JP2007213180A - Movable body system - Google Patents

Movable body system Download PDF

Info

Publication number
JP2007213180A
JP2007213180A JP2006030552A JP2006030552A JP2007213180A JP 2007213180 A JP2007213180 A JP 2007213180A JP 2006030552 A JP2006030552 A JP 2006030552A JP 2006030552 A JP2006030552 A JP 2006030552A JP 2007213180 A JP2007213180 A JP 2007213180A
Authority
JP
Japan
Prior art keywords
wave
receiving
ultrasonic
target
mobile body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006030552A
Other languages
Japanese (ja)
Inventor
Nobukazu Kawagoe
宣和 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figla Co Ltd
Original Assignee
Figla Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figla Co Ltd filed Critical Figla Co Ltd
Priority to JP2006030552A priority Critical patent/JP2007213180A/en
Publication of JP2007213180A publication Critical patent/JP2007213180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for an autonomous movable body for calculating a distance between the movable body and a target by a simple structure. <P>SOLUTION: This movable body system is provided with the autonomous movable body 1 and the target 13 to which the autonomous movable body approaches. The movable body 1 is provided with a first wave transmission means 2 transmitting ultrasonic waves and a first wave receipt means 3 receiving ultrasonic waves, while the target has a second wave transmission means 8 transmitting ultrasonic waves. In a first control mode, a distance to an obstacle 90 is calculated based on a period from transmission of ultrasonic waves by the first wave transmission means 2 to receipt of reflection waves by the first wave receipt means 3. In a second control mode, a distance to the target 13 is calculated based on a period from transmission of ultrasonic waves by the second wave transmission means 8 to receipt of the ultrasonic waves by the first wave receipt means 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、目標物との距離を計測する自律走行移動体のシステムに関する。   The present invention relates to an autonomous traveling mobile system that measures the distance to a target.

自律移動ロボットの自動充電システムや、自律移動清掃ロボットの自動ゴミ回収システムなどでは、充電装置やゴミ回収装置と自律移動ロボットの位置合せが重要となる。また、作業環境に目標となる壁などが無い広いスペースにおいて正確な位置計測を行なうには、ビーコンやマーカーなどの目標物を環境に設置し、その目標物との相対位置を計測する機能が必要になる場合がある。   In an automatic charging system for an autonomous mobile robot, an automatic garbage collection system for an autonomous mobile cleaning robot, etc., it is important to align the charging device, the garbage collection device and the autonomous mobile robot. In addition, in order to perform accurate position measurement in a large space where there is no target wall in the work environment, it is necessary to install a target such as a beacon or marker in the environment and measure the relative position of the target. It may become.

従来、このような場合は、超音波と赤外線信号や無線信号とを組み合わせた位置計測システムが用いられてきた。かかる位置計測システムとしては、下記の特許文献がある。
特開2001-051720 号(要約書) 特開平8-54926 号(要約書、請求項2、図2) 特開2003-15740号(要約書) 特開2002-333920 号(要約書、請求項6)
Conventionally, in such a case, a position measurement system combining an ultrasonic wave, an infrared signal, and a radio signal has been used. As such a position measurement system, there are the following patent documents.
JP2001-051720 (abstract) Japanese Patent Laid-Open No. 8-54926 (abstract, claim 2, FIG. 2) JP2003-15740 (abstract) JP 2002-333920 (Abstract, Claim 6)

前記特許文献1では、車輌の2つの位置に設置される送受信手段と、駐車スペースの4つの固定点に設置された4つの返信手段とを備え、各送受信手段は、それぞれ異なる2つの返信手段と通信を行ってそれぞれの間の距離を検出し、検出された距離に基づいて車輌位置を算出する車輌位置検出装置が開示されている。
特許文献1では、車輌の2箇所の位置を検出するために、車輌側に送信手段が2個必要である、位置計測専用の受信装置が必要である、目標物(返信手段)が固定設置のため、移動範囲をカバーする多くの目標物が必要になる等の問題がある。
In the said patent document 1, it is provided with the transmission / reception means installed in two positions of a vehicle, and the four reply means installed in four fixed points of a parking space, and each transmission / reception means is respectively two different reply means, There is disclosed a vehicle position detection device that performs communication to detect a distance between each of them and calculates a vehicle position based on the detected distance.
In patent document 1, in order to detect the position of two places of a vehicle, two transmission means are required on the vehicle side, a receiver dedicated to position measurement is necessary, and a target (reply means) is fixedly installed. Therefore, there is a problem that many targets that cover the moving range are required.

前記特許文献2では、特定の識別同期信号を受信した場合のみ超音波を送波する複数の超音波送波装置と、移動ロボット側に識別同期信号送信装置と、1組の超音波受波装置とを備え、移動ロボット側で、識別同期信号送波から複数の超音波送波装置からの超音波を受信するまでの時間を計測し、位置と走行方向を計測する自律移動ロボットの誘導装置が開示されている。
特許文献2では、各超音波送波装置毎に異なる識別同期信号を送信しなければならない、位置計測専用の超音波受波装置が必要である等の問題がある。
In Patent Document 2, a plurality of ultrasonic transmission devices that transmit ultrasonic waves only when a specific identification synchronization signal is received, an identification synchronization signal transmission device on the mobile robot side, and a set of ultrasonic reception devices An autonomous mobile robot guidance device that measures the time from the identification synchronization signal transmission to reception of ultrasonic waves from a plurality of ultrasonic transmission devices and measures the position and traveling direction on the mobile robot side. It is disclosed.
In Patent Document 2, there is a problem that a different identification synchronization signal must be transmitted for each ultrasonic wave transmission device, and an ultrasonic wave reception device dedicated to position measurement is required.

前記特許文献3では、作業用移動体と、移動機能を有する位置合わせ用基準板(ガイド)と、位置合わせ用基準板の移動のための誘導ラインとを備え、作業用移動体の超音波式距離計で、位置合わせ用基準板までの距離を測定し、その距離が一定になるように走行制御する作業用移動体の移動制御装置が開示されている。
特許文献3では、ジグザグ走行における横幅方向の位置のみを計測するためのものであり、縦方向の位置を計測することはできない、位置合わせ用基準板の移動のための誘導ラインの設置が大掛かりになる等の問題がある。
In the above-mentioned Patent Document 3, the working moving body, an alignment reference plate (guide) having a moving function, and a guide line for moving the alignment reference plate are provided. There is disclosed a movement control device for a working moving body that measures a distance to a reference plate for alignment with a distance meter and performs traveling control so that the distance becomes constant.
In patent document 3, it is for measuring only the position in the width direction in the zigzag traveling, and the position in the vertical direction cannot be measured. Installation of a guide line for moving the alignment reference plate is a major issue. There are problems such as.

前記特許文献4では、作業用移動体と、作業用移動体の目標走行方向と垂直な方向に移動する機能を有する位置合わせ基準板(ガイド)とを備えた作業用移動体の移動制御装置が開示されている。
特許文献4では、ジグザグ走行における横幅方向の位置のみを計測するためのものであり、縦方向の位置を計測することはできない、自律移動ロボットが位置合わせ基準板(ガイド)の真横に位置したときにしか位置計測を行なうことができない等の問題がある。
In Patent Document 4, there is provided a movement control device for a working moving body including a working moving body and an alignment reference plate (guide) having a function of moving in a direction perpendicular to the target traveling direction of the working moving body. It is disclosed.
Patent Document 4 is for measuring only the position in the horizontal direction in zigzag traveling, and cannot measure the position in the vertical direction. When the autonomous mobile robot is positioned directly beside the alignment reference plate (guide) There is a problem that position measurement can only be performed.

本発明は上記の問題に鑑みてなされたものであり、その目的の1つは、簡単な構成で移動体と目標物との距離を算出し得る自律走行移動体のシステムを提供することである。   The present invention has been made in view of the above problems, and one of its purposes is to provide a system for an autonomous traveling mobile body that can calculate the distance between the mobile body and a target with a simple configuration. .

本発明の1つの態様は、自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、前記目標物は、超音波を送波する第2の送波手段を有し、前記第1および第2の送波手段と第1の受波手段とを制御する制御手段が設けられており、前記自律走行移動体と障害物との間の距離を計測する第1の制御モードでの運転と、前記自律走行移動体と前記目標物との間の距離を計測する第2の制御モードでの運転とを切り替えて行うように、前記制御手段が前記第1および第2の送波手段と第1の受波手段とを制御し、前記第1の制御モードにおいては、前記第1の送波手段が超音波を送波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出し、前記第2の制御モードにおいては、前記第2の送波手段が超音波が送波するように制御され、前記第2の送波手段が超音波を送波してから前記第1の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第2の送波手段から前記第1の受波手段までの距離を算出する、ことを特徴とする。   One aspect of the present invention calculates a distance based on a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a time from when an ultrasonic wave is transmitted until it is received. The autonomous mobile body includes a first wave transmitting means for transmitting an ultrasonic wave and a first wave receiving means for receiving the ultrasonic wave. The target has second transmission means for transmitting ultrasonic waves, and control means for controlling the first and second transmission means and the first reception means is provided. In the first control mode for measuring the distance between the autonomous mobile body and the obstacle, and in the second control mode for measuring the distance between the autonomous mobile body and the target The control means controls the first and second wave sending means and the first wave receiving means so as to perform switching between In the first control mode, the first transmitting means is controlled to transmit ultrasonic waves, and the first receiving means transmits the ultrasonic waves after the first transmitting means transmits the ultrasonic waves. Based on the time until the reflected wave of the ultrasonic wave is received by the means, the calculating means calculates the distance from the first wave sending means to the obstacle, and in the second control mode, The second wave transmitting means is controlled to transmit ultrasonic waves, and the second wave transmitting means transmits the ultrasonic waves until the first wave receiving means receives the ultrasonic waves. The computing means calculates a distance from the second wave transmitting means to the first wave receiving means based on the time.

本発明の別の1つの態様は、自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、前記目標物は、超音波を受波する第2の受波手段を有し、前記第1の送波手段と第1および第2の受波手段とを制御する制御手段が設けられており、前記自律走行移動体と障害物との間の距離を計測する第1の制御モードでの運転と、前記自律走行移動体と前記目標物との間の距離を計測する第2の制御モードでの運転とを切り替えて行うように、前記制御手段が前記第1の送波手段および第1および第2の受波手段を制御し、前記第1の制御モードにおいては、前記第1の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出し、前記第2の制御モードにおいては、前記第2の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第2の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から前記第2の受波手段までの距離を算出する、ことを特徴とする。   Another aspect of the present invention provides a distance based on a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a time from when an ultrasonic wave is transmitted until it is received. The autonomous mobile body includes a first wave transmitting unit for transmitting an ultrasonic wave and a first wave receiving unit for receiving the ultrasonic wave. And the target includes second receiving means for receiving ultrasonic waves, and control means for controlling the first transmitting means and the first and second receiving means is provided. Driving in the first control mode for measuring the distance between the autonomous mobile body and the obstacle, and second control for measuring the distance between the autonomous mobile body and the target The control means switches the first wave transmitting means and the first and second wave receiving means so as to switch between operation in the mode. In the first control mode, the first wave receiving means is controlled to receive an ultrasonic wave, and the first wave sending means transmits the ultrasonic wave before the first wave receiving means. Based on the time until the wave receiving means receives the reflected wave of the ultrasonic wave, the calculation means calculates the distance from the first wave sending means to the obstacle, and in the second control mode, Is controlled so that the second receiving means receives ultrasonic waves, and after the first transmitting means transmits ultrasonic waves, the second receiving means receives the ultrasonic waves. The calculation means calculates a distance from the first transmission means to the second reception means based on a time until the wave is generated.

これらの態様によれば、自律走行移動体に超音波の送受波手段を搭載し、障害物検知を行う第1制御モードと、目標物位置検知を行う第2制御モードの2種類の制御モードとを設けることにより、障害物検出用の超音波距離センサーと、目標物との位置計測用超音波センサーを兼用することが可能になる。すなわち、自律走行移動体に目標物との位置計測専用の超音波受信装置を搭載する必要がなく、あるいは、目標物に位置計測専用の超音波送波装置を設ける必要がなく、装置の簡単化を図ることができる。   According to these aspects, there are two types of control modes: a first control mode in which an ultrasonic wave transmission / reception unit is mounted on an autonomous traveling moving body, and an obstacle detection and a second control mode in which a target position detection is performed. By providing this, it becomes possible to use both the ultrasonic distance sensor for detecting the obstacle and the ultrasonic sensor for measuring the position of the target. In other words, it is not necessary to install an ultrasonic receiver dedicated to position measurement with a target on an autonomous mobile body, or it is not necessary to provide an ultrasonic transmitter dedicated to position measurement on a target, thus simplifying the apparatus. Can be achieved.

なお、本発明において、制御手段は必ずしも一体に設けられる必要はなく、移動体側の第1の制御装置と目標物側の第2の制御装置とで制御手段が構成されてもよい。この場合第1の制御装置は移動体側の送受波手段や移動体の移動および姿勢変更を制御するものであり、第2の制御装置は目標物側の送受波手段や目標物の移動および姿勢変更を制御するものであってもよい。   In the present invention, the control means is not necessarily provided integrally, and the control means may be configured by the first control device on the moving body side and the second control device on the target side. In this case, the first control device controls movement and posture change of the moving body side transmitting / receiving means and the moving body, and the second control device moves and changes posture of the target side wave transmitting and receiving means and target object. It may be one that controls.

本発明の更に別の1つの態様は、自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、前記目標物は、超音波を受波する第2の受波手段を有し、前記第1の送波手段と第1および第2の受波手段とを制御する制御手段が設けられており、前記第1および第2の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出すると共に、前記第1の送波手段が超音波を送波してから前記第2の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から前記第2の受波手段までの距離を算出する、ことを特徴とする。   Still another aspect of the present invention provides a self-propelled autonomous mobile object, a target to which the autonomous mobile object travels, and a distance based on a time from when an ultrasonic wave is transmitted until it is received. The autonomous mobile body includes a first wave transmitting means for transmitting an ultrasonic wave, and a first wave receiving means for receiving the ultrasonic wave. The target has second receiving means for receiving ultrasonic waves, and control means for controlling the first transmitting means and the first and second receiving means is provided. And the first and second wave receiving means are controlled to receive ultrasonic waves, and the first wave receiving means transmits the ultrasonic waves, and then the first wave receiving means The calculation means calculates the distance from the first transmission means to the obstacle based on the time until the reflected wave of the ultrasonic wave is received. Based on the time from when the first wave transmitting means transmits ultrasonic waves until the second wave receiving means receives the ultrasonic waves, the calculating means is connected to the first wave transmitting means from the first wave transmitting means. A distance to the second wave receiving means is calculated.

このようにすれば、2つの受波手段が並行して受波動作を行う、即ち移動体から送波された超音波を目標物が受波し、該超音波の反射波を移動体が受波することで移動体側からの1度の送波だけで、移動体と障害物との間の距離および移動体と目標物との間の距離とを測定することができる。   In this way, the two receiving means perform the receiving operation in parallel, that is, the target receives the ultrasonic wave transmitted from the moving body, and the moving body receives the reflected wave of the ultrasonic wave. It is possible to measure the distance between the moving body and the obstacle and the distance between the moving body and the target object with only one wave transmission from the moving body side.

本発明の更に別の1つの態様は、自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、前記自律走行移動体または目標物の一方に、超音波を送波する一対の送波手段が互いに離間して設けられ、他方に超音波を受波する一対の受波手段が互いに離間して設けられており、前記各送波手段および各受波手段と前記自律走行移動体の移動および姿勢とを制御する制御手段が設けられており、前記各送波手段が超音波を送波し、かつ、該超音波を前記各受波手段が受波するように制御され、前記各送波手段が超音波を送波してから前記各受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記各第1の送波手段から前記各第2の受波手段までの距離の少なくとも3つの距離を算出し、前記一対の第2の送波手段のうちの一方からの超音波の送波と、他方からの超音波の送波とが、所定の時間間隔を空けて行われるように、前記各送波手段が制御されることを特徴とする。   Still another aspect of the present invention provides a self-propelled autonomous mobile object, a target to which the autonomous mobile object travels, and a distance based on a time from when an ultrasonic wave is transmitted until it is received. A pair of wave transmitting means for transmitting ultrasonic waves is provided on one of the autonomous mobile body or the target and spaced apart from each other. A pair of wave receiving means for receiving sound waves are provided apart from each other, and a control means for controlling each wave sending means and each wave receiving means and the movement and posture of the autonomous mobile body is provided. Each of the transmitting means transmits ultrasonic waves, and each of the receiving means is controlled to receive the ultrasonic waves, and after each of the transmitting means transmits ultrasonic waves, Based on the time until each receiving means receives the ultrasonic wave, the computing means Calculating at least three distances from one transmission means to each of the second reception means, transmitting ultrasonic waves from one of the pair of second transmission means, and from the other Each of the transmission means is controlled so that the ultrasonic wave transmission is performed at a predetermined time interval.

本態様によれば、2つの送波手段からの超音波の送波を所定の間隔を空けて行うので、各送波手段と各受波手段との間の複数の距離を計測する場合に複数の距離の計測を所定の順序で行うように制御することにより、各目標物ごとに異なる識別同期信号を送信する必要がなくなり、システムの簡略化を図ることができる。   According to this aspect, since the transmission of ultrasonic waves from the two transmission means is performed at a predetermined interval, a plurality of distances are measured when measuring a plurality of distances between each transmission means and each reception means. By controlling the distances to be measured in a predetermined order, it is not necessary to transmit different identification synchronization signals for each target, and the system can be simplified.

本発明においては、前記自律走行移動体と目標物との間で超音波の送波のタイミングを認識するための信号を送受信する送信手段および受信手段が設けられていてもよい。   In this invention, the transmission means and receiving means which transmit / receive the signal for recognizing the timing of the ultrasonic wave transmission between the said autonomous mobile body and a target may be provided.

このようにすれば、超音波送波のタイミングを、超音波が送波されてから受波されるまでの時間を算出する側で認識することができる。   In this way, the timing of ultrasonic transmission can be recognized on the side of calculating the time from when the ultrasonic wave is transmitted until it is received.

本発明の好適な態様においては、前記自律走行移動体は、指向性を有する信号を送信する第1の送信手段を更に有し、前記目標物は、前記信号を受信する第2の受信手段を更に有し、前記第1の送信手段および第2の受信手段は前記制御手段により制御され、前記自律走行移動体の姿勢を変更しながら第1の送信手段が前記信号を繰り返し送信する動作を行い、該動作において前記信号を第2の受信手段が受信することを条件として前記自律走行移動体の姿勢変更を停止するように制御されることで、前記自律走行移動体の前記目標物に対する姿勢を調整する。   In a preferred aspect of the present invention, the autonomous mobile body further includes a first transmission unit that transmits a signal having directivity, and the target includes a second reception unit that receives the signal. Further, the first transmission means and the second reception means are controlled by the control means, and the first transmission means performs an operation of repeatedly transmitting the signal while changing the posture of the autonomous mobile body. In this operation, the control unit is controlled to stop the posture change of the autonomous mobile unit on condition that the second receiving unit receives the signal, so that the attitude of the autonomous mobile unit to the target is changed. adjust.

本発明の別の好適な態様においては、前記演算手段により算出された前記各送波手段と前記各受波手段との間の複数の距離を比較する比較手段が設けられており、前記算出された距離のうち、前記送波手段の一方からの前記各受波手段までの2つの距離、または、前記受波手段の一方からの前記各送波手段までの2つの距離を、前記比較手段が比較し、該比較手段の比較結果に応じて前記自律走行移動体の姿勢変更が行われるように制御される。   In another preferred aspect of the present invention, there is provided comparison means for comparing a plurality of distances between the respective transmission means and the respective reception means calculated by the calculation means, and the calculation is performed. The comparison means calculates two distances from one of the transmission means to each of the reception means, or two distances from one of the reception means to each of the transmission means. The comparison is performed such that the posture of the autonomous mobile body is changed according to the comparison result of the comparison means.

本発明の更に別の好適な態様においては、超音波が送波されてから受波されるまでの時間に基づいて距離が正常に算出されたか否かを判定する判定手段が設けられ、前記演算手段による前記各送波手段と前記各受波手段との間の距離の算出が正常に行われたかどうかを前記判定手段が判定し、該判定手段の判定結果に応じて前記自律走行移動体の移動および/または姿勢の変更が行われるように制御される。   In still another preferred aspect of the present invention, there is provided determination means for determining whether or not the distance is normally calculated based on the time from when the ultrasonic wave is transmitted until it is received. The determination means determines whether or not the calculation of the distance between each transmission means and each reception means by the means is normally performed, and according to the determination result of the determination means, the autonomous traveling mobile body Control is performed so that movement and / or posture change is performed.

かかる好適な態様によれば、正確な位置計測の前段階として、大まかな目標物の方向検出および移動体の姿勢変更や移動を行なうステップを設けることができ、目標物と自律移動ロボットが離れている場合や、方向が大きくずれている場合でも、正確な位置合せができる。これらの好適な態様は組み合わせて用いられてもよい。   According to such a preferable aspect, as a preliminary stage of accurate position measurement, it is possible to provide a step of roughly detecting the direction of the target object and changing or moving the posture of the moving body. Even if the direction is different or the direction is greatly deviated, accurate alignment can be performed. These preferred embodiments may be used in combination.

特に前記第1の送信手段および第2の受信手段を設けることにより、正確な位置計測を行なう前に、目標物と移動体がどのような位置、方向の関係にあっても、ラフな方向補正を行なうことができる。   In particular, by providing the first transmitting means and the second receiving means, rough direction correction can be performed regardless of the position and direction of the target and the moving body before accurate position measurement is performed. Can be performed.

本発明において、前記目標物は移動可能であり、前記目標物の移動は前記制御手段により制御され、所定の場合に、前記目標物が移動するように制御されてもよい。   In the present invention, the target is movable, the movement of the target is controlled by the control means, and the target may be controlled to move in a predetermined case.

目標物(超音波送波装置または受波装置)を移動可能な構成とすることにより、迅速な位置合せが可能となり自動充電や自動ゴミ回収などの作業効率を向上させたり、作業時の目標物の設置台数を大幅に削減することができる。   By configuring the target (an ultrasonic transmitter or receiver) to be movable, quick alignment is possible, improving work efficiency such as automatic charging and automatic garbage collection, and target during work. The number of installed units can be greatly reduced.

また、目標物へ向かう正確な直進走行を可能とし、さらに目標物を移動可能とすることにより、ジグザグ走行の走行レーンごとに目標物を設置する必要が無くなり、簡単な構成で、広い面積での正確なジグザグ走行を可能とする。前記目標物は別の自律走行移動体であってもよい。   In addition, by enabling accurate straight traveling toward the target and further allowing the target to move, it is not necessary to install a target for each traveling lane of zigzag traveling, and it has a simple configuration and a large area. Enables accurate zigzag running. The target may be another autonomous mobile body.

<第1実施例>
以下、本発明の第1実施例を図面に従い説明する。
図1A,Bに示すように、本実施例のシステムは、床面を自走する移動機能を有する自律走行移動体(以下、「移動体」という。)1と該移動体1が向かう充電ステーション13(目標物の一例)とを備えており、移動体1の充電を自動的に行うシステムである。
<First embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1A and 1B, the system according to the present embodiment includes an autonomous traveling mobile body (hereinafter referred to as “moving body”) 1 having a mobile function of traveling on the floor surface and a charging station to which the mobile body 1 is directed. 13 (an example of a target), and the mobile body 1 is automatically charged.

移動体:
移動体1は、超音波を送波する4つの第1の送波手段2a,2b,2c,2dと、超音波を受波する4つの第1の受波手段3a,3b,3c,3dと、第1の送信手段、4と、4つの第1の受信手段5a,5b,5c,5dと、駆動モータ(図2)に接続された一対の走行車輪6a,6bと、超音波の送受波、信号の送受信および駆動モータの駆動などを制御する第1の制御装置7とを備える。
Mobile body:
The moving body 1 includes four first wave transmitting units 2a, 2b, 2c, and 2d that transmit ultrasonic waves, and four first wave receiving units 3a, 3b, 3c, and 3d that receive ultrasonic waves. First transmitting means 4, Four first receiving means 5a, 5b, 5c, 5d, a pair of traveling wheels 6a, 6b connected to a drive motor (FIG. 2), and ultrasonic transmission / reception And a first control device 7 for controlling transmission / reception of signals and driving of a drive motor.

前記第1の送波手段2a,2b,2c,2dは互いに水平方向に離間して設けられており、両サイドに設けられて互いに幅方向に離間したサイド送波手段2a,2bは概ね前方へ向かって超音波を送波し、前側に設けられたフロント送波手段2c,2dは概ね側方に向かって(2cは右側方に向かって,2dは左側方に向かって)超音波を送波する。   The first wave transmitting means 2a, 2b, 2c, 2d are provided apart from each other in the horizontal direction, and the side wave sending means 2a, 2b provided on both sides and separated from each other in the width direction are generally forward. Ultrasonic waves are transmitted toward the front, and the front transmission means 2c and 2d provided on the front side transmit the ultrasonic waves generally laterally (2c toward the right side and 2d toward the left side). To do.

前記第1の受波手段3a,3b,3c,3dは互いに水平方向に離間して設けられており、両サイドに設けられて互いに幅方向に離間したサイド受波手段3a,3bは概ね前方からの超音波を受波し、前側に設けられたフロント受波手段3c,3dは概ね側方からの(3cは右側方からの,3dは左側方からの)超音波を受波する。   The first wave receiving means 3a, 3b, 3c, 3d are provided apart from each other in the horizontal direction, and the side wave receiving means 3a, 3b provided on both sides and separated from each other in the width direction are substantially from the front. The front receiving means 3c and 3d provided on the front side receive the ultrasonic waves from substantially the side (3c from the right side and 3d from the left side).

前記各第1の送波手段2a,2b,2c,2dおよび各第1の受波手段3a,3b,3c,3dは、図2Bのように1つの筐体の上下に配置されて構成されている。したがって、2aと3a、2bと3b、2cと3c、2dと3dとは水平方向に概ね同じ位置にある。送波・受波兼用タイプの超音波センサを用いてもよい。   Each of the first wave transmitting means 2a, 2b, 2c, 2d and each of the first wave receiving means 3a, 3b, 3c, 3d are configured to be arranged above and below one housing as shown in FIG. 2B. Yes. Therefore, 2a and 3a, 2b and 3b, 2c and 3c, 2d and 3d are at substantially the same position in the horizontal direction. A transmission / reception type ultrasonic sensor may be used.

第1の送信手段4は、指向性を有する光信号を送信して各種データの送信を行う。第1の受信手段5a,5b,5c,5dは全方向からの光信号を受信して各種データの受信を行う。
また、移動体1には、第1の計時手段(タイマ)7t(図2A)が設けられており、該第1の計時手段7tは、計時機能を有する。
The 1st transmission means 4 transmits the optical signal which has directivity, and transmits various data. The first receiving means 5a, 5b, 5c and 5d receive optical signals from all directions and receive various data.
The moving body 1 is provided with first time measuring means (timer) 7t (FIG. 2A), and the first time measuring means 7t has a time measuring function.

図2Aに示すように、前記各手段2a〜2d,3a〜3d,4,5,7tは、第1の制御装置7に接続されている。第1の制御装置7は、CPU72およびROM、RAMの記憶部73からなるマイコン71を備え、超音波の送受波、信号の送受信、移動体1の移動および姿勢変更などを制御する。CPU72は、前記計時手段7tにより計測された超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段や、前記演算手段により算出された複数の距離を比較する比較手段や、距離が正常に算出されたか否かを判定する判定手段などの機能を有する。記憶部73には、移動体1内の送受波手段2a〜2d,3a〜3d等の相互の位置関係や所定のプログラムが記憶されている。また、記憶部73には、測定した時間や距離などを記憶可能である。   As shown in FIG. 2A, each of the means 2a to 2d, 3a to 3d, 4, 5, and 7t is connected to the first control device 7. The first control device 7 includes a microcomputer 71 including a CPU 72, a ROM, and a RAM storage unit 73, and controls ultrasonic wave transmission / reception, signal transmission / reception, movement of the moving body 1, posture change, and the like. The CPU 72 compares a plurality of distances calculated by the calculation means for calculating the distance based on the time from when the ultrasonic wave measured by the time measuring means 7t is transmitted to when it is received, or by the calculation means. It has functions such as a comparison unit and a determination unit that determines whether the distance is normally calculated. The storage unit 73 stores a mutual positional relationship between the wave transmitting / receiving means 2a to 2d and 3a to 3d in the moving body 1 and a predetermined program. The storage unit 73 can store the measured time and distance.

前記第1の制御装置7には、走行車輪を駆動させる一対の駆動モータ61,62が接続されている。制御装置7は、該駆動モータ61,62を制御して、移動体1を前進または後退させたり、その姿勢を変更したりすることができる。   A pair of drive motors 61 and 62 for driving the traveling wheels are connected to the first control device 7. The control device 7 can control the drive motors 61 and 62 to move the moving body 1 forward or backward, or change its posture.

直進走行時には、前記2つの駆動モータ61,62が同方向に回転することで、移動体1は前進または後退することができる。回転動作を行う際には、前記2つの駆動モータ61,62がそれぞれ逆方向に回転することで、移動体1は所定の回転中心のまわりに回転(姿勢変更)することができる。なお、前記2つの駆動モータ61,62の回転の比率を制御することで、走行アセンブリ1はカーブ走行を行うこともできる。
なお、移動体1の回転角度を測定するジャイロセンサ(図示せず)や移動体1の移動した移動距離を測定する移動距離測定手段(図示せず)が移動体に設けられており、前記第1の制御装置7に接続されている。
When the vehicle travels straight, the moving body 1 can move forward or backward by rotating the two drive motors 61 and 62 in the same direction. When performing the rotating operation, the two drive motors 61 and 62 rotate in opposite directions, respectively, so that the moving body 1 can rotate (posture change) around a predetermined rotation center. The traveling assembly 1 can also perform curve traveling by controlling the rotation ratio of the two drive motors 61 and 62.
Note that a gyro sensor (not shown) for measuring the rotation angle of the moving body 1 and a moving distance measuring means (not shown) for measuring the moving distance of the moving body 1 are provided on the moving body. 1 control device 7.

ステーション:
図1A,Bに示すように、ステーション13は、略コ字状の本体部13aを有し、該本体部13aの内側の収容スペースに前記移動体1を収容し(図8C)、図示しないコネクタを介して外部の電源に接続され移動体1の充電を行う。
station:
As shown in FIGS. 1A and 1B, the station 13 has a substantially U-shaped main body portion 13a, and the mobile body 1 is accommodated in an accommodating space inside the main body portion 13a (FIG. 8C). The mobile body 1 is connected to an external power source via

ステーション13は、超音波を送波する一対の第2の送波手段8a,8bと、超音波を受波する一対の第2の受波手段9a,9bと、第2の送信手段10と、第2の受信手段11と、超音波の送受波、信号の送受信などを制御する第2の制御装置12とを備えている。   The station 13 includes a pair of second transmission means 8a and 8b for transmitting ultrasonic waves, a pair of second reception means 9a and 9b for receiving ultrasonic waves, a second transmission means 10, A second receiving unit 11 and a second control device 12 for controlling transmission / reception of ultrasonic waves, transmission / reception of signals, and the like are provided.

各第2の送波手段8a,8bおよび各一対の受波手段9a,9bは、前記本体部13aの両サイドの先端部に設けられており、第2の送信手段10および第2の受信手段11と本体部13aの内側奥に設けられている。第2の送信手段10は、前記本体部13aの上端に設けられており、指向性のある光信号を送信する。   Each of the second transmitting means 8a and 8b and each of the pair of receiving means 9a and 9b are provided at the tip portions on both sides of the main body 13a, and the second transmitting means 10 and the second receiving means. 11 and the inner back of the main body 13a. The 2nd transmission means 10 is provided in the upper end of the said main-body part 13a, and transmits a directional optical signal.

前記各第2の送波手段8a,8b、各第2の受波手段9a,9b、第2の送信手段10、第2の受信手段11は前記移動体1の送受波手段や送受信手段と同様のものを使用することができる。
また、ステーション13には、第2の計時手段(タイマ)12t(図2A)が設けられており、該第2の計時手段12tは計時機能を有する。
The second transmission means 8a and 8b, the second reception means 9a and 9b, the second transmission means 10 and the second reception means 11 are the same as the transmission and reception means and transmission / reception means of the mobile body 1. Can be used.
Further, the station 13 is provided with second time measuring means (timer) 12t (FIG. 2A), and the second time measuring means 12t has a time measuring function.

図2Aに示すように、前記各手段8a,8b,9a,9b、10,11,12tは第2の制御装置12に接続されている。第2の制御装置12はCPU82およびROM、RAMの記憶部83からなるマイコン81を備え、超音波の送受波および信号の送受信を制御する。記憶部83には、ステーション13内の送受波手段8a,8b,9a,9bの相互の位置関係や所定のプログラムなどが記憶されている。   As shown in FIG. 2A, the means 8 a, 8 b, 9 a, 9 b, 10, 11, 12 t are connected to the second control device 12. The second control device 12 includes a CPU 82, a microcomputer 81 including a ROM and a RAM storage unit 83, and controls transmission / reception of ultrasonic waves and transmission / reception of signals. The storage unit 83 stores the mutual positional relationship between the transmission / reception means 8a, 8b, 9a, and 9b in the station 13, a predetermined program, and the like.

前記第1の制御装置7および第2の制御装置12とから、超音波の送受波、信号の送受信、移動体1の移動や姿勢変更などを制御する制御手段が構成されている。   The first control device 7 and the second control device 12 constitute control means for controlling transmission / reception of ultrasonic waves, transmission / reception of signals, movement of the mobile body 1 and posture change.

動作:
次に、本システムの動作を説明する。本システムは、移動体1と障害物90(図2A)との間の距離を計測する第1の制御モードでの運転と、移動体1と目標物13との間の距離を計測する第2の制御モードでの運転とを切り替えて行うように、前記第1および第2の制御装置7,13により制御される。
Operation:
Next, the operation of this system will be described. This system operates in the first control mode for measuring the distance between the moving body 1 and the obstacle 90 (FIG. 2A) and the second for measuring the distance between the moving body 1 and the target 13. Control is performed by the first and second control devices 7 and 13 so that the operation in the control mode is switched.

第1の制御モード(障害物検知モード);
第1の制御モードでは、図3のように、移動体1と障害物90との間の距離が計測される。このモードによる距離の測定は、一般的に障害物センサーとして用いられる周知の方法であり、このモードは、たとえば、移動体1が障害物90を検知しながら移動する際に行われる。
First control mode (obstacle detection mode);
In the first control mode, the distance between the moving body 1 and the obstacle 90 is measured as shown in FIG. The distance measurement in this mode is a well-known method that is generally used as an obstacle sensor. This mode is performed, for example, when the moving body 1 moves while detecting the obstacle 90.

このモードでは、第1の送波手段2a,2bが超音波を送波するように制御され、前記第1の送波手段2a,2bが超音波を送波してから、該超音波が障害物90に反射した反射波を前記第1の受波手段3a,3bが受波するまでの時間を前記第1の計時手段7tが計測し、該時間に基づいて(たとえば、時間に音速を乗じて所定の補正処理を行って)CPU(演算手段)72が第1の送波手段2a,2bから障害物90までの距離を算出する。各第1の送波手段2a,2bからの超音波の送波は所定の時間間隔を空けて行われてもよい。このモードにおいては、第2の送波手段8a,8bが超音波を送波しないように制御されてもよい。超音波を送波してから受波するまでの時間に基づいて距離を算出する方法としては、例えば、特開平8−54926や特開2000−56006に開示されている方法を用いることができる。   In this mode, the first transmission means 2a and 2b are controlled to transmit ultrasonic waves, and after the first transmission means 2a and 2b transmit ultrasonic waves, the ultrasonic waves are faulty. The first time measuring means 7t measures the time until the first wave receiving means 3a and 3b receive the reflected wave reflected by the object 90, and based on the time (for example, multiplying the time by the speed of sound). The CPU (calculation means) 72 calculates the distance from the first wave sending means 2a, 2b to the obstacle 90 (by performing a predetermined correction process). The ultrasonic wave transmission from each of the first wave transmission means 2a and 2b may be performed with a predetermined time interval. In this mode, the second transmission means 8a and 8b may be controlled so as not to transmit ultrasonic waves. As a method for calculating the distance based on the time from when an ultrasonic wave is transmitted to when it is received, for example, methods disclosed in Japanese Patent Laid-Open Nos. 8-54926 and 2000-56006 can be used.

第2の制御モード(目標検知モード);
第2の制御モードでは、移動体1とステーション13との間の複数の距離が計測される。このモードは、移動体1に対するステーション13の相対位置を算出する場合に行われる。
この第2の制御モードにおいては、第2の送波手段8a,8bが超音波を送波するように制御され、第2の送波手段8a,8bが超音波を送波してから前記第1の受波手段3a〜3dが該超音波を受波するまでの時間に基づいて、CPU(演算手段)72が第2の送波手段8a,8bから前記第1の受波手段3a〜3dまでの距離を算出する。各第2の送波手段8a,8bからの超音波の送波は所定の時間間隔を空けて行われてもよい。このモードにおいては、第1の送波手段2a,2bが超音波を送波しないように制御されてもよい。
Second control mode (target detection mode);
In the second control mode, a plurality of distances between the moving body 1 and the station 13 are measured. This mode is performed when the relative position of the station 13 with respect to the moving body 1 is calculated.
In the second control mode, the second transmitting means 8a and 8b are controlled to transmit ultrasonic waves, and after the second transmitting means 8a and 8b transmit ultrasonic waves, the second transmitting means 8a and 8b transmit ultrasonic waves. Based on the time until the first wave receiving means 3a-3d receives the ultrasonic wave, the CPU (calculation means) 72 receives the first wave receiving means 3a-3d from the second wave sending means 8a, 8b. The distance to is calculated. The ultrasonic wave transmission from each of the second wave transmission means 8a and 8b may be performed with a predetermined time interval. In this mode, the first wave transmission means 2a and 2b may be controlled not to transmit ultrasonic waves.

自動メンテナンス:
本システムでは、移動体1をステーション13に収容して充電を行う自動メンテナンスが行われる。以下、前記第1および第2の制御モードで運転して自動メンテナンスを行う工程を例に説明する。
Automatic maintenance:
In this system, automatic maintenance is performed in which the mobile body 1 is accommodated in the station 13 and charged. Hereinafter, the process of performing automatic maintenance by operating in the first and second control modes will be described as an example.

図4に示すように、自動メンテナンスは、呼びかけ信号を送受信して、ラフな方向合わせを行った後に、目標位置(ステーション13の位置)の計測および目標位置への移動が行われて、メンテナンス作業(充電)が行われる。   As shown in FIG. 4, automatic maintenance is performed by transmitting and receiving a call signal and performing rough alignment, then measuring the target position (position of the station 13) and moving to the target position. (Charging) is performed.

ラフな方向合わせ;
例えば清掃などの所定の作業を終えた場合に、自動メンテナンスのフローが開始される。この際、所定の呼びかけ信号の送受信や超音波の送受波により、ステーション13に対する移動体1のラフな方向合わせが行われる。
Rough alignment;
For example, when a predetermined operation such as cleaning is completed, an automatic maintenance flow is started. At this time, rough alignment of the moving body 1 with respect to the station 13 is performed by transmission / reception of a predetermined call signal or transmission / reception of ultrasonic waves.

図5A〜Cは、図4のフローチャートの「ラフな方向合せ」の例を示す図である。この例では、図5Aのように移動体1の第1の送信手段4は、移動体が回転して姿勢(向き)を変えながら、繰り返し、所定の角度の指向性を有する呼びかけ信号を送信する。そして、図5Bのように移動体1がほぼステーション13の方向を向いた時にだけ、ステーション13の第2の受信手段11が呼びかけ信号を受信する。第2の受信手段11が呼びかけ信号を受信すると、図5Cのように第2の送信手段10が所定の返信信号を送信する。移動体1の第1の受信手段5a〜5dは全方向からの信号を受信するようになっているので、ステーション13からの返信信号を受信する。結果として、移動体1の第1の制御装置7は移動体1がほぼステーション13の方を向いている事を認識し、回転を停止する。このようにして、移動体1のステーション13に対する姿勢が調整される。   5A to 5C are diagrams illustrating an example of “rough direction alignment” in the flowchart of FIG. 4. In this example, as shown in FIG. 5A, the first transmission unit 4 of the moving body 1 repeatedly transmits a call signal having directivity of a predetermined angle while the moving body rotates and changes its posture (orientation). . Then, the second receiving means 11 of the station 13 receives the call signal only when the moving body 1 is substantially directed toward the station 13 as shown in FIG. 5B. When the second receiving unit 11 receives the call signal, the second transmitting unit 10 transmits a predetermined reply signal as shown in FIG. 5C. Since the first receiving means 5a to 5d of the mobile body 1 are adapted to receive signals from all directions, they receive a reply signal from the station 13. As a result, the first control device 7 of the moving body 1 recognizes that the moving body 1 is almost facing the station 13 and stops rotating. In this way, the posture of the moving body 1 with respect to the station 13 is adjusted.

図6、図7は、図4のフローチャートの「ラフな方向合せ」の別の例を示す図である。この例では、ステーション13が第2の送信手段10から所定の呼びかけ信号を送信し、移動体1の第1の受信手段5a〜5dは全方向からの信号を受信するように構成されているので、前記呼びかけ信号を受信し、その後に超音波の送受波により移動体1の姿勢の調整などが行われる。前記図5の例の動作が行われた後に本例の動作が行われてもよい。   6 and 7 are diagrams showing another example of “rough direction alignment” in the flowchart of FIG. 4. In this example, the station 13 is configured to transmit a predetermined call signal from the second transmitting means 10, and the first receiving means 5a to 5d of the mobile body 1 are configured to receive signals from all directions. The call signal is received, and thereafter the posture of the moving body 1 is adjusted by transmitting and receiving ultrasonic waves. The operation of this example may be performed after the operation of the example of FIG. 5 is performed.

本例では、前記呼びかけ信号の送信の後、所定の時間間隔を空けて、所定の順序で各第2の送波手段8a,8bから超音波パルスを送波する。したがって、移動体1の第1の制御装置7は前記呼びかけ信号の受信時刻に基づいて所定の間隔を空けた各第2の送波手段8a,8bからの超音波送波のタイミングを認識する。   In this example, after transmitting the call signal, ultrasonic pulses are transmitted from each of the second transmission means 8a and 8b in a predetermined order with a predetermined time interval. Therefore, the first control device 7 of the moving body 1 recognizes the timing of the ultrasonic wave transmission from each of the second wave transmission means 8a and 8b with a predetermined interval based on the reception time of the call signal.

移動体1には互いに異なる方向を向いた第1の受波手段5a〜5dが搭載されており、所定の時間間隔、所定の順序で第1の受波手段5a〜5dが超音波パルスを受波する時刻を前記第1計時手段7tにより計測して、各第2の送波手段8a,8bから送波された超音波が各第1の受波手段5a〜5dに受信されるまでの各々の時間に基づいて、8a,8bのうちの1つと、3a,3b,3c,3dのうちの1つとの全ての組み合わせの距離を前記CPU(演算手段)72が算出し、それぞれの距離が正常に算出されたかどうかを前記CPU(判定手段)72が判定する。超音波を正常に受波しない場合は、距離が正常に算出されなかったと判定される。   The moving body 1 is equipped with first wave receiving means 5a to 5d facing in different directions, and the first wave receiving means 5a to 5d receive ultrasonic pulses at a predetermined time interval and in a predetermined order. The time until the wave is measured by the first time measuring means 7t, and the ultrasonic waves transmitted from the second wave transmitting means 8a and 8b are received by the first wave receiving means 5a to 5d, respectively. The CPU (calculation means) 72 calculates the distances of all combinations of one of 8a and 8b and one of 3a, 3b, 3c and 3d based on the time of The CPU (determination means) 72 determines whether or not it has been calculated. When the ultrasonic wave is not normally received, it is determined that the distance has not been normally calculated.

そして、正常に算出された距離値と正常に算出されなかった距離値との組み合わせの種類に応じて、移動体1の姿勢(方向)や位置を変更する。このようにして、移動体1のステーション13に対する位置や姿勢が調整される。本例の具体的なケースは、例えば、図6A〜D、図7A〜Dに示すとおりである。   Then, the posture (direction) and position of the moving body 1 are changed according to the type of combination of the distance value calculated normally and the distance value not calculated normally. In this way, the position and posture of the moving body 1 with respect to the station 13 are adjusted. Specific examples of this example are as shown in FIGS. 6A to 6D and FIGS.

目標位置への移動処理;
次に、目標位置(ステーション13の位置)の計測および目標位置への移動処理について説明する。この処理では、たとえば、移動体1が図8Aに示す位置にいる場合には距離L1〜L4が算出されて、目標位置が計測される。この計測結果に従って、図8Bのように移動体1がステーション13に正対する(移動体1がステーション13の収容スペースの前方にあり、所定の位置関係および姿勢で向かい合う状態)ように移動してステーション13に収容される。なお、図8、図16、図17、図18では、第1の送波手段2a〜2dのうち2a,2b、第1の受波手段3a〜3dのうち、3a,3bのみを用いた例で説明し、2c,2d,3c,3dの図示を省略する。
Move to the target position;
Next, measurement of the target position (position of the station 13) and movement processing to the target position will be described. In this process, for example, when the moving body 1 is at the position shown in FIG. 8A, the distances L1 to L4 are calculated and the target position is measured. According to this measurement result, the mobile body 1 moves to face the station 13 as shown in FIG. 8B (the mobile body 1 is in front of the accommodation space of the station 13 and faces in a predetermined positional relationship and posture). 13 is accommodated. 8, 16, 17, and 18, an example in which only 2 a and 2 b of the first transmitting means 2 a to 2 d and 3 a and 3 b of the first receiving means 3 a to 3 d are used. The illustration of 2c, 2d, 3c, 3d is omitted.

前記目標位置の移動処理は、図9、図11のフローチャートに示す流れで行われる。この流れにおける移動体1とステーション13との距離計測は、前記第2の制御モードで行われる。以下、図9、図11にしたがって、移動処理の流れを説明する。なお、図9の各ステップF1〜F12は第1の制御装置7の制御の流れを示し、図11の各ステップH1〜H10は第2の制御装置12の制御の流れを示す。
この流れは、移動体1が停止し、第2の制御モードに切り替わった状態(測定準備ができた状態)で開始される。この移動体1の停止は、移動体1が移動中、電池電圧の低下を検出している状態でステーション13からの呼びかけ信号を第1の受信手段5a〜5dが受信した場合等に行われるようにすると良い。
The target position moving process is performed according to the flow shown in the flowcharts of FIGS. The distance measurement between the moving body 1 and the station 13 in this flow is performed in the second control mode. Hereinafter, the flow of the movement process will be described with reference to FIGS. In addition, each step F1-F12 of FIG. 9 shows the flow of control of the 1st control apparatus 7, and each step H1-H10 of FIG. 11 shows the flow of control of the 2nd control apparatus 12. FIG.
This flow is started when the moving body 1 is stopped and switched to the second control mode (ready for measurement). The moving body 1 is stopped when the first receiving means 5a to 5d receive the call signal from the station 13 while the moving body 1 is moving and detecting a decrease in the battery voltage. It is better to

移動体1が停止中に、ステーション13の第2の送信手段10から計測開始信号が送信され(H1)、該計測開始信号を第1の受信手段5a〜5dが受信する(F1)。計測開始信号は前記呼びかけ信号と同一でもよい。計測開始信号から各第2の送波手段8a,8bからの超音波送波のタイミングの情報(計測開始信号から超音波送波までの時間)は予め移動体に記憶されていても良いし、計測開始信号に含まれていてもよく、これにより、移動体1側で各超音波送波のタイミングおよび受波のタイミングを認識することができる。なお、計測開始信号は光信号であり速度は十分に早いので距離にかかわらず信号の伝播時間はゼロと見なすことができる。   While the moving body 1 is stopped, a measurement start signal is transmitted from the second transmission unit 10 of the station 13 (H1), and the first reception units 5a to 5d receive the measurement start signal (F1). The measurement start signal may be the same as the call signal. Information on the timing of ultrasonic transmission from the second transmission means 8a, 8b from the measurement start signal (time from the measurement start signal to ultrasonic transmission) may be stored in advance in the moving body, It may be included in the measurement start signal, so that the timing of each ultrasonic transmission and the timing of reception can be recognized on the moving body 1 side. Since the measurement start signal is an optical signal and the speed is sufficiently high, the signal propagation time can be regarded as zero regardless of the distance.

そして、第2の制御装置12は、前記計測開始信号の送信終了を認識した後、第2の計時手段12tをスタートさせ(H2)、所定の時間間隔(本例では50msec)を空けて、各第2の送波手段8a,8bが、順次2回ずつ超音波を送波するように制御する。   Then, after recognizing the end of transmission of the measurement start signal, the second control device 12 starts the second time measuring means 12t (H2), and after a predetermined time interval (50 msec in this example), The second wave transmitting means 8a and 8b are controlled so as to transmit the ultrasonic wave twice sequentially.

すなわち、第2の計時手段12tのスタート後、第2の送波手段8bから1回目の超音波パルスを送波し(H3)、第2の計時手段12tが50msec経過するまで待機し(H4)、第2の送波手段8bから2回目の超音波パルスを送波し(H5)、第2の計時手段12tが100msec経過するまで待機し(H6)、第2 の送波手段8aから1回目の超音波パルスを送波し(H7)、第2の計時手段12tが150msec経過するまで待機し(H8)、第2の送波手段8aから2回目の超音波パルスを送波し(H9)、第2の計時手段12tが200msec経過するまで待機して、再びステップH1に戻るよう制御される。   That is, after the start of the second time measuring means 12t, the first ultrasonic pulse is transmitted from the second wave sending means 8b (H3), and it waits until the second time measuring means 12t has elapsed 50 msec (H4). The second ultrasonic transmission unit 8b transmits the second ultrasonic pulse (H5), waits until the second time measuring unit 12t has passed 100 msec (H6), and the second transmission unit 8a performs the first time. (H7), wait until the second time measuring means 12t has passed 150 msec (H8), and send the second ultrasonic pulse from the second wave sending means 8a (H9). Control is performed so that the second time measuring means 12t waits until 200 msec elapses and returns to step H1 again.

一方、第1の制御装置7は、前記計測開始信号の受信終了を認識した後、第1の計時手段7tをスタートさせ(F2)、前記第2の送波手段8a,8bからの超音波送波タイミングに同期して、各第2の送波手段8a,8bからの超音波送波から各第1の受波手段3a,3bの超音波受波までの時間を計測して、CPU(演算手段)72が各第2の送波手段8a,8bと各第1の受波手段3a,3bとの間の距離L1〜L4(図8A)を算出する。   On the other hand, after recognizing the end of reception of the measurement start signal, the first control device 7 starts the first time measuring means 7t (F2) and transmits the ultrasonic waves from the second wave sending means 8a and 8b. In synchronization with the wave timing, the time from the ultrasonic wave transmission from each of the second wave transmission means 8a, 8b to the ultrasonic wave reception of each of the first wave reception means 3a, 3b is measured, and the CPU (calculation) (Means) 72 calculates distances L1 to L4 (FIG. 8A) between the second wave sending means 8a and 8b and the first wave receiving means 3a and 3b.

すなわち、第1の計時手段7tのスタート後、第1の受波手段3aが前記第2の送波手段8bからの超音波パルスを受波した時の第1の計時手段7tの値からL1を算出し(F3)、第1の計時手段7tが50msec経過するまで待機し(F4)、第1の受波手段3bが前記第2の送波手段8bからの超音波パルスを受波した時の第1の計時手段7tの値からL2を算出し(F5)、第1の計時手段7tが100msec経過するまで待機し(F6)、第1の受波手段3aが前記第2の送波手段8aからの超音波パルスを受波した時の第1の計時手段7tの値からL3を算出し(F7)、第1の計時手段7tが150msec経過するまで待機し(F8)、第1の受波手段3bが前記第2の送波手段8aからの超音波パルスを受波した時の第1の計時手段7tの値からL4を算出し(F9)、所定の移動処理を行い(F10)、後述のgoal flgが1であるか否かの判断を行い(F11)、Yであれば前進してステーション13内に移動し(F12)、Nであれば再びステップF1に戻る。   That is, after the start of the first time measuring means 7t, L1 is calculated from the value of the first time measuring means 7t when the first wave receiving means 3a receives the ultrasonic pulse from the second wave sending means 8b. Calculate (F3), wait until the first time measuring means 7t elapses for 50 msec (F4), and the first wave receiving means 3b receives the ultrasonic pulse from the second wave sending means 8b. L2 is calculated from the value of the first time measuring means 7t (F5), waits until the first time measuring means 7t passes 100 msec (F6), and the first wave receiving means 3a is the second wave sending means 8a. L3 is calculated from the value of the first time measuring means 7t when receiving the ultrasonic pulse from (F7), and waits until the first time measuring means 7t passes 150 msec (F8). When the means 3b receives the ultrasonic pulse from the second transmitting means 8a, L4 is calculated from the value of the time measuring means 7t of 1 (F9), a predetermined movement process is performed (F10), and it is determined whether or not a goal flg described later is 1 (F11). Then, it moves into the station 13 (F12), and if it is N, it returns to Step F1 again.

なお、本実施例では前記各第2の送波手段8a,8bからの超音波送波を2回ずつ行ったが、1回ずつにしてもよい。この場合、各送波について、各第1の受波手段3a,3bが受波を行うことで前記距離L1〜L4(図8A)が算出される。   In this embodiment, the ultrasonic wave transmission from each of the second wave transmission means 8a and 8b is performed twice, but may be performed once. In this case, the distances L1 to L4 (FIG. 8A) are calculated by receiving the waves by the first receiving means 3a and 3b for each transmission.

図10は、前記図9のフローチャートの所定の移動処理(F10)の詳細を示すフローチャートである。図10に示すように、前記移動処理は、まず算出された各距離L1,L2,L3,L4の値を基に、第2の送波手段8a,8bの位置を算出する位置算出処理が行われ(G1)、算出結果はエラーか否かがCPU(判定手段)72により判断され(G2)、エラーでない場合は、8a,8bの位置を基に8a,8bを結ぶ直線と、3a,3bを結ぶ直線の成す角θを算出する方向(姿勢)算出処理が行われ(G3)、8a,8bの位置を基に、移動体1の移動目標位置を算出する目標位置算出処理が行われた後(G4)、移動体1が移動目標位置に移動し(G5)、前記算出されたθに基づき、移動体1をステーション13に正対するように回転(姿勢変更)し(G6)、前記移動した距離が所定値以下か否かが判断され(G7)、所定値以下の場合はgoal flg =1が記憶部73に記憶され(G8)、所定値より大きい場合はgoal flg =0が記憶部73に記憶される(G11)。なお、前記ステップG2において、算出結果がエラーと判断された場合は、所定の位置&方向補正処理が行われ(G10)、goal flg =0が記憶部73に記憶される(G11)。   FIG. 10 is a flowchart showing details of the predetermined movement process (F10) in the flowchart of FIG. As shown in FIG. 10, the movement process is performed by a position calculation process for calculating the positions of the second transmitting means 8a and 8b based on the calculated values of the distances L1, L2, L3 and L4. Whether or not the calculation result is an error is determined by the CPU (determination means) 72 (G2). If it is not an error, a straight line connecting 8a and 8b based on the positions of 8a and 8b, and 3a and 3b The direction (posture) calculation process for calculating the angle θ formed by the straight line connecting the two is performed (G3), and the target position calculation process for calculating the movement target position of the moving body 1 is performed based on the positions 8a and 8b. After (G4), the moving body 1 moves to the movement target position (G5), and based on the calculated θ, the moving body 1 is rotated (posture change) to face the station 13 (G6), and the movement It is determined whether the measured distance is equal to or smaller than a predetermined value (G7). In this case, goal flg = 1 is stored in the storage unit 73 (G8), and when larger than a predetermined value, goal flg = 0 is stored in the storage unit 73 (G11). If it is determined in step G2 that the calculation result is an error, a predetermined position & direction correction process is performed (G10), and goal flg = 0 is stored in the storage unit 73 (G11).

図14、図15は、図10のフローチャートに含まれる「位置算出処理」ルーチン(G1)の詳細を示すフローチャートである。図14、図15のステップM1〜M25に従って処理することで、前記CPU(演算手段)72による前記各送受波手段の間の距離の算出が正常に行われたかどうかを前記CPU(判定手段、比較手段)72が判定し、該CPU72の判定結果や比較結果に応じて異なる処理が行われる(図10のG2)。なお、図14、図15中この中で示されているxy座標値は、図16に示すように、移動体1の走行車輪6a,6bを結ぶ線分の中点を原点とし、6a,6bを結ぶ直線をx軸とし、x軸に直交する直線をy軸とした場合の位置を示し、点A,B,C,Dは、それぞれ、3a,3b,8b,8aの位置を示し、D1は予め記憶された3a,3b間の距離を示し、D2は予め記憶された8a,8b間の距離を示す。   14 and 15 are flowcharts showing details of the “position calculation processing” routine (G1) included in the flowchart of FIG. The CPU (determination means, comparison) determines whether or not the CPU (calculation means) 72 has normally calculated the distance between the transmission / reception means by performing processing according to steps M1 to M25 in FIGS. (Means) 72, and different processing is performed according to the determination result and comparison result of the CPU 72 (G2 in FIG. 10). 14 and 15, the xy coordinate values shown in FIG. 14 and FIG. 15 are 6a, 6b with the midpoint of the line segment connecting the traveling wheels 6a, 6b of the moving body 1 as the origin, as shown in FIG. Are the positions when the straight line connecting X is the x axis and the straight line orthogonal to the x axis is the y axis, and points A, B, C, and D indicate the positions of 3a, 3b, 8b, and 8a, respectively, and D1 Indicates the distance between 3a and 3b stored in advance, and D2 indicates the distance between 8a and 8b stored in advance.

すなわち、CPU(判定手段、比較手段)72は、例えば、下記のようにして、距離の算出が正常に行われたかどうかを判定する。   That is, the CPU (determination unit, comparison unit) 72 determines whether or not the distance has been normally calculated as follows, for example.

(1) L1,L2,L3,L4がすべて測定できた場合は、距離の算出が正常に行われたと判定する。
この場合、
(1-1)三角形ABCの3辺の長さから点Cの位置を算出し、
(1-2)三角形ABDの3辺の長さから点Dの位置を算出し、
(1-3)点Aを中心とする半径L1の円と、(1-2) で算出した点Dの位置を中心とする半径D2の円との交点として点Cの位置を算出し、
(1-4)点Bを中心とする半径L4の円と、(1-1) で算出した点Cの位置を中心とする半径D2の円との交点として点Dの位置を算出し、
(1-5)前記(1-1) で算出した点Cの位置と、(1-3) で算出した点Cの位置の平均値を点Cの位置とし、
(1-6)前記(1-2) で算出した点Dの位置と、(1-4) で算出した点Dの位置の平均値を点Dの位置とすることで、
点C,Dの位置を決定する。
(1) When all of L1, L2, L3, and L4 can be measured, it is determined that the distance has been calculated normally.
in this case,
(1-1) Calculate the position of point C from the length of the three sides of triangle ABC,
(1-2) Calculate the position of the point D from the length of the three sides of the triangle ABD,
(1-3) Calculate the position of point C as the intersection of a circle with radius L1 centered on point A and a circle with radius D2 centered on the position of point D calculated in (1-2);
(1-4) The position of point D is calculated as the intersection of a circle with radius L4 centered on point B and a circle with radius D2 centered on the position of point C calculated in (1-1).
(1-5) The position of point C is the average value of the position of point C calculated in (1-1) and the position of point C calculated in (1-3).
(1-6) By setting the average value of the position of the point D calculated in (1-2) and the position of the point D calculated in (1-4) as the position of the point D,
The positions of points C and D are determined.

(2) L1,L3,L4が測定できて、L2が測定できなかった場合は、距離の算出が正常に行われたと判定する。
この場合、
(2-1)三角形ABDの3辺の長さから点Dの位置を算出し、
(2-2)点Aを中心とする半径L1の円と、(2-1) で算出した点Dの位置を中心とする半径D2の円との交点として点Cの位置を算出することで、
点C,Dの位置を決定する。
(2) If L1, L3, and L4 can be measured and L2 cannot be measured, it is determined that the distance has been calculated normally.
in this case,
(2-1) Calculate the position of the point D from the length of the three sides of the triangle ABD,
(2-2) By calculating the position of point C as the intersection of a circle with radius L1 centered on point A and a circle with radius D2 centered on the position of point D calculated in (2-1) ,
The positions of points C and D are determined.

(3) L1,L2,L4が測定できて、L3が測定できなかった場合は、距離の算出が正常に行われたと判定する。
この場合、
(3-1)三角形ABCの3辺の長さから点Cの位置を算出し、
(3-2)点Bを中心とする半径L4の円と、(3-1) で算出した点Cの位置を中心とする半径D2の円との交点として点Dの位置を算出することで、
点C,Dの位置を決定する。
(3) If L1, L2, and L4 can be measured and L3 cannot be measured, it is determined that the distance has been calculated normally.
in this case,
(3-1) Calculate the position of the point C from the length of the three sides of the triangle ABC,
(3-2) By calculating the position of point D as the intersection of a circle with radius L4 centered on point B and a circle with radius D2 centered on the position of point C calculated in (3-1) ,
The positions of points C and D are determined.

(4) 一方、下記の場合は距離の算出が正常に行われなかった(エラー)と判定する。
(4-1)L1が測定できなかった場合
(4-2)L4が測定できなかった場合
(4-3)L2とL3がどちらも測定できなかった場合
(4-4)L1+L2が、D1より小さい場合
(4-5)L3+L4が、D1より小さい場合
(4-6)L1とL2との差の絶対値がD1より大きい場合
(4-7)L3とL4との差の絶対値がD1より大きい場合
(4) On the other hand, in the following cases, it is determined that the distance has not been calculated correctly (error).
(4-1) When L1 cannot be measured
(4-2) When L4 cannot be measured
(4-3) When both L2 and L3 cannot be measured
(4-4) L1 + L2 is smaller than D1
(4-5) When L3 + L4 is smaller than D1
(4-6) When the absolute value of the difference between L1 and L2 is greater than D1
(4-7) When the absolute value of the difference between L3 and L4 is greater than D1

図17A〜Cは、図10の移動処理のフローチャートに含まれる「位置&方向補正処理」(G10)を説明する平面図である。距離L1〜L4が測定できたかどうかの判別は、図14に示す位置算出処理内で行われるが、送波してから所定時間内に受波しなかった場合や、送波してから受波するまでの時間が所定値以下であった場合を測定失敗とみなし、また、L1とL2の合計が、移動体1の超音波センサー間の距離D1より短かった場合や、L3とL4の合計が、ステーション13側の超音波センサー間の距離(D2)より短かった場合などの正常には有り得ない計測結果を測定失敗とみなして所定の移動や姿勢変更の処理を行う。その具体例は、図17A〜Cに示すとおりである。超音波受波手段は指向性を有しているので、超音波の入射角が大きい場合に測定エラーとなる性質を利用して、ステーション13と移動体1とのラフな相対位置関係を推測して移動するのである。   17A to 17C are plan views for explaining the “position & direction correction process” (G10) included in the movement process flowchart of FIG. Whether or not the distances L1 to L4 can be measured is determined in the position calculation process shown in FIG. 14, but is not received within a predetermined time after transmission, or received after transmission. The case where the time until it is less than or equal to the predetermined value is regarded as a measurement failure, and when the sum of L1 and L2 is shorter than the distance D1 between the ultrasonic sensors of the moving body 1, or the sum of L3 and L4 is A measurement result that cannot be normally obtained such as when the distance between the ultrasonic sensors on the station 13 side is shorter than the distance (D2) is regarded as a measurement failure, and a predetermined movement or posture change process is performed. Specific examples thereof are as shown in FIGS. Since the ultrasonic wave receiving means has directivity, a rough relative positional relationship between the station 13 and the moving body 1 is estimated by utilizing the property of causing a measurement error when the incident angle of the ultrasonic wave is large. Move.

<第2実施例>
次に、第2実施例について、説明する。なお、以下の実施例において、第1実施例と同様の構成については、同一部分または相当部分に同一符号を付して、その詳しい説明および図示を省略する。
<Second embodiment>
Next, a second embodiment will be described. In the following embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description and illustration thereof are omitted.

本実施例においては、第2の制御装置12のCPU82が演算手段、判定手段、比較手段の機能を有する。
前記第1の制御モードにおいては、第1の受波手段3a,3bが超音波を受波するように制御され、第1の送波手段2a,2bが超音波を送波してから第1の受波手段3a,3bが該超音波の反射波を受波するまでの時間に基づいて、前記CPU(演算手段)72が前記第1の送波手段2a,2bから障害物までの距離を算出する。
In the present embodiment, the CPU 82 of the second control device 12 has functions of a calculation unit, a determination unit, and a comparison unit.
In the first control mode, the first wave receiving means 3a and 3b are controlled to receive the ultrasonic wave, and the first wave sending means 2a and 2b transmit the ultrasonic wave and then the first wave is received. Based on the time until the wave receiving means 3a, 3b receive the reflected wave of the ultrasonic wave, the CPU (calculation means) 72 determines the distance from the first wave sending means 2a, 2b to the obstacle. calculate.

前記第2の制御モードにおいては、前記第2の受波手段9a,9bが超音波を受波するように制御され、前記第1の送波手段2a,2bが超音波を送波してから前記第2の受波手段9a,9bが該超音波を受波するまでの時間に基づいて、前記CPU(演算手段)82が第1の送波手段2a,2bから第2の受波手段9a,9bまでの距離を算出する。   In the second control mode, the second wave receiving means 9a and 9b are controlled to receive ultrasonic waves, and the first wave sending means 2a and 2b transmit ultrasonic waves. Based on the time until the second wave receiving means 9a, 9b receive the ultrasonic wave, the CPU (calculation means) 82 receives the second wave receiving means 9a from the first wave sending means 2a, 2b. , 9b is calculated.

本実施例では、モードの切替を設けなくてもよく、図27のように、第1の受波手段3a,3bおよび第2の受波手段9a,9bが、第1の送波手段2a,2bから送波された同じ超音波を受波するように制御されてもよい。このようにすれば、1回の超音波の送波で2つの距離を計測することができる。   In this embodiment, it is not necessary to provide mode switching. As shown in FIG. 27, the first wave receiving means 3a, 3b and the second wave receiving means 9a, 9b are replaced by the first wave sending means 2a, It may be controlled to receive the same ultrasonic wave transmitted from 2b. In this way, it is possible to measure two distances with one ultrasonic transmission.

また、前記第1実施例では、前記「ラフな方向合わせ」や「目標位置への移動処理」においてステーション13から送波した超音波を移動体1が受波するように構成したが、本実施例では、逆に、移動体1から送波した超音波をステーション13が受波するように構成するようにしており、超音波の送波から受波までの時間の算出や距離の計測をステーション13側のCPU82が行う。   In the first embodiment, the mobile body 1 is configured to receive the ultrasonic wave transmitted from the station 13 in the “rough direction alignment” and “movement processing to the target position”. In the example, conversely, the station 13 is configured to receive the ultrasonic wave transmitted from the moving body 1, and the station calculates the time from the ultrasonic wave transmission to the wave reception and measures the distance. This is performed by the CPU 82 on the 13th side.

なお、本実施例では、ステーション13側で行った計測結果をステーション13から移動体1に送信するか、もしくは、ステーション13から移動体1に該計測結果に基づく移動命令を送信するようにしても良い。   In the present embodiment, the measurement result performed on the station 13 side is transmitted from the station 13 to the mobile unit 1, or a movement command based on the measurement result is transmitted from the station 13 to the mobile unit 1. good.

本実施例では、図9、図11のフローチャートに示す流れに代えて、移動体1から送波した超音波パルスをステーション13側で受ける場合の図12、図13のフローチャートに示す流れで移動処理が行われる。なお、図12の各ステップJ1〜J13は第1の制御装置7の制御の流れを示し、図13の各ステップK1〜K11は第2の制御装置12の制御の流れを示す。   In this embodiment, instead of the flow shown in the flowcharts of FIGS. 9 and 11, the movement process is performed according to the flow shown in the flowcharts of FIGS. 12 and 13 when the ultrasonic pulse transmitted from the moving body 1 is received on the station 13 side. Is done. In addition, each step J1-J13 of FIG. 12 shows the flow of control of the 1st control apparatus 7, and each step K1-K11 of FIG. 13 shows the flow of control of the 2nd control apparatus 12. FIG.

<第3実施例>
本実施例では、目標物13が移動可能な構成とされており、該目標物13の移動は制御手段により制御され、所定の場合に、該目標物が移動するように制御される。
以下、前記第1実施例の移動体1と同様の構成(図1A,B、図2A)を有する移動体を2台用いた場合(移動体101,102)を例にとって説明する。この場合、両移動体101,102は互いに相手をステーション(目標物)13として前記第1または第2実施例と同様の動作を行うことができる。
<Third embodiment>
In this embodiment, the target 13 is configured to be movable, and the movement of the target 13 is controlled by the control means, and is controlled so that the target moves in a predetermined case.
Hereinafter, a case where two mobile bodies having the same configuration (FIGS. 1A, 1B, 2A) as the mobile body 1 of the first embodiment are used (mobile bodies 101, 102) will be described as an example. In this case, both the moving bodies 101 and 102 can perform the same operation as in the first or second embodiment with the other party as a station (target) 13.

2台の移動体の位置合わせ:
図18A〜Dは、2台の移動体101,102が、それぞれ相手側をステーションとみなして位置計測を行い、相手の移動体の回転中心O1,O2の位置を算出して、その方向に向くように回転することによって、2台の移動体が正対し、所定の相対位置に移動する流れを示している。なお、同図中、A,Bは、それぞれ、第1の移動体101側の送受波手段2a,3aと2b,3bとを示し、C,Dは、それぞれ、第2の移動体102側の送受波手段2a,3aと2b,3bとを示す。
Alignment of two mobile objects:
18A to 18D, two mobile bodies 101 and 102 each measure the position with the counterpart side regarded as a station, calculate the positions of the rotation centers O1 and O2 of the counterpart mobile body, and face in that direction. By rotating in this way, the flow of two moving bodies facing each other and moving to a predetermined relative position is shown. In the figure, A and B respectively indicate the wave transmitting / receiving means 2a, 3a and 2b, 3b on the first moving body 101 side, and C and D respectively indicate on the second moving body 102 side. Wave transmitting / receiving means 2a, 3a and 2b, 3b are shown.

図18Aのように、第1の移動体101の制御装置7(図2A)は、第2の移動体102の送受波手段C,Dが超音波を送波してから、第1の移動体の送受波手段A,Bがその超音波を受波するまでの時間を計測することにより、第2の移動体102の複数の送受波手段C,Dと第1の移動体101の複数の送受波手段A,Bとの間の複数の距離値L1〜L4を計算する。そして、その複数の距離値L1〜L4と、予め記憶されている第2の移動体102の旋回中心O2と送受波手段C,Dとの位置関係の情報に基づいて、第1の移動体101から見た第2の移動体102の旋回中心O2の方向(角度θ1)を算出する(図18B)。角度θ1の算出は、例えば、前記第1実施例の図10で示した方法で算出される。   As shown in FIG. 18A, the control device 7 (FIG. 2A) of the first moving body 101 uses the first moving body after the transmission / reception means C and D of the second moving body 102 transmit ultrasonic waves. By measuring the time until the transmission / reception means A and B receive the ultrasonic waves, the plurality of transmission / reception means C and D of the second moving body 102 and the plurality of transmission / reception of the first moving body 101 are performed. A plurality of distance values L1 to L4 between the wave means A and B are calculated. Then, based on the plurality of distance values L1 to L4 and the information on the positional relationship between the turning center O2 of the second moving body 102 and the wave transmitting / receiving means C and D stored in advance, the first moving body 101 is used. The direction (angle θ1) of the turning center O2 of the second moving body 102 as seen from FIG. 18B is calculated (FIG. 18B). For example, the angle θ1 is calculated by the method shown in FIG. 10 of the first embodiment.

同様に、第2の移動体102の制御装置7(図2A)は、第1の移動体101の送受波手段A,Bが超音波を送波してから、第2の移動体の送受波手段C,Dがその超音波を受波するまでの時間を計測することにより、第1の移動体101の複数の送受波手段A,Bと第2の移動体102の複数の送受波手段C,Dとの間の複数の距離値L1〜L4を計算する。そして、その複数の距離値L1〜L4と、予め記憶されている第1の移動体101の旋回中心O1と送受波手段A,Bとの位置関係の情報に基づいて、第2の移動体102から見た第1の移動体101の旋回中心O1の方向(角度θ2)を算出する(図18B)。   Similarly, the control device 7 (FIG. 2A) of the second moving body 102 transmits / receives waves of the second moving body after the transmission / reception means A and B of the first moving body 101 transmit ultrasonic waves. By measuring the time until the means C and D receive the ultrasonic waves, the plurality of wave transmitting / receiving means A and B of the first moving body 101 and the plurality of wave transmitting / receiving means C of the second moving body 102 are measured. , D, a plurality of distance values L1 to L4 are calculated. Then, based on the plurality of distance values L1 to L4 and the information on the positional relationship between the turning center O1 of the first moving body 101 and the wave transmitting / receiving means A and B stored in advance, the second moving body 102 is used. The direction (angle θ2) of the turning center O1 of the first moving body 101 as seen from FIG. 18 is calculated (FIG. 18B).

そして、前記角度θ1,θ2に基づいて各移動体101,102を回転させる(姿勢変更する)。すなわち、図18Cのように、第1の移動体101が前記算出された角度θ1だけ反時計周りに回転し、第2の移動体102が前記算出された角度θ2だけ反時計回りに回転することで、各移動体101,102を互いに正対させる。この正対の後、図18Dのように、第1の移動体101は、第2の移動体102を目標物として、正対の姿勢を維持した状態で、第2の移動体102に向かって前進する。   Then, the moving bodies 101 and 102 are rotated (the posture is changed) based on the angles θ1 and θ2. That is, as shown in FIG. 18C, the first moving body 101 rotates counterclockwise by the calculated angle θ1, and the second moving body 102 rotates counterclockwise by the calculated angle θ2. Thus, the mobile bodies 101 and 102 are opposed to each other. After this facing, as shown in FIG. 18D, the first moving body 101 moves toward the second moving body 102 while maintaining the facing posture with the second moving body 102 as a target. Advance.

複数の移動体を用いたジグザグ走行の例:
図19は、第2および第3の移動体102,103を用いて、第1の移動体1がジグザグ走行することを示す。第3の移動体103は、第2の移動体と同様の構成である。この場合、第1の移動体1は目標物としての第2または第3の移動体102,103に向かって直進走行し、さらに、目標物としての移動体102、103が前記第1の移動体101の直進方向95に略直交する幅方向96に移動するので、広い面積でのジグザグ走行作業を正確に行なえる。
Example of zigzag running with multiple moving objects:
FIG. 19 shows that the first moving body 1 travels in a zigzag manner using the second and third moving bodies 102 and 103. The third moving body 103 has the same configuration as the second moving body. In this case, the first moving body 1 travels straight toward the second or third moving body 102, 103 as the target, and the moving bodies 102, 103 as the target further move to the first moving body. Since it moves in the width direction 96 substantially orthogonal to the straight traveling direction 95 of 101, the zigzag traveling work in a large area can be performed accurately.

第1の移動体101が第2および第3の移動体102,103に向かって直進する制御は、第1の移動体101が直進しながら、繰り返し、所定の姿勢調整を行うことで行われる。すなわち、第1の移動体101上の2つの異なる点A,Bと、第2の移動体上の1つの点との間の距離L1,L2を計測し、該距離値L1,L2が等しくなるように方向を修正しながら直進することにより、第2の移動体102に向かって直進する。たとえば、第1の移動体101の送受波手段A,Bと第2または第3の移動体102,103の送受波手段との距離L1,L2を計測し、L1>L2の場合、右へカーブ(時計回りに姿勢変更)し、L1<L2の場合、左へカーブ(反時計回りに姿勢変更)する。   Control in which the first moving body 101 moves straight toward the second and third moving bodies 102 and 103 is performed by repeatedly performing a predetermined posture adjustment while the first moving body 101 moves straight. That is, distances L1 and L2 between two different points A and B on the first moving body 101 and one point on the second moving body are measured, and the distance values L1 and L2 are equal. In this way, the vehicle travels straight toward the second moving body 102 by moving straight while correcting the direction. For example, the distances L1 and L2 between the transmission / reception means A and B of the first mobile body 101 and the transmission / reception means of the second or third mobile body 102 and 103 are measured. If L1> L2, the curve curves to the right (Change the posture clockwise), and if L1 <L2, curve to the left (change the posture counterclockwise).

そして、第1の移動体101と第2または第3の移動体102、103との間の距離が所定の距離以下になるか、あるいは、第1の移動体101が所定の距離進んだことを検出して、該移動体102、103へ向かっての直進を終了して、横方向96へ移動する。   Then, the distance between the first moving body 101 and the second or third moving bodies 102 and 103 is equal to or less than a predetermined distance, or the first moving body 101 has advanced a predetermined distance. After detecting, the straight traveling toward the moving bodies 102 and 103 is finished, and the vehicle moves in the lateral direction 96.

第1の移動体101はジグザグ走行を行なうため、走行距離が長く、目標物がないと走行中にジャイロセンサー(方向センサー)の累積誤差によって走行方向にずれが生じるが、第1の移動体101の複数の超音波送受波手段A,Bと目標物(移動体102,103)の送受波手段との距離が等しくなるように移動体1の走行方向を制御することにより、目標物に向かってまっすぐに直進することが可能になる。   Since the first moving body 101 performs zigzag traveling, the traveling distance is long, and if there is no target, a deviation occurs in the traveling direction due to the accumulated error of the gyro sensor (direction sensor) during traveling. The traveling direction of the moving body 1 is controlled so that the distances between the plurality of ultrasonic wave transmitting / receiving means A and B and the wave transmitting / receiving means of the target (moving bodies 102 and 103) are equal to each other. It is possible to go straight ahead.

一方、第2の移動体102は、第1の移動体1が往路走行中は停止しており、第1の移動体101が第2の移動体102へ向かっての直進を終了した後に、第1の移動体1が横移動中及び復路走行中に、所定距離だけ横方向96に移動して次の往路位置に移る。   On the other hand, the second moving body 102 is stopped while the first moving body 1 travels in the forward direction, and after the first moving body 101 finishes going straight toward the second moving body 102, While one moving body 1 is moving sideways and traveling backward, it moves in the horizontal direction 96 by a predetermined distance and moves to the next forward position.

第3の移動体103は、第1の移動体1が復路走行中は停止しており、第1の移動体101が第3の移動体103へ向かっての直進を終了した後に、第1の移動体1が横移動中及び往路走行中に、所定距離だけ横方向96に移動して次の復路位置に移る。   The third moving body 103 is stopped while the first moving body 1 is traveling in the backward direction, and after the first moving body 101 finishes going straight toward the third moving body 103, the first moving body 103 While the moving body 1 is moving laterally and traveling forward, it moves in the lateral direction 96 by a predetermined distance and moves to the next return path position.

該移動体2,3の移動距離は移動体1に比べて小さく作業中のジャイロセンサーの累積誤差も小さいため、ジャイロセンサーによる直進制御だけで十分に正確な直進が可能である。また、図19に示すように、第1の移動体101の目標物である第2の移動体102、第3の移動体103の直進のためのガイド91,92を設けて、第1の移動体101と同様の方法でL5=L6とした状態で、第2および第3の移動体102,103がガイド91,92に向かって直進するようにしても良く、その場合は高価なジャイロセンサーを省くことができる。   The moving distance of the moving bodies 2 and 3 is smaller than that of the moving body 1, and the accumulated error of the working gyro sensor is also small. Therefore, it is possible to travel sufficiently accurately only by the straight traveling control by the gyro sensor. In addition, as shown in FIG. 19, guides 91 and 92 are provided for the straight movement of the second moving body 102 and the third moving body 103 that are targets of the first moving body 101, and the first movement The second and third moving bodies 102 and 103 may go straight toward the guides 91 and 92 with L5 = L6 in the same manner as the body 101. In that case, an expensive gyro sensor may be used. It can be omitted.

図20、図21は、目標物に向かって直進する場合の制御の別の例を示す。本例では、L1とL2を同時に測定するのではなく、所定の時間間隔を空けて、順次、測定するように構成している。すなわち、距離L1を測定した時点での走行距離D1と、距離L2を測定した時点での走行距離D2とは異なる。   20 and 21 show another example of control when the vehicle travels straight toward the target. In this example, L1 and L2 are not measured at the same time, but are measured sequentially with a predetermined time interval. That is, the travel distance D1 when the distance L1 is measured is different from the travel distance D2 when the distance L2 is measured.

超音波センサーを障害物センサーとして使用する場合、送波・受波を、一つずつ順次行なうように構成することが一般的に行なわれるため、障害物検出と目標物検出を同じセンサーで行なう場合には、本実施例のように、受波手段を一つずつ順次、受波するように構成すると回路の構成が簡単になる。   When an ultrasonic sensor is used as an obstacle sensor, it is generally configured to perform transmission and reception sequentially one by one, so when obstacle detection and target detection are performed with the same sensor Therefore, as in this embodiment, if the receiving means are configured to receive one by one sequentially, the circuit configuration is simplified.

この例の場合、L1の測定からL2の測定の間に、移動体が(D2−D1)だけ進んでいるので、L1とL2の比較の際に、この進んだ距離を考慮に入れて行なうことにより、正確な比較を行なうことができる。   In this example, since the moving body has advanced by (D2−D1) between the measurement of L1 and the measurement of L2, when the comparison between L1 and L2 is performed, this advanced distance should be taken into consideration. Thus, an accurate comparison can be performed.

この制御は、例えば、図21のフローチャートのステップS1〜S8に従って行われる。すなわち、第1の移動体101が直進中、障害物検知モードで左横、右横、左前、右前の障害物までの距離を測定し、障害物対応処理を行い(S1,S2)、目標検知モードで目標(第2の移動体102)の右横超音波センサーDと第1の移動体101の左前超音波センサーBとの距離L1を計測し(S3)、L1計測の際の走行距離D1を記憶し(S4)、所定時間の後、目標検知モードで目標(第2の移動体102)の右横超音波センサーDと第1の移動体101の右前超音波センサーAとの距離L2を計測し(S5)、L2計測の際の走行距離D2を記憶し(S6)、L1>L2+(D2−D1)の場合、右へカーブするよう制御され、L1<L2+(D2−D1)の場合、左へカーブするよう制御され(S7)、次いで、距離L2が所定値以下か否かを判断して(S8)、所定値以下ならば移動体101の前進を停止させ、所定値より大きいならば、再びステップS1に戻る。   This control is performed, for example, according to steps S1 to S8 in the flowchart of FIG. That is, while the first moving body 101 is traveling straight, the distance to the obstacle on the left side, right side, left front, and right front is measured in the obstacle detection mode, the obstacle handling process is performed (S1, S2), and target detection is performed. In the mode, the distance L1 between the right lateral ultrasonic sensor D of the target (second moving body 102) and the left front ultrasonic sensor B of the first moving body 101 is measured (S3), and the travel distance D1 at the time of L1 measurement (S4), and after a predetermined time, the distance L2 between the right lateral ultrasonic sensor D of the target (second moving body 102) and the right front ultrasonic sensor A of the first moving body 101 is set in the target detection mode. Measure (S5), store the travel distance D2 at the time of L2 measurement (S6), and if L1> L2 + (D2-D1), control is performed to curve to the right, and L1 <L2 + (D2-D1) Is controlled to curve to the left (S7), and then the distance L2 is It is determined whether the value below (S8), to stop the advancement of the mobile body 101 if less than the predetermined value, if greater than a predetermined value, returns to step S1.

図21におけるL1計測のフローは、図22のフローチャートに従って行われ、L2計測のフローは図23のフローチャートにしたがって行われる。この場合の目標物(移動体102)側の制御フローは、図24のとおりである。   The flow of L1 measurement in FIG. 21 is performed according to the flowchart of FIG. 22, and the flow of L2 measurement is performed according to the flowchart of FIG. The control flow on the target (moving body 102) side in this case is as shown in FIG.

図25、図26は、目標物に向かって直進する前に、移動体の方向を目標物に向かうように方向(姿勢)を修正する工程を説明する平面図とフローチャートである。
図25に示すように、第1の移動体101は、その場で旋回をしながら、L1とL2を計測し、L1とL2の値がほぼ等しくなった時にその場旋回を停止することにより、直進開始時の走行方向を目標物に向かう方向に修正することができる。その詳しい制御は、図26のとおりである。
FIG. 25 and FIG. 26 are a plan view and a flowchart for explaining a process of correcting the direction (posture) so that the direction of the moving body is directed toward the target before going straight toward the target.
As shown in FIG. 25, the first moving body 101 measures L1 and L2 while turning on the spot, and stops the turn on the spot when the values of L1 and L2 become substantially equal. The traveling direction at the start of straight traveling can be corrected to the direction toward the target. The detailed control is as shown in FIG.

以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本明細書を見て、自明な範囲で種々の変更および修正を容易に想定するであろう。
たとえば、目標物としては、充電ステーションに限らず、清掃ロボットのゴミ回収装置であってもよいし、単に移動体の方向を定めるガイドのようなものであってもよい。
また、前記実施例では、移動体、目標物の双方に、送波手段と受波手段を設けたが、一方に送波手段、他方に受波手段を設ける構成としてもよい。送信手段および受信手段についても同様である。
したがって、そのような変更および修正は、請求の範囲から定まる本発明の範囲内のものと解釈される。
As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily understand various changes and modifications within the obvious scope by looking at the present specification.
For example, the target is not limited to the charging station, but may be a dust collection device of a cleaning robot, or a guide that simply determines the direction of the moving body.
In the above embodiment, the wave transmitting means and the wave receiving means are provided on both the moving body and the target. However, a structure may be adopted in which the wave transmitting means is provided on one side and the wave receiving means is provided on the other side. The same applies to the transmission means and the reception means.
Accordingly, such changes and modifications are to be construed as within the scope of the present invention as defined by the claims.

本発明は、自走して清掃やワックス塗布などの作業を行う自走式作業ロボットの他、全方向移動機能を有し人を乗せて所定の座席位置まで自律走行で移動するインテリジェント電動車椅子などに利用することができる。   In addition to a self-propelled work robot that performs self-propelled operations such as cleaning and wax application, the present invention includes an intelligent electric wheelchair that has an omnidirectional movement function and moves autonomously to a predetermined seat position with a person on board. Can be used.

AおよびBは、それぞれ、本発明の第1実施例にかかるシステムを示す平面図、同側面図である。A and B are a plan view and a side view, respectively, showing a system according to a first embodiment of the present invention. Aは同システムの構成を示す概略構成図、Bは超音波パルスを走波する送波手段と超音波パルスを受波する受波手段を示す斜視図である。A is a schematic configuration diagram showing the configuration of the system, and B is a perspective view showing a transmitting means for traveling ultrasonic pulses and a receiving means for receiving ultrasonic pulses. 本自律移動ロボットが障害物を検出する原理を示す側面図である。It is a side view which shows the principle which this autonomous mobile robot detects an obstruction. 本実施例の自律移動ロボットが、充電などのメンテナンスを行なうステーションとの間で自動メンテナンス作業を行なう際の流れを示すフローチャートである。It is a flowchart which shows the flow at the time of the autonomous mobile robot of a present Example performing automatic maintenance work between the stations which perform maintenance, such as charge. A〜Cは、それぞれ、図4のフローチャートの「ラフな方向合せ」の例を示す平面図である。A to C are plan views showing examples of “rough direction alignment” in the flowchart of FIG. 4. A〜Eは、それぞれ、「ラフな方向合せ」の別の例を示す平面図である。AE is a top view which shows another example of "rough direction alignment", respectively. A〜Dは、それぞれ、「ラフな方向合せ」の別の例を示す平面図である。AD is a top view which shows another example of "rough direction alignment", respectively. A〜Cは、それぞれ、自律移動ロボットがステーションに対する所定の位置(目標位置)へ移動する移動処理を示す平面図である。FIGS. 8A to 8C are plan views illustrating movement processing in which the autonomous mobile robot moves to a predetermined position (target position) with respect to the station. 第1の制御装置における目標位置の計測および移動の流れを示すフローチャートである。It is a flowchart which shows the flow of the measurement and movement of the target position in a 1st control apparatus. 移動処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of a movement process. 第2の制御装置における目標位置の計測の流れを示すフローチャートである。It is a flowchart which shows the flow of the measurement of the target position in a 2nd control apparatus. 第2実施例における第1の制御装置における目標位置の計測および移動の流れを示すフローチャートである。It is a flowchart which shows the flow of the measurement and movement of the target position in the 1st control apparatus in 2nd Example. 同第2の制御装置における目標位置の計測の流れを示すフローチャートである。It is a flowchart which shows the flow of the measurement of the target position in the said 2nd control apparatus. 図10のフローチャートに含まれる「位置算出処理」ルーチンの詳細を示すフローチャートである。11 is a flowchart showing details of a “position calculation process” routine included in the flowchart of FIG. 10. 図10のフローチャートに含まれる「位置算出処理」ルーチンの詳細を示すフローチャートである。11 is a flowchart showing details of a “position calculation process” routine included in the flowchart of FIG. 10. 位置算出処理を示す平面図である。It is a top view which shows a position calculation process. A〜Cは、それぞれ、図10のフローチャートに含まれる「位置&方向補正処理」を示す平面図である。FIGS. 11A to 11C are plan views showing “position & direction correction processing” included in the flowchart of FIG. 10. A〜Dは、それぞれ、第3実施例の2台の移動体が、所定の相対位置に移動する流れを示す平面図である。AD is a top view which shows the flow in which the two mobile bodies of 3rd Example move to a predetermined | prescribed relative position, respectively. 同2台以上の移動体を用いて広い面積でのジグザグ走行作業を行うことを示す平面図である。It is a top view which shows performing the zigzag driving | running | working work in a wide area using the 2 or more mobile bodies. 目標物に向かって直進する場合の別の例を示す平面図である。It is a top view which shows another example in the case of going straight ahead toward a target object. 目標物に向かって直進する場合の別の例を示すフローチャートである。It is a flowchart which shows another example in the case of going straight ahead toward a target object. L1計測のフローを示すフローチャートである。It is a flowchart which shows the flow of L1 measurement. L2計測のフローを示すフローチャートである。It is a flowchart which shows the flow of L2 measurement. 目標物側のフローを示すフローチャートである。It is a flowchart which shows the flow by the side of a target object. 目標物に向かって直進する前に、移動体の方向を目標物に向かうように修正する工程を示す平面図である。It is a top view which shows the process of correct | amending the direction of a moving body so that it may go to a target, before going straight ahead toward a target. 目標物に向かって直進する前に、移動体の方向を目標物に向かうように修正する工程を示すフローチャートである。It is a flowchart which shows the process of correcting the direction of a moving body so that it may go to a target, before going straight ahead toward a target. 第2実施例における移動体と障害物および目標物との距離計測を示す平面図である。It is a top view which shows the distance measurement of the mobile body in a 2nd Example, an obstruction, and a target object.

符号の説明Explanation of symbols

1:移動体
2a,2b,2c,2d :第1 の送波手段 2a,2b は前方向 2cは右横方向 2dは左横方向
3a,3b,3c,3d :第1 の受波手段 3a,3b は前方向 3cは右横方向 3dは左横方向
4 :第1 の送信手段
5a,5b,5c,5d :第1 の受信手段
7 :第1 の制御装置
8a,8b :第2 の送波手段
9a,9b :第2 の受波手段
10:第2 の送信手段
11:第2 の受信手段
12:第2 の制御装置
13:ステーション
1: Mobile body
2a, 2b, 2c, 2d: The first transmission means 2a, 2b are forward direction 2c is right lateral direction 2d is left lateral direction
3a, 3b, 3c, 3d: The first receiving means 3a, 3b is forward direction 3c is right lateral direction 3d is left lateral direction
4: First transmission method
5a, 5b, 5c, 5d: First receiving means
7: First control device
8a, 8b: Second transmission means
9a, 9b: Second wave receiving means
10: Second transmission method
11: Second receiving means
12: Second control device
13: Station

Claims (9)

自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、
前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、
前記目標物は、超音波を送波する第2の送波手段を有し、
前記第1および第2の送波手段と第1の受波手段とを制御する制御手段が設けられており、
前記自律走行移動体と障害物との間の距離を計測する第1の制御モードでの運転と、前記自律走行移動体と前記目標物との間の距離を計測する第2の制御モードでの運転とを切り替えて行うように、前記制御手段が前記第1および第2の送波手段と第1の受波手段とを制御し、
前記第1の制御モードにおいては、前記第1の送波手段が超音波を送波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出し、
前記第2の制御モードにおいては、前記第2の送波手段が超音波を送波するように制御され、前記第2の送波手段が超音波を送波してから前記第1の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第2の送波手段から前記第1の受波手段までの距離を算出する、
ことを特徴とする移動体システム。
A mobile body provided with a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a calculation means for calculating a distance based on a time from when an ultrasonic wave is transmitted until it is received A system,
The autonomous mobile body has first wave transmitting means for transmitting ultrasonic waves, and first wave receiving means for receiving ultrasonic waves,
The target has second transmission means for transmitting ultrasonic waves,
Control means for controlling the first and second wave transmitting means and the first wave receiving means is provided;
Driving in the first control mode for measuring the distance between the autonomous mobile body and the obstacle, and in the second control mode for measuring the distance between the autonomous mobile body and the target The control means controls the first and second wave sending means and the first wave receiving means so as to switch between operation;
In the first control mode, the first transmitting means is controlled to transmit ultrasonic waves, and the first receiving means transmits the ultrasonic waves after the first transmitting means transmits the ultrasonic waves. Based on the time until the means receives the reflected wave of the ultrasonic wave, the calculation means calculates the distance from the first wave sending means to the obstacle,
In the second control mode, the second wave sending means is controlled to send an ultrasonic wave, and the second wave sending means sends an ultrasonic wave before the first wave receiving wave. Based on the time until the means receives the ultrasonic wave, the calculating means calculates the distance from the second transmitting means to the first receiving means,
A mobile system characterized by that.
自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、
前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、
前記目標物は、超音波を受波する第2の受波手段を有し、
前記第1の送波手段と第1および第2の受波手段とを制御する制御手段が設けられており、
前記自律走行移動体と障害物との間の距離を計測する第1の制御モードでの運転と、前記自律走行移動体と前記目標物との間の距離を計測する第2の制御モードでの運転とを切り替えて行うように、前記制御手段が前記第1の送波手段および第1および第2の受波手段を制御し、
前記第1の制御モードにおいては、前記第1の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出し、
前記第2の制御モードにおいては、前記第2の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第2の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から前記第2の受波手段までの距離を算出する、
ことを特徴とする移動体システム。
A mobile body provided with a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a calculation means for calculating a distance based on a time from when an ultrasonic wave is transmitted until it is received A system,
The autonomous mobile body has first wave transmitting means for transmitting ultrasonic waves, and first wave receiving means for receiving ultrasonic waves,
The target has second receiving means for receiving ultrasonic waves,
Control means for controlling the first wave transmitting means and the first and second wave receiving means is provided,
Driving in the first control mode for measuring the distance between the autonomous mobile body and the obstacle, and in the second control mode for measuring the distance between the autonomous mobile body and the target The control means controls the first wave sending means and the first and second wave receiving means so as to switch between operation;
In the first control mode, the first wave receiving means is controlled to receive an ultrasonic wave, and the first wave sending means transmits an ultrasonic wave before the first wave receiving wave. Based on the time until the means receives the reflected wave of the ultrasonic wave, the calculation means calculates the distance from the first wave sending means to the obstacle,
In the second control mode, the second wave receiving means is controlled to receive an ultrasonic wave, and the second wave receiving means transmits the ultrasonic wave after the first wave sending means transmits the ultrasonic wave. Based on the time until the means receives the ultrasonic wave, the computing means calculates the distance from the first transmitting means to the second receiving means,
A mobile system characterized by that.
自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、
前記自律走行移動体は、超音波を送波する第1の送波手段と、超音波を受波する第1の受波手段とを有し、
前記目標物は、超音波を受波する第2の受波手段を有し、
前記第1の送波手段と第1および第2の受波手段とを制御する制御手段が設けられており、
前記第1および第2の受波手段が超音波を受波するように制御され、前記第1の送波手段が超音波を送波してから前記第1の受波手段が該超音波の反射波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から障害物までの距離を算出すると共に、前記第1の送波手段が超音波を送波してから前記第2の受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記第1の送波手段から前記第2の受波手段までの距離を算出する、
ことを特徴とする移動体システム。
A mobile body provided with a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a calculation means for calculating a distance based on a time from when an ultrasonic wave is transmitted until it is received A system,
The autonomous mobile body has first wave transmitting means for transmitting ultrasonic waves, and first wave receiving means for receiving ultrasonic waves,
The target has second receiving means for receiving ultrasonic waves,
Control means for controlling the first wave transmitting means and the first and second wave receiving means is provided,
The first and second wave receiving means are controlled to receive ultrasonic waves, and the first wave receiving means transmits ultrasonic waves, and then the first wave receiving means receives the ultrasonic waves. Based on the time until the reflected wave is received, the calculation means calculates the distance from the first transmission means to the obstacle, and the first transmission means sends an ultrasonic wave. The calculation means calculates the distance from the first transmission means to the second reception means based on the time from when the second reception means receives the ultrasonic wave to the second reception means,
A mobile system characterized by that.
自走する自律走行移動体と、該自律走行移動体が向かう目標物と、超音波が送波されてから受波されるまでの時間に基づいて距離を算出する演算手段とを備えた移動体システムであって、
前記自律走行移動体または目標物の一方に、超音波を送波する一対の送波手段が互いに離間して設けられ、他方に超音波を受波する一対の受波手段が互いに離間して設けられており、
前記各送波手段および各受波手段と前記自律走行移動体の移動および姿勢とを制御する制御手段が設けられており、
前記各送波手段が超音波を送波し、かつ、該超音波を前記各受波手段が受波するように制御され、前記各送波手段が超音波を送波してから前記各受波手段が該超音波を受波するまでの時間に基づいて、前記演算手段が前記各第1の送波手段から前記各第2の受波手段までの距離の少なくとも3つの距離を算出し、
前記一対の第2の送波手段のうちの一方からの超音波の送波と、他方からの超音波の送波とが、所定の時間間隔を空けて行われるように、前記各送波手段が制御される移動体システム。
A mobile body provided with a self-propelled autonomous mobile body, a target to which the autonomous mobile body travels, and a calculation means for calculating a distance based on a time from when an ultrasonic wave is transmitted until it is received A system,
A pair of wave transmitting means for transmitting ultrasonic waves is provided apart from each other on one of the autonomous mobile body or the target, and a pair of wave receiving means for receiving ultrasonic waves are provided separately from each other on the other side. And
Control means for controlling the movement and posture of each of the transmitting means and each receiving means and the autonomous mobile body is provided,
Each of the transmitting means transmits ultrasonic waves and is controlled so that each of the receiving means receives the ultrasonic waves, and each of the transmitting means transmits the ultrasonic waves and then receives each of the receiving waves. Based on the time until the wave means receives the ultrasonic wave, the calculation means calculates at least three distances from the first wave sending means to the second wave receiving means,
Each of the transmission means so that transmission of ultrasonic waves from one of the pair of second transmission means and transmission of ultrasonic waves from the other are performed at a predetermined time interval. A mobile system that is controlled.
請求項1から4のいずれか1項において、前記自律走行移動体と目標物との間で超音波の送波のタイミングを認識するための信号を送受信する送信手段および受信手段が設けられている、移動体システム。   5. The transmission means and the reception means for transmitting and receiving a signal for recognizing the timing of ultrasonic wave transmission between the autonomous mobile body and the target according to any one of claims 1 to 4. , Mobile system. 請求項1から5のいずれか1項において、前記自律走行移動体は、指向性を有する信号を送信する第1の送信手段を更に有し、
前記目標物は、前記信号を受信する第2の受信手段を更に有し、
前記第1の送信手段および第2の受信手段は前記制御手段により制御され、
前記自律走行移動体の姿勢を変更しながら第1の送信手段が前記信号を繰り返し送信する動作を行い、該動作において前記信号を第2の受信手段が受信することを条件として前記自律走行移動体の姿勢変更を停止するように制御されることで、前記自律走行移動体の前記目標物に対する姿勢を調整する、移動体システム。
In any one of Claim 1 to 5, the said autonomous mobile body further has the 1st transmission means which transmits the signal which has directivity,
The target further includes second receiving means for receiving the signal,
The first transmission means and the second reception means are controlled by the control means,
The autonomous traveling mobile body is operated on condition that the first transmission means repeatedly transmits the signal while changing the attitude of the autonomous traveling mobile body, and the second receiving means receives the signal in the operation. The moving body system which adjusts the attitude | position with respect to the said target object of the said autonomous traveling mobile body by controlling to stop attitude | position change.
請求項1から6のいずれか1項において、前記演算手段により算出された前記各送波手段と前記各受波手段との間の複数の距離を比較する比較手段が設けられており、
前記算出された距離のうち、前記送波手段の一方からの前記各受波手段までの2つの距離、または、前記受波手段の一方からの前記各送波手段までの2つの距離を、前記比較手段が比較し、該比較手段の比較結果に応じて前記自律走行移動体の姿勢変更が行われるように制御される移動体システム。
In any one of Claims 1-6, the comparison means which compares several distance between each said transmission means calculated by the said calculation means and each said receiving means is provided,
Of the calculated distances, two distances from one of the transmitting means to each receiving means, or two distances from one of the receiving means to each transmitting means, A mobile system controlled by a comparison means and controlled so that the posture of the autonomous mobile body is changed according to a comparison result of the comparison means.
請求項1から7のいずれか1項において、超音波が送波されてから受波されるまでの時間に基づいて距離が正常に算出されたか否かを判定する判定手段が設けられ、
前記演算手段による前記各送波手段と前記各受波手段との間の距離の算出が正常に行われたかどうかを前記判定手段が判定し、該判定手段の判定結果に応じて前記自律走行移動体の移動および/または姿勢の変更が行われるように制御される移動体システム。
In any one of Claims 1-7, the determination means which determines whether the distance was normally calculated based on the time after an ultrasonic wave was transmitted until it was received is provided,
The determination means determines whether or not the calculation of the distance between each transmission means and each reception means by the calculation means has been normally performed, and the autonomous traveling movement is performed according to the determination result of the determination means A mobile system that is controlled such that body movement and / or posture changes are performed.
請求項1から8のいずれか1項において、前記目標物は移動可能であり、
前記目標物の移動は前記制御手段により制御され、
所定の場合に、前記目標物が移動するように制御される移動体システム。
The object according to any one of claims 1 to 8, wherein the target is movable,
The movement of the target is controlled by the control means,
A mobile system that is controlled so that the target moves in a predetermined case.
JP2006030552A 2006-02-08 2006-02-08 Movable body system Pending JP2007213180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030552A JP2007213180A (en) 2006-02-08 2006-02-08 Movable body system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030552A JP2007213180A (en) 2006-02-08 2006-02-08 Movable body system

Publications (1)

Publication Number Publication Date
JP2007213180A true JP2007213180A (en) 2007-08-23

Family

ID=38491576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030552A Pending JP2007213180A (en) 2006-02-08 2006-02-08 Movable body system

Country Status (1)

Country Link
JP (1) JP2007213180A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056664A (en) * 2010-09-07 2012-03-22 Muratec Automation Co Ltd Conveying system
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
CN102715988A (en) * 2012-06-30 2012-10-10 毛振刚 Human-computer interactive intelligent wheelchair
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
JP2014069647A (en) * 2012-09-28 2014-04-21 Denso Corp Parking support system, and scotch with positioning pieces
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
WO2015105178A1 (en) * 2014-01-09 2015-07-16 株式会社東芝 Self-propelled device
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
JP2020091272A (en) * 2018-12-07 2020-06-11 ナインボット(ベイジン)テック カンパニー リミテッドNinebot(Beijing)Tech.Co.,Ltd Travel method of electrically-driven scooter, electrically-driven scooter and storage medium
KR20210126635A (en) * 2019-02-01 2021-10-20 로커스 로보틱스 코포레이션 Proximity robot object detection and avoidance

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8584307B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
JP2012056664A (en) * 2010-09-07 2012-03-22 Muratec Automation Co Ltd Conveying system
CN102715988A (en) * 2012-06-30 2012-10-10 毛振刚 Human-computer interactive intelligent wheelchair
JP2014069647A (en) * 2012-09-28 2014-04-21 Denso Corp Parking support system, and scotch with positioning pieces
KR101910164B1 (en) * 2014-01-09 2018-10-19 도시바 라이프스타일 가부시키가이샤 Self-propelled device
US10048694B2 (en) 2014-01-09 2018-08-14 Toshiba Lifestyle Products & Services Corporation Self-propelled device
JP2015132892A (en) * 2014-01-09 2015-07-23 株式会社東芝 Self-propelled machine
WO2015105178A1 (en) * 2014-01-09 2015-07-16 株式会社東芝 Self-propelled device
JP2020091272A (en) * 2018-12-07 2020-06-11 ナインボット(ベイジン)テック カンパニー リミテッドNinebot(Beijing)Tech.Co.,Ltd Travel method of electrically-driven scooter, electrically-driven scooter and storage medium
US11161412B2 (en) 2018-12-07 2021-11-02 Ninebot (Beijing) Tech Co., Ltd. Electric scooter piloting method, electric scooter and storage medium
JP7000375B2 (en) 2018-12-07 2022-01-19 ナインボット(ベイジン)テック カンパニー リミテッド How to drive an electric scooter, electric scooter and storage medium
KR20210126635A (en) * 2019-02-01 2021-10-20 로커스 로보틱스 코포레이션 Proximity robot object detection and avoidance
KR102580082B1 (en) 2019-02-01 2023-09-18 로커스 로보틱스 코포레이션 Proximity robot object detection and avoidance

Similar Documents

Publication Publication Date Title
JP2007213180A (en) Movable body system
EP3054361B1 (en) Apparatus and method for returning of a robot to a charging station
JP4142021B2 (en) Coordinate correction method for robot cleaner and robot cleaner system using the same
EP1717660B1 (en) Position calculation system for mobile robot and charging-stand return system and method using the same
KR100420171B1 (en) Robot cleaner and system therewith and method of driving thereof
EP1760564B1 (en) System and method for returning robot cleaner to charger
US7860608B2 (en) Method and apparatus for generating and tracing cleaning trajectory of home cleaning robot
JP2013168151A (en) Cleaning robot and charging system
WO2018003814A1 (en) Mobile body guidance system, mobile body, guidance device, and computer program
KR100468107B1 (en) Robot cleaner system having external charging apparatus and method for docking with the same apparatus
KR100782863B1 (en) Docking guide apparatus for moving robot and docking method thereof
KR20160048347A (en) An automatic docking system of mobile robot charging station and the method thereof
US20060238156A1 (en) Self-moving robot capable of correcting movement errors and method for correcting movement errors of the same
US20160170412A1 (en) Autonomous mobile device and method for controlling same
JP2000056006A (en) Position recognizing device for mobile
CN100532027C (en) Route guidance method of self-propelled device
JP2001515237A (en) Docking method of autonomous motion unit using guidance beam
JP2002333920A (en) Movement controller for traveling object for work
US20120065829A1 (en) Wall-following Moving Device
TW201334749A (en) Cleaning robot and charging system
KR100704485B1 (en) System for lead a robot into the target point
KR20080092595A (en) Apparatus and method by which movable robot easily tracks charging station
JPH11175149A (en) Autonomous traveling vehicle
JP2017049933A (en) Autonomous travelling vehicle system
JP2017222312A (en) Parking support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208