JPH09185410A - Method and device for controlling traveling of autonomous traveling vehicle - Google Patents

Method and device for controlling traveling of autonomous traveling vehicle

Info

Publication number
JPH09185410A
JPH09185410A JP8000393A JP39396A JPH09185410A JP H09185410 A JPH09185410 A JP H09185410A JP 8000393 A JP8000393 A JP 8000393A JP 39396 A JP39396 A JP 39396A JP H09185410 A JPH09185410 A JP H09185410A
Authority
JP
Japan
Prior art keywords
traveling
coordinates
unit
vehicle
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8000393A
Other languages
Japanese (ja)
Inventor
Hideyo Kitami
英世 喜多見
Yasuro Akisawa
安郎 秋沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Electric Systems Co Ltd
Original Assignee
Hitachi Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electric Systems Co Ltd filed Critical Hitachi Electric Systems Co Ltd
Priority to JP8000393A priority Critical patent/JPH09185410A/en
Publication of JPH09185410A publication Critical patent/JPH09185410A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce cost by controlling the unit traveling means of autonomous traveling vehicle by using a traveling history coordinate while filling untraveled coordinates with a traveling history to simplify a device without using any traveling range input device or position measuring instrument. SOLUTION: A front sensor 7, right side sensor 9 and left side sensor 8 are loaded on the autonomous vehicle, the position of wall or obstacle detected by the sensor is record and besides, traveling is controlled while recording the traveling of autonomous vehicle. Namely, the vehicle moves forth toward the boundary of wall, etc., turns to left or right at 90 deg. from the boundary when the boundary is detected, decides the range of traveling area after once turning around the boundary, successively travels out inside the untraveled area within the range of traveling area and stops when there is no untraveled area. Therefore, without using any traveling range input device for deciding the traveling range of autonomous vehicle or any position measuring instrument for measuring the position of autonomous vehicle itself, the vehicle can be traveled inside the traveling range surrounded by the boundary such as walls without overlapping any area while avoiding the obstacle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自律走行車の走行
制御方法および走行制御装置に係り、自走式掃除機、自
走式芝刈機などに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling control method and a traveling control device for an autonomous vehicle, and more particularly to a self-propelled cleaner, a self-propelled lawn mower, and the like.

【0002】[0002]

【従来の技術】壁などに囲まれた領域内を障害物を避け
ながら自律走行する従来技術の自律走行車の走行制御装
置としては、例えば特開平2−81210号公報に開示
されるものがある。上記装置によれば、自律走行車の走
行範囲を設定するための走行範囲入力装置や、自律走行
車の自己位置を計測するための位置計測装置が設けられ
ている。
2. Description of the Related Art A conventional traveling control device for an autonomous vehicle that travels autonomously in an area surrounded by walls and the like while avoiding obstacles is disclosed, for example, in Japanese Unexamined Patent Publication No. 2-81210. . According to the above device, a traveling range input device for setting the traveling range of the autonomous traveling vehicle and a position measuring device for measuring the self-position of the autonomous traveling vehicle are provided.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、走
行範囲入力装置や位置計測装置が使用されているので、
構造が複雑となっている。従って本発明の目的は、走行
範囲入力装置や位置計測装置を用いず単純化しコスト低
減に結び付く自律走行車の走行制御方法及び装置を提供
することにある。
In the above prior art, since the traveling range input device and the position measuring device are used,
The structure is complicated. Therefore, an object of the present invention is to provide a traveling control method and device for an autonomous traveling vehicle, which simplifies without using a traveling range input device or a position measuring device and leads to cost reduction.

【0004】[0004]

【課題を解決するための手段】本発明の特徴は、自律走
行車の座標保有手段が保有する1走行単位を1単位座標
とする未走行座標上に、前記自律走行車が走行し当該自
律走行車の走行来歴として得た前記1走行単位毎の前記
1単位座標としての走行来歴座標を記録し、前記未走行
座標を前記走行来歴座標で埋めながら前記自律走行車を
継続走行させるよう、前記走行来歴座標を使って前記自
律走行車の単位走行手段を制御する自律走行車の走行制
御方法にある。
A feature of the present invention is that the autonomous traveling vehicle travels on an untraveled coordinate set in which one traveling unit held by the coordinate holding means of the autonomous traveling vehicle is one unit coordinate. The travel history coordinates as the one unit coordinate for each travel unit obtained as the travel history of the vehicle are recorded, and the autonomous traveling vehicle is continuously traveled while filling the untraveled coordinates with the travel history coordinates. In the traveling control method of the autonomous traveling vehicle, the unit traveling means of the autonomous traveling vehicle is controlled by using the history coordinates.

【0005】また、本発明の別の特徴は、1走行単位を
1単位座標とする基準座標を保有する自律走行車を単位
走行させて該1走行単位毎に境界を検出し、検出した該
境界を前記1単位座標毎の境界座標として設定し、該境
界座標を前記1走行単位毎に前記基準座標に記録するこ
とにより、前記基準座標上に前記境界座標で描かれた閉
じた領域として前記自律走行車の走行領域座標を把握
し、前記自律走行車が該走行領域座標内を走行して得ら
れる前記1走行単位毎の走行来歴を前記自律走行車の前
記1単位座標毎の走行来歴座標として設定し、該走行来
歴座標を前記1走行単位毎に前記基準座標に記録するこ
とにより、前記走行領域座標のうちから前記走行来歴座
標を差し引いて前記自律走行車が走行していない未走行
領域として未走行座標を把握し、前記走行領域を隈なく
走行させるために前記走行領域座標内の前記未走行座標
を埋める走行を前記自律走行車に実行させるよう、前記
自律走行車の前記単位走行を制御する自律走行車の走行
制御方法にある。
Further, another feature of the present invention is that an autonomous traveling vehicle having reference coordinates in which one traveling unit is one unit coordinate is made to travel as a unit, a boundary is detected for each traveling unit, and the detected boundary is detected. Is set as the boundary coordinate for each of the unit coordinates, and the boundary coordinate is recorded in the reference coordinate for each of the traveling units, so that the autonomous operation is performed as a closed area drawn by the boundary coordinate on the reference coordinate. The traveling history coordinates of the traveling vehicle are grasped, and the traveling history for each traveling unit obtained by the autonomous traveling vehicle traveling within the traveling area coordinates is used as traveling history coordinates for each one unit coordinate of the autonomous traveling vehicle. By setting and recording the traveling history coordinates in the reference coordinates for each one traveling unit, the traveling history coordinates are subtracted from the traveling area coordinates to determine an untraveled area in which the autonomous traveling vehicle is not traveling. Non-running seat The autonomous traveling that controls the unit traveling of the autonomous traveling vehicle so as to cause the autonomous traveling vehicle to perform the traveling to fill the untraveled coordinates in the traveling area coordinates in order to travel the traveling area It is in the driving control method of the car.

【0006】そして、本発明による自律走行車の走行制
御装置の特徴は、所定走行手段を有し自律走行車を1走
行単位毎に走行させる単位走行手段と、該単位走行手段
により前記自律走行車が走行した前記1走行単位を1単
位座標とする基準座標を保有する座標保有手段と、前記
1走行単位毎に境界を検出する境界検出手段と、検出さ
れた該境界を前記1単位座標毎の境界座標として設定す
る境界座標設定手段と、該境界座標を前記1走行単位毎
に前記基準座標に記録する境界記録手段と、前記境界座
標で前記基準座標上に描かれた閉じた領域としての前記
自律走行車の走行領域座標を演算する走行領域演算手段
と、前記自律走行車の前記1走行単位毎の走行来歴を前
記1単位座標毎の走行来歴座標に変換し前記1単位座標
毎に前記基準座標に記録する来歴記録手段と、前記基準
座標に前記境界座標及び前記走行来歴座標が記録されて
いない未走行座標を演算する未走行領域演算手段と、該
未走行座標に基づいて当該未走行座標を埋める走行を実
行させるよう前記単位走行手段を制御する走行制御手段
と、を備えるにある。
The traveling control device for an autonomous traveling vehicle according to the present invention is characterized by a unit traveling means having a predetermined traveling means for traveling the autonomous traveling vehicle for each traveling unit, and the autonomous traveling vehicle by the unit traveling means. Coordinate holding means for holding reference coordinates in which the one traveling unit in which the vehicle travels is defined as one unit coordinate, boundary detecting means for detecting a boundary for each one traveling unit, and the detected boundary for each one unit coordinate. Boundary coordinate setting means for setting the boundary coordinates, boundary recording means for recording the boundary coordinates in the reference coordinates for each traveling unit, and the boundary coordinates as the closed area drawn on the reference coordinates. A traveling area calculation means for calculating traveling area coordinates of the autonomous traveling vehicle; and a traveling history of each of the traveling units of the autonomous traveling vehicle converted into traveling history coordinates of each of the unit coordinates, and the reference for each of the unit coordinates. Coordinate History recording means for recording, untraveled area computing means for computing untraveled coordinates in which the boundary coordinates and the traveling history coordinates are not recorded in the reference coordinates, and the untraveled coordinates are filled based on the untraveled coordinates. Traveling control means for controlling the unit traveling means so as to execute traveling.

【0007】本発明によって、走行範囲入力装置や位置
計測装置を使用せずに、走行領域内のどこからスタート
しても障害物を回避しながら走行領域内を隈なく走行す
る自律走行車が得られる。
According to the present invention, it is possible to obtain an autonomous vehicle which travels all over the travel area while avoiding obstacles regardless of where it starts within the travel area without using a travel range input device or a position measuring device. .

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。 まず、本発明による自律走
行車(以下、自律車と略す)の走行制御方法の基本思想と
しての特徴について説明する。特徴の1つである自律車
の自己位置座標の設定は、例えば、プログラム上で定め
た所定走行時間あるいは自律車が走行した所定距離を1
区間とし、この1区間を1走行単位とし、該1走行単位
を自律車の走行制御装置の記憶装置内に予め保有してい
る基準座標上の1単位座標と定義し、任意の自律車の走
行地点における自己位置座標が該基準座標における1点
として設定される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. First, the characteristics as a basic idea of a traveling control method for an autonomous vehicle (hereinafter, abbreviated as an autonomous vehicle) according to the present invention will be described. One of the characteristics is to set the self-position coordinate of the autonomous vehicle by, for example, setting a predetermined traveling time defined on the program or a predetermined distance traveled by the autonomous vehicle to 1
A section is defined as one section, and this one section is defined as one traveling unit, and the one traveling unit is defined as one unit coordinate on the reference coordinate that is stored in advance in the storage device of the traveling control device of the autonomous vehicle, and the traveling of any autonomous vehicle is defined. The self position coordinate at the point is set as one point in the reference coordinate.

【0009】そして、自律車のスタート地点を初期自己
位置座標としての座標(X,Y)を設定する。なお、この
初期自己位置座標を該基準座標の中心点座標に設定すれ
ば、自律車の走行範囲の制限が最も広くなり記憶装置の
記録容量に左右される基準座標が最大限に有効に利用さ
れる。また、自律車の走行方向は、該スタート地点で自
律車が向いている方向(一般には前進方向)が基準方向と
して認識される。従って、前進方向を基準にして、4方
向(自律車の前後左右方向)が認識され、スタート地点の
自己位置座標からどの方向に何区間(どれだけの座標点)
走行したかが把握される。
Then, the coordinates (X, Y) are set as the initial self-position coordinates of the start point of the autonomous vehicle. If the initial self-position coordinate is set to the center point coordinate of the reference coordinate, the limit of the traveling range of the autonomous vehicle becomes the widest, and the reference coordinate that depends on the recording capacity of the storage device is used to the maximum extent. It As for the traveling direction of the autonomous vehicle, the direction in which the autonomous vehicle is facing at the start point (generally the forward direction) is recognized as the reference direction. Therefore, four directions (front, rear, left and right direction of the autonomous vehicle) are recognized based on the forward direction, and in what direction from what position the start position is, what section (how many coordinate points)
You can see if you have run.

【0010】次に、自律車には、前方、右側および左側
に存在する壁または障害物などの境界を検知する装置
(以下センサと称す)が搭載され、自律車が1区間毎に走
行して各センサが壁または障害物などの境界を検知した
場合は、該境界(壁または障害物等)を1単位座標毎に境
界座標(壁座標または障害物座標等)として認識し、か
つ、これらの境界座標を基準座標に記録する。一方、自
律車の自己位置座標として、自律車が1区間毎に走行し
た走行来歴を1単位座標毎に走行来歴座標として記録す
る。
Next, an autonomous vehicle has a device for detecting boundaries of walls, obstacles, etc. existing on the front, right side and left side.
(Hereinafter referred to as a sensor), when an autonomous vehicle travels in each section and each sensor detects a boundary such as a wall or an obstacle, the boundary (wall or obstacle, etc.) Are recognized as boundary coordinates (wall coordinates, obstacle coordinates, etc.), and these boundary coordinates are recorded as reference coordinates. On the other hand, as the self-position coordinates of the autonomous vehicle, the travel history of the autonomous vehicle traveling in each section is recorded as the travel history coordinate for each unit coordinate.

【0011】そして、自律車が所定走行法によって走行
し続けて、周囲の全ての境界座標が認識記録された時点
において、境界座標で基準座標上に描かれた閉じた領
域、すなわち、境界座標で囲まれた領域としての走行領
域座標が得られ、走行領域座標で表わされた自律車の走
行領域として把握されることになる。一方、自律車が走
行し続けているときに、自律車が走行した走行来歴が1
走行単位毎に把握され、該1走行単位毎の走行来歴が自
律車の1単位座標毎の走行来歴座標として設定され、該
走行来歴座標が基準座標に記録される。しかし、後述す
るように自律車が走行した走行来歴の全てを走行来歴座
標として記録するものではない。そして、走行領域とし
ての走行領域座標は、走行来歴としての走行来歴座標と
走行していない未走行領域としての未走行座標とに区別
される。すなわち、 走行領域座標−走行来歴座標=未
走行座標 である。最終的に、走行領域座標内における
未走行座標の有無を把握し、走行領域座標内の該未走行
座標を埋めるような走行を実行させ、自律車を走行領域
内を隈なく走行させる制御方法(走行領域を走破する制
御方法)である。
Then, when the autonomous vehicle continues to travel according to the predetermined traveling method and all the boundary coordinates of the surrounding are recognized and recorded, the closed area drawn on the reference coordinates by the boundary coordinates, that is, the boundary coordinates. The traveling area coordinates as the enclosed area are obtained, and are grasped as the traveling area of the autonomous vehicle represented by the traveling area coordinates. On the other hand, when the autonomous vehicle continues to travel, the travel history of the autonomous vehicle traveling is 1
It is grasped for each traveling unit, the traveling history for each traveling unit is set as traveling history coordinates for each unit coordinate of the autonomous vehicle, and the traveling history coordinates are recorded in the reference coordinates. However, as will be described later, not all of the travel history of the autonomous vehicle traveling is recorded as the travel history coordinates. The traveling area coordinates as the traveling area are classified into traveling history coordinates as traveling history and untraveled coordinates as untraveled areas. That is, traveling area coordinates-travel history coordinates = untraveled coordinates. Finally, a control method of grasping the presence or absence of untraveled coordinates in the travel area coordinates, executing a travel to fill the untraveled coordinates in the travel area coordinates, and causing the autonomous vehicle to travel throughout the travel area ( This is a control method for running through the running area).

【0012】また、本発明の別の特徴として、単位走行
法としての「右優先走行制御法」または「左優先走行制御
法」がある。右優先走行制御法とは、自律車が右側の壁
または障害物づたいに必ず走行することを義務付ける規
則である。この規則が守られれば一般に閉領域である走
行領域を周回し、該走行領域を必ず把握することができ
ると共に、ランダムに走行するよりも効率良く境界を把
握することができる。この時、走行した来歴を同時に記
録することも重要である。既に走行した個所に印を付け
て重複を避けるためである。迷路からの脱出と似た原理
である。
Another feature of the present invention is a "right priority traveling control method" or a "left priority traveling control method" as a unit traveling method. The right-priority driving control method is a rule that obliges an autonomous vehicle to always run on the right wall or obstacles. If this rule is observed, it is possible to orbit the traveling area, which is generally a closed area, to grasp the traveling area without fail, and to grasp the boundary more efficiently than to drive at random. At this time, it is also important to record the history of running at the same time. This is to mark the points that have already been driven to avoid duplication. It is a principle similar to escape from a maze.

【0013】具体的には、自律車が1区間毎に走行し走
行来歴を記録し到達した任意の走行地点で、記録された
前述の各座標データに基づいて、該走行地点でこれから
走行しようとする自己位置座標の前後左右の座標に対し
て、壁または障害物等がないか、走行来歴がないかなど
を「右側、前方、左側、後方の優先順に判定を行い次に
進む方向を決め進行する走行法」である。これが「右優先
走行制御法」である。なお、「左優先走行制御法」は「左
側、前方、右側、後方の優先順に判定を行い次に進む方
向を決め進行する走行法」である。また、「直進優先走行
制御法」は「前方、右側、左側、後方の優先順」である。
Specifically, an autonomous vehicle travels in each section, records a travel history and reaches an arbitrary travel point, and based on the above-mentioned coordinate data recorded, tries to travel at that travel point from now on. With respect to the front, rear, left, and right coordinates of the self-position coordinate, whether there is a wall or an obstacle, or whether there is no history of driving Driving method ". This is the "right priority driving control method". The "left-priority traveling control method" is "a traveling method in which the left side, the front side, the right side, and the rear side are determined in the order of priority and the next direction is determined to proceed." The "straight ahead priority traveling control method" is "priority order of front, right side, left side and rear side".

【0014】まず、自律車は、スタート地点より1区間
前進をくり返し壁などの境界を目指す。そして、前方セ
ンサが壁を検知したときに、壁に対して90度左に向か
せた後に1区間前進させ「右優先走行制御法」で進行させ
る。(90度右に向かせた後に左優先走行制御法でも可
である。)その後、右側の壁づたいに走行すれば周回す
ることができ、周回した時点で走行領域の決定を行うこ
とにより、自律車が囲まれた閉領域としての走行領域を
把握することができる。同時に壁づたいに走行し始めた
ら走行来歴を記録する。なお、スタート地点から壁など
の境界を検知する迄の走行している間は、走行来歴を記
録しない方が効率の良い走行ができる。
First, the autonomous vehicle repeatedly moves forward one section from the start point toward a boundary such as a wall. Then, when the front sensor detects a wall, it is directed to the left by 90 degrees with respect to the wall and then moved forward by one section to proceed according to the "right priority traveling control method". (You can also use the left-priority driving control method after turning 90 degrees to the right.) After that, you can go around if you run on the right wall, and by determining the running area at the time of turning, you can drive the autonomous vehicle. It is possible to grasp the traveling area as a closed area surrounded by. At the same time, if you start to run on the wall, record the running history. It should be noted that, while the vehicle is traveling from the start point to the detection of a boundary such as a wall, it is more efficient to record no traveling history.

【0015】このように「右優先走行制御法」で走行し、
壁または障害物を検知し走行来歴を記録し境界沿いを一
周し、自律車が走行領域(走行領域座標)を把握した後
は、一般的には、把握した境界(境界座標)の内側の走行
来歴(走行来歴座標)のない未走行領域(未走行座標)を埋
め尽くすように、右優先走行制御法により走行来歴(走
行来歴座標)を境界(境界座標)に置き換えた形で、該走
行来歴(走行来歴座標)づたいに左回りに周回走行し、走
行領域を走破することになる。
As described above, the vehicle travels according to the "right priority traveling control method",
After detecting a wall or an obstacle, recording the driving history and making a round along the boundary, and after the autonomous vehicle grasps the traveling area (traveling area coordinates), generally, the vehicle travels inside the grasped boundary (boundary coordinates). The running history (running history coordinates) is replaced with the boundary (boundary coordinates) by the right priority running control method so that the unrunning area (unrunning coordinates) without history (running history coordinates) is filled up. (Running history coordinates) As a result, the vehicle travels counterclockwise and runs through the running area.

【0016】しかしながら、自律車の自己位置座標の前
後左右の座標の全てに、走行来歴があると判定される
が、自己位置座標の前後左右の座標以外に走行来歴のな
い座標(または座標領域)が残っている場合が発生する。
したがって、自律車の自己位置座標の前後左右の座標の
すべてに走行来歴ありと判定された場合は、基準座標に
描かれた走行領域内の走行来歴のない座標(または座標
領域)が残っているかを判定し、残っていなければ自律
車を停止する。
However, it is determined that all of the front, rear, left, and right coordinates of the self-position coordinates of the autonomous vehicle have a travel history, but the coordinates (or coordinate area) having no travel history other than the front, rear, left, and right coordinates of the self-position coordinates. Occurs when there are still.
Therefore, if it is determined that there is a driving history in all of the front, rear, left, and right coordinates of the self-position coordinate of the autonomous vehicle, there are remaining coordinates (or coordinate areas) that have no driving history in the driving area drawn in the reference coordinates. If there is no remaining vehicle, the autonomous vehicle is stopped.

【0017】残っていれば、残っている座標領域内の座
標の1点を代表座標値として選び(例えば一番大きい座
標値)、自律車の自己位置座標と上記で選んだ代表座標
のX方向とY方向とからどちらの差が大きいかを判定
し、その方向で座標の大小比較を行い走行方向を仮決定
し、さらに、直進優先走行制御法で進む方向を決め、そ
の方向に1区間進む(以下、これを「残方向直進優先走
行制御法」と称す)。
If it remains, one point of the coordinates in the remaining coordinate area is selected as the representative coordinate value (for example, the largest coordinate value), and the self-position coordinate of the autonomous vehicle and the representative coordinate selected above in the X direction. It is determined which of the two directions is larger than the Y direction, the size of the coordinates is compared in that direction to temporarily determine the traveling direction, and the traveling direction is determined by the straight-ahead priority traveling control method. (Hereinafter, this is referred to as "remaining direction straight ahead priority traveling control method").

【0018】次に、上記残方向直進優先走行制御法にて
走行中、自律車の自己位置の座標の前後左右の座標のう
ちどれか1つでも走行来歴がある座標でなくなったら、
走行来歴のない座標領域に達したと判断し、直進優先走
行制御法にて進み、自律車の自己位置の前後左右の座標
共走行来歴のある座標となった時点で、走行範囲の決定
を行い、走行範囲内で走行来歴のない座標が残っている
かを検索し、残っていなければ停止する。
Next, while traveling by the remaining direction straight ahead priority traveling control method, if any one of the front, rear, left and right coordinates of the coordinates of the self position of the autonomous vehicle is no longer the traveling history,
It is determined that the vehicle has reached a coordinate area where there is no running history, and the vehicle travels in accordance with the straight ahead priority running control method. , Searches for coordinates that have no history of travel within the travel range, and if there are no coordinates, stop.

【0019】更に残っていれば、残方向直進優先走行制
御法に戻り、直進優先走行制御法、走行範囲の決定、走
行範囲内で走行来歴のない座標が残っているかの検索を
繰り返しつつ、未走行座標を埋め尽くすように走行し、
走行来歴のない座標がなくなった時点で停止する。以上
の自律車の走行制御方法により、自律車はどこからスタ
ートしても、効率良く、すなわち、重複走行を最小限に
抑えて、自律車自身が障害物を含めて把握した境界に囲
まれた走行領域内を走破することができる。
If there is still more, the process returns to the remaining direction straight ahead priority traveling control method, and the straight ahead priority traveling control method, the determination of the traveling range, and the search for the coordinates having no traveling history within the traveling range are repeated, and Run to fill the running coordinates,
It will stop when there are no coordinates with no driving history. With the above autonomous vehicle traveling control method, no matter where the autonomous vehicle starts, it is efficient, that is, it minimizes overlapping traveling, and travels within the boundaries that the autonomous vehicle itself grasps including obstacles. You can run through the area.

【0020】次に、本発明の実施の形態について、図面
を参照し説明する。走行制御方法のロジックをプログラ
ムにし半導体記憶素子(ROM)に書き込み、走行制御す
る本発明による一実施例である。図1は、本発明による
一実施例の自律車の走行制御装置を搭載した自律車を示
す図である。 自律車50は、車体フレーム1、左・右駆
動輪2,3、補助輪6などを含む車体手段と、駆動輪を
駆動する左・右モータ4,5などを含む駆動手段と、自
律車の走行制御装置60などを含む制御手段とから構成さ
れる。そして、走行制御装置60は、狭義に解釈すれば後
述するロジックコントローラ16に該当し、広義に解釈
すれば壁または障害物を検出する前方センサ7,左セン
サ8,右センサ9およびロジックコントローラ16など
を含めた装置に該当する。本実施例では前者として説明
する。
Next, embodiments of the present invention will be described with reference to the drawings. 1 is an embodiment of the present invention in which the logic of a travel control method is programmed and written in a semiconductor memory device (ROM) to control travel. FIG. 1 is a diagram showing an autonomous vehicle equipped with a traveling control device for an autonomous vehicle according to an embodiment of the present invention. The autonomous vehicle 50 includes a vehicle body means including vehicle body frames 1, left / right drive wheels 2 and 3, auxiliary wheels 6, drive means including left / right motors 4 and 5 for driving the drive wheels, and And a control means including the traveling control device 60 and the like. The travel control device 60 corresponds to a logic controller 16 described later in a narrow sense, and the front sensor 7, the left sensor 8, the right sensor 9 and the logic controller 16 which detect a wall or an obstacle in a broad sense. It corresponds to the device including. In the present embodiment, the former case will be described.

【0021】図2は、本発明による一実施例の走行制御
方法を示すフローチャートである。図3は、本発明の走
行制御方法による一実施例の走行軌跡を示す図である。
図2、図3を参照しながら本実施例について説明する。
図3において、走行制御装置内の記録装置の基準座標に
描かれた壁10に囲まれた走行領域内を、自律車が走行
した場合の軌跡が示されている。図3の実施例では、A
点に自律車を置き、A点のスタート地点において、自律
車の前進方向(矢印の方向)は壁に平行な方向とし、本実
施例の場合は、自律車の右側は壁に接しているものとす
る。
FIG. 2 is a flow chart showing a traveling control method according to an embodiment of the present invention. FIG. 3 is a diagram showing a travel locus of an embodiment according to the travel control method of the present invention.
This embodiment will be described with reference to FIGS. 2 and 3.
In FIG. 3, a locus when an autonomous vehicle travels in a travel area surrounded by a wall 10 drawn at the reference coordinates of the recording device in the travel control device is shown. In the embodiment of FIG. 3, A
An autonomous vehicle is placed at a point, and the forward direction (direction of the arrow) of the autonomous vehicle is parallel to the wall at the start point of point A. In the case of this embodiment, the right side of the autonomous vehicle is in contact with the wall. And

【0022】まず、A点に置かれた自律車の電源スイッ
チを入れると走行制御装置内の記録装置(RAM)に白紙
状態の基準座標が保有され、該基準座標の中心点座標に
は、自律車が最初にスタートするスタート地点であるA
点の初期自己位置座標が、設定される。自律車が始動さ
れると図2のステップS1が実行されるとともに、自律
車の右方に壁があるので右センサが作動し、右側に壁あ
りと検知され、自律車の自己位置座標の右側の座標に壁
ありとして境界座標を記録し、壁などの境界を目指し、
A点から1区間前進する。そして、B点に到達する。A
点からB点の1区間だけ前進することによって初めて、
1走行単位を1単位座標とする座標の1点が得られる。
この場合、A点から1区間前進したが走行来歴を記録し
ないことにする。
First, when the power switch of the autonomous vehicle placed at the point A is turned on, reference coordinates in a blank state are held in the recording device (RAM) in the travel control device, and the center point coordinates of the reference coordinates are autonomous. A is the starting point where the car first starts
The initial self-position coordinates of the point are set. When the autonomous vehicle is started, step S1 of FIG. 2 is executed, and since the wall is on the right side of the autonomous vehicle, the right sensor is activated and it is detected that there is a wall on the right side. Record the boundary coordinates as if there is a wall at the coordinates of, aim at the boundary of the wall,
Move forward one section from point A. Then, the point B is reached. A
Only by moving forward from the point to point B,
One point of coordinates with one traveling unit as one unit coordinate is obtained.
In this case, although the vehicle has advanced one section from point A, the driving history is not recorded.

【0023】また、自律車は必ずしも側壁に平行あるい
は前方壁に垂直に走行するものでないので、自律車の走
行姿勢制御が別途必要であるが、本実施例では側壁に平
行あるいは前方壁に垂直に走行するものとし、走行姿勢
制御については割愛する。自律車が1区間前進したB点
において、前方に壁があるので前方センサが作動し、ス
テップS2で前方に壁があると判定されると共に、右側
に壁があるので右センサが作動する。即ち、前方センサ
及び右センサから、前方及び右側に壁ありと検知され
る。また、自律車の自己位置座標の前方座標及び右側座
標に壁ありとして境界座標を記録する。と同時にB点の
自己位置座標に走行来歴を記録する。さらに、前方セン
サが作動したこと、換言すれば壁を検知したことを起点
として、ステップS2’にて壁に対し90度左に自律車
の向きを変える左転回を実行し、1区間前進しC点に至
る。
Further, since the autonomous vehicle does not necessarily run parallel to the side wall or vertically to the front wall, it is necessary to separately control the traveling attitude of the autonomous vehicle. However, in the present embodiment, the autonomous vehicle runs parallel to the side wall or perpendicular to the front wall. It is assumed that the vehicle runs, and the running posture control is omitted. At the point B where the autonomous vehicle has moved forward by one section, the front sensor operates because there is a wall in front, it is determined in step S2 that there is a wall in front, and the right sensor operates because there is a wall on the right side. That is, the front sensor and the right sensor detect that there are walls on the front and right sides. In addition, the boundary coordinates are recorded as a wall at the front coordinates and the right coordinates of the self-position coordinates of the autonomous vehicle. At the same time, the driving history is recorded in the self-position coordinates of point B. Further, starting from the fact that the front sensor has actuated, in other words, the detection of the wall, in step S2 ′, a left turn is performed to change the direction of the autonomous vehicle to the left by 90 degrees with respect to the wall, and moves forward for one section C To the point.

【0024】次に、C点において、ステップS3の右優
先走行制御法で判定する。即ち、右優先走行しようとす
るが、右センサから右側に壁ありと検知される。この
時、自律車の自己位置座標の右側の座標に壁ありと記録
する。そして、壁がなく走行来歴がないC1点へと1区
間前進する。同時に、自己位置座標に走行来歴を記録す
る。上記を繰り返し、C1点からC2点に至る。C2点に
おいては、自律車の前方及び右側に壁があるので、ステ
ップS3の右優先走行制御法により自律車の自己位置座
標の前方座標及び右側座標に壁ありと記録すると共に、
自律車の自己位置座標に走行来歴を記録し、壁に対し9
0度左に向きを変え、1区間前進する。そしてステップ
S3の右優先走行制御法にて、C2〜C3〜C4点と継続
走行し、図示のように周回しA点に至る。
Next, at the point C, a determination is made by the right priority traveling control method in step S3. That is, the driver tries to run on the right priority, but the right sensor detects that there is a wall on the right side. At this time, it is recorded that there is a wall at the coordinate on the right side of the self-position coordinate of the autonomous vehicle. Then, it advances one section to point C1 where there is no wall and there is no history of travel. At the same time, the driving history is recorded in the self-position coordinates. The above is repeated until the C1 point is reached to the C2 point. At point C2, there are walls in front of and on the right side of the autonomous vehicle, so the front priority coordinate and the right coordinate of the self-position coordinate of the autonomous vehicle are recorded as having a wall by the right priority traveling control method in step S3.
Record the driving history in the self-position coordinates of the autonomous vehicle, and
Turn 0 degrees to the left and move forward for one section. Then, according to the right priority traveling control method in step S3, the vehicle continuously travels to the points C2 to C3 to C4, and circulates to the point A as illustrated.

【0025】A点において、右側には壁があるので右側
壁を記録し、A点の自己位置座標に走行来歴を記録す
る。次にステップS4の自律車の自己位置座標の右側、
前方、左側の座標に走行来歴があるかを記録装置内の座
標データより判定し、A点の前方のB点に走行来歴があ
るので、この時点で壁沿いを一周したと判断し、ステッ
プS5の走行領域の決定により、自律車が囲まれた閉領
域としての走行領域を把握したことになる。
At the point A, since there is a wall on the right side, the right side wall is recorded, and the traveling history is recorded in the self position coordinates of the point A. Next, to the right of the position coordinates of the autonomous vehicle in step S4,
It is determined from the coordinate data in the recording device whether or not there is a running history at the coordinates on the front and left sides. Since there is a running history at the point B ahead of the point A, it is determined at this point that the vehicle has made a round along the wall, and step S5 By determining the traveling area of, the traveling area as a closed area in which the autonomous vehicle is surrounded is grasped.

【0026】次に、ステップS6の右優先走行制御法に
より、右側の壁、前方の走行来歴から、自律車の自己位
置座標に走行来歴を記録すると共に、90度左に向きを
変え1区間前進する。D点において、自律車の自己位置
座標に走行来歴を記録すると共に、ステップS7にて自
律車の自己位置座標の前後左右の座標の内どれかに走行
来歴のない座標があるかを判定し、前方の座標に走行来
歴がないので、ステップS6の右優先走行制御法により
前方に1区間進む。E点でもD点と同じ判定を行い同じ
動作となる。
Next, according to the right priority traveling control method in step S6, the traveling history is recorded from the traveling history on the right side wall and the front side to the self-position coordinates of the autonomous vehicle, and the direction is turned 90 degrees to the left to advance one section. To do. At point D, the travel history is recorded in the self-position coordinates of the autonomous vehicle, and it is determined in step S7 whether any of the front, rear, left, and right coordinates of the self-position coordinates of the autonomous vehicle has a travel history-free coordinate, Since there is no travel history at the coordinates in the front, the vehicle travels forward one section by the right priority travel control method in step S6. The same judgment is made at point E as at point D, and the operation is the same.

【0027】F点において、自律車の自己位置座標に走
行来歴を記録すると共に、ステップS7の判定で自律車
の自己位置座標の前後左右の座標のいずれにも走行来歴
があるので、ステップS8にて走行領域内に走行来歴の
ない座標(または座標領域)が残っているかを判定し、走
行来歴のない座標がないのでステップS15にて自律車
の走行を停止し、プログラムを終了する。
At point F, the traveling history is recorded in the self-position coordinates of the autonomous vehicle, and the traveling history is recorded in the front, rear, left, and right coordinates of the self-position coordinates of the autonomous vehicle in the determination of step S7. Then, it is determined whether or not there are any coordinates (or coordinate areas) with no travel history in the travel area. Since there are no coordinates with no travel history, the autonomous vehicle travel is stopped in step S15, and the program ends.

【0028】図4は、本発明の走行制御方法による他の
実施例の走行軌跡を示す図である。壁10などに囲まれ
た走行領域内を、自律車が障害物11を避けながら走行
した場合の軌跡を示している。図2は、走行制御方法を
示すフローチャートである。図2,図4を参照しながら
本実施例について説明する。
FIG. 4 is a diagram showing a traveling locus of another embodiment according to the traveling control method of the present invention. The locus | trajectory when an autonomous vehicle runs while avoiding the obstacle 11 in the inside of the traveling area surrounded by the wall 10 etc. is shown. FIG. 2 is a flowchart showing the travel control method. This embodiment will be described with reference to FIGS.

【0029】A点に置かれた自律車の電源スイッチが入
りプログラムが開始されると、走行制御装置60内の記録
装置に白紙状態の基準座標が保有される。また、このA
点の座標が初期自己位置座標として基準座標の中心座標
に記録される。そして、自律車が始動されるとA点でス
テップS1が実行され、自律車は1区間前進する。この
1区間前進することにより、1走行単位を1単位座標と
する座標の1点が得られる。そして、A点よりスタート
した自律車は、ステップS2で前方に壁があると判定さ
れるB点まで、1区間前進を繰り返す。
When the power switch of the autonomous vehicle placed at the point A is turned on and the program is started, the reference coordinates in the blank state are held in the recording device in the traveling control device 60. Also, this A
The coordinates of the point are recorded in the center coordinates of the reference coordinates as the initial self-position coordinates. Then, when the autonomous vehicle is started, step S1 is executed at point A, and the autonomous vehicle moves forward by one section. By moving forward by this one section, one point of coordinates having one traveling unit as one unit coordinate is obtained. Then, the autonomous vehicle started from the point A repeats the forward movement for one section until the point B at which it is determined in step S2 that there is a wall ahead.

【0030】尚、A点からB点の間の自己位置座標は、
常に、A点の初期自己位置座標を基準にして認識され
る。しかし、重複走行を避ける効率の良い「走行領域の
走破」を意図し、A点からB点の間では、走行来歴とし
ては記録されないプログラムとなっている。B点におい
て前方センサが動作し、自律車が前方壁を検知したとき
初めて、B点の自律車の自己位置座標の前方の座標に壁
ありと記録すると共にB点の自律車の自己位置座標に走
行来歴を記録する。
The self-position coordinates between the points A and B are
It is always recognized with reference to the initial self-position coordinate of point A. However, the program is not recorded as a driving history between points A and B, with the intention of "running in a running area" with high efficiency to avoid overlapping running. Only when the front sensor operates at the point B and the autonomous vehicle detects the front wall, it is recorded that there is a wall at the coordinate in front of the self-position coordinate of the autonomous vehicle at the point B and the self-position coordinate of the autonomous vehicle at the point B. Record the driving history.

【0031】そして、初めてステップS2にて前方壁を
検知したので、ステップS2’で、壁に対し90度左に
向きを変え1区間前進する。B1点においてステップS
4の自律車の自己位置座標の前方、右側、左側の座標に
走行来歴があるかを記録装置内の座標データより判定さ
れる。そして、走行来歴がないので、ステップS3の右
優先走行制御法により自律車の右側にのみ壁があるの
で、自律車の自己位置座標の右側の座標に壁ありと記録
すると共に、自律車の自己位置座標に走行来歴を記録
し、B1点から1区間前進する。これを繰り返して進み
B2点に至る。
Since the front wall is detected for the first time in step S2, the direction is turned 90 degrees to the left with respect to the wall and the vehicle advances one section in step S2 '. Step S at point B1
It is determined from the coordinate data in the recording device whether or not there is a running history at the coordinates on the front, right, and left sides of the self-position coordinate of the autonomous vehicle of 4. Since there is no running history, since there is a wall only on the right side of the autonomous vehicle by the right priority running control method in step S3, it is recorded that there is a wall at the coordinate on the right side of the self-position coordinate of the autonomous vehicle, and Record the travel history on the position coordinates and move forward one section from point B1. This process is repeated until point B2 is reached.

【0032】また、B2点において、自律車の前方及び
右側に壁があるので自律車の自己位置座標の前方及び右
側の座標に壁ありと記録すると共に、自律車の自己位置
座標に走行来歴を記録し、壁に対し90度左に向きを変
え1区間前進する。そして、B2点〜B6点〜C点まで壁
に沿って走行する。C点においては、自律車の自己位置
座標の前方、右側、左側の座標の全てに壁がなく、か
つ、走行来歴がない。したがって、右優先走行制御法に
従って右側に優先して走行する。(換言すれば右転回走
行である。) すなわち、90度右に向きを変え、C点の自律車の自己
位置座標に走行来歴を記録すると共に、1区間前進す
る。そして、C点からD点に至る。D点においても、右
優先走行制御法が有効に動作する。このようにステップ
S3〜ステップS4を繰り返し、自律車は壁沿いを走行
し、E点に至る。E点においては、右側には壁があり、
前方のB点には走行来歴がある。したがって、ステップ
S4の判定において、自律車の自己位置座標の前方また
は右側または左側の座標に走行来歴があるかが判定さ
れ、初めて自己位置座標の前方の座標に走行来歴がある
と判定されステップS5に進む。すなわち、自律車の前
方に走行来歴があるので、この時点で壁沿いを周回した
と判断され、ステップS5にて走行領域の範囲が決定さ
れる。
At point B2, since there are walls in front of and on the right side of the autonomous vehicle, it is recorded that there is a wall at the coordinates on the front and right sides of the self-position coordinates of the autonomous vehicle, and the travel history is recorded in the self-position coordinates of the autonomous vehicle. Record and turn left 90 degrees to the wall and move forward for one section. Then, the vehicle travels along the wall from point B2 to point B6 to point C. At point C, there is no wall at all of the front, right, and left coordinates of the self-position coordinate of the autonomous vehicle, and there is no history of travel. Therefore, the vehicle preferentially travels to the right in accordance with the right priority travel control method. (In other words, it is turning to the right.) That is, the direction is turned 90 degrees to the right, the running history is recorded in the self-position coordinate of the autonomous vehicle at point C, and the vehicle moves forward for one section. Then, from point C to point D. Even at point D, the right priority traveling control method operates effectively. In this way, steps S3 to S4 are repeated, and the autonomous vehicle travels along the wall until reaching point E. At point E, there is a wall on the right side,
There is a running history at point B ahead. Therefore, in the determination in step S4, it is determined whether there is a travel history at the front, right, or left coordinates of the self-position coordinates of the autonomous vehicle, and it is determined that the coordinates before the self-position coordinates have a travel history for the first time. Proceed to. That is, since there is a history of traveling ahead of the autonomous vehicle, it is determined that the vehicle has traveled along the wall at this point, and the range of the traveling area is determined in step S5.

【0033】次に、E点からF点にかけて、ステップS
6の右優先走行制御法にて、自律車の前方には走行来歴
があり、右側には壁があるので、自律車の自己位置座標
の右側の座標に壁ありと記録し、自律車の自己位置座標
に走行来歴を記録すると共に90度左に向きを変え、E
点からF点へ1区間前進する。F点において、自律車の
自己位置座標に走行来歴を記録すると共に、ステップS
7にて自律車の自己位置座標の前後左右の座標のいずれ
かに、走行来歴がない座標があるかを判定するが、F点
においては、壁または障害物も走行来歴も、前方及び左
右の座標にないので、ステップS6の右優先走行制御法
が動作する。すなわち、90度右に向きを変えF点から
F1点へ1区間前進する。そして、F1点において、F点
と同じ判定を行い、自律車の自己位置座標(F1点)の右
側の座標(B点)に走行来歴があるので、走行来歴を境
界に置き換えた形で、該走行来歴づたいに左回りに周回
走行し始める。
Next, from step E to point F, step S
In the right-priority driving control method of 6, since there is a driving history in front of the autonomous vehicle and there is a wall on the right side, it is recorded that there is a wall at the coordinate on the right side of the self-position coordinate of the autonomous vehicle. Record the driving history on the position coordinates and turn 90 degrees to the left.
Move forward from point to point F by one section. At point F, the travel history is recorded in the self-position coordinates of the autonomous vehicle, and step S
At 7 it is determined whether there is a coordinate with no running history in any of the front, rear, left and right coordinates of the self-position of the autonomous vehicle. Since it is not in the coordinates, the right priority traveling control method of step S6 operates. That is, the direction is changed 90 degrees to the right and the vehicle moves forward from point F to point F1 by one section. Then, at the F1 point, the same judgment as that at the F point is made, and since the traveling history is located at the coordinate (B point) on the right side of the self-position coordinate (F1 point) of the autonomous vehicle, the traveling history is replaced by the boundary. Start to circulate counterclockwise as you want to keep track.

【0034】なお、F1点は既に一度自律車が走行した
点である。しかし、前述のようにA点からB点の間の自
己位置座標は走行来歴としては記録されていないので、
支障がないものとなっている。また、F2点からF3点に
かけては、自律車の自己位置座標の前方及び右側の座標
に走行来歴がある場合であるが、自律車の自己位置座標
に走行来歴と記録すると共に、90度左に向きを変え、
1区間前進する。このようにしてF3点から走行来歴を
記録しつつ進みG点に至る。そして、G点にて自律車の
自己位置座標に走行来歴を記録すると共にステップS7
にて、自律車の自己位置座標の前方または後方または左
側または右側の座標に走行来歴がない座標があるかが判
定されると、どの方向にも走行来歴があると判定され
る。どの方向にも走行来歴があると判定されるが、未だ
走行していない未走行領域(座標または座標領域)がA点
の周辺部に存在するので、ステップS8にて、走行領域
内の走行来歴のない走行範囲(座標または座標領域)の検
索が実行される。本実施例の場合は、未走行領域内の一
番大きい座標であるI点が検索される。そして、ステッ
プS9の残方向直進優先走行制御法が実行される。
The point F1 is the point where the autonomous vehicle has already run. However, as described above, since the self-position coordinates between points A and B are not recorded as the driving history,
There is no problem. From F2 point to F3 point, there is a traveling history at the coordinates on the front and right sides of the self-position coordinate of the autonomous vehicle, but the traveling history is recorded at the self-position coordinate of the autonomous vehicle, and 90 degrees to the left. Turn around,
Move forward one section. In this way, the vehicle travels from point F3 while recording the driving history to point G. Then, the traveling history is recorded in the self-position coordinate of the autonomous vehicle at the point G, and step S7 is performed.
When it is determined whether there is a coordinate that has no traveling history in the front, rear, left, or right coordinates of the self-position coordinate of the autonomous vehicle, it is determined that there is a traveling history in any direction. Although it is determined that there is a travel history in any direction, there is an untraveled area (coordinates or coordinate area) that has not yet traveled around the point A. Therefore, in step S8, the travel history in the travel area is set. A search for a travel range (coordinates or coordinate area) that does not exist is executed. In the case of the present embodiment, the point I, which is the largest coordinate in the untraveled area, is searched. Then, the remaining direction straight ahead priority traveling control method in step S9 is executed.

【0035】すなわち、ステップS9の残方向直進優先
走行制御法により、G点において、90度右に向きを変
え1区間前進する。前進したC点において、ステップS
10の自律車の自己位置座標の前方、後方、左側及び右側
の座標に走行来歴があるかを判定し、どの方向にも走行
来歴があるので、ステップS9の残方向直進優先走行制
御法により1区間前進する。H点において、ステップS
10の自律車の自己位置座標の前後左右の座標共走行来歴
があるかを記録装置内の座標データにより判定し、走行
来歴があるのは前方及び左側及び後方の座標だけなの
で、ステップS11の直進優先走行制御法により1区間前
進する。ステップS11とステップS12とが繰り返えされ
て前進する。
That is, by the remaining direction straight ahead priority traveling control method in step S9, at the point G, the direction is changed to the right by 90 degrees and the vehicle advances one section. At the advanced point C, step S
It is determined whether there is a traveling history in the coordinates of the front, rear, left side, and right side of the self-position coordinates of the 10 autonomous vehicles. Since there is a traveling history in any direction, 1 is set by the remaining direction straight ahead priority traveling control method in step S9. Go forward in the section. At point H, step S
It is determined from the coordinate data in the recording device whether or not there is a history of traveling together with the front, rear, left, and right of the self-position coordinates of the 10 autonomous vehicles. Only the coordinates of the front, left, and rear have a traveling history, so go straight in step S11. Move forward one section by the priority travel control method. Step S11 and step S12 are repeated to move forward.

【0036】D点において、ステップS12の自律車の自
己位置座標の前後左右の座標ともに走行来歴があるかを
判定し、自律車の自己位置座標の右側、左側及び後方に
走行来歴があり前方にはないのでステップS11の直進優
先走行制御法により1区間前進する。I点において、自
律車の自己位置座標に走行来歴を記録すると共に、ステ
ップS12の自律車の自己位置座標の前後左右の座標共走
行来歴があるかを判定し、自律車の左側及び後方の座標
にしか走行来歴がないので、ステップS11の直進優先走
行制御法により1区間前進する。このように1区間ごと
に直進優先走行制御法により進む。なお、自律車を、G
点から未走行領域へ向かわせる方法として、ステップS
8の走行領域内の走行範囲の検索により見つかった走行
来歴のない未走行領域の中から、一番大きい座標値のI
点を代表座標値として選ぶ。次に、残方向直進優先走行
制御法により、自律車の自己位置座標と上記で選んだI
点の座標のX方向とY方向とでどちらの差が大きいか
(区間数が大きいか)を判定し、その方向(例えばY方
向の方が大きければY方向)で座標の大小比較を行って
走行方向を仮決定し、さらに、直進優先走行制御法で自
律車の進む方向を決める方法である。
At point D, it is determined whether or not there is a running history in the front, rear, left, and right coordinates of the self-position coordinate of the autonomous vehicle in step S12. Therefore, the vehicle travels forward by one section by the straight traveling priority traveling control method in step S11. At point I, the running history is recorded in the self-position coordinate of the autonomous vehicle, and it is determined whether there is a running history together with the front, rear, left, and right coordinates of the self-position coordinate of the autonomous vehicle in step S12. Since there is only a history of running, the vehicle travels forward by one section by the straight ahead priority running control method in step S11. In this way, the vehicle travels by the straight ahead priority traveling control method for each section. In addition, the autonomous vehicle is
As a method of moving from the point to the non-running area, step S
I of the largest coordinate value is selected from the untraveled areas with no travel history found by the search of the traveling range in the eight traveling areas.
Select a point as the representative coordinate value. Next, the self-position coordinates of the autonomous vehicle and the I selected above are applied by the remaining direction straight ahead priority traveling control method.
It is determined which difference between the X direction and the Y direction of the point coordinates is larger (the number of sections is larger), and the size of the coordinates is compared in that direction (for example, the Y direction if the Y direction is larger). This is a method of tentatively determining the traveling direction and further determining the traveling direction of the autonomous vehicle by the straight ahead priority traveling control method.

【0037】また、ステップS8の走行領域内の走行範
囲の検索により見つかった走行来歴のない未走行領域の
中から、一番小さい座標値を代表座標値として選び、上
記と同じ残方向直進優先走行制御法により判定を行い、
進む方向を決める方法も考えられる。 最終的に
は、A点において、自律車の自己位置座標に走行来歴を
記録すると共に、ステップS12にて、自律車の自己位置
座標の前後左右の座標共走行来歴があるかを判定し、ど
の方向にも走行来歴があるので、ステップS13にて走行
範囲を決定し、ステップS14にて走行範囲内で走行来歴
のない座標が残っているかを判定し、走行来歴のない座
標がないので、ステップS15で自律車を停止し、プログ
ラムを終了する。
Further, the smallest coordinate value is selected as the representative coordinate value from the non-running areas having no running history found by searching the running range in the running area in step S8, and the same remaining direction straight ahead priority running as described above is selected. Judgment by the control method,
A method of deciding the direction to go is also conceivable. Finally, at point A, the travel history is recorded in the self-position coordinates of the autonomous vehicle, and in step S12, it is determined whether there is a co-travel history of the front-back, left-right coordinates of the self-position coordinates of the autonomous vehicle. Since there is also a travel history in the direction, the travel range is determined in step S13, and it is determined in step S14 whether there are any coordinates without a travel history in the travel range. In S15, the autonomous vehicle is stopped and the program ends.

【0038】図5は、前方センサが1区間走行の途中で
壁などを検知した場合の一実施例の走行制御方法を示す
図である。前述の2つの実施例で、1区間走行の途中で
前方センサ7が壁10または障害物11を検知した時の
走行制御方法を示したものである。図5(a)において、
自律車50が前進し、1区間を走りきらない途中で、前方
センサ7が壁を検知した場合、走りきらない区間も壁と
して記録する。そして、1つ前の1区間(1座標)まで後
退し、後退したら、90度判定により求めた方向に向き
を変える走行制御方法である。走りきらないで壁として
認識した区間の座標データを用いて、例えば、右優先走
行制御法により継続走行するものである。また、1区間
を走りきらないうちに前方センサ7が壁を検知した場合
にのみ、1走行単位の定義(例えば距離)を変えるプログ
ラムとしても可である。さらに、図5(b)は、自律車が
前進中に、右センサ9及び左センサ8が壁または障害物
を検知し、次の1区間の途中で前方センサ7が壁を検知
した場合は、走りきらない区間を壁として記録すると共
に、1つ前の区間まで後退し、180度向きを変える走
行制御方法である。
FIG. 5 is a diagram showing a traveling control method of an embodiment when the front sensor detects a wall or the like during traveling of one section. The above-mentioned two examples show the traveling control method when the front sensor 7 detects the wall 10 or the obstacle 11 during the traveling of one section. In FIG. 5 (a),
If the front sensor 7 detects a wall while the autonomous vehicle 50 is moving forward and cannot complete one section, the section that cannot be completed is also recorded as a wall. Then, it is a travel control method of retreating to the preceding one section (one coordinate), and changing the direction to the direction obtained by the 90-degree judgment when retreating. By using the coordinate data of the section recognized as a wall without running completely, for example, the vehicle continues to run by the right priority running control method. Further, it is also possible to use a program that changes the definition (for example, distance) of one traveling unit only when the front sensor 7 detects a wall before the vehicle has completed traveling in one section. Further, in FIG. 5B, when the right sensor 9 and the left sensor 8 detect a wall or an obstacle while the autonomous vehicle is moving forward and the front sensor 7 detects a wall in the middle of the next one section, This is a traveling control method in which a section where the vehicle cannot run completely is recorded as a wall, and the vehicle travels backward to the immediately preceding section and changes its direction by 180 degrees.

【0039】図6は、本発明による一実施例のロジック
コントローラを示す図である。マイクロプロセッサ1
7,ROM18,RAM19などを、走行制御装置60と
してのロジックコントローラ16に纏めたものである。
すなわち、図2,図3,図4にて説明した走行制御方法
のロジックを、プログラムとしてROM18に書き込
み、かつ基準座標をRAM19に記録し、必要に応じて
それぞれを読み出して利用し、マイクロプロセッサ17
が処理する実施例を接続ブロック図で示しているもので
ある。また、図6において、12はバッテリ、13は電
源スイッチ、14は押しボタン式の始動スイッチ、15
は停止スイッチである。
FIG. 6 is a diagram showing a logic controller according to an embodiment of the present invention. Microprocessor 1
7, the ROM 18, the RAM 19, and the like are integrated in the logic controller 16 as the traveling control device 60.
That is, the logic of the travel control method described with reference to FIGS. 2, 3, and 4 is written in the ROM 18 as a program, the reference coordinates are recorded in the RAM 19, and each of them is read and used as needed, and the microprocessor 17 is used.
FIG. 3 is a connection block diagram showing an example of processing performed by the above. Further, in FIG. 6, reference numeral 12 is a battery, 13 is a power switch, 14 is a push-button start switch, and 15 is a start switch.
Is a stop switch.

【0040】したがって、単位走行手段は、前述の左・
右モータ4,5やバッテリ12などを含む駆動手段と、
マイクロプロセッサ17,ROM18などを含むロジッ
クコントローラ16とに該当する。また、所定走行手
段、境界座標設定手段、境界記録手段、走行領域演算手
段、来歴記録手段、未走行領域演算手段および走行制御
手段は、マイクロプロセッサ17,ROM18などを含
むロジックコントローラ16に該当する。座標保有手段
は、RAM19に該当し、境界検出手段は、前方センサ
7,左センサ8,右センサ9と、マイクロプロセッサ1
7,ROM18などを含むロジックコントローラ16と
に該当する。以上の本発明の特徴を簡潔に纏めれば、次
のようになる。自律車の走行制御方法は、自律車が保有
する、即ち、自律車の座標保有手段が保有する1走行単
位を1単位座標とする白紙状態の基準座標上、即ち、未
走行座標上に、自律車が走行し当該自律車の走行来歴と
して得られる該1走行単位毎の1単位座標を走行来歴座
標として記録し、未走行座標を走行来歴座標で埋めなが
ら自律車を継続走行させるよう、走行来歴座標を使って
単位走行を制御する、即ち、自律車の単位走行手段を制
御するものである。
Therefore, the unit traveling means is
Drive means including right motors 4, 5 and battery 12;
It corresponds to the logic controller 16 including the microprocessor 17 and the ROM 18. Further, the predetermined traveling means, the boundary coordinate setting means, the boundary recording means, the traveling area calculating means, the history recording means, the untraveled area calculating means and the traveling control means correspond to the logic controller 16 including the microprocessor 17, the ROM 18, and the like. The coordinate holding means corresponds to the RAM 19, and the boundary detecting means includes the front sensor 7, the left sensor 8, the right sensor 9, and the microprocessor 1.
7, the logic controller 16 including the ROM 18 and the like. The features of the present invention described above can be summarized as follows. The traveling control method for an autonomous vehicle is such that the autonomous vehicle holds autonomously on the reference coordinates in a blank state, that is, on the unrunning coordinates where one traveling unit held by the coordinate holding means of the autonomous vehicle is one unit coordinate. The travel history is such that one unit coordinate for each travel unit obtained as the travel history of the autonomous vehicle is recorded as travel history coordinates, and the untraveled coordinates are filled with the travel history coordinates so that the autonomous vehicle continues to travel. The unit travel is controlled using the coordinates, that is, the unit travel means of the autonomous vehicle is controlled.

【0041】具体的には、プログラム上で定めた自律車
の単位走行時間で移動する単位区間を1走行単位とし、
その1走行単位を1単位座標とする白紙状態の基準座標
を記録装置内に設定する。そして、自律車の任意のスタ
ート地点を基準座標に設定すると共に、このスタート地
点の自律車の前進方向を基準に4方向(自律車の前後左
右の方向)についても定義する。これによってスタート
地点からどの方向に何区間進んだかにより、自律車の自
己位置座標を常に認識することができる。
Specifically, the unit section that moves in the unit traveling time of the autonomous vehicle defined on the program is defined as one traveling unit,
The reference coordinates in a blank state where the one running unit is one unit coordinate are set in the recording device. Then, an arbitrary start point of the autonomous vehicle is set as reference coordinates, and four directions (directions of the autonomous vehicle in the front, rear, left, and right) are defined based on the forward direction of the autonomous vehicle at the start point. As a result, the self-position coordinate of the autonomous vehicle can always be recognized depending on which direction and how many sections the vehicle has traveled from the start point.

【0042】そして、自律車を境界内の任意の地点より
境界に向かって前進させ、境界を検知したら90°左ま
たは右に回転させ、境界沿いを一周させることにより、
自律車自身が周囲を壁などに囲まれた領域の境界を把握
することができる。さらに、自律車の自己位置座標を走
行来歴と、壁または障害物などの境界を検知する装置が
検知した壁や障害物の位置座標とを1区間ごとに記録
し、これらの座標データに基づいて判定し、効率良く未
走行領域を埋め尽くすように走行させるものである。
Then, the autonomous vehicle is advanced from any point within the boundary toward the boundary, and when the boundary is detected, the autonomous vehicle is rotated 90 ° left or right to make a round along the boundary,
The autonomous vehicle itself can grasp the boundaries of the area surrounded by walls and the like. Further, the traveling history of the self-position coordinates of the autonomous vehicle and the position coordinates of the wall or the obstacle detected by the device for detecting the boundary of the wall or the obstacle are recorded for each section, and based on these coordinate data. The judgment is made and the vehicle is made to travel efficiently so as to completely fill the untraveled area.

【0043】また、換言すれば、自律車に前方センサ
7、右側方向きセンサ9、左側方向きセンサ8を搭載
し、センサが検知した壁または障害物の位置を記録し、
また、自律車の走行来歴を記録しながら、次の順序で走
行制御するものである。a.壁10などの境界に向って
前進し、b.境界を検知したら境界と90度左または右
に向くよう転回し、c.境界沿いを一周して走行領域の
範囲を決定し、d.走行領域の範囲内の未走行領域を順
次走破し、e.未走行領域がなくなった時点で自律車を
停止する。
In other words, the front sensor 7, the right direction sensor 9 and the left direction sensor 8 are mounted on the autonomous vehicle, and the position of the wall or obstacle detected by the sensor is recorded.
In addition, while controlling the traveling history of the autonomous vehicle, the traveling control is performed in the following order. a. Advance towards a boundary such as wall 10; b. When the boundary is detected, turn the boundary 90 degrees to the left or right, and c. Make a round along the boundary to determine the range of the traveling area, d. Sequentially run through unrunning areas within the running area, e. The autonomous vehicle is stopped when there is no unrun area.

【0044】したがって、本発明によれば、自律車の走
行範囲を決定するための走行範囲入力装置や自律車の自
己位置を計測するための位置計測装置を使用することな
く、壁などの境界に囲まれた走行領域内を障害物を避け
ながら重複することなく走行する自走式掃除機や自走式
芝刈機などの自律走行作業車を得ることができる。
Therefore, according to the present invention, without using a travel range input device for determining the travel range of the autonomous vehicle or a position measuring device for measuring the self-position of the autonomous vehicle, the boundary of a wall or the like is not used. It is possible to obtain an autonomous traveling work vehicle such as a self-propelled vacuum cleaner or a self-propelled lawnmower that travels in an enclosed traveling area while avoiding obstacles without overlapping.

【0045】[0045]

【発明の効果】本発明によれば、走行範囲入力装置や位
置計測装置を使用しないため、低コストで製作すること
ができ、重複して走行することがないので作業効率が向
上すると共に、バッテリ電源の節約にもなる。
According to the present invention, since the traveling range input device and the position measuring device are not used, it can be manufactured at a low cost and the traveling is not repeated so that the working efficiency is improved and the battery is used. It also saves power.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の自律車の走行制御装置
を搭載した自律車を示す図である。
FIG. 1 is a diagram showing an autonomous vehicle equipped with a traveling control device for an autonomous vehicle according to an embodiment of the present invention.

【図2】本発明による一実施例の走行制御方法を示すフ
ローチャートである。
FIG. 2 is a flowchart showing a travel control method according to an embodiment of the present invention.

【図3】本発明の走行制御方法による一実施例の走行軌
跡を示す図である。
FIG. 3 is a diagram showing a travel locus of an embodiment according to the travel control method of the present invention.

【図4】本発明の走行制御方法による他の実施例の走行
軌跡を示す図である。
FIG. 4 is a diagram showing a travel locus of another embodiment according to the travel control method of the present invention.

【図5】前方センサが1区間走行の途中で壁などを検知
した場合の一実施例の走行制御方法を示す図である。
FIG. 5 is a diagram showing a traveling control method of an embodiment when a front sensor detects a wall or the like during traveling of one section.

【図6】本発明による一実施例のロジックコントローラ
を示す図である。
FIG. 6 is a diagram showing a logic controller according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…車体フレーム、2…左駆動輪、3…右駆動輪、4…
左モータ、5…右モータ、6…補助輪、7…前方セン
サ、8…左センサ、9…右センサ、10…壁、11…障
害物、12…バッテリ、13…電源スイッチ、14…始
動スイッチ、15…停止スイッチ、16…ロジックコン
トローラ、17…マイクロプロセッサ18…ROM、1
9…RAM、50…自律車、60…走行制御装置。
1 ... Body frame, 2 ... Left drive wheel, 3 ... Right drive wheel, 4 ...
Left motor, 5 ... Right motor, 6 ... Auxiliary wheel, 7 ... Front sensor, 8 ... Left sensor, 9 ... Right sensor, 10 ... Wall, 11 ... Obstacle, 12 ... Battery, 13 ... Power switch, 14 ... Start switch , 15 ... Stop switch, 16 ... Logic controller, 17 ... Microprocessor 18 ... ROM, 1
9 ... RAM, 50 ... Autonomous vehicle, 60 ... Travel control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】自律走行車の座標保有手段が保有する1走
行単位を1単位座標とする未走行座標上に、 前記自律走行車が走行し当該自律走行車の走行来歴とし
て得た前記1走行単位毎の前記1単位座標としての走行
来歴座標を記録し、 前記未走行座標を前記走行来歴座標で埋めながら前記自
律走行車を継続走行させるよう、前記走行来歴座標を使
って前記自律走行車の単位走行手段を制御することを特
徴とする自律走行車の走行制御方法。
1. The one traveling obtained by the autonomous traveling vehicle as a travel history of the autonomous traveling vehicle on a non-traveling coordinate having one traveling unit held by the coordinate holding means of the autonomous traveling vehicle as one unit coordinate. The traveling history coordinates as the one unit coordinate for each unit are recorded, and the traveling history coordinates are used to continuously drive the autonomous traveling vehicle while filling the untraveled coordinates with the traveling history coordinates. A traveling control method for an autonomous vehicle, comprising controlling a unit traveling means.
【請求項2】1走行単位を1単位座標とする基準座標を
保有する自律走行車を単位走行させて該1走行単位毎に
境界を検出し、検出した該境界を前記1単位座標毎の境
界座標として設定し、該境界座標を前記1走行単位毎に
前記基準座標に記録することにより、前記基準座標上に
前記境界座標で描かれた閉じた領域として前記自律走行
車の走行領域座標を把握し、 前記自律走行車が該走行領域座標内を走行して得られる
前記1走行単位毎の走行来歴を前記自律走行車の前記1
単位座標毎の走行来歴座標として設定し、該走行来歴座
標を前記1走行単位毎に前記基準座標に記録することに
より、前記走行領域座標のうちから前記走行来歴座標を
差し引いて前記自律走行車が走行していない未走行領域
として未走行座標を把握し、 前記走行領域を隈なく走行させるために前記走行領域座
標内の前記未走行座標を埋める走行を前記自律走行車に
実行させるよう、前記自律走行車の前記単位走行を制御
することを特徴とする自律走行車の走行制御方法。
2. An autonomous traveling vehicle, which has reference coordinates in which one traveling unit is one unit coordinate, travels as a unit to detect a boundary for each traveling unit, and the detected boundary is a boundary for each one unit coordinate. By setting the coordinates as the coordinates and recording the boundary coordinates in the reference coordinates for each of the traveling units, the traveling area coordinates of the autonomous traveling vehicle are grasped as a closed area drawn by the boundary coordinates on the reference coordinates. Then, the traveling history for each traveling unit obtained by the autonomous traveling vehicle traveling within the traveling area coordinates is determined by the 1 of the autonomous traveling vehicle.
By setting the travel history coordinates for each unit coordinate and recording the travel history coordinates in the reference coordinates for each of the travel units, the autonomous travel vehicle is obtained by subtracting the travel history coordinates from the travel area coordinates. The autonomous vehicle is configured to recognize the untraveled coordinates as the untraveled area that is not traveling, and to cause the autonomous traveling vehicle to execute the traveling in which the untraveled coordinates in the traveling area coordinates are filled in order to travel the traveling area thoroughly. A traveling control method for an autonomous traveling vehicle, comprising controlling the unit traveling of the traveling vehicle.
【請求項3】請求項2において、前記単位走行は、右優
先走行制御法、左優先走行制御法、残方向直進優先走行
制御法または直進優先走行制御法に基づく走行であるこ
とを特徴とする自律走行車の走行制御方法。
3. The unit travel according to claim 2, wherein the unit travel is travel based on a right priority travel control method, a left priority travel control method, a remaining direction straight travel priority travel control method, or a straight travel priority travel control method. Driving control method for autonomous vehicle.
【請求項4】所定走行手段を有し自律走行車を1走行単
位毎に走行させる単位走行手段と、 該単位走行手段により前記自律走行車が走行した前記1
走行単位を1単位座標とする基準座標を保有する座標保
有手段と、 前記1走行単位毎に境界を検出する境界検出手段と、検
出された該境界を前記1単位座標毎の境界座標として設
定する境界座標設定手段と、 該境界座標を前記1走行単位毎に前記基準座標に記録す
る境界記録手段と、 前記境界座標で前記基準座標上に描かれた閉じた領域と
しての前記自律走行車の走行領域座標を演算する走行領
域演算手段と、 前記自律走行車の前記1走行単位毎の走行来歴を前記1
単位座標毎の走行来歴座標に変換し前記1単位座標毎に
前記基準座標に記録する来歴記録手段と、 前記基準座標に前記境界座標及び前記走行来歴座標が記
録されていない未走行座標を演算する未走行領域演算手
段と、 該未走行座標に基づいて当該未走行座標を埋める走行を
実行させるよう前記単位走行手段を制御する走行制御手
段と、 を備えることを特徴とする自律走行車の走行制御装置。
4. A unit traveling unit having a predetermined traveling unit for traveling an autonomous traveling vehicle for each traveling unit, and the unit traveling unit traveling the autonomous traveling vehicle.
Coordinate holding means for holding reference coordinates in which the traveling unit is one unit coordinate, boundary detection means for detecting a boundary for each traveling unit, and the detected boundary are set as boundary coordinates for each one unit coordinate. Boundary coordinate setting means, boundary recording means for recording the boundary coordinates in the reference coordinates for each traveling unit, and traveling of the autonomous vehicle as a closed region drawn on the reference coordinates in the boundary coordinates. A traveling area calculating means for calculating area coordinates; and a traveling history of the autonomous traveling vehicle for each traveling unit,
A history recording unit that converts the travel history coordinates for each unit coordinate and records the one unit coordinates in the reference coordinates, and calculates the untraveled coordinates in which the boundary coordinates and the travel history coordinates are not recorded in the reference coordinates. A traveling control of an autonomous traveling vehicle comprising: an untraveled region calculating means; and traveling control means for controlling the unit traveling means so as to execute traveling to fill the untraveled coordinates based on the untraveled coordinates. apparatus.
JP8000393A 1996-01-08 1996-01-08 Method and device for controlling traveling of autonomous traveling vehicle Pending JPH09185410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8000393A JPH09185410A (en) 1996-01-08 1996-01-08 Method and device for controlling traveling of autonomous traveling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000393A JPH09185410A (en) 1996-01-08 1996-01-08 Method and device for controlling traveling of autonomous traveling vehicle

Publications (1)

Publication Number Publication Date
JPH09185410A true JPH09185410A (en) 1997-07-15

Family

ID=11472570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000393A Pending JPH09185410A (en) 1996-01-08 1996-01-08 Method and device for controlling traveling of autonomous traveling vehicle

Country Status (1)

Country Link
JP (1) JPH09185410A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002360478A (en) * 2001-06-05 2002-12-17 Matsushita Electric Ind Co Ltd Self-sustaining travel device
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8577538B2 (en) 2006-07-14 2013-11-05 Irobot Corporation Method and system for controlling a remote vehicle
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
JP2017174379A (en) * 2016-03-18 2017-09-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Autonomous mobile device, autonomous mobile method, and autonomous mobile system
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
CN107684401A (en) * 2017-09-25 2018-02-13 北京石头世纪科技有限公司 The control method and control device of intelligent cleaning equipment
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
CN108594811A (en) * 2018-04-12 2018-09-28 南京苏美达智能技术有限公司 The method that grass-removing robot leaves base station
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
JP2002360478A (en) * 2001-06-05 2002-12-17 Matsushita Electric Ind Co Ltd Self-sustaining travel device
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8966707B2 (en) 2005-02-18 2015-03-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US10037038B2 (en) 2006-03-17 2018-07-31 Irobot Corporation Lawn care robot
US9713302B2 (en) 2006-03-17 2017-07-25 Irobot Corporation Robot confinement
US11194342B2 (en) 2006-03-17 2021-12-07 Irobot Corporation Lawn care robot
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8577538B2 (en) 2006-07-14 2013-11-05 Irobot Corporation Method and system for controlling a remote vehicle
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10067232B2 (en) 2014-10-10 2018-09-04 Irobot Corporation Autonomous robot localization
US9854737B2 (en) 2014-10-10 2018-01-02 Irobot Corporation Robotic lawn mowing boundary determination
US10750667B2 (en) 2014-10-10 2020-08-25 Irobot Corporation Robotic lawn mowing boundary determination
US11452257B2 (en) 2014-10-10 2022-09-27 Irobot Corporation Robotic lawn mowing boundary determination
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US9420741B2 (en) 2014-12-15 2016-08-23 Irobot Corporation Robot lawnmower mapping
US10274954B2 (en) 2014-12-15 2019-04-30 Irobot Corporation Robot lawnmower mapping
US11231707B2 (en) 2014-12-15 2022-01-25 Irobot Corporation Robot lawnmower mapping
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US20190141888A1 (en) 2014-12-22 2019-05-16 Irobot Corporation Robotic Mowing of Separated Lawn Areas
US9826678B2 (en) 2014-12-22 2017-11-28 Irobot Corporation Robotic mowing of separated lawn areas
US10874045B2 (en) 2014-12-22 2020-12-29 Irobot Corporation Robotic mowing of separated lawn areas
US10159180B2 (en) 2014-12-22 2018-12-25 Irobot Corporation Robotic mowing of separated lawn areas
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11115798B2 (en) 2015-07-23 2021-09-07 Irobot Corporation Pairing a beacon with a mobile robot
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10426083B2 (en) 2016-02-02 2019-10-01 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10021830B2 (en) 2016-02-02 2018-07-17 Irobot Corporation Blade assembly for a grass cutting mobile robot
US10459063B2 (en) 2016-02-16 2019-10-29 Irobot Corporation Ranging and angle of arrival antenna system for a mobile robot
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
JP2017174379A (en) * 2016-03-18 2017-09-28 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Autonomous mobile device, autonomous mobile method, and autonomous mobile system
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11470774B2 (en) 2017-07-14 2022-10-18 Irobot Corporation Blade assembly for a grass cutting mobile robot
CN107684401A (en) * 2017-09-25 2018-02-13 北京石头世纪科技有限公司 The control method and control device of intelligent cleaning equipment
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
CN108594811A (en) * 2018-04-12 2018-09-28 南京苏美达智能技术有限公司 The method that grass-removing robot leaves base station

Similar Documents

Publication Publication Date Title
JPH09185410A (en) Method and device for controlling traveling of autonomous traveling vehicle
CN111307152B (en) Reverse generation planning method for autonomous parking path
US6119057A (en) Autonomous vehicle with an easily set work area and easily switched mode
JP5077547B2 (en) Parking assistance device for vehicles
US5353224A (en) Method for automatically controlling a travelling and cleaning operation of vacuum cleaners
JPH10240342A (en) Autonomous traveling vehicle
JPH10214114A (en) Autonomous traveling method for robot, and controller therefor
JP4445210B2 (en) Autonomous robot
WO2009131922A1 (en) Autonomous parking strategy based on available parking space
CN109843703B (en) Control unit and method for determining a trajectory for a reversing assistance system
JP2021187248A (en) Parking support device and control method of parking support device
JP2021146835A (en) Vehicle control device
KR20220121186A (en) Vehicle control method, vehicle control system, and vehicle
JP2007030808A (en) Control unit and vehicle
JPH0884696A (en) Cleaning robot control method and device therefor
JP2893972B2 (en) Garage control system for four-wheel steering vehicles
JPS61263851A (en) Device for automatically moving automobile widthwise thereof
CN115355916B (en) Trajectory planning method, apparatus and computer-readable storage medium for moving tool
JP2006146811A (en) Device and method for parking vehicle
JP2785305B2 (en) Self-propelled vacuum cleaner
US11747148B2 (en) Parking assistance apparatus for aiding a driver of a motor vehicle with a parking process
JPH07253815A (en) Automonous running working truck
JP3896994B2 (en) Vehicle travel support device
JP2021146836A (en) Vehicle control device
CN113753032B (en) Parking control method, device and system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees