逆の制
御を行う事で達成できる。
S10: Then, it is determined whether the automatic cleaner 1 can make a right U-turn. FIG. 12 is a schematic diagram showing a map search when making a right U-turn. As shown in the figure, in this embodiment, in the case of a right U-turn, the right wheel 2 of the automatic vacuum cleaner 1 is moved backward so that it is at the 2' position with the left wheel 3 as the center as shown in the figure. Next, rotate the left wheel 3 around the right wheel 2',
Place the automatic vacuum cleaner in the position shown in 1'. In this case, the CPU
26a sends a speed command to speed control circuit 20.21 via interface 26d to drive motor 6.7. By doing this, when the automatic vacuum cleaner 1 moves back and forth, its suction port 22 (FIG. 3) will move with a certain deviation width, and as shown in FIG. part and width 0. .. Since they overlap each other in height, they are effective in preventing unsuction from being left behind. Furthermore, a left U-turn can also be achieved by performing control in a completely symmetrical manner opposite to that of a right U-turn.

上記したUターンをするためには、第12図の斜線で囲
んだ範囲内に障害物があってはならない。
In order to make the above U-turn, there must be no obstacles within the area surrounded by diagonal lines in Figure 12.

従って、第12図で示した自動掃除機1の姿勢の時点の
現在位t (Xi 、Yi )を基点として、方形KL
 −に2−に3−に4で囲まれる範囲に当たるRAM2
6cの障害物地図上の番地の内容をくまなく検索する。
Therefore, with the current position t (Xi, Yi) at the time of the posture of the automatic vacuum cleaner 1 shown in FIG. 12 as the base point, the square KL
RAM2 corresponding to the range surrounded by -, 2-, 3-, and 4
The contents of the address on the obstacle map of 6c are thoroughly searched.

そして、検索した番地の申に、1個でも障害物のデータ
、すなわち“1°の値が書き込まれている微小エリアが
あれば、右Uターンは不可と判定させる。また、Kl 
−に2−に3−に4に障害物データがない場合は、次に
、第12図に示す様にRAM26eに作成されている掃
除地図での、((Xi 、 Yi )を基点として〕、
得られる格子で示す方形C,の場所にあたる部分の番地
を検索し、掃除したというデータである1”という値が
書き込まれていれば、右Uターンは不可という判定をす
る。こうする事で、一度掃除した領域側にUターンをさ
せる事を防ぎ、2度同じ場所を掃除する無駄をなくす事
ができ、効率的である。そして、掃除したデータが検索
番地に書き込まれていなければ、ここで初めて、自動掃
除機から見て右Uターンは可能と判断させる。
Then, if there is a minute area in which even one obstacle data, that is, a value of "1°" is written in the searched address, it is determined that a right U-turn is not possible.
If there is no obstacle data in -, 2-, 3-, or 4, next, as shown in FIG. 12, in the cleaning map created in the RAM 26e,
Search for the address of the part corresponding to the location of rectangle C, shown in the resulting grid, and if a value of 1", which is data indicating that it has been cleaned, is written, it is determined that a right U-turn is not possible. By doing this, It is efficient because it prevents a U-turn to the area that has been cleaned once and eliminates the waste of cleaning the same area twice.And if the cleaned data is not written to the search address, it is For the first time, the automatic vacuum cleaner determines that it is possible to make a right U-turn.

S11;処理S10で右Uターン不可と判断すると、今
度は左右対称の逆方向に、S10と同じ処理をほどこし
て左Uターン可能か否か判定する。
S11: If it is determined in step S10 that a right U-turn is not possible, then the same process as in S10 is performed in the symmetrical opposite direction to determine whether a left U-turn is possible.

S12:処理S8でU′rが“0”でないと判定すると
、ここでUTO値を10″とする。
S12: If it is determined in step S8 that U'r is not "0", the UTO value is set to 10".

S13;処理Sllと同じ処理を行う。S13: Perform the same process as process Sll.

S14:処理S10と同じ処理を行う。S14: Perform the same process as process S10.

S15:処理S10又は314で右Uターン可能と判断
した場合は、第12図で示した様にして右Uターンする
S15: If it is determined in step S10 or 314 that a right U-turn is possible, make a right U-turn as shown in FIG.

S16:処理311又は313で左Uターン可能と判断
した場合は、第12図で示したものとは反対方向へ、左
Uターンする。
S16: If it is determined in step 311 or 313 that a left U-turn is possible, make a left U-turn in the opposite direction to that shown in FIG.

S17:S10とSll、又はS13とS14で、右に
も左にもUターン不可と判断すると(この場合には、第
2図では、自動掃除機1は地点Bにある)、後述する未
掃除エリア検索を行う。
S17: If it is determined in S10 and Sll or S13 and S14 that a U-turn to the right or left is not possible (in this case, the automatic vacuum cleaner 1 is at point B in FIG. 2), the uncleaned Perform area search.

S18:未掃除エリアが発見されれば319へ処理を移
行し、未掃除エリアがなければ掃除終了とする。
S18: If an uncleaned area is found, the process moves to 319, and if there is no uncleaned area, the cleaning ends.

S19:処理318で未掃除エリアありと判断すると、
後述する経路探索方法に従って、未掃除エリアまで移動
する径路を求める。
S19: If it is determined in process 318 that there is an area that has not been cleaned,
A route for moving to an uncleaned area is determined according to a route search method to be described later.

S20:未掃除エリアまで319で求めた経路に従つて
移動する様、自動掃除機1を制御する。
S20: Control the automatic cleaner 1 so that it moves along the route determined in step 319 to the uncleaned area.

これ以降、再びS2の処理にもと−って同様の制御をく
りかえす。
After this, the process returns to S2 and repeats the same control.

以上の制御手順により、自動掃除機1を制御する。The automatic cleaner 1 is controlled by the above control procedure.

次に、上記の処理S17の未掃除エリア検索方法及び処
理319の経路探索方法について説明する。
Next, the uncleaned area search method in step S17 and the route search method in step 319 will be described.

上記の制御手順に従って、自動掃除機1を制御すると、
第2図に示した様に、自動掃除機1は、出発地点へから
破線で示した様にジグザグ走行をくり返し、地点Bに達
する。この時点で左右どちらかにUターン可能か否か3
13及び314の処理で判定を行うが、自動掃除機1か
ら見て左側は壁、すなわち障害物があるという事がRA
M26c上に作成された障害物地図より判定される。ま
た、自動掃除機1から見て右側は、既に一回走行して掃
除をしている領域である事がRA M26c上に作成し
た掃除地図より判定され、右Uターン不可と判定する。
When the automatic vacuum cleaner 1 is controlled according to the above control procedure,
As shown in FIG. 2, the automatic vacuum cleaner 1 repeatedly travels in a zigzag pattern as shown by the broken line from the starting point until it reaches a point B. Is it possible to make a U-turn to the left or right at this point?3
Judgments are made in steps 13 and 314, and RA indicates that there is a wall, that is, an obstacle, on the left side when viewed from the automatic vacuum cleaner 1.
This is determined based on the obstacle map created on the M26c. Further, it is determined from the cleaning map created on the RAM 26c that the right side as seen from the automatic vacuum cleaner 1 is an area that has already been cleaned once, and it is determined that a right U-turn is not possible.

これにより、処理S17へと処理を移行する。Thereby, the process moves to process S17.

第13図は地点已に達した時点でのRAM26cに作成
された掃除地図を示し、第14図は同じ<RAM 26
c上に作成された障害物地図を示す。特に、第14図に
示す障害物地図は、X軸側からみて障害物のかげになっ
た障害物の辺や範囲αで示す壁の部分は障害物検出装置
25(第3図)で検出されずに不明ではあるが、出発地
点Aから地点Bに走行する間に、実際の掃除すべき部屋
内の状態にほぼ近いものとなっている。
Figure 13 shows the cleaning map created in RAM 26c when the point is reached, and Figure 14 shows the same <RAM 26c.
The obstacle map created on c is shown. In particular, in the obstacle map shown in FIG. 14, the obstacle detection device 25 (FIG. 3) does not detect the side of the obstacle that is behind the obstacle or the part of the wall indicated by range α when viewed from the X-axis side. Although it is unclear, the state of the interior of the room to be cleaned is almost the same as the actual state of the room to be cleaned while traveling from the starting point A to the point B.

そこで、以上の様に作成された障害物地図及び掃除地図
からどの様にして未掃除エリアを検出するかを述べる。
Therefore, we will describe how to detect uncleaned areas from the obstacle map and cleaning map created as described above.

第13図及び第14図に示した正方形5−t−u−■を
検索エリアと呼ぶ事にする。この検索エリアは、第15
図に示す様に、地図の最小構成要素であるRAM26c
のメモリエリアの微小エリアが、縦n個、*n個集まっ
てなる正方形のエリアであり、自動掃除機lの吸口部2
2の断面積に対応した広さをもち、未掃除エリア検索に
おいてまとめて検索する範囲である。
The square 5-tu-■ shown in FIGS. 13 and 14 will be called a search area. This search area is the 15th
As shown in the figure, RAM26c, which is the smallest component of the map,
It is a square area made up of n and * n micro areas in the memory area of the automatic vacuum cleaner l.
It has a width corresponding to the cross-sectional area of 2, and is the range to be searched all at once in the uncleaned area search.

この検索エリア内において、第16図に示す様な処理手
順を実行する事によって未掃除エリアであるか否かの判
断を行う。
In this search area, it is determined whether or not it is an uncleaned area by executing the processing procedure shown in FIG.

S21:検索エリアを矢印X′力方向順次ずらしながら
矢印Y′方向に移動走査させ、このエリアに含まれる番
地に掃除したデータがあるかないか、すなわち1なるデ
ータが書き込まれているかどうか、RA M26c上に
作成された掃除地図上を検索する。この場合、掃除地図
上のX軸方向の最大幅(i’k)とY軸方向の最大幅(
!i1+)で決まる四角の領域を掃除すべき領域とし、
検索エリアはこの領域全体にわたって検索するようにす
る。
S21: Move and scan the search area in the direction of arrow Y' while sequentially shifting the search area in the direction of arrow Search on the cleaning map created above. In this case, the maximum width (i'k) in the X-axis direction and the maximum width (i'k) in the Y-axis direction on the cleaning map are
! The square area determined by i1+) is the area to be cleaned,
The search area is set so that the entire area is searched.

S22:処理S21で、検索エリア内に掃除したデータ
が書き込まれていない場合、今度は掃除地図に検索エリ
アを設定した場所と同じ場所に当たるRAM26c上に
作成された障害物地図上に検索エリアを設定し、その設
定した検索エリア内の番地に、障害物のデータである“
1′なる値が書き込まれているか否かを検索する。
S22: In process S21, if the cleaned data is not written in the search area, this time the search area is set on the obstacle map created on the RAM 26c, which is the same location as the location where the search area was set on the cleaning map. Then, the obstacle data “” is displayed at the address within the set search area.
A search is made to see if a value of 1' has been written.

S23:処理521で、検索したエリア内に掃除したと
いうデータがなく、かつ処理S22で障害物のデータが
書き込まれていなければ、その検索エリアに当たる部分
を未掃除エリアとする。
S23: If there is no data indicating that the searched area has been cleaned in step 521, and if no obstacle data has been written in step S22, the portion corresponding to the searched area is set as an uncleaned area.

S24:処理S21で設定した検索エリア内の番地に掃
除したデータありと判断するか、又はS22で、設定し
た検索エリア内に障害物データがあれば、その検索エリ
アを設定した場所は掃除したエリアとする。すなわち、
障害物の領域も掃除した領域とする。
S24: If it is determined that there is cleaned data at the address within the search area set in process S21, or if there is obstacle data within the set search area in S22, the location where the search area was set is the cleaned area. shall be. That is,
The area of the obstruction is also the cleaned area.

以上の処理321〜S24を、第13図に示す方形sk
1mの範囲内で、くまなく検索エリアを移動させて行え
ば、第13図シ4示す様に、検索エリアが未掃除エリア
に入り込む。検索エリアが最初に未掃除エリアに入り込
んだときのこの検索エリアの正方形のエリアをnとする
と、このエリアnの中心点が、第2図で示したように、
自動掃除機が未掃除エリアに移動するための目標地点り
である。
The above processes 321 to S24 are performed in a square sk shown in FIG.
If the search area is moved all over within a 1 meter range, the search area will enter the uncleaned area as shown in Fig. 13C4. If the square area of the search area when the search area first enters the uncleaned area is n, then the center point of this area n is as shown in Figure 2.
This is the target point for the automatic vacuum cleaner to move to the uncleaned area.

次に、このようにして見つけた未掃除エリアの地点りに
自動掃除mlを移動させるための経路を見つけるための
、第10図の経路探索方法を第17図を用いて説明する
Next, the route search method shown in FIG. 10 for finding a route for moving the automatic cleaning ml to the spot in the uncleaned area thus found will be explained using FIG. 17.

第17図に於て、点S (X 3?、 Y st)は第
2図の地点Bに相当する現在自動掃除機lが停止してい
る地点、点T(Xt + Yy)は自動掃除機1がこれ
から移動するべき目標点く第2図の地点りに相当する)
である。
In Fig. 17, point S (X 3?, Y st) is the point where the automatic vacuum cleaner l is currently stopped, which corresponds to point B in Fig. 2, and point T (Xt + Yy) is the point where the automatic vacuum cleaner l is currently stopped. 1 corresponds to the point in Figure 2, which is the target point to which we should move from now on)
It is.

ここで、まず中継点としてX座標が点SのX座標に等し
くY座標が点′rのY座標に等しい点AI(Xsy +
YT )とX座標が点’r 0)X座標に等しくY ’
 JJE標が点SのY座標に等しい点A2(Xt、 Y
st)とを選ぶ、そして、経路5−Al −’r (第
17図に示した斜線の部分)に障害物があるかどうかを
、$MWをもって、RAM26c上に作成されている障
害物地図から検索する。暢Wは、自動掃除機1が、十分
に通過できるだけの値である。すなわち、経路探索時に
は、幅Wのふんだけ、まとめて、障害・物地図上の番地
を検索する。そうすれば、第14図に得られている様な
障害物地図上を検索した場合、現在の自動掃除機1の停
止点Bから未掃除エリアの目標地点りまでの地点Cを経
由した経路を見つける事ができる。
Here, first, as a relay point, a point AI (Xsy +
YT) and X coordinate are equal to point 'r0)X coordinate Y'
Point A2 (Xt, Y
st), and determine whether there is an obstacle on the route 5-Al-'r (the shaded area shown in Figure 17) using $MW from the obstacle map created on the RAM 26c. search for. The width W is a value that allows the automatic vacuum cleaner 1 to sufficiently pass through. That is, when searching for a route, the address on the obstacle/object map is searched for all the pieces of width W at once. Then, when searching on the obstacle map as shown in Fig. 14, the route from the current stopping point B of the automatic vacuum cleaner 1 to the target point in the uncleaned area via point C can be found. can be found.

以上に述べた経路探索により、第2図に示した様な単純
な構成の室内ならば、短時間に経路を算出できる。以下
、上記の経路探索方法を基本として、より多様な障害物
のある室内に対応できる樟に拡張した例を説明する。
By the route search described above, a route can be calculated in a short time in a room with a simple configuration as shown in FIG. Hereinafter, based on the above route search method, an example will be described in which it is extended to a camphor tree that can handle rooms with more diverse obstacles.

第18図は、室内の左端に障害物q−r−s−tが存在
する場合の自動掃除機1の走行経路を示す模式図である
FIG. 18 is a schematic diagram showing the travel route of the automatic cleaner 1 when an obstacle qr-s-t exists at the left end of the room.

同図において、まず、自動掃除機1は、出発地点Fより
出発し、先に第10図で述べた制御方法で制御すると、
第18図の様にジグザグ走行をくり返し、地点Gに至る
。そして、第13図、第14図で説明した未掃除エリア
検索方法で、未掃除エリア中での地点Jを囲む正方形の
エリアを見つけ出す。
In the same figure, first, the automatic vacuum cleaner 1 starts from the starting point F and is controlled by the control method described earlier in FIG.
As shown in Fig. 18, the vehicle repeatedly travels in a zigzag pattern until it reaches point G. Then, using the uncleaned area search method explained in FIGS. 13 and 14, a square area surrounding point J in the uncleaned area is found.

この場合、第17図に示す移動目標点T (Xr、 Y
T)が第18図の地点Jに、自動掃除機lの現在の停止
点S (Xst 、Ysy)が地点Gになる。この室内
の状態では、先に述べた経路探索方法のみでは、障害物
q−r−s−tが経路を阻み、経路を見つけ出す事がで
きない。そこで、経路探索方法を以下の様に拡張する。
In this case, the moving target point T (Xr, Y
T) is the point J in FIG. 18, and the current stopping point S (Xst, Ysy) of the automatic vacuum cleaner l is the point G. In this indoor condition, the route cannot be found using only the route searching method described above because the route is blocked by the obstacles qr-s-t. Therefore, the route search method is expanded as follows.

まず、第17図に示したように、T (Xy 、  Y
T )とX座標が等しい点Pi (X、Y、)とA2(
Xr、Y、1)とX座標が等しい点P2 (X、Ys 
)を設定する。そしてPlとP2のX座標は常に等しく
しておき、このX座標の値をXTから徐々に増加させる
毎に、すなわち第17図の様に右側にずらし。
First, as shown in FIG. 17, T (Xy, Y
Points Pi (X, Y,) and A2 (
Point P2 (X, Ys
). The X coordinates of Pl and P2 are always kept equal, and each time the value of this X coordinate is gradually increased from XT, that is, shifted to the right as shown in FIG.

なから、点P1と点P2で結ばれる経路を、幅Wの範囲
で、RAM26e上に作成された障害物地図を検索し、
もし検索した範囲内に障害物がなければ、その時の点P
1と点P2を経路の中継点とし、経路を5−P2−PI
−Tと決定する。この処理を点P1と点P2のX座標の
値がXsになるまでくり返しても経路が決定できない場
合は、第17図に示す樟に、点PL、P2のX座標の値
をXTより始めて徐々に減少させ、すなわちPIとP2
を互いに左側にずらし、PI−P2で結ばれる幅Wの範
囲で、障害物地図を検索し、そして検索した範囲内に障
害物がなければ、その時のPlとP2を経路の中断点と
し経路を5−P2−PI −Tと決定する。この処理で
、第18図の場合においては、地点G−H−1−Jを結
ぶ経路が算出される。そして、自動掃除機1は、まず、
この経路に沿って未掃除エリアの目標地点Jまで移動し
、それから未掃除エリアをジグザグ走行して地点Kまで
移動したときに、その未掃除エリアの掃除を終了する。
Therefore, search the obstacle map created on the RAM 26e for a route connecting points P1 and P2 within the range of width W, and
If there is no obstacle within the searched range, then point P
1 and point P2 are the relay points of the route, and the route is 5-P2-PI.
-Determine T. If the route cannot be determined even after repeating this process until the X coordinate values of points P1 and P2 become Xs, gradually change the X coordinate values of points PL and P2 from XT to i.e. PI and P2
Shift each other to the left side, search the obstacle map within the range of width W connected by PI-P2, and if there is no obstacle within the searched range, set the current Pl and P2 as the interrupting point of the route and create a route. 5-P2-PI-T is determined. With this process, in the case of FIG. 18, a route connecting points GH-1-J is calculated. Then, the automatic vacuum cleaner 1 firstly
The robot moves along this route to the target point J in the uncleaned area, and then travels in a zigzag pattern through the uncleaned area to the point K, when the cleaning of the uncleaned area is completed.

なお、この場合、自動掃#、機1は停止点Gから目標地
点まで移動しているときも、掃除地図から未掃除の領域
か否かを判定しており、例えば、第14図に示すように
、中継点Cから目標地点りまで移動する間に未掃除エリ
アを通過するときには、同時に掃除も行なう。
In this case, even when the automatic cleaning machine #1 is moving from the stopping point G to the target point, it is determined from the cleaning map whether or not it is an area that has not been cleaned. For example, as shown in FIG. Furthermore, when passing through an area that has not been cleaned while moving from the relay point C to the target point, cleaning is also performed at the same time.

以下、上記した経路探索方法を、第17図と第19図の
流れ図を用いて説明する。
The route searching method described above will be explained below using the flowcharts of FIGS. 17 and 19.

S25:まず移動目標点T (XT 、 Yr )と現
在の停止点S (Xst、 Ys )との間の中継点と
して、Al (Xsr、 Yy )及びA2 (Xr 
、Ygt)を設定する。
S25: First, Al (Xsr, Yy) and A2 (Xr
, Ygt).

S26:そして、5−Al −T間に障害物があるかど
うか、RAM26c上に作成された障害物地図上を検索
する。
S26: Then, the obstacle map created on the RAM 26c is searched to see if there is an obstacle between 5-Al-T.

S21:S26に於て障害物はないと判断されると、5
−AI −Tを経路と決定して経路探索を終了する。
S21: If it is determined that there is no obstacle in S26, 5
-AI -T is determined as the route and the route search ends.

S28:S26に於て障害物があると判断されると、次
に、5−A2−T間に障害物があるがどうが、RA M
26c上に作成された障害物地図上を検索する。
S28: If it is determined that there is an obstacle in S26, next, if there is an obstacle between 5-A2-T, RAM
The obstacle map created on 26c is searched.

S29:S28に於て障害物がないと判断されると、5
−A2−T−t−経路と決定し、経路探索を終了する。
S29: If it is determined that there is no obstacle in S28, 5
-A2-Tt- route is determined, and the route search ends.

330:S28に於て障害物があると判断されると、次
にT−A1間、及びA2−3間に障害物があるかどうか
RA M26c上に作成された障害物地図上を検索する
330: If it is determined in S28 that there is an obstacle, then the obstacle map created on the RAM 26c is searched to see if there is an obstacle between T-A1 and A2-3.

S31:330に於て障害物ありと判断した場合、経路
は見つからないとして経路探索を終了する。
If it is determined in S31:330 that there is an obstacle, the route search is terminated as no route has been found.

332:530に於て障害物はないと判断すると、経路
の中継点として、PR(X、YT)及びP2(X、 Y
st)を設定する。
332: When it is determined that there are no obstacles at 530, PR (X, YT) and P2 (X, Y
st).

S33:332で設定したPlとP2のX座標を、移動
目標点であるT点のX座標Xtとする。
S33: The X coordinates of P1 and P2 set in 332 are set as the X coordinate Xt of point T, which is the movement target point.

S34:点Pi−P2間に、障害物があるかどうか、R
AM26C上の障害物地図上を検索する。
S34: Check whether there is an obstacle between points Pi and P2, R
Search the obstacle map on AM26C.

S35:334に於て、障害物がないと判断して、経路
を5−P2−PI −Tと決定し、経路探索を終了する
At S35:334, it is determined that there are no obstacles, the route is determined to be 5-P2-PI-T, and the route search is ended.

S36:S34に於て、障害物があると判断すると、次
に、点PL、P2の現時点でのX座標にΔX増分したも
のを、点P1とP2の新たなX座標とする。
S36: In S34, if it is determined that there is an obstacle, then the current X coordinates of points PL and P2 are incremented by ΔX to be the new X coordinates of points P1 and P2.

S37:そして、S36に於て設定した点Pi、P2の
X座標が、現在自動掃除機が停止している点5(Xst
 、Yst)のX座標、すなわちX3と比較して、大き
いか等しければ次の処理338へ移り、小さければ、処
理S34へともどって処理をくり返す。
S37: Then, the X coordinates of points Pi and P2 set in S36 are set to point 5 (Xst) where the automatic vacuum cleaner is currently stopped.
.

338:ここで、点P1.P2のX座標を再び移動目標
点T (Xt 、Yt ) のXtとする。
338: Here, point P1. The X coordinate of P2 is again set as Xt of the moving target point T (Xt, Yt).

S39:334と同様の処理を行う。S39: The same process as in 334 is performed.

340:335と同様の処理を行う。340: Performs the same processing as 335.

S41 : S39に於て、障害物があると判断すると
、次に、点PL、P2の現時点でのX座標からΔX減じ
たものを、点Pi、P2の新たなX座標とする。
S41: If it is determined in S39 that there is an obstacle, then the current X coordinates of points PL and P2 minus ΔX are set as new X coordinates of points Pi and P2.

S42:そして、S41に於て設定した点PL、P2の
X座標が、X n+inよりも小さいときは処理S43
へ移り、大きいか等しければ処理S39へと戻って処理
を(り返す、なお、上記のXa+inは、第17図にお
ける左側の壁の位置のX座標の値であるとする。
S42: Then, if the X coordinates of the points PL and P2 set in S41 are smaller than Xn+in, process S43.
If they are larger or equal, the process returns to step S39 and repeats the process. Note that Xa+in above is the value of the X coordinate of the left wall position in FIG.

S43:経路は見つからないとして経路探索を終了する
S43: The route search is terminated as the route is not found.

この実施例においては、経路探索は、S31,343で
打ち切る事にしたが、この後も、上記した原理をもとに
拡張して行けば、より複雑な障害物の置き方になってい
る状態の室内に於ても、走行経路を見い出す事ができる
。しかも、この経路探索においては、X軸または、Y軸
に平行な直線の組み合わせで経路を算出するとともに、
最短経路を見つける事はできないが、そのために検索に
必要な、複雑な座標変換等を行う必要がないために、高
速に演算処理を行い、経路を算出でき実用的である。
In this example, the route search is terminated at S31 and 343, but if the above principle is expanded upon, even more complex obstacles can be placed. It is possible to find the driving route even indoors. Moreover, in this route search, the route is calculated by a combination of straight lines parallel to the X axis or the Y axis, and
Although it is not possible to find the shortest route, it is practical because it does not require complex coordinate transformations, etc., which are necessary for searching, and the route can be calculated at high speed.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、室内の障害物の形
状等を教示する事なく、障害物のある部屋内の掃き残し
なく掃除させる事ができ、人手に顛る事な(自動掃除機
を提供できるし、また、自動掃除機に、掃除した場所を
記憶させる方式であるので、一度掃除した場所を再び掃
除する事なく、効率的であるし、 また、経路探索において、最短距離を見つける事はしな
いが、その反面、経路探索に要する時間も大幅に短縮さ
れ、実用的かつ効率的な自動掃除機の制御方法を提供で
きるし、 また、本制御方式は、掃除機だけでなく、床面を塗装す
る等の場合にも、掃除機部を塗装機構に績み変えるだけ
でそのまま適用できる等上記従来技術の欠点を除いて優
れた機能の自動掃除機の制御方法を提供することができ
る。
As explained above, according to the present invention, a room containing an obstacle can be cleaned without being left unswept without being taught the shape of the obstacle in the room, and there is no need for manual cleaning (automatic cleaning). In addition, since the automatic vacuum cleaner remembers the places it has cleaned, it is efficient because there is no need to clean the same place again, and it is also possible to find the shortest distance when searching for a route. However, on the other hand, the time required for route searching is significantly shortened, and it is possible to provide a practical and efficient control method for automatic vacuum cleaners. It is an object of the present invention to provide a control method for an automatic vacuum cleaner with excellent functionality, which eliminates the drawbacks of the above-mentioned prior art, such as when painting a floor surface, etc., it can be applied as is by simply converting the vacuum cleaner section into a coating mechanism. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による自動掃除機の制御方法の一実施例
を処理手順で示す流れ図、第2図は自動掃除機が障害物
のある室内を移動する走行軌跡を示す模式図、第3図は
本発明に係る自動掃除機の側断面図、第4図は第3図に
おけるA+−At線線断断面図第5図は第3図に示した
自動掃除機のシステムブロック図、第6図は自動掃除機
の位置計測及び障害物計測を説明するための模式図、第
7図は第5図におけるRAMのメモリ配置図、第8図は
このRAM上の地図を記憶するエリアの拡大図、第9図
は掃除地図の作成方法を示す模式図、第10図は第1図
に示した自動掃除機の制御手順をさらに具体的に示す流
れ図、第11図は自動掃除機の直進時における地図検索
の状態を示す模式図、第12図は右Uターン時の地図検
索を示す模式図、第13図は第6図におけるRAM上に
作成された掃除地図を示す模式図、第14図は同じ<R
AM上に作成されてた障害物地図を示す模式図、第15
図は未掃除エリア検索時の検索エリアを示す模式図、第
16図は未掃除エリア検索方法を示す流れ図、第17図
および第18図は夫々経路探索方法を示す模式図、第1
9図は第18図に示した経路探索方法を説明する流れ図
である。 1・・・自動掃除機、2.3・・・車輪、6.7・・・
モータ、8.9・・・減速機、10.11・・・ロータ
リエンコーダ、18.19・・・タコジェネレータ、2
0.21・・・速度制御装置、23・・・真空掃除機本
体、24・・・ジャイロ装置、25・・・障害物検出装
置、26・・・走行制御装置、27・・・蓄電池。 代理人 弁理士  武 顕次部 (外1名)第1図 第3図 第5図 第6図 第7図    88図 第9図 第10図 ・第11図 集12図 箆13図 第14図 箆17図 第旧図
FIG. 1 is a flowchart showing a processing procedure of an embodiment of an automatic vacuum cleaner control method according to the present invention, FIG. 2 is a schematic diagram showing a travel trajectory of an automatic vacuum cleaner moving through a room with obstacles, and FIG. 3 4 is a sectional side view of the automatic vacuum cleaner according to the present invention, FIG. 4 is a sectional view taken along the line A+-At in FIG. 3, FIG. 5 is a system block diagram of the automatic vacuum cleaner shown in FIG. 3, and FIG. is a schematic diagram for explaining position measurement and obstacle measurement of an automatic vacuum cleaner, FIG. 7 is a memory layout diagram of the RAM in FIG. Fig. 9 is a schematic diagram showing a method of creating a cleaning map, Fig. 10 is a flowchart showing more specifically the control procedure of the automatic vacuum cleaner shown in Fig. 1, and Fig. 11 is a map when the automatic vacuum cleaner moves straight. A schematic diagram showing the search state, Fig. 12 is a schematic diagram showing map search during a right U turn, Fig. 13 is a schematic diagram showing the cleaning map created on the RAM in Fig. 6, and Fig. 14 is the same. <R
Schematic diagram showing the obstacle map created on AM, No. 15
FIG. 16 is a schematic diagram showing the search area when searching for an uncleaned area, FIG. 16 is a flowchart showing the method for searching for an uncleaned area, FIG. 17 and FIG.
FIG. 9 is a flowchart illustrating the route searching method shown in FIG. 18. 1... Automatic vacuum cleaner, 2.3... Wheels, 6.7...
Motor, 8.9...Reducer, 10.11...Rotary encoder, 18.19...Tachogenerator, 2
0.21... Speed control device, 23... Vacuum cleaner body, 24... Gyro device, 25... Obstacle detection device, 26... Travel control device, 27... Storage battery. Agent Patent Attorney Kenji Takeshi (1 other person) Figure 1 Figure 3 Figure 5 Figure 6 Figure 7 Figure 88 Figure 9 Figure 10/11 Collection 12 Figure 13 Figure 14 Figure 17 Old figure

Claims (1)

【特許請求の範囲】[Claims] 掃除部、駆動部、障害物検出部、位置検出部、演算制御
部、記憶部および入出力部を備えた自動掃除機を自律走
行させて、障害物のある室内を掃除させるようにした制
御方法において、直進走行させるとともに、前記障害物
検出部の検出データをもとに壁や障害物で所定ピッチを
もって走行方向を転換させて前記自動掃除機をジグザグ
走行させ、かつ前記自動掃除機の走行にともなって前記
位置検出部の検出データと前記障害物検出部の検出デー
タとで掃除した領域を表わす地図と壁や障害物の位置を
表わす地図とを作成し、前記掃除機の走行終了とともに
、これら地図から前記障害物などによって生じた未掃除
領域を検出し、該未掃除領域に前記掃除機を移動させて
ジグザグ走行させることを特徴とする自動掃除機の制御
方法。
A control method in which an automatic vacuum cleaner equipped with a cleaning section, a driving section, an obstacle detection section, a position detection section, an arithmetic control section, a storage section, and an input/output section runs autonomously to clean a room where there is an obstacle. In this step, the automatic vacuum cleaner is caused to travel in a zigzag manner by traveling straight and changing the traveling direction at a predetermined pitch at a wall or obstacle based on the detection data of the obstacle detection unit; At the same time, a map representing the cleaned area and a map representing the positions of walls and obstacles are created using the detection data of the position detection section and the detection data of the obstacle detection section, and when the vacuum cleaner finishes traveling, these maps are created. A method for controlling an automatic vacuum cleaner, characterized in that an uncleaned area caused by the obstacle or the like is detected from a map, and the vacuum cleaner is moved to the uncleaned area and travels in a zigzag pattern.
JP60259895A 1985-11-21 1985-11-21 Control method for automatic cleaner Granted JPS62120510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259895A JPS62120510A (en) 1985-11-21 1985-11-21 Control method for automatic cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259895A JPS62120510A (en) 1985-11-21 1985-11-21 Control method for automatic cleaner

Publications (2)

Publication Number Publication Date
JPS62120510A true JPS62120510A (en) 1987-06-01
JPH0582602B2 JPH0582602B2 (en) 1993-11-19

Family

ID=17340427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259895A Granted JPS62120510A (en) 1985-11-21 1985-11-21 Control method for automatic cleaner

Country Status (1)

Country Link
JP (1) JPS62120510A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187606A (en) * 1988-01-21 1989-07-27 Mitsubishi Heavy Ind Ltd Traveling track calculating method for traveling body
JPH01195515A (en) * 1988-01-29 1989-08-07 Matsushita Electric Ind Co Ltd Self-driving sweeper
JPH07281752A (en) * 1994-04-14 1995-10-27 Minolta Co Ltd Cleaning robot
JP2004227474A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Self-propelled equipment and program therefor
WO2004072752A1 (en) * 2003-02-14 2004-08-26 Dyson Technology Limited An autonomous machine
JP2009500741A (en) * 2005-07-08 2009-01-08 アクティエボラゲット エレクトロラックス Robot cleaning device
CN102018481A (en) * 2009-09-11 2011-04-20 德国福维克控股公司 Method for operating a cleaning robot
CN103271699A (en) * 2013-05-29 2013-09-04 东北师范大学 Smart home cleaning robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9043953B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
CN104887155A (en) * 2015-05-21 2015-09-09 南京创维信息技术研究院有限公司 Intelligent sweeper
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
JP2017213429A (en) * 2017-08-16 2017-12-07 シャープ株式会社 Self-propelled vacuum cleaner
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052443A (en) * 1983-08-30 1985-03-25 Fuji Xerox Co Ltd Machine-glazed-paper sheet holding apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052443A (en) * 1983-08-30 1985-03-25 Fuji Xerox Co Ltd Machine-glazed-paper sheet holding apparatus

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187606A (en) * 1988-01-21 1989-07-27 Mitsubishi Heavy Ind Ltd Traveling track calculating method for traveling body
JPH01195515A (en) * 1988-01-29 1989-08-07 Matsushita Electric Ind Co Ltd Self-driving sweeper
JPH07281752A (en) * 1994-04-14 1995-10-27 Minolta Co Ltd Cleaning robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
JP2004227474A (en) * 2003-01-27 2004-08-12 Matsushita Electric Ind Co Ltd Self-propelled equipment and program therefor
US7873437B2 (en) 2003-02-14 2011-01-18 Dyson Technology Limited Autonomous machine
WO2004072752A1 (en) * 2003-02-14 2004-08-26 Dyson Technology Limited An autonomous machine
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
JP2009500741A (en) * 2005-07-08 2009-01-08 アクティエボラゲット エレクトロラックス Robot cleaning device
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9043953B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US9043952B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US11194342B2 (en) 2006-03-17 2021-12-07 Irobot Corporation Lawn care robot
US10037038B2 (en) 2006-03-17 2018-07-31 Irobot Corporation Lawn care robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
CN102018481A (en) * 2009-09-11 2011-04-20 德国福维克控股公司 Method for operating a cleaning robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
CN103271699A (en) * 2013-05-29 2013-09-04 东北师范大学 Smart home cleaning robot
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
US11452257B2 (en) 2014-10-10 2022-09-27 Irobot Corporation Robotic lawn mowing boundary determination
US10750667B2 (en) 2014-10-10 2020-08-25 Irobot Corporation Robotic lawn mowing boundary determination
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US11231707B2 (en) 2014-12-15 2022-01-25 Irobot Corporation Robot lawnmower mapping
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10159180B2 (en) 2014-12-22 2018-12-25 Irobot Corporation Robotic mowing of separated lawn areas
US10874045B2 (en) 2014-12-22 2020-12-29 Irobot Corporation Robotic mowing of separated lawn areas
US20190141888A1 (en) 2014-12-22 2019-05-16 Irobot Corporation Robotic Mowing of Separated Lawn Areas
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
CN104887155A (en) * 2015-05-21 2015-09-09 南京创维信息技术研究院有限公司 Intelligent sweeper
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10426083B2 (en) 2016-02-02 2019-10-01 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
JP2017213429A (en) * 2017-08-16 2017-12-07 シャープ株式会社 Self-propelled vacuum cleaner
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Also Published As

Publication number Publication date
JPH0582602B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JPS62120510A (en) Control method for automatic cleaner
KR930000081B1 (en) Cleansing method of electric vacuum cleaner
CN108507578B (en) Navigation method of robot
EP0382693B1 (en) Autonomous vehicle for working on a surface and method of controlling same
US5896488A (en) Methods and apparatus for enabling a self-propelled robot to create a map of a work area
CN106805856A (en) The method for controlling clean robot
US7515991B2 (en) Self-propelled cleaning device and method of operation thereof
US6124694A (en) Wide area navigation for a robot scrubber
JPS63241610A (en) Method for controlling running of self-running robot
US20160206170A1 (en) Robot cleaner
CN112137529B (en) Cleaning control method based on dense obstacles
JPS62154008A (en) Travel control method for self-travel robot
KR20080075051A (en) Robot cleaner and control method thereof
JP2006260161A (en) Self-propelled working robot
KR20090061298A (en) Method and apparatus of path planning for a mobile robot
JP2004326692A (en) Autonomous travelling robot
CN112674645B (en) Robot edge cleaning method and device
JPS6093522A (en) Controller of moving robot
JP3237500B2 (en) Autonomous mobile work vehicle
CN113448325A (en) Sweeping robot control method and sweeping robot
JPH09204223A (en) Autonomous mobile working vehicle
JPH01149114A (en) Running control method for free-running robot
JP2791048B2 (en) Control device for self-propelled robot
TWI837713B (en) Self-propelled device, moving method and moving system thereof
JPH0582601B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees