JPH063251A - Method for analyzing porosity in porous body - Google Patents

Method for analyzing porosity in porous body

Info

Publication number
JPH063251A
JPH063251A JP15941092A JP15941092A JPH063251A JP H063251 A JPH063251 A JP H063251A JP 15941092 A JP15941092 A JP 15941092A JP 15941092 A JP15941092 A JP 15941092A JP H063251 A JPH063251 A JP H063251A
Authority
JP
Japan
Prior art keywords
porous body
analysis
base material
component
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15941092A
Other languages
Japanese (ja)
Inventor
Satoshi Otsu
聡 大津
Takayuki Mogi
孝之 茂木
Toshiki Kahara
俊樹 加原
Tadashi Yoshida
正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15941092A priority Critical patent/JPH063251A/en
Publication of JPH063251A publication Critical patent/JPH063251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate a material other than a target component even when present in a sample, and perform the precise analysis for porosity, pore distribution, the occupying ratio in a porous body pore of the material present in the porous body pore, and the grain size and grain outer circumference in the porous body or a powder forming its starting material. CONSTITUTION:A determined section of a porous body is subjected to two-dimensional matrix processing, component analysis, and binary processing, and one or two or more components are combined to each other, whereby porosity, pore distribution, the occupying ratio in the porous body pore of a material present in the porous body pore, and the grain size and grain outer circumference in the porous body or a powder forming its starting material are analyzed. Thus, the analysis related to a target material in the porous body can be precisely performed, and the measurement error by the contamination of impurities can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔質体における分析
法に関するもので、特に多孔質体の気孔率分析方法、細
孔分布分析方法、多孔質体細孔に存在する物質の多孔質
体細孔内における占有率分析方法、並びに多孔質体やそ
の原料となる粉体における粒子径及び粒子外周の分析方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method for a porous body, and more particularly to a porosity analysis method for a porous body, a pore distribution analysis method, and a porous body for a substance existing in the pores of the porous body. The present invention relates to a method for analyzing an occupation rate in pores, and a method for analyzing a particle diameter and a particle outer circumference of a porous body or powder as a raw material thereof.

【0002】[0002]

【従来の技術】従来、多孔質体気孔率の測定には気体吸
着法や置換法を用いて測定していた。気体吸着法は、一
般的に飽和蒸気圧で全毛管は毛管凝縮すると考えられる
ので、そのときの吸着量をその温度に於ける液体の容積
に換算し細孔容積を得てサンプルの見かけ上の体積で割
ることにより、気孔率を得るものである。置換法は水、
ベンゼン、シクロヘキセン、n−ヘキサン、メタノー
ル、エタノール、四塩化炭素などの液体中でサンプルを
煮沸し、冷却後乾燥して重量増加を測定し細孔容積を得
てサンプルの見かけ上の体積で割ることにより、気孔率
を求めるものである。多孔質体内物質の細孔中における
占有率は、この方法を応用し占有物質を除去する前と除
去した後で気孔率を測定し、この差を除去した後の気孔
率で割ったものであった。また、毛管凝縮法は、吸着等
温線を利用する方法であり、水銀圧入法で測定できない
10〜300Åの範囲について測定に利用していた。
2. Description of the Related Art Conventionally, a gas adsorption method or a substitution method has been used to measure the porosity of a porous body. In the gas adsorption method, it is generally considered that all capillaries condense at saturated vapor pressure, so the amount of adsorption at that time is converted into the volume of liquid at that temperature to obtain the pore volume and the apparent volume of the sample. The porosity is obtained by dividing by the volume. The replacement method is water,
The sample is boiled in a liquid such as benzene, cyclohexene, n-hexane, methanol, ethanol, carbon tetrachloride, etc., cooled and dried to measure the weight increase, and the pore volume is obtained and divided by the apparent volume of the sample. To determine the porosity. The occupancy rate in the pores of the substance in the porous body is obtained by measuring the porosity before and after removing the occupying substance by applying this method, and dividing the difference by the porosity after the removal. It was In addition, the capillary condensation method is a method that uses adsorption isotherms and cannot be measured by the mercury injection method.
It was used for measurement in the range of 10 to 300Å.

【0003】細孔分布の測定は水銀圧入法や毛管凝縮法
を用い行なわれていた。水銀圧入法は水銀が細孔壁を漏
らさないので、細孔内に侵入しないが、外部から圧力を
かけると水銀は細孔内に侵入しはじめ、この外圧と細孔
内から水銀を押し出す力がつり合って平衡状態となる。
これを利用し外圧と細孔直径の関係から細孔分布を求め
ていた。
The measurement of the pore distribution has been carried out by the mercury intrusion method or the capillary condensation method. In the mercury injection method, since mercury does not leak into the pore walls, it does not enter the pores, but when pressure is applied from the outside, mercury begins to enter the pores, and this external pressure and the force that pushes mercury out of the pores are They are in equilibrium with each other.
Utilizing this, the pore distribution was determined from the relationship between the external pressure and the pore diameter.

【0004】なお、上記従来の各測定方法については、
慶伊富長 編著「触媒化学」、461ー467頁、東京化学同人
(1981)に記載されている。
Regarding the above-mentioned conventional measuring methods,
Keitomi Cho, "Catalyst Chemistry", pp. 461-467, Tokyo Kagaku Dojin (1981).

【0005】[0005]

【発明が解決しようとする課題】前述のような気体吸着
法や置換法では、多孔質体母材に異質の物質があると、
これを完全に分離できないため、正確な多孔質体の気孔
率および多孔質体内物質の細孔中における占有率を求め
ることが出来なかった。さらに、サンプルの乾燥の程度
や煮沸による空気と液体との完全置換が難しいという問
題もあった。
In the gas adsorption method and the substitution method as described above, if the porous base material contains a foreign substance,
Since this cannot be completely separated, it was not possible to accurately determine the porosity of the porous body and the occupation rate of the substance in the porous body in the pores. Further, there is a problem that it is difficult to completely replace the air with the liquid by boiling the sample or boiling the sample.

【0006】また、前記水銀圧入法や毛管凝縮法を用い
た多孔質体の細孔分布分析法は、多孔質体母材に異質の
物質があると、上記気孔率や多孔質体内物質の細孔中に
おける占有率分析の場合と同様に異質物質を分離できな
いため、正確な細孔分布分析を行うことが出来なかっ
た。さらに、水銀圧入法に関しては比較的細い細孔の奥
に比較的太い細孔が存在すると、これを細い細孔の径と
して分析してしまう問題もある。
Further, in the pore distribution analysis method of the porous body using the mercury injection method or the capillary condensation method, if there is a foreign substance in the porous body base material, the porosity and the substance in the porous body are finely divided. As in the case of the occupancy analysis in pores, foreign substances cannot be separated, so that accurate pore distribution analysis cannot be performed. Further, in the mercury intrusion method, if there is a relatively thick pore behind a relatively thin pore, there is a problem that this is analyzed as the diameter of the thin pore.

【0007】次に、多孔質体やその原料となる粉体にお
ける粒子径や粒子外周の分析に関しては、液相沈降法や
光透過法により分析していたが、やはり多孔質体母材や
その原料となる粉体に異質の物質があると、これと分離
して分析することが出来なかった。本発明は、このよう
な問題に鑑みてなされたものであって、その目的は、気
体吸着法や置換法による気孔率及び占有率の分析方法、
あるいは水銀圧入法による細孔分布測定に伴う上記問題
点を除去することにあり、多孔質体内に対象目的とする
成分以外の物質が存在していても、気孔率、細孔分布、
多孔質体細孔に存在する物質の多孔質体細孔内における
占有率、並びに多孔質体やその原料となる粉体における
粒子径及び粒子外周について、測定誤差のない分析を行
うことのできる多孔質体における気孔率等の分析法を提
供することである。
Next, regarding the analysis of the particle diameter and the particle periphery of the porous body and the powder as the raw material thereof, the liquid phase sedimentation method and the light transmission method were used. If the powder used as the raw material had a foreign substance, it could not be separated and analyzed. The present invention has been made in view of such problems, and an object thereof is a method of analyzing porosity and occupancy by a gas adsorption method or a substitution method,
Or in eliminating the above problems associated with the pore distribution measurement by mercury porosimetry, even if there is a substance other than the target component in the porous body, porosity, pore distribution,
The occupancy rate of the substances present in the pores of the porous body in the pores of the porous body, and the particle diameter and the outer circumference of the powder of the porous body or the raw material thereof can be analyzed without any measurement error. It is to provide an analysis method of porosity and the like in a body.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の多孔質体における気孔率等の分析法は、多
孔質体の所定断面を2次元的にマトリックス化し、多孔
質体母材と該多孔質体母材以外の物質とを成分分析して
2値化を行い、1つの成分もしくは2つ以上の成分を組
み合わせたものから気孔率、細孔分布、多孔質体細孔に
存在する物質の多孔質体細孔内における占有率、並びに
多孔質体やその原料となる粉体における粒子径及び粒子
外周の分析を行うことを特徴とする。
In order to achieve the above object, the method for analyzing the porosity of the porous body of the present invention is a method in which a predetermined cross section of the porous body is two-dimensionally matrixed to form a porous body matrix. Materials and substances other than the porous material base material are subjected to component analysis to be binarized, and the porosity, pore distribution, and porous material pores can be calculated from one component or a combination of two or more components. The present invention is characterized in that the occupancy rate of existing substances in the pores of the porous body and the particle diameter and the outer circumference of the particles in the porous body and the powder used as the raw material thereof are analyzed.

【0009】[0009]

【作用】前述の特徴を備えた本出願の多孔質体における
気孔率等の分析法は、多孔質体内に対象目的とする成分
以外の物質があっても、それを成分分析されたマトリッ
クスから除外して分析することにより、気孔率、細孔分
布、多孔質体細孔に存在する物質の多孔質体細孔内にお
ける占有率、並びに多孔質体やその原料となる粉体にお
ける粒子径及び粒子外周の分析ができる。
With the method for analyzing the porosity of the porous body of the present application having the above-mentioned characteristics, even if there is a substance other than the target component in the porous body, it is excluded from the matrix subjected to the component analysis. By analyzing, the porosity, the pore distribution, the occupancy rate of the substance existing in the pores of the porous body in the pores of the porous body, and the particle size and the particle in the powder as the porous body or the raw material thereof. Peripheral analysis is possible.

【0010】[0010]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】[0011]

【実施例1】ニッケル系多孔質体を樹脂埋め込みにより
走査型電子顕微鏡(以下SEMという)で観察できる程
度の大きさ(直径2cm程度)に調製し、研磨紙・ラッピ
ングテープにより多孔質体断面を表面研磨した。表面研
磨はサンプルに応じて研磨しやすい方法を利用しても構
わない。その後サンプルをカーボン蒸着し、SEMで観
察し同時にエネルギー分散型X線分析装置(以下EDX
という)で多孔質体の主成分であるNiについて面分析
を行った。この時の加速電圧は20keV、倍率は200 倍
で行った。また、データ取り込みはSEM、EDXの画
面を256 ×200のマトリックスに分割し、マトリックス
ごとにデータを収納した。この時サンプルの細孔径や母
体の粒径等により、倍率及びマトリックス数を変化させ
る必要があり、本実施例においてはマトリックス1辺の
長さとサンプル細孔径の比が1:5に設定した。その後
このNi−EDX像を各マトリックスごとにニッケルの
有無を判断する2値化を行い、全マトリックス中のニッ
ケルがあるマトリックスの数の割合から気孔率を求め
た。図1には、このニッケルの2値化像を示す。図中、
斑点(実際の実験では赤色、以下括弧内は実際の実験で
の色を表すこととする)で示した部分がNi−EDX2
値化像1であり、白抜き(黒色)部分は多孔質体細孔2
である。
[Example 1] A porous nickel body was prepared by embedding a resin into a size (about 2 cm in diameter) that could be observed with a scanning electron microscope (hereinafter referred to as "SEM"), and the cross section of the porous body was polished with polishing paper / wrapping tape. The surface was polished. For surface polishing, a method that facilitates polishing may be used depending on the sample. After that, the sample is carbon-deposited and observed by SEM. At the same time, an energy dispersive X-ray analyzer (hereinafter referred to as EDX
Surface analysis was performed on Ni, which is the main component of the porous body. At this time, the acceleration voltage was 20 keV and the magnification was 200 times. For data acquisition, the SEM and EDX screens were divided into a matrix of 256 × 200, and the data was stored for each matrix. At this time, it is necessary to change the magnification and the number of matrices depending on the pore diameter of the sample, the particle diameter of the matrix, and the like. In this example, the ratio of the length of one side of the matrix to the pore diameter of the sample was set to 1: 5. Then, this Ni-EDX image was binarized to judge the presence or absence of nickel for each matrix, and the porosity was calculated from the ratio of the number of matrices with nickel in the total matrix. FIG. 1 shows a binarized image of this nickel. In the figure,
The spots (red in the actual experiment, the color in the parentheses below represents the color in the actual experiment) are Ni-EDX2.
It is a quantized image 1, and white (black) parts are porous body pores 2.
Is.

【0012】比較例1 実施例1と同じサンプルについて、従来の技術で示した
置換法により得られた比較値を求めた。まずサンプルを
長方形に切断し縦、横、厚さを正確に計り取りサンプル
の見かけ上の体積を測定し200 ℃2時間乾燥させた後に
デシケーター中で冷却し、後にサンプルの重量を測定し
た。
Comparative Example 1 With respect to the same sample as in Example 1, a comparative value obtained by the substitution method shown in the prior art was obtained. First, the sample was cut into a rectangle, the vertical, horizontal and thickness were accurately measured, and the apparent volume of the sample was measured, dried at 200 ° C. for 2 hours, cooled in a desiccator, and the weight of the sample was measured later.

【0013】このサンプルを純水につけ、真空デシケー
ターで10分間脱気し、大気中に戻して重量を測定し2つ
の重量の差からサンプルの細孔容積を求め見かけ上の体
積から気孔率を求めた。この結果と実施例1の結果を比
較し表1に示す。表1からもわかるとおり、本実施例1
の気孔率のほうが比較例1の気孔率よりも大きくなって
いる。これは、比較例1においては、ニッケル系多孔質
体の細孔中に存在している不純物をも多孔質体母材とし
て測定したために、その分、細孔が小さく測定されたこ
とによる。それに対し、本実施例1においては、ニッケ
ル系多孔質体母材とそれ以外とを正確に色で識別可能と
なっているので、測定誤差がない。
This sample was immersed in pure water, degassed with a vacuum desiccator for 10 minutes, returned to the atmosphere, weighed, the pore volume of the sample was determined from the difference between the two weights, and the porosity was determined from the apparent volume. It was The results are compared with those of Example 1 and shown in Table 1. As can be seen from Table 1, Example 1
Has a larger porosity than that of Comparative Example 1. This is because in Comparative Example 1, the impurities existing in the pores of the nickel-based porous body were also measured as the porous body base material, and the pores were accordingly measured to be small. On the other hand, in Example 1, since the nickel-based porous material base material and the other materials can be accurately distinguished by color, there is no measurement error.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【実施例2】厚さ0.7tのニッケル系多孔質体を50mm×50
mmに切断、乾燥後重量を測定しこれに炭酸カリウムを含
む混合炭酸塩をそれぞれに任意の量を添加し、650 ℃、
1時間水素雰囲気で加熱し、多孔質体中に混合炭酸塩を
含浸させた。冷却後、各サンプルについて重量を測定し
含浸量を確認した。その後、前記実施例1と同様の条件
において多孔質体の成分のNiと混合炭酸塩の成分のK
についてEDXの面分析を行い、それぞれを2値化し
た。このマトリックス中のNiの割合から多孔質体の気
孔率:XE を求め、さらにマトリックス中のNiとKの
割合から混合炭酸塩含浸中の多孔質体気孔率:X′E
求め、第1式より多孔質体細孔中の混合炭酸塩占有率:
E を求めた。
[Example 2] A nickel-based porous body having a thickness of 0.7 t was 50 mm x 50
After cutting into mm and drying, weigh it, add an arbitrary amount of mixed carbonate containing potassium carbonate to each, 650 ℃,
The mixture was heated in a hydrogen atmosphere for 1 hour to impregnate the porous body with the mixed carbonate. After cooling, each sample was weighed to confirm the impregnated amount. Then, under the same conditions as in Example 1, the component Ni of the porous body and the component K of the mixed carbonate were used.
The surface analysis of EDX was carried out for each of them, and each was binarized. The porosity of the porous body from the ratio of Ni in the matrix: seeking XE, further porous body the pores of the mixed carbonate impregnation from the ratio of Ni and K in the matrix: seeking X 'E, the first equation Occupancy of mixed carbonate in the pores of a more porous body:
I asked for Y E.

【0016】 YE =(XE −X′E )/XE …第1式 比較例2 前記実施例2の各サンプルを50mm×20mmに切断し、前記
比較例1で用いた置換法によりそれぞれの混合炭酸塩含
浸中の多孔質体気孔率:X′T を求めた。次に、これら
のサンプルを30vol %酢酸水溶液につけ炭酸塩を洗浄除
去し20分後に取りだし、純水で洗浄した後、乾燥させ同
じ手法により、各多孔質体の気孔率:XT を求め、第2
式より多孔質体細孔中の混合炭酸塩含有率:YT を求め
た。
Y E = (X E −X ′ E ) / X E (Formula 1) Comparative Example 2 Each sample of Example 2 was cut into 50 mm × 20 mm, and the replacement method used in Comparative Example 1 was used. porous body porosity of mixed carbonates during the impregnation of: was determined X 'T. Next, these samples 30 vol% extraction carbonate immersed in aqueous acetic acid was washed away after 20 minutes, washed with pure water, by the same technique and dried, the porosity of the porous bodies: seeking X T, the Two
The mixed carbonate content in the pores of the porous body: Y T was determined from the formula.

【0017】 YT =(XT −X′T )/XT …第2式 このYT と前記実施例2により求めたYE を比較し図2
に示す。図2は縦軸が細孔中混合炭酸塩含有率%で横軸
が混合炭酸塩含浸量である。図中3、4は各々実施例2
および比較例2より得られる曲線である。本実施例によ
ればこのような多孔質体細孔中の占有物質の細孔中にお
ける占有率を求めるに当たり、幅広い範囲で直線性が得
られることがわかる。
Y T = (X T −X ′ T ) / X T .. Second Formula This Y T and Y E obtained in the second embodiment are compared and FIG.
Shown in. In FIG. 2, the vertical axis represents the mixed carbonate content in the pores, and the horizontal axis represents the mixed carbonate impregnation amount. In the figure, 3 and 4 are the second embodiment.
3 is a curve obtained from Comparative Example 2. According to this example, it is understood that linearity can be obtained in a wide range when obtaining the occupation ratio of the occupying substance in the pores of the porous body in the pores.

【0018】[0018]

【実施例3】ニッケル系多孔質体に炭酸カリウムを含む
混合炭酸塩を含浸させ、鉄と接触させながら650 ℃にて
水素ガス66%、炭酸ガス17%、水17%のガスを、炭酸ガ
ス100 %の時と交互に供給し1600h保持したサンプルに
ついて、前記実施例2と同じ条件下でニッケル多孔質体
細孔中における混合炭酸塩の占有率を求めた。また、鉄
が不純物として細孔内を占有することが考えられるの
で、Ni、Kの他にFeに関しても分析を行い、同様の
方法で2値化し、Feの補正を行ったときと行わなかっ
たときについて値を求めた。図3にはこれにより行った
EDXの2値化像を示す。図中、斑点(赤色)で示した
部分がNi−EDX2値化像1であり、白抜き(黒色)
の部分が多孔質体細孔2であり、黒(黄色)で示した部
分がK−EDX2値化像5であり、斜線(青色)で示し
た部分がFe−EDX2値化像6である。
Example 3 A nickel-based porous body was impregnated with a mixed carbonate containing potassium carbonate, and at a temperature of 650 ° C., 66% hydrogen gas, 17% carbon dioxide gas, and 17% water were mixed with carbon dioxide gas. The occupancy of the mixed carbonate in the pores of the nickel porous body was determined under the same conditions as in Example 2 for the sample that was supplied alternately at 100% and held for 1600 h. Further, since iron may occupy the inside of the pores as an impurity, Fe was analyzed in addition to Ni and K, and was binarized by the same method, and was not performed when Fe was corrected. The value was calculated about the time. FIG. 3 shows a binarized image of EDX obtained by this. In the figure, the portion indicated by the spots (red) is the Ni-EDX binarized image 1, which is white (black).
Is the porous body pores 2, the black (yellow) portion is the K-EDX binarized image 5, and the shaded portion (blue) is the Fe-EDX binarized image 6.

【0019】比較例3 前記実施例3と同じサンプルについて、前記比較例2と
同じ置換法を用い前記第2式より多孔質体細孔中におけ
る混合炭酸塩の占有率を求めた。表2に本実施例3との
比較を示す。表2から明らかなように、Feすなわち図
3の斜線部分を考慮に入れて計算するかどうかで、実施
例3と比較例3との間、並びに実施例3の両測定結果間
で混合炭酸塩の占有率の値が異なっていることがわか
る。
Comparative Example 3 With respect to the same sample as in Example 3, the occupancy rate of the mixed carbonate in the pores of the porous body was determined by the above equation 2 using the same substitution method as in Comparative Example 2. Table 2 shows a comparison with Example 3. As is clear from Table 2, mixed carbonates between Example 3 and Comparative Example 3 and between both measurement results of Example 3 depend on whether Fe, that is, the hatched portion in FIG. 3 is taken into consideration. It can be seen that the occupancy values of are different.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【実施例4】前記実施例2で使用したサンプルをEDX
でNi、Kについて観察倍率1000倍で面分析し、これら
の像をマトリックスごとに2値化し、各成分が有の場合
1、無の場合0とした。この時あるマトリックスにおい
て、 1)自分自身が1である 2)上下左右斜の8つのマトリックスに1つでも0があ
る 1)2)を両方満足しているマトリックスたけをつなぎ
あわせると、像の周囲長さがわかる。図4はこれをイメ
ージしたモデル図である。ここで言う両方を満足したマ
トリックスとは斜線部のマトリックスを言う。これを、
Niの像に対応させ、ニッケル母材の周囲長さや母材直
径等を分析した。
Example 4 The sample used in Example 2 was EDX
Then, surface analysis was performed for Ni and K at an observation magnification of 1000 times, and these images were binarized for each matrix, and each component was set to 1 when it was present and 0 when it was not present. At this time, in a certain matrix, 1) oneself is 2) there is at least one 0 in eight matrices vertically and horizontally and obliquely 1) matrix satisfying both 2) I know the length. FIG. 4 is a model diagram in which this is imaged. The matrix that satisfies both of the conditions mentioned here is the matrix in the shaded area. this,
Corresponding to the image of Ni, the peripheral length of the nickel base material, the base material diameter, etc. were analyzed.

【0022】以上、本発明の一実施例を詳述したが、本
発明は、前記実施例に限定されるものではなく、その要
旨を逸脱しない範囲において種々変更可能である。たと
えば、成分分析として、波長分散型X線分析装置(WD
X)による特性X線分析、X線回析による同定分析、赤
外吸収スペクトル分析(IR)を採用することも可能で
ある。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. For example, as a component analysis, a wavelength dispersive X-ray analyzer (WD
It is also possible to employ characteristic X-ray analysis by X), identification analysis by X-ray diffraction, and infrared absorption spectrum analysis (IR).

【0023】また、2値化処理方法として、標準サンプ
ルをあらかじめ測定しておき後に演算によりバックグラ
ンドを処理して行う標準サンプル法、ダミー物質をサン
プル細孔中に入れておきサンプルと同時に測定し後に演
算によりバックグランドを処理して行うダミーサンプル
法、目的成分のピークに対しバックグランドピークを測
定時に設定しておき後に演算によりバックグランドを処
理して行うダミーピーク法を用いることもできる。
As the binarization processing method, a standard sample method in which a standard sample is measured in advance and then the background is processed by calculation, a dummy substance is put in the sample pores and measured simultaneously with the sample. It is also possible to use a dummy sample method that is performed by processing the background later, or a dummy peak method that is performed by setting the background peak for the peak of the target component at the time of measurement and then processing the background.

【0024】さらに、マトリックス化において、サンプ
ルの細孔径もしくは母材粒径のいずれか小さいほうと、
1つのマトリックスの1辺の長さの比が1/1〜1/10,000
の範囲で設定することも可能である。
Furthermore, in matrix formation, the smaller of the sample pore size and the base material particle size,
The ratio of the length of one side of one matrix is 1/1 to 1 / 10,000
It is also possible to set within the range.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
によれば、多孔質体の断面を2次元的にマトリックス化
し、マトリックスごとに成分分析を行い2値化すること
により、1つの成分もしくは2つ以上の成分の組み合わ
せたものから気孔率、細孔分布、多孔質体細孔に存在す
る物質の多孔質体細孔内における占有率、並びに多孔質
体やその原料となる粉体における粒子径及び粒子外周を
分析でき、不純物の混入によるそれらの測定誤差を除去
することができた。
As is apparent from the above description, according to the present invention, a cross section of a porous body is formed into a two-dimensional matrix, and component analysis is performed for each matrix and binarized to obtain one component. Or, from the combination of two or more components, the porosity, the pore distribution, the occupation rate of the substance existing in the pores of the porous body in the pores of the porous body, and the powder of the porous body or the raw material thereof It was possible to analyze the particle diameter and the particle circumference, and it was possible to eliminate those measurement errors due to the inclusion of impurities.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1において気孔率を求めるために行っ
た、NiのEDX2値化像。
FIG. 1 is an EDX binarized image of Ni performed to determine a porosity in Example 1.

【図2】 実施例2、比較例2において得られた、細孔
中混合炭酸塩占有率測定値と混合炭酸塩含浸量の関係を
示す線図。
FIG. 2 is a diagram showing the relationship between the measured values of mixed carbonate occupancy in pores and the impregnated amount of mixed carbonate obtained in Example 2 and Comparative Example 2.

【図3】 実施例3において気孔率及び多孔質体細孔に
存在する物質の多孔質体細孔内に於ける占有率を求める
ために行った、Ni、K、FeのEDX2値化像。
FIG. 3 is an EDX binarized image of Ni, K and Fe, which was carried out in Example 3 to determine the porosity and the occupation ratio of the substance existing in the pores of the porous body in the pores of the porous body.

【図4】 実施例4において行ったニッケル母材の長さ
や母材直径等を分析するうえでのイメージモデル。
FIG. 4 is an image model for analyzing the length of the nickel base material, the diameter of the base material, etc. performed in Example 4.

【符号の説明】[Explanation of symbols]

1…Ni−EDX2値化像、2…多孔質体細孔、3…実
施例2より得られた値、4…比較例2より得られた値、
5…K−EDX2値化像、6…Fi−EDX2値化像
1 ... Ni-EDX binarized image, 2 ... Porous body pores, 3 ... Value obtained from Example 2, 4 ... Value obtained from Comparative Example 2,
5 ... K-EDX binarized image, 6 ... Fi-EDX binarized image

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 正 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Yoshida 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体の所定断面を2次元的にマトリ
ックス化し、多孔質体母材と該多孔質体母材以外の物質
とを成分分析して2値化を行い、前記多孔質体母材のみ
の成分から、もしくは前記多孔質体母材を含む少なくと
も2つ以上の成分を組み合わせたものから多孔質体の気
孔率を求めることを特徴とする多孔質体気孔率分析法。
1. A predetermined cross section of a porous body is two-dimensionally matrixed, and the porous body base material and a substance other than the porous body base material are subjected to component analysis to be binarized to obtain the porous body. A porosity analysis method for a porous body, comprising: determining a porosity of a porous body from a component of only a base material or from a combination of at least two components including the porous body base material.
【請求項2】 多孔質体の所定断面を2次元的にマトリ
ックス化し、多孔質体母材と該多孔質体母材以外の物質
とを成分分析して2値化を行い、前記多孔質体母材のみ
の成分から、もしくは前記多孔質体母材を含む少なくと
も2つ以上の成分を組み合わせたものから多孔質体の細
孔に存在する物質の細孔内における占有率を求めること
を特徴とする多孔質体内物質の細孔中における占有率分
析法。
2. A predetermined cross section of a porous body is two-dimensionally matrixed, and the porous body base material and a substance other than the porous body base material are subjected to component analysis for binarization to obtain the porous body. The occupancy ratio of the substance existing in the pores of the porous body in the pores is obtained from the components of the matrix alone or a combination of at least two components including the porous body matrix. Occupancy Analysis Method for Porous Substances in Porous Materials.
【請求項3】 多孔質体の所定断面を2次元的にマトリ
ックス化し、多孔質体母材と該多孔質体母材以外の物質
とを成分分析して2値化を行い、前記多孔質体母材のみ
の成分から、もしくは前記多孔質体母材を含む少なくと
も2つ以上の成分を組み合わせたものから多孔質体の細
孔の分布を求めることを特徴とする多孔質体細孔分布分
析法。
3. A predetermined cross section of a porous body is formed into a two-dimensional matrix, and the porous body base material and a substance other than the porous body base material are subjected to component analysis to be binarized to obtain the porous body. Porous body pore distribution analysis method, characterized in that the pore distribution of a porous body is obtained from a component of only the base material or a combination of at least two components containing the porous body base material. .
【請求項4】 多孔質体やその原料となる粉末の断面を
2次元的にマトリックス化し成分分析して2値化を行
い、1つの成分もしくは2つ以上の成分の組み合わせご
とに粒子径や粒子外周を求めることを特徴とする粒径及
び粒子外周分析法。
4. A particle size or a particle for each one component or a combination of two or more components obtained by two-dimensionally matrixing a cross section of a porous body or a powder as a raw material thereof and performing component analysis. A particle size and particle circumference analysis method, characterized in that the circumference is determined.
【請求項5】 前記成分分析が、波長分散型X線分析装
置(WDX)またはエネルギー分散型X線分析装置(E
DX)による特性X線分析を利用した元素分析であるこ
とを特徴とする請求項1、2、3または4記載の分析
法。
5. The component analysis is performed by a wavelength dispersive X-ray analyzer (WDX) or an energy dispersive X-ray analyzer (E).
The analysis method according to claim 1, 2, 3 or 4, which is elemental analysis utilizing a characteristic X-ray analysis by DX).
【請求項6】 前記成分分析が、X線回析による同定分
析であることを特徴とする請求項1、2、3または4記
載の分析法。
6. The analysis method according to claim 1, wherein the component analysis is an identification analysis by X-ray diffraction.
【請求項7】 前記成分分析が、赤外吸収スペクトル分
析(IR)であることを特徴とする請求項1、2、3ま
たは4記載の分析法。
7. The analysis method according to claim 1, 2, 3 or 4, wherein the component analysis is infrared absorption spectrum analysis (IR).
【請求項8】 前記2値化が、標準サンプルをあらかじ
め測定しておき後に演算によりバックグランドを処理し
て行なう標準サンプル法であることを特徴とする請求項
1、2、3または4記載の分析法。
8. The standard sample method according to claim 1, wherein the binarization is a standard sample method in which a standard sample is measured in advance and then the background is processed by calculation. Analytical method.
【請求項9】 前記2値化が、ダミー物質をサンプル細
孔中に入れておきサンプルと同時に測定し後に演算によ
りバックグランドを処理して行うダミーサンプル法であ
ることを特徴とする請求項1、2、3または4記載の分
析法。
9. The binarization method is a dummy sample method in which a dummy substance is put in a sample pore and measured simultaneously with the sample, and then the background is processed by calculation. The analysis method according to 2, 3, or 4.
【請求項10】 前記2値化が、目的成分のピークに対し
バックグランドピークを測定時に設定しておき後に演算
によりバックグランドを処理して行うダミーピーク法で
あることを特徴とする請求項1、2、3または4記載の
分析法。
10. The binarization method is a dummy peak method performed by setting a background peak for a peak of a target component at the time of measurement and then processing the background by calculation. The analysis method according to 2, 3, or 4.
【請求項11】 前記マトリックス化において、サンプル
の細孔径もしくは母材粒径のいずれか小さいほうと、1
つのマトリックスの1辺の長さの比が1/1〜1/10,000の
範囲で設定することを特徴とする請求項1、2、3また
は4記載の分析法。
11. In the matrix formation, the sample having a smaller pore size or a base material particle size, whichever is smaller, is 1
The analysis method according to claim 1, 2, 3 or 4, wherein the ratio of the length of one side of one matrix is set in the range of 1/1 to 1 / 10,000.
JP15941092A 1992-06-18 1992-06-18 Method for analyzing porosity in porous body Pending JPH063251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15941092A JPH063251A (en) 1992-06-18 1992-06-18 Method for analyzing porosity in porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15941092A JPH063251A (en) 1992-06-18 1992-06-18 Method for analyzing porosity in porous body

Publications (1)

Publication Number Publication Date
JPH063251A true JPH063251A (en) 1994-01-11

Family

ID=15693153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15941092A Pending JPH063251A (en) 1992-06-18 1992-06-18 Method for analyzing porosity in porous body

Country Status (1)

Country Link
JP (1) JPH063251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707189B2 (en) 2001-04-09 2004-03-16 Kabushiki Kaisha Toshiba Image pickup apparatus and driving apparatus
US6809490B2 (en) 2001-06-12 2004-10-26 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052741A (en) * 1983-09-01 1985-03-26 Mitsubishi Rayon Co Ltd Measuring method of particle size distribution
JPS6275775A (en) * 1985-09-28 1987-04-07 Toshiba Corp Picture processor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052741A (en) * 1983-09-01 1985-03-26 Mitsubishi Rayon Co Ltd Measuring method of particle size distribution
JPS6275775A (en) * 1985-09-28 1987-04-07 Toshiba Corp Picture processor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707189B2 (en) 2001-04-09 2004-03-16 Kabushiki Kaisha Toshiba Image pickup apparatus and driving apparatus
US6809490B2 (en) 2001-06-12 2004-10-26 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US7173391B2 (en) 2001-06-12 2007-02-06 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot

Similar Documents

Publication Publication Date Title
Rice et al. On the imaging of Pt atoms in zeolite frameworks
Kennedy et al. Absorption microanalysis with a scanning soft X‐ray microscope: mapping the distribution of calcium in bone
Blaurock et al. Low-angle X-ray diffraction patterns from a variety of myelinated nerves
JPH063251A (en) Method for analyzing porosity in porous body
Xu et al. Ultra small-mass graphitization by sealed tube zinc reduction method for AMS 14C measurements
JP2726816B2 (en) Secondary ion mass spectrometry and standard sample preparation method
Datta et al. Thermal ionisation mass spectrometry of Li2BO+ 2 ions: determination of the isotopic abundance ratio of lithium
Lechene et al. Electron probe microanalysis of chemical elemental content of single human red cells
EP3967388A1 (en) Zeolite membrane composite, and method for producing same
Roselieb et al. Experimental study of argon sorption in quartz: Evidence for argon incompatibility
Lovell et al. Standardization in biological analyses of aluminum: What are the needs?
US4601050A (en) Method of testing ceramic article
Neuhoff et al. Determination of the dry mass of small biological objects by quantitative electron microscopy
JP2000074858A (en) Method for quantitating palladium palladium catalyst
Valaskovic et al. Quantitative imaging ion microscopy: a short review
Watanabe et al. New method for quantitative mapping of metallic elements in tissuesections by electron probe microanalyser with wavelength dispersive spectrometers
JP4549728B2 (en) Sample for X-ray fluorescence analysis
Clemmons Procedures and errors in quantitative historadiography
Clarke et al. The Intergranular Phase in Hot‐Pressed Silicon Nitride: III, A Refinement of the Elemental Composition
EP1433752A1 (en) METHOD FOR PRODUCING POTASSIUM FLUOROTANTALATE CRYSTAL BEING LOW IN OXYGEN CONTENT AND METHOD FOR PRODUCING POTASSIUM FLUORONIOBATE CRYSTAL BEING LOW IN OXYGEN CONTENT, POTASSIUM FLUOROTANTALATE CRYSTAL BEING LOW IN OXYGEN CONTENT AND POTASSIUM FLUORONIOBATE CRYSTAL BEING LOW IN OXYGEN PRODUCE
Allen et al. Study of the electronic structure of UBr 4 using X-ray photoelectron spectroscopy
SU1679316A1 (en) Method of determination of particle size in fine and ultrafine powders
Haibel Synchrotron X-ray absorption tomography
Klima et al. A chemical concentration method for the determination of niobium, zirconium and tantalum in carbon steel by X-ray fluorescence spectrometry
US2882418A (en) Analysis of unknown substances