JP6774790B2 - Wireless charging system for self-propelled vacuum cleaners - Google Patents

Wireless charging system for self-propelled vacuum cleaners Download PDF

Info

Publication number
JP6774790B2
JP6774790B2 JP2016120952A JP2016120952A JP6774790B2 JP 6774790 B2 JP6774790 B2 JP 6774790B2 JP 2016120952 A JP2016120952 A JP 2016120952A JP 2016120952 A JP2016120952 A JP 2016120952A JP 6774790 B2 JP6774790 B2 JP 6774790B2
Authority
JP
Japan
Prior art keywords
self
power receiving
vacuum cleaner
propelled vacuum
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016120952A
Other languages
Japanese (ja)
Other versions
JP2017221595A (en
Inventor
篤史 前原
篤史 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016120952A priority Critical patent/JP6774790B2/en
Publication of JP2017221595A publication Critical patent/JP2017221595A/en
Application granted granted Critical
Publication of JP6774790B2 publication Critical patent/JP6774790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Vacuum Cleaner (AREA)

Description

この発明は、自走式掃除機のワイヤレス充電システムに関する。 The present invention relates to a wireless charging system for a self-propelled vacuum cleaner.

この発明の背景技術としては、充電台に設けられた給電用金属端子に自走式掃除機に設けられた受電用金属端子を物理的に接触させることにより、充電台から自走式掃除機のバッテリに電力を供給して充電するようにした充電システムが用いられている。しかし、給電用金属端子と受電用金属端子の少なく一方にほこりや水などが付着すると、両者間に接触不良が生じて充電が安全にまた効率よく行われないという不都合が生じる。これに対して、床面に対して直交する方向に磁束を生成する平坦な給電コイルを水平に充電台に設置し、自走式掃除機の底面に備えた受電コイルをその給電コイルに重ねることにより、誘電方式、つまり、ワイヤレス方式で給電するようにしたものが知られている(例えば、特許文献1参照)。 As a background technique of the present invention, the self-propelled vacuum cleaner can be moved from the charging stand by physically contacting the power receiving metal terminal provided on the charging stand with the power receiving metal terminal provided on the self-propelled vacuum cleaner. A charging system is used in which the battery is charged by supplying electric power. However, if dust, water, or the like adheres to one of the few metal terminals for power supply and the metal terminal for power reception, there is a disadvantage that poor contact occurs between the two and charging cannot be performed safely and efficiently. On the other hand, a flat feeding coil that generates magnetic flux in the direction orthogonal to the floor surface is installed horizontally on the charging stand, and the power receiving coil provided on the bottom surface of the self-propelled vacuum cleaner is overlapped with the feeding coil. Therefore, a dielectric method, that is, a method in which power is supplied by a wireless method is known (see, for example, Patent Document 1).

特開平2―239830号公報Japanese Unexamined Patent Publication No. 2-239830

しかしながら、このようなワイヤレス給電方式では、平坦な給電コイルが充電台に平面的に存在するため、充電台の床面に占める面積が大きく、その設置場所の選択に困る場合があるという問題点があった。 However, in such a wireless power feeding method, since a flat power feeding coil exists in a plane on the charging stand, the area occupied by the floor surface of the charging stand is large, and there is a problem that it may be difficult to select the installation location. there were.

この発明はこのような事情を考慮してなされたもので、給電コイルが床面に平行に磁束を生成し、それを受電コイルが受け入れるように両コイルを配置することにより、充電台が大きい床面積を占めることのない自走式掃除機のワイヤレス充電システムを提供するものである。 The present invention has been made in consideration of such circumstances. By arranging both coils so that the feeding coil generates magnetic flux parallel to the floor surface and the power receiving coil accepts the magnetic flux, the floor has a large charging stand. It provides a wireless charging system for self-propelled vacuum cleaners that does not occupy an area.

この発明は、バッテリと掃除および走行装置とを搭載し前記バッテリの電力で前記掃除および走行装置を駆動制御する制御部を備え床面を走行しながら掃除を行う自走式掃除機と、前記バッテリを充電するための充電台とからなり、前記充電台は給電コイルと給電コイルを励磁する励磁回路を備え、前記自走式掃除機は前記給電コイルから電磁結合によって電力を受電する受電コイルと受電コイルの出力を受けてバッテリを充電する充電回路を備え、前記給電コイルは床面に平行な方向に磁束を生成するように充電台に設置され、前記受電コイルは前記磁束を床面に平行に受け入れ可能に自走式掃除機に設置されることを特徴とする自走式掃除機のワイヤレス充電システムを提供するものである。 The present invention comprises a self-propelled vacuum cleaner equipped with a battery, a cleaning and traveling device, a control unit for driving and controlling the cleaning and traveling device with the power of the battery, and cleaning while traveling on the floor surface, and the battery. The charging stand is provided with a feeding coil and an exciting circuit for exciting the feeding coil, and the self-propelled vacuum cleaner has a power receiving coil and a power receiving coil that receive power from the feeding coil by electromagnetic coupling. A charging circuit for charging the battery by receiving the output of the coil is provided, the power feeding coil is installed on the charging stand so as to generate a magnetic flux in a direction parallel to the floor surface, and the power receiving coil is parallel to the floor surface. It provides a wireless charging system for a self-propelled vacuum cleaner, characterized in that it is receptively installed in the self-propelled vacuum cleaner.

この発明によれば、給電コイルが床面に平行な方向に磁束を生成するように設置され、受電コイルがその磁束を床面に平行に受け入れるように設置される、つまり、両コイルの磁束の授受面が床面に対して垂直(タテ)になるので、給電コイルを収容する充電台の床に占める面積をコンパクトにすることができる。 According to the present invention, the feeding coil is installed so as to generate a magnetic flux in a direction parallel to the floor surface, and the power receiving coil is installed so as to receive the magnetic flux parallel to the floor surface, that is, the magnetic fluxes of both coils. Since the transfer surface is perpendicular to the floor surface (vertical), the area occupied by the floor of the charging stand accommodating the power feeding coil can be made compact.

この発明の第1実施形態に係る自走式掃除機の上面斜視図である。It is a top perspective view of the self-propelled vacuum cleaner which concerns on 1st Embodiment of this invention. 図1に示す自走式掃除機の底面図である。It is a bottom view of the self-propelled vacuum cleaner shown in FIG. 図1に示す自走式掃除機の内部構成を示す側面図である。It is a side view which shows the internal structure of the self-propelled vacuum cleaner shown in FIG. この発明の第1実施形態に係る充電台の斜視図である。It is a perspective view of the charging stand which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る制御回路のブロック図である。It is a block diagram of the control circuit which concerns on 1st Embodiment of this invention. この発明の第1実施形態に係る自走式掃除機の掃除動作の一例を示す上面図である。It is a top view which shows an example of the cleaning operation of the self-propelled vacuum cleaner which concerns on 1st Embodiment of this invention. この発明の第1実施形態の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of 1st Embodiment of this invention. この発明の第1実施形態の動作説明図である。It is operation | movement explanatory drawing of 1st Embodiment of this invention. この発明の第1実施形態の動作を示す要部上面図である。It is a top view of the main part which shows the operation of 1st Embodiment of this invention. この発明の第1実施形態の動作を示す上面図である。It is a top view which shows the operation of 1st Embodiment of this invention. この発明の第2実施形態に係る自走式掃除機を示す図1対応図である。FIG. 1 is a correspondence diagram showing a self-propelled vacuum cleaner according to a second embodiment of the present invention. この発明の第2実施形態に係る充電台を示す図4対応図である。FIG. 4 is a corresponding diagram showing a charging stand according to a second embodiment of the present invention. この発明の第2実施形態に係る制御回路を示す図5対応図である。FIG. 5 is a diagram corresponding to FIG. 5 showing a control circuit according to a second embodiment of the present invention.

この発明の自走式掃除機のワイヤレス充電システムは、バッテリと掃除および走行装置とを搭載し前記バッテリの電力で前記掃除および走行装置を駆動制御する制御部を備え床面を走行しながら掃除を行う自走式掃除機と、前記バッテリを充電するための充電台とからなり、前記充電台は給電コイルと給電コイルを励磁する励磁回路を備え、前記自走式掃除機は前記給電コイルから電磁結合によって電力を受電する受電コイルと受電コイルの出力を受けてバッテリを充電する充電回路を備え、前記給電コイルは床面に平行な方向に磁束を生成するように充電台に設置され、前記受電コイルは前記磁束を床面に平行に受け入れるように自走式掃除機に設置されることを特徴とする。 The wireless charging system of the self-propelled vacuum cleaner of the present invention includes a battery, a cleaning and a traveling device, and has a control unit that drives and controls the cleaning and traveling device with the power of the battery, and performs cleaning while traveling on the floor surface. The self-propelled vacuum cleaner is composed of a charging stand for charging the battery, the charging stand includes a feeding coil and an excitation circuit for exciting the feeding coil, and the self-propelled vacuum cleaner is electromagnetically driven from the feeding coil. A power receiving coil that receives power by coupling and a charging circuit that charges the battery by receiving the output of the power receiving coil are provided, and the power feeding coil is installed on a charging stand so as to generate magnetic flux in a direction parallel to the floor surface, and the power receiving coil is provided. The coil is characterized in that it is installed in a self-propelled vacuum cleaner so as to receive the magnetic flux parallel to the floor surface.

この発明における給電コイルおよび受電コイルは、磁性体のコア(例えば、鉄心)に巻線を施したものや、巻線のみ(コアレス)のものなどを含む。
前記充電台および自走式掃除機は、床面に直交する平坦な側面を有する筐体をそれぞれ備え、給電コイルおよび受電コイルは、各側面に沿って互いに対向可能に配置されることが好ましい。
自走式掃除機の筐体は上面から見た輪郭が三角形や四角形又はD形であり、前記平坦な側面がその一辺に対応することが望ましい。
前記自走式掃除機は、受電コイルが給電コイルに対向する位置を検出する位置検出センサを備え、前記制御部が前記位置検出センサの出力を受けて受電コイルが給電コイルに対向する所定位置に位置決めされるように前記走行装置を制御するようにしてもよい。
また、受電コイルが給電コイルに対向する所定位置とは、両コイル間の漏れインダクタンスが最小になる位置であることが望ましい。
The power feeding coil and the power receiving coil in the present invention include one in which a magnetic core (for example, an iron core) is wound, and one in which only the winding (coreless) is applied.
It is preferable that the charging stand and the self-propelled vacuum cleaner each include a housing having a flat side surface orthogonal to the floor surface, and the feeding coil and the power receiving coil are arranged so as to face each other along each side surface.
It is desirable that the housing of the self-propelled vacuum cleaner has a triangular, quadrangular or D-shaped contour when viewed from the upper surface, and the flat side surface corresponds to one side thereof.
The self-propelled vacuum cleaner includes a position detection sensor that detects a position where the power receiving coil faces the feeding coil, and the control unit receives the output of the position detecting sensor to position the power receiving coil at a predetermined position facing the feeding coil. The traveling device may be controlled so as to be positioned.
Further, it is desirable that the predetermined position where the power receiving coil faces the feeding coil is a position where the leakage inductance between both coils is minimized.

また、給電コイルと受電コイルはそれぞれ第1および第2磁性体に巻回され、前記位置検出センサが第2磁性体に巻回された検出コイルを備えてもよい。 Further, the power feeding coil and the power receiving coil may be wound around the first and second magnetic bodies, respectively, and the position detection sensor may be provided with a detection coil wound around the second magnetic body.

また、制御部は、受電コイルが給電コイルに対して位置決めされた後に、充電回路の出力をバッテリに供給することが好ましい。
また、前記充電台が発光素子または超音波発信器を備え、前記位置検出センサが受光素子または超音波受信器であってもよい。
Further, it is preferable that the control unit supplies the output of the charging circuit to the battery after the power receiving coil is positioned with respect to the feeding coil.
Further, the charging stand may be provided with a light emitting element or an ultrasonic transmitter, and the position detection sensor may be a light receiving element or an ultrasonic receiver.

以下、図面に示す実施形態を用いてこの発明を詳述する。この実施形態によってこの発明が限定されるものではない。
(第1実施形態)
(1)自走式掃除機と充電台の構成
この発明に係る自走式掃除機(以下、掃除ロボットという)は、床面を自走しながら、床面上の塵埃を空気とともに吸い込み、塵埃を除去した空気を排気することにより床面を掃除するようにしている。
Hereinafter, the present invention will be described in detail using the embodiments shown in the drawings. This embodiment does not limit the invention.
(First Embodiment)
(1) Configuration of self-propelled vacuum cleaner and charging stand The self-propelled vacuum cleaner (hereinafter referred to as a cleaning robot) according to the present invention sucks dust on the floor together with air while traveling on the floor, and dust. The floor is cleaned by exhausting the removed air.

図1はこの発明の第1実施形態にかかる掃除ロボットの上から見た斜視図であり、図2は同掃除ロボットの底面図であり、図3は同掃除ロボットの内部構成を示す側面図である。また、図4はこの実施形態に係る充電台の斜視図である。 FIG. 1 is a perspective view of the cleaning robot according to the first embodiment of the present invention as viewed from above, FIG. 2 is a bottom view of the cleaning robot, and FIG. 3 is a side view showing the internal configuration of the cleaning robot. is there. Further, FIG. 4 is a perspective view of the charging stand according to this embodiment.

これらの図に示すように、掃除ロボット1Aは、上面から見て実質的に三角形の輪郭を有する筐体2を備える。図2に示すように底板2aには、回転ブラシ3、一対のサイドブラシ4、吸引口11、一対の駆動輪5a,5b、後輪7、および2個の床面検知センサ12が設けられている。なお、床面検知センサ12は赤外線発光ダイオードとフォトトランジスタから構成され、その検知面が床に向かって露出するようになっている。 As shown in these figures, the cleaning robot 1A includes a housing 2 having a substantially triangular contour when viewed from above. As shown in FIG. 2, the bottom plate 2a is provided with a rotating brush 3, a pair of side brushes 4, a suction port 11, a pair of drive wheels 5a and 5b, a rear wheel 7, and two floor surface detection sensors 12. There is. The floor surface detection sensor 12 is composed of an infrared light emitting diode and a phototransistor, and the detection surface is exposed toward the floor.

また、筐体2内には、図3に示すように吸引口11に接続された吸引路10と、吸引路10の下流側に設けられた集塵部20と、集塵部20の下流側に設けられた電動送風機30と、電動送風機30と排気口41とを接続する排気路40とを備える。 Further, in the housing 2, as shown in FIG. 3, a suction path 10 connected to the suction port 11, a dust collecting section 20 provided on the downstream side of the suction path 10, and a downstream side of the dust collecting section 20 The electric blower 30 provided in the above, and an exhaust passage 40 connecting the electric blower 30 and the exhaust port 41 are provided.

筐体2は、図1に示すように蓋2dおよび天板2bを備える。底板2aおよび天板2bの間の外周側面には、側板2cが設けられている。天板2には,掃除ロボット1Aの作動条件や作動指令を入力する入力部31が設けられている。 The housing 2 includes a lid 2d and a top plate 2b as shown in FIG. A side plate 2c is provided on the outer peripheral side surface between the bottom plate 2a and the top plate 2b. The top plate 2 is provided with an input unit 31 for inputting operating conditions and operating commands of the cleaning robot 1A.

図3に示す集塵部20は、吸引路10に接続される集塵ボックス21と、集塵ボックス21に着脱可能に設けられたフィルタ22とを有している。集塵ボックス21は、通常、筐体2内に収納されているが、集塵ボックス21内に捕集された塵埃を廃棄する際には、筐体2の蓋2d(図1)を開いて出し入れされるようになっている。 The dust collecting unit 20 shown in FIG. 3 has a dust collecting box 21 connected to the suction path 10 and a filter 22 detachably provided on the dust collecting box 21. The dust collection box 21 is usually housed in the housing 2, but when the dust collected in the dust collection box 21 is discarded, the lid 2d (FIG. 1) of the housing 2 is opened. It is designed to be taken in and out.

底板2a(図2)には、前述の一対の駆動輪5a,5bの下部を筐体2内から外部へ突出させる孔が形成されている。また、図1に示すように掃除ロボット1Aの前面には矢印Xで示す前進方向の障害物を検出する3つの超音波測距センサ1112a,112b,112cが設けられている。 The bottom plate 2a (FIG. 2) is formed with holes for projecting the lower portions of the pair of drive wheels 5a and 5b described above from the inside of the housing 2 to the outside. Further, as shown in FIG. 1, three ultrasonic ranging sensors 1112a, 112b, 112c for detecting an obstacle in the forward direction indicated by an arrow X are provided on the front surface of the cleaning robot 1A.

図2に示すように、駆動輪5a,5bは、筐体2の底板2aと平行で、かつ、直線Lに同軸の一対の回転軸6a,6bを中心に回転可能に設けられており、掃除ロボット1Aは、駆動輪5a,5bが同一方向に同一速度で回転すると矢印XまたはY方向に進退し、駆動輪5a,5bが互いに逆方向に同一速度で回転すると同じ位置で旋回するようになっている。 As shown in FIG. 2, the drive wheels 5a and 5b are rotatably provided around a pair of rotating shafts 6a and 6b parallel to the bottom plate 2a of the housing 2 and coaxial with the straight line L for cleaning. When the drive wheels 5a and 5b rotate at the same speed in the same direction, the robot 1A advances and retreats in the arrow X or Y direction, and when the drive wheels 5a and 5b rotate in opposite directions at the same speed, the robot 1A turns at the same position. ing.

駆動輪5a,5bの回転軸6a,6bは、図2に示すように、一対の走行モータ51a,51bへそれぞれ減速ギア52a,52bを介して個別に連結されている。なお、走行モータ51a,51bは回転数を計測するエンコーダを内蔵する。また、後輪7は自在車輪からなり、床面と接触するように筐体2の底板2aの後方に旋回自在に設けられている。 As shown in FIG. 2, the rotating shafts 6a and 6b of the drive wheels 5a and 5b are individually connected to the pair of traveling motors 51a and 51b via reduction gears 52a and 52b, respectively. The traveling motors 51a and 51b have a built-in encoder for measuring the number of rotations. Further, the rear wheel 7 is composed of free wheels, and is provided so as to be rotatable behind the bottom plate 2a of the housing 2 so as to come into contact with the floor surface.

このように、筐体2に対して進行方向の中間に一対の駆動輪5a,5bを配置し、掃除ロボット1Aの全重量を一対の駆動輪5a,5bと後輪7によって支持できるように、筐体2に対して前後方向に重量が配分されている。これにより、進路方向の塵埃を効率よく吸込口11に導くことができる。 In this way, a pair of drive wheels 5a and 5b are arranged in the middle of the traveling direction with respect to the housing 2, so that the entire weight of the cleaning robot 1A can be supported by the pair of drive wheels 5a and 5b and the rear wheels 7. The weight is distributed in the front-rear direction with respect to the housing 2. As a result, dust in the course direction can be efficiently guided to the suction port 11.

前述の回転ブラシ3は、筐体2の底板2aと平行な軸を中心に回転可能に吸込口11の入口に設けられている。また、底板2aにおける吸込口11の左右両側のサイドブラシ4は、底板2aに垂直な軸を中心に回転するようになっている。回転ブラシ3は、回転軸であるローラの外周面に螺旋状にブラシを植設することにより形成されている。 The above-mentioned rotating brush 3 is provided at the inlet of the suction port 11 so as to be rotatable around an axis parallel to the bottom plate 2a of the housing 2. Further, the side brushes 4 on the left and right sides of the suction port 11 in the bottom plate 2a are adapted to rotate about an axis perpendicular to the bottom plate 2a. The rotary brush 3 is formed by spirally planting a brush on the outer peripheral surface of a roller which is a rotation axis.

サイドブラシ4は、回転軸の下端に放射状に設けられた複数本(ここでは4本)のブラシ束を有している。回転ブラシ3の回転軸および一対のサイドブラシ4の回転軸は、筐体2の底板2aの内面に支持されると共に、その付近に設けられた後述するブラシ駆動モータおよびサイドブラシ駆動モータにそれぞれ動力伝達機構を介して連結されている。 The side brush 4 has a plurality of brush bundles (here, four) radially provided at the lower end of the rotation shaft. The rotating shaft of the rotating brush 3 and the rotating shaft of the pair of side brushes 4 are supported on the inner surface of the bottom plate 2a of the housing 2, and are powered by a brush drive motor and a side brush drive motor provided in the vicinity thereof, respectively. It is connected via a transmission mechanism.

また、図1に示すように、筐体2の天板2bにおける前方部の中央には赤外線検知主センサ110が設けられ、側板2cの前方部の中央には3つの赤外線検知副センサ111a,111b,111cが横一列に設けられている。 Further, as shown in FIG. 1, an infrared detection main sensor 110 is provided in the center of the front portion of the top plate 2b of the housing 2, and three infrared detection sub-sensors 111a and 111b are provided in the center of the front portion of the side plate 2c. , 111c are provided in a horizontal row.

赤外線検知主センサ110は全方向(360度)から入射する赤外線を検知することができ、赤外線検知副センサ111a,111b,111cはそれぞれ前方から入射する赤外線を検知することができる。また、図1に示す超音波測距センサ112a,112b,112cは超音波を前方へ出射し、その反射波を受けて対象物(障害物)までの距離を測定するようになっている。 The infrared detection main sensor 110 can detect infrared rays incident from all directions (360 degrees), and the infrared ray detection sub-sensors 111a, 111b, 111c can detect infrared rays incident from the front, respectively. Further, the ultrasonic ranging sensors 112a, 112b, 112c shown in FIG. 1 emit ultrasonic waves forward and receive the reflected waves to measure the distance to an object (obstacle).

掃除ロボット1Aは、後述するようにバッテリを内蔵するが、筐体2の前面の側板2cの内側には、図1に示すように、内蔵バッテリへ充電を行うための受電側鉄心108が設けられている。受電側鉄心108には、後述するように受電コイル107(図5)が巻回され、受電側鉄心108は充電台101(図4)の給電側鉄心106から生成される床面に平行な磁束を効率よく受け入れられるように配置されている。 The cleaning robot 1A has a built-in battery as will be described later. As shown in FIG. 1, a power receiving side iron core 108 for charging the built-in battery is provided inside the side plate 2c on the front surface of the housing 2. ing. A power receiving coil 107 (FIG. 5) is wound around the power receiving side iron core 108 as described later, and the power receiving side iron core 108 is a magnetic flux parallel to the floor surface generated from the power feeding side iron core 106 of the charging stand 101 (FIG. 4). Is arranged so that it can be accepted efficiently.

室内を自走しながら掃除する掃除ロボット1Aは、掃除が終了すると室内に設置されている充電台に帰還し、充電台からバッテリへの充電が行われる。商用電源(コンセント)に接続される充電台は、通常、室内の側壁に沿って設置される。 When the cleaning is completed, the cleaning robot 1A that self-propells and cleans the room returns to the charging stand installed in the room, and the charging stand charges the battery. The charging stand connected to the commercial power supply (outlet) is usually installed along the side wall of the room.

また、この実施形態においては、図2および図3に示すように、筐体2は、中央の円形の中央筐体部60と、その周りの外殻筐体部61から構成される。外殻筐体部61は中央筐体部60の外周に設けられたリング状のスラスト軸受け62に回動可能に支持されている。 Further, in this embodiment, as shown in FIGS. 2 and 3, the housing 2 is composed of a central circular central housing portion 60 and an outer shell housing portion 61 around the central housing portion 60. The outer shell housing portion 61 is rotatably supported by a ring-shaped thrust bearing 62 provided on the outer periphery of the central housing portion 60.

また、中央筐体部60の外周には円弧状のラック63が180度に渡って設けられ、外殻筐体部61に設置された外殻筐体部用モータ43の出力軸がピニオン64を介してラック63に結合されている。外殻筐体部用モータ43の駆動により、外殻筐体部61は中央筐体部60の周りを図2に示す位置から時計回りに90度、反時計回りに90度、それぞれ回動できるようになっている。 Further, an arcuate rack 63 is provided over 180 degrees on the outer circumference of the central housing portion 60, and the output shaft of the outer shell housing portion motor 43 installed in the outer shell housing portion 61 serves as a pinion 64. It is coupled to the rack 63 via. By driving the motor 43 for the outer shell housing portion, the outer shell housing portion 61 can rotate around the central housing portion 60 by 90 degrees clockwise and 90 degrees counterclockwise from the position shown in FIG. It has become like.

そして、前述の駆動輪5a,5b、減速ギア52a,52b、走行モータ51a,51b、および後輪7は、中央筐体部60に搭載され、その他は外殻筐体部61に搭載されている。なお、外殻筐体部用モータ43も、走行モータ51a,51bと同様に回転数を計測するエンコーダを内蔵する。 The drive wheels 5a, 5b, reduction gears 52a, 52b, traveling motors 51a, 51b, and rear wheels 7 described above are mounted on the central housing 60, and the others are mounted on the outer shell housing 61. .. The outer shell housing motor 43 also has a built-in encoder that measures the rotation speed, similarly to the traveling motors 51a and 51b.

図4は、充電台を構成する筐体(以下、単に充電台という)101の外観斜視図である。同図に示すように、充電台101は前側の平坦な側面に、掃除ロボット1Aへ帰還路を示すための赤外線を出射する赤外線送信部103を備えると共に、内部に、受電側鉄心108(図1)に電磁的に結合するための給電側鉄心106や、後述する給電用電気部品などを備える。給電側鉄心106には、後述するように給電コイル105(図5)が巻回され、給電側鉄心106は給電コイル105から磁束が床面に平行に生成されるように配置されている。 FIG. 4 is an external perspective view of a housing (hereinafter, simply referred to as a charging stand) 101 constituting the charging stand. As shown in the figure, the charging stand 101 is provided with an infrared transmission unit 103 that emits infrared rays to indicate a return path to the cleaning robot 1A on a flat side surface on the front side, and an iron core 108 on the power receiving side (FIG. 1). ) Is provided with a power feeding side iron core 106 for electromagnetically coupling to), a power feeding electrical component described later, and the like. A feeding coil 105 (FIG. 5) is wound around the feeding side iron core 106 as described later, and the feeding side iron core 106 is arranged so that magnetic flux is generated from the feeding coil 105 in parallel with the floor surface.

(2)掃除ロボットと充電台の制御系
図5は掃除ロボット1Aと充電台101の制御系を示すブロック図である。掃除ロボット1Aの制御系は同図に示すように、CPU、ROM、RAMからなるマイクロコンピュータを備える制御部34、2つの駆動輪5a,5bをそれぞれ駆動するための走行モータ51a,51bを制御するモータドライバ回路57、回転ブラシ3を駆動するブラシ駆動モータ58を制御するモータドライバ回路59、2つのサイドブラシ4を駆動する2つのサイドブラシ駆動モータ70を制御するモータドライバ回路72、電動送風機30に組み込まれた送風モータ69を制御するモータドライバ回路68、外殻筐体部用モータ43を駆動するモータドライバ回路44、電源スイッチ15、各種センサ33を駆動制御するセンサ制御ユニット32、および入力部31を備える。
(2) Control system of cleaning robot and charging stand FIG. 5 is a block diagram showing a control system of cleaning robot 1A and charging stand 101. As shown in the figure, the control system of the cleaning robot 1A controls a control unit 34 including a microcomputer composed of a CPU, ROM, and RAM, and traveling motors 51a and 51b for driving two drive wheels 5a and 5b, respectively. In the motor driver circuit 57, the motor driver circuit 59 that controls the brush drive motor 58 that drives the rotary brush 3, the motor driver circuit 72 that controls the two side brush drive motors 70 that drive the two side brushes 4, and the electric blower 30. A motor driver circuit 68 that controls the built-in blower motor 69, a motor driver circuit 44 that drives the motor 43 for the outer shell housing, a power switch 15, a sensor control unit 32 that drives and controls various sensors 33, and an input unit 31. To be equipped.

各種センサ33は、床面検知センサ12、超音波測距センサ112a,112b,112c、赤外線検知主センサ110、赤外線検知副センサ111a,111b,111c、走行モータ51a,51bおよび外殻筐体部用モータ43が内蔵するエンコーダなどを含む。 The various sensors 33 are for the floor surface detection sensor 12, the ultrasonic ranging sensors 112a, 112b, 112c, the infrared detection main sensor 110, the infrared detection sub-sensors 111a, 111b, 111c, the traveling motors 51a, 51b, and the outer shell housing portion. It includes an encoder built in the motor 43 and the like.

電源スイッチ15がONになると、バッテリ14の出力電力は、モータドライバ回路44,57,59,68,72へそれぞれ供給されると共に、制御部34、入力部31、センサ制御ユニット32などへもそれぞれ供給される。 When the power switch 15 is turned on, the output power of the battery 14 is supplied to the motor driver circuits 44, 57, 59, 68, 72, respectively, and also to the control unit 34, the input unit 31, the sensor control unit 32, and the like. Be supplied.

制御部34は前述のようにCPU、ROM、RAMを備えるが、CPUは中央演算処理装置であり、入力部31と各種センサ33から受けた信号を、ROMに予め記憶されたプログラムに基づいて演算処理し、モータドライバ回路44,57,59,68,72などへ出力するようになっている。なお、RAMは、入力部31からユーザにより入力される各種指令および掃除ロボット1Aの各種動作条件や各種センサ33の出力などを記憶するようになっている。 The control unit 34 includes a CPU, a ROM, and a RAM as described above. The CPU is a central processing unit, and calculates signals received from the input unit 31 and various sensors 33 based on a program stored in the ROM in advance. It is processed and output to the motor driver circuits 44, 57, 59, 68, 72 and the like. The RAM stores various commands input by the user from the input unit 31, various operating conditions of the cleaning robot 1A, outputs of various sensors 33, and the like.

また、RAMは、掃除ロボット1Aの走行マップを記憶することができる。走行マップは、掃除ロボット1Aの走行経路や走行速度などの走行に関する情報であり、予めユーザがRAMに記憶させるか、あるいは掃除ロボット1A自体が掃除運転中に自動的に記録することができる。また、制御部34は、後述するように、バッテリ14の端子電圧などを検出してバッテリ14の蓄電残量を検出する機能を有する。 In addition, the RAM can store the travel map of the cleaning robot 1A. The travel map is information on travel such as the travel route and travel speed of the cleaning robot 1A, and can be stored in the RAM in advance by the user, or can be automatically recorded by the cleaning robot 1A itself during the cleaning operation. Further, as will be described later, the control unit 34 has a function of detecting the terminal voltage of the battery 14 and the like to detect the remaining charge of the battery 14.

さらに、掃除ロボット1Aは、図5に示すように、充電台101から受電するための受電コイル107と、受電コイル107を巻回した受電側鉄心108と、受電コイル107の交流出力電力を整流平滑する整流平滑回路35と、整流平滑回路35の直流出力を制御してバッテリ14を充電する充電回路36を備える。 Further, as shown in FIG. 5, the cleaning robot 1A rectifies and smoothes the power receiving coil 107 for receiving power from the charging stand 101, the power receiving side iron core 108 around which the power receiving coil 107 is wound, and the AC output power of the power receiving coil 107. The rectifying and smoothing circuit 35 is provided, and the charging circuit 36 that controls the DC output of the rectifying and smoothing circuit 35 to charge the battery 14.

また、受電側鉄心108には補助巻線として検出コイル109が巻回され、検出コイル109の出力は整流回路37によって整流され、制御部34に入力されるようになっている。 Further, a detection coil 109 is wound around the power receiving side iron core 108 as an auxiliary winding, and the output of the detection coil 109 is rectified by the rectifier circuit 37 and input to the control unit 34.

なお、バッテリ14には、ニカド電池、ニッケル水素電池、リチウムイオン電池などが使用されるので、充電回路36には、バッテリ14の特性に応じて、定電圧充電用、定電流充電用、又は定電流定電圧充電用の回路が選択的に用いられる。 Since a Nikado battery, a nickel hydrogen battery, a lithium ion battery, or the like is used for the battery 14, the charging circuit 36 may be used for constant voltage charging, constant current charging, or constant current charging, depending on the characteristics of the battery 14. A circuit for current constant voltage charging is selectively used.

一方、充電台101は、外部の商用電源(AC100V,50/60Hz)18からの電力を整流平滑する整流平滑回路102と、整流平滑回路102の出力を交流出力に変換するインバータ104と、給電側鉄心106に巻回されインバータ104の出力が印加される給電コイル105を備える。 On the other hand, the charging stand 101 includes a rectifying and smoothing circuit 102 that rectifies and smoothes power from an external commercial power source (AC100V, 50 / 60Hz) 18, an inverter 104 that converts the output of the rectifying and smoothing circuit 102 into an AC output, and a power feeding side. A power feeding coil 105 that is wound around an iron core 106 and to which an output of an inverter 104 is applied is provided.

そして、後述するように、バッテリ14の充電時には、給電コイル105と受電コイル107とが給電側鉄心106と受電側鉄心108とを介して磁気結合され、給電コイル102から受電コイル107へ電磁誘導による電力伝送が行われる。この場合、インバータ104の発信周波数は、小型化と効率の観点から200kHz程度がこのましい。 Then, as will be described later, when the battery 14 is charged, the power feeding coil 105 and the power receiving coil 107 are magnetically coupled via the power feeding side iron core 106 and the power receiving side iron core 108, and the power feeding coil 102 is electromagnetically induced to the power receiving coil 107. Power transmission takes place. In this case, the transmission frequency of the inverter 104 is preferably about 200 kHz from the viewpoint of miniaturization and efficiency.

(3)掃除ロボットの掃除動作
このように構成された掃除ロボット1Aにおいて、ユーザから入力部31を介して掃除運転が指令されると、電動送風機30、駆動輪5a,5b、回転ブラシ3およびサイドブラシ4が駆動する。
(3) Cleaning operation of the cleaning robot In the cleaning robot 1A configured in this way, when a cleaning operation is commanded by the user via the input unit 31, the electric blower 30, the drive wheels 5a, 5b, the rotary brush 3 and the side The brush 4 is driven.

これにより、回転ブラシ3、サイドブラシ4、駆動輪5a,5b、および後輪7が床面に接触した状態で、筐体2は所定の範囲を自走しながら吸込口11から床面の塵埃を含む空気を吸い込む。 As a result, with the rotating brush 3, the side brush 4, the drive wheels 5a, 5b, and the rear wheel 7 in contact with the floor surface, the housing 2 self-propells within a predetermined range and dust on the floor surface from the suction port 11. Inhale air containing.

このとき、回転ブラシ3の回転によって床面上の塵埃は掻き上げられて吸込口11に導かれる。また、サイドブラシ4の回転によって吸込口11の側方の塵埃が吸込口11に導かれる。 At this time, the dust on the floor surface is scraped up by the rotation of the rotating brush 3 and guided to the suction port 11. Further, the rotation of the side brush 4 guides dust on the side of the suction port 11 to the suction port 11.

吸込口11から筐体2内に吸い込まれた塵埃を含む空気は、図3に示されるように、吸引路10を通り、集塵ボックス21内に流入する。集塵ボックス21内に流入した気流は、フィルタ22を通過して排出路40を通って排気口41へ排出される。 As shown in FIG. 3, the air containing dust sucked into the housing 2 from the suction port 11 passes through the suction path 10 and flows into the dust collection box 21. The airflow that has flowed into the dust collection box 21 passes through the filter 22 and is discharged to the exhaust port 41 through the discharge path 40.

この際、集塵ボックス21内の気流に含まれる塵埃はフィルタ22によって捕獲されるため、集塵ボックス21内に塵埃が堆積する。集塵ボックス21から排気路40へ流入した気流は、フィルタ22によって除塵された綺麗な空気として排出口41から外部へ排出される。 At this time, since the dust contained in the air flow in the dust collection box 21 is captured by the filter 22, the dust is accumulated in the dust collection box 21. The airflow that has flowed into the exhaust passage 40 from the dust collection box 21 is discharged to the outside from the discharge port 41 as clean air that has been dust-removed by the filter 22.

また、前述のように、掃除ロボット1Aは、左右の駆動輪5a,5bが、同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに正逆回転することにより旋回する。従って、掃除ロボット1Aが大きな段差(クリフ)に差しかかったときや、掃除領域の周縁に到達した場合、および進路上の障害物に衝突しようとした場合には、床面検知センサ12(図2)や、超音波測距センサ112a,112b,112c(図1)が、それを制御部34(図5)に通知し、掃除ロボット1Aは、駆動輪5a,5bを停止したり、逆回転させて向きを変える。これにより、掃除ロボット1Aは、設置場所全体あるいは所望範囲全体を、大きい段差や障害物を避けながら自走して掃除することができる。 Further, as described above, in the cleaning robot 1A, the left and right drive wheels 5a and 5b rotate in the same direction to move forward, rotate in the same direction to move backward, and rotate in the forward and reverse directions to rotate. .. Therefore, when the cleaning robot 1A approaches a large step (cliff), reaches the peripheral edge of the cleaning area, or tries to collide with an obstacle in the path, the floor surface detection sensor 12 (FIG. 2). ) And the ultrasonic ranging sensors 112a, 112b, 112c (FIG. 1) notify the control unit 34 (FIG. 5), and the cleaning robot 1A stops or reversely rotates the drive wheels 5a, 5b. Turn around. As a result, the cleaning robot 1A can self-propell and clean the entire installation location or the entire desired range while avoiding large steps and obstacles.

また、掃除ロボット1Aが室内の床面上を走行して掃除しているときに、室内の隅や壁面に遭遇すると、制御部34は走行モータ51a,51bと外殻筐体部用モータ43を駆動して中央筐体部60と外殻筐体部61とを回動させ、一対のガイドブラシ4(図2)が室内の隅や壁際に好適に沿うように制御する。 Further, when the cleaning robot 1A travels on the floor surface in the room to clean the room and encounters a corner or a wall surface in the room, the control unit 34 uses the traveling motors 51a and 51b and the motor 43 for the outer shell housing. It is driven to rotate the central housing portion 60 and the outer shell housing portion 61, and controls the pair of guide brushes 4 (FIG. 2) so as to be suitable along the corners and walls of the room.

図6は、掃除ロボット1Aが室内の隅や壁際を掃除する場合の制御例を示す。
同図の(a)の位置にある掃除ロボット1Aが矢印に沿って(b)の位置に向かって進行し、(b)の位置で壁W1に直面すると、駆動輪5a,5bが互いに同速度で逆回転して中央筐体部60が壁W1に対して反時計回りに90度だけ旋回し、同時にピニオン64が駆動して外殻筐体部61が中央筐体部60に対して時計回りに90度だけ回動する。それによって、中央筐体部60が外殻筐体部61に対して反時計回りに90度だけ回動することになり、サイドブラシ4と駆動輪5a,5bの位置関係が同図の(c)に示す状態になる。
FIG. 6 shows a control example when the cleaning robot 1A cleans the corners and walls of the room.
When the cleaning robot 1A at the position (a) in the figure advances toward the position (b) along the arrow and faces the wall W1 at the position (b), the drive wheels 5a and 5b have the same speed. The central housing 60 rotates counterclockwise with respect to the wall W1 by 90 degrees, and at the same time, the pinion 64 is driven to drive the outer shell 61 clockwise with respect to the central 60. Rotates 90 degrees. As a result, the central housing portion 60 rotates counterclockwise by 90 degrees with respect to the outer shell housing portion 61, and the positional relationship between the side brush 4 and the drive wheels 5a and 5b is shown in FIG. ) Will be displayed.

そこで、掃除ロボット1Aは2つのサイドブラシ4を壁W1にぴったりと寄り沿わせながら矢印に沿って(d)の位置に向かって進行する。同図の(d)の位置で他の壁W2に達すると、外殻筐体部60が中央筐体部60に対して反時計回りに90度だけ旋回し、壁W2に対して(b)に示す状態に戻る。そこで、前述のように制御されて同図の(e)に示す状態になる。 Therefore, the cleaning robot 1A advances toward the position (d) along the arrow while keeping the two side brushes 4 close to the wall W1. When the other wall W2 is reached at the position (d) in the figure, the outer shell housing portion 60 turns counterclockwise by 90 degrees with respect to the central housing portion 60, and (b) with respect to the wall W2. It returns to the state shown in. Therefore, it is controlled as described above and becomes the state shown in (e) of the figure.

掃除ロボット1Aは、2つのサイドブラシ4を壁W2にぴったりと寄り沿わせながら矢印にそって同図の(f)の位置に向かって進行する。以下、同様に位置(g)から位置(h)へと掃除ロボット1Aは2つのサイドブラシ4が室内の隅と壁際に常に沿うように走行するのでそれによって塵埃が効率よく吸引除去される。 The cleaning robot 1A advances along the arrow toward the position (f) in the figure while keeping the two side brushes 4 close to the wall W2. Hereinafter, similarly, the cleaning robot 1A travels from the position (g) to the position (h) so that the two side brushes 4 always run along the corners and the walls of the room, whereby dust is efficiently sucked and removed.

(4)掃除ロボットの帰還と充電動作
図5に示すように、充電台101に商用電源18が接続されると、商用電源18からの電力は、整流平滑回路102を介してインバータ104に印加される。インバータ104は給電コイル105に無負荷励磁電流を供給すると共に、整流平滑回路102の出力は赤外線送信部103を作動させる。
(4) Return and Charging Operation of Cleaning Robot As shown in FIG. 5, when the commercial power supply 18 is connected to the charging stand 101, the power from the commercial power supply 18 is applied to the inverter 104 via the rectifying and smoothing circuit 102. To. The inverter 104 supplies a no-load exciting current to the feeding coil 105, and the output of the rectifying smoothing circuit 102 operates the infrared transmitter 103.

そして、図8に示すように、充電台101は掃除ロボット1Aにその帰還路を示すために赤外線送信部103(図4)から20度〜30度の拡散角を有する赤外線IRを矢印方向に照射する。 Then, as shown in FIG. 8, the charging stand 101 irradiates the cleaning robot 1A with infrared IR having a diffusion angle of 20 to 30 degrees from the infrared transmitter 103 (FIG. 4) in the direction of the arrow in order to show the return path. To do.

図7は、掃除ロボット1Aの充電台101への帰還動作と充電動作を示すフローチャートである。図7を用いて掃除ロボット1Aの充電台101への帰還動作と充電動作を以下に説明する。 FIG. 7 is a flowchart showing a return operation and a charging operation of the cleaning robot 1A to the charging stand 101. The return operation and the charging operation of the cleaning robot 1A to the charging stand 101 will be described below with reference to FIG. 7.

図7に示すように、掃除作業を終了するか(ステップS1)、又はバッテリ14の蓄電残量Qが許容値Qsより低下して(ステップS2)、制御部34(図5)が掃除ロボット1Aを充電台101へ帰還させる必要があると判断した場合に、掃除ロボット1Aは、図8(a)に示すように赤外線IRの照射領域に存在すると(ステップS3)、赤外線IRを赤外線検知主センサ110が検知して一旦停止する(ステップS4)。そして、その場で自転し(ステップS5)、図8(b)に示すように充電台101が存在する方向を検出し、その方向に向きを変える(ステップS6)。 As shown in FIG. 7, the cleaning work is completed (step S1), or the remaining charge Q of the battery 14 is lower than the permissible value Qs (step S2), and the control unit 34 (FIG. 5) causes the cleaning robot 1A. When it is determined that the robot 1A needs to be returned to the charging stand 101, and the cleaning robot 1A exists in the infrared IR irradiation region as shown in FIG. 8A (step S3), the infrared IR is detected by the infrared detection main sensor. 110 detects and temporarily stops (step S4). Then, it rotates on the spot (step S5), detects the direction in which the charging stand 101 exists as shown in FIG. 8 (b), and changes the direction in that direction (step S6).

それによって、同図(c)に示すように、3つの赤外線検知副センサ111a,111b,111cが赤外線IRを検知することができるようになり、掃除ロボット1Aは、赤外線IRが示す帰還路に沿って進行する(ステップS7)。 As a result, as shown in FIG. 6C, the three infrared detection sub-sensors 111a, 111b, 111c can detect the infrared IR, and the cleaning robot 1A follows the return path indicated by the infrared IR. (Step S7).

そして、掃除ロボット1Aが充電台101に接近して両者間の距離Dが超音波測距センサ111bによって検出され、所定値Ds以下になると(ステップS8)、掃除ロボット1Aの走行速度が低速に切換えられ(ステップS9)、D=0になると、掃除ロボット1Aは停止する(ステップS10,S11)。 Then, when the cleaning robot 1A approaches the charging stand 101 and the distance D between the two is detected by the ultrasonic ranging sensor 111b and becomes equal to or less than a predetermined value Ds (step S8), the traveling speed of the cleaning robot 1A is switched to a low speed. When D = 0, the cleaning robot 1A stops (steps S10 and S11).

この時点で、掃除ロボット1Aの前面が図9(a)〜(c)に示すように充電台101に接触し、給電側鉄心106に対する受電側鉄心108の水平方向の位置関係が、図9(a)のように右方向にずれているか、図9(b)のように左方向にずれているか、又は図9(c)のように一致しているか、のいずれかとなる。 At this point, the front surface of the cleaning robot 1A comes into contact with the charging stand 101 as shown in FIGS. 9A to 9C, and the horizontal positional relationship of the power receiving side iron core 108 with respect to the power feeding side iron core 106 is shown in FIG. It is either shifted to the right as shown in a), shifted to the left as shown in FIG. 9 (b), or matched as shown in FIG. 9 (c).

そこで、制御部34は、前述の壁際の掃除作業のように駆動輪5a,5bとピニオン64を駆動させて、駆動輪5a,5bの位置を掃除ロボット1Aの前面に対して90度だけ旋回させ、図10に示すように掃除ロボット1Aが充電台101に対して平行移動できるようにする(ステップS12)。 Therefore, the control unit 34 drives the drive wheels 5a and 5b and the pinion 64 as in the above-mentioned cleaning work near the wall, and rotates the positions of the drive wheels 5a and 5b by 90 degrees with respect to the front surface of the cleaning robot 1A. , The cleaning robot 1A can be translated with respect to the charging stand 101 as shown in FIG. 10 (step S12).

次に、制御部34は整流回路37を介して検出コイル109(図5)の出力電圧の波高値Vpを検出し(ステップ13)、給電側鉄心106に対して受電側鉄心108を右方向へ距離ΔS(例えば、0.5mm)だけ移動させる(ステップS14)。 Next, the control unit 34 detects the peak value Vp of the output voltage of the detection coil 109 (FIG. 5) via the rectifier circuit 37 (step 13), and moves the power receiving side iron core 108 to the right with respect to the power feeding side iron core 106. It is moved by a distance ΔS (for example, 0.5 mm) (step S14).

この時Vpが増大すると(ステップS15)、さらに右方向へΔSだけ移動させる(ステップS22)。この動作を繰り返し(ステップS23)、Vpが増加しなくなると、左方向へΔSだけ移動させて停止させる(ステップS24)。また、ステップS15においてVpが増加しない時には、左方向へΔSずつ移動させ、その都度Vpを検出し(ステップS16,S17)、Vpが増加しなくなると、右方向へΔSだけ移動させて停止させる(スッテップS18)。 If Vp increases at this time (step S15), it is further moved to the right by ΔS (step S22). This operation is repeated (step S23), and when Vp does not increase, it is moved to the left by ΔS and stopped (step S24). Further, when Vp does not increase in step S15, it is moved by ΔS to the left, Vp is detected each time (steps S16 and S17), and when Vp does not increase, it is moved by ΔS to the right and stopped (steps S16, S17). Step S18).

これによって、給電側鉄心106に対して受電側鉄心108が、図9(c)に示す位置に±ΔS以下の精度で、給電コイル105と受電コイル107間の漏れインダクタンスが最小になるように位置決めされる。なお、この場合の給電側鉄心106と受電側鉄心108とのギャップは、充電台101と掃除ロボット1Aの筐体の厚さを含めて3〜5mmとなる。 As a result, the power receiving side iron core 108 is positioned at the position shown in FIG. 9C with an accuracy of ± ΔS or less with respect to the power feeding side iron core 106 so that the leakage inductance between the power feeding coil 105 and the power receiving coil 107 is minimized. Will be done. In this case, the gap between the power feeding side iron core 106 and the power receiving side iron core 108 is 3 to 5 mm including the thickness of the housing of the charging stand 101 and the cleaning robot 1A.

そこで、制御部34が充電回路36(図5)を作動させる。それによって、給電側鉄心106と受電側鉄心108とが良好に磁気結合され、インバータ104の出力が給電コイル105から受電コイル107へ電磁誘導により供給され、整流平滑回路35と充電回路36を介してバッテリ14が充電される(ステップS19)。 Therefore, the control unit 34 operates the charging circuit 36 (FIG. 5). As a result, the power feeding side iron core 106 and the power receiving side iron core 108 are satisfactorily magnetically coupled, and the output of the inverter 104 is supplied from the power feeding coil 105 to the power receiving coil 107 by electromagnetic induction, via the rectifying smoothing circuit 35 and the charging circuit 36. The battery 14 is charged (step S19).

そして、制御部34はバッテリ14の端子電圧などからバッテリ14の充電残量Qが満充電量Qfに達したことを検知すると(ステップS20)、受電回路36に対して充電動作を停止させ、駆動輪5a,5bの方向を図2に示す状態に戻し、次の掃除指令を待つ(ステップS21)。 Then, when the control unit 34 detects that the remaining charge Q of the battery 14 has reached the full charge amount Qf from the terminal voltage of the battery 14 or the like (step S20), the power receiving circuit 36 is stopped from the charging operation and driven. The directions of the wheels 5a and 5b are returned to the state shown in FIG. 2, and the next cleaning command is awaited (step S21).

このようにして、掃除ロボット1Aが充電台101に帰還すると、充電台101の給電側鉄心106と掃除ロボット1Aの受電側鉄心108とのギャップを最小にして相互間の漏れインダクタンスが最小になるように、両者を正確に向き合わせるための位置決めが行われた後に、充電が行われるので、充電台101からバッテリ14への充電を安全に効率よく行うことができる。 In this way, when the cleaning robot 1A returns to the charging stand 101, the gap between the feeding side iron core 106 of the charging stand 101 and the power receiving side iron core 108 of the cleaning robot 1A is minimized so that the leakage inductance between them is minimized. In addition, since charging is performed after positioning for accurately facing each other, charging from the charging stand 101 to the battery 14 can be performed safely and efficiently.

(第2実施形態)
図11はこの発明の第2実施形態を示す図1対応図、図12は第2実施形態を示す図8対応図、図13は第2実施形態を示す図5対応図である。
(Second Embodiment)
11 is a correspondence diagram of FIG. 1 showing a second embodiment of the present invention, FIG. 12 is a correspondence diagram of FIG. 8 showing a second embodiment, and FIG. 13 is a correspondence diagram of FIG. 5 showing a second embodiment.

これらの図に示すように、この実施形態では、第1実施形態における給電側鉄心106と給電コイル105とに代えて給電コイル105aを、受電側鉄心108と受電コイル107とに代えて受電コイル107aを、それぞれ使用している。給電コイル105aと受電コイル107aは、いずれも銅線のみを厚さ1〜2mm程度に巻回して粘着パッドに固定したもので、図11,12に示すように各筐体の前側面の裏面に貼り付けられている。従って、給電コイル105aからは床面に平行に磁束が生成され、受電コイル107aはその磁束を床面に平行に受入れる。
さらにまた、第1実施形態における受電側鉄心108に巻回された検出コイル109と、その出力を整流する整流回路37とに代えて、充電台101に設けられ整流平滑回路102の出力によって駆動する位置決め用発光素子113(ここでは、発光ダイオードを用いている)と、掃除ロボット1Aの前面に設けられ発光素子113の光を受光する位置決め用の受光素子(例えば、フォトトランジスタ)115と、受光素子115を駆動するセンサ制御ユニット114とを使用している。
As shown in these figures, in this embodiment, the power feeding coil 105a is used instead of the power feeding side iron core 106 and the power feeding coil 105 in the first embodiment, and the power receiving coil 107a is used instead of the power receiving side iron core 108 and the power receiving coil 107. Are used respectively. In both the power feeding coil 105a and the power receiving coil 107a, only the copper wire is wound to a thickness of about 1 to 2 mm and fixed to the adhesive pad, and as shown in FIGS. 11 and 12, on the back surface of the front side surface of each housing. It is pasted. Therefore, a magnetic flux is generated from the feeding coil 105a in parallel with the floor surface, and the power receiving coil 107a receives the magnetic flux in parallel with the floor surface.
Furthermore, instead of the detection coil 109 wound around the power receiving side iron core 108 in the first embodiment and the rectifying circuit 37 for rectifying the output thereof, it is driven by the output of the rectifying smoothing circuit 102 provided on the charging stand 101. A positioning light emitting element 113 (here, a light emitting diode is used), a positioning light receiving element (for example, a phototransistor) 115 provided on the front surface of the cleaning robot 1A and receiving the light of the light emitting element 113, and a light receiving element. A sensor control unit 114 that drives the 115 is used.

そして、発光素子(発光ダイオード)113は一般に光束の光軸を中心とする強度分布がガウシアン分布になるので、受光素子115の検出出力の位置に対する強度変化に応じて給電側鉄心106に対する受電側鉄心108の位置決めを行うようにしている。その他の構成と動作は第1実施形態と同等である。この実施形態においても効率よく充電を行うことができる。 Since the intensity distribution of the light emitting element (light emitting diode) 113 generally has a Gaussian distribution centered on the optical axis of the luminous flux, the power receiving side iron core with respect to the power feeding side iron core 106 according to the intensity change with respect to the position of the detection output of the light receiving element 115. The position of 108 is performed. Other configurations and operations are the same as those in the first embodiment. Even in this embodiment, charging can be performed efficiently.

(第3実施形態)
この実施形態においては、第2実施形態における位置決め用の発光素子113に代えて、超音波発信器を用い、位置決め用の受光素子115に代えて、超音波受信器を用いている。この実施形態においても、第1および第2実施形態と同様に効率よく充電を行うことができる。
(Third Embodiment)
In this embodiment, an ultrasonic transmitter is used in place of the positioning light emitting element 113 in the second embodiment, and an ultrasonic receiver is used in place of the positioning light receiving element 115. Also in this embodiment, charging can be performed efficiently as in the first and second embodiments.

1A 掃除ロボット、2 筐体、2a 底板、2b 天板、2c 側板、2d 蓋、3 回転ブラシ、4 サイドブラシ、5a,5b 駆動輪、6a,6b 回転軸、7 後輪、10 吸引路、11 吸込口、12 床面検知センサ、14 バッテリ、18 商用電源、20 集塵部、21 集塵ボックス、22 フィルタ、30 電動送風機、31 入力部、32,114 センサ制御ユニット、33 各種センサ、34 制御部、35 整流平滑回路、36 充電回路、37 整流回路、40 排気路、41 排気口、43 外殻筐体部用モータ、44,57,59,68,72 モータドライバ回路、51a,51b 走行モータ、52a,52b 減速ギア、58 ブラシ駆動モータ、60 中央筐体部、61 外殻筐体部、62 スラスト軸受け、63 ラック、64 ピニオン、69 送風モータ、70 サイドブラシ駆動モータ、101 充電台、102 整流平滑回路、103 赤外線送信部、104 インバータ、105 給電コイル、106 給電側鉄心、107 受電コイル、108 受電側鉄心、109 検出コイル、110 赤外線検知主センサ、111a,111b,111c 赤外線検知副センサ、112a,112b,112c 超音波測距センサ 1A Cleaning robot, 2 housing, 2a bottom plate, 2b top plate, 2c side plate, 2d lid, 3 rotating brush, 4 side brush, 5a, 5b drive wheel, 6a, 6b rotating shaft, 7 rear wheel, 10 suction path, 11 Suction port, 12 Floor detection sensor, 14 Battery, 18 Commercial power supply, 20 Dust collector, 21 Dust collection box, 22 Filter, 30 Electric blower, 31 Input section, 32,114 Sensor control unit, 33 Various sensors, 34 Control Unit, 35 Rectifier smoothing circuit, 36 Charging circuit, 37 Rectifier circuit, 40 Exhaust path, 41 Exhaust port, 43 Outer shell housing motor, 44,57,59,68,72 Motor driver circuit, 51a, 51b Travel motor , 52a, 52b reduction gear, 58 brush drive motor, 60 central housing, 61 outer shell housing, 62 thrust bearing, 63 rack, 64 pinion, 69 blower motor, 70 side brush drive motor, 101 charging stand, 102 Rectifier smoothing circuit, 103 infrared transmitter, 104 inverter, 105 power supply coil, 106 power supply side iron core, 107 power receiving coil, 108 power receiving side iron core, 109 detection coil, 110 infrared detection main sensor, 111a, 111b, 111c infrared detection sub sensor, 112a, 112b, 112c Ultrasonic ranging sensor

Claims (5)

バッテリと掃除および走行装置とを搭載し前記バッテリの電力で前記掃除および走行装置を駆動制御する制御部を備え床面を走行しながら掃除を行う自走式掃除機と、前記バッテリを充電するための充電台とからなり、前記充電台は給電コイルと給電コイルを励磁する励磁回路を備え、前記自走式掃除機は前記給電コイルから電磁結合によって電力を受電する受電コイルと受電コイルの出力を受けてバッテリを充電する充電回路を備え、前記給電コイルは床面に平行な方向に磁束を生成するように充電台に設置され、前記受電コイルは前記磁束を床面に平行に受け入れ可能に自走式掃除機に設置され、
前記充電台および自走式掃除機は、床面に直交する平坦な側面を有する筐体をそれぞれ備え、給電コイルおよび受電コイルは、各側面に沿って互いに対向可能に配置され、
自走式掃除機の筐体は上面から見た輪郭が三角形であり、前記平坦な側面がその三角形の一辺に対応し、
前記筐体の前記平坦な側面側の底板には吸引口と一対のサイドブラシとが設けられており、
前記吸引口の入口には、回転ブラシが設けられており、
前記自走式掃除機の前方部の側面が前記平坦な側面に対応し、前記受電コイル全体が、前記吸引口の前方かつ前記一対のサイドブラシの間にあって前記平坦な側面の上下方向の中央よりも下方に配置されていることを特徴とする自走式掃除機のワイヤレス充電システム。
A self-propelled vacuum cleaner equipped with a battery and a cleaning and traveling device, equipped with a control unit for driving and controlling the cleaning and traveling device with the power of the battery, and cleaning while traveling on the floor surface, and for charging the battery. The charging stand is equipped with a feeding coil and an exciting circuit for exciting the feeding coil, and the self-propelled vacuum cleaner outputs a power receiving coil and a power receiving coil that receive power from the feeding coil by electromagnetic coupling. It is equipped with a charging circuit that receives and charges the battery, the feeding coil is installed on the charging stand so as to generate magnetic flux in a direction parallel to the floor surface, and the power receiving coil is capable of accepting the magnetic flux parallel to the floor surface. Installed in a running vacuum cleaner
The charging stand and the self-propelled vacuum cleaner each include a housing having a flat side surface orthogonal to the floor surface, and the feeding coil and the power receiving coil are arranged so as to face each other along each side surface.
The housing of the self-propelled vacuum cleaner has a triangular outline when viewed from the top surface, and the flat side surface corresponds to one side of the triangle.
A suction port and a pair of side brushes are provided on the flat side bottom plate of the housing.
A rotating brush is provided at the entrance of the suction port.
The front side surface of the self-propelled vacuum cleaner corresponds to the flat side surface, and the entire power receiving coil is located in front of the suction port and between the pair of side brushes from the vertical center of the flat side surface. A wireless charging system for self-propelled vacuum cleaners that is also located below.
前記自走式掃除機は、受電コイルが給電コイルに対向する位置を検出する位置検出センサを備え、前記制御部は、前記位置検出センサの出力を受けて受電コイルが給電コイルに対向する所定位置に位置決めされるように前記走行装置を制御する請求項1記載の自走式掃除機のワイヤレス充電システム。 The self-propelled vacuum cleaner includes a position detection sensor that detects a position where the power receiving coil faces the feeding coil, and the control unit receives an output of the position detecting sensor and receives a predetermined position where the power receiving coil faces the feeding coil. The wireless charging system for a self-propelled vacuum cleaner according to claim 1, wherein the traveling device is controlled so as to be positioned in. 前記給電コイルと受電コイルは、それぞれ第1および第2磁性体に巻回され、前記位置検出センサが第2磁性体に巻回された検出コイルを備える請求項2記載の自走式掃除機のワイヤレス充電システム。 The self-propelled vacuum cleaner according to claim 2, wherein the power feeding coil and the power receiving coil are wound around the first and second magnetic bodies, respectively, and the position detection sensor is wound around the second magnetic body. Wireless charging system. 前記制御部は、受電コイルが給電コイルに対して位置決めされた後に、充電回路の出力をバッテリに供給する請求項2又は3に記載の自走式掃除機のワイヤレス充電システム。 The wireless charging system for a self-propelled vacuum cleaner according to claim 2 or 3, wherein the control unit supplies the output of the charging circuit to the battery after the power receiving coil is positioned with respect to the feeding coil. 前記充電台が発光素子を備え、前記位置検出センサは前記発光素子の出射光を受光する受光素子である請求項2記載の自走式掃除機のワイヤレス充電システム。 The wireless charging system for a self-propelled vacuum cleaner according to claim 2, wherein the charging stand includes a light emitting element, and the position detection sensor is a light receiving element that receives the emitted light of the light emitting element.
JP2016120952A 2016-06-17 2016-06-17 Wireless charging system for self-propelled vacuum cleaners Active JP6774790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120952A JP6774790B2 (en) 2016-06-17 2016-06-17 Wireless charging system for self-propelled vacuum cleaners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120952A JP6774790B2 (en) 2016-06-17 2016-06-17 Wireless charging system for self-propelled vacuum cleaners

Publications (2)

Publication Number Publication Date
JP2017221595A JP2017221595A (en) 2017-12-21
JP6774790B2 true JP6774790B2 (en) 2020-10-28

Family

ID=60687368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120952A Active JP6774790B2 (en) 2016-06-17 2016-06-17 Wireless charging system for self-propelled vacuum cleaners

Country Status (1)

Country Link
JP (1) JP6774790B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005349A (en) * 2018-06-26 2020-01-09 株式会社マキタ Charging type cleaner
WO2020191536A1 (en) * 2019-03-22 2020-10-01 Zhong Xing Systems and methods for charging mobile robots
CN113778069A (en) * 2020-06-10 2021-12-10 纳恩博(北京)科技有限公司 Electric mobile device, charging pile and method for controlling electric mobile device
CN112968534B (en) * 2021-02-20 2022-12-23 佛山市顺德区一拓电气有限公司 Searching and charging method and device for underwater cleaning equipment and underwater cleaning equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237958A (en) * 1990-02-15 1991-10-23 Matsushita Electric Ind Co Ltd Automatic floor cleaner
JP3301089B2 (en) * 1991-09-03 2002-07-15 松下電器産業株式会社 Mobile work robot
JP3657889B2 (en) * 2001-05-25 2005-06-08 株式会社東芝 Rechargeable vacuum cleaner
KR101168481B1 (en) * 2007-05-09 2012-07-26 아이로보트 코퍼레이션 Autonomous coverage robot
JP6407964B2 (en) * 2013-03-28 2018-10-17 ユジン ロボット カンパニー リミテッド Cleaning robot with extended cleaning area
JP2016077855A (en) * 2015-01-06 2016-05-16 パナソニックIpマネジメント株式会社 Autonomous travel-type cleaner
JP2016106007A (en) * 2016-03-24 2016-06-16 シャープ株式会社 Self-propelled vacuum cleaner

Also Published As

Publication number Publication date
JP2017221595A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6774790B2 (en) Wireless charging system for self-propelled vacuum cleaners
US5109566A (en) Self-running cleaning apparatus
JP4726392B2 (en) Canister-type vacuum cleaner that moves autonomously
US9854956B2 (en) Robot cleaner and control method thereof
US5534762A (en) Self-propelled cleaning robot operable in a cordless mode and a cord mode
US9340116B2 (en) Self-propelled electronic device
US5787545A (en) Automatic machine and device for floor dusting
US11330947B2 (en) Cyclone type dust collector and cleaner having the same
JP2846835B2 (en) Charge induction device and method for robot vacuum cleaner
JP2007181660A (en) Robot cleaning system
JP2013085964A (en) Robot cleaner and method for controlling the same
JP2782923B2 (en) Self-propelled vacuum cleaner
US20190008347A1 (en) Self-propelled electronic device and travel method for self-propelled electronic device
KR101243419B1 (en) Chargeing apparatus for robot vacuum cleaner
KR20190100542A (en) Robot cleaner and method for controlling the same
JP2014180501A (en) Self-propelled vacuum cleaner
JP6453539B2 (en) Self-propelled equipment
JP2017153787A (en) Self-travel type vacuum cleaner
JP2017063968A (en) Travel body device
JP6462350B2 (en) Self-propelled vacuum cleaner
JP2017199190A (en) Self-traveling apparatus for relaying and communication relay system for self-traveling apparatus
JP2013085959A (en) Robot cleaner and method for controlling the same
KR100437159B1 (en) External charging apparatus and robot cleaner system employing and method of rejoining the same
KR20080065789A (en) Charging system of cleaner and control method thereof
JP2007156884A (en) Self-propelled cleaner system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6774790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150