JPS59184917A - Guiding method of unmanned truck - Google Patents

Guiding method of unmanned truck

Info

Publication number
JPS59184917A
JPS59184917A JP58060415A JP6041583A JPS59184917A JP S59184917 A JPS59184917 A JP S59184917A JP 58060415 A JP58060415 A JP 58060415A JP 6041583 A JP6041583 A JP 6041583A JP S59184917 A JPS59184917 A JP S59184917A
Authority
JP
Japan
Prior art keywords
truck
guide strip
matter
guiding
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58060415A
Other languages
Japanese (ja)
Inventor
Kenji Terada
賢司 寺田
Masahiro Ren
昌弘 簾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP58060415A priority Critical patent/JPS59184917A/en
Publication of JPS59184917A publication Critical patent/JPS59184917A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips

Abstract

PURPOSE:To guide an unmanned truck by picking up a guiding matter set to the ceiling of a building from the truck by means of an image pickup device and obtaining the plane positional relation between the guiding matter and the truck after catching the image of the guiding matter. CONSTITUTION:A guiding matter 2 is made of a vinyl tape, paper tape, etc. having a different level of luminance from the ceiling surface and stuck to the ceiling of a building along the traveling path of an unmanned truck. The matter 2 is picked up and detected by a guiding matter detecting part 3 set on the truck. Thus the truck travels on a prescribed route. An image pickup device uses a 1-dimensional image sensor 31, and the arraying direction of photodetecting elements of the part 3 is orthogonal to the front-back direction of the truck and at the same time parallel to both floor and ceiling surfaces. An image sensor 31 scans and picks up an angle range of vertical and horizontal directions of the truck, i.e., the direction approximately orthogonal to the lengthwise direction of the matter 2.

Description

【発明の詳細な説明】 本発明は無人搬送車の走行、停止、操向等の誘導を行う
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for guiding an automatic guided vehicle in running, stopping, steering, etc.

工場内床面を軌条に依らずに無人で走行する無人搬送車
の開発、実用化が進められている。無人搬送車に対する
従来の誘導方法としては床面下に電線を埋設しておき、
これに通じた電流による電磁波を倣い情報とするトウパ
スワイヤ方式が知られているが、この方式では埋設工事
に多大の費用を要し、また保守点検が困難であり、経路
変更が容易でない等の欠点があり、更に床面下鉄筋等に
よる誤動作という問題もあった。
Progress is being made in the development and practical application of automated guided vehicles that run unmanned on factory floors without relying on rails. The conventional guidance method for automated guided vehicles is to bury electric wires under the floor.
A towpath wire method is known, which uses the electromagnetic waves generated by the current flowing through the wire as information to obtain information, but this method requires a large amount of money for underground construction, is difficult to maintain and inspect, and has disadvantages such as not being easy to change the route. There was also the problem of malfunction due to the reinforcement under the floor.

この対策として走行路に沿って建屋の天井に発光体、又
は光反射体からなる誘導体を配設し、一方搬送車には投
光器及び誘導体からの光を検出する検知器を搭載し、検
知器が誘導体からの光を捉えているときに発する信号と
、光を捉えなくなったときに発する信号とを弁別して誘
導体に沿うべくj・Vf向を行わせるようにした誘導方
法が提案されている(4、v公昭57−57312号)
As a countermeasure, guides made of light emitters or light reflectors are installed on the ceiling of the building along the travel route, and the transport vehicle is equipped with a detector that detects the light from the projector and the guide. A guidance method has been proposed in which a signal emitted when the light from the guide is captured and a signal emitted when the light is no longer captured are made to move in the j/Vf direction in order to follow the guide (4 , v Kosho No. 57-57312)
.

しかしこの方法にあっては1般送車が誘導体から外れて
いるか否かのみを判断して走行するため、誘導体の幅が
狭いと頻繁な蛇行を繰り返すこととなり、円1’ftな
走′行を行わせるには誘導体の幅寸法を広くする必要が
あるが、このようにすると逆に誘導体の幅方向における
搬送車の走行位置を特定するのがMia L、、いなど
の難点があった。
However, in this method, since the first general transport vehicle runs only by determining whether it is off the guide, if the width of the guide is narrow, frequent meandering will occur, and if the vehicle is traveling in a 1'ft circle, In order to perform this, it is necessary to increase the width of the guide, but this has the disadvantage that it is difficult to specify the traveling position of the transport vehicle in the width direction of the guide.

本発明はかかる事情〈鑑みなされたものであって、その
目的とするところは誘導体として背景とは輝度の異なる
案内帯を走行路に沿う建物の天井に配設し、搬送車から
撮像装置を用いて天井を撮像し、前記案内帯の像を捉え
て案内帯と搬送車との平面的位置関係を求めつつ操向を
行わせるようにした無人搬送車の誘導方法を提供するに
ある。
The present invention has been made in view of the above circumstances, and its purpose is to arrange a guide strip as a guide on the ceiling of a building along a running route, and which has a different luminance from the background, and to use an imaging device from a transport vehicle. An object of the present invention is to provide a method for guiding an automatic guided vehicle, in which an image of the guide strip is captured by taking an image of the ceiling, and the two-dimensional positional relationship between the guide strip and the guided vehicle is determined while steering the vehicle.

本発明に係る無人搬送車の誘導方法は無人搬送車の走行
路上方に背景とは輝度の異なる案内帯を配し、無1人搬
送車に搭載した撮像装置にて前記案内帯を含む領域を撮
像して案内帯の像を検出し、前記案内帯と無人搬送車と
の平面的な位置関係を求め、この位置関係を予じめ定め
た基準状態に維持すべく操向制御信号を出力することを
特徴とする0 以下本発明方法の実施状態を図面に従って具体的に説明
する。
A guiding method for an automatic guided vehicle according to the present invention includes disposing a guide strip having a brightness different from the background on the traveling path of the automatic guided vehicle, and capturing an area including the guide strip using an imaging device mounted on the automatic guided vehicle. It takes an image to detect the image of the guide strip, determines the two-dimensional positional relationship between the guide strip and the automatic guided vehicle, and outputs a steering control signal to maintain this positional relationship in a predetermined reference state. 0 The implementation state of the method of the present invention will be described in detail below with reference to the drawings.

第1図は本発明方法の実施状態を示す模式的正面図、第
2図は同じく模式的側面図であり、図中1は無人搬送車
、2は案内帯を示している。無人搬送車1は前後方向略
中央部両側に駆動輪11及び1rを備え、また前後方同
各両端部の中央部にはキャスター型の遊動輪1f及び1
bを備えており、左、右駆動輪1 l + 1 rを独
立的に駆動することKよ)操向、旋回等を可能としてい
る。
FIG. 1 is a schematic front view showing the implementation state of the method of the present invention, and FIG. 2 is a schematic side view, in which 1 indicates an automatic guided vehicle and 2 indicates a guide band. The automatic guided vehicle 1 is equipped with drive wheels 11 and 1r on both sides of the substantially central part in the front and rear directions, and caster-type idle wheels 1f and 1 at the center of each end of the front and rear.
The left and right drive wheels (1 l + 1 r) can be driven independently to enable steering, turning, etc.

案内帯2は天井面とはその輝度が明瞭に異なる色を有す
るビニールテープ、紙テープ等からなり、無人搬送車1
の走行路に沿って建物の天井面に貼着してあり、これを
無人搬送車1に搭載した案内帯検出部′3にて撮像し、
検出することにより所定経路に沿って走行するようにな
っている。
The guide strip 2 is made of vinyl tape, paper tape, etc. whose brightness is clearly different from that of the ceiling surface.
is attached to the ceiling of the building along the travel route, and is imaged by the guide strip detection unit '3 mounted on the automatic guided vehicle 1.
Upon detection, the vehicle travels along a predetermined route.

第3図は操向制御系の模式図であり、撮像装置として1
次元イメージセンサ31を用いている。
Figure 3 is a schematic diagram of the steering control system.
A dimensional image sensor 31 is used.

検出部3は無人搬送車1の前後方向と直交し、床面及び
天井面と平行な方向をその受光素子列の配列方向とし、
かつその受光素子列の中心を搬送車1の左右方向中心と
一致させた1次元イメージセンサ31及びこの1次元イ
メージ七ン?31上に案内帯2の実像を結ばせるための
対物レンズ32等からなり、1次元イメージセンサ31
は搬送車1の上方左右方向の角θの範囲、即ち案内帯2
の長さ方向とほぼ直交する方向を走査す多。従って搬送
車1の中心が案内帯2の直下にある場合には、1次元イ
メージセンサ31の中央に案内帯2の像が結像すること
になる。
The detection unit 3 has its light-receiving element array arrayed in a direction perpendicular to the front-rear direction of the automatic guided vehicle 1 and parallel to the floor and ceiling surfaces,
A one-dimensional image sensor 31 in which the center of the light-receiving element row coincides with the center of the transport vehicle 1 in the left-right direction, and this one-dimensional image sensor 31, The one-dimensional image sensor 31 includes an objective lens 32 and the like for forming a real image of the guide strip 2 on the guide strip 31.
is the range of the angle θ in the upper left and right direction of the transport vehicle 1, that is, the guide band 2
Scanning in a direction almost perpendicular to the length direction of the object. Therefore, when the center of the conveyance vehicle 1 is located directly below the guide strip 2, an image of the guide strip 2 will be formed at the center of the one-dimensional image sensor 31.

1次元イメージセンサ31の個々の受光素子C1(iは
1−n)により得られた光学信号は順次デジタル電気信
号に変換されて二値化回路33に与えられ、所定闇値に
て明暗二種のレベルの信号−に二値化された後、演算制
御回路4に与えられる。
The optical signals obtained by the individual light-receiving elements C1 (i is 1-n) of the one-dimensional image sensor 31 are sequentially converted into digital electric signals and given to the binarization circuit 33, which converts them into two types of light and dark at a predetermined darkness value. After being binarized into a signal with a level of -, it is applied to the arithmetic control circuit 4.

演算制御回路4はマイクロコンピュータを利用しており
、1次元イメージセンサ31に対して走査の開始を指令
する駆動信号を発し、これにより得られた個々の受光素
子Ciからのデジタル電気信号を二値化回路33を介し
て順次読込み後述する演算処理を行い、この結果に基づ
き左、右の駆動輪xz、lrを駆動するサーボモータ5
1,5rに制御信号を発する。
The arithmetic control circuit 4 uses a microcomputer, and issues a drive signal to the one-dimensional image sensor 31 to instruct the start of scanning, and converts the resulting digital electrical signals from the individual light-receiving elements Ci into binary values. The servo motor 5 sequentially reads data through the conversion circuit 33 and performs arithmetic processing to be described later, and drives the left and right drive wheels xz and lr based on the results.
A control signal is issued to 1 and 5r.

以下、第5図に示す演算制御回路4の演算処理内容を示
すフローチャートに疲って実際の操向制御について説明
する。尚、説明の便宜上案内帯2の色が天井面の色に比
して相対的に明るい色である、即ち背景に比して案内帯
2の輝度が相対的に市いものとし、また1次元イメージ
センサ31の各受光素子Ciには搬送車1の左側から順
次1からnまでの番号が付されているものとする。
Hereinafter, the actual steering control will be explained without referring to the flowchart showing the contents of the arithmetic processing of the arithmetic control circuit 4 shown in FIG. For convenience of explanation, it is assumed that the color of the guide strip 2 is relatively bright compared to the color of the ceiling surface, that is, the brightness of the guide strip 2 is relatively low compared to the background. It is assumed that each light receiving element Ci of the image sensor 31 is numbered sequentially from 1 to n from the left side of the carrier 1.

演算制御回路4から1次元イメージセンサ31に対して
駆動信号が発せられると、1次元イメージセンサ31は
その個々の受光素子Ciの受光量に応じたデジタル信号
を順次二値化回路33に出力し、演算制御回路4は二値
化回路33から明暗2棹のレベルに二値化された各受光
素子Ciがらの信号を読込む。尚、二値化回路33の二
値化の閾値は天井面と案内帯2の輝度に応じて適宜選択
すればよいが、この所定閾値にて明暗2種のレベルに二
値化された信号の内、明レベルの部分が案内帯2の像で
ある。
When a drive signal is issued from the arithmetic control circuit 4 to the one-dimensional image sensor 31, the one-dimensional image sensor 31 sequentially outputs a digital signal corresponding to the amount of light received by each light-receiving element Ci to the binarization circuit 33. , the arithmetic control circuit 4 reads the signals from each light receiving element Ci that have been binarized into two levels, bright and dark, from the binarization circuit 33. Incidentally, the binarization threshold of the binarization circuit 33 may be appropriately selected depending on the luminance of the ceiling surface and the guide strip 2; The bright level portion is the image of the guide strip 2.

この明レベル部分の受光素子C8〜C8の番号をS〜I
Cとすると、演算制御回路4はその中心の受光素子CM
の番号Mを下記+1)式によシ求める。
The numbers of the light receiving elements C8 to C8 in this bright level part are S to I.
C, the arithmetic control circuit 4 has a central light receiving element CM.
Find the number M using the following formula +1).

ただし、M:案内帯の像の中心の受光素子CMの番号 S、E:案内帯の像の両端の受光素子C8゜C8の番号 次に1次元イメージセンサ31上に結像された案内帯2
の像の中心の1次元イメージセンサ31の受光′素子列
の中心に対する偏差を求める。即ち1次元イメージセン
サ31の中心の受光素子Cn/2と案内帯2の像の中心
の受光素子CMとの間の受光素子数Nを下記(2)式に
より算出する。
However, M: number of the light receiving element CM at the center of the image of the guide strip S, E: number of the light receiving element C8° C8 at both ends of the image of the guide strip, then the guide strip 2 imaged on the one-dimensional image sensor 31
The deviation of the center of the image from the center of the light-receiving element row of the one-dimensional image sensor 31 is determined. That is, the number N of light receiving elements between the light receiving element Cn/2 at the center of the one-dimensional image sensor 31 and the light receiving element CM at the center of the image of the guide strip 2 is calculated using the following equation (2).

N=Mn/2        ・・・(2)ただし、N
:受光素子列の中央から案内線像の中心までの受光素子
数 n/2:受光素子列の中心の受光素子番号このようにし
て案内帯2の像の中心と1次元イメージセンサ31の受
光素子列の中心との間の受光素子数Nが算出されると、
演算制御回路4はこのNの値を零とするのに必要な左、
右駆動輪II!。
N=Mn/2...(2) However, N
: Number of light-receiving elements from the center of the light-receiving element row to the center of the guide line image n/2: Number of light-receiving elements at the center of the light-receiving element row When the number N of light receiving elements between the center of the column is calculated,
The arithmetic control circuit 4 performs the left and right operations necessary to make the value of N zero.
Right drive wheel II! .

1rに対する操向量を求め、これを達成するに必要な制
御信号を各駆動輪1j?、lr用のサーボモータ5/、
5rに出力する。例えば無人搬送車1の車体中心を案内
帯2の直下に位置させつつ走行させる場合には前記受光
素子数Nの正、負、(案内帯2の幅方向中心から右側に
搬送車が変位しているときを正、左側に変位していると
きを負とする。)を判別し、正の場合には左、右駆動輪
1 l。
The steering amount for 1r is determined, and the control signal necessary to achieve this is sent to each drive wheel 1j? , servo motor 5/ for lr,
Output to 5r. For example, when the automatic guided vehicle 1 is driven with its body center positioned directly below the guide strip 2, the number of light receiving elements N is positive or negative ((the guided vehicle is displaced to the right from the widthwise center of the guide strip 2) If it is positive, the left and right drive wheels 1 l are determined.

1rのうち、左側駆動輪1rの回転数よシも右側駆動輪
11!の回転数が多く、また負の場合には右側駆動輪1
1の回転数よりも左側駆動輪1rの回転数が多くなるよ
う制御信号を出力する。相対的な回転数の差を、どのよ
うな値とするかは、特に限定するものではなく、搬送車
1が円滑な走行が行えるよう適宜に定めればよい。
Of 1r, the rotation speed of the left drive wheel 1r is also the right drive wheel 11! If the number of rotations is high and negative, the right drive wheel 1
A control signal is output so that the rotation speed of the left drive wheel 1r becomes higher than the rotation speed of the left drive wheel 1r. The value of the relative rotational speed difference is not particularly limited, and may be determined as appropriate so that the transport vehicle 1 can run smoothly.

なお、搬送車1は必ずしもその車体中心を案内帯2の直
下に位置させて走行させる必要はなく、例えば第4図に
示す如く、案内帯2の直下から右(又は左)側に距離δ
だけ、位置をずらした状態で走行させることとしてもよ
いことは勿論であり、この場合には1次元イメージセン
サ31の中心の受光素子Cn/2ではなく、適宜の番号
の受光素子Ciを基準として、案内帯2の像の中心の受
光素子CMとの間の受光素子数N′を算出して以下同様
の処理を行えばよい。このようにすると一本の案内帯2
を利用して搬送車1を複数台平行的に走行させることも
可能となる。
Note that the conveyance vehicle 1 does not necessarily need to be driven with its body center located directly below the guide strip 2; for example, as shown in FIG.
Of course, it is also possible to run the vehicle with the position shifted by 1. In this case, instead of the light receiving element Cn/2 at the center of the one-dimensional image sensor 31, the light receiving element Ci of an appropriate number is used as the reference. , the number N' of light receiving elements between the guide strip 2 and the light receiving element CM at the center of the image may be calculated, and the same processing may be performed thereafter. In this way, one guide strip 2
It is also possible to run a plurality of conveyance vehicles 1 in parallel by using this.

而して上述した如き本発明方法においては討導体を背景
とは輝度の異なる案内帯2を用いて構成したから、例え
ばビニールテープ、紙テープ等の裏面に接着剤を塗布し
て、建屋の梁月下面等に簡単に貼着して用いることが出
来るため、案内帯2の配設、取り外しを極めて容易に行
うことが可能となり、搬送車1の走行路変更に際しても
案内帯2の貼シ変えにより簡単に行うことが可能となる
In the method of the present invention as described above, since the guide strip 2 is constructed using a guide strip 2 whose brightness is different from that of the background, adhesive is applied to the back side of vinyl tape, paper tape, etc., and the beam of the building is Since it can be easily attached to the bottom surface etc., the guide strip 2 can be installed and removed extremely easily, and even when changing the travel route of the guided vehicle 1, the guide strip 2 can be easily attached by changing the adhesive. This can be done easily.

さらに塗料等を用いて天井面に直接案内帯2を描くこと
も可能である。また案内f2は天井面に設けられるだめ
、塵が多い建屋内においても案内帯2に塵が堆積する等
の不都合が生じず、案内帯2の表面の保守が容易であり
、また案内帯2の表面が部分的に汚れていても、案内帯
2を帯状に長く形成しているため、搬送車1からの1次
元イメージセンサ31による走査により、その直後には
再び清浄な案内帯2の表面からの像を得られることきな
るため、搬送車1が走行路を見失う等の不都合も生じな
い。
Furthermore, it is also possible to draw the guide strip 2 directly on the ceiling surface using paint or the like. In addition, since the guide f2 is provided on the ceiling surface, there is no problem such as accumulation of dust on the guide strip 2 even in a building with a lot of dust, and maintenance of the surface of the guide strip 2 is easy. Even if the surface is partially dirty, since the guide strip 2 is formed into a long strip, scanning by the one-dimensional image sensor 31 from the transport vehicle 1 will immediately remove the surface from the clean guide strip 2 again. Since the image of the transport vehicle 1 cannot be obtained, inconveniences such as the transport vehicle 1 losing sight of the traveling route do not occur.

なお案内帯2は走行路の全長にわたってその上方に連続
的に配してもよいが、適当な長さに分割して搬送車1の
走行に支障を生じない範囲の一定間隔を隔てて配しても
よい。また撮像装置としてはテレビカメラ等を用いても
よいことは勿論である。
The guide strip 2 may be arranged continuously above the entire length of the traveling path, but it may be divided into appropriate lengths and arranged at regular intervals within a range that does not interfere with the traveling of the guided vehicle 1. It's okay. It goes without saying that a television camera or the like may be used as the imaging device.

以」二詳述した如く本発明に係る無人搬送車の誘へ9方
法は、無人搬送車の走行路上方に背景とは明瞭に輝度の
異なる色の案内帯を配し、この案内帯を無人搬送車に搭
載した撮像装置により撮像・検出するごとによシ、無人
搬送車の案内帯に対する平面的な位置関係を求め、これ
を基に無人搬送車の操向制御を行うものであるから、人
の歩行、他の運搬車の走行の障害とはならず、また案内
帯のfit傷、汚損の虞れは少なく、更に紙等の帯状の
部拐を接着剤等によって貼付けることが可能であるから
、走行路の変更も容易であり、搬送車を案内、li′I
と一定の平面的位置関係を維持しつつ走行させることが
可能であり(一本の案内帯にて複数の搬送車を平行的に
走行させることも可能であり、安価な紙テープ等を案内
帯として使用することが可能となるなど、本発明は優れ
た効果を萎するものである。
As described in detail below, the nine methods for attracting automatic guided vehicles according to the present invention include placing a guide strip of a color clearly different in brightness from the background above the route of the automatic guided vehicle; Each time an image is captured and detected by an imaging device mounted on a guided vehicle, the planar positional relationship of the automated guided vehicle with respect to the guide strip is determined, and based on this, the steering control of the automated guided vehicle is performed. It does not impede the walking of people or the running of other transport vehicles, there is little risk of damage or staining the guide strip, and it is also possible to attach strips of paper or other material with adhesive. Because of this, it is easy to change the travel route, guide the transport vehicle, and
(It is also possible to run multiple conveyance vehicles in parallel with one guide strip, and use inexpensive paper tape as the guide strip.) The present invention has excellent effects such as being able to be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式的正面図、第
2図は同じく模式的側面図、第3図は操向制御系を示す
模式図、第4図は操向制御態様を示す説明図、第5図は
演算制御回路の演算処理内容を示すフローチャートであ
る。 1・・・無人搬送車 1f、lr・・・駆動輪 if、
 lb・・・遊動輪 2・・・案内帯 3・・・案内帯
検出部 4・・・演算制御回路 31・・・撮像装置 特許出願人  株式会社 椿本チェイン代理人弁理士 
河 野 登 夫 第1図 第 ? 図 第3 図 1A4  図 も 5 図
Fig. 1 is a schematic front view showing the implementation state of the method of the present invention, Fig. 2 is a schematic side view as well, Fig. 3 is a schematic diagram showing the steering control system, and Fig. 4 shows the steering control mode. The explanatory diagram, FIG. 5, is a flowchart showing the content of arithmetic processing by the arithmetic control circuit. 1...Automated guided vehicle 1f, lr...Drive wheel if,
lb... Idle wheel 2... Guide band 3... Guide band detection section 4... Arithmetic control circuit 31... Imaging device patent applicant Tsubakimoto Chain Co., Ltd., agent patent attorney
Noboru Kono Figure 1 ? Figure 3 Figure 1A4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、無人搬送車の走行路上方に背景とは輝度の異なる案
内帯を配し、無人搬送車に搭載した撮像装置にて前記案
内帯を含む領域を撮像して案内帯の像を検出し、前記案
内帯と無人搬送車との平面的な位置関係を求め、この位
置関係を予じめ定めた基準状態に維持すべく操向制御信
号を出力することを特徴とする無人搬送車の誘導方法。
1. Arranging a guide strip with brightness different from the background above the travel path of the automatic guided vehicle, and detecting an image of the guide strip by capturing an image of an area including the guide strip with an imaging device mounted on the automatic guided vehicle; A method for guiding an automatic guided vehicle, comprising determining a two-dimensional positional relationship between the guide strip and the automatic guided vehicle, and outputting a steering control signal to maintain this positional relationship in a predetermined reference state. .
JP58060415A 1983-04-05 1983-04-05 Guiding method of unmanned truck Pending JPS59184917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060415A JPS59184917A (en) 1983-04-05 1983-04-05 Guiding method of unmanned truck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060415A JPS59184917A (en) 1983-04-05 1983-04-05 Guiding method of unmanned truck

Publications (1)

Publication Number Publication Date
JPS59184917A true JPS59184917A (en) 1984-10-20

Family

ID=13141532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060415A Pending JPS59184917A (en) 1983-04-05 1983-04-05 Guiding method of unmanned truck

Country Status (1)

Country Link
JP (1) JPS59184917A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773018A (en) * 1985-08-22 1988-09-20 Bt Carrago Aktiebolag Light tracking automatic navigation system
JPH01274212A (en) * 1988-04-26 1989-11-02 Daifuku Co Ltd Mobile vehicle guidance facility
US4924153A (en) * 1986-05-21 1990-05-08 Kabushiki Kaisha Komatsu Seisakusho Apparatus for guiding movement of an unmanned moving body
WO2005098476A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Method and apparatus for position estimation using reflected light sources
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8632376B2 (en) 2007-09-20 2014-01-21 Irobot Corporation Robotic game systems and methods
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9026302B2 (en) 2009-11-06 2015-05-05 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9310806B2 (en) 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
US9320398B2 (en) 2005-12-02 2016-04-26 Irobot Corporation Autonomous coverage robots
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141879A (en) * 1977-05-16 1978-12-11 Agency Of Ind Science & Technol Moving direction controller of moving body
JPS5757312A (en) * 1980-09-25 1982-04-06 Toshiba Corp Guiding device for unmanned monitor car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141879A (en) * 1977-05-16 1978-12-11 Agency Of Ind Science & Technol Moving direction controller of moving body
JPS5757312A (en) * 1980-09-25 1982-04-06 Toshiba Corp Guiding device for unmanned monitor car

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773018A (en) * 1985-08-22 1988-09-20 Bt Carrago Aktiebolag Light tracking automatic navigation system
US4924153A (en) * 1986-05-21 1990-05-08 Kabushiki Kaisha Komatsu Seisakusho Apparatus for guiding movement of an unmanned moving body
JPH01274212A (en) * 1988-04-26 1989-11-02 Daifuku Co Ltd Mobile vehicle guidance facility
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8295955B2 (en) 2004-03-29 2012-10-23 Evolutions Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
WO2005098476A1 (en) * 2004-03-29 2005-10-20 Evolution Robotics, Inc. Method and apparatus for position estimation using reflected light sources
US7996097B2 (en) 2004-03-29 2011-08-09 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9632505B2 (en) 2005-10-21 2017-04-25 Irobot Corporation Methods and systems for obstacle detection using structured light
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9320398B2 (en) 2005-12-02 2016-04-26 Irobot Corporation Autonomous coverage robots
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8632376B2 (en) 2007-09-20 2014-01-21 Irobot Corporation Robotic game systems and methods
US9895808B2 (en) 2009-11-06 2018-02-20 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US9188983B2 (en) 2009-11-06 2015-11-17 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US10583562B2 (en) 2009-11-06 2020-03-10 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US11052540B2 (en) 2009-11-06 2021-07-06 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9026302B2 (en) 2009-11-06 2015-05-05 Irobot Corporation Methods and systems for complete coverage of a surface by an autonomous robot
US9310806B2 (en) 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush

Similar Documents

Publication Publication Date Title
JPS59184917A (en) Guiding method of unmanned truck
US5814961A (en) Guidance system for automated guided vehicle
JPH07120194B2 (en) Driving control method and apparatus for automatic guided vehicle
JPH0475523B2 (en)
JP6684531B2 (en) Unmanned transport system
JPS59153211A (en) Guiding method of unmanned carrier car
JPH0883124A (en) Unmanned carrier
JPH031683B2 (en)
JPH0935176A (en) Vehicle kind discriminating device
JPS5932009A (en) Guiding device of unmanned vehicle
CN209118127U (en) A kind of automated guided vehicle unmanned handling system
JP3244642B2 (en) Mobile body guidance equipment
JPH06309029A (en) Moving vehicle position detecting device
JPH0276009A (en) Unmanned vehicle operating system
JPH0439685B2 (en)
JPH0436404B2 (en)
JP2515733B2 (en) How to guide an unmanned vehicle
JP3144156B2 (en) Guidance control device for automatic guided vehicles
JPS60225208A (en) Optical guide device of unattended carriage
JPH0756629A (en) Guiding equipment for mobile vehicle
JP2696823B2 (en) Driverless vehicle guidance device
JPH04145506A (en) Guiding device for optically guided unmanned carrier
JPH0345403B2 (en)
JPS61206009A (en) Taxiway for unmanned carrier
JPH0441368B2 (en)