JP4165965B2 - Autonomous work vehicle - Google Patents

Autonomous work vehicle Download PDF

Info

Publication number
JP4165965B2
JP4165965B2 JP19580399A JP19580399A JP4165965B2 JP 4165965 B2 JP4165965 B2 JP 4165965B2 JP 19580399 A JP19580399 A JP 19580399A JP 19580399 A JP19580399 A JP 19580399A JP 4165965 B2 JP4165965 B2 JP 4165965B2
Authority
JP
Japan
Prior art keywords
distance
wall
sensor
traveling
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19580399A
Other languages
Japanese (ja)
Other versions
JP2001022443A (en
Inventor
宣和 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figla Co Ltd
Original Assignee
Figla Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figla Co Ltd filed Critical Figla Co Ltd
Priority to JP19580399A priority Critical patent/JP4165965B2/en
Publication of JP2001022443A publication Critical patent/JP2001022443A/en
Application granted granted Critical
Publication of JP4165965B2 publication Critical patent/JP4165965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は自律走行作業車に関し、特に清掃やワックス塗布等, 作業領域を隈なく走行し作業を行う自律走行作業車に関するものである。
【0002】
【従来の技術】
この種の自律走行作業車として種々のものがすでに開発されている。例えば、特開平8 −286747号公報に記載されているものは、距離センサで側方の壁までの距離を周期的に測定し、壁に平行に直進する自律走行車で、壁との距離の変化が所定値以上になった場合に、超音波距離センサの距離デ一夕に基づく制御を一時中止し、車輪回転数測定値に基づく直進走行制御に切り替えて走行し、壁までの距離の変化が所定値以内になったら、再度超音波距離センサの距離データに基づく制御を開始するようにして、壁の凹凸によらず、平らな壁に平行な直進走行を行うものである。
【0003】
この装置における距離センサとして超音波距離センサを使用した場合、超音波距離センサは指向性が比較的広いため、段差を鋭角的に検出できず、曲面的に測定してしまうという特性がある。そのため、四角い柱などで実際の距離が急変している場合でも、距離デ一夕は緩やかな変化となり、所定値に達せず、誤って方向修正をしてしまうという問題点が有り、この傾向は壁から離れるほど影響は大きくなる。
【0004】
また、特開平 8−234838号公報に記載されているものは、超音波距離センサの指向性が広いため、段差を鋭角的に検出できず、曲面的に測定してしまうということから生じる壁倣いの誤誘導の解決策として、壁までの距離が基準値よりも大きい場合は、走行距離が所定の値に達するまでの間、複数回距離測定を行い、そのうち最小の距離データを採用して壁倣い走行制御にフィードバックし、壁までの距離が基準値よりも小さい場合は、すぐに壁倣い走行制御にフイードバックするように構成されている。
【0005】
しかしながら、この装置は、複数回の距離デ一夕測定値から最小のものを選ぶため、走行制御へフイ―ドバックする周期が長くなり、その間、倣い走行制御は行われず、蛇行やカーブが生じてしまう。また、同じサイズの柱が一定間隔で並んでいるような場合には距離の最小値を用いることも有効であるが、壁においてある棚などはサイズが一定でなく、このような場合には有効ではない。
【0006】
さらに、特開平 8−84696 号公報に記載されているものは、壁までの距離を測定する距離センサと、方位を検出する方位センサを有し、壁際を壁に沿って走行する場合には、距離センサにより検出された壁までの距離が基準距離を維持するように走行させ、壁までの距離が基準距離に対して所定値以上に大きい場合は、方位センサにより検出された方位に基づいて直進走行するように制御方法を切り替えるようになっている。
【0007】
この装置は、壁から所定距離以上はなれて走行する場合には、方位センサ( ジャイロセンサ) の測定値のみに基づいて直進走行するため、走行距離が長くなるにしたがって、直進走行開始時の壁との微小な角度誤差に起因する壁との距離の誤差が大きくなり、またジャイロセンサのドリフトによる方位誤差も無視できなくなるため、清掃作業やワックス塗布作業などの場合に清掃残りや塗布残りが発生する原因となるという問題点がある。
【0008】
【本発明が解決しようとする課題】
この種の自律走行作業車は、床面における作業漏れ箇所が生じないように、直進性を保持して走行する必要があるが、従来のものはいずれも十分な直進性が保証できるものではなかった。そこで本発明は、上記従来公知の装置の問題点を改良し、壁に凹凸が有る場合でも、超音波距離センサの指向性の広さに起因する壁の凹凸部分での距離測定値誤差による誤誘導を防止し、かつ、走行方向修正制御の周期を短くすることによって、直進性を大幅に改善すること、及び、壁の凹凸のサイズが一定でなく、いろいろなサイズの凹凸が含まれる場合においても、壁倣い走行の直進性を改善することを課題としている。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は次のような構成を採用した。すなわち、本発明に係る自律走行作業車は、側方の障害物までの距離を測定する距離センサと、走行方向を検出するジャイロセンサとを有し、平らな壁との距離を一定に保ちながら直進する機能を有する自律走行作業車において、走行中に前記距離センサで測定された側方の壁までの距離の変化から得られた前記壁と走行方向とのなす角度の単位時間当りの変化量である角速度As(i)と、 前記ジャイロセンサから得られた角速度A(i)との差が所定範囲以内であれば、距離センサで測定した距離に基づき壁に倣って走行するように方向制御を行う第1の走行方向制御方式と、前記差が所定範囲外の場合は、前記第1の走行方向制御を行わず、ジャイロセンサの測定値に基づく直進制御を行う第2の走行方向制御方式とを選択採用する制御装置を設けている。
【0010】
【発明の実施の形態】
図1は、本発明の実施の形態を例示するもので、この自律走行作業車1は、モータによって駆動される駆動車輪2a,2bと、変向自在な従動車輪3a,3bとを備えた車体5に、駆動装置、センサ、制御装置等が搭載されている。車体5の後部には図示を省略した作業装置、例えば洗浄液吐出用のノズル、清掃用ブラシ、汚水を吸引する吸引装置等を有する作業部Wが装着されている。作業部Wは、床面上を移動しつつ清掃、ワックス掛けその他の作業を行うもので、従来種々のものが公知となっている。したがって、作業部Wの詳細な構造と作用については省略する。
【0011】
左右の駆動車輪2a,2bにはそれぞれに対応させて駆動モータ4a,4bが設けられており、該モータにはそれぞれモータドライバ6a,6bが設けられている。モータドライバ6a,6bは、制御装置(CPU)10からの制御信号に応じて駆動モータを駆動するようになっている。駆動モータ4a,4b、作業部W、制御装置10等には図示を省略した電池(バッテリ)から電力が供給される。左右の駆動車輪にはそれぞれエンコーダ7a,7bが設けられ、これらエンコーダによって回転量が検出される。なお、左右の駆動車輪2a,2bは互いに独立に回転制御される構成で、左右の車輪の回転速度の差によってカーブ制御が行われる。
【0012】
上記駆動車輪用の駆動モータ4a,4bはパルス制御(PWM制御)の直流モータであり、通電パルスのデューテイ比を増減させることによって回転量が制御される。各モータの回転量は、それぞれのエンコーダ7a,7bによって検出され、制御装置10に入力される。制御装置10は、エンコーダ7a,7b、超音波距離センサS1、ジャイロセンサS2等から入力されるデータに基づいて以下に示す演算を行うとともに、制御用の指令信号をモータドライバ6a,6bに出力する。
【0013】
次に、走行制御について説明する。本発明では、2種類の走行制御が選択的に採用される。制御用のセンサーとしては、超音波距離センサS1とジャイロセンサS2とロータリーエンコーダ7a,7bが設けられている。これら超音波距離センサS1もジャイロセンサS2も公知の市販品を利用できる。例えば、上記ジャイロセンサとしては、コリオリ効果を利用して物体が回転する時の角速度を検出する振動ジャイロセンサ等が使用される。上記両センサのうち、超音波距離センサS1は所定周期で繰り返し側方の壁までの距離を測定し、ジャイロセンサS2は所定の周期で走行車の角速度値を測定する。走行距離はエンコーダ7a,7bで車輪回転数を検出し、これを積算することによって求められる。
【0014】
走行制御方法について具体的に説明すれば以下のとおりである。
まず、変数を下記の如く設定する。
i : 測定回数
Do : 壁との基準距離
D(i) : 壁までの距離測定値。
As(i) : 壁までの距離測定値から計算した角速度。
A(i) : 角速度測定値。
V : 走行速度
T : 測定周期
L : 測定周期間に進む走行距離。
θ(i) : 壁と走行方向とのなす角度。
M(i) : 走行方向の修正量
C1、C2、C3 : 定数
【0015】
ここで、
L = V ・T ・・・(1)
θ(i)=sin -1((D(i) -D(i-1))/ L) ・・・(2)
As(i)= (θ(i)-θ(i-1))/T ・・・(3)
である。
【0016】
走行方向の修正量は、下記の(4) 式を基本とし、
M(i)= C1(D(i)-Do)+C2・θ(i)+C3・A(i) ・・・(4)
As(i) とA(i)との比較結果に応じて、下記▲1▼▲2▼の二通りの計算方式のどちらかを選択する。
【0017】
▲1▼ As(i) とA(i)の差の絶対値が所定値N(作業条件等に応じてあらかじめ設定しておけばよいが、通常はほぼ0とする)を超える場合は、
C1=C2=O
C3≠O
とした下記の(5) 式で、距離測定値に基づく走行方向修正量をゼロにして、角速度測定値のみに基づいて方向修正を行う。
M(i) = C3 ・A(i) ・・・(5)
【0018】
▲2▼ As(i) とA(i)の差の絶対値が所定値以内である場合は、
C1≠O
C2≠0
C3≠O
とし、(4) 式に基づいて、距離測定値による走行方向修正と角速度測定値による走行方向修正を行うか、または、
C1≠O
C2≠O
C3= 0
として、距離測定値のみに基づいて走行方向修正を行っても良い。
【0019】
また、▲2▼の状態において、壁からどれだけ離れて平行に走行するかを決定する基準距離Doは、まず、走行開始時に、走行開始持の距離測定値 D(0) を基準距離としてD0に代入し、
Do = D(0)
それ以後は、▲1▼の状態から▲2▼の状態へ移行した直後の距離測定値D(i)を基準距離として、Doに代入する。
Do = D(i)
【0020】
図2は、壁には凹凸が無く、スリッフや床の凹凸、左右の車輪径の差などの影響により、走行方向が徐々に傾いている場合の例である。この場合は、(1)(2)(3) 式で計算した角速度値As(i) の値と、ジャイロセンサの測定値A(i)とがほぼ等しくなるので、前記▲2▼の場合に相当し、距離測定値に基づいた壁倣い制御が行われる。
【0021】
図3は、やはり壁には凹凸が無い場合で、直進はしているが走行開始時の向きが壁と平行でなかったために、徐々に壁から離れている場合の例である。この場合、(1)(2)(3) 式で計算した角速度値As(i) の値と、ジャイロセンサによる角速度測定値A(i)は、どちらもほばゼロとなり、ほば一致するので、やはり前記▲2▼の場合に相当し、距離測定値に基づいた壁倣い制御が行われ、壁との平行度および壁までの距離が維持されるように制御が行われる。なお、上記特開平8 −84696 号記載の装置では、壁から所定距離以上離れると壁倣い制御が行われず、ジャイロセンサのみでの制御となるので、壁との距離を一定値に保つことができなくなる恐れがある。
【0022】
図4は、壁に凹凸がある場合の例である。この場合、D(i)を測定するまでは壁倣い制御を実行し壁と平行に直進しているが、壁に段差があるため、D(i)以降で、距離測定値に変化を生じている。この時、壁は図示する通り急峻に変化しているが、超音波距離センサの指向性が比較的広いために、測定値は図の破線で示す曲線となり、図のD(i)の如く緩やかに変化する場合が生じる。この変化をそのまま壁倣い走行制御にフイードバックすると、直進性を損ねる結果となる。この時、ジャイロセンサによる角速度測定値A(i)は、ほばゼロで有るにもかかわらず、(1)(2)(3) 式で計算した角速度値As(i) はゼロとならないため、前記▲1▼の場合に相当し、距離測定値に基づく壁倣い制御を中止し、ジャイロセンサのみでの制御を行う制御に切り替えることにより、直進性の低下を防止する。
【0023】
そして、D(i+3)を測定した後、再び、As(i+3) とA(i+3)の差が所定範囲内に納まるので、その時点の距離測定値D(i+3)を壁との基準距離として採用し、以後、壁との距離が基準距離を維持するように壁倣い走行制御を行う。
【0024】
図5に方向修正量演算サブルーチンフログラムのフローチャートを例示する。
【0025】
一定周期のタイマー割り込みにより、方向修正量演算サブルーチンを実行する。まず、#1、#2で壁までの距離D(i)と角速度A(i)を測定し、次に#3で(1)(2)(3) 式を用いて角速度計算値As(i) を計算し、#4で前記▲1▼の場合であるか▲2▼の場合であるかを判別する。▲1▼の場合であれば#8に進み、(5) 式を用いて走行方向修正量M(i)を計算して#9へ進む。#4の判別結果が▲2▼の場合には、#5へ進み、前回、(4) 式によって方向修正量を計算したか否かを判別し、肯定であればそのまま#7へ進み、否定であれば、今回の距離測定値D(i)を基準距離Doに代入して#7へ進む。#7では(4) 式に基づいて壁との距離をDoに維持するための方向修正量を計算して#9へ進む。#9では、計算されたM(i)に基づき、左右の車輪の回転速度を変更し、サブルーチンを終了する。
【0026】
この自律走行作業車1は上記の制御により壁に沿って直進するが、作業範囲の端部に到達した時はUターンして再度逆向きに直進走行させる(必要な場合は後進も可能である)。このようにして作業対象の床面全体に対し漏れなく作業を行うのである。上記の実施形態では、左右2輪独立制御の走行車に付いて例示したが、駆動輪とは別に操舵輪を持つ形式の走行車でも良い。その場合はフローチャートの#9において、左右の車輪の回転速度を修正する変わりに、操舵輪の角度を修正すれば良い。
【0027】
【発明の効果】
以上に説明したように、本発明に係る自律走行作業車は、超音波距離センサとジャイロセンサを併せ持ち、壁との距離が一定になるように平らな壁に平行に直進走行する機能を有するものであって、超音波距離センサから得られる壁までの距離の時系列データと、ジャイロセンサから得られる角速度データや角度データとを比較することにより、壁までの距離の変化が壁の凹凸に起因するものか、方位誤差に起因するものかを判断して直進性を維持することにより、壁の段差等による直進性の低下を改善することが可能となった。
【図面の簡単な説明】
【図1】自律走行作業車の構成を説明する平面図である。
【図2】走行制御方法の説明図である。
【図3】走行制御方法の説明図である。
【図4】走行制御方法の説明図である。
【図5】方向修正量演算サブルーチンプログラムを表すフローチャートである。
【符号の説明】
1 自律走行作業車
2(a,b) 駆動車輪
3(a,b) 従動車輪
4(a,b) 駆動モータ
5 車体
6(a,b) モータードライバ
7(a,b) エンコーダ
10 制御装置
S1 超音波距離センサ
S2 ジャイロセンサ
W 作業装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an autonomous traveling work vehicle, and more particularly to an autonomous traveling work vehicle that travels through a work area and performs work such as cleaning and wax application.
[0002]
[Prior art]
Various types of autonomous traveling work vehicles have already been developed. For example, what is described in JP-A-8-286747 is an autonomous vehicle that measures the distance to a side wall periodically with a distance sensor and goes straight in parallel with the wall. When the change exceeds the specified value, temporarily stop the control based on the distance measurement of the ultrasonic distance sensor, switch to the straight running control based on the wheel rotation speed measurement value, and change the distance to the wall When the value falls within the predetermined value, control based on the distance data of the ultrasonic distance sensor is started again, and straight running parallel to a flat wall is performed regardless of the unevenness of the wall.
[0003]
When an ultrasonic distance sensor is used as the distance sensor in this apparatus, the ultrasonic distance sensor has a characteristic that the step cannot be detected at an acute angle because it has a relatively wide directivity and is measured in a curved surface. For this reason, even if the actual distance changes suddenly due to square pillars, etc., the distance will change slowly, and will not reach the predetermined value, and there is a problem that the direction will be corrected by mistake. The farther away from the wall, the greater the effect.
[0004]
In addition, what is described in Japanese Patent Application Laid-Open No. 8-234838 is a wall copy that arises because the ultrasonic distance sensor has a wide directivity, so that the step cannot be detected at an acute angle and is measured in a curved surface. If the distance to the wall is larger than the reference value, measure the distance multiple times until the mileage reaches the specified value, and adopt the minimum distance data from the wall. When it is fed back to the copying travel control and the distance to the wall is smaller than the reference value, it is immediately fed back to the wall scanning travel control.
[0005]
However, since this device selects the smallest one from the multiple distance measurement values, the period of feedback to the traveling control becomes longer, and during that time, the following traveling control is not performed and meandering and curves are generated. End up. It is also effective to use the minimum distance when columns of the same size are lined up at regular intervals, but the size of the shelves on the wall is not constant and is effective in such cases. is not.
[0006]
Furthermore, what is described in JP-A-8-84696 has a distance sensor for measuring the distance to the wall and an azimuth sensor for detecting the direction, and when traveling along the wall along the wall, When the vehicle is driven so that the distance to the wall detected by the distance sensor is maintained at the reference distance, and the distance to the wall is greater than a predetermined value with respect to the reference distance, the vehicle goes straight based on the direction detected by the direction sensor. The control method is switched so as to travel.
[0007]
Since this device travels straight on the basis of only the measured value of the direction sensor (gyro sensor) when traveling away from the wall by a predetermined distance or more, as the travel distance becomes longer, The error in the distance from the wall due to the minute angle error of the gyro is increased, and the azimuth error due to the drift of the gyro sensor cannot be ignored. There is a problem that causes it.
[0008]
[Problems to be solved by the present invention]
This type of autonomous traveling work vehicle needs to travel straight so that there are no work leakage points on the floor surface, but none of the conventional vehicles can guarantee sufficient straightness. It was. Therefore, the present invention improves the above-mentioned problems of the known apparatus, and even if the wall has irregularities, the error due to the distance measurement error in the irregularities on the wall due to the wide directivity of the ultrasonic distance sensor. In the case where the straightness is greatly improved by preventing the guidance and the driving direction correction control period is shortened, and when the unevenness of the wall is not constant and unevenness of various sizes is included However, the problem is to improve the straightness of the wall-following traveling.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration. In other words, the autonomous traveling work vehicle according to the present invention has a distance sensor that measures the distance to the obstacle on the side and a gyro sensor that detects the traveling direction, while maintaining a constant distance from the flat wall. In an autonomous traveling vehicle having a straight traveling function, the amount of change per unit time of the angle between the wall and the traveling direction obtained from the change in the distance to the side wall measured by the distance sensor during traveling If the difference between the angular velocity As (i) and the angular velocity A (i) obtained from the gyro sensor is within a predetermined range, direction control is performed so as to follow the wall based on the distance measured by the distance sensor. And a second traveling direction control method for performing straight-ahead control based on the measured value of the gyro sensor without performing the first traveling direction control when the difference is outside the predetermined range. System to select and adopt A control device is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 illustrates an embodiment of the present invention. An autonomous traveling work vehicle 1 includes a vehicle body provided with drive wheels 2a and 2b driven by a motor and freely changeable driven wheels 3a and 3b. 5 includes a drive device, a sensor, a control device, and the like. At the rear of the vehicle body 5, a working device (not shown), for example, a working portion W having a cleaning liquid discharge nozzle, a cleaning brush, a suction device for sucking sewage, and the like is mounted. The working unit W performs cleaning, waxing, and other operations while moving on the floor, and various conventional units have been known. Therefore, the detailed structure and operation of the working unit W are omitted.
[0011]
Drive motors 4a and 4b are provided corresponding to the left and right drive wheels 2a and 2b, respectively, and motor drivers 6a and 6b are provided for the motors, respectively. The motor drivers 6 a and 6 b are configured to drive a drive motor in accordance with a control signal from a control device (CPU) 10. Power is supplied from a battery (not shown) to the drive motors 4a, 4b, the working unit W, the control device 10, and the like. The left and right drive wheels are provided with encoders 7a and 7b, respectively, and the amount of rotation is detected by these encoders. Note that the left and right drive wheels 2a and 2b are configured to rotate independently of each other, and curve control is performed based on the difference in rotational speed between the left and right wheels.
[0012]
The drive motors 4a and 4b for the drive wheels are DC motors of pulse control (PWM control), and the amount of rotation is controlled by increasing or decreasing the duty ratio of the energization pulses. The rotation amount of each motor is detected by the encoders 7 a and 7 b and input to the control device 10. The control device 10 performs the following calculation based on data input from the encoders 7a and 7b, the ultrasonic distance sensor S1, the gyro sensor S2, and the like, and outputs a control command signal to the motor drivers 6a and 6b. .
[0013]
Next, traveling control will be described. In the present invention, two types of traveling control are selectively employed. As a control sensor, an ultrasonic distance sensor S1, a gyro sensor S2, and rotary encoders 7a and 7b are provided. As the ultrasonic distance sensor S1 and the gyro sensor S2, known commercially available products can be used. For example, as the gyro sensor, a vibration gyro sensor or the like that detects an angular velocity when an object rotates using the Coriolis effect is used. Of the two sensors, the ultrasonic distance sensor S1 repeatedly measures the distance to the side wall at a predetermined cycle, and the gyro sensor S2 measures the angular velocity value of the traveling vehicle at a predetermined cycle. The travel distance is obtained by detecting the wheel rotation speed with encoders 7a and 7b and integrating the detected number.
[0014]
The travel control method will be specifically described as follows.
First, set the variables as follows:
i: Number of measurements
Do: Reference distance to the wall
D (i): Measured distance to the wall.
As (i): Angular velocity calculated from the measured distance to the wall.
A (i): Angular velocity measurement.
V: Travel speed
T: Measurement cycle
L: Distance traveled during the measurement cycle.
θ (i): Angle between the wall and the running direction.
M (i): travel direction correction
C 1 , C 2 , C 3 : constants
here,
L = V · T (1)
θ (i) = sin -1 ((D (i) -D (i-1)) / L) (2)
As (i) = (θ (i) -θ (i-1)) / T (3)
It is.
[0016]
The travel direction correction amount is based on the following equation (4):
M (i) = C 1 (D (i) -Do) + C 2・ θ (i) + C 3・ A (i) (4)
According to the comparison result between As (i) and A (i), one of the following two calculation methods (1) and (2) is selected.
[0017]
(1) If the absolute value of the difference between As (i) and A (i) exceeds a predetermined value N (it should be set in advance according to the working conditions, etc., but is usually set to almost 0)
C 1 = C 2 = O
C 3 ≠ O
In the following equation (5), the travel direction correction amount based on the distance measurement value is set to zero, and the direction correction is performed based only on the angular velocity measurement value.
M (i) = C 3 · A (i) (5)
[0018]
(2) If the absolute value of the difference between As (i) and A (i) is within the specified value,
C 1 ≠ O
C 2 ≠ 0
C 3 ≠ O
And, based on the equation (4), the travel direction correction by the distance measurement value and the travel direction correction by the angular velocity measurement value, or
C 1 ≠ O
C 2 ≠ O
C 3 = 0
As described above, the traveling direction may be corrected based only on the distance measurement value.
[0019]
In addition, in the state of (2), the reference distance Do for determining how far away from the wall to run in parallel is, first of all, the distance measurement value D (0) at the start of running is used as the reference distance at the start of running. Assign to 0 ,
Do = D (0)
Thereafter, the distance measurement value D (i) immediately after the transition from the state (1) to the state (2) is substituted for Do as a reference distance.
Do = D (i)
[0020]
FIG. 2 shows an example in which the wall has no unevenness, and the traveling direction is gradually inclined due to the influence of the slip, the unevenness of the floor, the difference between the left and right wheel diameters, and the like. In this case, the angular velocity value As (i) calculated by the equations (1), (2), and (3) is almost equal to the measured value A (i) of the gyro sensor. Correspondingly, wall copying control based on the distance measurement value is performed.
[0021]
FIG. 3 shows an example in which the wall is not uneven, and the vehicle is moving straight but is gradually away from the wall because the direction at the start of traveling is not parallel to the wall. In this case, the value of the angular velocity value As (i) calculated by Eqs. (1), (2), and (3) and the measured angular velocity value A (i) by the gyro sensor are almost zero and are almost the same. Again, this corresponds to the case of (2) above, and wall scanning control based on the distance measurement value is performed, and the control is performed so that the parallelism with the wall and the distance to the wall are maintained. In the device described in Japanese Patent Laid-Open No. 8-84696, the wall scanning control is not performed when the distance from the wall exceeds a predetermined distance, and only the gyro sensor is used, so that the distance from the wall can be kept constant. There is a risk of disappearing.
[0022]
FIG. 4 is an example in the case where there are irregularities on the wall. In this case, wall scanning control is executed until D (i) is measured, and the straight line travels parallel to the wall.However, because there is a step in the wall, the distance measurement value changes after D (i). Yes. At this time, the wall changes steeply as shown in the figure, but because the directivity of the ultrasonic distance sensor is relatively wide, the measured value becomes a curve indicated by a broken line in the figure, and is gently as shown in D (i) in the figure. May occur. If this change is fed back to the wall-following running control as it is, the straight running performance is impaired. At this time, the angular velocity measured value A (i) by the gyro sensor is almost zero, but the angular velocity value As (i) calculated by Eqs. (1), (2) and (3) is not zero. Corresponding to the case of {circle around (1)} above, the wall tracing control based on the distance measurement value is stopped, and the control is switched to the control that performs the control only with the gyro sensor, thereby preventing the straight travel performance from being lowered.
[0023]
After measuring D (i + 3), the difference between As (i + 3) and A (i + 3) falls within the specified range again, so the distance measurement value D (i + 3) at that time Is used as the reference distance from the wall, and thereafter, the wall-following traveling control is performed so that the distance from the wall maintains the reference distance.
[0024]
FIG. 5 illustrates a flowchart of the direction correction amount calculation subroutine program.
[0025]
The direction correction amount calculation subroutine is executed by a timer interruption at a fixed period. First, the distance D (i) to the wall and the angular velocity A (i) are measured at # 1 and # 2, and then the calculated angular velocity value As (i using (1), (2), and (3) at # 3. ) Is calculated, and it is determined in # 4 whether it is the case of (1) or (2). In the case of (1), proceed to # 8, calculate the traveling direction correction amount M (i) using the equation (5), and proceed to # 9. If the determination result of # 4 is (2), proceed to # 5 and determine whether or not the amount of direction correction was calculated last time using equation (4). If affirmative, proceed directly to # 7 and negate if, advance this time of distance measurement values D a (i) to # 7 by substituting the reference distance D o. In # 7, the amount of direction correction for maintaining the distance from the wall at Do is calculated based on equation (4), and the process proceeds to # 9. In # 9, based on the calculated M (i), the rotational speeds of the left and right wheels are changed, and the subroutine is terminated.
[0026]
This autonomously traveling work vehicle 1 goes straight along the wall by the above control, but when it reaches the end of the working range, it makes a U-turn and makes it run again in the opposite direction (possible backwards if necessary) ). In this way, the work is performed without omission on the entire floor surface to be worked. In the above embodiment, the left and right two-wheel independent control traveling vehicle is exemplified, but a traveling vehicle having a steering wheel separately from the driving wheel may be used. In that case, instead of correcting the rotational speeds of the left and right wheels in # 9 of the flowchart, the angle of the steered wheels may be corrected.
[0027]
【The invention's effect】
As described above, the autonomous traveling vehicle according to the present invention has both an ultrasonic distance sensor and a gyro sensor, and has a function of traveling straight in parallel to a flat wall so that the distance from the wall is constant. By comparing the time-series data of the distance to the wall obtained from the ultrasonic distance sensor with the angular velocity data and angle data obtained from the gyro sensor, the change in the distance to the wall is caused by the unevenness of the wall. It has become possible to improve the reduction in straightness due to the step of the wall, etc., by determining whether it is caused by an azimuth error or not.
[Brief description of the drawings]
FIG. 1 is a plan view illustrating a configuration of an autonomous traveling work vehicle.
FIG. 2 is an explanatory diagram of a travel control method.
FIG. 3 is an explanatory diagram of a travel control method.
FIG. 4 is an explanatory diagram of a travel control method.
FIG. 5 is a flowchart showing a direction correction amount calculation subroutine program.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Autonomous traveling work vehicle 2 (a, b) Drive wheel 3 (a, b) Driven wheel 4 (a, b) Drive motor 5 Car body 6 (a, b) Motor driver 7 (a, b) Encoder 10 Control apparatus S1 Ultrasonic distance sensor S2 Gyro sensor W Working device

Claims (2)

側方の障害物までの距離を測定する距離センサと、走行方向を検出するジャイロセンサとを有し、平らな壁との距離を一定に保ちながら直進する機能を有する自律走行作業車において、走行中に前記距離センサで測定された側方の壁までの距離の変化から得られた前記壁と走行方向とのなす角度の単位時間当りの変化量である角速度As(i)と、 前記ジャイロセンサから得られた角速度A(i)との差が所定範囲以内であれば、距離センサ測定した距離に基づき壁に倣って走行するように方向制御を行う第1の走行方向制御方式と、前記差が所定範囲外の場合は、前記第1の走行方向制御を行わず、ジャイロセンサの測定値に基づく直進制御を行う第2の走行方向制御方式とを選択採用する制御装置を設けたことを特徴とする自律走行作業車。A distance sensor for measuring a distance to the obstacle in the lateral, and a gyro sensor for detecting a running direction, the autonomous work vehicle having a function of straight while keeping the distance between the flat wall constant travel An angular velocity As (i) which is a change amount per unit time of an angle between the wall and the traveling direction obtained from a change in distance to a side wall measured by the distance sensor , and the gyro sensor if the difference between the angular velocity a (i) obtained is within a predetermined range, the first travel direction control method for performing directional control so as to run following the wall based on the distance measured by the distance sensor, the When the difference is outside the predetermined range, a control device is provided that selectively adopts the second traveling direction control method in which the first traveling direction control is not performed and the straight traveling control based on the measured value of the gyro sensor is performed. Autonomous driving feature Industrial vehicle. 前記、第1の走行方向制御方式において、壁からどれだけ離れて走行するかを決定する距離基準値として、第2の走行方向制御方式から第1の走行方向制御方式に切り替わった直後の壁との距離測定値を用いて制御を行う請求項1に記載の自律走行作業車。In the first traveling direction control system, as a distance reference value for determining how far the vehicle travels from the wall, the wall immediately after switching from the second traveling direction control system to the first traveling direction control system, The autonomous traveling work vehicle according to claim 1, wherein control is performed using a distance measurement value of the vehicle.
JP19580399A 1999-07-09 1999-07-09 Autonomous work vehicle Expired - Lifetime JP4165965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Publications (2)

Publication Number Publication Date
JP2001022443A JP2001022443A (en) 2001-01-26
JP4165965B2 true JP4165965B2 (en) 2008-10-15

Family

ID=16347248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19580399A Expired - Lifetime JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Country Status (1)

Country Link
JP (1) JP4165965B2 (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
ES2660836T3 (en) * 2001-06-12 2018-03-26 Irobot Corporation Multi-code coverage method and system for an autonomous robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
JP2007530978A (en) 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド Position estimation method and apparatus using reflected light source
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
EP2145573B1 (en) 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
ES2623920T3 (en) 2005-12-02 2017-07-12 Irobot Corporation Robot system
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
KR101300492B1 (en) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 Coverage robot mobility
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot system
NL1031605C2 (en) * 2006-04-18 2007-10-19 Maasland Nv Unmanned autonomous vehicle for moving feed.
KR100772912B1 (en) * 2006-05-16 2007-11-05 삼성전자주식회사 Robot using absolute azimuth and method for mapping by the robot
EP2548489B1 (en) 2006-05-19 2016-03-09 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR101339513B1 (en) 2007-05-09 2013-12-10 아이로보트 코퍼레이션 Autonomous coverage robot
CN105147193B (en) 2010-02-16 2018-06-12 艾罗伯特公司 Vacuum brush
JP5589762B2 (en) * 2010-10-28 2014-09-17 トヨタ自動車株式会社 Moving body
KR102142162B1 (en) 2012-08-27 2020-09-14 에이비 엘렉트로룩스 Robot positioning system
CN105101855A (en) 2013-04-15 2015-11-25 伊莱克斯公司 Robotic vacuum cleaner with protruding sidebrush
EP2986192B1 (en) 2013-04-15 2021-03-31 Aktiebolaget Electrolux Robotic vacuum cleaner
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
KR102099495B1 (en) 2013-12-19 2020-04-09 에이비 엘렉트로룩스 Sensing climb of obstacle of a robotic cleaning device
JP6687286B2 (en) 2013-12-19 2020-04-22 アクチエボラゲット エレクトロルックス Robot cleaner and landmark recognition method
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
JP6638988B2 (en) 2013-12-19 2020-02-05 アクチエボラゲット エレクトロルックス Robot vacuum cleaner with side brush and moving in spiral pattern
EP3084538B1 (en) 2013-12-19 2017-11-01 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
ES2675786T3 (en) 2013-12-19 2018-07-12 Aktiebolaget Electrolux Adaptive speed control of rotary side brush
KR102116595B1 (en) 2013-12-20 2020-06-05 에이비 엘렉트로룩스 Dust container
JP6513709B2 (en) 2014-07-10 2019-05-15 アクチエボラゲット エレクトロルックス Method of detecting measurement error in robot type cleaning device, robot type cleaning device, computer program and computer program product
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
JP6443897B2 (en) 2014-09-08 2018-12-26 アクチエボラゲット エレクトロルックス Robot vacuum cleaner
WO2016091291A1 (en) 2014-12-10 2016-06-16 Aktiebolaget Electrolux Using laser sensor for floor type detection
CN114668335A (en) 2014-12-12 2022-06-28 伊莱克斯公司 Side brush and robot dust catcher
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
KR102326401B1 (en) 2014-12-16 2021-11-16 에이비 엘렉트로룩스 Cleaning method for a robotic cleaning device
JP6743828B2 (en) 2015-04-17 2020-08-19 アクチエボラゲット エレクトロルックス Robot vacuum and method for controlling the robot vacuum
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
WO2017157421A1 (en) 2016-03-15 2017-09-21 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
CN109068908B (en) 2016-05-11 2021-05-11 伊莱克斯公司 Robot cleaning device
JP7243967B2 (en) 2017-06-02 2023-03-22 アクチエボラゲット エレクトロルックス Method for Detecting Level Differences on a Surface in Front of a Robotic Cleaning Device
KR20200058400A (en) 2017-09-26 2020-05-27 에이비 엘렉트로룩스 Control the movement of the robot cleaning device
JP6951539B1 (en) * 2020-12-07 2021-10-20 株式会社ユアテック Self-propelled equipment, measurement methods, and programs

Also Published As

Publication number Publication date
JP2001022443A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP4165965B2 (en) Autonomous work vehicle
JPH10240343A (en) Autonomously traveling vehicle
JPH10260727A (en) Automatic traveling working vehicle
JPH09206258A (en) Control method for cleaning robot
JP6289546B2 (en) Parking assistance device
JP3025604B2 (en) Unmanned vehicle steering control method
JPH0895638A (en) Travel controller for mobile working robot
JP2004318721A (en) Autonomous travel vehicle
JP2007272677A (en) Self-propelled device and control method for the same
JP2609890B2 (en) Self-propelled work vehicle
JP3952548B2 (en) Method and apparatus for controlling unmanned vehicle
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JP3609200B2 (en) Travel control method and travel control device for autonomous vehicle
JP2863361B2 (en) Unmanned vehicle control method
JP3277980B2 (en) Control method for unmanned vehicles
JP2934770B2 (en) Method and apparatus for measuring wheel diameter of mobile robot
JP2002355205A (en) Moving work robot
JP2609891B2 (en) Self-propelled work vehicle
JP2786516B2 (en) Work vehicle traveling method
JP3580946B2 (en) Travel control device for self-propelled bogie
JP3922126B2 (en) Carpet eye detection device and mobile robot using the same
JPS6215610A (en) Traveling control method for autonomous traveling robot
JP3241182B2 (en) Independent traveling vehicle
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP3003260B2 (en) Carpet detection device and mobile work robot having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4165965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

EXPY Cancellation because of completion of term