JPH03201903A - Autonomic traveling system for field working vehicle - Google Patents

Autonomic traveling system for field working vehicle

Info

Publication number
JPH03201903A
JPH03201903A JP1343314A JP34331489A JPH03201903A JP H03201903 A JPH03201903 A JP H03201903A JP 1343314 A JP1343314 A JP 1343314A JP 34331489 A JP34331489 A JP 34331489A JP H03201903 A JPH03201903 A JP H03201903A
Authority
JP
Japan
Prior art keywords
vehicle
light
detection device
data
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1343314A
Other languages
Japanese (ja)
Inventor
Osamu Yukimoto
修 行本
Tomohiro Takigawa
瀧川 具弘
Keiji Ajiki
安食 恵治
Akira Nakano
中野 丹
Yosuke Matsuo
陽介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBUTSUKEI TOKUTEI SANGYO GIJUTSU KENKYU SUISHIN KIKO
Original Assignee
SEIBUTSUKEI TOKUTEI SANGYO GIJUTSU KENKYU SUISHIN KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBUTSUKEI TOKUTEI SANGYO GIJUTSU KENKYU SUISHIN KIKO filed Critical SEIBUTSUKEI TOKUTEI SANGYO GIJUTSU KENKYU SUISHIN KIKO
Priority to JP1343314A priority Critical patent/JPH03201903A/en
Publication of JPH03201903A publication Critical patent/JPH03201903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable smooth, autonomic and unmanned operation of a working vehicle even in turning motion by controlling the vehicle based on the data mainly transmitted from a vehicle-azimuth detection device in a straight-moving state and based on the data mainly transmitted from a position detection device in the case of turning the vehicle or determining the traveling distance. CONSTITUTION:The position of a vehicle is detected by a position detection device comprising a light-projector and a light-receptor equipped to a field- working vehicle utilizing the principle of trigonometrical survey by the aid of >=3 light-reflection labels 1 placed at different positions on the surrounding of a field 18. The vehicle is controlled based on the data transmitted from the position detection device in the case of turning the vehicle on a butt or determining the traveling distance. The control of the vehicle in a straight- moving state is carried out based on the data transmitted from a vehicle azimuth sensor such as a geomagnetism sensor. The vehicle can be autonomically driven by the above controlling methods in combination with data of the field area, standard azimuth, etc., inputted by teaching, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、圃場作業車両の自律走行システムに関し、特
に圃場において作業車両を無人運転させる際、直進部分
の制御と回行(枕地)部分の制御とを、別々のデータに
より行うようにし、効率のよい自律走行を可能とした自
律走行システムに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an autonomous driving system for a working vehicle in a field, and in particular, when operating a working vehicle unmanned in a field, it is possible to control the straight-ahead portion and the turning (headland) portion. The present invention relates to an autonomous driving system that enables efficient autonomous driving by controlling and using separate data.

〔従来の技術〕[Conventional technology]

圃場用農業機械を「運転する」ということは、機械を「
移動させる」ことと、その間に作物・圃場等に対して行
う作業を適切なものとするために「作業機を調整する」
こととに分けることができる。このうち後者については
着々と自動化が進みつつあるが、前者については自説形
コンバイン等一部の機械を除いて、無人運転が可能とな
るような機械、装置は見当らず、実用化されていないの
が現状である。
“Operating” agricultural machinery for field use means “driving” the machine.
"moving" and "adjusting the work equipment" to ensure that the work performed on crops, fields, etc. is appropriate during that time.
It can be divided into two parts. Of these, automation is steadily progressing for the latter, but for the former, with the exception of some machines such as self-driving combine harvesters, there are no machines or devices that can be operated unmanned, and they have not been put to practical use. is the current situation.

本出願人は、先に、地磁気センサ、光ファイバ−ジャイ
ロなどの非接触車両方位センサを用い、そのデータとテ
ィーチング時に得られた基準方位を比較し、操舵機構を
制御して自律的に無人直進走行を行わせる農用車両の自
律走行システムについて提案している。このシステムに
おいては、直進走行と農用車両を自律的に無人直進走行
を行わせる点に主眼がおかれ、直進走行も回行(枕地)
走行も同じデータにより制御するようにしているので、
回行(枕地)時の制御に問題があり、農用車両の全作業
行程におけるスムーズな自律走行が望めなかった。
The applicant previously used a non-contact vehicle orientation sensor such as a geomagnetic sensor and an optical fiber gyro, compared the data with the reference orientation obtained during teaching, and controlled the steering mechanism to autonomously drive an unmanned straight vehicle. We are proposing an autonomous driving system for agricultural vehicles. In this system, the main focus is on driving straight ahead and allowing agricultural vehicles to autonomously drive straight ahead without any driver.
Since driving is also controlled using the same data,
There was a problem with the control during rounding (headland), and it was not possible for agricultural vehicles to run smoothly autonomously throughout the entire work process.

本発明は上記の事情に基づいてなされたもので、比較的
ローコストな光電センサ等の位置検出装置と、磁気方位
センサ等の車両方位検出装置を組み合わせることにより
、位置検出装置にデータ入力時間間隔が長い、などの欠
点がある場合でも効率的に自律走行を行わせることが可
能となり、各種の車両、作業に対する汎用性の高い圃場
作業車両の自律走行システムを提供することを目的とす
る。
The present invention has been made based on the above circumstances, and by combining a relatively low-cost position detection device such as a photoelectric sensor and a vehicle direction detection device such as a magnetic azimuth sensor, the data input time interval for the position detection device is reduced. To provide an autonomous driving system for a field work vehicle that is capable of efficient autonomous driving even when it has shortcomings such as long distances, and is highly versatile for various types of vehicles and tasks.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明は、ティーチング等
により得られた圃場区画、基準方位等のデータをもとに
車両が自律走行を行うとき、直進行程では主として車両
方位検出装置からのデータにより、また枕地回行部分や
行程長の決定などには、主として位置検出装置からのデ
ータにより制御を行わせるよう、圃場の周囲に、それぞ
れ位置を変えて3点以上配置された光反射標識と、圃場
作業車両に装備された。投光部、上記光反射標識からの
反射光を受ける受光部、上記投光部、受光部を回転させ
る駆動袋は、光反射標識の標識間角度を検出する測角装
置等から、三角測量の原理により車両位置を検出する方
式などからなる位置検出装置と、地磁気センサ、光ファ
イバージャイロなどの車両方位検出装置とを組み合わせ
て用いることを特徴とするものである。
In order to achieve the above object, the present invention is designed to provide a system in which, when a vehicle autonomously travels based on data such as field division and reference direction obtained through teaching, etc., data from a vehicle direction detection device is mainly used in the straight-ahead process. In addition, three or more light-reflecting markers placed at different positions around the field are used to determine the headland roundabouts and travel length, etc., mainly using data from the position detection device. , equipped on field work vehicles. A light projecting section, a light receiving section that receives the reflected light from the light reflective signs, and a drive bag that rotates the light projecting section and the light receiving section are used for triangulation from an angle measurement device that detects the angle between the light reflective signs. This system is characterized by the use of a combination of a position detection device that detects the vehicle position based on a principle, and a vehicle orientation detection device such as a geomagnetic sensor or an optical fiber gyro.

〔作  用〕[For production]

上記の構成によって、ティーチング等により得られた圃
場区画、基準方位等のデータをもとに自律走行を行うと
き、直進行程では主に車両方位検出装置からのデータに
より、また、回行(枕地)部分や行程長の決定などには
主に位置検出装置からのデータにより制御を行う。
With the above configuration, when autonomous driving is performed based on data such as field divisions and reference direction obtained through teaching, etc., data from the vehicle orientation detection device is used mainly for straight-ahead travel, ) and stroke length are mainly controlled using data from the position detection device.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図において、符号lは圃場の周囲に少なくとも3点
以上配置される外部標!(光反射標a)で、円筒状の光
反射板からなり、この実施例においては第5図に示すよ
うに圃場の周囲に4点使用している。この外部標atと
対応する位置検出装置2が、第3図に示す農用トラクタ
3に装着されている。この位置検出装置2は、外部標識
lに対し光を発する投光部4、外部標識lからの反射光
を受ける受光部5、これら投光部4および受光部5を回
転させる駆動装置、標識間角度を検出する測角装置等か
らなり、三角測量の原理によりロータリエンコーダ6に
よりトラクタ3の位置を検出するものである。また、農
用トラクタ3には車両方位センサ7が設けられており、
この車両方位センサ7は、ロール角検出用傾斜センサ8
、ピッチ角検出用傾斜センサ9.2吹元のTMS (磁
気方位センサ) 10など、地磁気センサ、光ファイバ
ージャイロなどの非接触車両方位センサである。なお、
第2図で符号11は磁気検出コイルの方向を示し、12
はデータ処理部であり、ここから車両の走行制御信号が
出力される。第3図の農用トラクタ3の後部には各種の
作業機が装着される。
In Fig. 1, the symbol l indicates external marks placed at least three points around the field! (Light reflection mark a) consists of cylindrical light reflection plates, and in this embodiment, four points are used around the field as shown in FIG. A position detection device 2 corresponding to this external marker at is mounted on an agricultural tractor 3 shown in FIG. This position detection device 2 includes a light projecting section 4 that emits light to the external sign l, a light receiving section 5 that receives reflected light from the external sign l, a drive device that rotates the light projecting section 4 and the light receiving section 5, and a drive device that rotates the light projecting section 4 and the light receiving section 5, and It consists of an angle measuring device for detecting angles, etc., and detects the position of the tractor 3 using a rotary encoder 6 based on the principle of triangulation. Further, the agricultural tractor 3 is provided with a vehicle position sensor 7,
This vehicle orientation sensor 7 includes a tilt sensor 8 for detecting a roll angle.
, pitch angle detection tilt sensor 9.2, TMS (magnetic direction sensor) 10, etc., a geomagnetic sensor, an optical fiber gyro, and other non-contact vehicle direction sensors. In addition,
In FIG. 2, reference numeral 11 indicates the direction of the magnetic detection coil, and 12
is a data processing section, from which a vehicle travel control signal is output. Various working machines are attached to the rear of the agricultural tractor 3 shown in FIG.

また、上記農用トラクタ3には自動(自律)直進装置操
作盤13が設けられている。この自動(自律)直進装置
操作盤13は、第4図に示すように、自律直進走行時間
設定ダイヤル14、自律直進走行終了警報ボタン15、
ティーチングボタンI6、自律直進走行ボタン17など
を備えており、上記位置検出装置2と車両方位センサ7
とを組み合わせて用いるようにしており、ティーチング
等により得られた圃場区画、基準方位等のデータをもと
に車両が自律走行を行うとき、直進行程では主として車
両方位センサ7 (車両方位検出装置)からのデータに
より、また枕地回行部分や行程長の決定などには、主と
して位置検出装置2からのデータにより制御を行わせる
ようにしている。
Further, the agricultural tractor 3 is provided with an automatic (autonomous) straight-travel device operation panel 13. As shown in FIG. 4, this automatic (autonomous) straight-ahead device operation panel 13 includes an autonomous straight-ahead travel time setting dial 14, an autonomous straight-ahead travel end alarm button 15,
It is equipped with a teaching button I6, an autonomous straight running button 17, etc., and the position detection device 2 and vehicle orientation sensor 7.
When the vehicle runs autonomously based on data such as field division and reference direction obtained through teaching, etc., the vehicle direction sensor 7 (vehicle direction detection device) is mainly used in the straight-ahead process. The data from the position detection device 2 is used to control the headland rounding portion and the determination of the stroke length.

そして、第5図のように、圃場区画18の周囲に、それ
ぞれ位置を変えて3点以上(実施例では4点)配置され
た光反射標識lと、圃場作業車両3に装備された。投光
部4、上記光反射様atからの反射光を受ける受光部5
、上記投光部4.支受光5を回転させる駆動装置、光反
射様11.1の標識間角度を検出する測角装置等から、
三角測量の原理により車両位置を検出する方式などから
なる位置検出装置2と、地磁気センサ、光ファイバージ
ャイロなど車両方位センサ(車両方位検出装置)7とを
組み合わせて用いるのである。圃場区画18内では、テ
ィーチング行程20に基づいて、自律走行行程I9、主
に位置検出装置2からのデータにより車両を制御し、自
律走行を行わせる領域21、主に車両方位検出装置7か
らのデータにより車両を制御し、自律走行を行わせる領
域22で示すような作業を行うのである。そして、 ■ 任意の行程において、任意の行程長さ(時間)でテ
ィーチングを行うことができる。
As shown in FIG. 5, three or more light-reflecting signs l (four points in the example) are placed at different positions around the field section 18, and the field work vehicle 3 is equipped with them. A light projecting section 4, a light receiving section 5 that receives reflected light from the light reflection mode at.
, the light projecting section 4. From a drive device that rotates the receiving and receiving light 5, an angle measuring device that detects the angle between the signs of the light reflection mode 11.1, etc.
A position detection device 2 that detects the vehicle position based on the principle of triangulation is used in combination with a vehicle orientation sensor (vehicle orientation detection device) 7 such as a geomagnetic sensor or an optical fiber gyro. In the field section 18, based on the teaching process 20, the vehicle is controlled in an autonomous driving process I9, mainly using data from the position detecting device 2, and an area 21 where the vehicle is made to run autonomously, mainly using data from the vehicle position detecting device 7. The task is to control the vehicle based on the data and perform tasks such as those shown in area 22 for autonomous driving. and (1) teaching can be performed at any stroke length (time) in any stroke.

■ ティーチング時の基準方位の設定は、往復作業では
往・復の2方位、回り作業では4方位について行うこと
ができる。または1方位から90度刻みで往復作業、回
り作業における基準方位の設定が可能である。
■ The reference direction during teaching can be set in two directions (forward and backward) for reciprocating work, and in four directions for round work. Alternatively, it is possible to set a reference direction for reciprocating work and turning work in 90 degree increments from one direction.

■ ボタンスイッチ等の操作により、オペレータの希望
するときに自律直進走行に移ることができる。
■ By operating a button switch, etc., the operator can shift to autonomous straight-ahead travel when desired.

■ 上記■の場合、基準方位との偏差の大小により、複
数の基準方位から、その時点で進むべき基準方位を選択
する。
■ In the case of (■) above, the reference direction to be followed at that time is selected from a plurality of reference directions depending on the magnitude of the deviation from the reference direction.

■ 自律直進走行を維持する時間を、ダイヤル等により
自由に設定できる。
■ You can freely set the time to maintain autonomous straight-line driving using a dial, etc.

■ 設定した自律直進走行維持時間が経過し、自律直進
走行が終了する前に、その旨をブザー、ランプ等により
オペレータに知らせることができる。
■ When the set autonomous straight-ahead running maintenance time has elapsed and before the autonomous straight-ahead run ends, the operator can be notified of this with a buzzer, lamp, etc.

等の作業性が得られる。etc. can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の圃場作業車両の自律走行
システムによれば、地磁気センサ、光ファイバージャイ
ロなどの非接触車両方位センサを用い、そのデータとテ
ィーチング時に得られた基準方位とを比較し、操舵機構
を制御し自律的に無人走行を行わせるようにしたから、
ティーチング等により得られた圃場区画、基準方位等の
データをもとに自律走行を行うとき、直進行程では主に
車両方位検出装置からのデータにより、また、回行(枕
地)部分や行程長の決定などには主に位置検出装置から
のデータにより制御を行い、直進時はもとより、回行時
にもスムーズな自律・無人操縦が可能となる。
As explained above, according to the autonomous driving system for a field work vehicle of the present invention, a non-contact vehicle orientation sensor such as a geomagnetic sensor or an optical fiber gyro is used, and the data is compared with the reference orientation obtained during teaching. By controlling the steering mechanism and making it autonomous and unmanned,
When autonomous driving is performed based on data such as field division and reference direction obtained through teaching, etc., data from the vehicle direction detection device is mainly used in the straight-ahead process, and data on detours (headlands) and travel length is used. Decisions are mainly controlled using data from the position detection device, allowing smooth autonomous and unmanned operation not only when traveling straight but also when turning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は位置検出装置の斜視図、第2図は車両方位検出
装置の斜視図、第3図はトラクタの(1111面図、第
4図は自動直進装置の操作盤の斜視図、第5図は圃場に
おける自律走行行程の説明図である。 l・・・外部標S(光反射様、11)、z・・・位置検
出装置、3・・・農用トラクタ、4・・・投光部、5・
・・受光部、6・・・ロータリエンコーダ、7・・・車
両方位センサ、8・・・ロール角検出用傾斜センサ、9
・・・ピッチ角検出用傾斜センサ、10・・・2次元の
TMS (磁気方位センサ)、ll・・・磁気検出コイ
ルの方向、12・・・データ処理部、13・・・自動(
自律)直進装置操作盤、14・・・自律直進走行時間設
定ダイヤルI、15・・・自律直進走行終了警報ボタン
、16・・・ティーチングボタン、17・・・自律直進
走行ボタン、18・・・圃場区画、19・・・自律走行
行程、20・・・ティーチング行程、21・・・主に位
置検出装置2からのデータにより一車両を制御し、自律
走行を行わせる領域、22・・・主に車両方位検出装置
7からのデータにより車両を制御し、自律走行を行わせ
る領域。
Fig. 1 is a perspective view of the position detection device, Fig. 2 is a perspective view of the vehicle orientation detection device, Fig. 3 is a (1111 side view) of the tractor, Fig. 4 is a perspective view of the operation panel of the automatic straightening device, Fig. 5 The figure is an explanatory diagram of an autonomous driving process in a field. l... External mark S (light reflection type, 11), z... Position detection device, 3... Agricultural tractor, 4... Light projecting unit , 5・
... Light receiving section, 6... Rotary encoder, 7... Vehicle orientation sensor, 8... Tilt sensor for detecting roll angle, 9
... Inclination sensor for pitch angle detection, 10... Two-dimensional TMS (magnetic direction sensor), ll... Direction of magnetic detection coil, 12... Data processing section, 13... Automatic (
Autonomous) straight-ahead device operation panel, 14...autonomous straight-ahead travel time setting dial I, 15...autonomous straight-ahead travel end alarm button, 16...teaching button, 17...autonomous straight-ahead travel button, 18... Field section, 19...Autonomous driving process, 20...Teaching process, 21...A region where one vehicle is controlled mainly by data from the position detection device 2 and autonomously runs, 22...Main An area where the vehicle is controlled based on data from the vehicle direction detection device 7 and is driven autonomously.

Claims (1)

【特許請求の範囲】 ティーチング等により得られた圃場区画、基準方位等の
データをもとに車両が自律走行を行うとき、直進行程で
は主として車両方位検出装置からのデータにより、また
枕地回行部分や行程長の決定などには、主として位置検
出装置からのデータにより制御を行わせるよう、 圃場の周囲に、それぞれ位置を変えて3点以上配置され
た光反射標識と、 圃場作業車両に装備された、投光部、上記光反射標識か
らの反射光を受ける受光部、上記投光部、受光部を回転
させる駆動装置、光反射標識の標識間角度を検出する測
角装置等から、三角測量の原理により車両位置を検出す
る方式などからなる位置検出装置と、 地磁気センサ、光ファイバージャイロなどの車両方位検
出装置とを組み合わせて用いることを特徴とする圃場作
業車両の自律走行システム。
[Scope of Claims] When a vehicle autonomously travels based on data such as field divisions and reference orientation obtained through teaching, etc., data from the vehicle direction detection device is used mainly for straight-ahead travel, and for headland detours. To determine parts and stroke lengths, etc., control is performed primarily using data from position detection devices, so three or more light-reflecting markers are placed at different positions around the field, and field work vehicles are equipped with them. A light emitting part, a light receiving part that receives reflected light from the light reflecting sign, a driving device that rotates the light projecting part and the light receiving part, an angle measurement device that detects the angle between the light reflecting signs, etc. An autonomous driving system for field work vehicles that uses a combination of a position detection device that detects the vehicle position based on surveying principles, and a vehicle orientation detection device such as a geomagnetic sensor or an optical fiber gyro.
JP1343314A 1989-12-28 1989-12-28 Autonomic traveling system for field working vehicle Pending JPH03201903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343314A JPH03201903A (en) 1989-12-28 1989-12-28 Autonomic traveling system for field working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343314A JPH03201903A (en) 1989-12-28 1989-12-28 Autonomic traveling system for field working vehicle

Publications (1)

Publication Number Publication Date
JPH03201903A true JPH03201903A (en) 1991-09-03

Family

ID=18360562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343314A Pending JPH03201903A (en) 1989-12-28 1989-12-28 Autonomic traveling system for field working vehicle

Country Status (1)

Country Link
JP (1) JPH03201903A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
JP2013074815A (en) * 2011-09-29 2013-04-25 Iseki & Co Ltd Working vehicle
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
JP2017531423A (en) * 2014-10-10 2017-10-26 アイロボット コーポレイション Robotic mowing boundary line determination
JP2022011849A (en) * 2020-06-30 2022-01-17 株式会社クボタ Agricultural implement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465606A (en) * 1987-09-04 1989-03-10 Kubota Ltd Steering control device for automatic traveling working vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465606A (en) * 1987-09-04 1989-03-10 Kubota Ltd Steering control device for automatic traveling working vehicle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
JP2013074815A (en) * 2011-09-29 2013-04-25 Iseki & Co Ltd Working vehicle
JP2017531423A (en) * 2014-10-10 2017-10-26 アイロボット コーポレイション Robotic mowing boundary line determination
JP2020114226A (en) * 2014-10-10 2020-07-30 アイロボット・コーポレーション Robotic lawn mowing boundary determination
US11452257B2 (en) 2014-10-10 2022-09-27 Irobot Corporation Robotic lawn mowing boundary determination
JP2022011849A (en) * 2020-06-30 2022-01-17 株式会社クボタ Agricultural implement

Similar Documents

Publication Publication Date Title
JPH03201903A (en) Autonomic traveling system for field working vehicle
EP0273976B1 (en) Guiding apparatus for unmanned movable bodies
US6629028B2 (en) Method and system of optical guidance of mobile body
JP2609846B2 (en) Operation control device and operation method for unmanned self-propelled vehicle
JPH0944240A (en) Guide device for moving vehicle
JPH0613972B2 (en) Vertical support device
JPH03135608A (en) Autonomous straight driver for field work vehicle
JP2868847B2 (en) Steering control device for self-propelled vehicles
JPS63157908A (en) Steering control apparatus of running working vehicle between trees
JPH0241282B2 (en)
JPS63308609A (en) Working vehicle guide device using beam light
JPS62272307A (en) Guide position correcting device for unattended moving body
JP2889257B2 (en) Moving object position detection device
JP2515733B2 (en) How to guide an unmanned vehicle
JP3005152B2 (en) Traveling control device for beam-guided work vehicle
JPS63120218A (en) System for detecting moving position of mobile working vehicle
JPH032414A (en) Automatic operation device of construction machinery
JP2660534B2 (en) Guidance traveling control device for moving objects
JP3005153B2 (en) Travel control device for beam-guided work vehicle
JPS6125219A (en) Optical guide type mobile truck control equipment
JPS63102603A (en) Moving position detecting system of moving working vehicle
JP2889256B2 (en) Moving body position detection method and apparatus
JPH0517704U (en) Automatic rectilinear control device for mobile work equipment
JPH075915A (en) Traveling controller for beam light guided work vehicle
JPH03135606A (en) Self-position detector for self-traveling work vehicle