JPH11174145A - Ultrasonic range finding sensor and autonomous driving vehicle - Google Patents

Ultrasonic range finding sensor and autonomous driving vehicle

Info

Publication number
JPH11174145A
JPH11174145A JP9341192A JP34119297A JPH11174145A JP H11174145 A JPH11174145 A JP H11174145A JP 9341192 A JP9341192 A JP 9341192A JP 34119297 A JP34119297 A JP 34119297A JP H11174145 A JPH11174145 A JP H11174145A
Authority
JP
Japan
Prior art keywords
ultrasonic
distance
wave
transmitting
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9341192A
Other languages
Japanese (ja)
Inventor
Nobukazu Kawagoe
宣和 川越
Takayuki Hamaguchi
敬行 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP9341192A priority Critical patent/JPH11174145A/en
Publication of JPH11174145A publication Critical patent/JPH11174145A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic range finding sensor that can accurately recognize presence of target recessed and projected parts or obstacles. SOLUTION: An ultrasonic range finding sensor 10 includes a sensor part 11 for receiving reflected waves of ultrasonic waves from a target by sending the ultrasonic waves to the target, thus measuring distance to the target based on the transmitted and received waves of ultrasonic waves at the sensor part 11. The ultrasonic range finding sensor 10 can slide the sensor part 11 forward and backward (in the direction marked by an arrow AA') in a direction for connecting the sensor part 11 to the target within an ultrasonic wave passage path 13, ultrasonic waves that are transmitted from the sensor part 11 other than those that are directed (a direction marked by an arrow A) toward the target from the sensor part 11 within the ultrasonic wave passage path 13 are absorbed by an absorption member 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波の送波と受
波とに基づいて対象物までの距離を測定する超音波測距
センサおよびこれを用いた自律走行車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic ranging sensor for measuring a distance to an object based on transmission and reception of ultrasonic waves, and an autonomous vehicle using the same.

【0002】[0002]

【従来の技術】従来より、ワックス掛けなどの作業を行
ないつつ、壁などの対象物に沿って自律的に走行するこ
とのできる自律走行車が知られている。このような自律
走行車は、超音波測距センサを搭載し、超音波測距セン
サにより周囲の環境、指定された作業領域内での自律走
行車本体の位置を認識しながら作業領域内を走行する。
2. Description of the Related Art Autonomous traveling vehicles have been known that can travel autonomously along an object such as a wall while performing work such as waxing. Such an autonomous vehicle is equipped with an ultrasonic ranging sensor, and travels in the work area while recognizing the surrounding environment and the position of the autonomous vehicle body in the designated work area by the ultrasonic distance sensor. I do.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、作業領
域内でこのような自律走行車が走行する際、超音波測距
センサが距離を測る対象とする壁などの対象物に凹凸が
存在すると、自律走行車は予期された走行経路とは異な
る経路を走行することがある。これは、超音波測距セン
サ自体の持つ指向角特性によって超音波測距センサが対
象物の凹凸を高分解能で認識することができないことに
よる。図11は、このような超音波測距センサの指向角
を示す図である。超音波測距センサは、図11に示すよ
うに広範囲にわたる指向角を有する。
However, when such an autonomous vehicle travels in a work area, if an object such as a wall whose distance is to be measured by the ultrasonic distance measuring sensor has irregularities, the autonomous vehicle will not be able to autonomously operate. The traveling vehicle may travel on a route different from the expected travel route. This is because the ultrasonic ranging sensor cannot recognize the unevenness of the object with high resolution due to the directional angle characteristic of the ultrasonic ranging sensor itself. FIG. 11 is a diagram showing the directional angle of such an ultrasonic ranging sensor. The ultrasonic ranging sensor has a wide range of directional angles as shown in FIG.

【0004】さらに、このような超音波測距センサ自体
の持つ指向角特性によって、自律走行車が走行する床面
上のごみやコードなどが影響し、超音波測距センサが距
離の測定を誤ることがある。超音波測距センサの距離の
誤測定に対処するために、超音波測距センサの周囲の上
面と下面とに超音波を吸収する吸収部材を設けて超音波
測距センサの広範囲にわたる指向角を上下方向に絞る技
術が提案されている。ところが、このような上下方向の
指向角を絞る超音波測距センサを用いても、横方向への
超音波測距センサの指向角特性により自律走行車の走行
中進行方向上にある物体を誤って測距することがある。
Further, due to the directional angle characteristic of the ultrasonic ranging sensor itself, dust and cords on the floor surface on which the autonomous vehicle travels are affected, and the ultrasonic ranging sensor erroneously measures the distance. Sometimes. In order to cope with erroneous measurement of the distance of the ultrasonic ranging sensor, an absorbing member that absorbs ultrasonic waves is provided on the upper surface and the lower surface around the ultrasonic ranging sensor, and the directivity angle of the ultrasonic ranging sensor over a wide range is provided. A technique of squeezing vertically has been proposed. However, even if such an ultrasonic ranging sensor that narrows the vertical direction angle is used, an object that is in the traveling direction while the autonomous vehicle is traveling is erroneously detected due to the directional angle characteristic of the horizontal ultrasonic range sensor. The distance may be measured.

【0005】本発明は、これらを考慮してなされたもの
で、その目的は、対象物の凹凸あるいは障害物の存在を
正確に認識することのできる超音波測距センサおよび自
律走行車を提供することである。また、本発明の他の目
的は、指向角の広狭を調整することのできる超音波測距
センサを提供することである。
The present invention has been made in view of the above, and an object of the present invention is to provide an ultrasonic ranging sensor and an autonomous traveling vehicle capable of accurately recognizing the unevenness of an object or the presence of an obstacle. That is. Another object of the present invention is to provide an ultrasonic ranging sensor that can adjust the width of a directivity angle.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、対象物に対して超音波を送波し、対象物からの超音
波の反射波を受波する送受波部を含み、送受波部での超
音波の送波と受波とに基づいて対象物までの距離を測定
する超音波測距センサである。
According to a first aspect of the present invention, there is provided a transmission / reception unit for transmitting an ultrasonic wave to an object and receiving a reflected wave of the ultrasonic wave from the object. This is an ultrasonic ranging sensor that measures a distance to an object based on transmission and reception of ultrasonic waves in a wave section.

【0007】本超音波測距センサは、送受波部の近傍で
送受波部から対象物に向かう方向以外の超音波をすべて
吸収するよう、送受波部を包む部材を含むことを特徴と
している。
The ultrasonic distance measuring sensor is characterized in that it includes a member enclosing the transmitting / receiving section so as to absorb all ultrasonic waves in the vicinity of the transmitting / receiving section other than the direction from the transmitting / receiving section toward the object.

【0008】請求項1に記載の発明によると、送受波部
の近傍で送受波部から対象物に向かう方向以外の超音波
がすべて吸収される。これにより、本来超音波測距セン
サが持つ広範囲の指向角が狭められ、対象物の凹凸ある
いは障害物の存在が正確に認識される。
According to the first aspect of the present invention, all ultrasonic waves other than the direction from the wave transmitting / receiving section toward the object are absorbed near the wave transmitting / receiving section. Thereby, the directional angle of a wide range that the ultrasonic ranging sensor originally has is narrowed, and the unevenness of the target or the presence of an obstacle is accurately recognized.

【0009】請求項2に記載の発明は、超音波の送波と
受波とに基づいて対象物までの距離を測定する超音波測
距センサである。
According to a second aspect of the present invention, there is provided an ultrasonic distance measuring sensor for measuring a distance to an object based on transmission and reception of ultrasonic waves.

【0010】本超音波測距センサは、対象物に対して超
音波を送波し、対象物からの超音波の反射波を受波する
送受波手段と、送受波手段の近傍で送受波手段から対象
物に向かう方向以外の超音波を吸収するよう送受波手段
を包む吸収手段と、吸収手段に対して、送受波手段から
対象物に向かう方向に前後に、送受波手段を移動させる
ための移動手段とを含んでいる。
The ultrasonic ranging sensor transmits and receives an ultrasonic wave to an object and receives a reflected wave of the ultrasonic wave from the object, and a transmitting and receiving means near the transmitting and receiving means. An absorbing means for wrapping the transmitting and receiving means so as to absorb the ultrasonic waves other than the direction toward the object, and for moving the transmitting and receiving means back and forth in the direction from the transmitting and receiving means toward the object with respect to the absorbing means. Transportation means.

【0011】請求項2に記載の発明によると、対象物に
対して超音波が送波され、対象物からの超音波が受波さ
れる送受波手段の近傍で、送受波手段から対象物に向か
う方向以外の超音波が吸収され、送受波手段は、吸収手
段に対して、送受波手段から対象物に向かう方向に前後
に移動される。これにより、超音波測距センサの指向角
の広狭が調整される。
According to the second aspect of the present invention, the ultrasonic wave is transmitted to the object and the ultrasonic wave is transmitted from the object to the object in the vicinity of the wave transmitting and receiving means for receiving the ultrasonic wave from the object. Ultrasonic waves in directions other than the heading direction are absorbed, and the wave transmitting / receiving means is moved back and forth in the direction from the wave transmitting / receiving means toward the object with respect to the absorbing means. Thereby, the width of the directional angle of the ultrasonic ranging sensor is adjusted.

【0012】請求項3に記載の発明は、超音波を用いて
進行方向に対して側方への壁面との距離を測定すること
に基づいて壁面に平行に自律して走行する自律走行車で
ある。
According to a third aspect of the present invention, there is provided an autonomous traveling vehicle which autonomously travels in parallel to a wall based on measuring a distance between the wall and a wall in a traveling direction using ultrasonic waves. is there.

【0013】本自律走行車は、壁面に対して超音波を送
波し、壁面からの超音波の反射波を受波する送受波手段
と、送受波手段の近傍で送受波手段から壁面に向かう方
向以外の超音波を吸収するよう送受波手段を包む吸収手
段と、吸収手段に対して、送受波手段から壁面に向かう
方向に前後に、送受波手段を移動させるための移動手段
と、所定の条件を満たす場合に、送受波手段から壁面に
向かう方向で、吸収手段に対して前方あるいは後方に、
送受波手段を移動させるよう移動手段を制御する制御手
段を含んでいる。
The autonomous traveling vehicle transmits and receives an ultrasonic wave to a wall surface and receives a reflected wave of the ultrasonic wave from the wall surface, and travels from the wave transmitting and receiving unit to the wall surface in the vicinity of the wave transmitting and receiving unit. Absorbing means for wrapping the transmitting and receiving means so as to absorb the ultrasonic waves other than the direction, moving means for moving the transmitting and receiving means back and forth in the direction from the transmitting and receiving means toward the wall surface with respect to the absorbing means, When the condition is satisfied, in the direction from the wave transmitting / receiving means to the wall surface, forward or backward with respect to the absorbing means,
Control means for controlling the moving means to move the wave transmitting / receiving means is included.

【0014】請求項3に記載の発明によると、対象物に
対して超音波が送波され、対象物からの超音波が受波さ
れる送受波手段の近傍で、送受波手段から対象物に向か
う方向以外の超音波が吸収され、所定の条件を満たす場
合に、送受波手段から壁面に向かう方向で、吸収手段に
対して前方あるいは後方に、送受波手段が移動されるよ
う制御される。これにより、必要に応じて超音波測距セ
ンサの指向角の広狭を調整することができ、対象物の凹
凸あるいは障害物の存在が正確に認識される。
According to the third aspect of the present invention, the ultrasonic wave is transmitted to the object, and the ultrasonic wave is transmitted from the wave transmitting / receiving means to the object near the wave transmitting / receiving means for receiving the ultrasonic wave from the object. When the ultrasonic wave in a direction other than the heading direction is absorbed and a predetermined condition is satisfied, the wave transmitting / receiving unit is controlled to move forward or backward with respect to the absorbing unit in a direction from the wave transmitting / receiving unit to the wall surface. Thus, the width of the directional angle of the ultrasonic ranging sensor can be adjusted as needed, and the unevenness of the target or the presence of an obstacle can be accurately recognized.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しつつ、本発明
の実施の形態である超音波測距センサおよび自律走行車
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An ultrasonic ranging sensor and an autonomous vehicle according to embodiments of the present invention will be described below with reference to the drawings.

【0016】まず、本発明の実施の形態の1つである超
音波測距センサについて説明する。図1、図2は、本発
明の実施の形態の1つである超音波測距センサ10の構
成を説明するための図である。図1は超音波測距センサ
10の構成を示す斜視図であり、図2は超音波測距セン
サ10の構成を示す断面図である。
First, an ultrasonic distance measuring sensor according to an embodiment of the present invention will be described. FIG. 1 and FIG. 2 are diagrams for explaining the configuration of an ultrasonic distance measuring sensor 10 according to one embodiment of the present invention. FIG. 1 is a perspective view showing the configuration of the ultrasonic ranging sensor 10, and FIG. 2 is a sectional view showing the configuration of the ultrasonic ranging sensor 10. As shown in FIG.

【0017】超音波測距センサ10は、超音波を送波し
つつ受波するセンサ部11と、センサ部11をセンサ部
11と測距する対象物とを結ぶ方向に前後に(矢印A
A' 方向に)スライド可能にしつつセンサ部11を保持
し、超音波の伝播する通路を形成する超音波通過路12
と、センサ部11から測距する対象物に向かう方向(矢
印Aの向き)以外の超音波をすべて吸収させるために超
音波通過路12の側面に設けられた吸収部材13とを含
んでいる。ここで、センサ部11は、図示しないモータ
等により前後方向(矢印AA' 方向)にスライドするこ
とができるものとする。
The ultrasonic distance measuring sensor 10 includes a sensor unit 11 for transmitting and receiving an ultrasonic wave, and the sensor unit 11 being moved back and forth in the direction connecting the sensor unit 11 and the object to be measured (arrow A).
(A ′ direction) The ultrasonic passage 12 which holds the sensor unit 11 while being slidable and forms a passage through which ultrasonic waves propagate.
And an absorbing member 13 provided on a side surface of the ultrasonic wave passage 12 to absorb all ultrasonic waves other than the direction from the sensor unit 11 toward the object to be measured (the direction of arrow A). Here, it is assumed that the sensor unit 11 can be slid in the front-rear direction (the direction of arrow AA ') by a motor (not shown) or the like.

【0018】また、ここでは、センサ部11の半径を2
cm、発振周波数を40kHzとし、超音波通過路12
の寸法について、高さ・幅を4cm、全長を10cmと
する。センサ部11が前後方向にスライドする範囲につ
いては、センサ部11が超音波通過路12の最奥部にあ
る位置をセンサ部11の最後方の位置とし、センサ部1
1が超音波通過路12の最奥部から8cmのところにあ
る位置をセンサ部11の最前方の位置とする。
Here, the radius of the sensor section 11 is set to 2
cm, the oscillation frequency is 40 kHz, and the ultrasonic passage 12
For the dimensions of, the height and width are 4 cm, and the total length is 10 cm. Regarding the range in which the sensor unit 11 slides in the front-rear direction, the position where the sensor unit 11 is located at the deepest part of the ultrasonic passage 12 is set as the rearmost position of the sensor unit 11,
The position where 1 is 8 cm from the innermost part of the ultrasonic passage 12 is defined as the foremost position of the sensor unit 11.

【0019】続いて、図3、図4を用いて、超音波測距
センサ10から送波される超音波の指向性について説明
する。ここで、矢印B、矢印Cは、超音波測距センサ1
0から送波される超音波のうち超音波通過路12の開口
部から最大の広がりを持つ(広角側の指向性を有する)
ものを示している。
Next, the directivity of the ultrasonic wave transmitted from the ultrasonic distance measuring sensor 10 will be described with reference to FIGS. Here, arrows B and C indicate the ultrasonic distance measuring sensor 1.
It has the largest spread from the opening of the ultrasonic passage 12 among the ultrasonic waves transmitted from 0 (has directivity on the wide-angle side)
Showing things.

【0020】図3は、センサ部11を後方にスライドさ
せた際、超音波測距センサ10から送波される超音波の
指向性を示す図である。
FIG. 3 is a diagram showing the directivity of ultrasonic waves transmitted from the ultrasonic distance measuring sensor 10 when the sensor section 11 is slid backward.

【0021】センサ部11を後方にスライドさせた際に
は、超音波通過路12内の吸収部材13により、超音波
の進行が規制され、本来超音波測距センサが持っている
超音波の放射強度の広角成分が吸収される。これによっ
て、通常より狭い範囲であるスポット領域に超音波が送
波され、対象物の形状の認識が可能となり、超音波の対
象物からの反射波の受波について、床面上にあるごみや
コードなどからの超音波の乱反射による影響が抑制され
る。
When the sensor section 11 is slid backward, the progress of the ultrasonic wave is regulated by the absorbing member 13 in the ultrasonic wave passage 12, and the radiation of the ultrasonic wave originally provided in the ultrasonic distance measuring sensor is performed. The wide angle component of the intensity is absorbed. Thereby, ultrasonic waves are transmitted to a spot area that is a narrower range than usual, and the shape of the target object can be recognized.Received ultrasonic waves reflected from the target object, such as dust on the floor surface The influence of irregular reflection of ultrasonic waves from a cord or the like is suppressed.

【0022】図4は、センサ部11を前方にスライドさ
せた際、超音波測距センサ10から送波される超音波の
指向性を示す図である。
FIG. 4 is a diagram showing the directivity of ultrasonic waves transmitted from the ultrasonic distance measuring sensor 10 when the sensor section 11 is slid forward.

【0023】センサ部11を前方にスライドさせた際に
は、超音波通過路12内の吸収部材13による影響は少
なく、超音波測距センサ10からは広角側の指向性を有
し強度の強い超音波が送波される。これによって、対象
物までの測距可能範囲は広がり遠い距離についても測距
を行なうことができることとなるが、超音波の対象物か
らの反射波の受波は、床面上にあるごみやコードなどか
らの超音波の乱反射による影響を受けやすくなる。
When the sensor section 11 is slid forward, the influence of the absorbing member 13 in the ultrasonic passage 12 is small, and the ultrasonic ranging sensor 10 has directivity on the wide-angle side and high strength. Ultrasonic waves are transmitted. As a result, the range that can be measured to the target object is widened, and distance measurement can be performed even at a long distance, but the reception of ultrasonic reflected waves from the target object is caused by dust or cords on the floor surface. It is more susceptible to the irregular reflection of ultrasonic waves from such sources.

【0024】以上のように、超音波通過路12内のセン
サ部11を前後方向にスライドさせることにより送波す
る超音波の指向角の広狭を調整することができる。
As described above, the directional angle of the ultrasonic wave to be transmitted can be adjusted by sliding the sensor portion 11 in the ultrasonic wave passage 12 in the front-rear direction.

【0025】送波する超音波の指向角を狭くした場合に
は、吸収部材13により送波される超音波の強度が低下
する反面、スポット領域に超音波が送波されるので、超
音波を送波する対象物の凹凸面の形状の認識を可能にす
ることができる。対象物までの距離が遠いときには、超
音波の出力を上げることにより凹凸面の形状を正確に認
識することができる。
When the directivity angle of the ultrasonic wave to be transmitted is narrowed, the intensity of the ultrasonic wave transmitted by the absorbing member 13 is reduced, but the ultrasonic wave is transmitted to the spot area. It is possible to recognize the shape of the uneven surface of the object to be transmitted. When the distance to the object is long, the shape of the uneven surface can be accurately recognized by increasing the output of the ultrasonic wave.

【0026】また、送波する超音波の指向角を広くした
場合には、超音波は広角に送波され、吸収部材13によ
る超音波の強度の低下が少ないため、超音波の出力を下
げても測距範囲を大きく確保することができる。
When the directional angle of the ultrasonic wave to be transmitted is widened, the ultrasonic wave is transmitted at a wide angle, and the intensity of the ultrasonic wave by the absorbing member 13 is hardly reduced. Also, a large ranging range can be secured.

【0027】次に、本発明の実施の形態である、超音波
測距センサ10(図1参照)を用いた第1の自律走行車
について説明する。
Next, a first autonomous vehicle using an ultrasonic ranging sensor 10 (see FIG. 1) according to an embodiment of the present invention will be described.

【0028】図5は、本自律走行車での超音波測距セン
サ10の配置を説明するための図である。
FIG. 5 is a diagram for explaining the arrangement of the ultrasonic ranging sensor 10 in the present autonomous vehicle.

【0029】本自律走行車は、超音波測距センサ10
a、10b(上述の超音波測距センサ10と同様)を有
しており、進行方向(図の矢印Dの方向)に平行な左あ
るいは右の壁までの距離を超音波測距センサ10a、1
0bのいずれかによりそれぞれ測距しつつ、左右いずれ
かの壁に沿って走行(倣い走行)するように構成されて
いる。本自律走行車が進行方向に対して左にある壁に沿
って走行する際には、図の矢印Eの方向に向かって超音
波測距センサ10aが左壁までの距離を測定し、本自律
走行車が進行方向に対して右にある壁に沿って走行する
際には、図の矢印Fの方向に向かって超音波測距センサ
10bが右壁までの距離を測定する。
The autonomous vehicle is provided with an ultrasonic ranging sensor 10.
a, 10b (similar to the above-described ultrasonic ranging sensor 10), and the distance to the left or right wall parallel to the traveling direction (the direction of arrow D in the figure) is determined by the ultrasonic ranging sensor 10a, 1
0b while traveling along one of the right and left walls (following). When the autonomous vehicle travels along the wall on the left side with respect to the traveling direction, the ultrasonic ranging sensor 10a measures the distance to the left wall in the direction of arrow E in the drawing, and When the traveling vehicle travels along the wall on the right side with respect to the traveling direction, the ultrasonic ranging sensor 10b measures the distance to the right wall in the direction of arrow F in the figure.

【0030】このような超音波測距センサ10a、10
bを有する本自律走行車では、次のように超音波測距セ
ンサ10a、10bが制御されて倣い走行が制御され
る。
Such ultrasonic distance measuring sensors 10a, 10a
In the autonomous traveling vehicle having b, the ultrasonic distance measurement sensors 10a and 10b are controlled as described below to control the contour traveling.

【0031】図6は、第1の自律走行車での超音波測距
センサ10a、10bを用いた倣い走行に関わる処理の
手順を説明するためのフローチャートである。ここで
は、超音波測距センサ10aが左壁までの距離を測定す
るために用いられつつ、本自律走行車は左壁に沿う倣い
走行を行なうものとするが、超音波測距センサ10bを
用いての右壁に沿う倣い走行についても同様である。
FIG. 6 is a flow chart for explaining the procedure of processing relating to contour running using the ultrasonic distance measuring sensors 10a and 10b in the first autonomous vehicle. Here, it is assumed that the autonomous vehicle travels along the left wall while the ultrasonic ranging sensor 10a is used to measure the distance to the left wall, but the ultrasonic ranging sensor 10b is used. The same applies to copying along the right wall.

【0032】倣い走行に関わる処理では、まず、ステッ
プ1(以下、ステップをSと略す)で、超音波測距セン
サ10aは高出力モードとされ指向性を狭角とする(指
向角を狭くする)よう制御される。S2では、左壁まで
の距離が測定され左壁までの距離D1が基準距離(自律
走行車が壁と平行に走行する際に、自律走行車が走行す
べき目標走行経路と壁との距離)として算出される。続
いて、S3で、超音波測距センサ10aは省電力モード
とされ指向性を広角とする(指向角を広くする)よう制
御され、S4で、倣い走行するために直進走行が始めら
れる。
In the process relating to contour running, first, in step 1 (hereinafter, step is abbreviated as S), the ultrasonic ranging sensor 10a is set to the high output mode and the directivity is narrowed (the directivity angle is narrowed). ) Is controlled as follows. In S2, the distance to the left wall is measured, and the distance D1 to the left wall is the reference distance (the distance between the target travel route that the autonomous vehicle should travel when the autonomous vehicle travels parallel to the wall and the wall). Is calculated as Subsequently, in S3, the ultrasonic ranging sensor 10a is set to the power saving mode, and is controlled so as to increase the directivity (increase the directivity angle). In S4, straight running is started to follow the running.

【0033】S5では、超音波測距センサ10aにより
左壁までの距離が測定され測距値D2として求められ測
距値D2と基準距離D1との差Dが求められ、S6で、
S5で求められた差Dと超音波測距センサ10aの指向
性を切り換えるか否かの基準とするための設定値d(>
0)とが比較される。
In step S5, the distance to the left wall is measured by the ultrasonic distance measuring sensor 10a, and the distance D is obtained as the distance measuring value D2. The difference D between the distance measuring value D2 and the reference distance D1 is obtained.
A set value d (>) as a reference for determining whether or not to switch the difference D obtained in S5 and the directivity of the ultrasonic ranging sensor 10a.
0) is compared.

【0034】S6にて差Dが−d以上d以下の値である
と判断されると、安定した倣い走行が行なわれていると
判断され、基準距離はD1とされたまま、S11で駆動
系等が制御されて倣い走行制御が行なわれる。
If it is determined in S6 that the difference D is equal to or more than -d and equal to or less than d, it is determined that stable copying is being performed, and the driving system is determined in S11 with the reference distance set to D1. Are controlled to perform the scanning traveling control.

【0035】S6にて差Dが設定値dよりも大きいと判
断されると、S7で、超音波測距センサ10aは高出力
モードとされ指向性を狭角とするよう制御される。続い
て、S8では、左壁までの距離が測定され測距値D3と
して求められ、S9では、測距値D3と測距値D2とが
比較される。測距値D3が測距値D2よりも大きけれ
ば、凹みがあると判断されて、S10で、S2にてD1
に設定された基準距離がD3に変更され、S11の倣い
走行制御へと処理は移される。また、測距値D3が測距
値D2以下であれば、凹みがないと判断されて、S11
で基準距離をD1とする倣い走行制御が行なわれる。
If it is determined in step S6 that the difference D is larger than the set value d, in step S7, the ultrasonic distance measuring sensor 10a is set to the high output mode and the directivity is controlled to a narrow angle. Subsequently, in S8, the distance to the left wall is measured and obtained as a distance measurement value D3. In S9, the distance measurement value D3 is compared with the distance measurement value D2. If the distance value D3 is larger than the distance value D2, it is determined that there is a dent, and in S10, D1 is determined in S2.
Is changed to D3, and the process proceeds to the scanning traveling control of S11. If the distance value D3 is equal to or smaller than the distance value D2, it is determined that there is no dent, and S11 is determined.
, The copying traveling control with the reference distance set to D1 is performed.

【0036】さらに、S6にて差Dが設定値dの符号を
変えた値−dよりも小さいと判断されると、S13で超
音波測距センサ10aは高出力モードとされ指向性を狭
角とするよう制御される。続いて、S14では、左壁ま
での距離が測定され測距値D4として求められ、S15
では、測距値D4と測距値D2とが比較される。測距値
D4と測距値D2とが等しければ、障害物が検知された
と判断され、S16で、S2にてD1に設定された基準
距離がD4に変更され、S11の倣い走行制御へと処理
は移される。また、測距値D4が測距値D2よりも大き
ければ、ごみが検知されたと判断され、S11で基準距
離をD1とする倣い走行制御が行なわれる。
Further, if it is determined in S6 that the difference D is smaller than the value -d obtained by changing the sign of the set value d, the ultrasonic ranging sensor 10a is set to the high output mode in S13 and the directivity is narrowed. Is controlled. Subsequently, in S14, the distance to the left wall is measured and obtained as a distance measurement value D4.
Then, the distance measurement value D4 is compared with the distance measurement value D2. If the measured distance value D4 is equal to the measured distance value D2, it is determined that an obstacle has been detected, and in S16, the reference distance set in D1 in S2 is changed to D4, and processing is performed to follow the running control in S11. Is transferred. If the measured distance value D4 is larger than the measured distance value D2, it is determined that dust has been detected, and in S11, copying traveling control is performed with the reference distance set to D1.

【0037】S11での倣い走行制御の後、S12で
は、設定された走行距離に達しているか否かが判断され
る。設定された走行距離に達していれば(S12にて、
YES)、本処理は終了し、設定された走行距離に達し
ていなければ(S12にて、NO)、S5からの処理が
繰り返される。
After the copying traveling control in S11, it is determined in S12 whether or not the set traveling distance has been reached. If the set mileage has been reached (at S12,
(YES), this processing ends, and if the set traveling distance has not been reached (NO in S12), the processing from S5 is repeated.

【0038】ここで、S5、S6、S7、S8、S9、
S10、S11、S12の一連の処理に伴う動作、ある
いは、S5、S13、S14、S15、S16、S1
1、S12の一連の処理に伴う動作は、所定時間毎に行
なわれる。本自律走行車は30cm/sで走行中に1秒
に5回の測距を行なっており、上記の所定時間とはある
測距の後次の測距が行なわれるまでの200msであ
り、この間に上述の一連の動作が行なわれる。
Here, S5, S6, S7, S8, S9,
Operations associated with a series of processes of S10, S11, S12, or S5, S13, S14, S15, S16, S1
1. The operations associated with the series of processes in S12 are performed at predetermined time intervals. The autonomous traveling vehicle measures the distance five times a second while traveling at 30 cm / s, and the above-mentioned predetermined time is 200 ms after a certain distance measurement is performed until the next distance measurement is performed. A series of operations described above are performed.

【0039】これらのようなS5、S6、S7、S8、
S9、S10、S11、S12の一連の処理によって、
距離を測定する対象物の凹凸が正しく検知され、S5、
S13、S14、S15、S16、S11、S12の一
連の処理によって、障害物、ごみ等が正しく検知され
る。
S5, S6, S7, S8,
By a series of processing of S9, S10, S11, S12,
The unevenness of the object whose distance is to be measured is correctly detected, and S5,
An obstacle, dust, and the like are correctly detected by a series of processes in S13, S14, S15, S16, S11, and S12.

【0040】以上のような処理に基づく、本自律走行車
の走行を次に図7、図8を用いて説明する。
The operation of the autonomous vehicle based on the above-described processing will now be described with reference to FIGS.

【0041】図7は、左壁に凹みがある場合の本自律走
行車の倣い走行を説明するための図である。図7(a)
は指向性を広角とする超音波測距センサ10aを用いる
際の左壁までの測距を伴う本自律走行車の倣い走行を示
し、図7(b)は指向性を狭角とする超音波測距センサ
10aを用いる際の左壁の凹み面までの測距を伴う本自
律走行車の倣い走行を示している。図7(a)、図7
(b)内のL1〜L5は左壁に沿って走行していく自律
走行車の位置を示し、時間の経過に伴いLに付す数を大
きくしてある。
FIG. 7 is a view for explaining the copying operation of the autonomous vehicle when the left wall has a dent. FIG. 7 (a)
FIG. 7B shows the copying operation of the autonomous vehicle accompanied by the distance measurement to the left wall when using the ultrasonic distance measuring sensor 10a having a wide directivity, and FIG. 7B shows the ultrasonic wave having a narrow directivity. This figure shows the copying traveling of the autonomous vehicle accompanied by distance measurement to the concave surface of the left wall when the distance measurement sensor 10a is used. FIG. 7 (a), FIG.
L1 to L5 in (b) indicate the position of the autonomous vehicle traveling along the left wall, and the number added to L with the passage of time is increased.

【0042】本自律走行車は、まず、壁までの距離を測
定しながらの走行を開始する際、位置L1で走行のため
の基準距離D1を測距する。走行が開始されると、本自
律走行車は、位置L2で左壁101までの距離を測定
し、基準距離D1を保つように左壁面101に沿って走
行する。位置L3では、指向角の広い超音波測距センサ
10aでの測距に左壁101からの超音波の反射波が影
響し、位置L5でのような左壁の凹み面102までの距
離D3が正確に測定されず、図に示すような距離D2を
測定する。
When the autonomous traveling vehicle starts traveling while measuring the distance to the wall, first, it measures the reference distance D1 for traveling at the position L1. When the traveling starts, the autonomous traveling vehicle measures the distance to the left wall 101 at the position L2, and travels along the left wall 101 so as to maintain the reference distance D1. At the position L3, the reflected wave of the ultrasonic wave from the left wall 101 affects the distance measurement by the ultrasonic distance measuring sensor 10a having a wide directivity angle, and the distance D3 to the concave surface 102 of the left wall as at the position L5 is reduced. The distance D2 is not accurately measured, and a distance D2 as shown in the figure is measured.

【0043】そこで、本自律走行車は、位置L4で、指
向角を狭く切り換え超音波測距センサの出力パワーを上
げ(図6のS7での処理)、これにより左壁の凹み面1
02までの距離が正しく測距され、基準距離はD3に変
更される(図6のS10での処理)。位置L5では、本
自律走行車は、基準距離を保つように左壁の凹み面10
2に沿って走行する。
Therefore, in the autonomous traveling vehicle, at the position L4, the directivity angle is switched to be narrow, and the output power of the ultrasonic ranging sensor is increased (the processing in S7 of FIG. 6).
The distance to 02 is correctly measured, and the reference distance is changed to D3 (processing in S10 of FIG. 6). At the position L5, the autonomous vehicle moves the concave surface 10 of the left wall so as to maintain the reference distance.
Run along 2.

【0044】以上のように、測距値の変化を迅速に検知
できるように指向性を広角として超音波測距センサを使
用している際に、測距値の変化に伴って指向角を狭く切
り換えることにより、壁までの正確な距離が測定され、
また、凹みを含む壁に対しても直進を続け壁に沿った自
律走行が可能となる。
As described above, when the ultrasonic ranging sensor is used with a wide directivity so that a change in the distance measurement value can be quickly detected, the directivity angle is reduced with the change in the distance measurement value. By switching, the exact distance to the wall is measured,
In addition, autonomous traveling along a wall including a dent is possible by continuing straight ahead.

【0045】図8は、左壁までの間にごみがある場合の
本自律走行車の倣い走行を説明するための図である。図
8(a)は指向性を広角とする超音波測距センサ10a
を用いる際の左壁までの測距を示し、図8(b)は指向
性を狭角とする超音波測距センサ10aを用いる際の左
壁までの測距を示す。
FIG. 8 is a view for explaining the copying operation of the autonomous vehicle when there is dust between the left and right walls. FIG. 8A shows an ultrasonic distance measuring sensor 10a having a wide directivity.
FIG. 8B shows the distance measurement to the left wall when using the ultrasonic distance measurement sensor 10a with a narrow directivity.

【0046】図8(a)に示すように、ごみ104から
の超音波の反射波が影響することにより左壁面103よ
りも近い測距値を得た際には、指向性は狭角にされて測
距が行なわれる(図6のS13での処理)。
As shown in FIG. 8A, when a distance measurement value closer to the left wall surface 103 is obtained due to the influence of the reflected wave of the ultrasonic wave from the dust 104, the directivity is narrowed. Distance measurement is performed (processing in S13 of FIG. 6).

【0047】また、図8(b)に示すように、指向性を
狭角とした際にごみ104が影響する前の測距値に戻れ
ば(図6のS15でD4>D2)、広角にしていた際に
ごみ104より影響を受けていたことが判断される。指
向性を広角としても狭角としても測距値が変わらなけれ
ば(図6のS15でD4=D2)、左壁よりも近い位置
の障害物を測距してきたことが判断される。
As shown in FIG. 8B, if the distance is returned to the value before the influence of the dust 104 when the directivity is set to a narrow angle (D4> D2 in S15 of FIG. 6), the wide angle is set. It is determined that it has been affected by the garbage 104 at the time. If the distance measurement value does not change when the directivity is set to the wide angle or the narrow angle (D4 = D2 in S15 of FIG. 6), it is determined that the distance to an obstacle closer to the left wall has been measured.

【0048】以上のように、指向性を広角として超音波
測距センサを使用している際に、測距値の変化に伴って
指向性を狭角に切り換えることにより、作業領域内に存
在する障害物、ごみが検知され、また、測距の対象物と
の間に障害物、ごみが存在していても直進を続け壁に沿
った自律走行が可能となる。
As described above, when the ultrasonic ranging sensor is used with the directivity being wide-angle, the directivity is switched to a narrow angle in accordance with a change in the distance measurement value. Obstacles and debris are detected, and even if obstacles and debris are present between the object and the object to be measured, autonomous traveling along the wall is possible by continuing straight ahead.

【0049】続いて、本発明の実施の形態である、超音
波測距センサ10を用いた第2の自律走行車について説
明する。第2の自律走行車は、第1の自律走行車と同様
の位置に超音波測距センサ10を有し、超音波測距セン
サ10(図1参照)の指向性を周期的に広角、狭角と切
り換える(たとえば、0.2秒間隔で、狭狭狭狭広狭狭
狭狭広‥‥‥と切り換える)ことにより、自律走行車本
体の側方のごみ、障害物を検知する。
Next, a description will be given of a second autonomous vehicle using an ultrasonic distance measuring sensor 10 according to an embodiment of the present invention. The second autonomous vehicle has an ultrasonic ranging sensor 10 at the same position as the first autonomous vehicle, and periodically changes the directivity of the ultrasonic ranging sensor 10 (see FIG. 1) to a wide angle and a narrow angle. By switching to an angle (for example, switching to narrow, narrow, narrow, narrow, narrow, wide, and narrow at 0.2-second intervals), dust and obstacles on the side of the main body of the autonomous vehicle are detected.

【0050】図9は、第2の自律走行車での超音波測距
センサ10a、10bを用いた倣い走行に関わる処理の
手順を説明するためのフローチャートである。ここで
は、超音波測距センサ10aが左壁までの距離を測定す
るために用いられつつ、本自律走行車は左壁に沿う倣い
走行を行なうものとするが、超音波測距センサ10bを
用いての右壁に沿う倣い走行についても同様である。
FIG. 9 is a flow chart for explaining the procedure of processing relating to contour running using the ultrasonic ranging sensors 10a and 10b in the second autonomous vehicle. Here, it is assumed that the autonomous vehicle travels along the left wall while the ultrasonic ranging sensor 10a is used to measure the distance to the left wall, but the ultrasonic ranging sensor 10b is used. The same applies to copying along the right wall.

【0051】倣い走行に関わる処理では、まず、S10
1で、本自律走行車の走行距離と、超音波測距センサ1
0aの指向性を広角にする時間間隔T1が設定され、指
向性が狭角にされて倣い走行制御のための基準距離D5
が求められ、S102で、直進走行するよう制御され
る。
In the processing relating to the contour running, first, in S10
1, the distance traveled by the autonomous vehicle and the ultrasonic ranging sensor 1
A time interval T1 for widening the directivity of 0a is set, the directivity is narrowed, and a reference distance D5 for contouring traveling control is set.
Is determined, and in S102, the vehicle is controlled to travel straight.

【0052】続いて、S103では自律走行車が走行し
た距離が測定され、S104で倣い走行が制御される。
S105ではS103で測定された走行距離がS101
で設定された値に達しているか否かが判断される。走行
距離が設定された値に達していれば(S105にて、Y
ES)本処理は終了し、走行距離が設定された値に達し
ていなければ(S105にて、NO)S106へと処理
は進められる。
Subsequently, in step S103, the distance traveled by the autonomous vehicle is measured, and in step S104, copying is controlled.
In S105, the traveling distance measured in S103 is equal to S101.
It is determined whether or not the value set in the step has been reached. If the traveling distance has reached the set value (Y in S105)
ES) This process ends, and if the traveling distance has not reached the set value (NO in S105), the process proceeds to S106.

【0053】S106では、S101で設定された時間
間隔T1が経過しているか否かが判断される。時間間隔
T1が経過していなければ(S106にて、NO)S1
03へと処理は移され、時間間隔T1が経過していれば
(S106にて、YES)S107で超音波センサ10
aの指向性が広角にされ、S108で測距が行なわれて
測距値D6が求められ、測距値D6と基準距離D5との
差D=D6−D5が求められる。
In S106, it is determined whether the time interval T1 set in S101 has elapsed. If the time interval T1 has not elapsed (NO in S106), S1
03, and the process proceeds to S107 if the time interval T1 has elapsed (YES in S106).
The directivity of a is widened, the distance is measured in S108, a distance value D6 is obtained, and a difference D = D6-D5 between the distance value D6 and the reference distance D5 is obtained.

【0054】続いて、S109では、差Dと障害物があ
るか否かを判断するための設定値dとが判断される。差
Dが設定値dよりも小さければ、S110で障害物発見
時の走行制御が行なわれ、S111で超音波測距センサ
10aの指向性が狭角にされてS103からの処理が繰
り返される。差Dが設定値よりも大きければ、S110
での処理はスキップされて、S111で超音波測距セン
サ10aの指向性が狭角にされてS103からの処理が
繰り返される。
Subsequently, in S109, the difference D and a set value d for determining whether there is an obstacle are determined. If the difference D is smaller than the set value d, traveling control at the time of finding an obstacle is performed in S110, the directivity of the ultrasonic ranging sensor 10a is narrowed in S111, and the processing from S103 is repeated. If the difference D is larger than the set value, S110
Is skipped, the directivity of the ultrasonic ranging sensor 10a is narrowed in S111, and the processing from S103 is repeated.

【0055】これらのように、S105で本処理が終了
するまで、S103からS111までの処理は繰り返さ
れ、倣い走行が行なわれつつ、超音波測距センサの指向
性の広狭が切り換えられて、ごみ、障害物が検知されて
これらの検知に応じた走行が行なわれる。
As described above, the processing from S103 to S111 is repeated until the present processing is completed in S105, and while the contour traveling is performed, the width of the directivity of the ultrasonic distance measuring sensor is switched, and Then, an obstacle is detected and the vehicle travels according to the detection.

【0056】以上のような処理に基づく、本自律走行車
の走行を次に図10を用いて説明する。
Next, the operation of the autonomous vehicle based on the above processing will be described with reference to FIG.

【0057】図10は、左壁に障害物がある場合の本自
律走行車の倣い走行を説明するための図である。図10
内のL1〜L8は左壁に沿って走行していく自律走行車
の位置を示し、時間の経過に伴いLに付す数を大きくし
ている。
FIG. 10 is a diagram for explaining the copying operation of the autonomous vehicle when there is an obstacle on the left wall. FIG.
L1 to L8 indicate the position of the autonomous vehicle traveling along the left wall, and the number given to L is increased with the passage of time.

【0058】本自律走行車は、通常は超音波測距センサ
10aの指向性を狭角とし、位置L1〜位置L3でのよ
うに左壁面105までを測距し、測距値に基づく基準距
離D5を保ちながら走行する。所定時間が経過し本自律
走行車が位置L4に達すると、本自律走行車は、超音波
測距センサ10aの指向性を広角にして左壁面105ま
でを測距し、測距値に基づく基準距離D5を保ちながら
走行する。
In this autonomous vehicle, the directivity of the ultrasonic distance measuring sensor 10a is normally set to a narrow angle, the distance is measured to the left wall surface 105 as at the positions L1 to L3, and the reference distance based on the measured distance is used. Drive while keeping D5. When the autonomous traveling vehicle reaches the position L4 after a lapse of a predetermined time, the autonomous traveling vehicle measures the distance to the left wall surface 105 with the directivity of the ultrasonic ranging sensor 10a being wide-angle, and determines a reference based on the measured distance value. Drive while maintaining the distance D5.

【0059】位置L5〜位置L7では、再び超音波測距
センサ10aの指向性は狭角とされ、基準距離D5が保
たれながら走行が行なわれる。さらに、再度所定時間が
経過し本自律走行車が位置L8に達すると、超音波測距
センサ10aの指向性は広角とされ障害物106に対す
る測距が行なわれる。
At the positions L5 to L7, the directivity of the ultrasonic distance measuring sensor 10a is narrowed again, and the vehicle travels while maintaining the reference distance D5. Further, when the predetermined time has passed again and the autonomous traveling vehicle reaches the position L8, the directivity of the ultrasonic distance measuring sensor 10a is set to a wide angle, and the distance to the obstacle 106 is measured.

【0060】これらのようにして、壁までの距離を測定
しながら走行する際、通常は超音波測距センサの指向性
を狭角として、定期的に、たとえば1秒に1回、指向性
を広角として測距を行なうことにより、指向性が広角の
ままでは検知が困難である、人等の障害物を正確に検知
することができる。
As described above, when the vehicle travels while measuring the distance to the wall, the directivity of the ultrasonic ranging sensor is usually set to a narrow angle, and the directivity is periodically changed, for example, once a second. By performing the distance measurement at a wide angle, it is possible to accurately detect an obstacle such as a person, which is difficult to detect if the directivity remains wide.

【0061】なお、上記の実施の形態では、超音波測距
センサを自律走行車に設けることとしたが、これ以外に
も工事現場などで使用されるハンディ測距計などに用い
ることができる。
In the above embodiment, the ultrasonic distance measuring sensor is provided in the autonomous traveling vehicle. However, the ultrasonic distance measuring sensor can be used for a handy distance measuring device used in a construction site or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1つである超音波測距セ
ンサ10の構成を示す斜視図である。
FIG. 1 is a perspective view showing a configuration of an ultrasonic ranging sensor 10 according to one embodiment of the present invention.

【図2】超音波測距センサ10の構成を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing a configuration of the ultrasonic distance measuring sensor 10.

【図3】センサ部11を後方にスライドさせた際、超音
波測距センサ10から送波される超音波の指向性を示す
図である。
FIG. 3 is a diagram showing the directivity of ultrasonic waves transmitted from the ultrasonic distance measuring sensor when the sensor unit is slid backward.

【図4】センサ部11を前方にスライドさせた際、超音
波測距センサ10から送波される超音波の指向性を示す
図である。
FIG. 4 is a diagram showing the directivity of ultrasonic waves transmitted from the ultrasonic distance measuring sensor 10 when the sensor unit 11 is slid forward.

【図5】本自律走行車での超音波測距センサ10の配置
を説明するための図である。
FIG. 5 is a diagram for explaining an arrangement of an ultrasonic ranging sensor 10 in the autonomous traveling vehicle.

【図6】第1の自律走行車での超音波測距センサ10
a、10bを用いた倣い走行に関わる処理の手順を説明
するためのフローチャートである。
FIG. 6 shows an ultrasonic ranging sensor 10 in a first autonomous vehicle.
It is a flowchart for demonstrating the procedure of the process regarding copying running using a and 10b.

【図7】左壁に凹みがある場合の本自律走行車の倣い走
行を説明するための図である。
FIG. 7 is a diagram for explaining the following traveling of the autonomous traveling vehicle when the left wall has a dent.

【図8】左壁までの間にごみがある場合の本自律走行車
の倣い走行を説明するための図である。
FIG. 8 is a diagram for explaining the copying traveling of the autonomous traveling vehicle when there is garbage up to the left wall.

【図9】第2の自律走行車での超音波測距センサ10
a、10bを用いた倣い走行に関わる処理の手順を説明
するためのフローチャートである。
FIG. 9 shows an ultrasonic ranging sensor 10 in a second autonomous vehicle.
It is a flowchart for demonstrating the procedure of the process regarding copying running using a and 10b.

【図10】左壁に障害物がある場合の本自律走行車の倣
い走行を説明するための図である。
FIG. 10 is a diagram for explaining copying following the autonomous traveling vehicle when there is an obstacle on the left wall.

【図11】超音波測距センサの指向角を示す図である。FIG. 11 is a diagram showing a directional angle of an ultrasonic ranging sensor.

【符号の説明】[Explanation of symbols]

10、10a、10b 超音波測距センサ 11 センサ部 12 超音波通過路 13 吸収部材 101、103、105 左壁面 102 左壁の凹み面 104 ごみ 106 障害物 10, 10a, 10b Ultrasonic ranging sensor 11 Sensor section 12 Ultrasonic passage 13 Absorbing member 101, 103, 105 Left wall surface 102 Left wall concave surface 104 Dust 106 Obstacle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対象物に対して超音波を送波し、前記対
象物からの超音波の反射波を受波する送受波部を含み、
前記送受波部での超音波の送波と受波とに基づいて対象
物までの距離を測定する超音波測距センサであって、 前記送受波部の近傍で前記送受波部から前記対象物に向
かう方向以外の超音波をすべて吸収するよう、前記送受
波部を包む部材を含むことを特徴とする、超音波測距セ
ンサ。
A transmitting / receiving unit that transmits an ultrasonic wave to an object and receives a reflected wave of the ultrasonic wave from the object,
An ultrasonic ranging sensor that measures a distance to an object based on transmission and reception of ultrasonic waves in the transmission / reception unit, wherein the object is transmitted from the transmission / reception unit in the vicinity of the transmission / reception unit. An ultrasonic ranging sensor including a member that wraps the transmission / reception unit so as to absorb all ultrasonic waves in directions other than the direction toward the ultrasonic wave.
【請求項2】 超音波の送波と受波とに基づいて対象物
までの距離を測定する超音波測距センサであって、 対象物に対して超音波を送波し、前記対象物からの超音
波の反射波を受波する送受波手段と、 前記送受波手段の近傍で前記送受波手段から前記対象物
に向かう方向以外の超音波を吸収するよう前記送受波手
段を包む吸収手段と、 前記吸収手段に対して、前記送受波手段から前記対象物
に向かう方向に前後に、前記送受波手段を移動させるた
めの移動手段とを含む、超音波測距センサ。
2. An ultrasonic ranging sensor for measuring a distance to an object based on transmission and reception of ultrasonic waves, wherein the ultrasonic distance sensor transmits an ultrasonic wave to the object, and transmits the ultrasonic wave to the object. A transmitting and receiving means for receiving a reflected wave of the ultrasonic wave, and an absorbing means for wrapping the transmitting and receiving means so as to absorb an ultrasonic wave other than the direction from the transmitting and receiving means toward the object in the vicinity of the transmitting and receiving means. An ultrasonic ranging sensor, comprising: a moving unit for moving the wave transmitting / receiving unit before and after the absorbing unit in a direction from the wave transmitting / receiving unit toward the object.
【請求項3】 超音波を用いて進行方向に対して側方へ
の壁面との距離を測定することに基づいて壁面に平行に
自律して走行する自律走行車であって、 前記壁面に対して超音波を送波し、前記壁面からの超音
波の反射波を受波する送受波手段と、 前記送受波手段の近傍で前記送受波手段から前記壁面に
向かう方向以外の超音波を吸収するよう前記送受波手段
を包む吸収手段と、 前記吸収手段に対して、前記送受波手段から前記壁面に
向かう方向に前後に、前記送受波手段を移動させるため
の移動手段と、 所定の条件を満たす場合に、前記送受波手段から前記壁
面に向かう方向で、前記吸収手段に対して前方あるいは
後方に、前記送受波手段を移動させるよう前記移動手段
を制御する制御手段を含む、自律走行車。
3. An autonomous vehicle that travels autonomously in parallel to a wall based on measuring a distance between the wall and a wall in a traveling direction using an ultrasonic wave. Transmitting / receiving means for transmitting ultrasonic waves, receiving reflected waves of the ultrasonic waves from the wall surface, and absorbing ultrasonic waves other than the direction from the wave transmitting / receiving means toward the wall surface in the vicinity of the wave transmitting / receiving means. Absorbing means for enclosing the wave transmitting and receiving means, and moving means for moving the wave transmitting and receiving means back and forth with respect to the absorbing means in a direction from the wave transmitting and receiving means to the wall surface, wherein a predetermined condition is satisfied. In this case, an autonomous vehicle including control means for controlling the moving means so as to move the wave transmitting / receiving means forward or backward of the absorbing means in a direction from the wave transmitting / receiving means to the wall surface.
JP9341192A 1997-12-11 1997-12-11 Ultrasonic range finding sensor and autonomous driving vehicle Withdrawn JPH11174145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9341192A JPH11174145A (en) 1997-12-11 1997-12-11 Ultrasonic range finding sensor and autonomous driving vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9341192A JPH11174145A (en) 1997-12-11 1997-12-11 Ultrasonic range finding sensor and autonomous driving vehicle

Publications (1)

Publication Number Publication Date
JPH11174145A true JPH11174145A (en) 1999-07-02

Family

ID=18344086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9341192A Withdrawn JPH11174145A (en) 1997-12-11 1997-12-11 Ultrasonic range finding sensor and autonomous driving vehicle

Country Status (1)

Country Link
JP (1) JPH11174145A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081585A (en) * 2007-09-25 2009-04-16 Canon Inc Network system, communication method, slave radio equipment, and control radio equipment
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
KR20150046888A (en) * 2013-10-23 2015-05-04 현대모비스 주식회사 Apparatus and method for parking assistance
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
WO2020213153A1 (en) * 2019-04-19 2020-10-22 三菱電機株式会社 Ultrasonic transmission/reception device

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
JP2009081585A (en) * 2007-09-25 2009-04-16 Canon Inc Network system, communication method, slave radio equipment, and control radio equipment
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
KR20150046888A (en) * 2013-10-23 2015-05-04 현대모비스 주식회사 Apparatus and method for parking assistance
WO2020213153A1 (en) * 2019-04-19 2020-10-22 三菱電機株式会社 Ultrasonic transmission/reception device
JPWO2020213153A1 (en) * 2019-04-19 2021-10-28 三菱電機株式会社 Ultrasonic transmitter / receiver

Similar Documents

Publication Publication Date Title
JPH11174145A (en) Ultrasonic range finding sensor and autonomous driving vehicle
EP2290490B1 (en) Cleaning robot guidance system including a cleaning robot and a docking station, and method of controlling the cleaning robot
JP3296105B2 (en) Autonomous mobile robot
US5867800A (en) Method and device for sensing of obstacles for an autonomous device
US9751214B2 (en) Apparatus for returning of robot and returning method thereof
US5293955A (en) Obstacle sensing apparatus for a self-propelled cleaning robot
KR100745975B1 (en) Method and apparatus for moving minimum movement cost path using grid map
US20060080802A1 (en) Self-propelled cleaner charging-type travel system and charging-type travel system
US20170050311A1 (en) Robot cleaner, docking station, robot cleaner system including robot cleaner and docking station, and method of controlling robot cleaner
JP2007213180A (en) Movable body system
KR20150014113A (en) Cleaning robot and method for controlling the same
JPH11175149A (en) Autonomous traveling vehicle
US11052907B2 (en) Parking control device and parking control method
JPH05257533A (en) Method and device for sweeping floor surface by moving robot
JP2007101492A (en) Device for detecting distance, and position of mobile robot
JP2006323618A (en) Self-propelled robot
JP2000214927A (en) Autonomously traveling robot and distance measuring instrument
JP2003058998A (en) Vehicle parking system
JP6953166B2 (en) Automatic driving control device and automatic driving control method for electric vehicles
JP2688960B2 (en) Self-propelled vehicle steering position detection device
JP2609890B2 (en) Self-propelled work vehicle
JP2786516B2 (en) Work vehicle traveling method
JPH06289931A (en) Autonomous traveling vehicle
KR100246063B1 (en) Automotive rear safety checking method
US20230363611A1 (en) Self-propelled cleaning machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301