JPS63241610A - Method for controlling running of self-running robot - Google Patents

Method for controlling running of self-running robot

Info

Publication number
JPS63241610A
JPS63241610A JP62074018A JP7401887A JPS63241610A JP S63241610 A JPS63241610 A JP S63241610A JP 62074018 A JP62074018 A JP 62074018A JP 7401887 A JP7401887 A JP 7401887A JP S63241610 A JPS63241610 A JP S63241610A
Authority
JP
Japan
Prior art keywords
self
robot
wheel
wall
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074018A
Other languages
Japanese (ja)
Other versions
JPH0786767B2 (en
Inventor
Hitoshi Ogasawara
均 小笠原
Masao Obata
小畑 征夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62074018A priority Critical patent/JPH0786767B2/en
Publication of JPS63241610A publication Critical patent/JPS63241610A/en
Publication of JPH0786767B2 publication Critical patent/JPH0786767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To make a self-running robot closer to a wall by turning only running direction of wheels by 90 deg. without changing of the direction of the self-running robot and making the robot run sideways along the wall or an obstacle when the self-running robot comes close to the wall and it can not carry out a U-turn. CONSTITUTION:When the self-running robot comes so close to the wall of a room or the obstacle that it can not execute the U-turn, it is made to run sideways along the wall or the obstacle by turning only directions of the wheels 1 and 4 by 90 deg. without changing the direction of the robot. The running distance in running sideways is changed according to the distance from the robot's own position to the wall of the room or the obstacle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自走ロボットに係り、特に部屋の壁ぎわ、あ
るいは障害物体のきわまで自走ロボットを接近させるこ
とに適した自走ロボットの走行制御方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a self-propelled robot, and particularly to a self-propelled robot suitable for approaching the edge of a wall in a room or an obstacle. This invention relates to a travel control method.

〔従来の技術〕[Conventional technology]

部屋の壁ぎわの掃除をする方法として、例えば特開昭5
5−97608号公報に示されるように、進行方向に対
して左右に移動可能な吸引ロプラシを設け、横方向へ1
ピツチ移動できないときは、吸引口ブラシのみ横方向に
必要な間隔だけ移動させる方法である。しかし、この方
法では、吸引口ブラシ装置の追加により制御に時間がか
かることと、自動掃除機の本体の大型化することとによ
り周囲環境への対応ができにくくなる点について配慮さ
れていなかった。
For example, as a method for cleaning the walls of a room,
As shown in Japanese Patent No. 5-97608, a suction lever that can be moved left and right with respect to the traveling direction is provided, and
If it is not possible to move the suction port brush in a lateral direction, the method is to move only the suction port brush by the necessary distance in the horizontal direction. However, this method does not take into account the fact that the addition of the suction port brush device requires time for control, and that the larger body of the automatic vacuum cleaner makes it difficult to respond to the surrounding environment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術は、吸引ロプラシ装置とそれを駆動する装置が
必要である。そのため、直進あるいはUターン走行で、
吸引口ブラシの位置及び駆動のタイミングを考慮したロ
ボットの走行制御と、吸引ロプラシの駆動制御が必要と
なるので制御が複雑になり、制御に時間が長くかかる。
The prior art requires a suction loplash device and a device to drive it. Therefore, when driving straight or U-turn,
Since it is necessary to control the movement of the robot and to control the drive of the suction brush in consideration of the position and drive timing of the suction port brush, the control becomes complicated and takes a long time.

かつロボット本体も大型化する。したがって、部屋の壁
や障害物を避ける走行の対応性が悪くなる問題があった
Moreover, the robot itself will also become larger. Therefore, there has been a problem in that the ability to avoid running around walls and obstacles in the room is poor.

本発明の目的は、従来技術の進行方向に対して横方向に
動く吸引ロプラシを設けないで掃除機構を簡単な構成と
し、壁ぎわや障害物のぎわへ簡単な走行制御方法で正確
に接近でき、壁ぎわや障害物のきわの掃除あるいは塗装
作業などのやり残しをな(すことのできる自走ロボット
の走行制御方法を提供することにある。
An object of the present invention is to simplify the cleaning mechanism without providing a suction lever that moves transversely to the direction of travel as in the prior art, and to enable accurate approach to the edges of walls and obstacles using a simple travel control method. An object of the present invention is to provide a traveling control method for a self-propelled robot that can eliminate unfinished work such as cleaning or painting the edges of walls and obstacles.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、自走ロボットが部屋の壁ぎわに近づき、U
ターンできなくなった場合、自走ロボットの向きを変え
ないで、車輪の走行方向だけを90゜旋回させ、壁や障
害物に向って横に走行させることで達成される。
The above purpose is for the self-propelled robot to approach the wall of the room and
If the self-propelled robot is unable to turn, it can be achieved by turning only the running direction of its wheels through 90 degrees without changing the direction of the self-propelled robot, and causing it to run sideways toward a wall or obstacle.

〔作用〕[Effect]

自走ロボットが部屋の壁あるいは障害物に近づき、Uタ
ーンできなくなった時、ロボットの向きを変えないで、
車輪の向きだけ90°旋回させ、壁や障害物に向って横
走行させる。この横走行の走行距離は、ロボットの自己
位置から部屋の壁あるいは障害物までの距離に応じて変
える。したがって、以上の横走行では、Uターンでのロ
ボットの前後先端部の旋回がないので、自走ロボットを
壁や障害物にUターンの場合より近づけることができる
When the self-propelled robot approaches a wall or obstacle in the room and cannot make a U-turn, do not change the direction of the robot.
Turn the wheels 90 degrees and drive sideways toward a wall or obstacle. The traveling distance of this horizontal movement is changed depending on the distance from the robot's own position to the wall or obstacle of the room. Therefore, in the above-described lateral travel, since there is no turning of the front and rear ends of the robot in a U-turn, the self-propelled robot can come closer to a wall or an obstacle than in the case of a U-turn.

〔実施例〕〔Example〕

以下、本発明の一実施例を、掃除を目的とした自走掃除
ロボットの例で、図面により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, using an example of a self-propelled cleaning robot for the purpose of cleaning.

゛ 3 。゛ 3 .

第3図は、自走掃除ロボットの構成を示す斜視図であり
、1は左車輪、2は左車輪駆動モータ、3は左車輪の横
走行駆動部、4は右車輪、5は右車輪駆動モータ、6は
右車輪の横走行駆動部、7は超音波送受信器、8は回転
円板、9は回転円板8の回転軸、10は回転円板に固定
されたパラボラアンテナ、11は超音波レーダ回転モー
タ、12は超音波レーダ用エンコーダ、13はジャイロ
、14は掃除機、15はごみ吸口、16は掃除機モータ
、17は測定回路部、18は走行制御部、19は制御用
電源、20は駆動用電源、21はロボット本体フレーム
、22はキャスタ、23はロボットボディである。
FIG. 3 is a perspective view showing the configuration of a self-propelled cleaning robot, where 1 is a left wheel, 2 is a left wheel drive motor, 3 is a lateral travel drive section for the left wheel, 4 is a right wheel, and 5 is a right wheel drive. A motor, 6 is a lateral drive unit for the right wheel, 7 is an ultrasonic transmitter/receiver, 8 is a rotating disk, 9 is a rotating shaft of the rotating disk 8, 10 is a parabolic antenna fixed to the rotating disk, 11 is an ultrasonic A sonic radar rotation motor, 12 an encoder for the ultrasonic radar, 13 a gyro, 14 a vacuum cleaner, 15 a dust suction port, 16 a vacuum cleaner motor, 17 a measurement circuit section, 18 a traveling control section, and 19 a control power supply. , 20 is a driving power source, 21 is a robot body frame, 22 is a caster, and 23 is a robot body.

第3図において、ロボット本体フレーム21には、左車
輪1.右車輪4が、また前部中央にキャスタ22が設け
られている。左車輪1の横走行駆動部3及び右車輪4の
横走行駆動部6の詳細図を第4図と第5図に示す。
In FIG. 3, the robot body frame 21 has a left wheel 1. A right wheel 4 and casters 22 are provided at the center of the front. Detailed views of the lateral travel drive section 3 of the left wheel 1 and the lateral travel drive section 6 of the right wheel 4 are shown in FIGS. 4 and 5.

第4図で、lは前記した左車輪、2は左車輪駆動モータ
、4は右車輪、5は右車輪である。24は車輪1及び4
を横走行させる車輪旋回モータ、25・ 4 ・ と26はかさ歯車、27と28はウオーム歯車、29は
ウオーム歯車軸、30は左車輪駆動かさ歯車、31は右
車回転用かさ歯車、32は左車輪旋回軸、33は右車輪
旋回軸、34は左右車輪が900旋回したことを検出す
る旋回スイッチ、35は左右車輪が0°位置に戻ったこ
とを検出する復帰スイッチ、36は車輪旋回の検出カム
である。21はこれらの各部を固定あるいは設置した前
記ロボット本体フレームである。第4図のAA断面が第
5図である。第5図で1は前記左車輪、2は左車輪駆動
モータ、21はロボット本体フレーム、27はウオーム
歯車、29はウオーム軸、30は左車輪回転用かさ歯車
、32は旋回軸、32αは旋回軸の軸心である。36は
前記車輪旋回検出カムであり、旋回軸心32αに固定さ
れている。37は車輪駆動軸、38及び39は車輪駆動
軸37の上下に固定したかさ歯車、40は左車輪1に固
定した歯車、41はウオーム歯車27とかみ合うホイル
歯車、43は旋回軸の軸心32cLを旋回可能に支持す
る軸受で本体フレーム21に固定されている。44は、
車輪1及び車輪駆動軸370回転数を計測する左車輪エ
ンコ−ダ、45は軸37とエンコーダ44の軸を連結す
る連結部である。右車輪4の横走行部6は第5図の36
の検出カムがないだけの同一構成である。
In FIG. 4, l is the aforementioned left wheel, 2 is the left wheel drive motor, 4 is the right wheel, and 5 is the right wheel. 24 are wheels 1 and 4
25, 4, and 26 are bevel gears, 27 and 28 are worm gears, 29 is a worm gear shaft, 30 is a left wheel drive bevel gear, 31 is a right wheel rotation bevel gear, 32 is a 33 is a right wheel rotation axis; 34 is a rotation switch that detects that the left and right wheels have turned 900 degrees; 35 is a return switch that detects that the left and right wheels have returned to the 0° position; 36 is a wheel rotation switch. It is a detection cam. Reference numeral 21 denotes the robot body frame to which these parts are fixed or installed. FIG. 5 is a cross section taken along line AA in FIG. 4. In Fig. 5, 1 is the left wheel, 2 is the left wheel drive motor, 21 is the robot body frame, 27 is a worm gear, 29 is a worm shaft, 30 is a bevel gear for rotating the left wheel, 32 is a rotation axis, and 32α is a rotation This is the center of the shaft. 36 is the wheel rotation detection cam, which is fixed to the rotation axis 32α. 37 is a wheel drive shaft, 38 and 39 are bevel gears fixed above and below the wheel drive shaft 37, 40 is a gear fixed to the left wheel 1, 41 is a foil gear that meshes with the worm gear 27, and 43 is the axis 32cL of the rotation shaft It is fixed to the main body frame 21 with a bearing that rotatably supports the main body frame 21. 44 is
A left wheel encoder 45 measures the number of rotations of the wheel 1 and the wheel drive shaft 370, and 45 is a connecting portion that connects the shaft 37 and the shaft of the encoder 44. The lateral running part 6 of the right wheel 4 is 36 in FIG.
They have the same configuration except that they do not have the detection cam.

第5図で、左車輪1は、歯車40と車輪駆動用かさ歯車
39と車輪駆動軸37と歯車38 、30を介し、左車
輪駆動モータ2と左車輪用エンコーダ44とに連結され
、同様に右車輪4も第5図の構成で第4図の右車輪駆動
モータ5とに連結されている。これにより、左車輪1と
右車輪4とは別々のモータによって駆動され、これらの
車輪の回転数が別々のエンコーダで測定される。
In FIG. 5, the left wheel 1 is connected to a left wheel drive motor 2 and a left wheel encoder 44 via a gear 40, a wheel drive bevel gear 39, a wheel drive shaft 37, and gears 38 and 30. The right wheel 4 is also connected to the right wheel drive motor 5 shown in FIG. 4 in the configuration shown in FIG. Thereby, the left wheel 1 and the right wheel 4 are driven by separate motors, and the rotational speeds of these wheels are measured by separate encoders.

自掃掃除ロボットの壁ぎわへ近づく横走行は、ロボット
本体フレーム21及び後で説明するロボットボディ23
の向き、いわゆる自走掃除ロボットの進行方向を変えな
いで、左車輪1及び右車輪40走向方向を90°旋回さ
せ、横に走行させる。この車輪の90°旋回方法を次に
述べる。
When the self-cleaning robot moves horizontally toward the wall, the robot body frame 21 and the robot body 23 (described later)
The running direction of the left wheel 1 and right wheel 40 is turned by 90 degrees without changing the direction of movement of the self-propelled cleaning robot, so that the robot runs sideways. The method for turning this wheel through 90° will be described below.

この左車輪1及び右車輪40走行方向の90°旋回は、
第4図の車輪旋回モータ24を駆動して行う。
This 90° turn in the running direction of the left wheel 1 and right wheel 40 is as follows:
This is done by driving the wheel turning motor 24 shown in FIG.

車輪旋回モータ24が回転すると、かさ歯車25 、2
6を介してウオーム軸9を回転し、左右のウオーム歯車
27と28同時に回転する。ウオーム歯車270回転に
ともない、第5図のウオーム歯車27とかみ合うホイル
歯車41が回転し、旋回軸32αが回転し、左車輪1の
回転軸BBを形成する旋回軸32が旋回軸32αの軸心
CCを軸に旋回する。この旋回方向は右旋回である。第
5図では、左車輪1の90°旋回駆動部を示しているが
、左車輪4の90°旋回駆動部も第5図と同一構成であ
り、したがって右車輪4は、左車輪のウオーム歯車27
と同時に回転する第4図のウオーム歯車28の回転によ
り軸心CCを軸に旋回する。また左車輪1及び右車輪4
の旋回軸32の軸CCを軸とした90°旋回角度は、第
5図の旋回軸心32αに固定した検出カム36の回転に
よって、第4図の検出カム36に接触している旋回スイ
ッチ34がONL、このON信号を第6図の車輪旋回角
度検出回路52で検出して、その信号データを中央処理
部46に伝達する。中央処理部46では、検出カム36
のON信号を入力すると車輪旋回モータ24の駆動を停
止して、左右車輪の90°旋回を終る。
When the wheel turning motor 24 rotates, the bevel gears 25, 2
6, the worm shaft 9 is rotated, and the left and right worm gears 27 and 28 are rotated simultaneously. As the worm gear 270 rotates, the wheel gear 41 meshing with the worm gear 27 shown in FIG. Turn around CC. This turning direction is a right turn. Although FIG. 5 shows the 90° turning drive section of the left wheel 1, the 90° turning driving section of the left wheel 4 also has the same configuration as that in FIG. 27
The worm gear 28 shown in FIG. 4, which rotates at the same time, rotates about the axis CC. Also, left wheel 1 and right wheel 4
The 90° turning angle about the axis CC of the turning shaft 32 is determined by the rotation of the detection cam 36 fixed to the turning axis 32α shown in FIG. is ONL, this ON signal is detected by the wheel turning angle detection circuit 52 shown in FIG. 6, and the signal data is transmitted to the central processing section 46. In the central processing unit 46, the detection cam 36
When the ON signal is input, the driving of the wheel turning motor 24 is stopped, and the left and right wheels complete the 90° turn.

・ 7 ・ ロボット本体フレーム21には、超音波レーダが搭載さ
れている。第1図の超音波レーダ回転モータ11と回転
円板8の回転軸9が連結され、11の回転によって回転
円板8及びパラボラアンテナ10は回転軸9を中心に回
転する。パラボラアンテナ10と超音波送受信器7では
、破線で示す指向性の鋭い超音波の送受信を行う。回転
軸9には超音波レーダエンコーダ12が連結されており
、12によってパラボラアンテナからの超音波の発射方
向が検出される。超音波送受信器7から発射された超音
波は一部屋の壁や障害物などに当たると反射され、反射
超音波のうちのパラボラアンテナ10に帰ってきたもの
が超音波送受信器で受信され、超音波が発射されてから
受信されるまでの時間と超音波レーダエンコーダ12に
よって検出される超音波の発射方向とから、壁や障害物
の位置が測定される。
7. The robot body frame 21 is equipped with an ultrasonic radar. The ultrasonic radar rotation motor 11 shown in FIG. 1 and the rotating shaft 9 of the rotating disk 8 are connected, and the rotation of the rotating disk 11 causes the rotating disk 8 and the parabolic antenna 10 to rotate around the rotating shaft 9. The parabolic antenna 10 and the ultrasonic transceiver 7 transmit and receive ultrasonic waves with sharp directivity shown by broken lines. An ultrasonic radar encoder 12 is connected to the rotating shaft 9, and the ultrasonic radar encoder 12 detects the direction in which ultrasonic waves are emitted from the parabolic antenna. The ultrasonic waves emitted from the ultrasonic transmitter/receiver 7 are reflected when they hit the walls or obstacles in a room, and the reflected ultrasonic waves that return to the parabolic antenna 10 are received by the ultrasonic transmitter/receiver and are converted into ultrasonic waves. The position of the wall or obstacle is measured from the time from when the ultrasonic wave is emitted until it is received and the emission direction of the ultrasonic wave detected by the ultrasonic radar encoder 12.

さらに、ロボット本体フレーム21には、第1図の自走
掃除ロボットの進行方向の角度変化を計測するためのジ
ャイ013.掃除機14.測定回路部17走行制御部1
8のための制御用電源19.駆動用電源・ 8 ・ 20などが搭載されており、超音波レーダの超音波送受
信器72回転円板8.パラボラアンテナ10以外がロボ
ットボディ23で覆われている。掃除機14には、掃除
機モータ16とロボット本体フレーム21の幅にほぼ等
しい幅のごみ吸口15が設けられ、自走掃除ロボットの
走行とともに、ロボット本体フレーム21の幅の塵芥を
吸収する。
Further, the robot body frame 21 is provided with a jig 013 for measuring angular changes in the traveling direction of the self-propelled cleaning robot shown in FIG. Vacuum cleaner 14. Measurement circuit section 17 Travel control section 1
Control power supply for 8 19. It is equipped with a driving power source 8, 20, etc., and an ultrasonic transmitter/receiver 72 of the ultrasonic radar. The robot body 23 covers everything other than the parabolic antenna 10. The vacuum cleaner 14 is provided with a dust suction port 15 having a width approximately equal to the width of the vacuum cleaner motor 16 and the robot body frame 21, and absorbs dust of the width of the robot body frame 21 as the self-propelled cleaning robot moves.

第6図は、第3図における走行制御系の全体を示すシス
テムブロック図であり、46は中央処理部(CPU)、
47はメモリ、48は超音波レーダ検出回路、49はレ
ーダエンコーダ測定回路、50はジャイロ測定回路、5
1は車輪エンコーダ測定回路、52は車輪の90°旋回
角度検出回路であり、他の部分は第3図、第4図、第5
図と同一符号をつけている。
FIG. 6 is a system block diagram showing the entire travel control system in FIG. 3, and 46 is a central processing unit (CPU);
47 is a memory, 48 is an ultrasonic radar detection circuit, 49 is a radar encoder measurement circuit, 50 is a gyro measurement circuit, 5
1 is a wheel encoder measurement circuit, 52 is a wheel 90° turning angle detection circuit, and other parts are shown in FIGS. 3, 4, and 5.
The same symbols as in the figure are given.

第3図の測定回路部17は、第6図の超音波送受信器7
の出力信号を検出する超音波レーダ検出回路48と、超
音波レーダエンコーダ12からのデータを測定するレー
ダエンコーダ測定回路49と、ジャイロ13からのデー
タを測定するジャイロ測定回路50と、左車輪エンコー
ダ44および右車輪エンコーダ44αのデータを測定す
る車輪エンコーダ測定回路51と、9♂旋回スイッチ3
4及び復帰スイッチ35の信号を検出する車輪旋回角度
検出回路とからなる。
The measurement circuit section 17 in FIG. 3 is the ultrasonic transmitter/receiver 7 in FIG.
a radar encoder measurement circuit 49 that measures data from the ultrasonic radar encoder 12, a gyro measurement circuit 50 that measures data from the gyro 13, and a left wheel encoder 44. and a wheel encoder measurement circuit 51 that measures data of the right wheel encoder 44α, and a 9♂ turning switch 3.
4 and a wheel turning angle detection circuit that detects the signal from the return switch 35.

一方、走行制御部18は、前記中央処理部46とメモリ
47とからなる。中央処理部46は、超音波レーダ検出
回路48.レーダエンコーダ測定回路49.ジャイロ測
定回路50.車輪エンコーダ測定回路51及び車輪旋回
角度検出回路52からのデータを周期的に取り込んで自
走掃除ロボットの自己位置と部屋の壁や障害物の位置を
計算し、この結果をメモリ47に記憶する。この結果に
応じて左右車輪駆動モータ2,5と、車輪旋回モータ2
4と、掃除機モータ16及び超音波レーダ回転モータ1
1などの制御信号を形成する。
On the other hand, the travel control section 18 includes the central processing section 46 and a memory 47. The central processing unit 46 includes an ultrasonic radar detection circuit 48. Radar encoder measurement circuit 49. Gyro measurement circuit 50. Data from the wheel encoder measurement circuit 51 and the wheel rotation angle detection circuit 52 are periodically taken in to calculate the self-position of the self-propelled cleaning robot and the positions of walls and obstacles in the room, and the results are stored in the memory 47. Depending on this result, the left and right wheel drive motors 2 and 5 and the wheel rotation motor 2
4, vacuum cleaner motor 16 and ultrasonic radar rotation motor 1
A control signal such as 1 is formed.

次に以上の自走掃除ロボットの制御方法を示す。Next, a method of controlling the above self-propelled cleaning robot will be described.

この実施例の走行制御は、第7図に示すように、基本的
には直進とUターンとを繰り返して走行させ、部屋の壁
や障害物にロボットが接近した時に壁や障害物のきわへ
横方向に移動させるものである。
As shown in Fig. 7, the running control of this embodiment basically runs the robot by repeating straight ahead and U-turn. This is to move it laterally.

第1図と第2図は、本発明による自走ロボットの制御方
法の実施例を示すフローチャートである。
1 and 2 are flowcharts showing an embodiment of a method for controlling a self-propelled robot according to the present invention.

第1図において、自走掃除ロボットの動作開始時には、
中央処理部46は、メモリ47の内容をクリアし、掃除
機モータ16を起動させて掃除を開始させて、次のステ
ップの自走掃除ロボットをUターンさせるための制御フ
ラグ(以下Uターンフラグという)のリセットと、ロボ
ットを壁や障害物に向って横に走行(以下横走行という
)させるための制御フラグ(以下横走行フラグという)
のリセットをする。
In Figure 1, when the self-propelled cleaning robot starts operating,
The central processing unit 46 clears the contents of the memory 47, starts the vacuum cleaner motor 16 to start cleaning, and sets a control flag (hereinafter referred to as a U-turn flag) for causing the self-propelled cleaning robot to make a U-turn in the next step. ) and a control flag (hereinafter referred to as the lateral movement flag) that allows the robot to move sideways toward walls and obstacles (hereinafter referred to as lateral movement).
Reset.

次のステップでは、室内での自走掃除ロボットの自己位
置が検出される。この自己位置は、一定時間間隔おきに
、左車輪エンコーダ44と右車輪エンコーダ44α及び
ジャイロ13の出力信号をもとに測定される。左車輪エ
ンコーダ44から左車輪10回転速度を表すデータ(パ
ルス数)が出力され、車輪エンコーダ測定回路51でこ
のデータから左車輪1の走行距離が測定される。同様に
、右車輪エンコーダ44αから右車輪4の回転速度を表
すデー・ 1ト り(パルス数)が出力され、このデータから車輪エンコ
ーダ測定回路51で右車輪4の走行距離が測定される。
In the next step, the self-position of the self-propelled cleaning robot in the room is detected. This self-position is measured at regular time intervals based on the output signals of the left wheel encoder 44, the right wheel encoder 44α, and the gyro 13. The left wheel encoder 44 outputs data (pulse number) representing the left wheel 10 rotation speed, and the wheel encoder measurement circuit 51 measures the travel distance of the left wheel 1 from this data. Similarly, the right wheel encoder 44α outputs data (number of pulses) representing the rotational speed of the right wheel 4, and the wheel encoder measurement circuit 51 measures the travel distance of the right wheel 4 from this data.

またジャイロ13からからは、一定時間間隔おきに、自
走掃除ロボットの進行方向の角度変化量が測定される。
The gyro 13 also measures the amount of angular change in the direction of movement of the self-propelled cleaning robot at regular time intervals.

この左右車輪の走行距離と進行方向の角度変化量が中央
処理部46に取り込まれ、自己位置座標が計算される。
The travel distance of the left and right wheels and the amount of angular change in the direction of travel are taken into the central processing unit 46, and the self-position coordinates are calculated.

第7図の53は、以上で検出した自己位置座標の軌跡を
示したもので、自己位置データはX−Y座標として得ら
れる。
Reference numeral 53 in FIG. 7 shows the locus of the self-position coordinates detected above, and the self-position data is obtained as X-Y coordinates.

このX−Y座標は、自走掃除ロボットが作業を行うため
に部屋の床面に置かれたときに決まり、その置かれた位
置を原点0とし、そのときのロボットの向いている方向
をy軸、これに直角方向をX軸とする。ロボットの進行
方向のX−Y座標上の角度が、ジャイロ13から測定さ
れる角度変化量の累積で計算される。そして一定時間間
隔ごとに、自走掃除ロボットの自己位置座標が、前記左
右車輪の平均走行距離と、上記進行方向のX−Y座標上
の角度の三角関数との、積により次々に計算される。
This X-Y coordinate is determined when the self-propelled cleaning robot is placed on the floor of a room to perform work, and the position where it is placed is the origin 0, and the direction the robot is facing at that time is y. The direction perpendicular to this axis is the X axis. An angle on the X-Y coordinates in the direction of movement of the robot is calculated by accumulating the amount of change in angle measured by the gyro 13. Then, at regular time intervals, the self-position coordinates of the self-propelled cleaning robot are calculated one after another by the product of the average travel distance of the left and right wheels and the trigonometric function of the angle on the X-Y coordinates in the traveling direction. .

・ 12・ 次のステップでは、壁や障害物の位置が検出される。壁
や障害物の位置の測定は、第3図、第6図の超音波レー
ダのデータを用いて行われる。第3図の超音波送受器7
及びパラボラアンテナ10は、ロボット上部で回転しな
がら、超音波の発射と受信を行っている。したがってパ
ラボラアンテナ10が壁あるいは障害物の超音波発射方
向に垂直な面に向いたとき、超音波送受信器7で発射さ
れた超音波はこの垂直面で反射されて、再びパラボラア
ンテナ10及び超音波送受信器7で受信される。そこで
、超音波が超音波送受信器7から発射されてから壁や障
害物の垂直面で反射され、再び超音波送受信器7で受信
される往復時間と超音波の速度との積により、自走ロボ
ットの自己位置から壁あるいは障害物までの距離が計測
される。また壁あるいは障害物の方向は、超音波レーダ
エンコーダエ2で、パラボラアンテナ10からの超音波
の発射及び受波方向の測定により計測される。この壁あ
るいは障害物の位置座標は、第6図のメモリ47に記憶
され、その−例を第7図に示す。第7図は、長方形ノ部
屋の中で、ロボットが部屋の左下隅から走行を開始して
、直進とUターンを繰り返して走行している間に検出し
た部屋の壁の位置を示したもので、54は左の壁、55
は上の壁、56は右の壁、57は手前の壁のデータであ
る。
・ 12. In the next step, the positions of walls and obstacles are detected. The positions of walls and obstacles are measured using the ultrasonic radar data shown in FIGS. 3 and 6. Ultrasonic transceiver 7 in Figure 3
The parabolic antenna 10 emits and receives ultrasonic waves while rotating above the robot. Therefore, when the parabolic antenna 10 faces a wall or an obstacle perpendicular to the ultrasonic emission direction, the ultrasonic waves emitted by the ultrasonic transmitter/receiver 7 are reflected by this vertical surface, and the parabolic antenna 10 and the ultrasonic waves It is received by the transceiver 7. Therefore, after the ultrasonic wave is emitted from the ultrasonic transmitter/receiver 7, it is reflected by the vertical surface of a wall or obstacle, and is received again by the ultrasonic transmitter/receiver 7. The distance from the robot's self-position to a wall or obstacle is measured. Further, the direction of the wall or obstacle is measured by the ultrasonic radar encoder 2 by measuring the direction in which ultrasonic waves are emitted from the parabolic antenna 10 and received. The position coordinates of this wall or obstacle are stored in the memory 47 of FIG. 6, an example of which is shown in FIG. Figure 7 shows the positions of the walls of the rectangular room detected while the robot starts running from the lower left corner of the room and repeatedly moves straight and makes U-turns. , 54 is the left wall, 55
is the data of the upper wall, 56 is the right wall, and 57 is the data of the front wall.

次のステップでは、以下で得られた自走掃除ロボットと
壁もしくは障害物の位置座標をメモリ47に記憶し、壁
や障害物の位置関係を表す情景地図を作成し、そこに自
走掃除ロボットの走行経路を画く。その1例が第7図で
ある。
In the next step, the positional coordinates of the self-propelled cleaning robot and the wall or obstacle obtained below are stored in the memory 47, a scene map representing the positional relationship of the wall or obstacle is created, and the self-propelled cleaning robot Draw a driving route. An example is shown in FIG.

次のステップでは、自走掃除ロボットの進行方向に直進
走行を阻げる壁もしくは障害物があるか否かを判定する
。先に説明したように、自走掃除ロボットは直進とUタ
ーンとを繰り返しながら走行するが、中央処理部46で
は、進行方向の壁もしくは障害物との間隔を第7図の情
景地図とロボットの走行経路をもとに常時監視しており
、この間隔がロボットボディ23の前先端寸法近くにな
ったとき、壁もしくは障害物が有ると判定する。前方に
壁もしくは障害物がなければ、ロボットを直進、15・ 右車輪モータを同時に回転させ、第5図の歯車30゜歯
車38.車輪駆動軸37.歯車39.歯車40の順に動
力を伝達して、左車輪1及び右車輪4とを駆動すること
によって行われる。そして前方に壁もしくは障害物が有
ると判定されない限り、直進走行の結合子Bにより処理
は、前記ロボットの位置検出。
In the next step, it is determined whether there is a wall or obstacle in the direction of movement of the self-propelled cleaning robot that can prevent it from moving straight. As explained above, the self-propelled cleaning robot travels while repeatedly going straight and making U-turns, but the central processing unit 46 calculates the distance between the robot and the wall or obstacle in the direction of travel based on the scene map shown in FIG. The running route is constantly monitored, and when this interval becomes close to the front end dimension of the robot body 23, it is determined that a wall or obstacle is present. If there is no wall or obstacle in front of you, move the robot straight ahead, rotate the 15. right wheel motor at the same time, and turn the gear 30° gear 38. in Figure 5. Wheel drive shaft 37. Gear 39. This is done by transmitting power to the gear 40 in this order to drive the left wheel 1 and the right wheel 4. Unless it is determined that there is a wall or an obstacle in front of the robot, the process is to detect the position of the robot using the straight-running connector B.

障害物の位置検出1位置データの情景地図へのメモリ、
前方障害物布るかの判断及び直進走行指令の動作が繰り
返えされ、自走掃除ロボットを直進走行させる。この直
進走行中、ロボットの位置座標と壁もしくは障害物の位
置座標が検出され、それぞれの位置座標が順次メモリ4
7に記憶され、メモリ47では第7図に示す情景地図が
次第に詳しくなり、そこに自走掃除ロボットの走行経路
も画かれる。
Obstacle position detection 1. Memory of position data to scene map;
The operation of determining whether there is an obstacle ahead and issuing a command to run straight is repeated, causing the self-propelled cleaning robot to run straight. During this straight running, the robot's position coordinates and the position coordinates of the wall or obstacle are detected, and each position coordinate is sequentially stored in the memory 4.
7, and in the memory 47, the scene map shown in FIG. 7 gradually becomes more detailed, and the travel route of the self-propelled cleaning robot is also drawn there.

直進走行中に、前方に壁もしくは障害物が有ると判定す
ると、次のステップで自走掃除ロボットを停止させ、U
ターンあるいは横走行であることを示すフラグ(旋回中
フラグという)をセットす・16・ す。
If it determines that there is a wall or obstacle in front of it while traveling straight, the next step is to stop the self-propelled cleaning robot and
Set a flag (referred to as a turning flag) to indicate that the vehicle is turning or traveling sideways.

次のステップでは、Uターン方向及び横走行方向の反転
を行う。先に説明したように、自走掃除ロボットは、壁
や障害物に近づ(までは直進走行とUターンとを繰り返
して走行させ、壁や障害物にロボットが接近した時に、
壁や障害物のきわへ横方向に走行させるが、第7図では
、軌跡53で示すように、最初のUターン方向は右方向
であるが、次のUターンは左方向に行われる。つまりU
ターンする毎にその方向は右と左に交互に変わり、これ
によって自走掃除ロボットはy軸方向に往復走行しつつ
X軸方向に進むことになる。ロボットが壁に接近して横
走行をさせる時点第7図の57では、横走行の方向をど
ちらにするか決定する必要があり、この横走行の方向は
、前のUターンでのUターン方向の逆の方向を指定する
。すなわち第7図の57の横走行の方向は、前の58で
のUターンが左Uターンであるので、その逆の右方向に
指定する。
In the next step, a U-turn and a reversal in the lateral travel direction are performed. As explained earlier, a self-propelled cleaning robot repeatedly runs straight and makes U-turns until it approaches a wall or obstacle, and when the robot approaches a wall or obstacle,
Although the vehicle is caused to run laterally to the edge of a wall or obstacle, the first U-turn direction is to the right, as shown by a trajectory 53 in FIG. 7, but the next U-turn is to the left. In other words, U
Each time it turns, its direction alternates between right and left, and as a result, the self-propelled cleaning robot travels in the X-axis direction while reciprocating in the Y-axis direction. At the point 57 in Figure 7 when the robot approaches a wall and moves sideways, it is necessary to decide which direction to move sideways, and the direction of this sideways movement is the same as the U-turn direction of the previous U-turn. Specify the opposite direction. That is, since the previous U-turn at 58 is a left U-turn, the direction of lateral travel at 57 in FIG. 7 is specified to be the opposite direction to the right.

前のUターンが右Uターンであれば、横走行の方向は左
に指定する。
If the previous U-turn is a right U-turn, the direction of lateral travel is specified to the left.

次のステップでは、Uターン可能かを判定する。In the next step, it is determined whether a U-turn is possible.

ここで自走掃除ロボットのUターンの方法を第8図で説
明する。第8図は右Uターンの例で、1αはUターン前
の左車輪、1hはUターン後の左車輪、4αは右車輪、
23αはUターン前のロボットボディ、23hはUター
ン後のロボットボディ、61αは自走掃除ロボット自己
位置としている左右車輪の中央点のUターン前の位置、
61hはUターン後の自己位置、62αと62Aはロボ
ットボディの左前先端部、63αと63hはロボットボ
ディの左後先端部である。
Here, the method of U-turn of the self-propelled cleaning robot will be explained with reference to FIG. Figure 8 is an example of a right U-turn, where 1α is the left wheel before the U-turn, 1h is the left wheel after the U-turn, 4α is the right wheel,
23α is the robot body before the U-turn, 23h is the robot body after the U-turn, 61α is the position of the center point of the left and right wheels, which is the self-position of the self-propelled cleaning robot, before the U-turn.
61h is the self position after the U-turn, 62α and 62A are the left front tip of the robot body, and 63α and 63h are the left rear tip of the robot body.

右Uターンは、右車輪4αを停止させて、左車輪1αを
前進方向に駆動し、ロボットボディ23αを右車輪4α
を中心に旋回させる。このUターンを行うことにより、
掃除機14のごみ吸口15の幅はロボットボディ23α
、23bの幅にほぼ等しいから、Uターン前後の掃除範
囲はEhだけオーバラップする。このUターンは、ロボ
ットボディ23α、23bの先端から車輪軸までの距離
と、右車輪4a)k中心にしたロボットボディの前先端
部62α、62b及び後先端部63α、63hの回転範
囲で決まる領域a1 hI C1dl内に壁や障害物が
ない時に可能である。Uターン可能であれば、Uターン
走行を指令するUターンフラグをセットし、処理をBに
戻す。Uターン中は、第1図のロボット位置座標の検出
、障害物の位置検出2位置データの情景地図へのメモリ
、次の旋回中かの判断yes 、旋回走行終りかの判断
NO1結合子Bへ戻る動作を繰り返す。Uターンが終れ
ば、上記旋回走行終りかの判断はyesとなり、つづい
て旋回中フラグがリセットされ、前記直進走行の動作に
移り、第8図の矢印65の方向に再び直進走行させる。
To make a right U-turn, the right wheel 4α is stopped, the left wheel 1α is driven in the forward direction, and the robot body 23α is turned to the right wheel 4α.
Rotate around the center. By making this U-turn,
The width of the dust suction port 15 of the vacuum cleaner 14 is the robot body 23α.
, 23b, the cleaning ranges before and after the U-turn overlap by Eh. This U-turn is an area determined by the distance from the tip of the robot body 23α, 23b to the wheel axis and the rotation range of the front tip 62α, 62b and rear tip 63α, 63h of the robot body around the right wheel 4a)k. a1 hI Possible when there are no walls or obstacles within C1dl. If a U-turn is possible, a U-turn flag is set to command a U-turn, and the process returns to B. During a U-turn, the robot position coordinates shown in Fig. 1 are detected, the position of the obstacle is detected, 2 the position data is stored in the scene map, the judgment is made as to whether the next turn is being made, yes, the judgment is made as to whether the turning has ended, and the judgment is made to the NO1 connector B. Repeat the return action. When the U-turn is completed, the determination as to whether the turning has ended becomes YES, and then the turning flag is reset, and the operation shifts to the straight-ahead travel, and the vehicle is again driven straight in the direction of arrow 65 in FIG.

以上のUターンの場合、壁64のきわに幅Eαの掃除残
りが生じる。
In the case of the above U-turn, a cleaning residue having a width Eα is left on the edge of the wall 64.

前ステップのUターン可能かの判断で、壁もしくは障害
物が第8図の前記領域(Zl bI C1dlに有り、
Uターンできない場合、次のステップの壁や障害物に向
って横走行の動作に移る。ここで横走行の動作を説明す
る。第9図は、右側に横走行する例であり、ICは横走
行前の左車輪、1d、は横走行させるために車輪のみ9
0°右旋回させた後の左車輪、1eは壁69に向って横
走行後の左車輪、1fは壁に接近した後車輪のみ逆に9
0°左旋回させて車輪の走行方向を横走行前と同じロボ
ットの進行方向に戻した後の左車輪、4Cは横走行前の
右車輪、4dは横走行させるために車輪のみ90°右旋
回させた後の右車輪、4eは壁69に向って横走行後の
右車輪、4fは壁に接近した後車輪のみ逆に900左旋
回させて走行方向を横走行前と同じ方向に戻した後の右
車輪、23Cは横走行前のロボットボディ、23dは横
走行で壁69に接近した後のロボットボディ、67Cと
67dは第5図の左車輪の旋回軸32αの軸心CCの横
走行前と壁接近後の位置、68Cと68dは右車輪の旋
回軸の軸心CCの横走行前と壁接近後の位置、660は
この自走掃除ロボットの自己位置と考えている位置で、
上記左車輪の旋回軸心67Cと右車輪の旋回軸心68C
の中央点である。この66Cはまた第1図の超音波レー
ダのパラボラアンテナ10の回転軸9の回転軸心と一致
させて、自己位置座標と壁もしくは障害物の検知位置と
を関連させている。66d。
In the previous step, it was determined whether a U-turn was possible, and if the wall or obstacle was located in the area shown in Figure 8 (Zl bI C1dl),
If you cannot make a U-turn, move to the next step, moving sideways toward the wall or obstacle. Here, the operation of lateral travel will be explained. Figure 9 shows an example of traveling sideways to the right; IC is the left wheel before traveling horizontally, and 1d is only the wheel 9 for horizontal traveling.
1e is the left wheel after turning 0 degrees to the right, 1e is the left wheel after traveling sideways toward the wall 69, 1f is the rear wheel approaching the wall, and 9 is the left wheel.
The left wheel after turning 0 degrees to the left and returning the running direction of the wheel to the same direction of movement of the robot as before the lateral movement, 4C is the right wheel before lateral movement, 4d is the wheel only turning 90 degrees to the right to make it lateral movement. The right wheel after turning, 4e is the right wheel after traveling sideways toward wall 69, and 4f is the rear wheel approaching the wall, only the rear wheel was turned 900 degrees to the left and the running direction was returned to the same direction as before traveling sideways. The rear right wheel, 23C is the robot body before traversing, 23d is the robot body after approaching the wall 69 while traversing sideways, 67C and 67d are lateral traveling on the axis CC of the left wheel rotation axis 32α in FIG. 68C and 68d are the positions before and after approaching the wall, 68C and 68d are the positions before lateral movement and after approaching the wall, and 660 is the position considered to be the self-position of this self-propelled cleaning robot.
The above-mentioned left wheel turning axis center 67C and right wheel turning axis center 68C
is the center point of This 66C is also made to coincide with the rotation axis of the rotation axis 9 of the parabolic antenna 10 of the ultrasonic radar shown in FIG. 1, so that the self-position coordinates and the detected position of the wall or obstacle are related. 66d.

は同様に壁接近後の左右車輪の旋回軸心67dと68d
の中央点である。69は部屋の壁である。横走行の・1
9・ 動作は、まず左車輪1cと右車輪4cを、ロボットボデ
ィ230の向きを変えないで、1dと4dまで軸心67
c;68Cを中心にそれぞれ90°右旋回させる。左右
車輪の9d旋回方法は、前に説明したように、第4図の
車輪旋回モータ24を駆動し、第5図の旋回軸32を旋
回させて行い、旋回角度900の検出は検出カム36と
旋回スイッチ34で検出する。
Similarly, the turning axes 67d and 68d of the left and right wheels after approaching the wall are
is the center point of 69 is the wall of the room. Sideways running・1
9. To operate, first move the left wheel 1c and right wheel 4c to the axis 67 to 1d and 4d without changing the direction of the robot body 230.
c; Rotate 90 degrees to the right around 68C. The 9d turning method of the left and right wheels is carried out by driving the wheel turning motor 24 shown in FIG. 4 and turning the turning shaft 32 shown in FIG. It is detected by the rotation switch 34.

次にロボットの自己位置の点66cから壁69までの距
離りを第7図の情景地図の右側の壁56のデータから計
算する。その壁までの距離りに応じて、第9図の左車輪
1dと右車輪4dを1eと4tまで、距離lたけ壁69
に向って横に走行させる。この横走行によりロボットボ
ディ23dを壁69にLcまで接近させる。次に左車輪
1tと右車輪4eを1fと4fまで、前記90°右旋回
とは逆に、90°左旋回させて、左右車輪の走行方向を
、横走行前の状態に戻す。つづいて左車輪1fと41は
、ロボットボディ23dが1691c?iうように後退
させる。その後退走行は、第7図の59から60に示す
ように後方に壁58もしくは障害物が検知されるまで行
われる。
Next, the distance from the robot's self-position point 66c to the wall 69 is calculated from the data of the wall 56 on the right side of the scene map in FIG. Depending on the distance to the wall, the left wheel 1d and right wheel 4d in FIG.
Make it run sideways towards . This horizontal movement causes the robot body 23d to approach the wall 69 up to Lc. Next, the left wheel 1t and the right wheel 4e are turned 90° to the left to 1f and 4f, contrary to the above-mentioned 90° right turn, and the running direction of the left and right wheels is returned to the state before traversing. Next, the robot body 23d of the left wheels 1f and 41 is 1691c? I move it backwards. The backward traveling continues until a wall 58 or an obstacle is detected behind, as shown from 59 to 60 in FIG.

・20・ 以上が横走行の動作であるが、横走行に入る前に上記の
横走行の走行距離lを決定しなければならない。そこで
第1図のフローチャートに戻るが、前ステップのUター
ン可能かの判断でUターンできないと判定された場合、
次のステップで横走行可能かの判断と横走行距離の決定
を行う。この横走行距離lの演算方法を第2図に示し、
第2図は第1図の横走行距離の決定という処理のサブル
ーチンである。第2図で、L及びlは長さを表し、Lは
第7図の57、第9図の660で示す自走掃除ロボット
の自己位置点から部屋の壁までの距離を、Lcは第8図
のUターン可能な壁までの距離の最小距離、Ll)は第
8図のロボットボディ23の幅から前に説明した掃除の
オーバラップ幅Ehを差し引いた長さ、l、cは第9図
の横走行させた後のロボットボディ23dと壁とのすき
ま幅、lは横走行させるべき走行距離をそれぞれ示す。
・20・ The above is the operation of lateral travel, but before starting lateral travel, the above-mentioned travel distance l of lateral travel must be determined. Returning to the flowchart in Figure 1, if it is determined that a U-turn is not possible in the previous step,
In the next step, it is determined whether lateral travel is possible and the lateral travel distance is determined. The calculation method for this lateral travel distance l is shown in Fig. 2.
FIG. 2 shows a subroutine of the process of determining the lateral travel distance shown in FIG. In FIG. 2, L and l represent lengths, L is the distance from the self-position point of the self-propelled cleaning robot to the wall of the room shown at 57 in FIG. 7 and 660 in FIG. The minimum distance to the wall that allows U-turn in the figure, Ll) is the length obtained by subtracting the cleaning overlap width Eh explained earlier from the width of the robot body 23 in Figure 8, and l and c are the lengths in Figure 9. The width of the gap between the robot body 23d and the wall after the robot body 23d has traveled sideways, and l indicates the travel distance to be traveled laterally.

第2図において、横走行の走行距離!は、自走掃除ロボ
ットの自己位置から壁までの距離りに応じて、LがLh
<L≦Lαの範囲の場合は、ロボットボディ23の幅か
ら掃除のオーバラップ幅Ehを引いた長3Lbに決定さ
れる。また壁までの距離りが、LC<L≦L、6の範囲
の場合は、走行距離lは、壁までの距離りから横走行後
のロボットボディと壁とのすきま幅Lcを引いた長さL
−Lcに決定される。
In Figure 2, the distance traveled when traveling sideways! is Lh depending on the distance from the self-propelled cleaning robot's self-position to the wall.
In the range of <L≦Lα, the length is determined to be 3Lb, which is the width of the robot body 23 minus the cleaning overlap width Eh. If the distance to the wall is in the range LC<L≦L, 6, the travel distance l is the distance to the wall minus the gap Lc between the robot body and the wall after sideways travel. L
-Lc is determined.

さらに壁までの距離LfJ″−L<Lcの場合、横走行
はできないと判断して次の走行距離lを/=Oにする。
Furthermore, if the distance to the wall LfJ''-L<Lc, it is determined that sideways travel is not possible, and the next travel distance l is set to /=0.

横走行可能ならば、次に横走行を指令するフラグ(横走
行フラグという)をセットし、結合子Bに戻る。
If lateral travel is possible, then a flag (referred to as a lateral travel flag) for instructing lateral travel is set, and the process returns to connector B.

横走行中は、第1図のロボット位置座標の検出。During horizontal travel, the robot position coordinates shown in Figure 1 are detected.

障害物の位置検出1位置データの情景地図へのメモリ、
次の旋回中フラグ有るかの判断ye、?、旋回走行旋回
走行列断NO1結合子Bへ戻るの動作を繰り返す。
Obstacle position detection 1. Memory of position data to scene map;
Judging whether there is a flag during the next turn, ye? Repeat the operations of turning, running, turning, running, breaking the train, and returning to NO1 connector B.

横走行は、第7図に示すメモリ内の情景地図では57か
ら59まで壁56に向って横に走行し、つづいて壁56
に治って59から60まで後退走行する。
In the scene map in the memory shown in FIG.
He recovered and drove backwards from 59 to 60.

横走行の終ると第1図の旋回走行路りかの判断がygy
となり、次の旋回中フラグをリセットして結合子Bに戻
る。
At the end of sideways travel, the judgment of the turning route shown in Figure 1 is ygy.
Then, the next turning flag is reset and the process returns to connector B.

横走行が終り、第7図の60の点に達すると、もはやU
ターンや後退ができな(なり、かつ前方はすでに59か
ら60の走行で掃除がすんでいるので直進走行の必要も
ない。したがって第1図の処理は、前方に障害物が有る
かの判断がyes (第7図の走行経路53 、57 
、59 、60は障害物の1つと見なす)、Uターン可
能かはNO2横走行可能かはNoと進み、次のステップ
で、掃除路りかを判定する。
When the lateral travel ends and you reach point 60 in Figure 7, it is no longer U.
It is not possible to turn or go backwards (and since the area in front has already been cleaned by running from 59 to 60, there is no need to drive straight. Therefore, in the process shown in Figure 1, the judgment as to whether there is an obstacle in front is YES). (Traveling routes 53 and 57 in Figure 7
, 59 and 60 are regarded as one of the obstacles), whether a U-turn is possible or whether NO2 sideways travel is possible is determined as No, and in the next step it is determined whether the road is being cleaned.

この判定は、第6図のメモリ47に形成された第7図の
例で示す情景地図と自走掃除ロボットが走行した経路と
から未掃除エリアな探すことによって行われる。第7図
の場合には、掃除が終ったものと判定されるが、室内に
障害物があったり部屋が四角形でない場合などに、未掃
除エリアが存在する場合がある。未掃除エリアが見つか
ると、自走掃除ロボットをその未掃除エリアに走行させ
、つづいて処理を結合子Aに戻し、未掃除エリアに対し
て上記の直進、Uターン、横走行等の動作が行われる。
This determination is made by searching for uncleaned areas from the scene map shown in the example of FIG. 7, which is formed in the memory 47 of FIG. 6, and the route traveled by the self-propelled cleaning robot. In the case of FIG. 7, it is determined that cleaning has been completed, but there may be uncleaned areas if there are obstacles in the room or if the room is not rectangular. When an uncleaned area is found, the self-propelled cleaning robot runs to the uncleaned area, then returns the process to connector A, and performs the above-mentioned operations such as going straight, U-turn, and sideways toward the uncleaned area. be exposed.

、23゜ 以上のように、この実施例では、自走掃除ロボットを壁
ぎわや障害物のきわ(第9図のLC)まで簡単かつ正確
に接近させることができ、壁や障害物のきわの掃除のや
り残しをなくすことができる。
, 23 degrees or more, in this embodiment, the self-propelled cleaning robot can easily and accurately approach the edge of a wall or obstacle (LC in Figure 9). You can eliminate unfinished cleaning.

また実施例では、横走行で左右車輪の旋回と回転という
簡単な駆動制御だけですみ、従来のような吸引口ブラシ
の操作制御や吸引口を出したことによるロボットの外形
形状の変化を考慮した走行制御をしなくてもよく、走行
方法の判断や決定に要する時間を短縮でき、かつ吸引ロ
プラシの駆動装置が不要であるのでロボットボディも小
形化できる。したがって、超音波レーダで得られるまわ
りの壁や障害物の位置データ及び情景地図データの変化
にすばやく対応できることになる。
In addition, in the example, only simple drive control such as turning and rotating the left and right wheels while traveling sideways is required, and the conventional operation control of the suction port brush and changes in the external shape of the robot due to the suction port being exposed are taken into consideration. There is no need for travel control, the time required to judge and decide on the travel method can be shortened, and the robot body can also be made smaller because a drive device for the suction rod is not required. Therefore, it is possible to quickly respond to changes in the position data of surrounding walls and obstacles and the scene map data obtained by the ultrasonic radar.

なお、第1図、第2図、第7図〜第9図では、壁につい
て説明したが、障害物であっても同様である。また、上
記実施例では、自走ロボットとして掃除機を搭載したも
のとしたが、塗装を行うなどの他の作業を行うものであ
ってもよいことは明らかである。
Note that although walls have been described in FIGS. 1, 2, and 7 to 9, the same applies to obstacles. Furthermore, in the above embodiment, the self-propelled robot is equipped with a vacuum cleaner, but it is clear that the self-propelled robot may also perform other tasks such as painting.

、24・ 〔発明の効果〕 以上説明したように、本発明によれば、自走ロボットを
壁ぎわや障害物のきわまで簡単でかつ正確に接近させる
ことができる効果がある。
, 24. [Effects of the Invention] As explained above, according to the present invention, there is an effect that the self-propelled robot can easily and accurately approach the edge of a wall or an obstacle.

また自走ロボットに載置される掃除機及び塗装装置など
の作業機器を制御する必要がなく、車輪のみ走行制御だ
けでよいので制御の簡略化ができ、かつ作業機器の機構
部や駆動部の簡略化され自走ロボットの小形化も図れる
。これら制御の簡略化と作業機器の簡略化及び自走ロボ
ットの小形化とにより、自走ロボットの走行方法の判断
や決定を迅速に行うことができ、部屋の壁や障害物に対
応して自走ロボットの動作変化を迅速に行え、作業時間
を大幅に短縮できる効果がある。
In addition, there is no need to control work equipment such as vacuum cleaners and painting equipment mounted on the self-propelled robot, and only the wheels need to be controlled, simplifying control. This simplification allows the self-propelled robot to be made smaller. By simplifying these controls, simplifying work equipment, and downsizing the self-propelled robot, it is possible to quickly judge and determine the method of travel of the self-propelled robot, and it is possible to quickly make judgments and decisions about the way the self-propelled robot moves, and to respond to walls and obstacles in the room. This has the effect of making it possible to quickly change the motion of a running robot and significantly shorten working time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明による自走ロボットの走行制御
方法の一実施例を示すフローチャート、第3図は自走ロ
ボットの一具体例を示す構成図、第4図と第5図は本発
明の車輪駆動装置の一実施例を示す構成図、第6図は第
3図、第4図、第5図に示した自走ロボットにおける走
行制御系全体を示すシステムブロック図、第7図は自走
ロボットの制御装置で認識される情景地図デ〜りを示す
説明図、第8図は自走ロボットのUターン方法を示す説
明図、第9図は本発明の自走ロボットの走行方法を示す
説明図である。 1.1α〜1f・・・左車輪、 2・・・左車輪モータ
、3.6・・・横走行駆動部、4,4α〜4f・・・右
車輪、5・・・右車輪モータ、  7・・・超音波送受
信器、10・・・パラボラアンテナ、 12・・・超音波レーダエンコーダ、 13・・・ジャイロ、    14・・・掃除機、15
・・・ごみ吸口、    17・・・測定回路部、18
・・・走行制御部、 21・・・ロボット本体フレーム、 24・・・車輪旋回モータ、27 、28・・・ウオー
ム歯車、29・・・ウオーム軸、   32・・・車輪
旋回軸、324・・・旋回軸心、   34・・・旋回
スイッチ、35・・・復帰スイッチ、 36・・・車輪旋回角度の検出カム、 37・・・車輪駆動軸、 30 、38 、39 、40・・・かさ歯車、44 
、44α・・・車輪エンコーダ、46・・・中央処理部
、 52・・−車輪旋回角度検出回路。
1 and 2 are flowcharts showing an embodiment of the self-propelled robot travel control method according to the present invention, FIG. 3 is a configuration diagram showing a specific example of the self-propelled robot, and FIGS. 4 and 5 are FIG. 6 is a block diagram showing an embodiment of the wheel drive device of the present invention, and FIG. 6 is a system block diagram showing the entire travel control system of the self-propelled robot shown in FIGS. 3, 4, and 5. FIG. is an explanatory diagram showing the scene map data recognized by the control device of the self-propelled robot, Fig. 8 is an explanatory diagram showing the U-turn method of the self-propelled robot, and Fig. 9 is an explanatory diagram showing the traveling method of the self-propelled robot of the present invention. FIG. 1.1α~1f...Left wheel, 2...Left wheel motor, 3.6...Transverse travel drive section, 4,4α~4f...Right wheel, 5...Right wheel motor, 7 ...Ultrasonic transceiver, 10... Parabolic antenna, 12... Ultrasonic radar encoder, 13... Gyro, 14... Vacuum cleaner, 15
...Garbage suction port, 17...Measuring circuit section, 18
...Travel control unit, 21...Robot body frame, 24...Wheel rotation motor, 27, 28...Worm gear, 29...Worm shaft, 32...Wheel rotation axis, 324...・Turning axis center, 34... Turning switch, 35... Return switch, 36... Wheel turning angle detection cam, 37... Wheel drive shaft, 30, 38, 39, 40... Bevel gear , 44
, 44α...Wheel encoder, 46...Central processing unit, 52...-Wheel turning angle detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、自走ロボット本体の向きを変化させないで車輪を旋
回させる車輪旋回駆動装置と、この車輪旋回角度を測定
する旋回角度測定装置と、車輪の走行距離測定装置と、
走行方向を測定する方向測定装置と、超音波によって物
体までの距離および方向を測定する超音波物体検知装置
と、前記走行距離測定装置と方向測定装置とから得られ
る自己位置座標と超音波物体検知装置から得られる物体
の位置座標とを記憶する記憶装置と、この記憶装置のデ
ータをもとに前記車輪旋回駆動装置を制御する制御装置
とを備えた自走ロボットにおいて、自走ロボットが部屋
の壁あるいは障害物などの物体に近づいた場合に、自走
ロボット本体の向きを変化させないで、前記車輪旋回駆
動装置を前記旋回角度測定装置での測定角度をもとに9
0°旋回させて車輪の走行方向を自走ロボット本体の向
きに対して直角方向に向け、この車輪を、前記記憶装置
に記憶されている自走ロボットの自己位置座標データと
障害物などの物体の位置座標データをもとに、自己位置
から物体までの距離に応じた距離だけ走行させ、自走ロ
ボット本体を部屋の壁や障害物などの物体に向って横方
向に接近させることを特徴とした自走ロボットの走行制
御方法。
1. A wheel turning drive device that turns the wheels without changing the direction of the self-propelled robot body, a turning angle measuring device that measures the wheel turning angle, and a wheel travel distance measuring device;
A direction measuring device that measures the traveling direction, an ultrasonic object detecting device that measures the distance and direction to an object using ultrasonic waves, and self-position coordinates and ultrasonic object detection obtained from the traveling distance measuring device and the direction measuring device. A self-propelled robot is equipped with a storage device that stores the position coordinates of an object obtained from the device, and a control device that controls the wheel rotation drive device based on the data stored in the storage device. When approaching an object such as a wall or an obstacle, without changing the direction of the self-propelled robot body, the wheel rotation drive device is rotated to 9 degrees based on the angle measured by the rotation angle measuring device.
The wheels are rotated by 0 degrees so that the running direction of the wheels is perpendicular to the direction of the self-propelled robot body, and the wheels are rotated by the self-position coordinate data of the self-propelled robot stored in the storage device and objects such as obstacles. The feature is that the self-propelled robot moves a distance corresponding to the distance from its own position to the object based on the position coordinate data of the object, and approaches the object laterally, such as a wall or an obstacle in the room. A method for controlling the movement of a self-propelled robot.
JP62074018A 1987-03-30 1987-03-30 Travel control method for self-propelled robot Expired - Lifetime JPH0786767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074018A JPH0786767B2 (en) 1987-03-30 1987-03-30 Travel control method for self-propelled robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074018A JPH0786767B2 (en) 1987-03-30 1987-03-30 Travel control method for self-propelled robot

Publications (2)

Publication Number Publication Date
JPS63241610A true JPS63241610A (en) 1988-10-06
JPH0786767B2 JPH0786767B2 (en) 1995-09-20

Family

ID=13534950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074018A Expired - Lifetime JPH0786767B2 (en) 1987-03-30 1987-03-30 Travel control method for self-propelled robot

Country Status (1)

Country Link
JP (1) JPH0786767B2 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377520A (en) * 1989-08-18 1991-04-03 Matsushita Electric Ind Co Ltd Self-propelled cleaner
JP2009500741A (en) * 2005-07-08 2009-01-08 アクティエボラゲット エレクトロラックス Robot cleaning device
US7548697B2 (en) 2006-05-12 2009-06-16 Edison Hudson Method and device for controlling a remote vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8108092B2 (en) 2006-07-14 2012-01-31 Irobot Corporation Autonomous behaviors for a remote vehicle
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8326469B2 (en) 2006-07-14 2012-12-04 Irobot Corporation Autonomous behaviors for a remote vehicle
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8868237B2 (en) 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US9516806B2 (en) 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US9538702B2 (en) 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
US9554508B2 (en) 2014-03-31 2017-01-31 Irobot Corporation Autonomous mobile robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658419B2 (en) * 1989-08-18 1997-09-30 松下電器産業株式会社 Self-propelled vacuum cleaner
JPH0377520A (en) * 1989-08-18 1991-04-03 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9167946B2 (en) 2001-01-24 2015-10-27 Irobot Corporation Autonomous floor cleaning robot
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
JP2009500741A (en) * 2005-07-08 2009-01-08 アクティエボラゲット エレクトロラックス Robot cleaning device
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9043952B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US9043953B2 (en) 2006-03-17 2015-06-02 Irobot Corporation Lawn care robot
US8954193B2 (en) 2006-03-17 2015-02-10 Irobot Corporation Lawn care robot
US10037038B2 (en) 2006-03-17 2018-07-31 Irobot Corporation Lawn care robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US11194342B2 (en) 2006-03-17 2021-12-07 Irobot Corporation Lawn care robot
US8868237B2 (en) 2006-03-17 2014-10-21 Irobot Corporation Robot confinement
US8019223B2 (en) 2006-05-12 2011-09-13 Irobot Corporation Method and device for controlling a remote vehicle
US7548697B2 (en) 2006-05-12 2009-06-16 Edison Hudson Method and device for controlling a remote vehicle
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8326469B2 (en) 2006-07-14 2012-12-04 Irobot Corporation Autonomous behaviors for a remote vehicle
US8108092B2 (en) 2006-07-14 2012-01-31 Irobot Corporation Autonomous behaviors for a remote vehicle
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US9554508B2 (en) 2014-03-31 2017-01-31 Irobot Corporation Autonomous mobile robot
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10750667B2 (en) 2014-10-10 2020-08-25 Irobot Corporation Robotic lawn mowing boundary determination
US11452257B2 (en) 2014-10-10 2022-09-27 Irobot Corporation Robotic lawn mowing boundary determination
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
US9510505B2 (en) 2014-10-10 2016-12-06 Irobot Corporation Autonomous robot localization
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
US9516806B2 (en) 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US11231707B2 (en) 2014-12-15 2022-01-25 Irobot Corporation Robot lawnmower mapping
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10874045B2 (en) 2014-12-22 2020-12-29 Irobot Corporation Robotic mowing of separated lawn areas
US10159180B2 (en) 2014-12-22 2018-12-25 Irobot Corporation Robotic mowing of separated lawn areas
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
US11589503B2 (en) 2014-12-22 2023-02-28 Irobot Corporation Robotic mowing of separated lawn areas
US20190141888A1 (en) 2014-12-22 2019-05-16 Irobot Corporation Robotic Mowing of Separated Lawn Areas
US9538702B2 (en) 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10426083B2 (en) 2016-02-02 2019-10-01 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Also Published As

Publication number Publication date
JPH0786767B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
JPS63241610A (en) Method for controlling running of self-running robot
JPS62154008A (en) Travel control method for self-travel robot
KR0168189B1 (en) Control method and apparatus for recognition of robot environment
JPH0582602B2 (en)
JP4097667B2 (en) Robot cleaner and control method thereof
KR0156722B1 (en) The control method and device for self-recognition of robot
JP2000056006A (en) Position recognizing device for mobile
JP2006026028A (en) Cleaner
JPH0546239A (en) Autonomously travelling robot
JP2009037378A (en) Autonomous travelling device and program
JPH11295412A (en) Apparatus for recognizing position of mobile
JPH0546246A (en) Cleaning robot and its travelling method
CN109965786B (en) Cleaning robot and obstacle avoidance method thereof
JPH07322977A (en) Self-propelled vacuum cleaner
JPH0884696A (en) Cleaning robot control method and device therefor
JPS6093522A (en) Controller of moving robot
JPH01149114A (en) Running control method for free-running robot
JPS63150044A (en) Automatic cleaning system
JP3237500B2 (en) Autonomous mobile work vehicle
JP2669071B2 (en) Self-propelled vacuum cleaner
JP2517240B2 (en) Unmanned vehicle
JPS633315A (en) Drive controller for traveling object
JP3528200B2 (en) Self-propelled vacuum cleaner
JP2791048B2 (en) Control device for self-propelled robot
JPH0582601B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 12