JPH026312A - Composite material of metallic sulfide carbon and production thereof - Google Patents

Composite material of metallic sulfide carbon and production thereof

Info

Publication number
JPH026312A
JPH026312A JP1042139A JP4213989A JPH026312A JP H026312 A JPH026312 A JP H026312A JP 1042139 A JP1042139 A JP 1042139A JP 4213989 A JP4213989 A JP 4213989A JP H026312 A JPH026312 A JP H026312A
Authority
JP
Japan
Prior art keywords
metal
composite material
metal sulfide
polymer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1042139A
Other languages
Japanese (ja)
Inventor
Akira Nakamura
晃 中村
Hajime Yasuda
源 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1042139A priority Critical patent/JPH026312A/en
Publication of JPH026312A publication Critical patent/JPH026312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To disperse ultrafine particles of a sulfide of a metal such as Ti, V or Cr into a carbon matrix by coordinating a specific polymer compound having an atomic group containing sulfur atom with the metal to give a compound and heat-treating the compound under a given condition. CONSTITUTION:A polymer compound which is provided with an atomic group having coordination ability containing sulfur atom at a main chain and/or side chain and can be coordinated is prepared. The compound is coordinated with a metal selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, etc., to give an organometallic polymer compound. Then one or more of the compounds are polymerized to give a polymer or copolymer. Then a mixture of the polymers is heat-treated in an inert atmosphere at 400-2,000 deg.C. Consequently, a composite material of metallic sulfide carbon wherein a sulfide of the metal having <=5mum particle diameter is dispersed into a carbon matrix is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、金属硫化物炭素複合材料に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to metal sulfide carbon composite materials.

さらに詳しくは、本発明は炭素材料を主成分とし金属硫
化物超微粒子を高度に分散させた複合材料に関ずろらの
であり、触媒や導電性材料、電極材料等を始めとする高
度な機能材料を提供するものである。
More specifically, the present invention relates to a composite material in which carbon material is the main component and ultrafine metal sulfide particles are highly dispersed, and it is a composite material that can be used as a highly functional material such as a catalyst, conductive material, electrode material, etc. It provides:

[従来の技術およびその解決すべき課題]現i’E金属
化合物材料や炭素材料はその性質の多様さ、資源のV暫
τζさからきイづめて広い分野に適用されている。しか
し、一方では、その中で更に高性能、高機能な乙のが望
まれている分野があり、より精密な素手4設計による、
より高活性な材料か1…待されている。
[Prior Art and Problems to Be Solved] Current i'E metal compound materials and carbon materials are being applied to a wide range of fields due to their diverse properties and resource availability. However, on the other hand, there are fields where even higher performance and higher functionality is desired, and more precise bare-handed 4 designs are needed.
A more highly active material is awaited.

金属硫化物+材料に関しては、例えば触媒としてより活
性で操作性、作業性、選択性に優れた素材が求められて
いる。
Regarding metal sulfide + materials, there is a demand for materials that are more active as catalysts and have excellent operability, workability, and selectivity.

炭素材料には、化学的安定性に加え軽量、耐熱性、潤滑
性、良伝熱性、良導電性等の特性があり、これに更に賦
形性と機械的強度を与えた炭素繊維や、多孔性を賦与し
た特性を生かせる活性炭等がある。このような炭素繊維
や活性炭はそれ自身有効であるだけでなく、これを活性
の場や、補強材等として用いるなど、副次的用途にも多
大な期待かかけられている。
In addition to chemical stability, carbon materials have properties such as light weight, heat resistance, lubricity, good heat conductivity, and good electrical conductivity. There are activated carbons, etc. that can make use of the properties that give them properties. Such carbon fibers and activated carbon are not only effective in themselves, but also have great expectations for their secondary uses, such as their use as active sites, reinforcing materials, and the like.

金属化合物が均一に分散した炭素材料は有用であると考
えられる乙のの、従来の技術としては炭素(4料表面に
金属の肢覆が主で、炭素は料内部に均一分散したらのは
ない。さらに原料分解で金属硫化物が均一に分散した材
料を作る方法は報告されていない。
Although carbon materials in which metal compounds are uniformly dispersed are considered to be useful, conventional technology has not been able to produce carbon materials (4) in which the surface of the material is mainly coated with metal, and the carbon is uniformly dispersed within the material. Furthermore, there has been no report on a method for creating a material in which metal sulfides are uniformly dispersed by decomposing raw materials.

[課題を解決するための手段] 本発明者らは上述の様な課題を解決するため鋭き研究の
結果本発明に到達した。
[Means for Solving the Problems] The present inventors have arrived at the present invention as a result of intensive research in order to solve the above-mentioned problems.

即ち、本発明は、Ti、V、Cr、Mn、Fe、Co、
Ni。
That is, the present invention provides Ti, V, Cr, Mn, Fe, Co,
Ni.

Cu、Zr、Nb、Mo、Ru、Rh、Pd、Ag、H
f、Ta、WRe、Os、 I rの群から選ばれるい
1種以上金属の硫化物成分を、超微粒子として炭素マト
リックス中に分散さUた金属硫化物炭素複合材料を提供
する乙のである。
Cu, Zr, Nb, Mo, Ru, Rh, Pd, Ag, H
The present invention provides a metal sulfide carbon composite material in which a sulfide component of one or more metals selected from the group consisting of f, Ta, WRe, Os, and Ir is dispersed in a carbon matrix as ultrafine particles.

これらの超微粒子成分は好ましくは粒径5μm以丁であ
ることか(材料としての均一性、表面平滑性、金属硫化
物としての機能例えば導電性、伝熱性、触媒活性等を特
異的に発現させる。
These ultrafine particle components preferably have a particle size of 5 μm or less (uniformity as a material, surface smoothness, and functions as a metal sulfide, such as electrical conductivity, thermal conductivity, catalytic activity, etc.) .

本発明はニした、このような金属硫化物炭素複合材料の
製造方法をも提供する乙のであって、分散粒子の粒径及
び粒径分布を目的にあわせて制御することが可能である
The present invention also provides a second method for producing such a metal sulfide carbon composite material, in which the particle size and particle size distribution of dispersed particles can be controlled according to the purpose.

本発明によるこれらの金属硫化物炭素複合材料の具体的
製造方法は、主鎖及び/または側鎖にS原子を含む配位
能を有する原子団を備、えた、高分子化合物に金属を配
位さU“、得られた有機金属高分子化合物を不活性雰囲
気下400℃〜2000℃の温度で熱処理することを特
徴とする乙のである。また、重合可能なS原子を含む官
能基をqするff機金金属合物を重合ずろことによって
得られた何機金属高分子化合物を不活性雰囲気下400
℃〜2000℃で熱処理ずろことを特徴とオろものであ
る。
A specific method for producing these metal sulfide carbon composite materials according to the present invention involves coordinating a metal to a polymeric compound having a main chain and/or side chain containing an atomic group having a coordination ability including an S atom. This is characterized by heat-treating the obtained organometallic polymer compound at a temperature of 400°C to 2000°C under an inert atmosphere.Also, the functional group containing a polymerizable S atom is A metal polymer compound obtained by polymerizing a ff metal metal compound was polymerized under an inert atmosphere for 400 min.
It is unique in that it can be heat treated at temperatures between ℃ and 2000℃.

さらに本発明にあってはこれらの金属硫化物成分が均一
に分散していることか特徴的であって、凝集したり材料
表面やマトリックス結晶粒界に析出或は濃縮されたちの
でないことが重要である。
Furthermore, the present invention is characterized by the fact that these metal sulfide components are uniformly dispersed, and it is important that they do not aggregate, precipitate, or concentrate on the material surface or matrix grain boundaries. It is.

本発明の製造方法によれば、粒径5μm以下であっても
金属硫化物超微粒子を均一分散させた炭素材料を再現性
良く安定に製造することが可能である。特に0.1μm
以下の超微粒子においては池の気相法等による製造が極
めて困難な金属に付いて6調製が可能である。この点を
生かして、各種担持金属触媒調製、焼結材料、化学セン
サー等にひろく用途展開することができる。尚、本明細
書中において粒径とは電子顕微鏡写真における面積平均
の中(ケ径をいう。
According to the production method of the present invention, it is possible to stably produce a carbon material in which ultrafine metal sulfide particles are uniformly dispersed even if the particle size is 5 μm or less with good reproducibility. Especially 0.1μm
The following ultrafine particles can be prepared from metals that are extremely difficult to produce by Ike's vapor phase method. Taking advantage of this point, it can be widely used in the preparation of various supported metal catalysts, sintered materials, chemical sensors, etc. Incidentally, in this specification, the particle size refers to the area average diameter in an electron micrograph.

即ち、本発明の複合材料は高い電導性(σ−!OScm
−’以上)を有している上に、反応性の高い金属硫化物
微粒子または低原子価状態の金属硫化物微粒子を含んで
いるために、アミン、アルコールなどの有機分子を吸着
でき、その際の電流変化を増幅ずろことによりセンサー
とすることができる。また、炭素骨格を(目゛る)−め
種々の有機物質を吸着し、同時に金属硫化物の還元能や
触媒効果によってこれを分解あるいは還元することによ
り消臭剤として汀利な材料となる。さらに、金属種を選
ぶことによってオレフィン、ツエン、アルキン等の不飽
和炭化水素の重合や異性化反応の優れた触媒とすること
ができる」二、金属を選択することにより、脱硫酸化ま
たは還元触媒とすることができる。
That is, the composite material of the present invention has high electrical conductivity (σ-!OScm
-' or higher) and also contains highly reactive metal sulfide fine particles or low-valent metal sulfide fine particles, so it can adsorb organic molecules such as amines and alcohols. It can be used as a sensor by amplifying the current change. In addition, it adsorbs various organic substances using its carbon skeleton, and at the same time decomposes or reduces them using the reducing ability and catalytic effect of metal sulfides, making it a useful material as a deodorant. Furthermore, by selecting the metal species, it can be used as an excellent catalyst for the polymerization and isomerization reactions of unsaturated hydrocarbons such as olefins, tsene, and alkynes. can do.

本発明の金属炭素複合材料において、金属成分の含有!
nは0.2〜50重量%が望ましい。この範囲より少な
いと金属成分の分は持つ機能が相対的に小さくなって複
合化のO味が薄くなり、一方この範囲を越えると、均一
分散が困難となり本発明の1」的とする複合材料となら
ない。含何量は目的に応じて選定できろが、この範囲以
上の物で乙例えば後処理として徐酸化を行い、カーホン
部分を部分的に除去する方法や複合材調製時に徐酸化を
施す方法等により調製できる。この様な方法によって表
面の多孔化ら可能となり多方面への適用が可能となる。
The metal-carbon composite material of the present invention contains a metal component!
It is desirable that n be 0.2 to 50% by weight. If the amount is less than this range, the function of the metal component will be relatively small, and the flavor of the composite will be weak. On the other hand, if it exceeds this range, it will be difficult to uniformly disperse the composite material, which is the object of the present invention. Not. The content can be selected depending on the purpose, but if the content exceeds this range, for example, slow oxidation can be performed as a post-treatment to partially remove the carphone portion, or slow oxidation can be performed during composite material preparation. Can be prepared. Such a method makes it possible to make the surface porous, making it possible to apply it to many fields.

本発明の金属硫化物炭素複合材料は上述のように前駆体
の有機金属高分子化合物を焼成してなるものであって、
用いる配位可能な高分子化合物と金属との配位化合物が
原料となっている。
The metal sulfide carbon composite material of the present invention is obtained by firing the organometallic polymer compound as a precursor as described above,
The raw material is a coordination compound of the polymer compound that can be used and a metal.

この配位可能な高分子化合物とは、分子中の主鎖及び/
または側鎖にS原子を含む配位能を何する原子団を備え
た高分子化合物のことであり、下記のように一般式で表
示されるものである。
This coordinating polymer compound refers to the main chain and/or
Alternatively, it refers to a polymer compound with an atomic group having a coordination ability including an S atom in a side chain, and is represented by the general formula as shown below.

(−L−)n−または、−(−]−−) nし これらの金属への配位により形成された有機金属高分子
化合物とは下記に一般式で示される。
The organometallic polymer compound formed by (-L-)n- or -(-]--)n and coordination to these metals is represented by the general formula below.

ここで、LはS原子を含む配位能のある基を示し、Mは
金属またはイオン、Xは補助配位子であり、nは高分子
鎖の繰り返し単位であり、mは補助配位子のg数を表す
。本発明の高分子化合物はその構造のいずれかの部分に
硫黄(S)原子が存在すればよい。S原子は捕水的には
L中に存在するのが一般的であるが、高分子鎖中あるい
は補助配位子(X)中に存在してもよい。
Here, L represents a group with coordination ability containing an S atom, M is a metal or ion, X is an auxiliary ligand, n is a repeating unit of the polymer chain, and m is an auxiliary ligand. represents the number of g. The polymer compound of the present invention only needs to have a sulfur (S) atom in any part of its structure. Although the S atom is generally present in L for water-trapping purposes, it may also be present in the polymer chain or in the auxiliary ligand (X).

L−M結合はπ配位、n配位、σ配位を含む。このよう
な配位可能な高分子化合物を例示すれば以下の通りであ
る。
The LM bond includes a π-coordination, an n-coordination, and a σ-coordination. Examples of such coordinating polymer compounds are as follows.

a)S原子を何する原子団を金属と配位させる配位子と
する高分子化合物であり、詳しくは、配位子としてヂオ
ール、芳香族ヂオール、ノチオール、スルフィト、ジス
ルフィド、スルホキノド、ヂオカルポニル等の原子団を
汀する高分子化合物であり、更に具体的には、例えばポ
リ[1−(p−メルカプトフェニル)エチレン]、ポリ
[+−(p−メルカプトメチルフェニル)エヂレンコ、
ポリ(イミノ2−オキソ−2−メルカブトエヂレン)、
ポリ[1[1−オキシ−3−メルカプト−5−デアペン
デル]エチレン]、ポリ[1(−p−(2,5−ジヂア
ペンヂル)フェニル]エチレン]、ポリ[1−[p−[
2(ツノルボキノエチル)チオ]フェニル]エヂレン]
等であり、これら単独重合体及び、これらの重合繰り返
し単位での交互、ブロックまたはランダム共重合物、更
に重合物中にこれらの重合繰り返]7単位を−Jfl¥
了する高分子化合物を含む。また、これらの主に付加重
合及び開環重合生成物の他に不飽和ポリエステル、フェ
ノール樹脂、ナイロン等の縮合系高分子化合物を含む。
a) It is a polymer compound that uses an atomic group that coordinates the S atom as a ligand that coordinates with a metal. Specifically, it is a polymer compound that uses diol, aromatic diol, nothiol, sulfite, disulfide, sulfoquinodo, diocarponyl, etc. as a ligand. It is a polymer compound that filters atomic groups, and more specifically, for example, poly[1-(p-mercaptophenyl)ethylene], poly[+-(p-mercaptomethylphenyl)ethylene],
poly(imino 2-oxo-2-mercabutoethylene),
Poly[1[1-oxy-3-mercapto-5-deapendyl]ethylene], Poly[1(-p-(2,5-didiapendyl)phenyl]ethylene], Poly[1-[p-[
2(Tunorboquinoethyl)thio]phenyl]ethylene]
etc., these homopolymers, alternating, block or random copolymers of these polymerized repeating units, and further these polymerized repeating units]7 units in the polymer, -Jfl¥
Contains high molecular weight compounds. In addition to these mainly addition polymerization and ring-opening polymerization products, it also includes condensation polymer compounds such as unsaturated polyesters, phenolic resins, and nylon.

本発明のムう一つの製造方法は、重合可能な官能基を有
する打機金属化合物を重合してなる有機金I開缶分子化
合物を焼成することによって得られる乙のである。重合
可能な官能基を打する打機金属化合物は、S原子を含む
配位能を存する部位と重合能を有する。:J(位とから
なるrf機化合物に金属を配(ケさせることによりなる
化合物jFTてあって、配()γの形式は、n配位、π
配位、σ配位を問わない。
Another manufacturing method of the present invention is to obtain the organic gold I by firing an organic gold I-open molecular compound obtained by polymerizing a metal compound having a polymerizable functional group. The metal compound forming the polymerizable functional group has a site containing an S atom and a coordination ability, and a polymerization ability. :J() is a compound formed by distributing a metal to an rf mechanical compound consisting of
It does not matter whether the configuration is σ-coordination or not.

S原子を含む配位能を有する部位と重合能を存する部位
とからなる化合物を例示すれば、1))配位子能を存す
る部位がS原子を有する原子団を何するもので、詳しく
は配位原子団が、チオール、芳香族チオール、ノチオー
ル、スルフィト、ノスルフィト、スルホキシド、チオカ
ルボニル等の原子団をf丁する有機化合物であり、さら
に具体的に例示すれば、メルカプトスチレン、メルカプ
トメチル化スヂレン、システィン、メチオニン、p−メ
ルカプトスチレン、p−メルカブトメチルスヂレン、2
−メルカプト−4−ヂオブヂルビニルエーテル、p−(
2−カルボキシエチルヂオ)スチレン等である。
To give an example of a compound consisting of a site having a coordination ability containing an S atom and a site having a polymerization ability, 1)) What does the site having a ligand ability do with an atomic group having an S atom? It is an organic compound in which the coordination atomic group is an atomic group such as thiol, aromatic thiol, nothiol, sulfite, nosulfite, sulfoxide, thiocarbonyl, etc. More specific examples include mercaptostyrene, mercaptomethylated styrene. , cysteine, methionine, p-mercaptostyrene, p-mercaptomethylstyrene, 2
-Mercapto-4-diobudyl vinyl ether, p-(
2-carboxyethyldio)styrene and the like.

これらの金属への配位は配位子側がa)に示された高分
子化合物であってら、[))に示された低分子化合物で
あ−)てし、一般の(j°機金金属錯体合成法適用され
ろ方法を用い得る。即ち、金属の置換反応による直接メ
タル化反応ハロゲン化物との置換反応、金属塩を用いる
金属−水素交換反応、TT 賎金属による金属−ハロゲ
ン交換反応、配位子交換反応の他、金属や金属塩、金属
カルボニル、¥T (a金属類等の直接的な配位し可能
である。
For coordination to these metals, the ligand side is a high molecular compound shown in a), a low molecular compound shown in [)), and a general (j° mechanical metal). Complex synthesis methods can be used, i.e., direct metallization reaction by metal substitution reaction, substitution reaction with halides, metal-hydrogen exchange reaction using metal salts, metal-halogen exchange reaction with TT metals, In addition to phase exchange reactions, direct coordination of metals, metal salts, metal carbonyls, ¥T (a metals, etc.) is possible.

本発明に係イつる金属化合物を具体的に例示すれば、金
属その乙のの他、T + CI 4 、 Z r Cl
 4. N b Cl 5TaC15,MOc+5.W
CIO,CLIC12,cOc L、NiCl2、Fe
Cl2.FeCl3.Ti(OR)4.ニッケルアセデ
ルアセトナート等の金属ハライド、金属アルコキッド、
金属アセデルアセトナート及び、N1(Co)4゜Co
2(CO)8.Re(CO)s、[RhCI(Co)z
]−、PtCf2(1,5−ツタ四オクタンエン)、P
dC12(1。
Specific examples of the metal compounds according to the present invention include metals, T + CI 4 , Z r Cl
4. N b Cl 5TaC15, MOc+5. W
CIO, CLIC12, cOc L, NiCl2, Fe
Cl2. FeCl3. Ti(OR)4. Metal halides such as nickel acedelacetonate, metal alkoxides,
Metal acedelacetonate and N1(Co)4゜Co
2(CO)8. Re(CO)s, [RhCI(Co)z
]-, PtCf2 (1,5-tuta-tetraoctane), P
dC12 (1.

5−ツタ四オクタンエン)、RhCI(シクロオクテン
)2. N i(P P h3)a、 P d(P P
 tL+)iなどの有機金属化合物等かある。
5-tuta-tetraoctane), RhCI (cyclooctene)2. N i(P P h3)a, P d(P P
There are organometallic compounds such as tL+)i.

これらの重合性rT機金金属化合物重合体もしくは共重
合体、または、該化合物とjF合外性モノマーの共重合
体または架橋重合体、或は、これらの重合体、共重合体
または架橋重合体の混合物を、本発明における萌駆体打
機金開缶分子化、i?物として用いる。重合性a機金属
化合物と共に用いることのできる重合性七ツマ−として
は、該重合性a機金属化合物に用いた重合可能ね官能基
を持った配位子の金属に未配位の化合物の他に、−船釣
なモノマーが使用可能である。
These polymerizable rT metal metal compound polymers or copolymers, or copolymers or crosslinked polymers of the compound and jF polymerizable monomers, or polymers, copolymers, or crosslinked polymers thereof The mixture of i? Use as a thing. Examples of polymerizable hexamers that can be used with the polymerizable a-metal compound include compounds in which the ligand having a polymerizable functional group used in the polymerizable a-metal compound is not coordinated with the metal. In addition, - a commercially available monomer can be used.

即ち、−船釣なオレフィン類として・エヂレン・テン、
シクロペンテン、シクロヘキセン、シクロペンテン、ノ
クロオクテン等かあり、アセヂレン類としては、アセチ
レン、メチルアセチレン、プロピルアセチ1バノ、フェ
ニルアセチレン等がある。
That is, - As a boat-fishing olefin, Ejilene Ten,
Examples include cyclopentene, cyclohexene, cyclopentene, nocrooctene, etc., and acetylenes include acetylene, methylacetylene, propylacetylene, phenylacetylene, etc.

更に、ハロ/7” 、+オレフィン類として塩化ビニル
、塩化ビニリλ″ノ、臭化ビニル、フッ化ビニル等があ
り、ワ゛)他酢酸ビニル等のビニルエステル類、スチレ
ン、α−メチルスチレン、ノビニルベンゼ゛2ノ、タロ
ロスチレン、アミノスチレン、ヒドロギノスヂレン等や
ビニルナフタリン、ビニルアントラセン、アセナフチレ
ン、ザリチル酸ヒニル等の芳香族ビニル化合物、エチル
ビニルエーテル、フェニルビニルエーテル、プロピルビ
ニルエーテル等のアルキル及び芳香族ビニルエーテル類
、α−シアノアクリル酸エステル、α−ハロケノアクリ
ル酸エステル等のアクリル酸及びアクリル酸エステル類
、メタクリル酸メチル等のメタクリル酸及びメタクリル
酸エステル類、アクリロニトリル、メタクロロニトリル
、アジポニトリル、ビニリデンのニトリル及びイソニト
リル類、アクリルアミド、メタクリルアミド、ノアセト
ンアクリルアミド等のアクリルアミド類、メチルビニル
ケトン、フェニルビニルケトン等のビニルケトン類の池
、ビニルビリノン、ビニルイミダゾール類等がある。
Furthermore, halo/7", + olefins include vinyl chloride, vinyl chloride λ", vinyl bromide, vinyl fluoride, etc., and vinyl esters such as vinyl acetate, styrene, α-methylstyrene, and novinylbenzene. Aromatic vinyl compounds such as ゛2no, talolostyrene, aminostyrene, hydrogynostyrene, etc., vinylnaphthalene, vinylanthracene, acenaphthylene, and hinyl salicylate, alkyl and aromatic vinyl ethers such as ethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether, etc. , acrylic acid and acrylic esters such as α-cyanoacrylic acid ester and α-halochenoacrylic ester, methacrylic acid and methacrylic acid esters such as methyl methacrylate, acrylonitrile, methachloronitrile, adiponitrile, vinylidene nitrile and Examples include isonitriles, acrylamides such as acrylamide, methacrylamide, and noacetone acrylamide, vinyl ketones such as methyl vinyl ketone and phenyl vinyl ketone, vinyl birinone, and vinyl imidazoles.

本発明の金属硫化物炭素複合材料は上述のように2種の
方法によって得られる有機金属有機高分子化合物を焼成
してなるものであって、これらを形成する金属成分と1
−ては′I″i、V、Cr。Mn、FeCo、Ni、C
u、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf
T、+、W、Itt!、Os、 I r、l”tを用い
ることができる。
The metal sulfide carbon composite material of the present invention is made by firing organometallic organic polymer compounds obtained by two methods as described above, and includes metal components forming these and
- is 'I''i, V, Cr. Mn, FeCo, Ni, C
u, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf
T, +, W, Itt! , Os, I r, l"t can be used.

ごれらの配位化合物には、金属の配位によって配位r・
中の水素イオンの雛脱や転位、配位子自体の酸化還元等
を伴い、祈たな分子中の電子配置が生したり、配(ケさ
れる金属の原子価やイオン性が変動中ろ場合が生じるが
、このようならのら本発明の金属硫化物炭素複合材料の
出発物質とすることができる。−上記例示中にはこの上
うな配位化合物をち一部示した。
In our coordination compounds, the coordination r・
Due to the detachment and rearrangement of hydrogen ions in the molecule, and the oxidation-reduction of the ligand itself, the electron configuration in the molecule may be changed, and the valence and ionicity of the metal being arranged may change. However, such compounds can be used as starting materials for the metal sulfide carbon composite material of the present invention. In the above examples, some coordination compounds are shown.

このような有機金属化合物は賦形性に優れ、前駆体・L
゛合物様々な成形方法を用いて最終の金属硫化物炭素複
合材料の必要とする形状に併せて成形が可能である。バ
ルク体として加圧成形、押出成形、射出成)Fヨ等の一
般的な成形方法の他に分子量の制御により紡糸すること
や、ソート化及び薄膜化か可能である。
Such organometallic compounds have excellent shapeability and can be used as precursors and L.
The composite can be molded into the desired shape of the final metal sulfide carbon composite material using various molding methods. In addition to general molding methods such as pressure molding, extrusion molding, and injection molding as a bulk body, spinning by controlling the molecular weight, sorting, and thin film formation are also possible.

以」−述へた様にして得られる金属を含んだ面部体重合
物を各金属に適する温度条件を選んで焼成4゛ること?
こより本発明の金属硫化物炭素複合材料を得ることかで
きる。
- The metal-containing surface polymer obtained as described above is fired 4 times by selecting temperature conditions suitable for each metal.
From this, the metal sulfide carbon composite material of the present invention can be obtained.

焼成は通常窒素、アルゴン等の不活性ガス雰囲気下で常
圧で行−)ことか多いか、有機金属の酸化性、反応性ブ
rによって水素等の3元ガスの使用や、場合によっては
I 000 atm+ii7後の加圧下または減圧下で
の焼成が必要である。
Firing is usually carried out under an atmosphere of an inert gas such as nitrogen or argon at normal pressure. Depending on the oxidizing properties and reactivity of the organometallic, a ternary gas such as hydrogen may be used, or in some cases I Calcination under pressure or reduced pressure after 000 atm+ii7 is required.

焼成温度は、通常400〜2000℃が好ましい。また
、11機物を焼成するため熱分解する際に昇温コントロ
ールする必要かある。特にこの昇温過程では、マトリッ
クスの熱分解か重合を伴うことがあるため異常に発生ず
る熱を避ける必要かある。このため昇温速度を0.01
〜b 囲内で行うことが望ましい。
The firing temperature is usually preferably 400 to 2000°C. In addition, since 11 objects will be fired, it will be necessary to control the temperature rise during thermal decomposition. In particular, this heating process may involve thermal decomposition or polymerization of the matrix, so it is necessary to avoid abnormally generated heat. For this reason, the heating rate was set to 0.01
It is desirable to perform within the range of ~b.

更に、炭素化初期温度領域まで熱処理した後加圧成形を
施し、再び熱処理することにより、生産性を向」ニさせ
(ひる場合がある。
Furthermore, productivity may be improved (or reduced) by heat-treating to the carbonization initial temperature range, then performing pressure molding, and then heat-treating again.

最終処理温度における定温保持時間は05時間以上50
時間までか望ましい。以Fのようにして得られろ金属炭
素複合材料の構造及び組成を同定確認した。即ち原t−
Fの高分子化合物及びイイ機金属化合物は一般の何機化
合物及び有機金属化合物の構造決定に用いられる赤外分
光光度計(r I’l )、核磁気共鳴(NMR)、元
素分析、さらに紫外線分)し分子J?(UV)等の分光
学的方法により構造決定しノこ。
The constant temperature holding time at the final treatment temperature is 0.5 hours or more.
Preferably up to an hour. The structure and composition of the metal-carbon composite material obtained in the following manner were identified and confirmed. That is, the original t-
F's high molecular compounds and high-quality metal compounds can be measured using infrared spectrophotometer (rI'l), nuclear magnetic resonance (NMR), elemental analysis, and ultraviolet rays, which are used to determine the structures of general organic compounds and organometallic compounds. minute) and molecule J? The structure is determined by spectroscopic methods such as (UV).

焼成途中の過程では熱重里分析を行い、熱分解過程に伴
う減ti1の様子を観察した。焼成完了物中の含金属化
学種の同定には粉末X線回折(XRD)測定、制限視野
電子線回折(S A D)あるいは電子マイクロヒーム
回折(M13D)を用いた。鉄の硫化物の同定に関して
はメスバウアー分光法の併用した。焼成完了物中の巨視
的な金属硫化物の分布、分散状態は、走査型電子顕微鏡
(SEM)像及びX線マイクロアナライザー(EPMA
)像で解析した。
During the firing process, thermal analysis was conducted to observe the decrease in Ti1 due to the thermal decomposition process. Powder X-ray diffraction (XRD) measurement, selected area electron diffraction (SAD), or electron microheam diffraction (M13D) was used to identify metal-containing chemical species in the fired product. For the identification of iron sulfides, Mössbauer spectroscopy was used in combination. The macroscopic distribution and dispersion state of metal sulfides in the fired product can be determined using scanning electron microscope (SEM) images and X-ray microanalyzer (EPMA) images.
) images were analyzed.

更に微視的な金属硫化物の分布、分散状態、マトリック
スの炭素の状態は透過電子顕@鏡(TEM)像より観察
し、金属硫化物と7トリツクスの炭素の区別はエネルギ
ー分散型X線回折装置(E【)X)によった。
Furthermore, the microscopic distribution of metal sulfides, their dispersion state, and the state of carbon in the matrix are observed using transmission electron microscopy (TEM) images, and the distinction between metal sulfides and 7-trix carbon is performed using energy dispersive X-ray diffraction. According to the equipment (E[)X).

l−実施例] 以下実施例により本発明を更に詳細に説明するか、以下
の例はあくまで一例であって、これにより本発明の対象
範囲が限定されるものではない。
1-Example] The present invention will be explained in more detail with reference to Examples below.The following examples are merely examples, and the scope of the present invention is not limited thereby.

(実施例1) a)ポリ[(メルカプトフェニル)エチレン]の合成ボ
リスヂレンをテトラメチルエヂレンジアミンti (E
下、ソクロヘキザン中、ロープチルリヂウムと反応させ
た(12時間)。生成した暗赤色のポリ[(リチオフェ
ニル)エチレン]に05モル当m/モノマーユニットの
硫黄を添加し、12時間撹拌した。2規定の塩酸で加水
分解した後、T I−I F /水、THF/メタノー
ル、′r HF /ヘキザンテ再沈操作を行った粗生成
物を再度T HF +、:懸濁し、L + A L H
4を添加することにより、一部生成したS−8架橋も−
SH基に還元され標題のポリマーを得た。元素分析によ
り、ベンゼン環へのメルカプト基置換は13%であった
(Example 1) a) Synthesis of poly[(mercaptophenyl)ethylene] Borisdylene was synthesized with tetramethylethylenediamine ti (E
Below, it was reacted with rope tyrridium in isoclohexane (12 hours). To the resulting dark red poly[(lithhiophenyl)ethylene], 0.5 mole equivalent m/monomer unit of sulfur was added and stirred for 12 hours. After hydrolysis with 2N hydrochloric acid, the crude product was reprecipitated using T I-IF / water, THF / methanol, and 'r HF / hexante, and the crude product was suspended again in T HF + : L + A L H
By adding 4, the partially generated S-8 crosslinking also -
Reduction to SH groups gave the title polymer. Elemental analysis revealed that mercapto group substitution on the benzene ring was 13%.

11)前節で得たメルカプト基(−Sl−()を有する
ポリスチレンをアルゴン雰囲気下にT HFに溶解させ
ろ。ここへメルカプ)・基と当mの金属ナトリウムの細
片を注意しながら投入した。I−12ガスを発生しなが
ら徐々にナトリウム塩が形成された。ナトリウム片が消
失したらF eC12を添加した。24時間40℃で撹
拌後ヘキサンを加えて得られろポリマーを十分水洗した
後、乾燥するとFe−8結合を有する高分子錯体が得ら
れた。
11) Dissolve the polystyrene containing the mercapto group (-Sl-() obtained in the previous section in THF under an argon atmosphere. To this, carefully add the mercapto group and the metal sodium strips. Sodium salt was gradually formed with evolution of I-12 gas. When the sodium pieces disappeared, FeC12 was added. After stirring at 40° C. for 24 hours, hexane was added and the resulting polymer was thoroughly washed with water and dried to obtain a polymer complex having Fe-8 bonds.

FT3012の代わりにTlC14、NbC15、Cr
Cl3、MOCI3、Co Cl t、NiC1t、A
gC1を用いても同様にして各金属のチオラートポリマ
ーか得られた。以上のS−M−3(M−金属)架橋ポリ
マーをアルゴン気流中1000℃で熱分解(平均昇温速
度:0.30℃/min、 l OOOoCで2時間保
持)したところ、焼成収率7−38%で黒色の残渣を得
た。
TlC14, NbC15, Cr instead of FT3012
Cl3, MOCI3, CoClt, NiClt, A
Thiolate polymers of each metal were obtained in the same manner using gC1. When the above S-M-3 (M-metal) crosslinked polymer was thermally decomposed at 1000°C in an argon stream (average temperature increase rate: 0.30°C/min, held at 1 OOOoC for 2 hours), the calcination yield was 7. A black residue was obtained at -38%.

焼成物のXRD測定からいずれら金属硫化物が生成して
いることかイつかった。炭素基質は鉄、コバルト、ニッ
ケルの系では一部黒鉛化されているが、その他の金属系
では非晶質であった。XMA及び′I″EMを用いた解
析の結果、各金属硫化物の平均粒径はll−400nの
範囲内にあり、炭素基質中ての分散性は良好であった。
From the XRD measurement of the fired product, it was found that metal sulfides were generated. The carbon matrix was partially graphitized in iron, cobalt, and nickel systems, but was amorphous in other metal systems. As a result of analysis using XMA and 'I'' EM, the average particle size of each metal sulfide was within the range of 11-400n, and the dispersibility in the carbon matrix was good.

(実施例2) ポリスチレンスルフ1;ン酸カリウム塩を脱気、アルゴ
ン置換した最少屯の水に溶解した。これに飽和N i(
N O)、水溶液(S:N1=20:I)を加えろと−
S O3” N +”″′″03S−架橋により不溶化
したニッケルl;体高分子が析出した。これを遠心分離
にかけ上澄み液を捨てた。水洗/遠心分離を3回行った
後、エタノールで洗い、乾燥した。こうして得られたニ
ッケルースルポン酸塩を含むポリマーをアルゴン気流中
l000℃で焼成(2時間保持、平均昇温速度0.30
℃/m1n)したところ、超微粒状のNiSが極めて均
一に炭素マトリックス中に分散した。ニッケル硫化物/
炭素複合材を得た。このニッケル硫化物を含む炭素材の
電気伝導度はl02s/cmであり、この値は金属を含
まないポリスチレンスルホン酸を同様にして熱分解して
得た炭素質の電気伝導度1(I”87cmより4桁も大
きい。
(Example 2) Polystyrene sulfate potassium salt was dissolved in a minimum volume of water that had been degassed and replaced with argon. This saturation N i (
N O), add an aqueous solution (S:N1=20:I)-
SO3"N +""'"03S-Nickel insolubilized by crosslinking; body polymer precipitated. This was centrifuged and the supernatant liquid was discarded. After washing with water and centrifuging three times, it was washed with ethanol and dried. The polymer containing nickel-sulfonate thus obtained was calcined at 1000°C in an argon stream (held for 2 hours, average temperature increase rate 0.30°C).
As a result, ultrafine NiS particles were extremely uniformly dispersed in the carbon matrix. Nickel sulfide/
A carbon composite material was obtained. The electrical conductivity of this carbon material containing nickel sulfide is 102 s/cm, and this value is equal to the electrical conductivity 1 (I" 87 cm 4 orders of magnitude larger.

Claims (1)

【特許請求の範囲】 1、炭素を主成分とする炭素材料中に金属硫化物成分が
分散された金属硫化物炭素複合材料において、金属硫化
物成分がTi、V、Cr、Mn、Fe、Co、Ni、C
u、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hr
、Ta、W、Re、Os、Irから成る群から選ばれた
1種または2種以上の金属の硫化物からなる金属硫化物
超微粒子であることを特徴とする金属硫化物炭素複合材
料。 2、主鎖及び/または側鎖にS原子を含む配位能を有す
る原子団を備えた、配位可能な高分子化合物にTi、V
、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、
Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re
、Os、Ir、Ptから成る群から選ばれた1種以上の
金属を配位させて得られる有機金属高分子化合物を不活
性雰囲気下400℃〜2000℃の温度で熱処理するこ
とを特徴とする請求項1載の金属硫化物炭素複合材料の
製造方法。 3、重合可能な官能基を有し、かつ金属に配位しうるS
原子を含む原子団にTi、V、Cr、Mn、Fe、Co
、Ni、Cu、Zr、Nb、Mo、Ru、Rh、Pd、
Ag、Hf、Ta、W、Re、Os、Ir、Ptから成
る群から選ばれた1種以上の金属を配位させた有機金属
化合物の1種または2種以上を重合して得られる重合体
もしくはこれらの共重合体、またはこれらの重合体もし
くは共重合体の混合物を不活性雰囲気下400℃以上2
000℃以下の温度で熱処理することを特徴とする請求
項1記載の金属硫化物炭素複合材料の製造方法。 4、重合可能な官能基を有し、かつ金属に配位しうるS
原子を含む原子団にTi、V、Cr、Mn、Fe、Co
、Ni、Cu、Zr、Nb、Mo、Ru、Rh、Pd、
Ag、Hf、Ta、W、Re、Os、Ir、Ptから成
る群から選ばれた1種以上の金属を配位させた有機金属
化合物の1種または2種以上と、これと共重合し得る重
合性モノマーとを共重合して得られる共重合体もしくは
架橋重合体の混合物を不活性雰囲気下400℃以上20
00℃以下の温度で熱処理することを特徴とする請求項
1記載の金属硫化物炭素複合材料の製造方法。 5、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、T
a、W、Re、Os、Ir、Ptから成る群から選ばれ
た1種以上の金属が高分子鎖とσ−あるいはπ−結合性
炭素を介して結合し、高分子鎖の金属配位部位以外にS
原子を含む重合体を不活性雰囲気下400℃以上200
0℃以下の温度で熱処理することを特徴とする請求項1
記載の金属硫化物炭素複合材料の製造方法。 6、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
Zr、Nb、Mo、Ru、Rh、Pd、Ag、Hf、T
a、W、Re、Os、Ir、Ptから成る群から選ばれ
た1種以上の金属が高分子鎖とσ−あるいはπ−結合性
炭素を介して結合し、該金属の補助配位子中の少なくと
も1つがS原子を介して金属と結合している重合体を不
活性雰囲気下400℃以上2000℃以下の温度で熱処
理することを特徴とする請求項1記載の金属硫化物炭素
複合材料の製造方法。
[Claims] 1. In a metal sulfide carbon composite material in which a metal sulfide component is dispersed in a carbon material containing carbon as a main component, the metal sulfide component is Ti, V, Cr, Mn, Fe, Co. , Ni, C
u, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hr
, Ta, W, Re, Os, and Ir. 2. Ti, V
, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb,
Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re
, Os, Ir, and Pt, an organometallic polymer compound obtained by coordinating one or more metals selected from the group consisting of , Os, Ir, and Pt is heat-treated at a temperature of 400°C to 2000°C in an inert atmosphere. A method for producing a metal sulfide carbon composite material according to claim 1. 3. S that has a polymerizable functional group and can coordinate to metals
Ti, V, Cr, Mn, Fe, Co in atomic groups containing atoms
, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd,
A polymer obtained by polymerizing one or more organometallic compounds coordinated with one or more metals selected from the group consisting of Ag, Hf, Ta, W, Re, Os, Ir, and Pt. or these copolymers, or mixtures of these polymers or copolymers at 400°C or higher in an inert atmosphere.
2. The method for producing a metal sulfide carbon composite material according to claim 1, wherein the heat treatment is performed at a temperature of 000° C. or less. 4. S that has a polymerizable functional group and can coordinate to metals
Ti, V, Cr, Mn, Fe, Co in atomic groups containing atoms
, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Pd,
Can be copolymerized with one or more organometallic compounds coordinated with one or more metals selected from the group consisting of Ag, Hf, Ta, W, Re, Os, Ir, and Pt. A mixture of a copolymer or a crosslinked polymer obtained by copolymerizing with a polymerizable monomer is heated at 400°C or higher for 20 minutes in an inert atmosphere.
2. The method for producing a metal sulfide carbon composite material according to claim 1, wherein the heat treatment is performed at a temperature of 00° C. or lower. 5, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, T
One or more metals selected from the group consisting of a, W, Re, Os, Ir, and Pt are bonded to the polymer chain via a σ- or π-bonding carbon, forming a metal coordination site of the polymer chain. In addition to S
Polymers containing atoms are heated at 400℃ or higher at 200℃ or higher in an inert atmosphere.
Claim 1 characterized in that the heat treatment is performed at a temperature of 0°C or lower.
The method for manufacturing the metal sulfide carbon composite material described. 6, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zr, Nb, Mo, Ru, Rh, Pd, Ag, Hf, T
One or more metals selected from the group consisting of a, W, Re, Os, Ir, and Pt are bonded to the polymer chain via σ- or π-bonding carbons, and in the auxiliary ligand of the metal. The metal sulfide carbon composite material according to claim 1, wherein the polymer in which at least one of the metals is bonded to a metal via an S atom is heat-treated at a temperature of 400°C to 2000°C in an inert atmosphere. Production method.
JP1042139A 1988-03-12 1989-02-22 Composite material of metallic sulfide carbon and production thereof Pending JPH026312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042139A JPH026312A (en) 1988-03-12 1989-02-22 Composite material of metallic sulfide carbon and production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5865988 1988-03-12
JP63-58659 1988-03-12
JP63-58660 1988-03-12
JP1042139A JPH026312A (en) 1988-03-12 1989-02-22 Composite material of metallic sulfide carbon and production thereof

Publications (1)

Publication Number Publication Date
JPH026312A true JPH026312A (en) 1990-01-10

Family

ID=26381793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042139A Pending JPH026312A (en) 1988-03-12 1989-02-22 Composite material of metallic sulfide carbon and production thereof

Country Status (1)

Country Link
JP (1) JPH026312A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809490B2 (en) 2001-06-12 2004-10-26 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10785907B2 (en) 2015-07-24 2020-09-29 Irobot Corporation Controlling robotic lawnmowers based on fluctuating weather conditions
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173391B2 (en) 2001-06-12 2007-02-06 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US6809490B2 (en) 2001-06-12 2004-10-26 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US11231707B2 (en) 2014-12-15 2022-01-25 Irobot Corporation Robot lawnmower mapping
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US10785907B2 (en) 2015-07-24 2020-09-29 Irobot Corporation Controlling robotic lawnmowers based on fluctuating weather conditions
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10426083B2 (en) 2016-02-02 2019-10-01 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot

Similar Documents

Publication Publication Date Title
Chakroune et al. Acetate-and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies
King et al. Functionalization of fine particles using atomic and molecular layer deposition
Chen et al. In situ formation of Au/Pt bimetallic colloids on polystyrene microspheres: control of particle growth and morphology
Houdayer et al. New polyaniline/Ni (0) nanocomposites: Synthesis, characterization and evaluation of their catalytic activity in Heck couplings
Collins et al. Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals
Siburian et al. Formation process of Pt subnano-clusters on graphene nanosheets
JPH026312A (en) Composite material of metallic sulfide carbon and production thereof
Huang et al. Modulation of hydrogen evolution catalytic activity of basal plane in monolayer platinum and palladium dichalcogenides
JP5653696B2 (en) Carbon fiber aggregate
Andrews et al. Wrapping oligomers and polymers around metal atoms, metal clusters, and metal colloids
CN108028112B (en) Functionalized magnetic nanoparticle and preparation method thereof
US9205410B2 (en) One-step synthesis of monodisperse transition metal core-shell nanoparticles with solid solution shells
JP2013519515A (en) Production of carbon nanotubes
Han et al. Tailored palladium–platinum nanoconcave cubes as high performance catalysts for the direct synthesis of hydrogen peroxide
KR20130062902A (en) Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst
Kim et al. Studies on catalytic activity of hydrogen peroxide generation according to Au shell thickness of Pd/Au nanocubes
Zhao et al. Ultrasmall Pd nanoparticles supported on TiO2 for catalytic debenzylation via hydrogenative C–N bond cleavage
CN111250144A (en) Non-noble metal propane dehydrogenation catalyst with modified spherical mesoporous silica as carrier and preparation method and application thereof
Cotter et al. The impact of V doping on the carbothermal synthesis of mesoporous Mo carbides
KR101327812B1 (en) Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and highly conductive polymer nano-composite using the same
Yue et al. Tailoring asymmetric Cu-OP coupling site by carbothermal shock method for efficient vinyl chloride synthesis over carbon supported Cu catalysts
JP3497652B2 (en) Catalyst production method
Yao et al. One-pot synthesis of PtNi alloy nanoparticle-supported multiwalled carbon nanotubes in an ionic liquid using a staircase heating process
JP6760655B2 (en) Method for producing Group 10 element cluster carrier with precise control of atomic number in sub-nano region, platinum cluster carrier and catalyst
Wang et al. Preparation of styrene/acrylonitrile copolymer microspheres and their composites with metal particles