US20100290963A1 - Transition metal / zeolite scr catalysts - Google Patents
Transition metal / zeolite scr catalysts Download PDFInfo
- Publication number
- US20100290963A1 US20100290963A1 US12/597,707 US59770710A US2010290963A1 US 20100290963 A1 US20100290963 A1 US 20100290963A1 US 59770710 A US59770710 A US 59770710A US 2010290963 A1 US2010290963 A1 US 2010290963A1
- Authority
- US
- United States
- Prior art keywords
- sapo
- zeolite
- catalyst
- transition metal
- zeolites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 153
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 66
- 150000003624 transition metals Chemical class 0.000 title claims abstract description 66
- 239000010457 zeolite Substances 0.000 title abstract description 216
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title abstract description 144
- 229910021536 Zeolite Inorganic materials 0.000 title abstract description 122
- 239000007789 gas Substances 0.000 claims abstract description 63
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 24
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims description 120
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 64
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 63
- 229910002089 NOx Inorganic materials 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 35
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 28
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 23
- 230000003647 oxidation Effects 0.000 claims description 19
- 238000007254 oxidation reaction Methods 0.000 claims description 19
- 229910021529 ammonia Inorganic materials 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 11
- 239000004202 carbamide Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 6
- 239000002808 molecular sieve Substances 0.000 claims description 6
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- 239000001099 ammonium carbonate Substances 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 2
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 2
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 claims description 2
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 claims description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims description 2
- 239000002178 crystalline material Substances 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 92
- 229910052697 platinum Inorganic materials 0.000 abstract description 10
- 229910052763 palladium Inorganic materials 0.000 abstract description 9
- 229910052684 Cerium Inorganic materials 0.000 abstract description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 7
- 229910052725 zinc Inorganic materials 0.000 abstract description 7
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract description 6
- 229910052703 rhodium Inorganic materials 0.000 abstract description 6
- 229910052738 indium Inorganic materials 0.000 abstract description 4
- 229910052741 iridium Inorganic materials 0.000 abstract description 3
- 229910052702 rhenium Inorganic materials 0.000 abstract description 3
- 229910052707 ruthenium Inorganic materials 0.000 abstract description 3
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 229910052718 tin Inorganic materials 0.000 abstract description 3
- 229910052676 chabazite Inorganic materials 0.000 description 40
- 230000000694 effects Effects 0.000 description 39
- UNYSKUBLZGJSLV-UHFFFAOYSA-L calcium;1,3,5,2,4,6$l^{2}-trioxadisilaluminane 2,4-dioxide;dihydroxide;hexahydrate Chemical compound O.O.O.O.O.O.[OH-].[OH-].[Ca+2].O=[Si]1O[Al]O[Si](=O)O1.O=[Si]1O[Al]O[Si](=O)O1 UNYSKUBLZGJSLV-UHFFFAOYSA-L 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 32
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 27
- 229910000323 aluminium silicate Inorganic materials 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 229910018557 Si O Inorganic materials 0.000 description 19
- 229930195733 hydrocarbon Natural products 0.000 description 19
- 150000002430 hydrocarbons Chemical class 0.000 description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 19
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 19
- 239000004215 Carbon black (E152) Substances 0.000 description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 14
- 230000032683 aging Effects 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 229910052675 erionite Inorganic materials 0.000 description 10
- 230000009467 reduction Effects 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- -1 Beta Inorganic materials 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910001603 clinoptilolite Inorganic materials 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052680 mordenite Inorganic materials 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052728 basic metal Inorganic materials 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910001657 ferrierite group Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 2
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000010757 Reduction Activity Effects 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 238000012993 chemical processing Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002500 ions Chemical group 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 229910001744 pollucite Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OVGWMUWIRHGGJP-WTODYLRWSA-N (z)-7-[(1r,3s,4s,5r)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@H]1[C@H](/C=C/[C@H](O)CCCCC)C[C@H]2S[C@@H]1C2 OVGWMUWIRHGGJP-WTODYLRWSA-N 0.000 description 1
- LTYUPYUWXRTNFQ-UHFFFAOYSA-N 5,6-diamino-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=C1C=C(N)C(N)=C2 LTYUPYUWXRTNFQ-UHFFFAOYSA-N 0.000 description 1
- GMVPRGQOIOIIMI-DODZYUBVSA-N 7-[(1R,2R,3R)-3-hydroxy-2-[(3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoic acid Chemical compound CCCCC[C@H](O)C=C[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(O)=O GMVPRGQOIOIIMI-DODZYUBVSA-N 0.000 description 1
- 101710204136 Acyl carrier protein 1 Proteins 0.000 description 1
- 101710204139 Acyl carrier protein 2 Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 101100008649 Caenorhabditis elegans daf-5 gene Proteins 0.000 description 1
- 101100386238 Caenorhabditis elegans daf-8 gene Proteins 0.000 description 1
- 101100366889 Caenorhabditis elegans sta-2 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 101710113788 Candidapepsin-1 Proteins 0.000 description 1
- 101710113789 Candidapepsin-2 Proteins 0.000 description 1
- 101710113783 Candidapepsin-3 Proteins 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 101710116852 Molybdenum cofactor sulfurase 1 Proteins 0.000 description 1
- 229910014084 Na—B Inorganic materials 0.000 description 1
- 229910014134 Na—P1 Inorganic materials 0.000 description 1
- 229910014152 Na—P2 Inorganic materials 0.000 description 1
- 102100033118 Phosphatidate cytidylyltransferase 1 Human genes 0.000 description 1
- 101710178747 Phosphatidate cytidylyltransferase 1 Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PZZYQPZGQPZBDN-UHFFFAOYSA-N aluminium silicate Chemical compound O=[Al]O[Si](=O)O[Al]=O PZZYQPZGQPZBDN-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- JEWHCPOELGJVCB-UHFFFAOYSA-N aluminum;calcium;oxido-[oxido(oxo)silyl]oxy-oxosilane;potassium;sodium;tridecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.[Na].[Al].[K].[Ca].[O-][Si](=O)O[Si]([O-])=O JEWHCPOELGJVCB-UHFFFAOYSA-N 0.000 description 1
- 229910052908 analcime Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910001683 gmelinite Inorganic materials 0.000 description 1
- 229910001690 harmotome Inorganic materials 0.000 description 1
- 229910052677 heulandite Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 1
- 229910052907 leucite Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910001743 phillipsite Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
- B01D53/565—Nitrogen oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/005—Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/56—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/83—Aluminophosphates [APO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/30—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/502—Beta zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/504—ZSM 5 zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J2029/062—Mixtures of different aluminosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/36—Steaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/87—Gallosilicates; Aluminogallosilicates; Galloborosilicates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a method of converting nitrogen oxides in a gas, such as an exhaust gas of a vehicular lean-burn internal combustion engine, to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a transition metal-containing zeolite catalyst.
- SCR Selective catalytic reduction
- nitrogenous compounds such as ammonia or urea
- SCR technology was first used in thermal power plants in Japan in the late 1970s, and has seen widespread application in Europe since the mid-1980s.
- SCR systems were introduced for gas turbines in the 1990s and have been used more recently in coal-fired powerplants.
- SCR applications include plant and refinery heaters and boilers in the chemical processing industry, furnaces, coke ovens, municipal waste plants and incinerators.
- NO x reduction systems based on SCR technology are being developed for a number of vehicular (mobile) applications in Europe, Japan, and the USA, e.g. for treating diesel exhaust gas.
- reaction (1) Several chemical reactions occur in an NH 3 SCR system, all of which represent desirable reactions that reduce NO x to nitrogen. The dominant reaction is represented by reaction (1).
- reaction (2) Competing, non-selective reactions with oxygen can produce secondary emissions or may unproductively consume Ammonia.
- One such non-selective reaction is the complete oxidation of ammonia, shown in reaction (2).
- reaction (3) may lead to undesirable products such as N 2 O, as represented by reaction (3).
- Aluminosilicate zeolites are used as catalysts for SCR of NO x with NH 3 .
- One application is to control NO x emissions from vehicular diesel engines, with the reductant obtainable from an ammonia precursor such as urea or by injecting ammonia per se.
- transition metals are incorporated into the aluminosilicate zeolites.
- the most commonly tested transition metal zeolites are Cu/ZSM-5, Cu/Beta, Fe/ZSM-5 and Fe/Beta because they have a relatively wide temperature activity window. In general, Cu-based zeolite catalysts show better low temperature NO reduction activity than Fe-based zeolite catalysts.
- ZSM-5 and Beta zeolites have a number of drawbacks. They are susceptible to dealumination during high temperature hydrothermal ageing resulting in a loss of acidity, especially with Cu/Beta and Cu/ZSM-5 catalysts. Both Beta- and ZSM-5-based catalysts are also affected by hydrocarbons which become adsorbed on the catalysts at relatively low temperatures and are oxidised as the temperature of the catalytic system is raised generating a significant exotherm, which can thermally damage the catalyst. This problem is particularly acute in vehicular diesel applications where significant quantities of hydrocarbon can be adsorbed on the catalyst during cold-start; and Beta and ZSM-5 zeolites are also prone to coking by hydrocarbons.
- Cu-based zeolite catalysts are less thermally durable, and produce higher levels of N 2 O than Fe-based zeolite catalysts. However, they have a desirable advantage in that they slip less ammonia in use compared with a corresponding Fe-zeolite catalyst.
- aluminophosphate zeolites that contain transition metals demonstrate enhanced catalytic activity and superior thermal stability than aluminosilicate zeolite catalysts for SCR of NO x with hydrocarbons (also known as lean NO x catalysis or “DeNOx catalysts” (e.g. Ishihara et al., Journal of Catalysis, 169 (1997) 93)).
- WO 2006/064805 discloses an electrical processing technology for treating diesel engine exhaust gas which utilizes corona discharge.
- a combination of a device for adding a NO x reducer (hydrocarbon or fuel) and a Cu-SAPO-34 NO x reducing catalyst can be disposed downstream of the electrical processing apparatus.
- transition metal-containing aluminophosphate zeolites for SCR of NO x with NH 3 (or urea) reported in any literature to date.
- WO 00/72965 discloses iron (Fe) exchanged zeolites for the selective catalytic reduction of nitrogen monoxide by ammonia for controlling NO x emissions from fossil-fuel power plants and engines.
- the Fe-exchanged, and optionally Fe-rare earth-exchanged, e.g. Fe-Ce-exchanged, zeolites suggested include: ZSM-5, mordenite, SAPO, clinoptilolite, chabazite, ZK-4 and ZK-5. No specific SAPO zeolites are identified and no experiment using SAPO zeolites is disclosed.
- WO '965 teaches that the disclosure has application to zeolites with a range of pore sizes, i.e.
- U.S. Pat. No. 4,735,927 discloses an extruded-type NH 3 —SCR catalyst with stability to sulfur poisoning comprising a high surface area titania in the form of anatase and a natural or synthetic zeolite.
- the zeolite must be either in the acid form or thermally convertible to the acid form in the catalytic product.
- suitable zeolites include mordenite, natural clinoptilolite, erionite, heulandite, ferrierite, natural faujasite or its synthetic counterpart zeolite Y, chabazite and gmelinite.
- a preferred zeolite is natural clinoptilolite, which may be mixed with another acid stable zeolite such as chabazite.
- the catalyst may optionally include small amounts (at least 0.1% by elemental weight) of a promoter in the form of precursors of vanadium oxide, copper oxide, molybdenum oxide or combinations thereof (0.2 wt % Cu and up to 1.6 wt % V are exemplified).
- Extruded-type catalysts are generally less durable, have lower chemical strength, require more catalyst material to achieve the same activity and are more complicated to manufacture than catalyst coatings applied to inert monolith substrates.
- U.S. Pat. No. 5,417,949 also discloses an extruded-type NH 3 —SCR catalyst comprising a zeolite having a constraint index of up to 12 and a titania binder. Intentionally, no transition metal promoter is present.
- Constraint Index is a test to determine shape-selective catalytic behaviour in zeolites. It compares the reaction rates for the cracking of n-hexane and its isomer 3-methylpentane under competitive conditions (see V. J. Frillette et al., J Catal. 67 (1991) 218)).
- U.S. Pat. No. 5,589,147 discloses an ammonia SCR catalyst comprising a molecular sieve and a metal, which catalyst can be coated on a substrate monolith.
- the molecular sieve useful in the invention is not limited to any particular molecular sieve material and, in general, includes all metallosilicates, metallophosphates, silicoaluminophosphates and layered and pillared layered materials.
- the metal is typically selected from at least one of the metals of Groups of the Periodic Table IIIA, IB, IIB, VA, VIA, VIIA, VIIIA, and combinations thereof.
- Examples of these metals include at least one of copper, zinc, vanadium, chromium, manganese, cobalt, iron, nickel, rhodium, palladium, platinum, molybdenum, tungsten, cerium and mixtures thereof.
- intermediate pore size zeolites e.g. those having pore sizes of from about 5 to less than 7 Angstroms, are preferred in the process of the invention.
- intermediate pore size zeolites are preferred because they provide constrained access to and egress from the intracrystalline free space: “The intermediate pore size zeolites . . . have an effective pore size such as to freely sorb normal hexane . . .
- WO 2004/002611 discloses an NH 3 —SCR catalyst comprising a ceria-doped aluminosilicate zeolite.
- U.S. Pat. No. 6,514,470 discloses a process for catalytically reducing NO x in an exhaust gas stream containing nitrogen oxides and a reductant material.
- the catalyst comprises an aluminium-silicate material and a metal in an amount of up to about 0.1 weight percent based on the total weight of catalyst. All of the examples use ferrierite.
- U.S. Pat. No. 4,961,917 discloses an NH 3 —SCR catalyst comprising a zeolite having a silica-to-alumina ratio of at least about 10, and a pore structure which is interconnected in all three crystallographic dimensions by pores having an average kinetic pore diameter of at least about 7 Angstroms and a Cu or Fe promoter.
- the catalysts are said to have high activity, reduced NH 3 oxidation and reduced sulphur poisoning.
- Zeolite Beta and zeolite Y are two zeolites that meet the required definition.
- U.S. Pat. No. 3,895,094 discloses an NH 3 —SCR process using zeolite catalysts of at least 6 Angstrom intercrystalline pore size. No mention is made of exchanging the zeolites with transition metals.
- U.S. Pat. No. 4,220,632 also discloses an NH 3 —SCR process, this time using 3-10 Angstrom pore size zeolites of Na or H form.
- WO 02/41991 discloses metal promoted zeolite Beta for NH 3 —SCR, wherein the zeolite is pre-treated so as to provide it with improved hydrothermal stability.
- the invention provides a method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
- zeolite catalyst containing at least one transition metal herein we mean a zeolite structure to which has been added by ion exchange, impregnation or isomorphous substitution etc. one or more metals.
- Transition metal-containing zeolite catalyst and “zeolite catalyst containing at least one transition metal” and similar terms are used interchangeably herein.
- zeolites by their Framework Type Codes we intend to include the “Type Material” and any and all isotypic framework materials.
- the “Type Material” is the species first used to establish the framework type).
- Table 1 lists a range of illustrative zeolite zeotype framework materials for use in the present invention.
- chabazite is to the zeolite material per se (in this example the naturally occurring type material chabazite) and not to any other material designated by the Framework Type Code to which the individual zeolite may belong, e.g. some other isotypic framework material.
- zeolite type materials such as naturally occurring (i.e. mineral) chabazite
- isotypes within the same Framework Type Code is not merely arbitrary, but reflects differences in the properties between the materials, which may in turn lead to differences in activity in the method of the present invention.
- chabazite naturally occurring (i.e. mineral) chabazite
- isotypes within the same Framework Type Code is not merely arbitrary, but reflects differences in the properties between the materials, which may in turn lead to differences in activity in the method of the present invention.
- the naturally occurring chabazite has a lower silica-to-alumina ratio than aluminosilicate isotypes such as SSZ-13, the naturally occurring chabazite has lower acidity than aluminosilicate isotypes such as SSZ-13 and the activity of the material in the method of the present invention is relatively low (see the comparison of Cu/naturally occurring chabazite with Cu/SAPO-34 in Example 13).
- the zeolite catalysts for use in the present invention can be coated on a suitable substrate monolith or can be formed as extruded-type catalysts, but are preferably used in a catalyst coating.
- the zeolite catalyst is not one of Co, Ga, Mn, In or Zn or any combination of two or more thereof/epistilbite (see U.S. Pat. No. 6,514,470).
- the transition metal-containing small pore zeolite is not Cu/chabazite, Mo/chabazite, Cu-Mo/chabazite, Cu/erionite, Mo/erionite or Cu-Mo/erionite (see U.S. Pat. No. 4,735,927).
- the transition metal-containing small pore zeolite is not Ce/erionite (see WO 2004/002611).
- the transition metal-containing small pore zeolite is not Fe/chabazite, Fe/ZK-5, Fe/ZK-4, Fe-rare-earth/chabazite, Fe-rare-earth/ZK-5 or Fe-rare-earth/ZK-4 (see WO 00/72965).
- WO 00/72965 discloses the use of Ce/SAPO zeolites and Ce-rare-earth/SAPO zeolites in general, it does not disclose any particular small pore SAPO zeolites with application in the present invention, such as SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
- the transition metal-containing small pore zeolite is not Fe/chabazite, (see Long et al. Journal of Catalysis 207 (2002) 274-285). Whilst, for the reasons given hereinabove, we do not believe that U.S. Pat. No.
- the zeolite catalyst is not any one of copper, zinc, chromium, manganese, cobalt, iron, nickel, rhodium, palladium, platinum, molybdenum, cerium or mixtures thereof/any one of aluminosilicate chabazite, aluminosilicate erionite, aluminosilicate ZSM-34 and SAPO-34.
- the transition metal-containing zeolite catalyst is not LTA or Fe/CHA.
- chabazite is a small pore zeolite according to the definition adopted herein and that the Long et al. paper mentioned above reports that Fe/chabazite has the poorest activity of any of the catalysts tested. Without wishing to be bound by any theory, we believe that the poor performance of the Fe/chabazite in this study is due to two principal reasons. Firstly, natural chabazite can contain basic metal cations including potassium, sodium, strontium and calcium. To obtain an active material the basic metal cations need to be exchanged for e.g. iron cations because basic metals are a known poison of zeolite acid sites.
- iron ions can form metal complexes (coordination compounds) with suitable ligands in the ionic exchange medium.
- coordination compounds metal complexes
- suitable ligands in the ionic exchange medium.
- Long et al. use an aqueous FeCl 2 solution for ion exchange. Since the zeolite pores are relatively small, it is possible that a bulky co-ordination compound may not be able to gain access to the active sites located in the pores.
- Suitable substituent metals include one or more of, without limitation, As, B, Be, Co, Fe, Ga, Ge, Li, Mg, Mn, Zn and Zr.
- the small pore zeolites for use in the present invention can be selected from the group consisting of aluminosilicate zeolites, metal-substituted aluminosilicate zeolites and aluminophosphate zeolites.
- Aluminophosphate zeolites with application in the present invention include aluminophosphate (A1PO) zeolites, metal substituted zeolites (MeA1PO) zeolites, silico-aluminophosphate (SAPO) zeolites and metal substituted silico-aluminophosphate (MeAPSO) zeolites.
- A1PO aluminophosphate
- MeA1PO metal substituted zeolites
- SAPO silico-aluminophosphate
- MeAPSO metal substituted silico-aluminophosphate
- the invention extends to catalyst coatings and extruded-type substrate monoliths comprising both transition metal-containing small pore zeolites according to the invention and non-small pore zeolites (whether metallised or not) such as medium-, large- and meso-pore zeolites (whether containing transition metal(s) or not) because such a combination also obtains the advantages of using small pore zeolites per se.
- the catalyst coatings and extruded-type substrate monoliths for use in the invention can comprise combinations of two or more transition metal-containing small pore zeolites.
- each small pore zeolite in such a combination can contain one or more transition metals, each being ° selected from the group defined hereinabove, e.g. a first small pore zeolite can contain both Cu and Fe and a second small pore zeolite in combination with the first small pore zeolite can contain Ce.
- transition metal-containing small pore zeolites are advantageous catalysts for SCR of NO x with NH 3 .
- transition metal-containing small pore zeolite catalysts demonstrate significantly improved NO x reduction activity, especially at low temperatures. They also exhibit high selectivity to N 2 (e.g. low N 2 O formation) and good hydrothermal stability.
- small pore zeolites containing at least one transition metal are more resistant to hydrocarbon inhibition than larger pore zeolites, e.g.
- a medium pore zeolite such as ZSM-5
- a large pore zeolite a zeolite having a maximum ring size of 12
- Beta a medium pore zeolite
- Small pore aluminophosphate zeolites for, use in the present invention include SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
- the small pore zeolite is selected from the group of Framework Type Codes consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG and ZON.
- Framework Type Codes consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON,
- Zeolites with application in the present invention can include those that have been treated to improve hydrothermal stability.
- Illustrative methods of improving hydrothermal stability include:
- small pore zeolites may minimise the detrimental effect of hydrocarbons by means of a molecular sieving effect, whereby the small pore zeolite allows NO and NH 3 to diffuse, to the active sites inside the pores but that the diffusion of hydrocarbon molecules is restricted.
- the kinetic diameter of both NO (3.16 ⁇ ) and NH 3 (2.6 ⁇ ) is smaller than those of the typical hydrocarbons (C 3 H 6 ⁇ 4.5 ⁇ , n-C 8 H 18 ⁇ 4.30 ⁇ and C 7 H 8 ⁇ 6.0 ⁇ ) present in, for example, diesel engine exhaust.
- the small pore zeolite catalysts for use in the present invention have a pore size in at least one dimension of less than 4.3 ⁇ .
- Illustrative examples of suitable small pore zeolites are set out in Table 1.
- Small pore zeolites with particular application for treating NO x in exhaust gases of lean-burn internal combustion engines, e.g. vehicular exhaust gases are set out in Table 2.
- Small pore aluminosilicate zeolites for use in the present invention can have a silica-to-alumina ratio (SAR) of from 2 to 300, optionally 4 to 200 and preferably 8 to 150. It will be appreciated that higher SAR ratios are preferred to improve thermal stability but this may negatively affect transition metal exchange. Therefore, in selecting preferred materials consideration can be given to SAR so that a balance may be struck between these two properties.
- SAR silica-to-alumina ratio
- the gas containing the nitrogen oxides can, contact the zeolite catalyst at a gas hourly space velocity of from 5,000 hr ⁇ 1 to 500,000 hr ⁇ 1 , optionally from 10,000 hr ⁇ 1 to 200,000 hr ⁇ 1 .
- the small pore zeolites for use in the present invention do not include aluminophosphate zeolites as defined herein.
- the small pore zeolites (as defined herein) for use in the present invention are restricted to aluminophosphate zeolites (as defined herein).
- small pore zeolites for use in the present invention are aluminosilicate zeolites and metal substituted aluminosilicate zeolites (and not aluminophosphate zeolites as defined herein).
- Small pore zeolites for use in the invention can have three-dimensional dimensionality, i.e. a pore structure which is interconnected in all three crystallographic dimensions, or two-dimensional dimensionality.
- the small pore zeolites for use in the present invention consist of zeolites having three-dimensional dimensionality.
- the small pore zeolites for use in the present invention consist of zeolites having two-dimensional dimensionality.
- the at least one transition metal is selected from the group consisting of Cr, Ce, Mn, Fe, Co, Ni and Cu. In a preferred embodiment, the at least one transition metal is selected from the group consisting of Cu, Fe and Ce. In a particular embodiment, the at least one transition metal consists of Cu. In another particular embodiment, the at least one transition metal consists of Fe. In a further particular embodiment, the at least one transition metal is Cu and/or Fe.
- the total of the at least one transition metal that can be included in the at least one transition metal-containing zeolite can be from 0.01 to 20 wt %, based on the total weight of the zeolite catalyst containing at least one transition metal. In one embodiment, the total of the at least one transition metal that can be included can be from 0.1 to 10 wt %. In a particular embodiment, the total of the at least one transition metal that can be included is from 0.5 to 5 wt %.
- a preferred transition metal-containing two dimensional small pore zeolite for use in the present invention consists of Cu/LEV, such as Cu/Nu-3, whereas a preferred transition metal-containing three dimensional small pore zeolite/aluminophosphate zeolite for use in the present invention consists of Cu/CHA, such as Cu/SAPO-34 or Cu/SSZ-13.
- Fe-containing zeolite catalysts are preferred, such as Fe-CHA, e.g. Fe/SAPO-34 or Fe/SSZ-13.
- the at least one transition metal can be included in the zeolite by any feasible method. For example, it can be added after the zeolite has been synthesised, e.g. by incipient wetness or exchange process; or the at least one metal can be added during zeolite synthesis.
- the zeolite catalyst for use in the present invention can be coated, e.g. as a washcoat component, on a suitable monolith substrate, such as a metal or ceramic flow through monolith substrate or a filtering substrate, such as a wall-flow filter or sintered metal or partial filter (such as is disclosed in WO 01/80978 or EP 1057519, the latter document describing a substrate comprising convoluted flow paths that at least slows the passage of soot therethrough).
- a suitable monolith substrate such as a metal or ceramic flow through monolith substrate or a filtering substrate, such as a wall-flow filter or sintered metal or partial filter (such as is disclosed in WO 01/80978 or EP 1057519, the latter document describing a substrate comprising convoluted flow paths that at least slows the passage of soot therethrough).
- the zeolites for use in the present invention can be synthesized directly onto the substrate.
- the zeolite catalysts according to the invention can be formed into an extruded-type flow through catalyst.
- washcoat compositions containing the zeolites for use in the present invention for coating onto the monolith substrate for manufacturing extruded type substrate monoliths can comprise a binder selected from the group consisting of alumina, silica, (non zeolite) silica-alumina, naturally occurring clays, TiO 2 , ZrO 2 , and SnO 2 .
- the nitrogen oxides are reduced with the reducing agent at a temperature of at least 100° C. In another embodiment, the nitrogen oxides are reduced with the reducing agent at a temperature from about 150° C. to 750° C.
- the latter embodiment is particularly useful for treating exhaust gases from heavy and light duty diesel engines, particularly engines comprising exhaust systems comprising (optionally catalysed) diesel particulate filters which are regenerated actively, e.g. by injecting hydrocarbon into the exhaust system upstream of the filter, wherein the zeolite catalyst for use in the present invention is located downstream of the filter.
- the temperature range is from 175 to 550° C. In another embodiment, the temperature range is from 175 to 400° C.
- the nitrogen oxides reduction is carried out in the presence of oxygen. In an alternative embodiment, the nitrogen oxides reduction is carried out in the absence of oxygen.
- Zeolites for use in the present application include natural and synthetic zeolites, preferably synthetic zeolites because the zeolites can have a more uniform: silica-to-alumina ratio (SAR), crystallite size, crystallite morphology, and the absence of impurities (e.g. alkaline earth metals).
- SAR silica-to-alumina ratio
- crystallite size crystallite size
- crystallite morphology crystallite morphology
- impurities e.g. alkaline earth metals
- the source of nitrogenous reductant can be ammonia per se, hydrazine or any suitable ammonia precursor, such as urea ((NH 2 ) 2 CO), ammonium carbonate, ammonium carbamate, ammonium hydrogen carbonate or ammonium formate.
- urea (NH 2 ) 2 CO)
- ammonium carbonate ammonium carbamate
- ammonium hydrogen carbonate or ammonium formate.
- the method can be performed on a gas derived from a combustion process, such as from an internal combustion engine (whether mobile or stationary), a gas turbine and coal or oil fired power plants.
- a gas derived from a combustion process such as from an internal combustion engine (whether mobile or stationary), a gas turbine and coal or oil fired power plants.
- the method may also be used to treat gas from industrial processes such as refining, from refinery heaters and boilers, furnaces, the chemical processing industry, coke ovens, municipal waste plants and incinerators, coffee roasting plants etc.
- the method is used for treating exhaust gas from a vehicular lean burn internal combustion engine, such as a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- a vehicular lean burn internal combustion engine such as a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- the invention provides an exhaust system for a vehicular lean burn internal combustion engine, which system comprising a conduit for carrying a flowing exhaust gas, a source of nitrogenous reductant, a zeolite catalyst containing at least one transition metal disposed in a flow path of the exhaust gas and means for metering nitrogenous reductant into a flowing exhaust gas upstream of the zeolite catalyst, wherein the zeolite catalyst is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe, Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
- the small pore transition metal-containing zeolites for use in the exhaust system aspect of the present invention include any for use in the method according to the invention as described hereinabove.
- the zeolite catalyst is coated on a flow-through monolith substrate (i.e. a honeycomb monolithic catalyst support structure with many small, parallel channels running axially through the entire part) or filter monolith substrate such as a wall-flow filter etc., as described hereinabove.
- a flow-through monolith substrate i.e. a honeycomb monolithic catalyst support structure with many small, parallel channels running axially through the entire part
- filter monolith substrate such as a wall-flow filter etc., as described hereinabove.
- the zeolite catalyst is formed into an extruded-type catalyst.
- the system can include means, when in use, for controlling the metering means so that nitrogenous reductant is metered into the flowing exhaust gas only when it is determined that the zeolite catalyst is capable of catalysing NO x reduction at or above a desired efficiency, such as at above 100° C., above 150° C. or above 175° C.
- the determination by the control means can be assisted by one or more suitable sensor inputs indicative of a condition of the engine selected from the group consisting of: exhaust gas temperature, catalyst bed temperature, accelerator position, mass flow of exhaust gas in the system, manifold vacuum, ignition timing, engine speed, lambda value of the exhaust gas, the quantity of fuel injected in the engine, the position of the exhaust gas recirculation (EGR) valve and thereby the amount of EGR and boost pressure.
- suitable sensor inputs indicative of a condition of the engine selected from the group consisting of: exhaust gas temperature, catalyst bed temperature, accelerator position, mass flow of exhaust gas in the system, manifold vacuum, ignition timing, engine speed, lambda value of the exhaust gas, the quantity of fuel injected in the engine, the position of the exhaust gas recirculation (EGR) valve and thereby the amount of EGR and boost pressure.
- metering is controlled in response to the quantity of nitrogen oxides in the exhaust gas determined either directly (using a suitable NO x sensor) or indirectly, such as using pre-correlated look-up tables or maps—stored in the control means—correlating any one or more of the abovementioned inputs indicative of a condition of the engine with predicted NO x content of the exhaust gas.
- the control means can comprise a pre-programmed processor such as an electronic control unit (ECU).
- ECU electronice control unit
- the metering of the nitrogenous reductant can be arranged such that 60% to 200% of theoretical ammonia is present in exhaust gas entering the SCR catalyst calculated at 1:1 NH 3 /NO and 4:3 NH 3 /NO 2 .
- an oxidation catalyst for oxidising nitrogen monoxide in the exhaust gas to nitrogen dioxide can be located upstream of a point of metering the nitrogenous reductant into the exhaust gas.
- the oxidation catalyst is adapted to yield a gas stream entering the SCR zeolite catalyst having a ratio of NO to NO 2 of from about 4:1 to about 1:3 by volume, e.g. at an exhaust gas temperature at oxidation catalyst inlet of 250° C. to 450° C.
- the oxidation catalyst can include at least one platinum group metal (or some combination of these), such as platinum, palladium, or rhodium, coated on a flow-through monolith substrate.
- the at least one platinum group metal is platinum, palladium or a combination of both platinum and palladium.
- the platinum group metal can be supported on a high surface area washcoat component such as alumina, a zeolite such as an aluminosilicate zeolite, silica, non-zeolite silica alumina, ceria, zirconia, titania or a mixed or composite oxide containing both ceria and zirconia.
- a suitable filter substrate is located between the oxidation catalyst and the zeolite catalyst.
- Filter substrates can be selected from any of those mentioned above, e.g. wall flow filters.
- the filter is catalysed, e.g. with an oxidation catalyst of the kind discussed above, preferably the point of metering nitrogenous reductant is located between the filter and the zeolite catalyst.
- the means for metering nitrogenous reductant can be located between the oxidation catalyst and the filter. It will be appreciated that this arrangement is disclosed in WO 99/39809.
- the zeolite catalyst for use in the present invention is coated on a filter located downstream of the oxidation catalyst.
- the filter includes the zeolite catalyst for use in the present invention
- the point of metering the nitrogenous reductant is preferably located between the oxidation catalyst and the filter.
- control means meters nitrogenous reductant into the flowing exhaust gas, only when the exhaust gas temperature is at least 100° C., for example only when the exhaust gas temperature is from 150° C. to 750° C.
- a vehicular lean-burn engine comprising an exhaust system according to the present invention.
- the vehicular lean burn internal combustion engine can be a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- FIG. 1 is a graph showing NO x conversion (at a gas hourly space velocity of 30,000 hr ⁇ 1 ) comparing transition metal-containing aluminosilicate catalysts with a transition metal-containing aluminophosphate/small pore zeolite catalyst after relatively moderate lean hydrothermal ageing performed on a laboratory reactor;
- FIG. 2 is a graph showing N 2 O formation in the test shown in FIG. 1 ;
- FIG. 3 is a graph showing NO x conversion (at a gas hourly space velocity of 100,000 hr ⁇ 1 ) comparing Cu/Beta zeolite and Cu/SAPO-34 catalysts with a transition metal-containing aluminophosphate/small pore zeolite catalyst after relatively moderate lean hydrothermal ageing performed on a laboratory reactor;
- FIG. 4 is a graph showing NO x conversion (at a gas hourly space velocity of 30,000 hr ⁇ 1 ) comparing transition metal-containing aluminosilicate catalysts with a transition metal-containing aluminophosphate/small pore zeolite catalyst after relatively severe lean hydrothermal ageing performed on a laboratory reactor;
- FIG. 5 is a graph showing NO conversion for fresh Cu/Zeolite catalysts
- FIG. 6 is a graph showing NO conversion for aged Cu/Zeolite catalysts
- FIG. 7 is a graph showing N 2 O formation for fresh Cu/Zeolite catalysts of FIG. 5 ;
- FIG. 8 is a graph showing N 2 O formation for aged Cu/Zeolite catalysts of FIG. 6 ;
- FIG. 9 is a graph showing the effect of adding HC species to Cu/zeolite catalysts during NH 3 SCR at 300° C.
- FIG. 10 is a graph showing hydrocarbon breakthrough following addition of hydrocarbon species to Cu/zeolite catalysts during NH 3 SCR at 300° C.;
- FIG. 11 is a graph showing the adsorption profiles of n-octane at 150° C. flowing through the Cu zeolite catalysts;
- FIG. 12 is a graph of the temperature programmed desorption (TPD) of HC species to Cu/zeolite catalysts after HC adsorption at 150° C.;
- FIG. 13 is a graph similar to FIG. 6 comparing NO x conversion activity for aged Cu/Sigma-1, Cu-SAPO-34, Cu/SSZ-13 and Cu/Beta;
- FIG. 14 is a graph similar to FIG. 8 comparing N 2 O formation for the aged Cu/zeolite catalysts of FIG. 13 ;
- FIG. 15 is a graph similar to FIG. 13 comparing NO x conversion activity for aged Cu/ZSM-34, Cu/SAPO-34, Cu/SSZ-13 and Cu/Beta catalysts;
- FIG. 16 is a graph comparing the NO x conversion activity of fresh and aged Cu-SAPO-34 and Cu/SSZ-13 catalysts
- FIG. 17 is a graph comparing the NO x conversion activity of fresh samples of Cu/SAPO-34 with a Cu/naturally occurring chabazite type material
- FIG. 18 is a bar chart comparing the NO x conversion activity of fresh Cu/SAPO-34 with that of two fresh Cu/naturally occurring chabazite type materials at two temperature data points;
- FIG. 19 is a bar chart comparing the NO conversion activity of aged Cu/Beta, Cu/SAPO-34, Fe/SAPO-34 and Fe/SSZ-13 catalysts at two temperature data points;
- FIG. 20 is a bar chart comparing the hydrocarbon inhibition effect of introducing n-octane into a feed gas for fresh Fe/Beta and Fe/SSZ-13 catalysts;
- FIG. 21 is a graph showing hydrocarbon breakthrough following the introduction of n-octane in the experiment of FIG. 20 ;
- FIG. 22 is a bar chart comparing the effect on NO x conversion activity for a fresh Fe/SSZ-13 catalyst of using 100% NO as a component of the feed gas with using 1:1 NO:NO 2 ;
- FIG. 23 is a schematic diagram of an embodiment of an exhaust system according to the present invention.
- FIG. 23 is a schematic diagram of an embodiment of an exhaust system according to the present invention, wherein diesel engine 12 comprises an exhaust system 10 according to the present invention comprising an exhaust line 14 for conveying an exhaust gas from the engine to atmosphere via tailpipe 15 .
- an exhaust line 14 for conveying an exhaust gas from the engine to atmosphere via tailpipe 15 .
- a platinum or platinum/palladium NO oxidation catalyst 16 coated on a ceramic flow-through substrate monolith.
- a ceramic wall-flow filter 18 Located downstream of oxidation catalyst 16 in the exhaust system is .
- An iron/small pore zeolite SCR catalyst 20 also coated on a ceramic flow-through substrate monolith is disposed downstream of the wall-flow filter 18 .
- An NH 3 oxidation clean-up or slip catalyst 21 is coated on a downstream end of the SCR catalyst monolith substrate.
- the NH 3 slip catalyst can be coated on a separate substrate located downstream of the SCR catalyst.
- Means (injector 22 ) is provided for introducing nitrogenous reductant fluid (urea 26 ) from reservoir 24 into exhaust gas carried in the exhaust line 14 .
- Injector 22 is controlled using valve 28 , which valve is in turn controlled by electronic control unit 30 (valve control represented by dotted line).
- Electronic control unit 30 receives closed loop feedback control input from a NO x sensor 32 located downstream of the SCR catalyst:
- the oxidation catalyst 16 passively oxidises NO to NO 2 , particulate matter is trapped on filter 18 and is combusted in NO 2 .
- NO x emitted from the filter is reduced on the SCR catalyst 20 in the presence of ammonia derived from urea injected via injector 22 . It is also understood that mixtures of NO and NO 2 in the total NO x content of the exhaust gas entering the SCR catalyst (about 1:1) are desirable for NO x reduction on a SCR catalyst as they are more readily reduced to N 2 .
- the NH 3 slip catalyst 21 oxidises NH 3 that would otherwise be exhausted to atmosphere. A similar arrangement is described in WO 99/39809.
- Beta zeolite, SAPO-34 or SSZ-13 was NH 4 + ion exchanged in a solution of NH 4 NO 3 , then filtered. The resulting material was added to an aqueous solution of Fe(NO 3 ) 3 with stirring. The slurry was filtered, then washed and dried. The procedure can be repeated to achieve a desired metal loading. The final product was calcined.
- SAPO-34, SSZ-13, Sigma-1, ZSM-34, Nu-3, ZSM-5 and Beta zeolites were NH 4 + ion exchanged in a solution of NH 4 NO 3 , then filtered. The resulting materials were added to an aqueous solution of Cu(NO 3 ) 2 with stirring. The slurry was filtered, then washed and dried. The procedure can be repeated to achieve a desired metal loading. The final product was calcined.
- the catalysts obtained by means of Examples 1 and 2 were lean hydrothermally aged at 750° C. for 24 hours in 4.5% H 2 O/air mixture.
- the catalysts obtained by means of Examples 1 and 2 were severely lean hydrothermally aged at 900° C. for 1 hour in 4.5% H 2 O/air mixture.
- the catalysts obtained by means of Examples 1 and 2 were severely lean hydrothermally aged at 900° C. for a period of 3 hours in 4.5% H 2 O/air mixture.
- FIG. 1 compares the NQ reduction efficiencies of a Cu/SAPO-34 catalyst against a series of aluminosilicate zeolite supported transition metal catalysts (Cu/ZSM-5, Cu/Beta and Fe/Beta) after a mild aging. The result clearly demonstrates that Cu/SAPO-34 has improved low temperature activity for SCR of NO x with NH 3 .
- FIG. 2 compares the N 2 O formation over the catalysts. It is clear that the Cu/SAPO-34 catalyst produced lower levels of N 2 O compared to the other two Cu-containing catalysts.
- the Fe-containing catalyst also exhibits low N 2 O formation, but as shown in FIG. 1 , the Fe catalyst is less active at lower temperatures.
- FIG. 3 compares the NO x reduction efficiencies of a Cu/SAPO-34 catalyst against a Cu/Beta catalyst tested at a higher gas hourly space velocity.
- the Cu/SAPO-34 catalyst is significantly more active than the Cu-Beta catalyst at low reaction temperatures.
- FIG. 4 shows the NO x reduction efficiencies of a Cu/SAPO-34 catalyst and a series of aluminosilicate zeolite supported transition metal catalysts (Cu/ZSM-5, Cu/Beta, and Fe/Beta) after severe lean hydrothermal aging.
- Cu/SAPO-34 catalyst has superior hydrothermal stability.
- N 2 O formation measured for the fresh and aged catalysts is shown in FIGS. 7 and 8 , respectively.
- FIG. 9 compares the effect of HC on Cu/zeolite catalysts where SAPO-34 and Nu-3 are used as examples of small pore zeolite materials.
- ZSM-5 and Beta zeolite are used as examples of a medium and large pore zeolite, respectively.
- Samples were exposed to different HC species (propene, n-octane and toluene) during NH 3 SCR reaction at 300° C.
- FIG. 10 shows the corresponding HC breakthrough following HC addition.
- FIG. 11 shows the adsorption profiles of n-octane at 150° C. flowing through different Cu/zeolite catalysts. HC breakthrough is observed almost immediately with Cu supported on the small pore zeolites SAPO-34 and Nu-3, whereas significant HC uptake is observed with Cu on Beta zeolite and ZSM-5.
- FIG. 12 shows the subsequent HC desorption profile as a function of increasing temperature and confirms that large amounts of HC are stored when Cu is supported on the larger pore zeolites, whereas very little HC is stored when small pore zeolites are employed.
- Cu/SSZ-13, Cu/SAPO-34, Cu/Sigma-1 and Cu/Beta prepared according to Example 2 were aged in the manner described in Example 4 and tested according to Example 6.
- the results are shown in FIG. 13 , from which it can be seen that the NO x conversion activity of each of the severely lean hydrothermally aged Cu/SSZ-13, Cu/SAPO-34 and Cu/Sigma-1 samples is significantly better than that of the corresponding large-pore zeolite, Cu/Beta.
- FIG. 14 it can be seen that Cu/Beta generates significantly more N 2 O than the Cu/small-pore zeolite catalysts.
- Cu/ZSM-34, Cu/SAPO-34, Cu/SSZ-13 and Cu/Beta prepared according to Example 2 were aged in the manner described in Example 3 and tested according to Example 6. The results are shown in FIG. 15 , from which it can be seen that the NO x conversion activity of each of the lean hydrothermally aged Cu/SSZ-13, Cu/SAPO-34 and Cu/ZSM-34 samples is significantly better than that of the corresponding large-pore zeolite, Cu/Beta.
- FIG. 17 is a bar chart comparing the NO x conversion activity of two fresh Cu/naturally occurring chabazite type materials prepared according to Example 2 at two temperature data points (200° C. and 300° C.), a first chabazite material having a SAR of about 4 and a second chabazite material of SAR about 7.
- Cu/SAPO-34 and Cu/Beta were prepared according to Example 2.
- Fe/SAPO-34 and Fe/SSZ-13 were prepared according to Example 1. The samples were aged according to Example 4 and the aged samples were tested according to Example 6. The NO x activity at the 350° C. and 450° C. data points is shown in FIG. 19 , from which it can be seen that the Cu/SAPO-34, Fe/SAPO-34 and Fe/SSZ-13 samples exhibit comparable or better performance than the Cu/Beta reference.
- Fe/SSZ-13 and Fe/Beta prepared according to Example 1 were tested fresh as described in Example 7, wherein n-octane (to replicate the effects of unburned diesel fuel in a exhaust gas) was introduced at 8 minutes into the test.
- the results shown in FIG. 20 compare the NOx conversion activity at 8 minutes into the test, but before n-octane was introduced into the feed gas (HC ⁇ ) and 8 minutes after n-octane was introduced into the feed gas (HC+). It can be seen that the Fe/Beta activity dramatically reduces following n-octane introduction compared with Fe/SSZ-13. We believe that this effect results from coking of the catalyst.
- Fe/SSZ-13 prepared according to Example 1 was tested fresh, i.e. without ageing, in the manner described in Example 6. The test was then repeated using identical conditions, except in that the 350 ppm NO was replaced with a mixture of 175 ppm NO and 175 ppm NO 2 , i.e. 350 ppm total NO x . The results from both tests are shown in FIG. 22 , from which the significant improvement obtainable from increasing the NO 2 content of NO x in the feed gas to 1:1 can be seen.
- the NO:NO 2 ratio can be adjusted by oxidising NO in an exhaust gas, e.g. of a diesel engine, using a suitable oxidation catalyst located upstream of the NH 3 —SCR catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Processes For Solid Components From Exhaust (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/164,150 US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
US13/567,703 US20120301380A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,698 US20120301379A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,705 US8906820B2 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite SCR catalysts |
US13/567,692 US20120301378A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US14/552,161 US20150078968A1 (en) | 2007-04-26 | 2014-11-24 | Transition metal/zeolite scr catalysts |
US14/587,709 US20150118115A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,653 US20150118121A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,793 US20150110682A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,613 US20150118114A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US15/252,376 US20160367939A1 (en) | 2007-04-26 | 2016-08-31 | Transition metal/zeolite scr catalysts |
US15/991,565 US11478748B2 (en) | 2007-04-26 | 2018-05-29 | Transition metal/zeolite SCR catalysts |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBPCT/GB2007/050216 | 2007-04-26 | ||
GBPCT/GB2007/050216 | 2007-04-26 | ||
PCT/GB2008/001451 WO2008132452A2 (fr) | 2007-04-26 | 2008-04-24 | Catalyseurs de scr en métal de transition/zéolite |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GBPCT/GB2007/050216 Continuation | 2007-04-26 | 2007-04-26 | |
PCT/GB2008/001451 A-371-Of-International WO2008132452A2 (fr) | 2007-04-26 | 2008-04-24 | Catalyseurs de scr en métal de transition/zéolite |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US98759311A Continuation | 2007-04-26 | 2011-01-10 | |
US13/164,150 Continuation US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100290963A1 true US20100290963A1 (en) | 2010-11-18 |
Family
ID=38814668
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/597,707 Abandoned US20100290963A1 (en) | 2007-04-26 | 2008-04-24 | Transition metal / zeolite scr catalysts |
US13/164,150 Active 2028-06-22 US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
US13/567,698 Abandoned US20120301379A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,705 Active US8906820B2 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite SCR catalysts |
US13/567,692 Abandoned US20120301378A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,703 Abandoned US20120301380A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US14/552,161 Abandoned US20150078968A1 (en) | 2007-04-26 | 2014-11-24 | Transition metal/zeolite scr catalysts |
US14/587,613 Abandoned US20150118114A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,653 Abandoned US20150118121A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,793 Abandoned US20150110682A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,709 Abandoned US20150118115A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US15/252,376 Abandoned US20160367939A1 (en) | 2007-04-26 | 2016-08-31 | Transition metal/zeolite scr catalysts |
US15/991,565 Active US11478748B2 (en) | 2007-04-26 | 2018-05-29 | Transition metal/zeolite SCR catalysts |
US17/931,415 Active US12064727B2 (en) | 2007-04-26 | 2022-09-12 | Transition metal/zeolite SCR catalysts |
Family Applications After (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/164,150 Active 2028-06-22 US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
US13/567,698 Abandoned US20120301379A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,705 Active US8906820B2 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite SCR catalysts |
US13/567,692 Abandoned US20120301378A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US13/567,703 Abandoned US20120301380A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
US14/552,161 Abandoned US20150078968A1 (en) | 2007-04-26 | 2014-11-24 | Transition metal/zeolite scr catalysts |
US14/587,613 Abandoned US20150118114A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,653 Abandoned US20150118121A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,793 Abandoned US20150110682A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US14/587,709 Abandoned US20150118115A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
US15/252,376 Abandoned US20160367939A1 (en) | 2007-04-26 | 2016-08-31 | Transition metal/zeolite scr catalysts |
US15/991,565 Active US11478748B2 (en) | 2007-04-26 | 2018-05-29 | Transition metal/zeolite SCR catalysts |
US17/931,415 Active US12064727B2 (en) | 2007-04-26 | 2022-09-12 | Transition metal/zeolite SCR catalysts |
Country Status (12)
Country | Link |
---|---|
US (14) | US20100290963A1 (fr) |
EP (12) | EP2786796B1 (fr) |
JP (5) | JP5777339B2 (fr) |
KR (4) | KR101965943B1 (fr) |
CN (3) | CN102974391A (fr) |
BR (1) | BRPI0810133B1 (fr) |
CA (2) | CA2685009C (fr) |
DK (7) | DK2517776T3 (fr) |
MX (1) | MX2009011443A (fr) |
MY (1) | MY180938A (fr) |
RU (1) | RU2506989C2 (fr) |
WO (1) | WO2008132452A2 (fr) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090196812A1 (en) * | 2008-01-31 | 2009-08-06 | Basf Catalysts Llc | Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure |
US20090285737A1 (en) * | 2007-02-27 | 2009-11-19 | Basf Catalysts Llc | Copper CHA Zeolite Catalysts |
US20100267548A1 (en) * | 2009-04-17 | 2010-10-21 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
US20110011067A1 (en) * | 2009-07-14 | 2011-01-20 | Gm Global Technology Operations, Inc. | Ash Filter, Exhaust Gas Treatment System Incorporating the Same and Method of Using the Same |
US20110020204A1 (en) * | 2008-11-06 | 2011-01-27 | Basf Catalysts Llc | Chabazite Zeolite Catalysts Having Low Silica to Alumina Ratios |
US20110056187A1 (en) * | 2008-05-07 | 2011-03-10 | Umicore Ag & Co. Kg | Method for decreasing nitrogen oxides in hydrocarbon-containing exhaust gases using an scr catalyst based on a molecular sieve |
US20110085942A1 (en) * | 2009-10-09 | 2011-04-14 | Ibiden Co., Ltd. | Honeycomb filter and urea scr device |
US20110116982A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structure and exhaust gas converter |
US20110116983A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structure and exhaust gas converter |
US20110116989A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structural body and exhaust gas conversion apparatus |
US20110165051A1 (en) * | 2009-12-18 | 2011-07-07 | Basf Corporation | Process Of Direct Copper Exchange Into Na+-Form Of Chabazite Molecular Sieve, And Catalysts, Systems And Methods |
US20110165052A1 (en) * | 2009-12-18 | 2011-07-07 | Basf Corporation | Process for Preparation of Copper Containing Molecular Sieves With the CHA Structure, Catalysts, Systems and Methods |
US20110173950A1 (en) * | 2009-04-03 | 2011-07-21 | Basf Catalysts Llc | Emissions Treatment System with Ammonia-Generating and SCR Catalysts |
US20110182791A1 (en) * | 2011-04-08 | 2011-07-28 | Johnson Matthey Public Limited Company | Catalysts for the reduction of ammonia emission from rich-burn exhaust |
US20110207598A1 (en) * | 2009-12-18 | 2011-08-25 | Jgc Catalysts And Chemicals Ltd. | Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same |
US20120121486A1 (en) * | 2010-02-01 | 2012-05-17 | Johnson Matthey Public Limited Company | Filter comprising combined soot oxidation and nh3-scr catalyst |
US20120185144A1 (en) * | 2011-01-13 | 2012-07-19 | Samuel David Draper | Stoichiometric exhaust gas recirculation and related combustion control |
EP2495032A1 (fr) * | 2011-03-03 | 2012-09-05 | Umicore Ag & Co. Kg | Catalyseur SCR doté d'une résistance aux hydrocarbures améliorée |
WO2012166833A1 (fr) | 2011-05-31 | 2012-12-06 | Johnson Matthey Public Limited Company | Filtre catalytique double fonction |
EP2651556A1 (fr) * | 2010-12-16 | 2013-10-23 | Umicore AG & Co. KG | Catalyseur à base de cuivre-chabazite ayant une activité catalytique améliorée pour la réduction d'oxydes d'azote |
US8603432B2 (en) | 2007-04-26 | 2013-12-10 | Paul Joseph Andersen | Transition metal/zeolite SCR catalysts |
US8735311B2 (en) | 2007-02-27 | 2014-05-27 | Basf Corporation | Copper CHA zeolite catalysts |
US20140154175A1 (en) * | 2011-12-02 | 2014-06-05 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
US20140186228A1 (en) * | 2009-02-26 | 2014-07-03 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
US20140298773A1 (en) * | 2011-08-26 | 2014-10-09 | J.C. Bamford Excavators | Engine system |
US8911697B2 (en) | 2011-03-03 | 2014-12-16 | Umicore Ag & Co. Kg | Catalytically active material and catalytic converter for the selective catalytic reduction of nitrogen oxides |
US8956992B2 (en) | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
US9138731B2 (en) | 2011-08-03 | 2015-09-22 | Johnson Matthey Public Limited Company | Extruded honeycomb catalyst |
JP2016005831A (ja) * | 2014-05-30 | 2016-01-14 | トヨタ自動車株式会社 | 排ガス浄化用触媒の製造方法 |
JP2016516565A (ja) * | 2013-03-15 | 2016-06-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガスを処理するための触媒 |
US20160296920A1 (en) * | 2015-04-13 | 2016-10-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification catalyst |
US20160375429A1 (en) * | 2015-06-28 | 2016-12-29 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter having a membrane |
DE102016118542A1 (de) | 2015-09-29 | 2017-03-30 | Johnson Matthey Public Limited Company | Einen russkatalysator und einen scr-katalysator aufweisendes katalytisches filter |
US20170291135A1 (en) * | 2015-01-30 | 2017-10-12 | Ngk Insulators, Ltd. | Separation membrane structure and nitrogen concentration reduction method |
US10001053B2 (en) | 2008-06-27 | 2018-06-19 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
US10226762B1 (en) * | 2011-06-17 | 2019-03-12 | Johnson Matthey Public Limited Company | Alumina binders for SCR catalysts |
CN110292944A (zh) * | 2019-07-31 | 2019-10-01 | 北京工业大学 | 一种超宽温窗scr脱硝催化剂及其制备方法 |
US20190299198A1 (en) * | 2012-08-17 | 2019-10-03 | Johnson Matthey Public Limited Company | ZEOLITE PROMOTED V/TiW CATALYSTS |
US20190351399A1 (en) * | 2016-11-18 | 2019-11-21 | Umicore Ag & Co. Kg | Crystalline Zeolites with ERI/CHA Intergrowth Framework Type |
CN111437875A (zh) * | 2020-03-24 | 2020-07-24 | 武汉科技大学 | 一种具有宽温度范围的铈铁分子筛基催化剂及其制备方法 |
US10744496B2 (en) * | 2016-07-22 | 2020-08-18 | Johnson Matthey Public Limited Company | Catalyst binders for filter substrates |
US10828626B2 (en) * | 2017-03-31 | 2020-11-10 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
US10882033B2 (en) | 2017-11-27 | 2021-01-05 | N.E. Chemcat Corporation | Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite |
CN112169830A (zh) * | 2020-10-16 | 2021-01-05 | 万华化学集团股份有限公司 | 一种碱性金属氧化物@zsm-5催化剂的制备方法、由其制备的催化剂及应用 |
US11179707B2 (en) | 2017-03-31 | 2021-11-23 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
CN114433201A (zh) * | 2020-11-04 | 2022-05-06 | 现代自动车株式会社 | Nox存储催化剂及其制备方法 |
US11351524B2 (en) | 2017-10-03 | 2022-06-07 | N.E. Chemcat Corporation | Zeolite with rare earth element-substituted framework and method for producing same, and NOx adsorber, selective catalytic reduction catalyst and automobile exhaust gas catalyst comprising same |
CN115066294A (zh) * | 2019-10-16 | 2022-09-16 | 庄信万丰股份有限公司 | 分区涂覆的、氨氧化(amox)和一氧化氮氧化两用的复合氧化催化剂 |
Families Citing this family (230)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8715618B2 (en) | 2008-05-21 | 2014-05-06 | Basf Se | Process for the direct synthesis of Cu containing zeolites having CHA structure |
JP5549839B2 (ja) * | 2008-08-19 | 2014-07-16 | 東ソー株式会社 | 高耐熱性β型ゼオライト及びそれを用いたSCR触媒 |
GB2464478A (en) | 2008-10-15 | 2010-04-21 | Johnson Matthey Plc | Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment |
US8524185B2 (en) | 2008-11-03 | 2013-09-03 | Basf Corporation | Integrated SCR and AMOx catalyst systems |
EP2380663A4 (fr) * | 2009-01-22 | 2017-05-10 | Mitsubishi Plastics, Inc. | Catalyseur pour éliminer les oxydes d'azote et son procédé de fabrication |
US8512657B2 (en) * | 2009-02-26 | 2013-08-20 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
DE102010027883A1 (de) | 2009-04-17 | 2011-03-31 | Johnson Matthey Public Ltd., Co. | Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess |
EP2269733A1 (fr) | 2009-06-08 | 2011-01-05 | Basf Se | Procédé pour la synthèse directe de cuivre contenant du silicoaluminophosphate (cu-sapo-34) |
CN102548658B (zh) * | 2009-08-27 | 2016-01-20 | 东曹株式会社 | 高耐热水性scr催化剂及其制造方法 |
DE102009040352A1 (de) | 2009-09-05 | 2011-03-17 | Johnson Matthey Catalysts (Germany) Gmbh | Verfahren zur Herstellung eines SCR aktiven Zeolith-Katalysators sowie SCR aktiver Zeolith-Katalysator |
US8246922B2 (en) * | 2009-10-02 | 2012-08-21 | Basf Corporation | Four-way diesel catalysts and methods of use |
KR20120086711A (ko) * | 2009-10-14 | 2012-08-03 | 바스프 코포레이션 | NOx의 선택적 환원을 위한 구리 함유 레빈 분자체 |
JP5563952B2 (ja) * | 2009-11-19 | 2014-07-30 | イビデン株式会社 | ハニカム構造体及び排ガス浄化装置 |
JP5815220B2 (ja) * | 2009-11-19 | 2015-11-17 | イビデン株式会社 | ハニカム構造体及び排ガス浄化装置 |
US8409546B2 (en) | 2009-11-24 | 2013-04-02 | Basf Se | Process for the preparation of zeolites having B-CHA structure |
CN106276952A (zh) | 2009-11-24 | 2017-01-04 | 巴斯夫欧洲公司 | 制备具有cha结构的沸石的方法 |
GB2475740B (en) | 2009-11-30 | 2017-06-07 | Johnson Matthey Plc | Catalysts for treating transient NOx emissions |
RU2587078C2 (ru) * | 2009-12-18 | 2016-06-10 | Басф Се | Железосодержащий цеолит, способ получения железосодержащих цеолитов и способ каталитического восстановления оксидов азота |
KR101718574B1 (ko) | 2009-12-24 | 2017-04-04 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 차량용 포지티브 점화 내연 기관 엔진을 위한 배기 시스템 |
DE102010007626A1 (de) | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse |
GB201003784D0 (en) * | 2010-03-08 | 2010-04-21 | Johnson Matthey Plc | Improvement in control OPF emissions |
WO2011112949A1 (fr) | 2010-03-11 | 2011-09-15 | Johnson Matthey Public Limited Company | Supports à tamis moléculaire désordonné pour la réduction catalytique sélective de nox |
EP2555866B1 (fr) * | 2010-04-08 | 2019-10-09 | Basf Se | Catalyseur comprenant les zéolithes Cu-CHA et Fe-MFI et procédé DE TRAITEMENT DE NOX DANS DES COURANTS GAZEUX |
US9352307B2 (en) * | 2010-04-08 | 2016-05-31 | Basf Corporation | Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams |
GB201100595D0 (en) | 2010-06-02 | 2011-03-02 | Johnson Matthey Plc | Filtration improvements |
BR112013001031A2 (pt) | 2010-07-15 | 2016-05-24 | Basf Se | material zeolítico ofretita (off) e/ou erionita (eri), zsm-34 contendo cobre, catalisador, processo para a preparação do mesmo, uso de catalisador, sistema de tratamento de gás de exaustão, e, método para reduzir seletivamente óxidos de nitrogênio nox |
US9289756B2 (en) * | 2010-07-15 | 2016-03-22 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
US9221015B2 (en) * | 2010-07-15 | 2015-12-29 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
US20120014866A1 (en) * | 2010-07-15 | 2012-01-19 | Ivor Bull | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
KR20130041943A (ko) * | 2010-07-15 | 2013-04-25 | 바스프 에스이 | 질소 산화물의 선택적인 환원을 위한 구리 함유 zsm-34, 오프레타이트 및/또는 에리오나이트 제올라이트 물질 |
WO2012007874A1 (fr) * | 2010-07-15 | 2012-01-19 | Basf Se | Cuivre contenant zsm-34, de l'offrétite et/ou de la matière zéolithique de type érionite utilisé pour la réduction sélective de nox |
JP5573453B2 (ja) * | 2010-07-21 | 2014-08-20 | 三菱樹脂株式会社 | 窒素酸化物浄化用触媒及びその製造方法 |
US8987162B2 (en) | 2010-08-13 | 2015-03-24 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst |
US8987161B2 (en) | 2010-08-13 | 2015-03-24 | Ut-Battelle, Llc | Zeolite-based SCR catalysts and their use in diesel engine emission treatment |
JP5756714B2 (ja) * | 2010-09-02 | 2015-07-29 | イビデン株式会社 | シリコアルミノリン酸塩、ハニカム構造体及び排ガス浄化装置 |
EP3103979B1 (fr) * | 2010-09-13 | 2018-01-03 | Umicore AG & Co. KG | Catalyseur destiné à supprimer des oxydes d'azote des gaz d'echappement de moteurs diesel |
US8568677B2 (en) | 2010-10-12 | 2013-10-29 | Basf Se | P/S-TM-comprising zeolites for decomposition of N2O |
BR112013008621A2 (pt) * | 2010-10-12 | 2016-06-21 | Basf Se | uso de um catalisador de zeólito, e, processo para reduzir o teor de óxidos de nitrogênio em um gás |
CN102451749A (zh) * | 2010-10-27 | 2012-05-16 | 中国科学院大连化学物理研究所 | 一种用于甲醇转化制烯烃的催化剂及其制备和应用 |
JP6450521B2 (ja) * | 2010-12-02 | 2019-01-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 金属含有ゼオライト触媒 |
EP2463028A1 (fr) | 2010-12-11 | 2012-06-13 | Umicore Ag & Co. Kg | Procédé de production de zéolites et zéotypes dopés en métal et application associée à l'élimination catalytique d'oxydes d'azote |
GB201021887D0 (en) | 2010-12-21 | 2011-02-02 | Johnson Matthey Plc | Oxidation catalyst for a lean burn internal combustion engine |
US20130281284A1 (en) | 2010-12-27 | 2013-10-24 | Mitsubishi Plastics, Inc. | Catalyst for nitrogen oxide removal |
US8617502B2 (en) | 2011-02-07 | 2013-12-31 | Cristal Usa Inc. | Ce containing, V-free mobile denox catalyst |
US20120134916A1 (en) | 2011-02-28 | 2012-05-31 | Fedeyko Joseph M | High-temperature scr catalyst |
GB201110850D0 (en) | 2011-03-04 | 2011-08-10 | Johnson Matthey Plc | Catalyst and mehtod of preparation |
JP2012215166A (ja) * | 2011-03-29 | 2012-11-08 | Ibiden Co Ltd | 排ガス浄化システム及び排ガス浄化方法 |
KR20140022043A (ko) | 2011-04-04 | 2014-02-21 | 피큐 코포레이션 | Fe-sapo-34 촉매 및 이의 제조 및 사용방법 |
US9174849B2 (en) * | 2011-08-25 | 2015-11-03 | Basf Corporation | Molecular sieve precursors and synthesis of molecular sieves |
US9999877B2 (en) * | 2011-10-05 | 2018-06-19 | Basf Se | Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams |
CN104066508B (zh) * | 2011-10-05 | 2018-02-06 | 巴斯夫欧洲公司 | Cu‑CHA/Fe‑BEA混合沸石催化剂和处理气流中的NOX的方法 |
JP5938819B2 (ja) | 2011-10-06 | 2016-06-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガス処理用酸化触媒 |
WO2013060341A1 (fr) * | 2011-10-24 | 2013-05-02 | Haldor Topsøe A/S | Composition de catalyseur s'utilisant dans la réduction catalytique sélective d'oxydes d'azote |
IN2014CN04885A (fr) * | 2011-12-01 | 2015-09-18 | Johnson Matthey Plc | |
CN104039702A (zh) * | 2011-12-02 | 2014-09-10 | Pq公司 | 稳定化的微孔结晶材料、其制备方法以及选择性催化还原NOx的用途 |
GB201200783D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Substrate monolith comprising SCR catalyst |
GB201200784D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Exhaust system for a lean-burn internal combustion engine including SCR catalyst |
GB201200781D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst |
GB2497597A (en) | 2011-12-12 | 2013-06-19 | Johnson Matthey Plc | A Catalysed Substrate Monolith with Two Wash-Coats |
US9126180B2 (en) * | 2012-01-31 | 2015-09-08 | Johnson Matthey Public Limited Company | Catalyst blends |
US9101877B2 (en) * | 2012-02-13 | 2015-08-11 | Siemens Energy, Inc. | Selective catalytic reduction system and process for control of NOx emissions in a sulfur-containing gas stream |
JP6163715B2 (ja) * | 2012-03-30 | 2017-07-19 | 三菱ケミカル株式会社 | ゼオライト膜複合体 |
JP6441789B2 (ja) * | 2012-04-11 | 2018-12-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 金属含有ゼオライト触媒 |
GB201207313D0 (en) | 2012-04-24 | 2012-06-13 | Johnson Matthey Plc | Filter substrate comprising three-way catalyst |
GB2513364B (en) | 2013-04-24 | 2019-06-19 | Johnson Matthey Plc | Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate |
EP2995790A1 (fr) * | 2012-04-27 | 2016-03-16 | Haldor Topsøe A/S | Système pour la purification de gaz d'échappement provenant d'un moteur à combustion interne |
JP6017020B2 (ja) | 2012-04-27 | 2016-10-26 | ハルドール・トプサー・アクチエゼルスカベット | 銅−ポリアミン錯体と追加の有機分子の組合せに基づくCu−SAPO−34の直接合成、およびその触媒的使用 |
CN102671691A (zh) * | 2012-05-28 | 2012-09-19 | 四川君和环保工程有限公司 | 一种低温scr脱硝催化剂、其制备方法及其应用 |
MX2015002165A (es) | 2012-08-24 | 2015-05-11 | Cristal Usa Inc | Materiales de soporte cataliticos, catalizadores, metodos para hacerlos y usos de los mismos. |
DE102012018629A1 (de) * | 2012-09-21 | 2014-03-27 | Clariant International Ltd. | Verfahren zur Reinigung von Abgas und zur Regenerierung eines Oxidationskatalysators |
CN104797337B (zh) * | 2012-09-28 | 2018-04-20 | 太平洋工业发展公司 | 在选择性催化还原中用作催化剂的氧化铝硅酸盐沸石‑型材料及其制造方法 |
RU2509599C1 (ru) * | 2012-10-01 | 2014-03-20 | Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") | Способ очистки воздуха от оксидов азота |
JP5873562B2 (ja) * | 2012-10-03 | 2016-03-01 | イビデン株式会社 | ハニカム構造体 |
BR112015008400B1 (pt) * | 2012-10-18 | 2021-01-19 | Johnson Matthey Public Limited Company | sistema para tratar gases de exaustão contendo nox de um motor, e, método para tratar uma corrente de gás de exaustão do motor contendo nox e fuligem |
KR102134127B1 (ko) * | 2012-10-19 | 2020-07-15 | 바스프 코포레이션 | 고온 scr 촉매로서의 8-고리 소공극 분자체 |
WO2014062952A1 (fr) * | 2012-10-19 | 2014-04-24 | Basf Corporation | Tamis moléculaire à pores fins de type 8 anneaux avec promoteur pour améliorer la performance à basse température |
RU2717953C2 (ru) * | 2012-10-19 | 2020-03-27 | Басф Корпорейшн | Смешанные каталитические композиции металл-мелкопористое молекулярное сито с 8-членными кольцами, каталитические устройства, системы и способы |
GB201220912D0 (en) | 2012-11-21 | 2013-01-02 | Johnson Matthey Plc | Oxidation catalyst for treating the exhaust gas of a compression ignition engine |
US8992869B2 (en) | 2012-12-20 | 2015-03-31 | Caterpillar Inc. | Ammonia oxidation catalyst system |
US9802182B2 (en) | 2013-03-13 | 2017-10-31 | Basf Corporation | Stabilized metal-exchanged SAPO material |
KR20150129851A (ko) | 2013-03-14 | 2015-11-20 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 배기가스를 처리하기 위한 촉매로서 알루미노실리케이트 또는 실리코알루미노포스페이트 분자 체/망간 팔면체 분자 체 |
CA2902836A1 (fr) | 2013-03-14 | 2014-10-02 | Basf Corporation | Systemes de catalyseur de reduction catalytique selective |
CN105073687B (zh) * | 2013-03-29 | 2017-04-12 | 日本碍子株式会社 | 磷酸铝‑金属氧化物接合体及其制造方法 |
DE102013005749A1 (de) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA Material für die SCR-Katalyse |
GB2512648B (en) | 2013-04-05 | 2018-06-20 | Johnson Matthey Plc | Filter substrate comprising three-way catalyst |
EP2988851B1 (fr) | 2013-04-24 | 2020-08-12 | Johnson Matthey Public Limited Company | Moteur à allumage commandé avec substrat filtrant comprenant une couche catalytique revêtant des zones |
US9403157B2 (en) | 2013-04-29 | 2016-08-02 | Ford Global Technologies, Llc | Three-way catalyst comprising mixture of nickel and copper |
GB2514177A (en) | 2013-05-17 | 2014-11-19 | Johnson Matthey Plc | Oxidation catalyst for a compression ignition engine |
US9687786B2 (en) * | 2013-05-31 | 2017-06-27 | Johnson Matthey Public Limited Company | Catalyzed filter for treating exhaust gas |
CN105247178B (zh) * | 2013-05-31 | 2018-09-14 | 庄信万丰股份有限公司 | 用于处理废气的经催化的过滤器 |
US9630146B2 (en) | 2013-06-03 | 2017-04-25 | Ford Global Technologies, Llc | Particulate filter containing a nickel-copper catalyst |
CN105283417A (zh) | 2013-06-14 | 2016-01-27 | 东曹株式会社 | Lev型沸石及其制造方法 |
GB2556231B (en) * | 2013-07-30 | 2019-04-03 | Johnson Matthey Plc | Ammonia slip catalyst |
WO2015018815A1 (fr) * | 2013-08-09 | 2015-02-12 | Basf Se | Procédé de conversion sans oxygène de méthane en éthylène sur des catalyseurs à base de zéolithe |
JP6204751B2 (ja) * | 2013-08-27 | 2017-09-27 | イビデン株式会社 | ハニカム触媒及び排ガス浄化装置 |
JP6245895B2 (ja) * | 2013-08-27 | 2017-12-13 | イビデン株式会社 | ハニカム触媒及び排ガス浄化装置 |
US20160199822A1 (en) | 2013-08-30 | 2016-07-14 | Otsuka Chemical Co., Ltd. | Exhaust gas purification filter and exhaust gas purification apparatus |
US9782761B2 (en) | 2013-10-03 | 2017-10-10 | Ford Global Technologies, Llc | Selective catalytic reduction catalyst |
RU2764725C2 (ru) | 2013-10-31 | 2022-01-19 | Джонсон Мэтти Паблик Лимитед Компани | Синтез цеолита типа aei |
US9283548B2 (en) | 2013-11-19 | 2016-03-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ceria-supported metal catalysts for the selective reduction of NOx |
GB2520776A (en) * | 2013-12-02 | 2015-06-03 | Johnson Matthey Plc | Wall-flow filter comprising catalytic washcoat |
CN104801338B (zh) * | 2013-12-02 | 2020-07-31 | 庄信万丰股份有限公司 | Aei沸石的合成 |
RU2675905C1 (ru) * | 2013-12-06 | 2018-12-25 | Джонсон Мэтти Паблик Лимитед Компани | ПАССИВНЫЙ АДСОРБЕНТ NOx, СОДЕРЖАЩИЙ БЛАГОРОДНЫЙ МЕТАЛЛ И МЕЛКОПОРИСТОЕ МОЛЕКУЛЯРНОЕ СИТО |
US20150231617A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING |
US20150231620A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING |
RU2016138282A (ru) * | 2014-02-28 | 2018-04-02 | Джонсон Мэтти Паблик Лимитед Компани | Катализаторы селективного каталитического восстановления, обладающие улучшенной эффективностью при низких температурах, и способы их изготовления и использования |
US9925492B2 (en) | 2014-03-24 | 2018-03-27 | Mellanox Technologies, Ltd. | Remote transactional memory |
KR102370137B1 (ko) * | 2014-03-24 | 2022-03-04 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | 배기가스 처리 방법 및 시스템 |
JP6204238B2 (ja) * | 2014-03-26 | 2017-09-27 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
EP3124435A4 (fr) * | 2014-03-26 | 2017-11-22 | Mitsubishi Chemical Corporation | Procédé de production d'une zéolite contenant un métal de transition, zéolite contenant un métal de transition obtenue en faisant appel au dit procédé, et catalyseur de purification de gaz d'échappement utilisant ladite zéolite |
DE102014205760A1 (de) | 2014-03-27 | 2015-10-01 | Johnson Matthey Public Limited Company | Verfahren zum Herstellen eines Katalysator sowie Katalysator |
DE102014205783A1 (de) * | 2014-03-27 | 2015-10-01 | Johnson Matthey Public Limited Company | Katalysator sowie Verfahren zum Herstellen eines Katalysator |
US20150290632A1 (en) * | 2014-04-09 | 2015-10-15 | Ford Global Technologies, Llc | IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION |
US9889437B2 (en) | 2015-04-15 | 2018-02-13 | Basf Corporation | Isomorphously substituted catalyst |
US9764313B2 (en) | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
US10850265B2 (en) | 2014-06-18 | 2020-12-01 | Basf Corporation | Molecular sieve catalyst compositions, catalytic composites, systems, and methods |
ES2554648B1 (es) | 2014-06-20 | 2016-09-08 | Consejo Superior De Investigaciones Científicas (Csic) | Material ITQ-55, procedimiento de preparación y uso |
WO2016020806A1 (fr) * | 2014-08-07 | 2016-02-11 | Johnson Matthey Public Limited Company | Catalyseur à zones pour le traitement des gaz d'échappement |
EP2985068A1 (fr) | 2014-08-13 | 2016-02-17 | Umicore AG & Co. KG | Système catalytique pour la réduction d'oxydes d'azote |
US9579603B2 (en) * | 2014-08-15 | 2017-02-28 | Johnson Matthey Public Limited Company | Zoned catalyst for treating exhaust gas |
CN104226361B (zh) * | 2014-09-01 | 2017-06-20 | 清华大学苏州汽车研究院(吴江) | 铁基scr催化剂及其制备方法 |
RU2723648C2 (ru) * | 2014-10-07 | 2020-06-17 | Джонсон Мэтти Паблик Лимитед Компани | Молекулярно-ситовый катализатор для очистки отработавшего газа |
CN104475152B (zh) * | 2014-10-09 | 2017-12-22 | 南开大学 | 用于氮氧化物氢气选择催化还原的催化剂及其应用 |
US10807082B2 (en) * | 2014-10-13 | 2020-10-20 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metals |
JP2017534447A (ja) * | 2014-10-30 | 2017-11-24 | ビーエーエスエフ コーポレーション | 混合金属型の大結晶モレキュラーシーブ触媒組成物、触媒物品、システムおよび方法 |
CN107106982B (zh) * | 2014-11-19 | 2021-03-02 | 庄信万丰股份有限公司 | 组合scr与pna用于低温排放控制 |
GB2538877B (en) * | 2014-12-08 | 2017-04-26 | Johnson Matthey Plc | Passive NOx adsorber |
CN107406265A (zh) | 2015-01-29 | 2017-11-28 | 庄信万丰股份有限公司 | 铁络合物直接引入sapo‑34(cha)类型材料中 |
GB2535466A (en) | 2015-02-16 | 2016-08-24 | Johnson Matthey Plc | Catalyst with stable nitric oxide (NO) oxidation performance |
GB2540832B (en) * | 2015-02-20 | 2019-04-17 | Johnson Matthey Plc | Bi-metal molecular sieve catalysts |
RU2701529C2 (ru) | 2015-02-27 | 2019-09-27 | Басф Корпорейшн | Система обработки выхлопного газа |
WO2016164027A1 (fr) | 2015-04-09 | 2016-10-13 | Hong-Xin Li | Matériau cristallin microporeux stabilisé, procédé de fabrication de celui-ci et utilisation pour la réduction catalytique sélective de nox |
CN104801335A (zh) * | 2015-04-11 | 2015-07-29 | 桂林理工大学 | 低温NH3还原NOx的Zr-Ce-Mn/ZSM-5复合氧化物催化剂及其制备方法 |
ES2586770B1 (es) | 2015-04-16 | 2017-08-14 | Consejo Superior De Investigaciones Científicas (Csic) | Método de síntesis directa del material cu-silicoaluminato con la estructura zeolítica aei, y sus aplicaciones catalíticas |
JP6796084B2 (ja) * | 2015-05-19 | 2020-12-02 | ビーエーエスエフ コーポレーション | パッシブ選択触媒還元に使用するための触媒スートフィルタ |
CN108698841B (zh) * | 2015-12-22 | 2023-01-17 | 巴斯夫公司 | 制备铁(iii)交换的沸石组合物的方法 |
JP6779498B2 (ja) * | 2016-01-22 | 2020-11-04 | 国立大学法人広島大学 | スズを含有するゼオライトおよびその製造方法 |
EP3411332B1 (fr) * | 2016-02-01 | 2021-03-10 | Umicore Ag & Co. Kg | Procédé de synthèse directe d'un catalyseur zéolithe aei contenant du fer |
RU2018131407A (ru) | 2016-02-03 | 2020-03-03 | Басф Корпорейшн | Шабазитный катализатор, совместно обмененный на медь и железо |
US10105691B2 (en) | 2016-03-31 | 2018-10-23 | Ford Global Technologies, Llc | Multiple zeolite hydrocarbon traps |
WO2017178576A1 (fr) * | 2016-04-13 | 2017-10-19 | Umicore Ag & Co. Kg | Filtre à particules pourvu d'un revêtement à effet scr |
US10092897B2 (en) * | 2016-04-20 | 2018-10-09 | Ford Global Technologies, Llc | Catalyst trap |
EP3452215B1 (fr) | 2016-05-03 | 2021-09-01 | Umicore AG & Co. KG | Catalyseur actif pour la réduction catalytique sélective |
JP6955814B2 (ja) | 2016-05-11 | 2021-10-27 | ビーエーエスエフ コーポレーション | 誘導加熱に対して適合された磁性材料を含む触媒組成物 |
GB201608643D0 (en) * | 2016-05-17 | 2016-06-29 | Thermo Fisher Scient Bremen | Elemental analysis system and method |
WO2017207969A1 (fr) * | 2016-05-31 | 2017-12-07 | Johnson Matthey Public Limited Company | Procédé et système d'échappement pour traiter des nox dans un gaz d'échappement provenant de sources d'émission fixes |
EP3281698A1 (fr) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Materiau scr actif |
EP3496854A1 (fr) | 2016-08-11 | 2019-06-19 | Umicore AG & Co. KG | Matériau actif scr présentant une stabilité thermique élevée |
WO2018054929A1 (fr) | 2016-09-20 | 2018-03-29 | Umicore Ag & Co. Kg | Filtre à particules diesel |
WO2018069199A1 (fr) | 2016-10-10 | 2018-04-19 | Umicore Ag & Co. Kg | Ensemble de catalyseurs |
KR101846914B1 (ko) * | 2016-10-21 | 2018-04-09 | 현대자동차 주식회사 | 촉매 및 촉매의 제조 방법 |
GB2591673B (en) | 2016-10-28 | 2021-11-17 | Johnson Matthey Plc | Catalytic wall-flow filter with partial surface coating |
JP7125391B2 (ja) * | 2016-10-31 | 2022-08-24 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 排ガス処理のための骨格外の鉄及び/又はマンガンを有するlta触媒 |
WO2018099964A1 (fr) * | 2016-11-30 | 2018-06-07 | Basf Se | Procédé de conversion de la monoéthanolamine en éthylènediamine utilisant une zéolite modifiée par du cuivre de la structure d'ossature de mor |
JP2020515752A (ja) * | 2016-12-01 | 2020-05-28 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | NOxの固定汚染源の排気システムにおける劣化したSCR触媒床の使用寿命を延ばす方法 |
KR101879695B1 (ko) * | 2016-12-02 | 2018-07-18 | 희성촉매 주식회사 | 2가 구리 이온들을 특정비율로 담지한 제올라이트, 이의 제조방법 및 이를 포함하는 촉매조성물 |
CN107497482A (zh) * | 2016-12-29 | 2017-12-22 | 廊坊市北辰创业树脂材料有限公司 | 一种新型低温复合催化剂的制备和应用 |
CN106799234B (zh) * | 2016-12-30 | 2019-07-05 | 包头稀土研究院 | 一种柴油车用稀土基scr催化剂及制备方法 |
EP3357558B1 (fr) | 2017-02-03 | 2019-06-26 | Umicore Ag & Co. Kg | Catalyseur pour la purification des effluents gazeux d'un moteur diesel |
GB2562160B (en) | 2017-03-20 | 2021-06-23 | Johnson Matthey Plc | Catalytic wall-flow filter with an ammonia slip catalyst |
GB201705241D0 (en) | 2017-03-31 | 2017-05-17 | Johnson Matthey Catalysts (Germany) Gmbh | Catalyst composition |
GB201705279D0 (en) | 2017-03-31 | 2017-05-17 | Johnson Matthey Plc | Selective catalytic reduction catalyst |
BR112019020841A2 (pt) * | 2017-04-04 | 2020-04-28 | Basf Corp | artigo catalítico de filtro de fluxo de parede monolítico, veículos, sistemas de tratamento de gases de escape e métodos para tratar uma corrente de escape |
CN108855079B (zh) * | 2017-05-11 | 2020-07-07 | 中国石油化工股份有限公司 | 一种烟气脱硝催化剂及其制备方法及脱硝工艺 |
CN107138174A (zh) * | 2017-06-23 | 2017-09-08 | 华娜 | 一种脱硝催化剂及其制备方法 |
WO2019014115A1 (fr) * | 2017-07-11 | 2019-01-17 | Shell Oil Company | Catalyseur et son procédé d'utilisation dans la conversion de nox et n2o |
KR102578657B1 (ko) * | 2017-07-11 | 2023-09-15 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | 촉매 및 이의 사용 방법 |
CN109250729B (zh) * | 2017-07-12 | 2022-02-25 | 中国科学院大连化学物理研究所 | Cu-SAPO-34分子筛合成方法及合成的分子筛和应用 |
CN109422276B (zh) * | 2017-08-30 | 2022-10-18 | 中国科学院大连化学物理研究所 | 一种掺杂过渡金属的分子筛及其制备方法和应用 |
EP3450015A1 (fr) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Adsorbant passif d'oxyde d'azote à base de palladium et zéolithe pour le traitement de gaz d'échappement |
EP3449999A1 (fr) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Adsorbant passif d'hémioxyde d'azote |
US11141717B2 (en) | 2017-08-31 | 2021-10-12 | Umicore Ag & Co. Kg | Palladium/zeolite-based passive nitrogen oxide adsorber catalyst for purifying exhaust gas |
EP3450016A1 (fr) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Adsorbant passif d'oxyde d'azote à base de palladium et zéolithe pour le traitement de gaz d'échappement |
JP2020531241A (ja) | 2017-08-31 | 2020-11-05 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG | 排気ガスを浄化するための受動的窒素酸化物吸着剤としてのパラジウム/白金/ゼオライト系触媒の使用 |
DE102018121503A1 (de) | 2017-09-05 | 2019-03-07 | Umicore Ag & Co. Kg | Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter |
US10711674B2 (en) | 2017-10-20 | 2020-07-14 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
CN107649175B (zh) * | 2017-10-23 | 2020-11-03 | 上海歌通实业有限公司 | 一种Ga-Ge掺杂MnOx-SAPO分子筛催化剂的制备方法 |
CN109794284B (zh) * | 2017-11-17 | 2020-06-09 | 中国科学院大连化学物理研究所 | 一种表面富集金属的分子筛材料、其制备方法及应用 |
CN109833905A (zh) | 2017-11-29 | 2019-06-04 | 中国科学院大连化学物理研究所 | 分子筛催化剂及其制备方法和应用 |
CN108187655A (zh) * | 2017-12-27 | 2018-06-22 | 龙岩紫荆创新研究院 | 一种scr烟气脱硝催化剂、制备方法及其应用系统 |
EP3727685A4 (fr) | 2018-01-03 | 2021-08-25 | BASF Corporation | Tamis moléculaire en silicoaluminophosphate traité en surface |
US20200378286A1 (en) | 2018-01-05 | 2020-12-03 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
DE102018100833A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
DE102018100834A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
US10898889B2 (en) | 2018-01-23 | 2021-01-26 | Umicore Ag & Co. Kg | SCR catalyst and exhaust gas cleaning system |
US10456746B2 (en) | 2018-02-12 | 2019-10-29 | GM Global Technology Operations LLC | Selective catalytic reduction filter for reducing nitrous oxide formation and methods of using the same |
JP2019142753A (ja) * | 2018-02-22 | 2019-08-29 | いすゞ自動車株式会社 | Ssz−13及びssz−13の製造方法 |
JP7091768B2 (ja) * | 2018-03-27 | 2022-06-28 | 三菱ケミカル株式会社 | ゼオライト粉体 |
JP7494123B2 (ja) * | 2018-04-11 | 2024-06-03 | ビーエーエスエフ コーポレーション | 混合ゼオライト含有scr触媒 |
KR101963082B1 (ko) | 2018-05-15 | 2019-03-27 | 경북대학교 산학협력단 | 유기 약염기를 포함한 유기 열전소재 및 이를 이용한 유기 열전소자 |
US10850264B2 (en) * | 2018-05-18 | 2020-12-01 | Umicore Ag & Co. Kg | Hydrocarbon trap catalyst |
FR3081340B1 (fr) * | 2018-05-24 | 2020-06-26 | IFP Energies Nouvelles | Catalyseur comprenant un melange d'une zeolithe de type structural afx et d'une zeolithe de type structural bea et au moins un metal de transition pour la reduction selective de nox |
EP3613503A1 (fr) | 2018-08-22 | 2020-02-26 | Umicore Ag & Co. Kg | Adsorbeur d'oxyde d'azote passif |
EP3616792A1 (fr) | 2018-08-28 | 2020-03-04 | Umicore Ag & Co. Kg | Catalyseur de stockage d'oxydes d'azote |
BR112021003159A2 (pt) * | 2018-08-31 | 2021-05-11 | Johnson Matthey Public Limited Company | composição catalisadora, artigo catalisador, e, método para tratar um gás de escape |
WO2020089043A1 (fr) | 2018-11-02 | 2020-05-07 | Basf Corporation | Système de traitement d'échappement pour un moteur à combustion pauvre |
CN109433256A (zh) * | 2018-11-06 | 2019-03-08 | 广东工业大学 | 一种Cu/Mn-SSZ-39催化剂及其制备方法和应用 |
CN112672811B (zh) | 2018-11-16 | 2023-07-14 | 优美科股份公司及两合公司 | 低温氮氧化物吸附剂 |
US11278874B2 (en) | 2018-11-30 | 2022-03-22 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-framework metal into aluminosilicate zeolites |
EP3892837B1 (fr) | 2018-12-06 | 2024-03-20 | N.E. Chemcat Corporation | Dispositif de purge de gaz d'échappement |
WO2020144195A1 (fr) | 2019-01-08 | 2020-07-16 | Umicore Ag & Co. Kg | Adsorbeur passif d'oxyde d'azote intégrant une fonction de catalyse d'oxydation active |
GB201900484D0 (en) | 2019-01-14 | 2019-02-27 | Johnson Matthey Catalysts Germany Gmbh | Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites |
CN109794286B (zh) * | 2019-01-16 | 2021-12-28 | 山东国瓷功能材料股份有限公司 | 一种cha/aei复合脱硝催化剂及其制备方法与应用 |
US10703986B1 (en) | 2019-01-30 | 2020-07-07 | Exxonmobil Research And Engineering Company | Selective oxidation using encapsulated catalytic metal |
EP3695902B1 (fr) | 2019-02-18 | 2021-09-01 | Umicore Ag & Co. Kg | Catalyseur destiné à la réduction d'oxydes d'azote |
JP7194431B2 (ja) * | 2019-05-15 | 2022-12-22 | 株式会社 Acr | 触媒、触媒製品および触媒の製造方法 |
CN110026182A (zh) * | 2019-05-20 | 2019-07-19 | 中国人民大学 | 高抗硫中低温脱硝催化剂及其制备与应用 |
KR20210029943A (ko) | 2019-09-09 | 2021-03-17 | 현대자동차주식회사 | 고성능 질소산화물 저감용 제올라이트 및 이의 제조방법 그리고 이를 이용한 촉매 |
EP3791955A1 (fr) | 2019-09-10 | 2021-03-17 | Umicore Ag & Co. Kg | Matériau catalytique scr contenant une zéolite au cuivre et cuivre/alumine, procédé de traitement de gaz d'échappement avec ce matériau et procédé de fabrication de ce matériau |
JP7510430B2 (ja) | 2019-10-03 | 2024-07-03 | エヌ・イーケムキャット株式会社 | 排ガス浄化装置 |
KR20220082842A (ko) | 2019-10-21 | 2022-06-17 | 바스프 코포레이션 | 재생 효율이 향상된 저온 NOx 흡착제 |
EP3812034A1 (fr) | 2019-10-24 | 2021-04-28 | Dinex A/S | Catalyseur cuivre-scr durable |
EP3824988A1 (fr) | 2019-11-20 | 2021-05-26 | UMICORE AG & Co. KG | Catalyseur pour la réduction d'oxydes d'azote |
CN111013648A (zh) * | 2019-12-14 | 2020-04-17 | 中触媒新材料股份有限公司 | 一种具有cha/kfi结构共生复合分子筛及其制备方法和scr应用 |
EP3885040A1 (fr) | 2020-03-24 | 2021-09-29 | UMICORE AG & Co. KG | Catalyseur d'oxydation d'ammoniac |
US12048919B2 (en) * | 2020-03-31 | 2024-07-30 | Massachusetts Institute Of Technology | Catalytic compositions for the oxidation of substrates |
US20230356204A1 (en) | 2020-09-30 | 2023-11-09 | Umicore Ag & Co. Kg | Bismut containing dieseloxidation catalyst |
EP3978100A1 (fr) | 2020-09-30 | 2022-04-06 | UMICORE AG & Co. KG | Catalyseur d'oxydation diesel zoné contenant du bismuth |
JP2023546321A (ja) | 2020-10-14 | 2023-11-02 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | 受動的窒素酸化物吸着剤 |
KR20220069375A (ko) * | 2020-11-20 | 2022-05-27 | 현대자동차주식회사 | 탄화수소 산화용 제올라이트 촉매 및 이의 제조방법 |
CN112691700A (zh) * | 2020-12-28 | 2021-04-23 | 廊坊市北辰创业树脂材料股份有限公司 | 小孔Cu-ZK-5分子筛催化剂制备方法及其应用 |
CN112973777B (zh) * | 2021-02-23 | 2022-10-21 | 浙江浙能技术研究院有限公司 | 一种高效分解氧化亚氮的低Ir负载量催化剂及其制备方法 |
EP4063003A1 (fr) | 2021-03-23 | 2022-09-28 | UMICORE AG & Co. KG | Filtre pour le post-traitement de gaz d'échappement de moteurs à combustion interne |
WO2023067134A1 (fr) | 2021-10-22 | 2023-04-27 | Johnson Matthey Catalysts (Germany) Gmbh | Procédé et article de catalyseur |
KR20230073794A (ko) | 2021-11-19 | 2023-05-26 | 한국세라믹기술원 | 결정성 제올라이트가 담지된 탈질촉매 및 그의 제조 방법 |
CN114505079B (zh) * | 2022-04-20 | 2022-06-24 | 山东万达环保科技有限公司 | 一种低温锰基scr脱硝催化剂的制备方法及其在烟气脱硝中的应用 |
CN114713243B (zh) * | 2022-04-29 | 2024-05-31 | 辽宁科隆精细化工股份有限公司 | 一种低温高效高抗硫长时间稳定scr脱硝催化剂及其制备方法 |
KR102660953B1 (ko) * | 2022-06-30 | 2024-04-25 | 서울대학교산학협력단 | Lng 발전소 배기가스 처리용 이온 교환 제올라이트 촉매 |
KR20240061767A (ko) | 2022-11-01 | 2024-05-08 | 주식회사 에코앤드림 | Cu-CHA 제올라이트 촉매 |
DE102022130469A1 (de) | 2022-11-17 | 2024-05-23 | Umicore Ag & Co. Kg | Verfahren und Vorrichtung zum Herstellen eines Substrats für eine Abgasnachbehandlungseinrichtung |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895094A (en) * | 1974-01-28 | 1975-07-15 | Gulf Oil Corp | Process for selective reduction of oxides of nitrogen |
US4220632A (en) * | 1974-09-10 | 1980-09-02 | The United States Of America As Represented By The United States Department Of Energy | Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia |
US4297328A (en) * | 1979-09-28 | 1981-10-27 | Union Carbide Corporation | Three-way catalytic process for gaseous streams |
US4440871A (en) * | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
US4567029A (en) * | 1983-07-15 | 1986-01-28 | Union Carbide Corporation | Crystalline metal aluminophosphates |
US4644538A (en) * | 1982-06-16 | 1987-02-17 | The Boeing Company | Autopilot flight director system |
US4735927A (en) * | 1985-10-22 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
US4735930A (en) * | 1986-02-18 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
US4861743A (en) * | 1987-11-25 | 1989-08-29 | Uop | Process for the production of molecular sieves |
US4867954A (en) * | 1988-04-07 | 1989-09-19 | Uop | Catalytic reduction of nitrogen oxides |
US4874590A (en) * | 1988-04-07 | 1989-10-17 | Uop | Catalytic reduction of nitrogen oxides |
US4961917A (en) * | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
US5024981A (en) * | 1989-04-20 | 1991-06-18 | Engelhard Corporation | Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same |
US5041270A (en) * | 1986-10-17 | 1991-08-20 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of purifying exhaust gases |
US5233117A (en) * | 1991-02-28 | 1993-08-03 | Uop | Methanol conversion processes using syocatalysts |
US5417949A (en) * | 1993-08-25 | 1995-05-23 | Mobil Oil Corporation | NOx abatement process |
US5589147A (en) * | 1994-07-07 | 1996-12-31 | Mobil Oil Corporation | Catalytic system for the reducton of nitrogen oxides |
US5958818A (en) * | 1997-04-14 | 1999-09-28 | Bulldog Technologies U.S.A., Inc. | Alkaline phosphate-activated clay/zeolite catalysts |
US6514470B1 (en) * | 1999-10-28 | 2003-02-04 | The Regents Of The University Of California | Catalysts for lean burn engine exhaust abatement |
US20040258594A1 (en) * | 1998-02-06 | 2004-12-23 | Anders Andreasson | Catalytic reduction of NOx |
US20070244341A1 (en) * | 2006-04-17 | 2007-10-18 | Kremer Sebastien P B | Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions |
US20080241060A1 (en) * | 2007-03-26 | 2008-10-02 | Hong-Xin Li | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
Family Cites Families (182)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US798813A (en) † | 1904-06-13 | 1905-09-05 | Samuel James Macfarren | Steering-gear for automobiles. |
US3459676A (en) † | 1966-06-14 | 1969-08-05 | Mobil Oil Corp | Synthetic zeolite and method for preparing the same |
DE10020170C1 (de) | 2000-04-25 | 2001-09-06 | Emitec Emissionstechnologie | Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement |
JPS51147470A (en) * | 1975-06-12 | 1976-12-17 | Toa Nenryo Kogyo Kk | A process for catalytic reduction of nitrogen oxides |
US4086186A (en) * | 1976-11-04 | 1978-04-25 | Mobil Oil Corporation | Crystalline zeolite ZSM-34 and method of preparing the same |
US4187199A (en) * | 1977-02-25 | 1980-02-05 | Chevron Research Company | Hydrocarbon conversion catalyst |
US4210521A (en) * | 1977-05-04 | 1980-07-01 | Mobil Oil Corporation | Catalytic upgrading of refractory hydrocarbon stocks |
US4471150A (en) * | 1981-12-30 | 1984-09-11 | Mobil Oil Corporation | Catalysts for light olefin production |
US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
EP0115031A1 (fr) * | 1982-12-23 | 1984-08-08 | Union Carbide Corporation | Tamis moléculaire en ferrosilicate |
EP0233642A3 (fr) * | 1986-02-18 | 1989-09-06 | W.R. Grace & Co.-Conn. | Procédé d'hydrogénation de composés organiques |
US4798813A (en) | 1986-07-04 | 1989-01-17 | Babcock-Hitachi Kabushiki Kaisha | Catalyst for removing nitrogen oxide and process for producing the catalyst |
US4912776A (en) | 1987-03-23 | 1990-03-27 | W. R. Grace & Co.-Conn. | Process for removal of NOx from fluid streams |
JPS63294950A (ja) * | 1987-05-27 | 1988-12-01 | Cataler Kogyo Kk | 窒素酸化物還元触媒 |
DE3723072A1 (de) * | 1987-07-11 | 1989-01-19 | Basf Ag | Verfahren zur entfernung von stickoxiden aus abgasen |
JP2732614B2 (ja) * | 1988-10-18 | 1998-03-30 | バブコツク日立株式会社 | 排ガス浄化用触媒および排ガス浄化方法 |
FR2645141B1 (fr) | 1989-03-31 | 1992-05-29 | Elf France | Procede de synthese de precurseurs de tamis moleculaires du type silicoaluminophosphate, precurseurs obtenus et leur application a l'obtention desdits tamis moleculaires |
JP2533371B2 (ja) | 1989-05-01 | 1996-09-11 | 株式会社豊田中央研究所 | 排気ガス浄化用触媒 |
US5477014A (en) | 1989-07-28 | 1995-12-19 | Uop | Muffler device for internal combustion engines |
JPH07106300B2 (ja) * | 1989-12-08 | 1995-11-15 | 財団法人産業創造研究所 | 燃焼排ガス中の窒素酸化物除去法 |
US6063723A (en) * | 1990-03-02 | 2000-05-16 | Chevron U.S.A. Inc. | Sulfur tolerant zeolite catalyst |
US5277145A (en) | 1990-07-10 | 1994-01-11 | C. C. Omega Chemical, Inc. | Transom for a boat |
JP2645614B2 (ja) * | 1991-01-08 | 1997-08-25 | 財団法人石油産業活性化センター | 窒素酸化物を含む排ガスの浄化方法 |
EP0494388B1 (fr) | 1991-01-08 | 1995-12-06 | Agency Of Industrial Science And Technology | Procédé pour l'élimination d'oxydes d'azote des gaz d'échappement |
GB9101456D0 (en) | 1991-01-23 | 1991-03-06 | Exxon Chemical Patents Inc | Process for producing substantially binder-free zeolite |
US5348643A (en) * | 1991-03-12 | 1994-09-20 | Mobil Oil Corp. | Catalytic conversion with improved catalyst |
JPH0557194A (ja) | 1991-07-06 | 1993-03-09 | Toyota Motor Corp | 排気ガス浄化用触媒の製造方法 |
JP2887984B2 (ja) | 1991-09-20 | 1999-05-10 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US5171553A (en) * | 1991-11-08 | 1992-12-15 | Air Products And Chemicals, Inc. | Catalytic decomposition of N2 O |
JP3303341B2 (ja) | 1992-07-30 | 2002-07-22 | 三菱化学株式会社 | ベータ型ゼオライトの製造方法 |
US5316753A (en) * | 1992-10-09 | 1994-05-31 | Chevron Research And Technology Company | Zeolite SSZ-35 |
US6248684B1 (en) | 1992-11-19 | 2001-06-19 | Englehard Corporation | Zeolite-containing oxidation catalyst and method of use |
JP3435652B2 (ja) | 1992-11-19 | 2003-08-11 | エンゲルハード・コーポレーシヨン | エンジン排気ガス流れの処理方法および装置 |
KR950704598A (ko) | 1992-11-19 | 1995-11-20 | 스티븐 아이. 밀러 | 엔진 배기 가스 스트림 처리 방법 및 장치(Method and Apparatus for Treating an Engine Exhaust Gas Stream) |
US5346612A (en) * | 1993-02-19 | 1994-09-13 | Amoco Corporation | Distillate hydrogenation utilizing a catalyst comprising platinum, palladium, and a beta zeolite support |
EP0624393B1 (fr) | 1993-05-10 | 2001-08-16 | Sakai Chemical Industry Co., Ltd., | Catalyseur pour la réduction catalytique d'oxydes d'azote |
JPH06320006A (ja) * | 1993-05-10 | 1994-11-22 | Sekiyu Sangyo Kasseika Center | 窒素酸化物接触還元用触媒 |
EP0728033B1 (fr) | 1993-11-09 | 1999-04-21 | Union Carbide Chemicals & Plastics Technology Corporation | Absorption de mercaptans |
KR960000008A (ko) | 1994-06-13 | 1996-01-25 | 전상정 | 육묘메트 제조방법 |
EP0935498A1 (fr) * | 1994-07-07 | 1999-08-18 | Mobil Oil Corporation | Systeme catalytique de reduction d'oxydes azotes |
US5520895A (en) * | 1994-07-07 | 1996-05-28 | Mobil Oil Corporation | Method for the reduction of nitrogen oxides using iron impregnated zeolites |
US5482692A (en) * | 1994-07-07 | 1996-01-09 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides using a ferrocene impregnated zeolite catalyst |
JPH0824656A (ja) * | 1994-07-22 | 1996-01-30 | Mazda Motor Corp | 排気ガス浄化用触媒 |
US6080377A (en) * | 1995-04-27 | 2000-06-27 | Engelhard Corporation | Method of abating NOx and a catalytic material therefor |
JP3375790B2 (ja) | 1995-06-23 | 2003-02-10 | 日本碍子株式会社 | 排ガス浄化システム及び排ガス浄化方法 |
US6471924B1 (en) * | 1995-07-12 | 2002-10-29 | Engelhard Corporation | Method and apparatus for NOx abatement in lean gaseous streams |
US6133185A (en) | 1995-11-09 | 2000-10-17 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
JPH10180041A (ja) | 1996-12-20 | 1998-07-07 | Ngk Insulators Ltd | 排ガス浄化用触媒及び排ガス浄化システム |
US5925800A (en) * | 1996-12-31 | 1999-07-20 | Exxon Chemical Patents Inc. | Conversion of oxygenates to hydrocarbons with monolith supported non-zeolitic molecular sieve catalysts |
US5897846A (en) | 1997-01-27 | 1999-04-27 | Asec Manufacturing | Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same |
DE19723950A1 (de) * | 1997-06-06 | 1998-12-10 | Basf Ag | Verfahren zur Oxidation einer mindestens eine C-C-Doppelbindung aufweisenden organischen Verbindung |
US6004527A (en) * | 1997-09-29 | 1999-12-21 | Abb Lummus Global Inc. | Method for making molecular sieves and novel molecular sieve compositions |
JPH11114413A (ja) | 1997-10-09 | 1999-04-27 | Ngk Insulators Ltd | 排ガス浄化用吸着材 |
US6162415A (en) | 1997-10-14 | 2000-12-19 | Exxon Chemical Patents Inc. | Synthesis of SAPO-44 |
WO1999028031A1 (fr) * | 1997-12-03 | 1999-06-10 | Exxon Chemical Patents Inc. | Catalyseurs comportant une zeolite partiellement revetue d'une deuxieme zeolite, et son emploi pour la conversion d'hydrocarbures |
DE69729757T2 (de) | 1997-12-10 | 2005-08-04 | Volvo Car Corp. | Poröses material, verfahren und anordnung zur katalytischen umsetzung von abgasen |
US5958370A (en) * | 1997-12-11 | 1999-09-28 | Chevron U.S.A. Inc. | Zeolite SSZ-39 |
US6346498B1 (en) * | 1997-12-19 | 2002-02-12 | Exxonmobil Oil Corporation | Zeolite catalysts having stabilized hydrogenation-dehydrogenation function |
GB9808876D0 (en) | 1998-04-28 | 1998-06-24 | Johnson Matthey Plc | Combatting air pollution |
WO1999056859A1 (fr) | 1998-05-07 | 1999-11-11 | Engelhard Corporation | Piege catalytique d'hydrocarbures et son procede de mise en application |
US6576203B2 (en) | 1998-06-29 | 2003-06-10 | Ngk Insulators, Ltd. | Reformer |
US6143681A (en) * | 1998-07-10 | 2000-11-07 | Northwestern University | NOx reduction catalyst |
CA2337628A1 (fr) * | 1998-07-29 | 2000-02-10 | Exxon Chemical Patents, Inc. | Tamis moleculaires a structure cristalline |
US20020014071A1 (en) * | 1998-10-01 | 2002-02-07 | Mari Lou Balmer | Catalytic plasma reduction of nox |
EP1005904A3 (fr) | 1998-10-30 | 2000-06-14 | The Boc Group, Inc. | Adsorbants et méthode de séparation par adsorption |
DE19854502A1 (de) | 1998-11-25 | 2000-05-31 | Siemens Ag | Katalysatorkörper und Verfahren zum Abbau von Stickoxiden |
KR100293531B1 (ko) | 1998-12-24 | 2001-10-26 | 윤덕용 | 이산화탄소로부터탄화수소생성을위한혼성촉매 |
FI107828B (fi) | 1999-05-18 | 2001-10-15 | Kemira Metalkat Oy | Dieselmoottoreiden pakokaasujen puhdistusjärjestelmä ja menetelmä dieselmoottoreiden pakokaasujen puhdistamiseksi |
US6787023B1 (en) * | 1999-05-20 | 2004-09-07 | Exxonmobil Chemical Patents Inc. | Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use |
AU5449400A (en) | 1999-05-27 | 2000-12-18 | Regents Of The University Of Michigan, The | Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making |
US6316683B1 (en) | 1999-06-07 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Protecting catalytic activity of a SAPO molecular sieve |
US6503863B2 (en) | 1999-06-07 | 2003-01-07 | Exxonmobil Chemical Patents, Inc. | Heat treating a molecular sieve and catalyst |
US6395674B1 (en) | 1999-06-07 | 2002-05-28 | Exxon Mobil Chemical Patents, Inc. | Heat treating a molecular sieve and catalyst |
JP4352516B2 (ja) * | 1999-08-03 | 2009-10-28 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US7084087B2 (en) * | 1999-09-07 | 2006-08-01 | Abb Lummus Global Inc. | Zeolite composite, method for making and catalytic application thereof |
JP4380859B2 (ja) * | 1999-11-29 | 2009-12-09 | 三菱瓦斯化学株式会社 | 触媒成型体 |
AU1607001A (en) * | 1999-12-15 | 2001-06-25 | Chevron U.S.A. Inc. | Zeolite ssz-50 |
ES2250035T3 (es) | 2000-03-01 | 2006-04-16 | UMICORE AG & CO. KG | Catalizador para la purificacion de los gases de escape de motores diesel y proceso para su preparacion. |
US6606856B1 (en) | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
JP2001280363A (ja) | 2000-03-29 | 2001-10-10 | Toyota Autom Loom Works Ltd | 動力伝達機構 |
AU2001252241A1 (en) * | 2000-04-03 | 2001-10-15 | Basf Aktiengesellschaft | Catalyst system for the decomposition of n2o |
DE10036476A1 (de) * | 2000-07-25 | 2002-02-07 | Basf Ag | Katalysatorsystem zur Zersetzung von N20 |
DE10020100A1 (de) | 2000-04-22 | 2001-10-31 | Dmc2 Degussa Metals Catalysts | Verfahren und Katalysator zur Reduktion von Stickoxiden |
US6448197B1 (en) * | 2000-07-13 | 2002-09-10 | Exxonmobil Chemical Patents Inc. | Method for making a metal containing small pore molecular sieve catalyst |
US6576796B1 (en) * | 2000-06-28 | 2003-06-10 | Basf Aktiengesellschaft | Process for the preparation of alkylamines |
US6689709B1 (en) | 2000-11-15 | 2004-02-10 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
DE10059520A1 (de) | 2000-11-30 | 2001-05-17 | Univ Karlsruhe | Verfahren zur Abtrennung von Zeolith-Kristallen aus Flüssigkeiten |
US20050096214A1 (en) | 2001-03-01 | 2005-05-05 | Janssen Marcel J. | Silicoaluminophosphate molecular sieve |
ATE373517T1 (de) * | 2001-06-25 | 2007-10-15 | Exxonmobil Chem Patents Inc | Herstellung einer molsiebkatalysatorzusammensetzung und verwendung bei umwandlungsverfahren |
US6440894B1 (en) | 2001-06-25 | 2002-08-27 | Exxonmobil Chemical Patents, Inc. | Methods of removing halogen from non-zeolitic molecular sieve catalysts |
US20030007901A1 (en) * | 2001-07-03 | 2003-01-09 | John Hoard | Method and system for reduction of NOx in automotive vehicle exhaust systems |
JP5189236B2 (ja) | 2001-07-25 | 2013-04-24 | 日本碍子株式会社 | 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体 |
US6759358B2 (en) † | 2001-08-21 | 2004-07-06 | Sud-Chemie Inc. | Method for washcoating a catalytic material onto a monolithic structure |
US6709644B2 (en) | 2001-08-30 | 2004-03-23 | Chevron U.S.A. Inc. | Small crystallite zeolite CHA |
US6914026B2 (en) | 2001-09-07 | 2005-07-05 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
US6508860B1 (en) * | 2001-09-21 | 2003-01-21 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas separation membrane with organosilicon-treated molecular sieve |
DE10150480B4 (de) * | 2001-10-16 | 2019-11-28 | Exxonmobil Chemical Patents Inc. | Verfahren zur Aufbereitung eines olefinhaltigen Produktstromes |
US6601385B2 (en) * | 2001-10-17 | 2003-08-05 | Fleetguard, Inc. | Impactor for selective catalytic reduction system |
US7014827B2 (en) | 2001-10-23 | 2006-03-21 | Machteld Maria Mertens | Synthesis of silicoaluminophosphates |
US6696032B2 (en) | 2001-11-29 | 2004-02-24 | Exxonmobil Chemical Patents Inc. | Process for manufacturing a silicoaluminophosphate molecular sieve |
US7264785B2 (en) * | 2001-12-20 | 2007-09-04 | Johnson Matthey Public Limited Company | Selective catalytic reduction |
US6685905B2 (en) † | 2001-12-21 | 2004-02-03 | Exxonmobil Chemical Patents Inc. | Silicoaluminophosphate molecular sieves |
WO2003059849A1 (fr) * | 2002-01-03 | 2003-07-24 | Exxonmobil Chemical Patents Inc. | Stabilisation de catalyseurs acides |
US6995111B2 (en) * | 2002-02-28 | 2006-02-07 | Exxonmobil Chemical Patents Inc. | Molecular sieve compositions, catalysts thereof, their making and use in conversion processes |
GB0214968D0 (en) | 2002-06-28 | 2002-08-07 | Johnson Matthey Plc | Zeolite-based NH SCR catalyst |
DE10232406A1 (de) | 2002-07-17 | 2004-01-29 | Basf Ag | Verfahren zur Herstellung eines zeolithhaltigen Feststoffes |
US20040064007A1 (en) * | 2002-09-30 | 2004-04-01 | Beech James H. | Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses |
US6717025B1 (en) * | 2002-11-15 | 2004-04-06 | Exxonmobil Chemical Patents Inc | Process for removing oxygenates from an olefinic stream |
US6928806B2 (en) | 2002-11-21 | 2005-08-16 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
JP2004188388A (ja) * | 2002-12-13 | 2004-07-08 | Babcock Hitachi Kk | ディーゼル排ガス浄化用フィルタおよびその製造方法 |
US7122492B2 (en) | 2003-02-05 | 2006-10-17 | Exxonmobil Chemical Patents Inc. | Combined cracking and selective hydrogen combustion for catalytic cracking |
WO2004074411A1 (fr) * | 2003-02-18 | 2004-09-02 | Japan Gas Synthesize, Ltd. | Procede de production de gaz de petrole liquefie |
US7049261B2 (en) | 2003-02-27 | 2006-05-23 | General Motors Corporation | Zeolite catalyst and preparation process for NOx reduction |
DE10315593B4 (de) | 2003-04-05 | 2005-12-22 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
JP4413520B2 (ja) | 2003-04-17 | 2010-02-10 | 株式会社アイシーティー | 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法 |
US6897179B2 (en) * | 2003-06-13 | 2005-05-24 | Exxonmobil Chemical Patents Inc. | Method of protecting SAPO molecular sieve from loss of catalytic activity |
CA2527006A1 (fr) | 2003-06-18 | 2004-12-29 | Johnson Matthey Public Limited Company | Procedes de commande d'ajout de reducteur |
US20040262197A1 (en) * | 2003-06-24 | 2004-12-30 | Mcgregor Duane R. | Reduction of NOx in low CO partial-burn operation using full burn regenerator additives |
JP2005047721A (ja) * | 2003-07-29 | 2005-02-24 | Mitsubishi Chemicals Corp | アルミノフォスフェート類の製造方法 |
US7229597B2 (en) † | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
US7253005B2 (en) * | 2003-08-29 | 2007-08-07 | Exxonmobil Chemical Patents Inc. | Catalyst sampling system |
CN100475699C (zh) | 2003-12-23 | 2009-04-08 | 埃克森美孚化学专利公司 | Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用 |
CN100577564C (zh) | 2003-12-23 | 2010-01-06 | 埃克森美孚化学专利公司 | 菱沸石型分子筛、其合成及其在含氧化合物转化成烯烃中的应用 |
US7192987B2 (en) * | 2004-03-05 | 2007-03-20 | Exxonmobil Chemical Patents Inc. | Processes for making methanol streams and uses for the streams |
GB0405015D0 (en) * | 2004-03-05 | 2004-04-07 | Johnson Matthey Plc | Method of loading a monolith with catalyst and/or washcoat |
DE102004013164B4 (de) | 2004-03-17 | 2006-10-12 | GM Global Technology Operations, Inc., Detroit | Katalysator zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen |
DE102004013165A1 (de) * | 2004-03-17 | 2005-10-06 | Adam Opel Ag | Verfahren zur Verbesserung der Wirksamkeit der NOx-Reduktion in Kraftfahrzeugen |
NL1026207C2 (nl) | 2004-05-17 | 2005-11-21 | Stichting Energie | Werkwijze voor de decompositie van N2O, katalysator daarvoor en bereiding van deze katalysator. |
KR101126063B1 (ko) * | 2004-07-15 | 2012-03-29 | 니키 유니바사루 가부시키가이샤 | 유기 질소 화합물 함유 배기가스의 정화용 촉매 및 동배기가스의 정화 방법 |
JP5354903B2 (ja) * | 2004-07-27 | 2013-11-27 | ロス アラモス ナショナル セキュリティ,エルエルシー | 触媒および窒素酸化物の還元方法 |
US20060035782A1 (en) * | 2004-08-12 | 2006-02-16 | Ford Global Technologies, Llc | PROCESSING METHODS AND FORMULATIONS TO ENHANCE STABILITY OF LEAN-NOx-TRAP CATALYSTS BASED ON ALKALI- AND ALKALINE-EARTH-METAL COMPOUNDS |
US7481983B2 (en) | 2004-08-23 | 2009-01-27 | Basf Catalysts Llc | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia |
JP4662334B2 (ja) | 2004-11-04 | 2011-03-30 | 三菱ふそうトラック・バス株式会社 | 内燃機関の排気浄化装置 |
US20060115403A1 (en) | 2004-11-29 | 2006-06-01 | Chevron U.S.A. Inc. | Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA |
WO2006057760A1 (fr) * | 2004-11-29 | 2006-06-01 | Chevron U.S.A. Inc. | Tamis moleculaire a haute teneur en silice a structure cha |
CA2589269A1 (fr) * | 2004-11-30 | 2006-06-08 | Chevron U.S.A. Inc. | Tamis moleculaire a structure cristalline de la chabazite, contenant du bore |
KR101406649B1 (ko) | 2004-12-17 | 2014-07-18 | 우수이 고쿠사이 산교 가부시키가이샤 | 디젤 엔진의 배기 가스용 전기식 처리 방법 및 그 장치 |
DE102005010221A1 (de) | 2005-03-05 | 2006-09-07 | S&B Industrial Minerals Gmbh | Verfahren zum Herstellen eines katalytisch wirkenden Minerals auf Basis eines Gerüstsilikates |
JP5752875B2 (ja) * | 2005-03-24 | 2015-07-22 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | FCCUにおけるNOx排気を制御する方法 |
WO2006103754A1 (fr) | 2005-03-30 | 2006-10-05 | Sued-Chemie Catalysts Japan, Inc. | Catalyseur de decomposition de l'ammoniac et procede de decomposition de l'ammoniac au moyen dudit catalyseur |
BRPI0610326B1 (pt) * | 2005-04-27 | 2015-07-21 | Grace W R & Co | Composições e processos para reduzir emissões de nox durante o craqueamento catalítico de fluído. |
US7879295B2 (en) | 2005-06-30 | 2011-02-01 | General Electric Company | Conversion system for reducing NOx emissions |
WO2007004774A1 (fr) | 2005-07-06 | 2007-01-11 | Heesung Catalysts Corporation | Catalyseur d'oxydation de nh3 et appareil pour traiter une emission ou un residu de nh3 |
US20070012032A1 (en) * | 2005-07-12 | 2007-01-18 | Eaton Corporation | Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction |
US8048402B2 (en) | 2005-08-18 | 2011-11-01 | Exxonmobil Chemical Patents Inc. | Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins |
JP4698359B2 (ja) | 2005-09-22 | 2011-06-08 | Udトラックス株式会社 | 排気浄化装置 |
JP2007100508A (ja) | 2005-09-30 | 2007-04-19 | Bosch Corp | 内燃機関の排気浄化装置、及び内燃機関の排気浄化方法 |
US7678955B2 (en) | 2005-10-13 | 2010-03-16 | Exxonmobil Chemical Patents Inc | Porous composite materials having micro and meso/macroporosity |
US7807122B2 (en) * | 2005-11-02 | 2010-10-05 | Exxonmobil Chemical Patents Inc. | Metalloaluminophosphate molecular sieves, their synthesis and use |
BRPI0619944B8 (pt) * | 2005-12-14 | 2018-03-20 | Basf Catalysts Llc | método para preparar um catalisador de zeólito promovido por metal, catalisador de zeólito, e, método para reduzir nox em uma corrente de gás de exaustão ou gás combustível |
US20070149385A1 (en) | 2005-12-23 | 2007-06-28 | Ke Liu | Catalyst system for reducing nitrogen oxide emissions |
CN105111037A (zh) * | 2006-03-10 | 2015-12-02 | 埃克森美孚化学专利公司 | 降低分子筛低聚反应中的含氮路易斯碱 |
DE102006020158B4 (de) * | 2006-05-02 | 2009-04-09 | Argillon Gmbh | Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung |
US8383080B2 (en) | 2006-06-09 | 2013-02-26 | Exxonmobil Chemical Patents Inc. | Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins |
US20080003909A1 (en) | 2006-06-29 | 2008-01-03 | Hien Nguyen | Non-woven structures and methods of making the same |
CN101121532A (zh) | 2006-08-08 | 2008-02-13 | 中国科学院大连化学物理研究所 | 一种小孔磷硅铝分子筛的金属改性方法 |
DE102006037314A1 (de) * | 2006-08-08 | 2008-02-14 | Süd-Chemie AG | Verwendung eines Katalysators auf Basis von Zeolithen bei der Umsetzung von Oxygenaten zu niederen Olefinen sowie Verfahren hierzu |
US7829751B2 (en) * | 2006-10-27 | 2010-11-09 | Exxonmobil Chemical Patents, Inc. | Processes for converting oxygenates to olefins using aluminosilicate catalysts |
US7815712B2 (en) * | 2006-12-18 | 2010-10-19 | Uop Llc | Method of making high performance mixed matrix membranes using suspensions containing polymers and polymer stabilized molecular sieves |
WO2008094889A1 (fr) | 2007-01-31 | 2008-08-07 | Basf Catalysts Llc | Catalyseurs de gaz comprenant des nids d'abeilles à paroi poreuse |
CN105251359A (zh) * | 2007-02-27 | 2016-01-20 | 巴斯夫公司 | 用于选择性氨氧化的双功能催化剂 |
US7601662B2 (en) | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
US7998423B2 (en) * | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
US20100290963A1 (en) † | 2007-04-26 | 2010-11-18 | Johnson Matthey Public Limited Company | Transition metal / zeolite scr catalysts |
DE102007063604A1 (de) | 2007-05-24 | 2008-12-04 | Süd-Chemie AG | Metalldotierter Zeolith und Verfahren zu dessen Herstellung |
DE102007030895A1 (de) * | 2007-07-03 | 2009-01-08 | Süd-Chemie AG | Abgaskatalysator für Salzsäure-haltige Abgase |
CN101827654B (zh) | 2007-08-13 | 2013-11-06 | Pq公司 | 含铁铝硅酸盐沸石及其制备和使用方法 |
US20090056319A1 (en) * | 2007-09-04 | 2009-03-05 | Warner Jay V | Exhaust Aftertreatment System with Pre-Catalysis |
WO2009073099A1 (fr) | 2007-11-30 | 2009-06-11 | Corning Incorporated | Corps en nid d'abeille à base de zéolite |
US20090196812A1 (en) * | 2008-01-31 | 2009-08-06 | Basf Catalysts Llc | Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure |
JP5406284B2 (ja) * | 2008-06-11 | 2014-02-05 | スリーエム イノベイティブ プロパティズ カンパニー | 有機半導体の堆積のための混合溶媒系 |
US8225597B2 (en) * | 2008-09-30 | 2012-07-24 | Ford Global Technologies, Llc | System for reducing NOx in exhaust |
GB0903262D0 (en) | 2009-02-26 | 2009-04-08 | Johnson Matthey Plc | Filter |
RU2546666C2 (ru) | 2009-04-17 | 2015-04-10 | Джонсон Мэттей Паблик Лимитед Компани | Катализаторы восстановления оксидов азота из нанесенной на мелкопористое молекулярное сито меди, стойкие к старению при колебаниях состава бедной/богатой смеси |
DE102010007626A1 (de) † | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Kupferhaltiger Zeolith vom KFI-Typ und Verwendung in der SCR-Katalyse |
US8017097B1 (en) | 2010-03-26 | 2011-09-13 | Umicore Ag & Co. Kg | ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts |
US9221015B2 (en) | 2010-07-15 | 2015-12-29 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
US8956992B2 (en) * | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
RU2717953C2 (ru) * | 2012-10-19 | 2020-03-27 | Басф Корпорейшн | Смешанные каталитические композиции металл-мелкопористое молекулярное сито с 8-членными кольцами, каталитические устройства, системы и способы |
KR101833865B1 (ko) * | 2013-09-30 | 2018-03-02 | 지멘스 악티엔게젤샤프트 | 스테이지의 효율 특징값을 결정하는 터보머신의 작동 방법, 및 상기 방법을 실행하기 위한 디바이스를 갖는 터보머신 |
RU2701529C2 (ru) * | 2015-02-27 | 2019-09-27 | Басф Корпорейшн | Система обработки выхлопного газа |
US10711674B2 (en) * | 2017-10-20 | 2020-07-14 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
-
2008
- 2008-04-24 US US12/597,707 patent/US20100290963A1/en not_active Abandoned
- 2008-04-24 DK DK12177690T patent/DK2517776T3/da active
- 2008-04-24 CN CN201210469171XA patent/CN102974391A/zh active Pending
- 2008-04-24 EP EP14171510.2A patent/EP2786796B1/fr active Active
- 2008-04-24 DK DK12177681.9T patent/DK2517775T3/en active
- 2008-04-24 EP EP12177690.0A patent/EP2517776B2/fr active Active
- 2008-04-24 DK DK17189358.9T patent/DK3278863T3/da active
- 2008-04-24 CN CN2008800217622A patent/CN101730575B/zh active Active
- 2008-04-24 EP EP20120177699 patent/EP2517777A3/fr not_active Ceased
- 2008-04-24 CN CN201210468386XA patent/CN102974390A/zh active Pending
- 2008-04-24 EP EP17189358.9A patent/EP3278863B1/fr active Active
- 2008-04-24 DK DK14171510.2T patent/DK2786796T3/en active
- 2008-04-24 MX MX2009011443A patent/MX2009011443A/es active IP Right Grant
- 2008-04-24 CA CA2685009A patent/CA2685009C/fr active Active
- 2008-04-24 EP EP12177681.9A patent/EP2517775B1/fr active Active
- 2008-04-24 EP EP12177604.1A patent/EP2517773B2/fr active Active
- 2008-04-24 KR KR1020167033642A patent/KR101965943B1/ko active IP Right Grant
- 2008-04-24 DK DK17200920.1T patent/DK3300791T3/da active
- 2008-04-24 WO PCT/GB2008/001451 patent/WO2008132452A2/fr active Application Filing
- 2008-04-24 DK DK12177705.6T patent/DK2517778T4/da active
- 2008-04-24 MY MYPI20094495A patent/MY180938A/en unknown
- 2008-04-24 EP EP21204033.1A patent/EP3981502A1/fr active Pending
- 2008-04-24 EP EP20120177636 patent/EP2517774A3/fr not_active Ceased
- 2008-04-24 KR KR1020187011116A patent/KR20180043406A/ko not_active Application Discontinuation
- 2008-04-24 CA CA2939726A patent/CA2939726C/fr active Active
- 2008-04-24 RU RU2009143682/05A patent/RU2506989C2/ru active
- 2008-04-24 EP EP19206118.2A patent/EP3626329B1/fr active Active
- 2008-04-24 EP EP08762186.8A patent/EP2150328B1/fr active Active
- 2008-04-24 KR KR1020197000095A patent/KR102089480B1/ko active IP Right Grant
- 2008-04-24 EP EP17200920.1A patent/EP3300791B1/fr active Active
- 2008-04-24 KR KR1020097024528A patent/KR101589760B1/ko active IP Right Grant
- 2008-04-24 DK DK08762186.8T patent/DK2150328T5/da active
- 2008-04-24 JP JP2010504833A patent/JP5777339B2/ja active Active
- 2008-04-24 BR BRPI0810133-7A patent/BRPI0810133B1/pt active IP Right Grant
- 2008-04-24 EP EP12177705.6A patent/EP2517778B2/fr active Active
-
2011
- 2011-06-20 US US13/164,150 patent/US8603432B2/en active Active
-
2012
- 2012-08-06 US US13/567,698 patent/US20120301379A1/en not_active Abandoned
- 2012-08-06 US US13/567,705 patent/US8906820B2/en active Active
- 2012-08-06 US US13/567,692 patent/US20120301378A1/en not_active Abandoned
- 2012-08-06 US US13/567,703 patent/US20120301380A1/en not_active Abandoned
-
2014
- 2014-09-11 JP JP2014185086A patent/JP6053734B2/ja active Active
- 2014-11-24 US US14/552,161 patent/US20150078968A1/en not_active Abandoned
- 2014-12-31 US US14/587,613 patent/US20150118114A1/en not_active Abandoned
- 2014-12-31 US US14/587,653 patent/US20150118121A1/en not_active Abandoned
- 2014-12-31 US US14/587,793 patent/US20150110682A1/en not_active Abandoned
- 2014-12-31 US US14/587,709 patent/US20150118115A1/en not_active Abandoned
-
2016
- 2016-04-06 JP JP2016076435A patent/JP6387039B2/ja active Active
- 2016-08-31 US US15/252,376 patent/US20160367939A1/en not_active Abandoned
- 2016-09-26 JP JP2016187204A patent/JP6822812B2/ja active Active
-
2018
- 2018-05-29 US US15/991,565 patent/US11478748B2/en active Active
- 2018-11-27 JP JP2018220918A patent/JP6855432B2/ja active Active
-
2022
- 2022-09-12 US US17/931,415 patent/US12064727B2/en active Active
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3895094A (en) * | 1974-01-28 | 1975-07-15 | Gulf Oil Corp | Process for selective reduction of oxides of nitrogen |
US4220632A (en) * | 1974-09-10 | 1980-09-02 | The United States Of America As Represented By The United States Department Of Energy | Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia |
US4297328A (en) * | 1979-09-28 | 1981-10-27 | Union Carbide Corporation | Three-way catalytic process for gaseous streams |
US4644538A (en) * | 1982-06-16 | 1987-02-17 | The Boeing Company | Autopilot flight director system |
US4440871A (en) * | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
US4567029A (en) * | 1983-07-15 | 1986-01-28 | Union Carbide Corporation | Crystalline metal aluminophosphates |
US4735927A (en) * | 1985-10-22 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
US4735930A (en) * | 1986-02-18 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
US5041270A (en) * | 1986-10-17 | 1991-08-20 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Method of purifying exhaust gases |
US4861743A (en) * | 1987-11-25 | 1989-08-29 | Uop | Process for the production of molecular sieves |
US4874590A (en) * | 1988-04-07 | 1989-10-17 | Uop | Catalytic reduction of nitrogen oxides |
US4867954A (en) * | 1988-04-07 | 1989-09-19 | Uop | Catalytic reduction of nitrogen oxides |
US4961917A (en) * | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
US5024981A (en) * | 1989-04-20 | 1991-06-18 | Engelhard Corporation | Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same |
US5233117A (en) * | 1991-02-28 | 1993-08-03 | Uop | Methanol conversion processes using syocatalysts |
US5417949A (en) * | 1993-08-25 | 1995-05-23 | Mobil Oil Corporation | NOx abatement process |
US5589147A (en) * | 1994-07-07 | 1996-12-31 | Mobil Oil Corporation | Catalytic system for the reducton of nitrogen oxides |
US5958818A (en) * | 1997-04-14 | 1999-09-28 | Bulldog Technologies U.S.A., Inc. | Alkaline phosphate-activated clay/zeolite catalysts |
US20040258594A1 (en) * | 1998-02-06 | 2004-12-23 | Anders Andreasson | Catalytic reduction of NOx |
US6514470B1 (en) * | 1999-10-28 | 2003-02-04 | The Regents Of The University Of California | Catalysts for lean burn engine exhaust abatement |
US20070244341A1 (en) * | 2006-04-17 | 2007-10-18 | Kremer Sebastien P B | Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions |
US20080241060A1 (en) * | 2007-03-26 | 2008-10-02 | Hong-Xin Li | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11845067B2 (en) | 2007-02-27 | 2023-12-19 | Basf Corporation | Copper CHA zeolite catalysts |
US20090285737A1 (en) * | 2007-02-27 | 2009-11-19 | Basf Catalysts Llc | Copper CHA Zeolite Catalysts |
US9138732B2 (en) | 2007-02-27 | 2015-09-22 | Basf Corporation | Copper CHA zeolite catalysts |
US9162218B2 (en) | 2007-02-27 | 2015-10-20 | Basf Corporation | Copper CHA zeolite catalysts |
US10654031B2 (en) | 2007-02-27 | 2020-05-19 | Basf Corporation | Copper CHA zeolite catalysts |
US8404203B2 (en) | 2007-02-27 | 2013-03-26 | Basf Corporation | Processes for reducing nitrogen oxides using copper CHA zeolite catalysts |
US8735311B2 (en) | 2007-02-27 | 2014-05-27 | Basf Corporation | Copper CHA zeolite catalysts |
KR101358482B1 (ko) | 2007-02-27 | 2014-02-05 | 바스프 카탈리스트 엘엘씨 | 구리 cha 제올라이트 촉매 |
US11529619B2 (en) | 2007-02-27 | 2022-12-20 | Basf Corporation | Copper CHA zeolite catalysts |
US9656254B2 (en) | 2007-02-27 | 2017-05-23 | Basf Corporation | Copper CHA zeolite catalysts |
US9839905B2 (en) | 2007-02-27 | 2017-12-12 | Basf Corporation | Copper CHA zeolite catalysts |
US12064727B2 (en) | 2007-04-26 | 2024-08-20 | Johnson Matthey Public Limited Company | Transition metal/zeolite SCR catalysts |
US8603432B2 (en) | 2007-04-26 | 2013-12-10 | Paul Joseph Andersen | Transition metal/zeolite SCR catalysts |
US11478748B2 (en) | 2007-04-26 | 2022-10-25 | Johnson Matthey Public Limited Company | Transition metal/zeolite SCR catalysts |
US10105649B2 (en) | 2008-01-31 | 2018-10-23 | Basf Corporation | Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
US8617474B2 (en) | 2008-01-31 | 2013-12-31 | Basf Corporation | Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
US20090196812A1 (en) * | 2008-01-31 | 2009-08-06 | Basf Catalysts Llc | Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure |
US20110056187A1 (en) * | 2008-05-07 | 2011-03-10 | Umicore Ag & Co. Kg | Method for decreasing nitrogen oxides in hydrocarbon-containing exhaust gases using an scr catalyst based on a molecular sieve |
US10316739B2 (en) | 2008-06-27 | 2019-06-11 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
US10001053B2 (en) | 2008-06-27 | 2018-06-19 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
US11660585B2 (en) | 2008-11-06 | 2023-05-30 | Basf Corporation | Chabazite zeolite catalysts having low silica to alumina ratios |
US20110020204A1 (en) * | 2008-11-06 | 2011-01-27 | Basf Catalysts Llc | Chabazite Zeolite Catalysts Having Low Silica to Alumina Ratios |
US10583424B2 (en) | 2008-11-06 | 2020-03-10 | Basf Corporation | Chabazite zeolite catalysts having low silica to alumina ratios |
US20160193594A1 (en) * | 2009-02-26 | 2016-07-07 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
US20140186228A1 (en) * | 2009-02-26 | 2014-07-03 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
US20180361364A1 (en) * | 2009-02-26 | 2018-12-20 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
US9261004B2 (en) * | 2009-02-26 | 2016-02-16 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
US9321009B2 (en) | 2009-04-03 | 2016-04-26 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
US9358503B2 (en) | 2009-04-03 | 2016-06-07 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
US20110173950A1 (en) * | 2009-04-03 | 2011-07-21 | Basf Catalysts Llc | Emissions Treatment System with Ammonia-Generating and SCR Catalysts |
US9662611B2 (en) * | 2009-04-03 | 2017-05-30 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
US10124292B2 (en) | 2009-04-03 | 2018-11-13 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
US20100267548A1 (en) * | 2009-04-17 | 2010-10-21 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
US8101147B2 (en) | 2009-04-17 | 2012-01-24 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
US7998443B2 (en) * | 2009-04-17 | 2011-08-16 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
US8887495B2 (en) * | 2009-07-14 | 2014-11-18 | GM Global Technology Operations LLC | Ash filter, exhaust gas treatment system incorporating the same and method of using the same |
US20110011067A1 (en) * | 2009-07-14 | 2011-01-20 | Gm Global Technology Operations, Inc. | Ash Filter, Exhaust Gas Treatment System Incorporating the Same and Method of Using the Same |
US8617476B2 (en) * | 2009-10-09 | 2013-12-31 | Ibiden Co., Ltd. | Honeycomb filter and urea SCR device |
US20110085942A1 (en) * | 2009-10-09 | 2011-04-14 | Ibiden Co., Ltd. | Honeycomb filter and urea scr device |
US8691157B2 (en) * | 2009-11-19 | 2014-04-08 | Ibiden Co., Ltd. | Honeycomb structure and exhaust gas converter |
US8658104B2 (en) * | 2009-11-19 | 2014-02-25 | Ibiden Co., Ltd. | Honeycomb structural body and exhaust gas conversion apparatus |
US20110116982A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structure and exhaust gas converter |
US8961886B2 (en) | 2009-11-19 | 2015-02-24 | Ibiden Co., Ltd. | Honeycomb structure |
US20110116983A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structure and exhaust gas converter |
US20110116989A1 (en) * | 2009-11-19 | 2011-05-19 | Ibiden Co., Ltd. | Honeycomb structural body and exhaust gas conversion apparatus |
US8293198B2 (en) | 2009-12-18 | 2012-10-23 | Basf Corporation | Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods |
US20110207598A1 (en) * | 2009-12-18 | 2011-08-25 | Jgc Catalysts And Chemicals Ltd. | Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same |
US8293199B2 (en) | 2009-12-18 | 2012-10-23 | Basf Corporation | Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods |
US20110165052A1 (en) * | 2009-12-18 | 2011-07-07 | Basf Corporation | Process for Preparation of Copper Containing Molecular Sieves With the CHA Structure, Catalysts, Systems and Methods |
US20110165051A1 (en) * | 2009-12-18 | 2011-07-07 | Basf Corporation | Process Of Direct Copper Exchange Into Na+-Form Of Chabazite Molecular Sieve, And Catalysts, Systems And Methods |
US8603423B2 (en) | 2010-02-01 | 2013-12-10 | Johnson Matthey Public Limited Co. | Three way catalyst comprising extruded solid body |
US8609047B2 (en) | 2010-02-01 | 2013-12-17 | Johnson Matthey Public Limited Company | Extruded SCR filter |
US20120121486A1 (en) * | 2010-02-01 | 2012-05-17 | Johnson Matthey Public Limited Company | Filter comprising combined soot oxidation and nh3-scr catalyst |
US9040003B2 (en) | 2010-02-01 | 2015-05-26 | Johnson Matthey Public Limited Company | Three way catalyst comprising extruded solid body |
US8815190B2 (en) | 2010-02-01 | 2014-08-26 | Johnson Matthey Public Limited Company | Extruded SCR filter |
US9283519B2 (en) * | 2010-02-01 | 2016-03-15 | Johnson Matthey Public Limited Company | Filter comprising combined soot oxidation and NH3-SCR catalyst |
US8263032B2 (en) | 2010-02-01 | 2012-09-11 | Johnson Matthey Public Limited Company | Oxidation catalyst |
US8641993B2 (en) | 2010-02-01 | 2014-02-04 | Johnson Matthey Public Limited Co. | NOx absorber catalysts |
EP2651556A1 (fr) * | 2010-12-16 | 2013-10-23 | Umicore AG & Co. KG | Catalyseur à base de cuivre-chabazite ayant une activité catalytique améliorée pour la réduction d'oxydes d'azote |
US9074530B2 (en) * | 2011-01-13 | 2015-07-07 | General Electric Company | Stoichiometric exhaust gas recirculation and related combustion control |
US20120185144A1 (en) * | 2011-01-13 | 2012-07-19 | Samuel David Draper | Stoichiometric exhaust gas recirculation and related combustion control |
JP2014511270A (ja) * | 2011-03-03 | 2014-05-15 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | 耐炭化水素被毒性が改善されたscr触媒コンバータ |
US8926925B2 (en) | 2011-03-03 | 2015-01-06 | Umicore Ag & Co. Kg | SCR catalytic converter having improved hydrocarbon resistance |
RU2599849C2 (ru) * | 2011-03-03 | 2016-10-20 | Умикоре Аг Унд Ко. Кг | Катализатор селективного каталитического восстановления с улучшенной стойкостью к углеводородам |
EP2495032A1 (fr) * | 2011-03-03 | 2012-09-05 | Umicore Ag & Co. Kg | Catalyseur SCR doté d'une résistance aux hydrocarbures améliorée |
WO2012117041A1 (fr) * | 2011-03-03 | 2012-09-07 | Umicore Ag & Co. Kg | Catalyseur scr présentant une résistance améliorée aux hydrocarbures |
US8911697B2 (en) | 2011-03-03 | 2014-12-16 | Umicore Ag & Co. Kg | Catalytically active material and catalytic converter for the selective catalytic reduction of nitrogen oxides |
US8101146B2 (en) | 2011-04-08 | 2012-01-24 | Johnson Matthey Public Limited Company | Catalysts for the reduction of ammonia emission from rich-burn exhaust |
US20110182791A1 (en) * | 2011-04-08 | 2011-07-28 | Johnson Matthey Public Limited Company | Catalysts for the reduction of ammonia emission from rich-burn exhaust |
WO2012166833A1 (fr) | 2011-05-31 | 2012-12-06 | Johnson Matthey Public Limited Company | Filtre catalytique double fonction |
US10226762B1 (en) * | 2011-06-17 | 2019-03-12 | Johnson Matthey Public Limited Company | Alumina binders for SCR catalysts |
US9138731B2 (en) | 2011-08-03 | 2015-09-22 | Johnson Matthey Public Limited Company | Extruded honeycomb catalyst |
US9410459B2 (en) * | 2011-08-26 | 2016-08-09 | J.C. Bamford Excavators Limited | Engine system |
US20140298773A1 (en) * | 2011-08-26 | 2014-10-09 | J.C. Bamford Excavators | Engine system |
US8956992B2 (en) | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
US9981256B2 (en) * | 2011-12-02 | 2018-05-29 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx |
US20140154175A1 (en) * | 2011-12-02 | 2014-06-05 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
US20190299198A1 (en) * | 2012-08-17 | 2019-10-03 | Johnson Matthey Public Limited Company | ZEOLITE PROMOTED V/TiW CATALYSTS |
JP2016516565A (ja) * | 2013-03-15 | 2016-06-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | 排気ガスを処理するための触媒 |
JP2016005831A (ja) * | 2014-05-30 | 2016-01-14 | トヨタ自動車株式会社 | 排ガス浄化用触媒の製造方法 |
US20170291135A1 (en) * | 2015-01-30 | 2017-10-12 | Ngk Insulators, Ltd. | Separation membrane structure and nitrogen concentration reduction method |
US10843126B2 (en) * | 2015-01-30 | 2020-11-24 | Ngk Insulators, Ltd. | Separation membrane structure and nitrogen concentration reduction method |
US20160296920A1 (en) * | 2015-04-13 | 2016-10-13 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification catalyst |
US9789474B2 (en) * | 2015-04-13 | 2017-10-17 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification catalyst |
US10272421B2 (en) * | 2015-06-28 | 2019-04-30 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter having a membrane |
US20160375429A1 (en) * | 2015-06-28 | 2016-12-29 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter having a membrane |
DE102016118542A1 (de) | 2015-09-29 | 2017-03-30 | Johnson Matthey Public Limited Company | Einen russkatalysator und einen scr-katalysator aufweisendes katalytisches filter |
WO2017055810A1 (fr) | 2015-09-29 | 2017-04-06 | Johnson Matthey Public Limited Company | Filtre catalytique possédant un catalyseur de suie et un catalyseur de scr |
US9849421B2 (en) | 2015-09-29 | 2017-12-26 | Johnson Matthey Public Limited Company | Catalytic filter having a soot catalyst and an SCR catalyst |
US10744496B2 (en) * | 2016-07-22 | 2020-08-18 | Johnson Matthey Public Limited Company | Catalyst binders for filter substrates |
US20190351399A1 (en) * | 2016-11-18 | 2019-11-21 | Umicore Ag & Co. Kg | Crystalline Zeolites with ERI/CHA Intergrowth Framework Type |
US11071970B2 (en) * | 2016-11-18 | 2021-07-27 | Umicore Ag & Co. Kg | Crystalline zeolites with ERI/CHA intergrowth framework type |
US10828626B2 (en) * | 2017-03-31 | 2020-11-10 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
US11179707B2 (en) | 2017-03-31 | 2021-11-23 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
US11351524B2 (en) | 2017-10-03 | 2022-06-07 | N.E. Chemcat Corporation | Zeolite with rare earth element-substituted framework and method for producing same, and NOx adsorber, selective catalytic reduction catalyst and automobile exhaust gas catalyst comprising same |
US10882033B2 (en) | 2017-11-27 | 2021-01-05 | N.E. Chemcat Corporation | Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite |
CN110292944A (zh) * | 2019-07-31 | 2019-10-01 | 北京工业大学 | 一种超宽温窗scr脱硝催化剂及其制备方法 |
CN115066294A (zh) * | 2019-10-16 | 2022-09-16 | 庄信万丰股份有限公司 | 分区涂覆的、氨氧化(amox)和一氧化氮氧化两用的复合氧化催化剂 |
CN111437875A (zh) * | 2020-03-24 | 2020-07-24 | 武汉科技大学 | 一种具有宽温度范围的铈铁分子筛基催化剂及其制备方法 |
CN112169830A (zh) * | 2020-10-16 | 2021-01-05 | 万华化学集团股份有限公司 | 一种碱性金属氧化物@zsm-5催化剂的制备方法、由其制备的催化剂及应用 |
CN114433201A (zh) * | 2020-11-04 | 2022-05-06 | 现代自动车株式会社 | Nox存储催化剂及其制备方法 |
US12083510B2 (en) | 2020-11-04 | 2024-09-10 | Hyundai Motor Company | NOx storage catalyst and method for preparing the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12064727B2 (en) | Transition metal/zeolite SCR catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JOHNSON MATTHEY PLC, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAILIE, JILLIAN;RAJARAM, RAJ;CASCI, JOHN;AND OTHERS;SIGNING DATES FROM 20080408 TO 20090710;REEL/FRAME:023424/0411 |
|
AS | Assignment |
Owner name: JOHNSON MATTHEY PLC, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOO KOK SHIN, RODNEY;REEL/FRAME:023462/0393 Effective date: 20091029 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |