JPS5999308A - Distance measuring sensor - Google Patents

Distance measuring sensor

Info

Publication number
JPS5999308A
JPS5999308A JP20969882A JP20969882A JPS5999308A JP S5999308 A JPS5999308 A JP S5999308A JP 20969882 A JP20969882 A JP 20969882A JP 20969882 A JP20969882 A JP 20969882A JP S5999308 A JPS5999308 A JP S5999308A
Authority
JP
Japan
Prior art keywords
distance
laser beam
light receiving
receiving device
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20969882A
Other languages
Japanese (ja)
Inventor
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20969882A priority Critical patent/JPS5999308A/en
Publication of JPS5999308A publication Critical patent/JPS5999308A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data

Abstract

PURPOSE:To obtain a distance measuring sensor, which is mounted on an unmanned conveying robot and can measure the distance accurately regardless of the reflecting characteristics of a body to be measured, by using laser beams. CONSTITUTION:A laser beam is projected from a laser device 1 through a rotary mirror 3 and rotated at an equal angle speed omega. When the spots of the laser beams are projected on positions C and D on a floor 2, the spots are received by light receiving devices 4 and 6 through a condenser lens 5. A counter 8 counts clock pulses CLK based on the output pulses from the light receiving device 4. The counter 8 become inoperative by the output pulse signal from the light receiving device 6. A latch circuit 9 latches the counted value of the counter 8, and outputs the value to an operating circuit 10. The counted value indicates a time (t) from the time point when the light receiving device 4 receives the spot to the time point when the light receiving device 6 receives the spot. When a body 12 is located at a position E, the light receiving device 6 receives the spot of a position F. By measuring the time (t), the distance (l) of the body 12 can be obtained by the expression in the Figure.

Description

【発明の詳細な説明】 本発明はレーザビームを利用した測距センサに関し、特
に無人搬送ロボットが工場内を走行する際、床面に置か
れた不特定の物体を検知し、その物体までの距離を測定
する場合に有効な測距センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring sensor that uses a laser beam, and in particular, when an unmanned guided robot moves in a factory, it detects an unspecified object placed on the floor and moves to the object. The present invention relates to a distance measuring sensor that is effective in measuring distance.

従来、無人搬送ロボットに搭載する測距センサとしては
、超音波を利用したものがある。この測距センサは、超
音波を発振してからその超音波の測定物体での反射波を
受信するまでの時間を計時し、この時間と音速に基づき
測定物体の距離を測定するものであるが、その測定精度
は物体の反射特性に大きく依存していた。
Conventionally, there are distance measuring sensors mounted on unmanned guided robots that utilize ultrasonic waves. This distance sensor measures the time from when an ultrasonic wave is emitted until it receives the reflected wave of the ultrasonic wave from the object to be measured, and measures the distance to the object based on this time and the speed of sound. , the measurement accuracy largely depended on the reflection characteristics of the object.

本発明はレーザビームを用いることにょシその点を改善
し、簡単な構成で距離を正確に計理jできる測距センサ
を提供することを目的とする。
An object of the present invention is to improve this point by using a laser beam, and to provide a distance measuring sensor that can accurately measure distance with a simple configuration.

この発明によれば、床面から所定の高さに配設したレー
ザビーム投光器がら該床面に対してレーザビーム面が直
交するようにレーザビームを等角速度で回転投光すると
ともに、基準位置から所定の距離離間似た床面上の点と
受光器とを結ぶ光路で前記レーザビームを捕捉する受光
器を設け、前記受光器の所定時刻からのレーザビームの
捕捉時間に基づき前記光路上に存在する物体の距離を算
出するようにしている。
According to this invention, the laser beam projector installed at a predetermined height from the floor emits a laser beam at a constant angular velocity so that the laser beam surface is perpendicular to the floor surface, and emits the laser beam from a reference position. A light receiver is provided that captures the laser beam on an optical path connecting the light receiver and a point on the floor surface that is similar to a predetermined distance apart, and the laser beam is located on the optical path based on the capture time of the laser beam from a predetermined time of the light receiver. I am trying to calculate the distance of an object.

以下本発明を添付図面を参照して詳細に説明する。The present invention will now be described in detail with reference to the accompanying drawings.

第1図は本発明に係る測距センサの一実施例を示すブロ
ック図である。第1図において、レーザ1から発射され
たレーザビームは、床面2から所定の高さh2に設けら
れた回転ミラー3によって等角速度ωで回転投光される
。なお、これによって形成される回転レーザビーム平面
が、床面2と直交するように前記回転ミラー3はレーザ
ビームを回転投光する。
FIG. 1 is a block diagram showing an embodiment of a distance measuring sensor according to the present invention. In FIG. 1, a laser beam emitted from a laser 1 is rotated and projected at a constant angular velocity ω by a rotating mirror 3 provided at a predetermined height h2 from a floor surface 2. Note that the rotating mirror 3 rotates and projects the laser beam so that the rotating laser beam plane thus formed is orthogonal to the floor surface 2.

受光器4は前記レーザビームのスポットが床面2上の位
置(回転ミラ−30床面2上の投影位置から距離A、の
位置)Cを照射したとき、このスポットを集光レンズ5
を介して受光し、パルス信号を出力する。同様に、受光
器6は前記レーザビームのスポットが床面2上の位置(
回転ミラ−30床面2上の投影位置から距離12の位置
)Dを照射したとき、このスポットをヱ5元レンズ5を
介して受光し、パルス信号を出力する。なお、集光レン
ズ5は、床面2から所定の高さhlに設けられている。
When the spot of the laser beam irradiates a position C on the floor surface 2 (at a distance A from the projection position of the rotary mirror 30 on the floor surface 2), the light receiver 4 focuses this spot on a condenser lens 5.
Receives light through the sensor and outputs a pulse signal. Similarly, the light receiver 6 detects the spot of the laser beam at the position (
When the rotary mirror 30 is irradiated at a position (distance 12) D from the projection position on the floor surface 2, this spot is received through the E5 element lens 5 and a pulse signal is output. Note that the condenser lens 5 is provided at a predetermined height hl from the floor surface 2.

受光器4から出力されるパルス信号は、フリップフロッ
プ7のセット端子Sに加えられるとともに、カウンタ8
のリセット端子Rに加えられ、フリップフロップ7およ
びカウンタ8をそれぞれセットおよびリセットする。フ
リップ70ツブ7はセットされるとその出力端子Qから
信号゛】”をカウンタ8のイネーブル端子ENに出力し
、カウンタ8を動作可能にする。カウンタ8は動作可能
になると、クロック入力CKに加えられるクロッ   
 −クパルスCLKを計数し、その計数値をラッチ回路
9に出力する。
The pulse signal output from the light receiver 4 is applied to the set terminal S of the flip-flop 7, and is also applied to the counter 8.
is applied to the reset terminal R of , and sets and resets the flip-flop 7 and counter 8, respectively. When the flip 70 knob 7 is set, it outputs the signal "]" from its output terminal Q to the enable terminal EN of the counter 8, making the counter 8 operational. Clocks
- Counts the pulses CLK and outputs the counted value to the latch circuit 9.

一方、受光器6から出力されるパルス信号は、フリップ
70ツブ7のリセット端子Rに加えられるとともに、ラ
ッチ回路9のロード端子LDに加見られる。これによシ
、フリップフロップ7はりセットされ、その出力端子Q
がら信号″o”をカウンタ8のイネーブル端子INに出
力してカウンタ8を不動作にし、またラッチ回路9はカ
ウンタ8の出力値(計数値)をラッチし、これを演算回
路10に出力する。なお、ラッチ回路9でラッチされる
計数値は、受光器4がレーザビームのスポットを受光し
てから受光器6がレーザビームのスポットを受光するま
での時間tを示すものである。
On the other hand, the pulse signal output from the light receiver 6 is applied to the reset terminal R of the flip 70 knob 7 and is also applied to the load terminal LD of the latch circuit 9. As a result, the flip-flop 7 is set, and its output terminal Q
The latch circuit 9 latches the output value (count value) of the counter 8 and outputs it to the arithmetic circuit 10. Note that the count value latched by the latch circuit 9 indicates the time t from when the light receiver 4 receives the laser beam spot until the light receiver 6 receives the laser beam spot.

演算回路10は、上記時間tに対応するデータと、定数
設定器11に予め設定されている定数、すなわち距離’
 1 + ’ 2 ’s高さhl、h2および角速度ω
に対応するデータに基づき後述する演算を実行し、距離
11と12との間に存在する物体の距離を算出する。
The arithmetic circuit 10 calculates the data corresponding to the time t and a constant preset in the constant setter 11, that is, distance'.
1 + '2's height hl, h2 and angular velocity ω
The distance of the object existing between distances 11 and 12 is calculated by performing calculations to be described later based on data corresponding to .

次に、演算回路10が実行する演算を第2図を参照して
説明する。
Next, the calculations executed by the calculation circuit 10 will be explained with reference to FIG.

第2図において、床面2をX軸に、レーザビームの回転
中心位置Bおよび集光レンズ5の位f!LAをy軸にと
シ、物体12をその前面がX@上の位置Eにくるように
誼く。このとき、受光器4はレーザビームのスポットが
腺AC上にあるとき、受光器6はレーザビームのスポッ
トが線AD上にあるとき、そのスポットを受光すること
ができる。したがって、第2図に示す位置に物体12が
ある場合には、受光器6は、レーザビームのスポットが
物体12の前面の位置PKあるとき、そのスポットを受
光する。
In FIG. 2, the rotation center position B of the laser beam and the position f! of the condenser lens 5 with the floor surface 2 as the X axis! With LA on the y-axis, lower the object 12 so that its front surface is at position E on X@. At this time, the light receiver 4 can receive the laser beam spot when it is on the gland AC, and the light receiver 6 can receive the laser beam spot when the spot is on the line AD. Therefore, when the object 12 is located at the position shown in FIG. 2, the light receiver 6 receives the laser beam spot when the spot is at the position PK in front of the object 12.

今、 /ACO=ψ1. 線分FE=h3/FBc−ω
1(1はレーザビームがBC上からBF上に至るまでに
要した時間〕/BGO=ψ (Gは線BFの延長上のX
軸上の位置) 線分−dで一=l’ 線分0E=Jl’(測定すべき距離) とすると、幾何的な関係によシ、 b1ニーhs=#2: (72−l) h2: h3=/’  :  (C−11)簡ψ==1
12/、/’ 一ψx=ht/A!1 ωt+ψ=ψl が得られる。上記式からlについて求めると、次式 となる。上記第(])式において、時間を以外は全て定
数であるので、時間tを測定することにより物体12の
距離lを求めることができる。
Now /ACO=ψ1. Line segment FE=h3/FBc-ω
1 (1 is the time required for the laser beam to reach from BC to BF) / BGO = ψ (G is the time X on the extension of line BF)
Position on the axis) Line segment - d = 1 = l' Line segment 0E = Jl' (distance to be measured) According to the geometric relationship, b1 knee hs = #2: (72-l) h2 : h3=/' : (C-11) Simple ψ==1
12/, /' 1ψx=ht/A! 1 ωt+ψ=ψl is obtained. When l is determined from the above formula, the following formula is obtained. In the above equation ( ), everything except time is a constant, so the distance l to the object 12 can be determined by measuring the time t.

演算回路10(第1図)は、上記第(1)式の演算を実
行することにより物体の距離lを算出する。
The calculation circuit 10 (FIG. 1) calculates the distance l of the object by executing the calculation of the above equation (1).

なお、定数1.の代わシに、定数ψlを用いて第(1)
式を表わすと、 となる。また、距離l□と12との間に物体が存在しな
い場合には、ωt=/cBDとなり、この場合、演算回
路10は、距離12を出力することになる。
In addition, the constant 1. Instead of , using the constant ψl, the (1)
Expressing the formula, it becomes. Further, if there is no object between the distance l□ and 12, ωt=/cBD, and in this case, the arithmetic circuit 10 will output the distance 12.

以上説明したように本発明によれば、レーザビームを用
いているため、測定物体の反射特性にかかわらず正確に
物体までの距離を測定することができる。また、本発明
による沖j距センサを無人搬送ロボットに搭載すると、
距離11から12までの範囲の視野を有する視覚手段と
して用いることができる。
As explained above, according to the present invention, since a laser beam is used, the distance to the object can be accurately measured regardless of the reflection characteristics of the object. Furthermore, when the offshore distance sensor according to the present invention is mounted on an unmanned guided robot,
It can be used as a visual means with a field of view ranging from distances 11 to 12.

なお、この測距センサによって物体の距離測定を行なう
場合には、予め距離1.内にレーザビームを遮断する物
体がないことを確認する必要がある。また、この実施例
では受光器を2つ設けたが、レーザビームの回転周期に
同期した適当なタイミングを基準にして時間を測定する
ようにすれば、1つの受光器でも本発明は実施可能であ
る。
Note that when measuring the distance of an object using this distance measurement sensor, the distance 1. It is necessary to make sure that there are no objects blocking the laser beam. Furthermore, although two photoreceivers were provided in this embodiment, the present invention can be implemented with one photoreceiver if the time is measured based on an appropriate timing synchronized with the rotation period of the laser beam. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る測距センサの一実施例を示すブロ
ック図、第2図は本発明の詳細な説明するために用いた
幾何図である。 1・・・レーザ、2・・・床面、3・・・回転ミラー、
4゜6・・・受光器、5・・・集光レンズ、7・・・フ
リラグフロップ、8・・・カウンタ、9・・・ラッチ回
路、10・・・演算回路、11・・・定数設定器、12
・・・物体。
FIG. 1 is a block diagram showing an embodiment of a distance measuring sensor according to the present invention, and FIG. 2 is a geometric diagram used to explain the present invention in detail. 1...Laser, 2...Floor surface, 3...Rotating mirror,
4゜6... Light receiver, 5... Condensing lens, 7... Free lag flop, 8... Counter, 9... Latch circuit, 10... Arithmetic circuit, 11... Constant Setting device, 12
···object.

Claims (1)

【特許請求の範囲】[Claims] 床面に対してレーザビーム面が直交するようにレーザビ
ームを等角速度で回転投光するレーザビーム投光器と、
基準位置から所定の距離離間した床面上の点と受光器と
を結ぶ光路で被測距物体から反射されるレーザビームを
捕捉する受光器と、前記レーザビームが所定の回転位置
にあるときから前記受光器がレーザビームを捕捉するま
での時間を計時する計時手段と、前記計時手段によって
計時された時間に基づき前記被測距物体の基準位置から
の距離を算出する演算回路とを具えた測距センサ。
a laser beam projector that rotates and projects a laser beam at a constant angular velocity so that the laser beam plane is orthogonal to the floor;
a light receiver that captures a laser beam reflected from a distance-measuring object on an optical path connecting the light receiver and a point on the floor spaced a predetermined distance from a reference position; A measuring device comprising: a timer for measuring the time until the laser beam is captured by the light receiver; and an arithmetic circuit for calculating the distance of the object to be measured from a reference position based on the time measured by the timer. distance sensor.
JP20969882A 1982-11-30 1982-11-30 Distance measuring sensor Pending JPS5999308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20969882A JPS5999308A (en) 1982-11-30 1982-11-30 Distance measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20969882A JPS5999308A (en) 1982-11-30 1982-11-30 Distance measuring sensor

Publications (1)

Publication Number Publication Date
JPS5999308A true JPS5999308A (en) 1984-06-08

Family

ID=16577146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20969882A Pending JPS5999308A (en) 1982-11-30 1982-11-30 Distance measuring sensor

Country Status (1)

Country Link
JP (1) JPS5999308A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
JPS62162911A (en) * 1986-01-14 1987-07-18 N T T Gijutsu Iten Kk Measuring instrument
US4788441A (en) * 1985-12-16 1988-11-29 Acme-Cleveland Corporation Range finder wherein distance between target and source is determined by measuring scan time across a retroreflective target
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9320398B2 (en) 2005-12-02 2016-04-26 Irobot Corporation Autonomous coverage robots
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch
US4788441A (en) * 1985-12-16 1988-11-29 Acme-Cleveland Corporation Range finder wherein distance between target and source is determined by measuring scan time across a retroreflective target
JPS62162911A (en) * 1986-01-14 1987-07-18 N T T Gijutsu Iten Kk Measuring instrument
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9320398B2 (en) 2005-12-02 2016-04-26 Irobot Corporation Autonomous coverage robots
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush

Similar Documents

Publication Publication Date Title
JP5235412B2 (en) Laser tracking apparatus, laser device and method
JPS5999308A (en) Distance measuring sensor
US9958546B2 (en) Laser rangefinder and method of measuring distance and direction
KR20040002162A (en) Apparatus and method of localization using laser
JPH1114357A (en) Automatic tracking device of surveying equipment
US4911548A (en) Determination of one or more spatial parameters of an object
JPS636483A (en) Time interval measuring instrument
US11629959B2 (en) Surveying instrument
US4521113A (en) Optical measuring device
JPS61260113A (en) Detector for tilt angle of plane
CN209640496U (en) Laser range finder
JPS60238776A (en) Light wave range finder
JPH11230699A (en) Target arrival position measuring apparatus for bullet
JPH0926318A (en) Distance measuring apparatus
JPH0259931B2 (en)
RU2082090C1 (en) Laser ranger
JPH11304898A (en) Ranging method and device
JP2858678B2 (en) Shape measuring device
JP2909634B2 (en) Direction detection method and detection device using light pulse
JP2936074B2 (en) Optical distance measuring device
JPS61231407A (en) Triangular range finder apparatus
JPS62102109A (en) Instrument for measuring snow depth
JP2542257B2 (en) Position and heading measurement system for mobile
RU2098858C1 (en) Device for automatic measurement of distance to object
JPH0763853A (en) Device of measuring distance