JP2006227673A - Autonomous travel device - Google Patents

Autonomous travel device Download PDF

Info

Publication number
JP2006227673A
JP2006227673A JP2005037138A JP2005037138A JP2006227673A JP 2006227673 A JP2006227673 A JP 2006227673A JP 2005037138 A JP2005037138 A JP 2005037138A JP 2005037138 A JP2005037138 A JP 2005037138A JP 2006227673 A JP2006227673 A JP 2006227673A
Authority
JP
Japan
Prior art keywords
autonomous
vehicle
autonomous traveling
target point
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005037138A
Other languages
Japanese (ja)
Inventor
Takashi Anezaki
隆 姉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005037138A priority Critical patent/JP2006227673A/en
Publication of JP2006227673A publication Critical patent/JP2006227673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable an autonomous travel device to perform operations at many points continuously in a short time by correcting displacement during movement to target points. <P>SOLUTION: A target point on a ceiling or wall is detected with an autonomous-vehicle-mounted camera, information on displacement from a target point input in advance is calculated, a route integration value and the deviation information are substituted into a vehicle motion equation to provide vehicle position control, which corrects the displacement from the target point during movement to enable an operation with a working device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無人搬送車の自律運転時の位置検出制御方法に関し、特に誘導路として床面に部分的に磁気テープや反射テープ等を敷設せずに、無人搬送車付属のカメラによって検出した位置ずれ情報と無人搬送車の車輪に設けたエンコーダによる経路積算値とにより搬送車の自立運転を高速にかつ精度良く、作業機器による屋内作業を行うようにした無人搬送車の自律走行装置に関するものである。   The present invention relates to a position detection control method during autonomous operation of an automated guided vehicle, and in particular, a position detected by a camera attached to the automated guided vehicle without partially laying a magnetic tape or a reflective tape on a floor surface as a guide path. It relates to an autonomous traveling device for automated guided vehicles that can perform self-sustained operation of the guided vehicle at high speed and with high accuracy and work indoors with work equipment, based on deviation information and the integrated value of the route provided by the encoders installed on the wheels of the automated guided vehicle. is there.

従来の無人搬送車の自律走行装置としては、自己の位置座標を求めて移動順序に従って目標地点に向かって走行し、目標地点近くで停止後、搭載した作業機器(作業ツールや監視カメラなど)の目標地点からのずれを修正して目標地点で作業機器による屋内作業を行うものがあった。   As a conventional autonomous traveling device for automatic guided vehicles, it determines its own position coordinates, travels toward the target point according to the movement order, stops near the target point, and then installs work equipment (work tools, surveillance cameras, etc.) There was one that corrected the deviation from the target point and performed indoor work with work equipment at the target point.

すなわち、この従来の無人搬送車の自律走行装置は、予め入力した移動プログラムに従って作業地点に移動する自走式台車と、この自走式台車の荷台上に設けた電子式光波測距測角儀と、自走式台車の荷台上に設けた動力駆動のXYテーブルと、XYテーブル上に設けた作業機器と、自走式台車の走行制御およびXYテーブルや作業機器の駆動制御を行う制御部とを有し、地図等を転写した環境モデルと、この環境モデル内における作業地点の座標と、自走式台車の移動、作業機器の位置出しおよび作業メニューに関するプログラムを制御部のコンピュータに予め入力し、出発点での自己位置同定を終えた自走式台車を作業地点に向かって移動させ、さらに、前記光波測距測角儀で床面の基準点に配置した反射ターゲットまでの距離を測定して作業地点の近くに停止した自走式台車と作業地点との間のずれ量を演算し、そのずれを前記XYテーブルで修正して作業機器を作業地点に位置決めし、その後、作業機器による作業を行うように構成されたものであった。
特開2001−289638号公報
In other words, the conventional autonomous traveling device for an automatic guided vehicle includes a self-propelled carriage that moves to a work point in accordance with a movement program that is input in advance, and an electronic lightwave ranging angle measuring instrument provided on the loading platform of the self-propelled carriage. A power-driven XY table provided on the loading platform of the self-propelled carriage, a work device provided on the XY table, a control unit that performs travel control of the self-propelled cart and drive control of the XY table and the work equipment, The environment model to which the map and the like are transcribed, the coordinates of the work point in the environment model, the movement of the self-propelled carriage, the positioning of the work equipment, and the work menu are input in advance to the computer of the control unit. Then, the self-propelled carriage that has completed self-location identification at the starting point is moved toward the work point, and further, the distance to the reflective target placed at the reference point on the floor surface is measured by the light wave ranging angle measuring instrument. The amount of deviation between the work point and the self-propelled carriage stopped near the work point is calculated, the deviation is corrected with the XY table, the work device is positioned at the work point, and then the work by the work device is performed. Was configured to do.
JP 2001-289638 A

しかしながら、前記従来の構成では、自己の位置座標を求めて予め入力した移動順序に従って目標地点に向かって走行し、目標地点近くで停止後、搭載した作業機器(作業ツールや監視カメラなど)の目標地点からのずれを修正して目標地点で作業機器による作業を行うことになるため、移動中の位置ずれ修正が不可能であり、多数地点での作業を連続で短時間に行う等の場合に支障が生じるという問題があった。   However, in the above-described conventional configuration, the target position of the installed work equipment (such as a work tool or a monitoring camera) is obtained after traveling toward the target point according to the movement order input in advance by obtaining its own position coordinates and stopping near the target point. When the work equipment is operated at the target point by correcting the deviation from the point, it is impossible to correct the displacement during movement, and when working at many points in a short time, etc. There was a problem of causing trouble.

本発明は、前記従来の課題を解決するもので、移動中の位置ずれ修正が行え、多数地点での作業を連続で短時間に行うことを可能とする自律走行装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide an autonomous traveling device that can correct misalignment during movement and can continuously perform work at multiple points in a short time. To do.

上記目的を達成するために、本発明の自律走行装置は、自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行い、移動しながら目標地点からのずれを修正し、作業機器による屋内作業を行うものである。   In order to achieve the above object, the autonomous traveling device of the present invention detects the target point of the ceiling and wall surface with the camera attached to the autonomous traveling vehicle, calculates positional deviation information from the target point input in advance, and calculates the route integrated value. In addition, the position information of the previous term is included in the movement equation of the carriage to control the position of the carriage, correct the deviation from the target point while moving, and perform the indoor work with the work equipment.

本構成によって、移動中での位置ずれ修正が可能となり、多数地点での作業を連続で短時間に行うことを可能となる。   With this configuration, it is possible to correct misalignment during movement, and work at multiple points can be performed continuously in a short time.

以上のように、本発明の自律走行装置によれば、自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行う構成を有するため、移動しながら目標地点からのずれを修正し、多数地点での作業機器による屋内作業を連続で短時間に行うことができるという効果を奏する。   As described above, according to the autonomous traveling device of the present invention, the target point of the ceiling and wall surface is detected by the autonomous vehicle-attached camera, the positional deviation information with respect to the target point input in advance is calculated, the route integrated value and Since it has a configuration to control the position of the trolley by adding the position information of the previous term to the trolley equation of motion, the displacement from the target point is corrected while moving, and indoor work with work equipment at multiple points is performed in a short time continuously. There is an effect that can be.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すように、駆動手段10は自律走行車1の前後進、および左右側の移動を制御するものであって、駆動手段10は自律走行車1を右側に移動させるよう左側走行モータ111を駆動する左側モータ駆動部11と、自律走行車1掃除機を左側に移動させるよう右側走行モータ121を駆動する右側モータ駆動部12とから構成されている。左側走行モータ111と右側走行モータ121には図示しない駆動輪がそれぞれ取付けられている。   As shown in FIG. 1, the driving means 10 controls the forward and backward travel and the left and right movements of the autonomous traveling vehicle 1, and the driving means 10 moves the left traveling motor 111 to move the autonomous traveling vehicle 1 to the right side. And a right motor drive unit 12 that drives the right traveling motor 121 to move the autonomous vehicle 1 cleaner to the left side. Driving wheels (not shown) are attached to the left traveling motor 111 and the right traveling motor 121, respectively.

さらに、走行距離検出手段20は、駆動手段10により移動される自律走行車1の走行距離を検出するものであって、走行距離検出手段20は、駆動手段10の制御により駆動する左側駆動輪の回転数、すなわち、左側走行モータ111の回転数に比例するパルス信号を発生させて自律走行車1が右側に移動した走行距離を検出する左側エンコーダ21と、駆動手段10の制御により駆動する右側駆動輪の回転数、すなわち、右側走行モータ121の回転数に比例するパルス信号を発生させて自律走行車1が左側に移動した走行距離を検出する右側エンコーダ22とから構成されている。   Further, the travel distance detection means 20 detects the travel distance of the autonomous traveling vehicle 1 moved by the drive means 10, and the travel distance detection means 20 is the left drive wheel driven under the control of the drive means 10. A left side encoder 21 that detects a travel distance that the autonomous vehicle 1 has moved to the right side by generating a pulse signal that is proportional to the rotation speed, that is, the rotation speed of the left side travel motor 111, and a right side drive that is driven by the control of the drive means 10. It comprises a right encoder 22 that detects a travel distance that the autonomous vehicle 1 has moved to the left side by generating a pulse signal proportional to the rotation speed of the wheel, that is, the rotation speed of the right travel motor 121.

また、方向各検出手段30は、駆動手段10により移動される自律走行車1の走行方向変化を検出するものであって、この方向角検出手段30は駆動手段10により移動される自律走行車1の回転時に変化する電圧レベルにしたがって自律走行車1の回転速度を感知して走行方向変化を検出するジャイロセンサなどの方向角センサである。   Each direction detecting means 30 detects a change in the traveling direction of the autonomous traveling vehicle 1 moved by the driving means 10, and this direction angle detecting means 30 is the autonomous traveling vehicle 1 moved by the driving means 10. A direction angle sensor such as a gyro sensor that detects a change in the traveling direction by sensing the rotational speed of the autonomous vehicle 1 according to the voltage level that changes when the vehicle rotates.

位置ずれ情報算出手段40は、駆動手段10により移動される自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出し予め入力した目標地点との位置ずれ情報を算出するものであって、この位置ずれ情報算出手段40は自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出する自律走行車付属カメラ部41から構成されている。   The positional deviation information calculation means 40 detects the target point to the ceiling and wall surface existing on the travel route of the autonomous vehicle 1 moved by the driving means 10 and calculates positional deviation information with respect to the target point inputted in advance. The positional deviation information calculation means 40 is composed of an autonomous traveling vehicle-attached camera unit 41 that detects a target point to the ceiling and wall surface present in the traveling route of the autonomous traveling vehicle 1.

位置ずれ情報算出手段40の自律走行車付属カメラ部41は、自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出する自律走行車付属カメラ411の画像を入力処理する第1のセンサ駆動部412と、自律走行車付属カメラ411を所望の方向へ回転させるステップインモータ413と、ステップインモータ413を駆動するステップインモータ駆動部414とから構成されている。   The autonomous traveling vehicle-attached camera unit 41 of the positional deviation information calculation means 40 inputs the image of the autonomous traveling vehicle-attached camera 411 that detects target points to the ceiling and wall surface that exist on the traveling route of the autonomous traveling vehicle 1. Sensor driving unit 412, a step-in motor 413 that rotates the autonomous vehicle-attached camera 411 in a desired direction, and a step-in motor driving unit 414 that drives the step-in motor 413.

また、図1において、制御手段50は、走行距離検出手段20により検出された走行距離データ、および方向各検出手段30により検出された走行方向データが所定時間間隔で入力されて自律走行車1の現在位置を演算し、位置ずれ情報算出手段40により算出された天井および壁面までの目標地点に対する位置ずれ情報が入力され、その情報結果にしたがって自律走行車1の走行経路を制御することによって、自律走行車1が正常軌道から逸脱せずに目標地点まで正確に走行できるよう制御する中央処理装置CPUである。   Further, in FIG. 1, the control means 50 receives the travel distance data detected by the travel distance detection means 20 and the travel direction data detected by the direction detection means 30 at predetermined time intervals, so that the autonomous travel vehicle 1 By calculating the current position, positional deviation information for the target point to the ceiling and wall surface calculated by the positional deviation information calculating means 40 is input, and by controlling the traveling route of the autonomous vehicle 1 according to the information result, autonomous This is a central processing unit CPU that controls the traveling vehicle 1 so as to accurately travel to the target point without departing from the normal track.

以下、上記のように構成された自律走行車の位置認識方法、および制御方法とその作用効果について説明する。図2は本実施形態における自律走行車の走行制御動作順を示すフローチャートであり、図中のSはその各ステップを表す。   Hereinafter, the position recognition method and control method of the autonomous vehicle configured as described above, and the operation and effect thereof will be described. FIG. 2 is a flowchart showing a traveling control operation order of the autonomous traveling vehicle in the present embodiment, and S in the figure represents each step.

まず、ユーザーが自律走行車1の所定位置に装着されている動作スイッチをオンさせると、ステップS1では図示しない電源手段から供給される駆動電圧を制御手段50から入力されて自律走行車1を走行作業機能に適するよう初期化させながらユーザーの入力した作業命令に従って動作を開始する。   First, when the user turns on an operation switch mounted at a predetermined position of the autonomous traveling vehicle 1, the driving voltage supplied from the power supply means (not shown) is input from the control means 50 in step S <b> 1 and the autonomous traveling vehicle 1 travels. The operation is started in accordance with the work command input by the user while being initialized to be suitable for the work function.

次いで、ステップS2では作業初期に走行領域内の所定位置に任意の方向へ置かれた自律走行車1に装着された第1の自律走行車付属カメラ411から、ステップインモータ413の駆動にしたがって回転されながら自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出することにより、自律走行車1と目標地点に対する位置ずれ情報を算出する。   Next, in step S2, the first autonomous traveling vehicle attached camera 411 attached to the autonomous traveling vehicle 1 placed in a predetermined direction in a traveling region at an initial stage of the work rotates in accordance with the driving of the step-in motor 413. While detecting the target point to the ceiling and the wall surface existing on the travel route of the autonomous vehicle 1, positional deviation information with respect to the autonomous vehicle 1 and the target point is calculated.

自律走行車1と前方壁面WFとの角度を演算する例を図3を参照して説明する。   An example of calculating the angle between the autonomous vehicle 1 and the front wall surface WF will be described with reference to FIG.

第1の自律走行車付属カメラ411を所定角度に回転させつつ壁面WFまでの距離を測定した時、i番目の方向が壁面WFと垂直の方向であると仮定すれば、i−1、i+1番目の方向の距離d(i−1)、d(i)、d(i+1)は下記式を満足させる。   If the i-th direction is a direction perpendicular to the wall surface WF when the distance to the wall surface WF is measured while rotating the camera 411 attached to the first autonomous vehicle, the i-1 and i + 1-th The distances d (i−1), d (i), and d (i + 1) in the direction satisfy the following expression.

cos△θ・d(i−1)=cos△θ・d(i+1)=d(i)であれば
cos-1{d(i)/d(i−1)}=cos-1{d(i)/d(i+1)}=△θである。
If cos Δθ · d (i−1) = cos Δθ · d (i + 1) = d (i), then cos −1 {d (i) / d (i−1)} = cos −1 {d ( i) / d (i + 1)} = Δθ.

もし、d(i−1)=d(i)であるか、d(i+1)=d(i)である場合には、
0<cos-1{d(i)/d(i−1)}<△θ
0<cos-1{d(i)/d(i+1)}<△θ
を満足する方向中から最短距離を示す方向が壁面WFと垂直の方向iに最も近いことを類推することができる。すなわち、i方向が壁面WFと垂直の方向であれば、i方向と自律走行車1の正面のなす角θiは、自律走行車1と壁面WFのなす角θに近似であると見なすことができる。
If d (i−1) = d (i) or d (i + 1) = d (i),
0 <cos −1 {d (i) / d (i−1)} <Δθ
0 <cos −1 {d (i) / d (i + 1)} <Δθ
It can be inferred that the direction showing the shortest distance from the directions satisfying is closest to the direction i perpendicular to the wall surface WF. That is, if the i direction is a direction perpendicular to the wall surface WF, the angle θi formed between the i direction and the front surface of the autonomous vehicle 1 can be regarded as approximate to the angle θ formed between the autonomous vehicle 1 and the wall surface WF. .

次いで、ステップS3では制御手段50から出力される制御信号を駆動手段10に入力して右側走行モータ121を駆動させることにより、自律走行車1をθiだけ左側に回転させて自律走行車1を前方の壁面WFに垂直に整列させ、ステップS4で第1の自律走行車付属カメラ411から第1のセンサ駆動部412により、図4に示すように、自律走行車1の左側が壁面WLからの離隔距離d1を算出してその算出された離隔距離データd1を制御手段50に出力する。   Next, in step S3, a control signal output from the control means 50 is input to the drive means 10 to drive the right traveling motor 121, thereby rotating the autonomous traveling vehicle 1 leftward by θi to move the autonomous traveling vehicle 1 forward. In step S4, the left side of the autonomous vehicle 1 is separated from the wall WL by the first sensor driving unit 412 from the first autonomous vehicle attached camera 411 in step S4 as shown in FIG. The distance d1 is calculated and the calculated separation distance data d1 is output to the control means 50.

さらに、第1の自律走行車付属カメラ411から第1のセンサ駆動部412により、図4に示すように、自律走行車1の右側が壁面WRからの離隔距離d2を算出してその算出された離隔距離データd2を制御手段50に出力する。   Further, as shown in FIG. 4, the right side of the autonomous traveling vehicle 1 calculates the separation distance d2 from the wall surface WR by the first sensor driving unit 412 from the first autonomous traveling vehicle attached camera 411. The separation distance data d2 is output to the control means 50.

この際、離隔距離データをd1>d2とすれば、駆動手段10では制御手段50から出力される制御信号が入力されて右側走行モータ121を駆動させることにより、自律走行車1を左側に90°回転させて(d1+d2)/2になる中間地点に移動させる。   At this time, if the separation distance data is d1> d2, the driving means 10 receives the control signal output from the control means 50 and drives the right traveling motor 121 to move the autonomous traveling vehicle 1 90 ° to the left. Rotate and move to an intermediate point at (d1 + d2) / 2.

上記過程を繰り返すと、図5に示すような複雑な構造の走行領域内でも走行領域(部屋)の中心点に移動できるようになるため、ステップS5では自律走行車1の位置が中心点であるかを判別し、部屋の中心点でない場合(NOのとき)には、前記ステップS4に戻り自律走行車1が部屋の中心点に移動する時までステップS4以下の動作を繰返し行う。   If the above process is repeated, it becomes possible to move to the center point of the travel area (room) even in a travel area having a complicated structure as shown in FIG. 5, so that the position of the autonomous vehicle 1 is the center point in step S5. If it is not the center point of the room (in the case of NO), the process returns to step S4 to repeat the operations in and after step S4 until the autonomous vehicle 1 moves to the center point of the room.

前記ステップS5での判別の結果、自律走行車1の位置が部屋の中心点の場合(YESのとき)には、大きさと構造の知られている空間(走行領域)で現在の位置は把握しているものの、方向は分からない状態であるため、ステップS6に進んで制御手段50は、最終的に方向を把握するために左側走行モータ111と右側走行モータ121を駆動させることにより、自律走行車1を部屋の中心点から壁面に垂直になるよう移動させる。   As a result of the determination in step S5, when the position of the autonomous vehicle 1 is the center point of the room (when YES), the current position is grasped in a space (traveling area) whose size and structure are known. However, since the direction is unknown, the process proceeds to step S6, and the control means 50 drives the left traveling motor 111 and the right traveling motor 121 to finally grasp the direction, thereby autonomously traveling the vehicle. Move 1 so that it is perpendicular to the wall from the center of the room.

上記のような方法で現在の位置座標を得た自律走行車1は、ステップS9に進んであらかじめ入力されている走行経路にしたがって掃除、あるいは監視などの付与された作業を行うための始発点(原点)に移動しながらステップS10に進んで付与された作業を行うようになる。   The autonomous vehicle 1 that has obtained the current position coordinates by the method as described above proceeds to step S9 and starts from the starting point (for performing assigned tasks such as cleaning or monitoring according to the previously input traveling route. While moving to the origin), the process proceeds to step S10 to perform the assigned work.

次いで、ステップS11では自律走行車1が付与された作業を行いつつ走行を終えたかを判別し、走行を終えていない場合(NOのとき)には、前記ステップS10に戻りステップS10以下の動作を繰返し行い、走行を終えた場合(YESのとき)には、自律走行車1の走行動作を停止しつつ動作を終了する。   Next, in step S11, it is determined whether or not the traveling is completed while performing the work assigned to the autonomous traveling vehicle 1. If the traveling is not completed (NO), the process returns to step S10 and the operations after step S10 are performed. When the traveling is repeated and the traveling is finished (when YES), the traveling operation of the autonomous traveling vehicle 1 is stopped and the operation is terminated.

本発明の自律走行装置は、移動しながら目標地点からのずれを修正し、自立運転を高速にかつ精度良く行えるという効果を奏するものであり、多数地点での作業機器による屋内作業を連続で短時間に行うことができるようにした無人搬送車の自律運転時の位置検出制御にも適用できる。   The autonomous traveling device of the present invention has the effect of correcting the deviation from the target point while moving and performing autonomous operation at high speed and with high accuracy. It can also be applied to position detection control during autonomous operation of an automated guided vehicle that can be performed in time.

本発明の一実施形態における自律走行装置の制御ブロック図The control block diagram of the autonomous traveling apparatus in one Embodiment of this invention 自律走行装置の制御動作順を示すフローチャートFlow chart showing the control operation sequence of the autonomous mobile device 自律走行車の前方壁面との角度演算に関する説明図Explanatory drawing about angle calculation with front wall of autonomous vehicle 自律走行車の左右両側壁面の中間地点への移動に関する説明図Explanatory diagram regarding movement of autonomous vehicle to left and right side walls 自律走行車の部屋の中心点への移動に関する説明図Explanatory diagram regarding movement of autonomous vehicle to center of room

符号の説明Explanation of symbols

10 駆動手段
11 左側モータ駆動部
12 右側モータ駆動部
20 走行距離検出手段
21 左側エンコーダ
22 右側エンコーダ
30 方向各検出手段
40 位置ずれ情報算出手段
41 自律走行車付属カメラ部
50 制御手段
411 第1の自律走行車付属カメラ
412 第1のセンサ駆動部
413 ステップインモータ
DESCRIPTION OF SYMBOLS 10 Drive means 11 Left motor drive part 12 Right motor drive part 20 Travel distance detection means 21 Left encoder 22 Right encoder 30 Direction detection means 40 Misalignment information calculation means 41 Autonomous vehicle attached camera part 50 Control means 411 1st autonomous Traveling vehicle attached camera 412 First sensor driving unit 413 Step-in motor

Claims (4)

自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行い、移動しながら目標地点からのずれを修正し、作業機器による屋内作業を行う自律走行装置。 Detects target points on the ceiling and wall surface with the camera attached to the autonomous vehicle, calculates positional deviation information with respect to the target points entered in advance, and adds the integrated route value and previous-term positional deviation information to the cart motion equation to control the cart position Autonomous traveling device that performs the indoor work by the work equipment by correcting the deviation from the target point while moving. 自律走行車付属カメラが上向きカメラである請求項1記載の自律走行装置。 The autonomous traveling apparatus according to claim 1, wherein the autonomous traveling vehicle attached camera is an upward camera. 経路積算値の積算を行うエンコーダを、自律走行車の車輪に設けた請求項1記載の自律走行装置。 The autonomous traveling device according to claim 1, wherein an encoder for integrating the route integrated value is provided on a wheel of the autonomous traveling vehicle. 自律走行車付属カメラが上向きカメラである請求項3記載の自律走行装置。 The autonomous traveling device according to claim 3, wherein the autonomous traveling vehicle attached camera is an upward camera.
JP2005037138A 2005-02-15 2005-02-15 Autonomous travel device Pending JP2006227673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037138A JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037138A JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Publications (1)

Publication Number Publication Date
JP2006227673A true JP2006227673A (en) 2006-08-31

Family

ID=36989037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037138A Pending JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Country Status (1)

Country Link
JP (1) JP2006227673A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
JPWO2017130345A1 (en) * 2016-01-28 2018-11-15 株式会社Fuji Unit exchange trolley
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
DE112019007943T5 (en) 2019-12-06 2022-09-15 Honda Motor Co., Ltd. Driving body, payment management system, and vehicle

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8634958B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8594840B1 (en) 2004-07-07 2013-11-26 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8634956B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
JP2021114632A (en) * 2016-01-28 2021-08-05 株式会社Fuji Unit changing dolly
JP7073560B2 (en) 2016-01-28 2022-05-23 株式会社Fuji Unit replacement trolley and its setting method
JPWO2017130345A1 (en) * 2016-01-28 2018-11-15 株式会社Fuji Unit exchange trolley
DE112019007943T5 (en) 2019-12-06 2022-09-15 Honda Motor Co., Ltd. Driving body, payment management system, and vehicle

Similar Documents

Publication Publication Date Title
JP2006227673A (en) Autonomous travel device
JP6599543B2 (en) Automated guided vehicle
JP4079792B2 (en) Robot teaching method and robot with teaching function
JP6492024B2 (en) Moving body
WO2014156498A1 (en) Mobile body and position detection device
JPWO2018043128A1 (en) Autonomous traveling device
JP2009093308A (en) Robot system
JP4910219B2 (en) Autonomous moving method and autonomous moving body
JPWO2006064544A1 (en) Car storage equipment
JP2009123061A (en) System for detecting robot position
JP5553220B2 (en) Moving body
JP2010152664A (en) Sensorless motor-driven robot using image
JP2011129049A (en) Autonomous traveling method and autonomous traveling body
JP5561730B2 (en) Guidance control system and guidance control method for moving body
JP2007213356A (en) Automated guided facility
JP5959053B2 (en) Autonomous traveling device
JP5439552B2 (en) Robot system
WO2016072186A1 (en) Location detecting device, control method, and autonomous vehicle
JP2010262461A (en) Mobile object
JP3317159B2 (en) Automatic guided vehicle
WO2018179659A1 (en) Map creation system
JP2017152051A (en) Traveling object attached with position detection device for outputting control command to travel control means of traveling object, and position detection device of the same
JP2000132229A (en) Travel controlling method for movable body
JPH06149364A (en) Controller for unmanned traveling car
JP2018185768A (en) Autonomous Mobile Robot