KR19990025888A - Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery - Google Patents

Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery Download PDF

Info

Publication number
KR19990025888A
KR19990025888A KR1019970047727A KR19970047727A KR19990025888A KR 19990025888 A KR19990025888 A KR 19990025888A KR 1019970047727 A KR1019970047727 A KR 1019970047727A KR 19970047727 A KR19970047727 A KR 19970047727A KR 19990025888 A KR19990025888 A KR 19990025888A
Authority
KR
South Korea
Prior art keywords
electrode plate
lithium
battery
active material
plasticizer
Prior art date
Application number
KR1019970047727A
Other languages
Korean (ko)
Inventor
노환진
Original Assignee
손욱
삼성전관 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성전관 주식회사 filed Critical 손욱
Priority to KR1019970047727A priority Critical patent/KR19990025888A/en
Priority to GB9820303A priority patent/GB2329513B/en
Priority to JP26434198A priority patent/JP4159667B2/en
Priority to US09/158,437 priority patent/US6143444A/en
Priority to DE19843131A priority patent/DE19843131B4/en
Publication of KR19990025888A publication Critical patent/KR19990025888A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

리튬 계열 이차 전지용 극판의 제조 방법으로서, 활물질, 도전제, 바인더, 가소제를 포함하는 리튬 계열 이차 전지용 활물질 조성물을 집전체에 직접 양면 코팅하는 공정을 포함한다. 이 제조 방법은 간단한 공정으로 경제적으로 리튬 계열 이차 전지용 극판을 제조할 수 있고, 또한 이 극판을 이용하여 수명이 향상된 전지를 제조할 수 있다.The manufacturing method of the positive electrode plate for lithium type secondary batteries includes the process of directly double-side-coating the active material composition for lithium type secondary batteries containing an active material, a conductive agent, a binder, and a plasticizer to a collector. This manufacturing method can economically manufacture the electrode plate for lithium series secondary batteries in a simple process, and can also manufacture the battery of which lifetime improved using this electrode plate.

Description

리튬 계열 이차 전지용 극판의 제조 방법Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery

[산업상 이용 분야][Industrial use]

본 발명은 리튬 계열 이차 전지용 극판의 제조 방법에 관한 것으로서, 상세하게는 간단한 공정으로 수명이 향상된 전지를 제조할 수 있는 리튬 계열 이차 전지용 극판의 제조 방법에 관한 것이다.The present invention relates to a method for producing a lithium-based secondary battery pole plate, and more particularly to a method for manufacturing a lithium-based secondary battery pole plate capable of manufacturing a battery with improved life in a simple process.

[종래 기술][Prior art]

최근 카메라 일체형 VTR, 오디오, 랩탑형 퍼스널 컴퓨터, 휴대용 전화기 등의 새로운 포터블 전자기기의 소형화 및 경량화 추세와 관련하여, 이들 기기의 전원으로 사용되는 전지의 성능을 고성능화하고, 대용량화하는 기술이 필요하게 되었으며, 특히 경제적인 측면에서 이들 전지의 제조 원가를 절감하는 기술 개발 노력이 진행되고 있다. 일반적으로 전지는 망간 전지, 알카리 전지, 수은 전지, 산화은 전지 등과 같이 일회용으로 사용하는 1차 전지와 납축전지, 금속수소화물을 음극 활물질로 하는 Ni-MH(니켈-메탈하이드라이드) 전지, 밀폐형 니켈-카드뮴 전지와 리튬-금속 전지, 리튬-이온 전지(LIB: Lithium Ion Battery), 리튬-폴리머 전지(LPB: Lithium Polymer Battery)와 같은 리튬군 전지 등과 같이 재충전하여 사용할 수 있는 이차 전지, 그리고 연료 전지, 태양 전지 등으로 구분할 수 있다.Recently, with the trend toward miniaturization and lightening of new portable electronic devices such as camera-integrated VTRs, audio, laptop personal computers, portable telephones, and the like, there is a need for a technology for increasing the performance and capacity of batteries used as power sources for these devices. In particular, efforts are being made to develop technologies that reduce manufacturing costs of these batteries, particularly in economic terms. In general, batteries include primary batteries used for single use, such as manganese batteries, alkaline batteries, mercury batteries, and silver oxide batteries, Ni-MH (nickel-metal hydride) batteries using lead-acid batteries, and metal hydrides as negative active materials, and sealed nickel. Rechargeable secondary batteries such as cadmium batteries, lithium-metal batteries, lithium-ion batteries (LIB), lithium-ion batteries such as lithium polymer batteries (LPB), and fuel cells , Solar cells and the like.

이 중 1차 전지는 용량이 적고, 수명이 짧으며, 재활용이 되지 않으므로 환경 오염을 일으키는 문제점이 있는데 반하여, 이차 전지는 재충전하여 사용할 수 있어 수명이 길며, 성능과 효율성 측면에서 우수하며, 폐기물의 발생도 적어 환경 보호 측면에서도 우수하다.Among these, the primary battery has a problem of causing environmental pollution because it has a small capacity, a short lifespan, and cannot be recycled, whereas a secondary battery can be recharged and used for a long life, and has excellent performance and efficiency. It is rarely generated and is excellent in environmental protection.

상기한 전지 중 일반적인 리튬 계열 이차 전지는 음극으로 알카리 금속인 리튬 또는 탄소를 사용하고, 양극으로 전이 금속 산화물(transition metal oxide) 및 산화물 고용체(LiMxCo1-xO2, LiMxCo1-xO2, M=Ni, Co, Fe, Mn, Cr, ···)를 사용하며, 전해질로는 이온염(ionic salt)을 사용하는 전지이다.Among the above-mentioned batteries, a typical lithium-based secondary battery uses an alkali metal lithium or carbon as a negative electrode, and a transition metal oxide and an oxide solid solution (LiM x Co 1-x O 2 , LiM x Co 1- ) as a positive electrode. x O 2 , M = Ni, Co, Fe, Mn, Cr,.

상기한 리튬 계열 이차 전지 중 리튬 계열 이온 전지가 다른 전지에 비하여 작동 전압이 매우 높고, 중량당 에너지 밀도가 우수하여 현재 휴대폰, 노트북 컴퓨터, 캠코더 등 소형 경량화가 요구되는 첨단 전자 기기 분야에서 그 수요가 증가하고 있다. 종래의 리튬 폴리머 전지는 양극 및 음극 필름을 캐스팅으로 제조하여 전류 집전체에 라미네이션하는 방법으로 극판을 제조하였다. 이러한 라미네이션 방법은 공정이 복잡하고 제조 비용이 많이 들고, 접착 정도가 만족할 만한 수준에 이르지 못하는 문제점이 있다.Among the lithium-based secondary batteries, lithium-ion batteries have a higher operating voltage and higher energy density per weight than other batteries, and are currently in demand in high-tech electronic devices such as mobile phones, notebook computers, camcorders, etc. It is increasing. In the conventional lithium polymer battery, a positive electrode and a negative electrode film were manufactured by casting and laminating a current collector to prepare a cathode plate. This lamination method has a problem that the process is complicated and expensive to manufacture, the degree of adhesion does not reach a satisfactory level.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 첫째, 간단한 공정으로 경제적인 비용으로 극판을 제조할 수 있는 리튬 계열 이차 전지용 극판의 제조 방법을 제공하는 것이고, 둘째, 집전체와 활물질 조성물의 접착정도가 우수하여 전지 수명을 향상시킬 수 있는 리튬 이차 전지용 극판의 제조 방법을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide a method for manufacturing a pole plate for a lithium-based secondary battery that can produce a pole plate at a low cost in a simple process, and second, the current collector and It is an object of the present invention to provide a method for producing a lithium secondary battery electrode plate that can improve battery life with excellent adhesion of the active material composition.

도 1은 본 발명의 일실시예 방법에 따라 제조된 리튬 이온 폴리머 전지의 극판과 비교예의 방법에 따라 제조된 극판을 이용하여 제조한 전지의 사이클 수에 대한 방전 용량을 나타낸 그래프.1 is a graph showing the discharge capacity against the number of cycles of a battery manufactured using the electrode plate of the lithium ion polymer battery prepared according to an embodiment of the present invention and the electrode plate prepared according to the method of the comparative example.

도 1에서 a-b는 본 발명의 일실시예 방법으로 제조한 리튬 이온 폴리머 전지의 극판을 이용하여 제조한 전지의 사이클 수에 대한 방전 용량을 나타낸 그래프이고, c-d는 비교예의 방법에 따라 제조된 극판을 이용하여 제조한 전지의 사이클 수에 대한 방전 용량을 나타낸 그래프이다.In Figure 1 ab is a graph showing the discharge capacity with respect to the number of cycles of the battery produced using the electrode plate of the lithium ion polymer battery prepared by one embodiment of the present invention, cd is the electrode plate prepared according to the method of the comparative example It is a graph which shows the discharge capacity with respect to the cycle number of the battery manufactured using this.

[과제를 해결하기 위한 수단][Means for solving the problem]

상기한 목적을 달성하기 위하여, 본 발명은 활물질; 도전제; 바인더와; 에폭시화된 콩기름을 포함하는 가소제를 포함하는 리튬 계열 전지의 활물질 조성물을 집전체에 직접 양면 코팅하는 공정을 포함하는 리튬 계열 이차 전지용 극판의 제조 방법을 제공한다.In order to achieve the above object, the present invention is an active material; Conducting agents; A binder; Provided is a method for producing a lithium-based secondary battery electrode plate, including a step of directly coating both surfaces of an active material composition of a lithium-based battery including a plasticizer including epoxidized soybean oil on a current collector.

이하 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

계속하여 충전, 방전이 가능한 리튬 이온 이차 전지는 양극, 음극, 전해질로 구성되어 있고 전해질이 액체 유기용매로 구성된 액체 리튬 이온 전지와 폴리머로 구성된 폴리머 리튬 이온 전지가 있다. 본 발명은 이 두 가지 종류의 전지에 모두 사용될 수 있는 수명이 향상된 전지를 제조할 수 있는 리튬 계열 이차 전지용 극판의 제조 방법을 제공하는 것이다.The lithium ion secondary battery that can be continuously charged and discharged includes a liquid lithium ion battery composed of a positive electrode, a negative electrode and an electrolyte, and an electrolyte composed of a liquid organic solvent and a polymer lithium ion battery composed of a polymer. The present invention provides a method for producing a lithium-based secondary battery electrode plate capable of producing a battery having an improved lifetime that can be used in both kinds of batteries.

본 발명의 리튬 계열 전지용 극판의 제조 방법은 다음과 같다.The manufacturing method of the positive electrode plate for lithium series batteries of this invention is as follows.

활물질, 도전제, 바인더와 에폭시화된 콩기름을 포함하는 가소제를 포함하는 리튬 계열 이차 전지용 활물질 조성물을 집전체에 직접 코팅하여 리튬 계열 이차 전지용 극판을 제조한다.An active material composition for a lithium-based secondary battery including a active material, a conductive agent, a binder, and a plasticizer including epoxidized soybean oil is directly coated on a current collector to prepare a lithium-based secondary battery electrode plate.

상기한 본 발명에 있어서, 상기 집전체는 퍼포레이티드 포일 또는 그리드를 사용한다. 퍼포레이티드 포일 또는 그리드를 집전체로 사용하면, 전해액의 이온이 전극 극판의 양면으로 이동이 가능하게 되어 극판의 이용효율이 높아져서 전지의 성능이 향상되는 효과가 있어 바람직하다.In the present invention described above, the current collector uses a perforated foil or grid. The use of a perforated foil or grid as the current collector allows ions of the electrolyte to move to both sides of the electrode pole plate, which increases the utilization efficiency of the pole plate and thus improves battery performance.

상기한 본 발명에 있어서, 상기 가소제는 에폭시화된 콩기름 또는 디부틸프탈레이트를 사용할 수 있다. 특히, 하기한 화학식 1의 에폭시화된 콩기름을 사용하는 것이 가소제를 추출하여 제거하는 공정에서 쉽게 제거될 수 있고, 또한 전지의 이온 전도도를 향상시킬 수 있어서 바람직하다.In the present invention described above, the plasticizer may be epoxidized soybean oil or dibutyl phthalate. In particular, it is preferable to use the epoxidized soybean oil of the following formula (1) because it can be easily removed in the process of extracting and removing the plasticizer, and also improve the ion conductivity of the battery.

[화학식 1][Formula 1]

(상기 식에서 R은 알킬 그룹이고, n은 1∼10이다.)(Wherein R is an alkyl group and n is 1 to 10)

상기한 본 발명의 극판용 조성물을 이용하여 양극 극판을 제조하는 방법은 다음과 같다.The method of manufacturing a positive electrode plate using the composition for electrode plates of this invention mentioned above is as follows.

활물질로 리튬 전이금속 산화물, 도전제로 카본 블랙, 바인더로 폴리머 그리고 가소제로 에폭시화된 콩기름(epoxidized soybean oil, 신동방, 한국)의 혼합 조성물을 아세톤 또는 N-메틸피롤리돈(N-methyl pyrolidone: NMP) 등의 유기용매 상에서 혼합하여 양극 집전체인 퍼포레이티드 알루미늄 포일 또는 알루미늄 그리드에 양면으로 직접 도포한다.A mixture of a lithium transition metal oxide as an active material, carbon black as a conductive agent, a polymer as a binder, and an epoxidized soybean oil (Sin Dong Bang, Korea) as a plasticizer is prepared using acetone or N-methyl pyrolidone (NMP). It is mixed on an organic solvent such as) and directly applied to both sides on a perforated aluminum foil or an aluminum grid, which is a positive electrode current collector.

또한, 상기한 본 발명의 극판용 조성물을 이용하여 음극 극판을 제조하는 방법은 다음과 같다.In addition, the method of manufacturing a negative electrode plate using the composition for electrode plates of this invention mentioned above is as follows.

활물질로 흑연 또는 탄소, 도전제로 카본 블랙, 바인더로 폴리머 그리고 가소제로 에폭시화된 콩기름의 혼합 조성물을 아세톤 또는 N-메틸피롤리돈(N-methyl pyrolidone: NMP) 등의 유기 용매상에서 혼합하여 음극 집전체인 퍼포레이티드 구리 포일 또는 구리 그리드에 양면으로 직접 도포한다.A negative electrode was prepared by mixing a mixed composition of graphite or carbon as an active material, carbon black as a conductive agent, a polymer as a binder, and soybean oil epoxidized with a plasticizer, on an organic solvent such as acetone or N-methyl pyrolidone (NMP). Apply directly on both sides to the entire perforated copper foil or copper grid.

[실시예]EXAMPLE

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

리튬 이온 폴리머 전지의 양극 극판의 제조Fabrication of the positive electrode plate of lithium ion polymer battery

양극 활물질로 이산화 리튬 코발트(LiCoO2) 50g을 도전제인 카본 블랙 4g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 7g을 N-메틸피롤리돈(N-methyl pyrolidone) 100g에 용해시키고, 여기에 가소제로 에폭시화된 콩기름(신동방, 한국) 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가한 후 균일한 반죽상태의 물질이 얻어질 때까지 혼합한다. 얻어진 물질을 양극 집전체인 퍼포레이티드 알루미늄 포일에 양면으로 도포하여 양극 극판을 제조하였다.As a positive electrode active material, 50 g of lithium cobalt dioxide (LiCoO 2 ) was mixed with 4 g of carbon black, which is a conductive agent, in a powder state. As a binder, 7 g of polyvinylidene fluoride was dissolved in 100 g of N-methyl pyrolidone, and 10 g of soybean oil (Shin Dong Bang, Korea) epoxidized with a plasticizer was added thereto. This mixed composition solution is added to the powder mixture prepared above and then mixed until a uniform dough substance is obtained. The obtained material was applied to both sides of the perforated aluminum foil, which is a positive electrode current collector, to prepare a positive electrode plate.

리튬 이온 폴리머 전지의 음극 극판의 제조Fabrication of negative electrode plate of lithium ion polymer battery

음극 활물질로 흑연 30g을 도전제인 카본 블랙 1g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 5g을 N-메틸피롤리돈 50g에 용해시키고 여기에 가소제로 에폭시화된 콩기름 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가하고 균일한 반죽 상태의 물질이 얻어질 때까지 혼합하였다. 얻어진 물질을 음극 집전체인 퍼포레이티드 구리 포일에 양면으로 도포하여 음극 극판을 제조하였다.As a negative electrode active material, 30 g of graphite was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride was dissolved in 50 g of N-methylpyrrolidone as a binder, and 10 g of soybean oil epoxidized with a plasticizer was added thereto. This mixed composition solution was added to the powder mixture prepared above and mixed until a uniform dough material was obtained. The obtained material was applied on both sides to a perforated copper foil as a negative electrode current collector to prepare a negative electrode plate.

리튬 이온 폴리머 전지의 제조Fabrication of Lithium Ion Polymer Battery

폴리비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체를 이용하여 세퍼레이터를 제조하였다. 상기한 방법으로 제조된 양극 극판, 음극 극판 및 세퍼레이터를 라미네이팅하여 극판군(element)을 제조하였다. 이 극판군을 에테르에 15분 동안 2회 담그어 가소제인 에폭시화된 콩기름을 추출하였다. 이어서 이 극판군을 전해액인 1M LiPF6, 2 : 1 부피비의 에틸렌 카보네이트(ethylene carbonate: EC)와 디메틸 카보네이트(dimethylcarbonate: DMC) 용액에 담궜다 꺼낸 후 폴리백에 넣고 실링하여 리튬 이온 폴리머 전지를 제조하였다.A separator was prepared using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to prepare an electrode plate group. This group of plates was immersed twice in ether for 15 minutes to extract a plasticizer of epoxidized soybean oil. Subsequently, this electrode plate group was immersed in an electrolyte solution of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate: DMC) in 1 M LiPF 6 , 2: 1 volume ratio, and then placed in a poly bag and sealed to prepare a lithium ion polymer battery. .

(실시예 2)(Example 2)

리튬 이온 폴리머 전지의 양극 극판의 제조Fabrication of the positive electrode plate of lithium ion polymer battery

양극 활물질로 사산화 리튬 망간(LiMn2O4) 50g을 도전제인 카본 블랙 4g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 7g을 N-메틸피롤리돈(N-methyl pyrolidone) 100g에 용해시키고, 여기에 가소제로 에폭시화된 콩기름(신동방, 한국) 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가한 후 균일한 반죽상태의 물질이 얻어질 때까지 혼합한다. 얻어진 물질을 양극 집전체인 알루미늄 그리드에 양면으로 도포하여 양극 극판을 제조하였다.As a positive electrode active material, 50 g of lithium manganese tetraoxide (LiMn 2 O 4 ) was mixed with 4 g of carbon black as a conductive agent in a powder state. As a binder, 7 g of polyvinylidene fluoride was dissolved in 100 g of N-methyl pyrolidone, and 10 g of soybean oil (Shin Dong Bang, Korea) epoxidized with a plasticizer was added thereto. This mixed composition solution is added to the powder mixture prepared above and then mixed until a uniform dough substance is obtained. The obtained material was coated on both sides of an aluminum grid which is a positive electrode current collector to prepare a positive electrode plate.

리튬 이온 폴리머 전지의 음극 극판의 제조Fabrication of negative electrode plate of lithium ion polymer battery

음극 활물질로 흑연 30g을 도전제인 카본 블랙 1g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 5g을 N-메틸피롤리돈 50g에 용해시키고 여기에 가소제로 에폭시화된 콩기름 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가하고 균일한 반죽 상태의 물질이 얻어질 때까지 혼합하였다. 얻어진 물질을 음극 집전체인 구리에 양면으로 도포하여 음극 극판을 제조하였다.As a negative electrode active material, 30 g of graphite was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride was dissolved in 50 g of N-methylpyrrolidone as a binder, and 10 g of soybean oil epoxidized with a plasticizer was added thereto. This mixed composition solution was added to the powder mixture prepared above and mixed until a uniform dough material was obtained. The obtained material was coated on both sides of copper, which is a negative electrode current collector, to prepare a negative electrode plate.

리튬 이온 폴리머 전지의 제조Fabrication of Lithium Ion Polymer Battery

폴리비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체를 이용하여 세퍼레이터를 제조하였다. 상기한 방법으로 제조된 양극 극판, 음극 극판 및 세퍼레이터를 라미네이팅하여 극판군(element)을 제조하였다. 이 극판군을 유기 용매에 15분 동안 2회 담그어 가소제인 에폭시화된 콩기름을 추출하였다. 이어서 이 극판군을 전해액인 1M LiPF6, 2 : 1 부피비의 에틸렌 카보네이트(ethylene carbonate: EC)와 디메틸 카보네이트(dimethylcarbonate: DMC) 용액에 담궜다 꺼낸 후 폴리백에 넣고 실링하여 리튬 이온 폴리머 전지를 제조하였다.A separator was prepared using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to prepare an electrode plate group. This electrode plate group was immersed twice in an organic solvent twice for 15 minutes to extract a plasticizer of epoxidized soybean oil. Subsequently, this electrode plate group was immersed in an electrolyte solution of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate: DMC) in 1 M LiPF 6 , 2: 1 volume ratio, and then placed in a poly bag and sealed to prepare a lithium ion polymer battery. .

(실시예 3)(Example 3)

리튬 이온 폴리머 전지의 양극 극판의 제조Fabrication of the positive electrode plate of lithium ion polymer battery

양극 활물질로 이산화 리튬 코발트(LiCoO2) 50g을 도전제인 카본 블랙 4g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 7g을 N-메틸피롤리돈(N-methyl pyrolidone) 100g에 용해시키고, 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가한 후 균일한 반죽상태의 물질이 얻어질 때까지 혼합한다. 얻어진 물질을 양극 집전체인 알루미늄 그리드에 양면으로 도포하여 양극 극판을 제조하였다.As a positive electrode active material, 50 g of lithium cobalt dioxide (LiCoO 2 ) was mixed with 4 g of carbon black, which is a conductive agent, in a powder state. As a binder, 7 g of polyvinylidene fluoride was dissolved in 100 g of N-methyl pyrolidone, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution is added to the powder mixture prepared above and then mixed until a uniform dough substance is obtained. The obtained material was coated on both sides of an aluminum grid which is a positive electrode current collector to prepare a positive electrode plate.

리튬 이온 폴리머 전지의 음극 극판의 제조Fabrication of negative electrode plate of lithium ion polymer battery

음극 활물질로 흑연 30g을 도전제인 카본 블랙 1g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 5g을 N-메틸피롤리돈 50g에 용해시키고 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가하고 균일한 반죽 상태의 물질이 얻어질 때까지 혼합하였다. 얻어진 물질을 음극 집전체인 구리에 양면으로 도포하여 음극 극판을 제조하였다.As a negative electrode active material, 30 g of graphite was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride was dissolved in 50 g of N-methylpyrrolidone as a binder, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution was added to the powder mixture prepared above and mixed until a uniform dough material was obtained. The obtained material was coated on both sides of copper, which is a negative electrode current collector, to prepare a negative electrode plate.

리튬 이온 폴리머 전지의 제조Fabrication of Lithium Ion Polymer Battery

폴리비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체를 이용하여 세퍼레이터를 제조하였다. 상기한 방법으로 제조된 양극 극판, 음극 극판 및 세퍼레이터를 라미네이팅하여 극판군(element)을 제조하였다. 이 극판군을 전해액인 1M LiPF6, 2 : 1 부피비의 에틸렌 카보네이트(ethylene carbonate: EC)와 디메틸 카보네이트(dimethylcarbonate: DMC) 용액에 담궜다 꺼낸 후 폴리백에 넣고 실링하여 리튬 이온 폴리머 전지를 제조하였다.A separator was prepared using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to prepare an electrode plate group. This electrode plate group was immersed in an electrolyte solution of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate: DMC) in 1 M LiPF 6 , 2: 1 volume ratio, and then put into a poly bag and sealed to prepare a lithium ion polymer battery.

(비교예 1)(Comparative Example 1)

리튬 이온 폴리머 전지의 양극 극판의 제조Fabrication of the positive electrode plate of lithium ion polymer battery

양극 활물질로 이산화 리튬 코발트(LiCoO2)) 50g을 도전제인 카본 블랙 4g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 7g을 N-메틸피롤리돈(N-methyl pyrolidone) 100g에 용해시키고, 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가한 후 균일한 반죽상태의 물질이 얻어질 때까지 혼합한다. 얻어진 물질을 양극 집전체인 퍼포레이티드 알루미늄 포일에 양면으로 라미네이션하여 양극 극판을 제조하였다.As a positive electrode active material, 50 g of lithium cobalt dioxide (LiCoO 2 )) was mixed with 4 g of carbon black as a conductive agent in a powder state. As a binder, 7 g of polyvinylidene fluoride was dissolved in 100 g of N-methyl pyrolidone, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution is added to the powder mixture prepared above and then mixed until a uniform dough substance is obtained. The obtained material was laminated on both sides in a perforated aluminum foil, which is a positive electrode current collector, to prepare a positive electrode plate.

리튬 이온 폴리머 전지의 음극 극판의 제조Fabrication of negative electrode plate of lithium ion polymer battery

음극 활물질로 흑연 30g을 도전제인 카본 블랙 1g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 5g을 N-메틸피롤리돈 50g에 용해시키고 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가하고 균일한 반죽 상태의 물질이 얻어질 때까지 혼합하였다. 얻어진 물질을 음극 집전체인 퍼포레이티드 구리 포일에 양면으로 라미네이션하여 음극 극판을 제조하였다.As a negative electrode active material, 30 g of graphite was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride was dissolved in 50 g of N-methylpyrrolidone as a binder, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution was added to the powder mixture prepared above and mixed until a uniform dough material was obtained. The obtained material was laminated on both sides in a perforated copper foil, which is a negative electrode current collector, to prepare a negative electrode plate.

리튬 이온 폴리머 전지의 제조Fabrication of Lithium Ion Polymer Battery

폴리비닐리덴플루오라이드와 HFP의 공중합체를 이용하여 세퍼레이터를 제조하였다. 상기한 방법으로 제조된 양극 극판, 음극 극판 및 세퍼레이터를 라미네이팅하여 극판군(element)을 제조하였다. 이 극판군을 전해액인 1M LiPF6, 2 : 1 부피비의 에틸렌 카보네이트(ethylene carbonate: EC)와 디메틸 카보네이트(dimethylcarbonate: DMC) 용액에 담궜다 꺼낸 후 폴리백에 넣고 실링하여 리튬 이온 폴리머 전지를 제조하였다.A separator was prepared using a copolymer of polyvinylidene fluoride and HFP. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to prepare an electrode plate group. This electrode plate group was immersed in an electrolyte solution of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate: DMC) in 1 M LiPF 6 , 2: 1 volume ratio, and then put into a poly bag and sealed to prepare a lithium ion polymer battery.

(비교예 2)(Comparative Example 2)

리튬 이온 폴리머 전지의 양극 극판의 제조Fabrication of the positive electrode plate of lithium ion polymer battery

양극 활물질로 사산화 리튬 망간(LiMn2O4) 50g을 도전제인 카본 블랙 4g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 7g을 N-메틸피롤리돈(N-methyl pyrolidone) 100g에 용해시키고, 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가한 후 균일한 반죽상태의 물질이 얻어질 때까지 혼합한다. 얻어진 물질을 양극 집전체인 알루미늄 그리드에 양면으로 라미네이션하여 양극 극판을 제조하였다.As a positive electrode active material, 50 g of lithium manganese tetraoxide (LiMn 2 O 4 ) was mixed with 4 g of carbon black as a conductive agent in a powder state. As a binder, 7 g of polyvinylidene fluoride was dissolved in 100 g of N-methyl pyrolidone, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution is added to the powder mixture prepared above and then mixed until a uniform dough substance is obtained. The obtained material was laminated on both sides on an aluminum grid, which is a positive electrode current collector, to prepare a positive electrode plate.

리튬 이온 폴리머 전지의 음극 극판의 제조Fabrication of negative electrode plate of lithium ion polymer battery

음극 활물질로 흑연 30g을 도전제인 카본 블랙 1g과 분말 상태로 혼합하였다. 바인더로 폴리비닐리덴 플루오라이드 5g을 N-메틸피롤리돈 50g에 용해시키고 여기에 가소제로 디부틸프탈레이트 10g을 첨가하였다. 이 혼합 조성 용액을 상기 제조된 분말 혼합물에 첨가하고 균일한 반죽 상태의 물질이 얻어질 때까지 혼합하였다. 얻어진 물질을 음극 집전체인 구리에 양면으로 라미네이션하여 음극 극판을 제조하였다.As a negative electrode active material, 30 g of graphite was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride was dissolved in 50 g of N-methylpyrrolidone as a binder, and 10 g of dibutyl phthalate was added thereto as a plasticizer. This mixed composition solution was added to the powder mixture prepared above and mixed until a uniform dough material was obtained. The obtained material was laminated on both sides of copper, which is a negative electrode current collector, to prepare a negative electrode plate.

리튬 이온 폴리머 전지의 제조Fabrication of Lithium Ion Polymer Battery

폴리비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체를 이용하여 세퍼레이터를 제조하였다. 상기한 방법으로 제조된 양극 극판, 음극 극판 및 세퍼레이터를 라미네이팅하여 극판군(element)을 제조하였다. 이 극판군을 전해액인 1M LiPF6, 2 : 1 부피비의 에틸렌 카보네이트(ethylene carbonate: EC)와 디메틸 카보네이트(dimethylcarbonate: DMC) 용액에 담궜다 꺼낸 후 폴리백에 넣고 실링하여 리튬 이온 폴리머 전지를 제조하였다.A separator was prepared using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to prepare an electrode plate group. This electrode plate group was immersed in an electrolyte solution of ethylene carbonate (EC) and dimethyl carbonate (dimethyl carbonate: DMC) in 1 M LiPF 6 , 2: 1 volume ratio, and then put into a poly bag and sealed to prepare a lithium ion polymer battery.

상기한 실시예 및 비교예의 방법으로 제조된 리튬 이온 폴리머 전지의 사이클 수에 대한 방전 용량을 측정하여 그 결과를 도 1에 나타내었다. 도 1에서, a-b는 실시예 2-3의 방법에 따라 활물질을 집전체에 직접 코팅하여 제조한 극판을 이용하여 제조한 전지의 사이클 수에 대한 방전 용량을 각각 나타낸 것이다. 또한, c-d는 비교예 1-2의 방법에 따라 활물질을 집전체에 라미네이션하는 방법으로 제조한 극판을 이용하여 제조한 전지의 사이클 수에 대한 방전 용량을 나타낸 것이다. 도 1에서 알 수 있듯이, 본 발명의 방법과 같이 활물질을 집전체에 직접 코팅하는 방법으로 제조한 전지가 종래의 라미네이션 방법으로 제조한 전지에 비해 전지 수명이 향상되었다.The discharge capacity of the number of cycles of the lithium ion polymer battery manufactured by the method of Example and Comparative Example was measured, and the results are shown in FIG. 1. In Figure 1, a-b shows the discharge capacity with respect to the cycle number of the battery produced by using the electrode plate prepared by coating the active material directly on the current collector according to the method of Example 2-3. In addition, c-d shows the discharge capacity with respect to the number of cycles of the battery manufactured using the electrode plate manufactured by the method of laminating an active material to an electrical power collector according to the method of Comparative Example 1-2. As can be seen in Figure 1, the battery life of the battery produced by the method of coating the active material directly on the current collector as in the method of the present invention is improved compared to the battery produced by the conventional lamination method.

상기한 바와 같이, 본 제조 방법은 활물질 조성물을 집전체에 직접 코팅하는 간단한 공정으로 극판을 제조할 수 있어 경제적이다. 또한, 이 극판은 집전체와 활물질간의 접착성이 우수하여, 이 극판을 이용하면 수명이 향상된 전지를 제조할 수 있다.As described above, the present production method is economical because the electrode plate can be manufactured by a simple process of coating the active material composition directly on the current collector. Moreover, this electrode plate is excellent in the adhesiveness between an electrical power collector and an active material, and when this electrode plate is used, a battery with an improved lifetime can be manufactured.

또한, 집전체로 포일 대신에 퍼포레이티드 포일 또는 그리드를 사용하게 됨으로써 전해액의 이온이 전극 극판의 양면으로 이동이 가능하게 되고 결국 극판의 이용효율이 높아지므로 전지의 성능이 향상된다.In addition, by using a perforated foil or a grid instead of a foil as a current collector, the ions of the electrolyte can be moved to both sides of the electrode pole plate, and thus the utilization efficiency of the pole plate increases, thereby improving battery performance.

Claims (4)

활물질, 도전제, 바인더, 가소제를 포함하는 리튬 계열 이차 전지용 활물질 조성물을 집전체에 직접 양면 코팅하는 공정;A step of directly double-side coating the active material composition for a lithium-based secondary battery including an active material, a conductive agent, a binder, and a plasticizer on a current collector; 을 포함하는 리튬 계열 이차 전지용 극판의 제조 방법.Method for producing a cathode plate for a lithium-based secondary battery comprising a. 제 1 항에 있어서, 상기 극판은 퍼포레이티드 포일 또는 그리드인 리튬 계열 이차 전지용 극판의 제조 방법.The method of claim 1, wherein the electrode plate is a perforated foil or grid. 제 1 항에 있어서, 상기 가소제는 에폭시화된 콩기름 또는 디부틸프탈레이트인 리튬 계열 이차 전지용 극판의 제조 방법.The method of claim 1, wherein the plasticizer is epoxidized soybean oil or dibutyl phthalate. 제 3 항에 있어서, 상기 가소제는 하기한 화학식 1의 에폭시화된 콩기름인 리튬 계열 이차 전지용 극판의 제조 방법.4. The method of claim 3, wherein the plasticizer is epoxidized soybean oil of Formula 1 below. [화학식 1][Formula 1] (상기 식에서, R은 알킬 그룹이고, n은 1∼10이다.)(Wherein R is an alkyl group and n is 1 to 10)
KR1019970047727A 1997-09-19 1997-09-19 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery KR19990025888A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019970047727A KR19990025888A (en) 1997-09-19 1997-09-19 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
GB9820303A GB2329513B (en) 1997-09-19 1998-09-17 A method of preparing an electrode for lithium based secondary cell
JP26434198A JP4159667B2 (en) 1997-09-19 1998-09-18 Method for manufacturing electrode plate for lithium secondary battery
US09/158,437 US6143444A (en) 1997-09-19 1998-09-21 Method of preparing an electrode for lithium based secondary cell
DE19843131A DE19843131B4 (en) 1997-09-19 1998-09-21 A method of manufacturing an electrode for a lithium-based secondary element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970047727A KR19990025888A (en) 1997-09-19 1997-09-19 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery

Publications (1)

Publication Number Publication Date
KR19990025888A true KR19990025888A (en) 1999-04-06

Family

ID=19521415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970047727A KR19990025888A (en) 1997-09-19 1997-09-19 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery

Country Status (5)

Country Link
US (1) US6143444A (en)
JP (1) JP4159667B2 (en)
KR (1) KR19990025888A (en)
DE (1) DE19843131B4 (en)
GB (1) GB2329513B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075095A (en) * 1999-05-28 2000-12-15 김순택 A positive electrode for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery using the same
KR100462781B1 (en) * 2002-06-12 2004-12-20 삼성에스디아이 주식회사 Lithium battery without anode active material and process for preparing the same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225010B1 (en) * 1997-11-19 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
KR100274244B1 (en) * 1998-04-06 2000-12-15 김순택 An active material composition for a lithium based cell and a method of preparing an electrode for a lithium based cell using the same
DE19952335B4 (en) * 1999-10-29 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. In electrochemical components usable pasty mass, thus formed layers, films, laminations and rechargeable electrochemical cells and methods for producing the layers, films and laminations
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
DE10107423B4 (en) * 2001-02-14 2007-02-15 Dilo Trading Ag Use of an anionically produced 3-block polymer as adhesion promoter and lithium polymer battery
DE10115210B4 (en) * 2001-02-14 2007-02-08 Dilo Trading Ag Use of special polymers as adhesion promoters for lithium batteries and lithium polymer battery
DE10107384B4 (en) * 2001-02-14 2007-02-08 Dilo Trading Ag Use of a special polymer as adhesion promoter and lithium polymer battery
DE10125616A1 (en) * 2001-05-25 2002-12-05 Microbatterie Gmbh Process for the production of electrode foils for galvanic elements
ES2660836T3 (en) 2001-06-12 2018-03-26 Irobot Corporation Multi-code coverage method and system for an autonomous robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US20060159999A1 (en) * 2001-07-23 2006-07-20 Kejha Joseph B Method of automated prismatic electrochemical cells production and method of the cell assembly and construction
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
JP2007530978A (en) 2004-03-29 2007-11-01 エヴォリューション ロボティクス インコーポレイテッド Position estimation method and apparatus using reflected light source
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
EP2145573B1 (en) 2005-02-18 2011-09-07 iRobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
KR101099808B1 (en) 2005-12-02 2011-12-27 아이로보트 코퍼레이션 Robot system
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
ES2623920T3 (en) 2005-12-02 2017-07-12 Irobot Corporation Robot system
KR101300492B1 (en) 2005-12-02 2013-09-02 아이로보트 코퍼레이션 Coverage robot mobility
EP2548489B1 (en) 2006-05-19 2016-03-09 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR101339513B1 (en) 2007-05-09 2013-12-10 아이로보트 코퍼레이션 Autonomous coverage robot
JP5297110B2 (en) * 2008-07-18 2013-09-25 三井造船株式会社 Paste manufacturing method
CN105147193B (en) 2010-02-16 2018-06-12 艾罗伯特公司 Vacuum brush
US9548497B2 (en) 2011-06-10 2017-01-17 Eaglepicher Technologies, Llc Layered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
DE102012109032B4 (en) * 2012-09-25 2019-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for filling electrochemical cells
KR102115596B1 (en) * 2016-11-24 2020-05-26 주식회사 엘지화학 Method for pre-treating lithium metal electrode and lithium metal battery
CN110224180A (en) * 2019-04-30 2019-09-10 河北神州巨电新能源科技开发有限公司 A kind of extraction process of new polymers lithium battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057565A (en) * 1988-12-22 1991-10-15 The Dow Chemical Company Solid polyelectrolyte polymer film
CN1085898C (en) * 1994-10-27 2002-05-29 富士胶片公司 Nonaqueous secondary cell and its manufacturing method
IT1277374B1 (en) * 1995-07-28 1997-11-10 Eniricerche Spa PROCEDURE FOR THE PREPARATION OF A CURRENT COLLECTOR IN CONTACT WITH THE CATHODIC MATERIAL
US5584893A (en) * 1995-11-17 1996-12-17 Valence Technology, Inc. Method of preparing electrodes for an electrochemical cell
US5690703A (en) * 1996-03-15 1997-11-25 Valence Technology, Inc Apparatus and method of preparing electrochemical cells
US5894656A (en) * 1997-04-11 1999-04-20 Valence Technology, Inc. Methods of fabricating electrochemical cells
US5871865A (en) * 1997-05-15 1999-02-16 Valence Technology, Inc. Methods of fabricating electrochemical cells
US5861224A (en) * 1997-07-15 1999-01-19 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cell
US5902697A (en) * 1998-05-15 1999-05-11 Valence Technology, Inc. Bi-cell separation for improved safety

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075095A (en) * 1999-05-28 2000-12-15 김순택 A positive electrode for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery using the same
KR100462781B1 (en) * 2002-06-12 2004-12-20 삼성에스디아이 주식회사 Lithium battery without anode active material and process for preparing the same

Also Published As

Publication number Publication date
JPH11162454A (en) 1999-06-18
DE19843131B4 (en) 2007-01-25
US6143444A (en) 2000-11-07
GB2329513A (en) 1999-03-24
GB2329513B (en) 2001-04-11
DE19843131A1 (en) 1999-03-25
JP4159667B2 (en) 2008-10-01
GB9820303D0 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
KR19990025888A (en) Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
Osaka et al. Energy storage systems in electronics
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
JP4752574B2 (en) Negative electrode and secondary battery
US20030157409A1 (en) Polymer lithium battery with ionic electrolyte
US6777135B2 (en) Nonaqueous electrolyte secondary cell
JP2008210810A (en) Bipolar lithium-ion rechargeable battery
KR20160037518A (en) Cylindrical Battery Including Pressuring Part and Manufacturing Method for the Same
JP2008041504A (en) Nonaqueous electrolyte battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN113707975A (en) Electrochemical device and electronic device comprising same
CN111883765A (en) Lithium battery positive active material, preparation method thereof and lithium battery
JP2001236946A (en) Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2003132894A (en) Negative electrode collector, negative electrode plate using the same, and nonaqueous electrolyte secondary battery
KR100274244B1 (en) An active material composition for a lithium based cell and a method of preparing an electrode for a lithium based cell using the same
KR20160056073A (en) Secondary Battery Pack Able to Expand Capacity through Compact Combination Structure and Pack Assembly Having the Same
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP4222761B2 (en) Non-aqueous electrolyte battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR100450178B1 (en) Method for manufacturing lithium polymer batteries in continuous manner at high speed
KR100420045B1 (en) Anode active material composition for lithium battery and preparation thereof
JP2007035577A (en) Electrolyte and battery
KR200364044Y1 (en) Lithium Ion Battery of High Rate and High Capacity
KR100629938B1 (en) A lithium secondary battery
KR20060009411A (en) Lithium ion battery of high rate and high capacity

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20000421

Effective date: 20010731