TW201338056A - 半導體裝置和電子器具 - Google Patents

半導體裝置和電子器具 Download PDF

Info

Publication number
TW201338056A
TW201338056A TW102119754A TW102119754A TW201338056A TW 201338056 A TW201338056 A TW 201338056A TW 102119754 A TW102119754 A TW 102119754A TW 102119754 A TW102119754 A TW 102119754A TW 201338056 A TW201338056 A TW 201338056A
Authority
TW
Taiwan
Prior art keywords
layer
electrode layer
oxide semiconductor
film
conductive
Prior art date
Application number
TW102119754A
Other languages
English (en)
Other versions
TWI487040B (zh
Inventor
Shunpei Yamazaki
Masayuki Sakakura
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201338056A publication Critical patent/TW201338056A/zh
Application granted granted Critical
Publication of TWI487040B publication Critical patent/TWI487040B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本發明的目的係製造和提供高度可靠的顯示裝置,其包括具有穩定電特性之帶有高孔徑比的薄膜電晶體。在具有薄膜電晶體的半導體裝置之製造方法中,執行熱處理,以減少是雜質的濕氣等且提高該氧化物半導體膜的純淨(用於脫水作用或除氫作用之熱處理),在該薄膜電晶體中,包括通道形成區的半導體層係使用氧化物半導體膜所形成。另外,藉由使用具有光透射特性之導電膜來形成閘極電極層、源極電極層、和汲極電極層以提高孔徑比。

Description

半導體裝置和電子器具
本發明係相關於具有使用薄膜電晶體(下面稱作TFT)所形成的電路之半導體裝置及其製造方法。例如,本發明係相關於以液晶顯示面板為代表之電光裝置,或具有含有機發光元件作為組件的發光顯示裝置之電子裝置。
需注意的是,在此說明書中,半導體裝置意指可藉由利用半導體特性來運作之所有裝置。電光裝置、半導體電路、和電子器具都是半導體裝置。
需注意的是,作為設置用於電光元件之透明電極的金屬輔助配線之方法,已知金屬輔助配線被設置,以與透明電極的上表面或透明電極的下表面重疊,以及電連接到透明電極之方法(例如,見專利文件1)。
已知設置用於主動矩陣式基板的額外電容器電極係由ITO、SnO2等具有光透射特性之導電膜所形成,以及由金屬膜所形成之輔助配線係設置成與額外電容器電極接觸,以降低額外電容器電極的電阻之結構(見專利文件2)。
需注意的是,已知作為使用非晶氧化物半導體膜所形 成的場效電晶體之閘極電極、源極電極、及汲極電極的每一個,可使用銦錫氧化物(ITO)、銦鋅氧化物、ZnO、SnO2等透明電極,Al(鋁)、Ag(銀)、Cr(鉻)、Ni(鎳)、Mo(鉬)、Au(金)、Ti(鈦)、Ta(鉭)等的金屬電極,含有上述元素的任一個之合金的金屬電極;而且,藉由堆疊兩或更多個這些層,可降低接觸電阻,或者可提高介面強度(例如,見專利文件3)。
需注意的是,已知作為使用非晶氧化物半導體所形成的電晶體之源極電極、汲極電極、閘極電極、及輔助電容器電極的每一個之材料,可使用諸如銦(In)、鋁(Al)、金(Au)、或銀(Ag)等金屬,諸如氧化銦(In2O3)、氧化錫(SnO2)、氧化鋅(ZnO)、氧化鎘(CdO)、鎘銦氧化物(CdIn2O4)、鎘錫氧化物(Cd2SnO4)、或鋅錫氧化物(Zn2SnO4)等氧化物材料;及相同材料或不同材料可被用於閘極電極、源極電極、及汲極電極(例如,見專利文件4及5)。
[參考文件]
[參考文件1]日本已出版專利申請案號H02-82221
[參考文件2]日本已出版專利申請案號H02-310536
[參考文件3]日本已出版專利申請案號2008-243928
[參考文件4]日本已出版專利申請案號2007-109918
[參考文件5]日本已出版專利申請案號2007-115807
然而,因為具有光透射特性的導電膜僅被用於使用氧 化物半導體之習知顯示面板中的電極材料,所以無法提高孔徑比。此外,當使用金屬氧化物製造顯示裝置時,無法將其可靠性列入考量。
鑑於上述,本發明的一實施例之目的係用以提高使用金屬氧化物所形成之顯示裝置的孔徑比和可靠性。
在具有使用氧化物半導體膜形成包括通道形成區的半導體層之薄膜電晶體的半導體裝置之製造方法中,執行用以降低是雜質的濕氣等以及用以提高氧化物半導體膜的純淨之熱處理(用於脫水作用或除氫作用的熱處理)。另外,諸如不僅存在於氧化物半導體膜而且亦存在於閘極絕緣層,氧化物半導體膜和上方的膜之間和與之接觸,以及在氧化物半導體膜和下方的膜之間和與之接觸的介面之濕氣等雜質被降低。
此說明書所揭示之本發明的一實施例為半導體裝置的製造方法,其包括以下步驟:將包括金屬氧化物的閘極電極層形成於具有絕緣表面之基板上;將閘極絕緣層形成於閘極電極層上;將氧化物半導體層形成於閘極絕緣層上;將氧化物半導體層脫水或除氫;將源極電極層和汲極電極層形成於脫水或除氫的氧化物半導體層上;將與氧化物半導體層的部分接觸保護絕緣層形成於閘極絕緣層、氧化物半導體層、源極電極層、和汲極電極層上;及將包括金屬氧化物之像素電極層形成在保護絕緣層上。
就脫水作用或除氫作用而言,在大於或等於350℃的溫度中或者大於或等於400℃較佳且低於基板的應變點的 溫度中,在氧氛圍中,在諸如氮或稀有氣體(氬、氦等)等鈍氣大氣中,或減壓下執行熱處理,藉以降低含在氧化物半導體層中諸如濕氣等雜質。
以當在溫度增加到450℃的同時以熱去吸附光譜學(TDS)測量脫水或除氫的氧化物半導體層時未偵測到水的兩峰值之約300℃的至少一峰值之熱處理的條件來實施氧化物半導體的脫水作用或除氫作用。因此,甚至當使用脫水或除氫的氧化物半導體層之薄膜電晶體經過溫度如450℃一般高的之TDS時,未偵測到約300℃的水之至少一峰值。
然後,從氧化物半導體層被脫水或除氫的加熱溫度T至足夠低到防止水再次進來的溫度來執行慢速冷卻,尤其是至低於加熱溫度T之大於100℃的溫度,或者至低於或等於100℃的溫度更好。
加熱溫度T被減少之氣體大氣可轉換到不同於溫度被增加至加熱溫度T者的氣體大氣。
藉由使用藉由以用於脫水作用或除氫作用之熱處理來降低含在膜中的濕氣,然後在未含濕氣的大氣中(低於或等於-40℃或者低於或等於-60℃較佳的露點溫度)經過慢速冷卻(或冷卻)所形成之氧化物半導體膜,提高薄膜電晶體的電特性,和實現具有大量生產和高性能的薄膜電晶體。
在此說明書中,在氧氛圍中,在諸如氮或稀有氣體(氬、氦等)等鈍氣大氣中,或減壓下的熱處理被稱作用於脫水作用或除氫作用之熱處理。為了方便,此說明書中的 脫水作用或除氫作用不僅意指藉由熱處理去除H2,亦藉由熱處理去除H、OH等。
在諸如氮或稀有氣體(氬、氦等)等鈍氣大氣中,或者在減壓下執行熱處理的例子中,可說是:藉由熱處理將已經是i型的氧化物半導體層變成缺氧型層並且具有低電阻,即、變成n型(諸如n-或n+等);然後,藉由形成與氧化物半導體層接觸之氧化物絕緣膜,氧化物半導體層變成氧過量之狀態,以具有較高電阻,即、變成i型。如此可製造和提供包括具有令人滿意的電特性和高可靠性之薄膜電晶體的半導體裝置。
在諸如氮或稀有氣體(氬、氦等)等鈍氣大氣中,或者在減壓下執行熱處理,然後將大氣轉換成氧氛圍以執行慢速冷卻的例子中,藉由熱處理將已經是i型的氧化物半導體層變成缺氧型層並且具有低電阻,即、變成n型(諸如n-或n+等);然後,藉由形成與氧化物半導體層接觸之氧化物絕緣膜,氧化物半導體層變成氧過量之狀態,以具有較高電阻,即、變成i型。
此外,在於氧氛圍中執行用於脫水作用或除氫作用的熱處理之例子中,氧化物半導體層中的濕氣被釋放,藉以可使氧化物半導體層變成氧過量的狀態。
此說明書所使用的“氧化物半導體”一詞係以InMO3(ZnO) m (m>0)來表示,及製造氧化物半導體的薄膜被使用作為氧化物半導體層之薄膜電晶體。需注意的是,M表示選自Ga(鎵)、Fe(鐵)、Ni(鎳)、Mn(錳)、及Co(鈷)的 一或多個金屬元素。作為例子,M可以是Ga,或可包括除了Ga以外的上述金屬元素;例如,M可以是Ga及Ni或可以是Ga及Fe。而且,在上述氧化物半導體中,在一些例子中,除了含有金屬元素作為M之外,還含有諸如Fe或Ni等過渡金屬元素或者過渡金屬的氧化物作為雜質元素。在此說明書中,在以InMO3(ZnO) m (m>0)表示結構的氧化物半導體之中,包括Ga作為M之氧化物半導體被稱作In-Ga-Zn-O為基的氧化物半導體,及In-Ga-Zn-O為基的氧化物半導體之薄膜被稱作In-Ga-Zn-O為基的非單晶膜。
作為應用到氧化物半導體層之金屬氧化物,除了上述之外還可應用下面金屬氧化物的任一個:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。其他選擇是,亦可包括氧化矽在使用上述金屬氧化物所形成的氧化物半導體層中。
氧化物半導體包括In較佳,In及Ga更好。脫水作用或除氫作用在將氧化物半導體層改成i型(本質)時是有效的。
在於形成氧化物半導體層之後執行用於脫水作用或除 氫作用的熱處理之例子中,在一些例子中,依據熱處理的條件或氧化物半導體層的材料,而將非晶的氧化物半導體層改變成微晶膜或複晶膜。另外,在一些例子中,將氧化物半導體層局部結晶;例如,可將晶粒(奈米晶體)包括在非晶結構中。甚至當氧化物半導體層被改變成微晶膜或複晶膜時,只要使氧化物半導體層成為氧過量以具有較高電阻之狀態(即、變成i型),薄膜電晶體仍可獲得交換特性。
然而,氧化物半導體層是非晶的較佳,以降低TFT的斷開電流以及達成低電力消耗。
為了甚至在接著氧化物半導體層的形成之後的用於脫水作用或除氫作用之熱處理後變成非晶的,氧化物半導體層具有小於或等於50 nm的小厚度較佳。藉由使氧化物半導體層的厚度小,可抑制其形成之後的熱處理時之氧化物半導體層中的結晶。
其他選擇是,為了甚至在接著氧化物半導體層的形成之後的用於脫水作用或除氫作用之熱處理後變成非晶的,使氧化物半導體層能夠包括禁止結晶的氧化矽(SiO x (X>0)),如此能夠當於製造處理中形成氧化物半導體層之後執行熱處理時防止結晶。
需注意的是,在此說明書中,斷開電流為當電晶體在斷開狀態時,在源極電極和汲極電極之間流動的電流。例如,在n通道電晶體中,斷開電流為當閘極電壓低於電晶體的臨界電壓時在源極電極和汲極電極之間流動的電流。
另外,閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層係可藉由濺鍍法、真空蒸發法(諸如電子束蒸發法等)、電弧放電離子電鍍法、或噴灑法,使用諸如以下金屬氧化物等具有可見光透射特性之導電材料來形成:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。另外,亦可包括氧化矽在使用上述金屬氧化物所形成的配線層或電極層中。
作為可用於閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層的其他材料,可使用包括氮之Al-Zn-O為基的非單晶膜、其為Al-Zn-O-N為基的非單晶膜;包括氮之Zn-O-N為基的非單晶膜;或包括氮之Sn-Zn-O-N為基的非單晶膜。需注意的是,鋅在Al-Zn-O-N為基的氧化物半導體膜之相對比例(原子百分比atomic%)低於或等於47 atomic%,及大於鋁在氧化物半導體膜之相對比例(atomic%)。鋁在氧化物半導體膜之相對比例(atomic%)大於氮在具有光透射特性之導電膜的相對比例(atomic%)。需注意的是,在具有光透射特性之導電膜中的相對比例之單位為原子百分比,及相對比例係藉由使用電子探針X射線微量分析器(EPMA)的分析來評估。
顯示裝置的孔徑比係可藉由將具有可見光透射特性的導電膜用於閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層來提高。此外,當具有光透射特性之材料亦被用於氧化物半導體層時,可進一步提高孔徑比。藉由將具有光透射特性的膜用於薄膜電晶體之組件(配線和半導體層),尤其在小型液晶顯示裝置中,甚至當為了增加掃描線數目而將像素尺寸微型化例如以實現顯示影像的高清晰度時,仍可達成高孔徑比。另外,藉由將具有光透射特性的膜用於薄膜電晶體之組件,甚至當一像素被分成複數個子像素以實現寬廣視角時,仍可達成高孔徑比。換言之,甚至當密集配置一群薄膜電晶體並且可充分獲得顯示區的區域時,孔徑比仍高。例如,在一像素包括兩至四個子像素之例子中,孔徑比可被提高,因為不僅薄膜電晶體而且其各自儲存電容器都具有光透射特性。
同樣地在發光顯示裝置中,甚至當複數個薄膜電晶體被置放在一像素中時,仍可藉由將具有光透射特性的膜用於薄膜電晶體之組件(配線和半導體層)來達成高孔徑比。在使用發光元件的發光顯示裝置中,在像素部中包括複數個薄膜電晶體,及在像素部中亦包括薄膜電晶體的閘極電極電連接到另一電晶體的源極配線或汲極配線之部位。例如,甚至當發光顯示裝置中的一像素包括兩至七個電晶體和儲存電容器時,仍可達成高孔徑比,因為薄膜電晶體和儲存電容器具有光透射特性。
此外,當閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層係使用相同材料所形成時,可使用共同濺鍍目標和共同製造設備;因此,可降低這些層的材料和蝕刻時所使用之蝕刻劑(或蝕刻氣體)的成本,如此降低製造成本。
在此說明書中,具有可見光透射特性之膜意指具有實現75%至100%的可見光透射比之厚度的膜。此種膜亦被稱作透明導電膜。可使用對可見光半透明之導電膜作為用於閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層的金屬氧化物。當導電膜對可見光半透明時,其具有50%至75%的可見光之透射比。
閘極電極層、源極電極層、汲極電極層、像素電極層、另一電極層、或另一配線層的每一個之厚度被設定成大於或等於30 nm,及小於或等於200 nm。可選擇使各層能夠具有光透射特性或對可見光半透明之厚度。
另外,可在不暴露至空氣之下連續處理閘極絕緣層和氧化物半導體膜(亦被稱作連續處理、原地處理、或連續形成)。當在不暴露至空氣之下連續處理閘極絕緣層和氧化物半導體膜時,可在未被諸如濕氣或碳氫化合物等大氣組成或空氣中飄浮的雜質元素污染其介面之下來形成閘極絕緣層和氧化物半導體膜。因此,可降低薄膜電晶體之間的特性變化。
需注意的是,此說明書中的“連續處理”一詞意指在藉由PCVD法或濺鍍法的第一處理步驟到藉由PCVD法或濺 鍍法的第二處理步驟之一連串期間,配置欲待處理的基板之大氣未被諸如空氣等污染大氣污染,及不斷地被控制成真空、鈍氣大氣(氮氛圍或稀有氣體氛圍)、或氧氛圍。藉由連續處理,在防止濕氣等再次附著到已弄乾淨之欲待處理的基板同時,能夠執行膜形成等。
在同一室中執行從第一處理步驟到第二處理步驟在此說明書的連續處理之範圍內。
此外,下面亦在此說明書的連續處理之範圍內:在不同室中執行從第一處理步驟到第二處理步驟的例子中,在不暴露至空氣之下,將基板於第一處理步驟之後轉移到另一室,及接受第二處理。
需注意的是,在第一處理步驟和第二處理步驟之間,可提供基板轉移步驟、對準步驟、慢速冷卻步驟、加熱或冷卻基板到第二步驟所需的溫度之步驟。此種處理亦在此說明書的連續處理之範圍內。
可在第一處理步驟和第二處理步驟之間提供使用液體的步驟,諸如清洗步驟、濕蝕刻、或抗蝕劑形成等。此例子並未在此說明書的連續處理之範圍內。
具有藉由上述製造方法所獲得之結構的半導體裝置為包括如下之半導體裝置:閘極電極層,在具有絕緣表面之基板上;閘極絕緣層,在閘極電極層上;氧化物半導體層,在閘極絕緣層上;源極電極層和汲極電極層,在氧化物半導體層上;與氧化物半導體層的部分接觸之保護絕緣層,在閘極絕緣層、氧化物半導體層、源極電極層、和汲 極電極層上;以及包括金屬氧化物之像素電極層,在保護絕緣層上。在上述結構中,閘極電極層、閘極絕緣層、氧化物半導體層、源極電極層、汲極電極層、保護絕緣層、及像素電極層具有光透射特性。像素電極層與氧化物半導體層和閘極電極層重疊。
利用上述結構,解決上述問題的至少其中之一。
在上述結構中,雖然像素電極層與氧化物半導體層和閘極電極層重疊,但是重疊區亦可充作顯示區,藉以可實現高孔徑比。與氧化物半導體層和閘極電極層重疊之像素電極層可以是鄰接像素的像素電極層。換言之,可利用具有源極電極層和汲極電極層在其間,而電連接到氧化物半導體層之像素電極層未與氧化物半導體層的通道形成區重疊,但是與鄰接像素的像素電極層重疊之結構。
在置放連接到諸如FPC等外部終端的複數個終端電極之終端部中,終端電極係可使用與閘極電極層、源極電極層、汲極電極層、或像素電極層相同的材料和處理來形成。
另外,液晶顯示裝置或發光顯示裝置的像素部中之儲存電容器包括:電容器配線層,其係由具有可見光透射特性的導電材料所形成;電容器電極層,其係由具有可見光透射特性的導電材料所形成;及閘極絕緣層,其被使用作為介電。需注意的是,此例中的電容器配線層係可使用與閘極電極層相同的材料和處理來形成。此外,電容器電極層係可使用與源極電極層或汲極電極層相同的材料和處理 來形成。
其他選擇是,液晶顯示裝置或發光顯示裝置的像素部中之儲存電容器可包括:電容器配線層,其係由具有可見光透射特性的導電材料所形成;像素電極層,其係由具有可見光透射特性的導電材料所形成;及保護絕緣層,其被使用作為介電。此例中的電容器配線層係可使用與源極電極層或汲極電極層相同的材料和處理來形成。
而且,作為包括薄膜電晶體的顯示裝置,除了液晶顯示裝置之外,還給定使用發光元件之發光顯示裝置,以及使用電泳顯示元件之顯示裝置(亦被稱作電子紙)。
並未特別限制上述液晶顯示裝置,及使用TN液晶、IPS液晶、OCB液晶、STN液晶、VA液晶、ECB液晶、GH液晶、聚合物分散型液晶、圓盤狀液晶等之液晶顯示裝置可被使用。在它們之中,利用垂直對準(VA)模式的諸如透射型液晶顯示裝置等正常黑液晶面板較佳。給定一些例子作為垂直對準模式。例如,可利用MVA(多域垂直對準)模式、PVA(圖案化垂直對準)模式、ASV模式等。尤其是,一像素被分成複數個子像素,及凸出部被設置在對應於各個子像素的中心之相對基板的位置中,來形成多域像素。一像素被分成複數個子像素,及凸出部被設置在對應於各個子像素的中心之相對基板的位置中,以執行一像素的取向分割(多域)和達成寬廣視角之此種驅動方法被稱作子像素驅動。需注意的是,凸出部可被設置在相對基板和元件基板的其中之一或二者上。凸出部使液晶分子呈輻射 取向,及提高取向的可控制性。
另外,用以驅動液晶的電極,即、像素電極,可具有像梳形或鋸齒形的俯視圖形狀,使得可改變施加電壓的方向。另外,多域像素係可利用光對準來形成。
因為薄膜電晶體容易由於靜電等而導致破壞,所以用以保護像素部中的薄膜電晶體之保護電路在同一基板上設置用於閘極線或源極線較佳。保護電路係由包括氧化物半導體層的非線性元件所形成較佳。
在顯示裝置的像素部中,藉由將具有光透射特性之膜用於薄膜電晶體的組件,甚至當為了增加掃描線數目而將像素尺寸微型化例如以實現顯示影像的高清晰度時,仍可達成高孔徑比。另外,藉由將具有光透射特性之膜用於薄膜電晶體的組件,甚至當一像素被分成複數個子像素以實現寬廣視角時,仍可達成高孔徑比。
100‧‧‧基板
101‧‧‧閘極電極層
102‧‧‧閘極絕緣層
103‧‧‧氧化物半導體層
105a‧‧‧源極電極層
105b‧‧‧汲極電極層
107‧‧‧第一保護絕緣層
108‧‧‧電容器配線
110‧‧‧像素電極層
121‧‧‧終端
122‧‧‧終端
124‧‧‧接觸孔
125‧‧‧接觸孔
126‧‧‧接觸孔
127‧‧‧接觸孔
128‧‧‧具有光透射特性之導電膜
129‧‧‧具有光透射特性之導電膜
131‧‧‧第二保護絕緣層
132‧‧‧具有光透射特性之導電膜
133‧‧‧第一氧化物半導體層
134‧‧‧第二氧化物半導體層
135‧‧‧電容器電極
150‧‧‧終端
151‧‧‧終端
152‧‧‧閘極絕緣層
153‧‧‧連接電極層
154‧‧‧第一保護絕緣層
155‧‧‧具有光透射特性之導電膜
156‧‧‧電極層
157‧‧‧第二保護絕緣層
170‧‧‧薄膜電晶體
400‧‧‧基板
401‧‧‧閘極電極層
402‧‧‧閘極絕緣層
403‧‧‧氧化物半導體層
405a‧‧‧源極電極層
405b‧‧‧汲極電極層
407‧‧‧氧化物絕緣膜
430‧‧‧第一氧化物半導體層
431‧‧‧第二氧化物半導體層
440‧‧‧薄膜電晶體
442‧‧‧第二氧化物半導體層
443‧‧‧氧化物半導體層
444‧‧‧第二氧化物半導體層
450‧‧‧基板
451‧‧‧閘極電極層
452‧‧‧閘極絕緣層
453‧‧‧氧化物半導體層
455a‧‧‧源極電極層
455b‧‧‧汲極電極層
457‧‧‧氧化物絕緣膜
460‧‧‧薄膜電晶體
470‧‧‧薄膜電晶體
480‧‧‧薄膜電晶體
481‧‧‧氧化物半導體層
483‧‧‧氧化物半導體層
1000‧‧‧行動電話
1001‧‧‧外殼
1002‧‧‧顯示部
1003‧‧‧操作按鈕
1004‧‧‧外部連接埠
1005‧‧‧揚聲器
1006‧‧‧麥克風
1300‧‧‧基板
1301‧‧‧顯示部
1302‧‧‧驅動部
1303‧‧‧信號線驅動器電路
1304‧‧‧掃描線驅動器電路
1305‧‧‧像素
1306‧‧‧掃描線
1308‧‧‧信號線
1309‧‧‧外部連接終端
1400‧‧‧基板
1401‧‧‧閘極電極層
1402‧‧‧閘極絕緣層
1403‧‧‧氧化物半導體層
1405a‧‧‧源極電極層
1405b‧‧‧汲極電極層
1418‧‧‧通道保護層
1430‧‧‧薄膜電晶體
1800‧‧‧外殼
1801‧‧‧外殼
1802‧‧‧顯示面板
1803‧‧‧揚聲器
1804‧‧‧麥克風
1805‧‧‧操作鍵
1806‧‧‧定位裝置
1807‧‧‧相機透鏡
1808‧‧‧外部連接終端
1810‧‧‧鍵盤
1811‧‧‧外部記憶卡插槽
1908‧‧‧顯示面板
1920‧‧‧基板
1921‧‧‧顯示部
1922‧‧‧密封劑
1923‧‧‧基板
1924‧‧‧撓性印刷電路
1925‧‧‧第一密封劑
1926‧‧‧第二密封劑
1927‧‧‧驅動器積體電路
6400‧‧‧像素
6401‧‧‧交換電晶體
6402‧‧‧驅動電晶體
6403‧‧‧電容器
6404‧‧‧發光元件
6405‧‧‧信號線
6406‧‧‧掃描線
6407‧‧‧電源線
6408‧‧‧共同電極
7001‧‧‧驅動薄膜電晶體
7002‧‧‧發光元件
7003‧‧‧陰極
7004‧‧‧發光層
7005‧‧‧陽極
7006‧‧‧保護絕緣層
7007‧‧‧平面化絕緣膜
7008‧‧‧陰極
7009‧‧‧隔牆
7011‧‧‧驅動薄膜電晶體
7012‧‧‧發光元件
7013‧‧‧陰極
7014‧‧‧發光層
7015‧‧‧陽極
7016‧‧‧阻光膜
7017‧‧‧具有光透射特性之導電膜
7018‧‧‧陰極
7019‧‧‧隔牆
7021‧‧‧驅動薄膜電晶體
7022‧‧‧發光元件
7023‧‧‧陰極
7024‧‧‧發光層
7025‧‧‧陽極
7027‧‧‧具有光透射特性之導電膜
7028‧‧‧陰極
7029‧‧‧隔牆
9600‧‧‧電視機
9601‧‧‧外殼
9603‧‧‧顯示部
9605‧‧‧座
9607‧‧‧顯示部
9609‧‧‧操作鍵
9610‧‧‧遙控器
9700‧‧‧數位相框
9701‧‧‧外殼
9703‧‧‧顯示部
9881‧‧‧外殼
9882‧‧‧顯示部
9883‧‧‧顯示部
9884‧‧‧揚聲器部
9885‧‧‧操作鍵
9886‧‧‧記錄媒體插入部
9887‧‧‧連接終端
9888‧‧‧感測器
9889‧‧‧麥克風
9890‧‧‧發光二極體燈
9891‧‧‧外殼
9893‧‧‧連接部
在附圖中:圖1A至1C為本發明的一實施例之製造步驟的橫剖面圖;圖2A及2B分別為本發明的一實施例之平面圖和橫剖面圖;圖3A至3D為本發明的一實施例之製造步驟的橫剖面圖;圖4A至4C為本發明的一實施例之製造步驟的橫剖 面圖;圖5A至5C為本發明的一實施例之製造步驟的橫剖面圖;圖6A及6B分別為本發明的一實施例之平面圖和橫剖面圖;圖7A及7B為本發明的一實施例之製造步驟的橫剖面圖,及圖7C為本發明的一實施例之平面圖;圖8A至8D為本發明的一實施例之製造步驟的橫剖面圖;圖9A至9C為本發明的一實施例之製造步驟的橫剖面圖;圖10為本發明的一實施例之平面圖;圖11為本發明的一實施例之平面圖;圖12A及12C為本發明的一實施例之橫剖面圖而圖12B及12D為其平面圖;圖13A至13C為本發明的一實施例之立體圖;圖14A及14B為本發明的一實施例之方塊圖;圖15為本發明的一實施例之時序圖;圖16為半導體裝置中的像素之等效電路圖;圖17A至17C各個為半導體裝置的橫剖面圖;圖18A及18B各個為半導體裝置圖;圖19A及19B各個為半導體裝置圖;以及圖20為半導體裝置圖。
下面,將參考附圖詳細說明本發明的實施例。然而,本發明並不侷限於下面說明,精於本技藝之人士應容易明白,可以各種方式修改此處所揭示之模式和細節。因此,本發明不應被解釋成侷限於實施例的說明。
[實施例1]
將參考圖1A至1C及圖2A及2B說明半導體裝置及半導體裝置之製造方法。在圖2B中,圖解為稱作通道蝕刻型之結構的其中一類型之薄膜電晶體470。
圖2A為包括在半導體裝置中之薄膜電晶體470的平面圖,及圖2B為沿著圖2A的線C1-C2所取之橫剖面圖。薄膜電晶體470為底閘極薄膜電晶體,及包括閘極電極層401、閘極絕緣層402、氧化物半導體層403、源極電極層405a、及汲極電極層405b在具有絕緣表面的基板400上。此外,氧化物絕緣膜407係設置成覆蓋薄膜電晶體470並且與氧化物半導體層403接觸。
具有絕緣表面的基板400、閘極電極層401、閘極絕緣層402、氧化物半導體層403、源極電極層405a、汲極電極層405b、及氧化物絕緣膜407係都使用具有可見光透射特性的材料來形成。因此,在將薄膜電晶體470置放於顯示裝置的像素部中之例子中,薄膜電晶體470具有光透射特性並且可提高孔徑比。
關於氧化物半導體層403,至少在形成氧化物半導體 膜之後,執行用以降低雜質的濕氣等熱處理(用於脫水作用或除氫作用的熱處理)。用於脫水作用或除氫作用的熱處理和慢速冷卻接在形成與氧化物半導體層接觸的氧化物絕緣膜等之後;因此,氧化物半導體層的載子被降低,以提高薄膜電晶體470的可靠性。
不僅在氧化物半導體層403中,並且也在閘極絕緣層402中,在氧化物半導體層403和上方的薄膜之間且與之接觸以及在氧化物半導體層403和下方的膜之間和與之接觸的介面中降低諸如濕氣等雜質,尤其是在閘極絕緣層402和氧化物半導體層403之間的介面以及氧化物絕緣膜407和氧化物半導體層403之間的介面。
下面,圖1A至1C為說明圖2B所示之薄膜電晶體470的製造處理之橫剖面圖。
在圖1A中,閘極電極層401係設置在具有絕緣表面的基板400上。
雖然沒有特別限制可被使用作為具有絕緣表面的基板400之基板,但是基板必須至少對稍候將執行的熱處理具有足夠的耐熱性。作為具有絕緣表面的基板400,可使用由鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃等所形成的玻璃基板。
在使用玻璃基板並且稍候欲執行熱處理的溫度高之例子中,使用應變點大於或等於730℃之玻璃基板較佳。作為玻璃基板,例如使用諸如鋁矽酸鹽玻璃、鋁硼矽酸鹽玻璃、或鋇硼矽酸鹽玻璃等玻璃材料。需注意的是,藉由含 有氧化鋇(BaO)的量多於硼酸,玻璃基板耐熱且更實用。因此,使用含有BaO及B2O3的玻璃基板,使得BaO的量大於B2O3的量較佳。
需注意的是,可使用由諸如陶瓷基板、石英基板、或藍寶石基板等絕緣體所形成的基板,來取代上述玻璃基板。其他選擇是,亦可使用結晶玻璃。
另外,充作基膜的絕緣膜係可設置在基板400和閘極電極層401之間。基膜具有防止雜質元素擴散到基板400的功能,及可被形成具有使用一或多個氮化矽膜、氧化矽膜、氧氮化矽膜、及氮氧化矽膜之單層或疊層結構。
作為閘極電極層401的材料,可利用諸如下面材料等具有光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇閘極電極層401的厚度在30 nm至200 nm的範圍內。作為用於閘極電極層401之金屬氧化物的沈積方法,可使用濺鍍法、真空蒸發法(電子束蒸發法等)、電弧放電離子電鍍法、或噴灑法。
接著,將閘極絕緣層402形成在閘極電極層401上。
閘極絕緣層402可藉由電漿CVD法、濺鍍法等被形成具有使用氧化矽層、氮化矽層、氮氧化矽層、氧氮化矽 層之單層或疊層結構。例如,可藉由電漿CVD法,使用SiH4、氧、和氮作為膜形成氣體來形成氮氧化矽層。
然後,在閘極絕緣層402上,氧化物半導體膜被形成具有大於或等於2 nm及小於或等於200 nm的厚度。
需注意的是,在藉由濺鍍法形成氧化物半導體膜之前,藉由引進氬氣及產生電漿之逆濺鍍去除閘極絕緣層402的表面上之灰塵較佳。逆濺鍍意指在未施加電壓到目標側之下,在氬大氣中使用RF電源來施加電壓到基板側,以在基板附近產生電漿,以修改表面之方法。需注意的是,可使用氮、氦、氧等來取代氬。
氧化物半導體膜係藉由使用In-Ga-Zn-O為基的氧化物半導體目標,以濺鍍法來形成。其他選擇是,氧化物半導體膜係可在稀有氣體(典型上為氬)中、在氧氛圍中、或在包括稀有氣體(典型上為氬)和氧的大氣中以濺鍍法形成。
可在未暴露至空氣之下連續形成閘極絕緣層402和氧化物半導體膜。當在未暴露至空氣之下連續形成閘極絕緣層402和氧化物半導體膜時,可在未被諸如濕氣或碳氫化合物等大氣組成或空氣中飄浮的雜質元素污染其介面之下來形成閘極絕緣層402和氧化物半導體膜。因此,可降低薄膜電晶體之間的特性變化。
然後,藉由光致微影步驟將氧化物半導體膜處理成氧化物半導體層(第一氧化物半導體層430),其為島型氧化物半導體層(見圖1A)。
接著,將第一氧化物半導體層430脫水或除氫。執行用於脫水作用或除氫作用之第一熱處理的溫度大於或等於350℃且低於基板的應變點,大於或等於400℃較佳。此處,將基板引進熱處理設備的其中之一的電爐中,及在氧氛圍中將第一氧化物半導體層430經過熱處理;然後,在氧氛圍中執行慢速冷卻,藉以形成第二氧化物半導體層431(見圖1B)。從將氧化物半導體層脫水或除氫之加熱溫度T到足夠低到防止水再次進入之溫度執行慢速冷卻,尤其是到低於加熱溫度T之大於100℃的溫度。其他選擇是,將慢速冷卻執行到低於稍後執行之第二熱處理的溫度之溫度,然後將基板從熱處理的設備取出。氧化物半導體層在氧氛圍中接受熱處理,藉以可去除含在氧化物半導體層中諸如水等雜質,及同時,使第二氧化物半導體層431成為氧過量的狀態。依據第一熱處理的條件或氧化物半導體層的材料,在一些例子中,氧化物半導體層被結晶且變成微晶膜或複晶膜。
需注意的是,在第一熱處理中,水、氫等未包含在氧氣中較佳。其他選擇是,引進熱處理設備內之氧氣的純淨大於或等於6N(99.9999%)較佳,大於或等於7N(99.99999%)更好(即、氧氣中的雜質濃度低於或等於1 ppm,或者低於或等於0.1 ppm較佳)。
執行第一熱處理達大於或等於0.5小時和低於或等於10小時,其中電爐的溫度增加比率大於或等於0.1℃/min及小於或等於20℃/min較佳。另外,電爐的溫度減少比 率大於或等於0.1℃/min及小於或等於15℃/min較佳。
結果,可提高稍後欲形成的薄膜電晶體之可靠性。
另外,取代使用電爐的加熱法,諸如使用加熱氣體之氣體快速熱退火(GRTA)法等快速加熱法,或者使用燈光之燈快速熱退火(LRTA)法可被用於第一熱處理。
在熱處理設備為多室型之例子中,用於第一熱處理之室可不同於冷卻處理之室。典型上,在填滿氧氣且其溫度增加到大於或等於400℃且低於基板的應變點之第一室中加熱基板上的氧化物半導體層。然後,經由引進氧氣之轉移室,執行上述第一熱處理之基板被轉移到填滿氧且其溫度低於或等於100℃或室溫較佳之第二室內,及接受冷卻處理。經由上述步驟,可提高生產量。
其他選擇是,在處理成島型氧化物半導體層之前的氧化物半導體膜亦可在氧氛圍中接受第一熱處理。在那例子中,在氧化物半導體膜的第一熱處理和冷卻處理之後,從加熱裝置取出基板,及執行光致微影步驟。
在形成氧化物半導體膜之前,在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或減壓下,閘極絕緣層可接受熱處理(在大於或等於400℃且低於基板的應變點之溫度中),使得層中之諸如氫和水等雜質被去除。
接著,將導電膜形成在閘極絕緣層402和第二氧化物半導體層431上。作為導電膜的沈積法,使用濺鍍法、真空蒸發法(電子束蒸發法等)、電弧放電離子電鍍法、或噴 灑法等。
作為導電膜的材料,可利用諸如下面材料等具有可見光透射特性之導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇導電膜的厚度在30 nm至200 nm的範圍內。
然後,藉由光致微影步驟選擇性蝕刻第二氧化物半導體層431和導電膜,以形成氧化物半導體層403、源極電極層405a、及汲極電極層405b。需注意的是,只有氧化物半導體層的部分被蝕刻成具有溝槽(凹下部)之氧化物半導體層。當在去除此光致微影步驟中所使用的抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層的露出區域。
接著,充作保護絕緣層的氧化物絕緣膜407被形成與氧化物半導體層403的部分接觸,藉以可製造薄膜電晶體470(見圖1C)。氧化物絕緣膜407被形成具有至少大於或等於1 nm的厚度,且可藉由防止諸如水或氫等雜質進入氧化物絕緣膜407之方法來適當形成,例如,藉由CVD法或濺鍍法。此處,氧化物絕緣膜407係藉由濺鍍法來形成。形成與低電阻氧化物半導體層接觸之氧化物絕緣膜407未含有諸如濕氣、氫離子、或OH-等雜質,及係使用 防止這些從外面侵入之無機絕緣膜所形成。典型上,使用氧化矽膜、氧氮化矽膜、氧化鋁膜、或氮氧化鋁膜。其他選擇是,可形成在氧化物絕緣膜407上並且與氧化物絕緣膜407接觸之氮化矽膜或氮化鋁膜。氮化矽膜未含有諸如濕氣、氫離子、或OH-等雜質,及防止這些從外面侵入。
在此實施例中,具有厚度300 nm之氧化矽膜被形成作氧化物絕緣膜407。膜形成時之基板溫度可大於或等於室溫且低於或等於300℃;在此實施例中,基板溫度是100℃。可在稀有氣體(典型上為氬)大氣中、氧氛圍中、或包括氧化矽膜稀有氣體(典型上為氬)和氧的大氣中,以濺鍍法來形成氧化矽膜。作為目標,可使用氧化矽目標或矽目標;例如,氧化矽膜係可在包括氧和氮的大氣中,以濺鍍法,使用矽目標來形成。
另外,在形成氧化物絕緣膜407之後,薄膜電晶體470可在氮氛圍或在氧氛圍中接受第二熱處理(在大於或等於150℃及低於350℃的溫度中較佳)。例如,在氮氛圍中以250℃執行第二熱處理達一小時。藉由第二熱處理,在氧化物半導體層403與氧化物絕緣膜407接觸的同時加熱氧化物半導體層403;如此,可降低薄膜電晶體470中的電特性變化。
[實施例2]
將參考圖3A至3D說明不同於實施例1之半導體裝置和半導體裝置製造方法。完全相同或具有類似於實施例 1者的功能之部位係可以類似於實施例1所說明的方式之方式來形成;因此,省略重複說明。
圖3A至3D為薄膜電晶體480的製造處理之橫剖面圖。圖3D所示之薄膜電晶體480的結構被稱作反向共面型(亦稱作底接觸型)。
與實施例1類似,閘極電極層401係設置在具有絕緣表面的基板400上。充作基膜的絕緣膜係可設置在基板400和閘極電極層401之間。
接著,與實施例1類似,閘極絕緣層402係形成在閘極電極層401上。然後,氧化物半導體膜係形成在閘極絕緣層402上。
然後,藉由光致微影步驟將氧化物半導體膜處理成氧化物半導體層(第一氧化物半導體層430),其為島型氧化物半導體層(見圖3A)。需注意的是,圖3A與圖1A相同。
接著,將第一氧化物半導體層430脫水或除氫。執行用於脫水作用或除氫作用之第一熱處理的溫度大於或等於350℃且低於基板的應變點,大於或等於400℃較佳。此處,將基板引進熱處理設備的其中之一的電爐中,及在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中或減壓下,將第一氧化物半導體層430接受熱處理,藉以形成第二氧化物半導體層442(見圖3B)。藉由在鈍氣大氣中或減壓下的熱處理,氧化物半導體層的電阻被降低(其載子濃度增加到大於或等於1×1018/cm3較佳),及可形成低電阻氧化 物半導體層(第二氧化物半導體層442)。
需注意的是,在第一熱處理中,水、氫等未包含在氮或諸如氦、氖、或氬等稀有氣體中較佳。其他選擇是,引進到熱處理設備中之氮或諸如氦、氖、或氬等稀有氣體的純淨大於或等於6N較佳,或大於或等於7N更好(即、雜質濃度低於或等於1 ppm,或低於或等於0.1 ppm較佳)。在此實施例中,藉由加熱具有氮氛圍且引進基板之電爐到大於或等於350℃及低於或等於600℃的溫度,或大於或等於400℃較佳,來執行脫水作用或除氫作用;然後,停止氮或稀有氣體及關掉加熱器。
在加熱之後,在氧氛圍中執行慢速冷卻,使得第三氧化物半導體481被形成(見圖3C)。從氧化物半導體層被脫水或除氫的加熱溫度T至足夠低到防止水再次進來的溫度來執行慢速冷卻,尤其是至大於100℃低於加熱溫度T之溫度。其他選擇是,在氧氛圍中執行慢速冷卻到低於稍後欲執行之第二熱處理的溫度,然後從熱處理設備取出基板。在此實施例中,在關掉電爐的加熱器及引進氧到電爐內之後執行慢速冷卻。較佳的是,諸如水或氫等雜質未包含在所引進的氧中較佳。其他選擇是,從氣體供應源引進到室內之氧的純淨低於或等於6N,或低於或等於7N較佳(即、氧氣中的雜質濃度低於或等於1 ppm,或者低於或等於0.1 ppm較佳)。
結果,可提高稍後欲形成之薄膜電晶體的可靠度。
需注意的是,在減壓下執行第一熱處理的例子中,可 在熱處理之後藉由引進氧到電爐內以及將壓力回到大氣壓力,來執行冷卻。
在熱處理設備為多室型之例子中,用於第一熱處理的室可不同於冷卻處理用的室。典型上,在填滿氮或稀有氣體且其溫度增加到大於或等於400℃及低於基板的應變點之第一室加熱基板上的氧化物半導體層。然後,執行慢速冷卻到足以低到防止水再次進來的溫度,尤其是,到低於加熱溫度T之大於100℃的溫度。接著,經由引進氮或稀有氣體之轉移室,執行上述第一熱處理之基板被轉移到填滿氧且其溫度低於或等於100℃或室溫較佳之第二室,及接受冷卻處理。經由上述步驟,可提高生產量。
其他選擇是,在被處理成島型氧化物半導體層之前的氧化物半導體膜亦可在鈍氣大氣中或減壓下接受第一熱處理。在那例子中,在第一熱處理和冷卻處理之後,從加熱裝置取出基板,及執行光致微影步驟。
在形成氧化物半導體膜之前,可在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或減壓下,使閘極絕緣層接受熱處理(在大於或等於400℃和低於基板的應變點之溫度),使得層中的諸如氫和水等雜質被去除。
然後,將導電膜形成在閘極絕緣層402和第三氧化物半導體層481上。
作為導電膜的材料,可利用諸如下面材料等具有可見光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、 In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇導電膜的厚度在30 nm至200 nm的範圍內。
然後,藉由光致微影步驟選擇性蝕刻第三氧化物半導體層481和導電膜,以形成氧化物半導體層483、源極電極層405a、和汲極電極層405b。需注意的是,只有氧化物半導體層的部分被蝕刻成具有溝槽(凹下部)的氧化物半導體層。當在去除此光致微影步驟中所使用之抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層的露出區域。
接著,充作保護絕緣層之氧化物絕緣膜407被形成與氧化物半導體層483的部分接觸,藉以可製造薄膜電晶體480(見圖3D)。氧化物絕緣膜407被形成具有至少大於或等於1 nm的厚度,及可藉由防止諸如水或氫等雜質進入氧化物絕緣膜407之方法來適當形成,例如,藉由CVD法或濺鍍法。此處,氧化物絕緣膜407係藉由濺鍍法所形成。被形成與低電阻氧化物半導體層接觸之氧化物絕緣膜407未含有諸如濕氣、氫離子、或OH-等雜質,及使用防止這些從外面侵入之無機絕緣膜來形成。典型上,使用氧化矽膜、氧氮化矽膜、氧化鋁膜、或氮氧化鋁膜。其他選擇是,可形成在氧化物絕緣膜407上及與氧化物絕緣膜 407接觸氮化矽膜或氮化鋁膜。氮化矽膜未含有諸如濕氣、氫離子、或OH-等雜質,及防止這些從外面侵入。
在此實施例中,具有厚度300 nm的氧化矽膜被形成作為氧化物絕緣膜407。膜形成時的基板溫度可大於或等於室溫及小於或等於300℃;在此實施例中,基板溫度是100℃。氧化矽膜係可在稀有氣體(典型上為氬)大氣中、在氧氛圍中、或在包括稀有氣體(典型上為氬)和氧的大氣中,以濺鍍法來形成。作為目標,可使用氧化矽目標或矽目標;例如,氧化矽膜係可在包括氧和氮的大氣中,以濺鍍法,使用矽目標來形成。
另外,在形成氧化物絕緣膜407之後,薄膜電晶體480可在氮氛圍或在氧氛圍中接受第二熱處理(在大於或等於150℃及低於350℃的溫度中較佳)。例如,在氮氛圍中以250℃執行第二熱處理達一小時。藉由第二熱處理,在氧化物半導體層483與氧化物絕緣膜407接觸的同時加熱氧化物半導體層483;如此,可降低薄膜電晶體480中的電特性變化。
此實施例可與實施例1自由組合。
[實施例3]
將參考圖4A至4C說明不同於實施例1及2之半導體裝置和半導體裝置製造方法。完全相同或具有類似於實施例1及2者的功能之部位係可以類似於實施例1及2所說明的方式之方式來形成;因此,省略重複說明。
圖4A至4C為薄膜電晶體440的製造處理之橫剖面圖。圖4C所示之薄膜電晶體440的結構被稱作通道停止型。
與實施例1類似,閘極電極層401係設置在具有絕緣表面的基板400上。充作基膜的絕緣膜係可設置在基板400和閘極電極層401之間。
接著,與實施例1類似,閘極絕緣層402係形成在閘極電極層401上。然後,氧化物半導體膜係形成在閘極絕緣層402上。
然後,藉由光致微影步驟將氧化物半導體膜處理成氧化物半導體層(第一氧化物半導體層430),其為島型氧化物半導體層(見圖4A)。需注意的是,圖4A與圖1A相同。
接著,將第一氧化物半導體層430脫水或除氫。執行用於脫水作用或除氫作用之第一熱處理的溫度大於或等於350℃且低於基板的應變點,大於或等於400℃較佳。此處,將基板引進熱處理設備的其中之一的電爐中,及在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中或減壓下,將第一氧化物半導體層430接受熱處理,藉以形成第二氧化物半導體層444(見圖4B)。
需注意的是,在第一熱處理中,水、氫等未包含在氮或諸如氦、氖、或氬等稀有氣體中較佳。其他選擇是,引進到熱處理設備中之氮或諸如氦、氖、或氬等稀有氣體的純淨大於或等於6N(99.9999%)較佳,或大於或等於 7N(99.99999%)更好(即、雜質濃度低於或等於1 ppm,或低於或等於0.1 ppm較佳)。在此實施例中,藉由加熱具有氮氛圍且引進基板之電爐到大於或等於350℃及低於或等於600℃的溫度,或大於或等於400℃較佳,來執行脫水作用或除氫作用;然後,關掉加熱器及執行慢速冷卻。藉由在鈍氣大氣中或減壓下的熱處理和慢速冷卻,氧化物半導體層的電阻被降低(其載子濃度增加到大於或等於1×1018/cm3較佳),及可形成低電阻氧化物半導體層(第二氧化物半導體層444)。
需注意的是,在減壓下執行熱處理之例子中,可在熱處理之後藉由引進鈍氣到電爐內以及將壓力回到大氣壓力,來執行冷卻。
在熱處理設備為多室型之例子中,用於熱處理的室可不同於冷卻處理用的室。典型上,在填滿氮或稀有氣體且其溫度增加到大於或等於200℃及低於或等於600℃,或大於或等於400℃及低於或等於450℃較佳之第一室加熱基板上的氧化物半導體層。然後,執行慢速冷卻到足以低到防止水再次進來的溫度,尤其是,到低於加熱溫度T之大於100℃的溫度。接著,經由引進氮或稀有氣體之轉移室,執行上述熱處理之基板被轉移到填滿氮或稀有氣體且其溫度低於或等於100℃或室溫較佳之第二室,及接受冷卻處理。經由上述步驟,可提高生產量。
其他選擇是,在被處理成島型氧化物半導體層之前的氧化物半導體膜亦可在鈍氣大氣中或減壓下接受熱處理。 在那例子中,在氧化物半導體膜於鈍氣大氣中或減壓下接受熱處理之後,執行慢速冷卻到大於或等於室溫及低於100℃之溫度;然後,從加熱裝置取出基板,及執行光致微影步驟。
在形成氧化物半導體膜之前,可在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或減壓下,使閘極絕緣層接受熱處理(在大於或等於400℃和低於基板的應變點之溫度),使得層中的諸如氫和水等雜質被去除。
然後,將導電膜形成在閘極絕緣層402和第二氧化物半導體層444上。
作為導電膜的材料,可利用諸如下面材料等具有可見光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇導電膜的厚度在30 nm至200 nm的範圍內。
然後,藉由光致微影步驟選擇性蝕刻第二氧化物半導體層444和導電膜,以形成氧化物半導體層、源極電極層405a、和汲極電極層405b。需注意的是,只有氧化物半導體層的部分被蝕刻成具有溝槽(凹下部)的氧化物半導體 層。當在去除此光致微影步驟中所使用之抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層的露出區域。
接著,充作保護絕緣層之氧化物絕緣膜407被形成與氧化物半導體層的部分接觸。氧化物絕緣膜407被形成具有至少大於或等於1 nm的厚度,及可藉由防止諸如水或氫等雜質進入氧化物絕緣膜407之方法來適當形成,例如,藉由CVD法或濺鍍法。此處,氧化物絕緣膜407係藉由濺鍍法所形成。被形成與低電阻氧化物半導體層接觸之氧化物絕緣膜407未含有諸如濕氣、氫離子、或OH-等雜質,及使用防止這些從外面侵入之無機絕緣膜來形成。典型上,使用氧化矽膜、氧氮化矽膜、氧化鋁膜、或氮氧化鋁膜。其他選擇是,可形成在氧化物絕緣膜407上及與氧化物絕緣膜407接觸氮化矽膜或氮化鋁膜。氮化矽膜未含有諸如濕氣、氫離子、或OH-等雜質,及防止這些從外面侵入。
藉由以濺鍍法、PCVD法等形成與低電阻第二氧化物半導體層444接觸之氧化物絕緣膜407,至少在與氧化物絕緣膜407(其載子濃度減少到低於1×1018/cm3較佳)接觸之低電阻氧化物半導體層444的區域中增加電阻,如此區域可成為高電阻氧化物半導體區。另外,與源極電極層405a及汲極電極層405b重疊之低電阻氧化物半導體層444的區域之電阻仍舊是低的,如此獲得具有高電阻氧化物半導體區在其間之兩低電阻氧化物半導體區。藉由在半導體裝置的製造處理期間,於鈍氣大氣(或減壓下)加熱、 慢速冷卻、形成氧化物絕緣膜等來增加和減少氧化物半導體層的載子濃度是重要的。氧化物半導體層444變成具有高電阻氧化物半導體區和低電阻氧化物半導體區之氧化物半導體層443(第三氧化物半導體層),及可形成薄膜電晶體440。需注意的是,高電阻氧化物半導體區充作薄膜電晶體440的通道形成區。
需注意的是,藉由在與汲極和源極電極層重疊之氧化物半導體層443中形成低電阻氧化物半導體區,當形成驅動器電路時可增加可靠性。尤其是,藉由形成低電阻氧化物半導體區,實現汲極電極層、低電阻氧化物半導體區、及通道形成區可以此順序改變導電性之結構。如此,在連接到供應汲極電極層高電源電位VDD之配線的同時所操作之電晶體中,低電阻氧化物半導體區充作緩衝器,使得甚至當在閘極電極層和汲極電極層之間施加高電場時,仍未施加局部高電場;以此方式,電晶體可具有有著增加的耐壓之結構。
此外,藉由在與汲極和源極電極層重疊之氧化物半導體層443中形成低電阻氧化物半導體區,當形成驅動器電路時可降低通道形成區中的漏電流。尤其是,藉由形成低電阻氧化物半導體區,流動在汲極電極層和源極電極層之間的電流以下面順序通過汲極電極層、汲極電極層側上之低電阻氧化物半導體區、通道形成區、源極電極層側上之低電阻氧化物半導體區、及源極電極層。此時,從汲極電極層側上之低電阻氧化物半導體區流動到通道形成區之漏 電流可集中在閘極絕緣層和通道形成區之間的介面附近,當關掉電晶體時其具有高電阻,藉以背通道部(除了閘極電極層外之通道形成區的表面之部分)中的漏電流可被降低。
另外,在形成氧化物絕緣膜407之後,薄膜電晶體440可在氮氛圍中或在氧氛圍中接受第二熱處理(大於或等於150℃及低於350℃的溫度較佳)。例如,在氮氛圍中以250℃執行第二熱處理達一小時。藉由第二熱處理,氧化物半導體層443在與氧化物絕緣膜407接觸的同時被加熱;如此,可降低薄膜電晶體440的電特性變化。
實施例可與實施例1或2自由組合。
[實施例4]
參考圖5A至5C及圖6A及6B說明半導體裝置及半導體裝置製造方法。
圖6A為包括在半導體裝置中之薄膜電晶體460的平面圖,而圖6B為沿著圖6A的線D1-D2所取之橫剖面圖。薄膜電晶體460為底閘極薄膜電晶體,及包括閘極電極層451、閘極絕緣層452、源極電極層455a、汲極電極層455b、及氧化物半導體層453在具有絕緣表面的基板450上。此外,氧化物絕緣膜457被設置成覆蓋薄膜電晶體460且與氧化物半導體層453接觸。In-Ga-Zn-O為基的非單晶膜被用於氧化物半導體層453。
在薄膜電晶體460中,閘極絕緣層452存在於包括薄 膜電晶體460的整個區域中,及閘極電極層451被設置在閘極絕緣層452和具有絕緣表面之基板的基板450之間。源極電極層455a和汲極電極層455b被設置在閘極絕緣層452上。另外,氧化物半導體層453被設置在閘極絕緣層452、源極電極層455a、及汲極電極層455b上。雖然未圖示,但是除了源極電極層455a和汲極電極層455b之外,還設置配線層在閘極絕緣層452上,及配線層延伸超過氧化物半導體層453的周邊區。
具有絕緣表面之基板450、閘極電極層451、閘極絕緣層452、氧化物半導體層453、源極電極層455a、汲極電極層455b、及氧化物絕緣膜457係都使用具有可見光透射特性的材料所形成。如此,在薄膜電晶體460置放在顯示裝置的像素部之例子中,薄膜電晶體460具有光透射特性,及可提高孔徑比。
至少在形成氧化物半導體膜之後,氧化物半導體層453接受用以降低雜質的濕氣等之熱處理(用於脫水作用或除氫作用的熱處理)以及慢速冷卻;然後,氧化物絕緣膜457係形成與氧化物半導體層453接觸。以此方式,氧化物半導體膜被使用作為通道形成區。
圖5A至5C為製造圖6B所示之薄膜電晶體460的步驟之橫剖面圖。
閘極電極層451係設置在基板450上,其為具有絕緣表面之基板。另外,充作基膜之絕緣膜係可設置在基板450和閘極電極層451之間。基膜具有防止雜質元素從基 板450擴散之功能,及可被形成具有使用一或多個氮化矽膜、氧化矽膜、氧氮化矽膜、及氮氧化矽膜之單層或疊層結構。
作為閘極電極層451的材料,可利用諸如下面材料等具有可見光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇閘極電極層451的厚度在30 nm至200 nm的範圍內。
接著,閘極絕緣層452係形成在閘極電極層451上。
藉由電漿CVD法、濺鍍法等,可將閘極絕緣層452形成具有使用氧化矽層、氮化矽層、氮氧化矽層、氧氮化矽層之單層或疊層結構。例如,可藉由電漿CVD法,使用SiH4、氧、和氮作為膜形成氣體來形成氮氧化矽層。
然後,將導電膜形成在閘極絕緣層452,及藉由光致微影步驟處理成島型源極電極層455a和島型汲極電極層455b(見圖5A)。
作為導電膜的材料,可利用諸如下面材料等具有光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為 基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇導電膜的厚度在30 nm至200 nm的範圍內。
然後,將氧化物半導體膜形成在閘極絕緣層452、源極電極層455a、和汲極電極層455b上,及藉由光致微影步驟處理成島型氧化物半導體層483(第一氧化物半導體層)(見圖5B)。當在去除此光致微影步驟中所使用的抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層的露出區域。
需注意的是,在藉由濺鍍法形成氧化物半導體膜之前,藉由引進氬氣及產生電漿之逆濺鍍去除閘極絕緣層452的表面上之灰塵較佳。
氧化物半導體層483接受用於脫水作用或除氫作用的第一熱處理。執行用於脫水作用或除氫作用的第一熱處理之溫度大於或等於350℃及低於基板的應變點,大於或等於400℃較佳。
作為用於脫水作用或除氫作用的第一熱處理,執行在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或在減壓下的熱處理。之後,從將氧化物半導體層脫水或除氫之加熱溫度T到足夠低到防止水再次進入之溫度執行慢速冷卻,尤其是到低於加熱溫度T之大於100℃的溫度。其他選擇是,將慢速冷卻執行到低於稍後執行之 第二熱處理的溫度之溫度,然後將基板從熱處理的設備取出。
在此實施例中,與實施例1類似,降低層中之諸如濕氣等雜質的氧化物半導體層453係由在氧氛圍中執行第一熱處理及在氧氛圍中執行慢速冷卻所形成。未特別限制第一熱處理和慢速冷卻的組合,及可使用實施例1至3的任一個所說明之組合和順序。
需注意的是,在第一熱處理中,水、氫等未包含在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中或氧氛圍中較佳。其他選擇是,引進熱處理設備內之氣體的純淨大於或等於6N(99.9999%)較佳,大於或等於7N(99.99999%)更好(即、大氣中的雜質濃度低於或等於1 ppm,或者低於或等於0.1 ppm較佳)。
結果,可提高稍後欲形成之薄膜電晶體的可靠性。
其他選擇是,在處理成島型氧化物半導體層之前的氧化物半導體膜亦可在氧氛圍中接受第一熱處理。在那例子中,在氧化物半導體膜的第一熱處理和冷卻處理之後,從加熱裝置取出基板,及執行光致微影步驟。
在形成氧化物半導體膜之前,在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或減壓下,閘極絕緣層可接受熱處理(在大於或等於400℃且低於基板的應變點之溫度中),使得層中之諸如氫和水等雜質被去除。
接著,藉由濺鍍法或PCVD法將氧化物絕緣膜457形 成與氧化物半導體層453接觸,藉以可製造薄膜電晶體460(見圖5C)。在此實施例中,具有厚度300 nm之氧化矽膜被形成作為氧化物絕緣膜457。膜形成時之基板溫度可大於或等於室溫,及低於或等於300℃;在此實施例中,基板溫度是100℃。
另外,在形成氧化物絕緣膜457之後,可在氮氛圍中或在氧氛圍中將薄膜電晶體460接受第二熱處理(大於或等於150℃及低於350℃的溫度較佳)。例如,在氮氛圍中以250℃執行第二熱處理達一小時。藉由第二熱處理,氧化物半導體層453在與氧化物絕緣膜457接觸的同時被加熱;如此,可降低薄膜電晶體460的電特性變化。
此實施例可與實施例1、2、或3自由組合。
[實施例5]
在此實施例中,參考圖7A至7C說明通道停止型薄膜電晶體1430之例子。圖7C圖示薄膜電晶體的平面圖之例子,沿著對應於圖7B的點線Z1-Z2所取之橫剖面圖。此實施例為鎵未包括在薄膜電晶體1430的氧化物半導體層中之例子。
首先,閘極電極層1401係設置在基板1400上。
此外,充作基膜的絕緣膜係可設置在基板1400和閘極電極層1401之間。基膜具有防止雜質元素從基板1400擴散之功能,及可被形成具有使用一或多個氮化矽膜、氧化矽膜、氧氮化矽膜、及氮氧化矽膜之單層或疊層結構。
作為閘極電極層1401的材料,可利用諸如下面材料等具有可見光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇閘極電極層1401的厚度在30 nm至200 nm的範圍內。
接著,閘極絕緣層1402被形成覆蓋閘極電極層1401。氧化物半導體層係形成在閘極絕緣層1402上。
在此實施例中,氧化物半導體層係使用Sn-Zn-O為基的氧化物半導體以濺鍍法所形成。當鎵未用於氧化物半導體層時,可避免將昂貴目標用於氧化物半導體層的形成,如此可降低成本。
緊接在沈積半導體膜之後或者在被處理成島型氧化物半導體層之後,執行脫水作用或除氫作用。
作為用於脫水作用或除氫作用的第一熱處理,執行在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或在減壓下的熱處理。執行第一熱處理的溫度大於或等於350℃及低於基板的應變點,大於或等於400℃較佳。之後,從將氧化物半導體層脫水或除氫之加熱溫度T到足夠低到防止水再次進入之溫度執行慢速冷卻,尤其是到低於加熱溫度T之大於100℃的溫度。其他選擇是,將 慢速冷卻執行到低於稍後執行之第二熱處理的溫度之溫度,然後將基板從熱處理的設備取出。
在此實施例中,與實施例1類似,降低層中之諸如濕氣等雜質的氧化物半導體層1403係由在氧氛圍中執行第一熱處理及在氧氛圍中執行慢速冷卻所形成(見圖7A)。未特別限制第一熱處理和慢速冷卻的組合,及可使用實施例1至3的任一個所說明之組合和順序。
需注意的是,在第一熱處理中,水、氫等未包含在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中或氧氛圍中較佳。其他選擇是,引進熱處理設備內之氣體的純淨大於或等於6N(99.9999%)較佳,大於或等於7N(99.99999%)更好(即、大氣中的雜質濃度低於或等於1 ppm,或者低於或等於0.1 ppm較佳)。
結果,可提高稍後欲形成之薄膜電晶體的可靠性。
其他選擇是,在處理成島型氧化物半導體層之前的氧化物半導體膜亦可在氧氛圍中接受第一熱處理。在那例子中,在氧化物半導體膜的第一熱處理和冷卻處理之後,從加熱裝置取出基板,及執行光致微影步驟。
在形成氧化物半導體膜之前,在鈍氣(氮或諸如氦、氖、或氬等稀有氣體)大氣中、在氧氛圍中、或減壓下,閘極絕緣層可接受熱處理(在大於或等於400℃且低於基板的應變點之溫度中),使得層中之諸如氫和水等雜質被去除。
接著,通道保護層1418係設置在氧化物半導體層 1403上且與氧化物半導體層1403接觸。藉由設置通道保護層1418,可在製造處理中防止對氧化物半導體層1403的通道形成區之破壞(如、由於電漿或蝕刻時的蝕刻劑所導致之厚度的降低)。如此,薄膜電晶體1430可具有提高的可靠性。
另外,可在用於脫水作用或除氫作用的熱處理之後,在未暴露至空氣之下連續形成通道保護層1418。在未暴露至空氣之下的連續膜形成能夠形成氧化物半導體層1403和通道保護層1418,可在未被諸如濕氣或碳氫化合物等大氣組成或空氣中飄浮的雜質元素污染其介面。因此,可降低薄膜電晶體之間的特性變化。
通道保護層1418係可使用包含氧之無機材料(如、氧化矽、氮氧化矽、或氧氮化矽)來形成。作為形成通道保護層1418之方法,可使用諸如電漿CVD法或熱CVD法等蒸汽沈積法或者濺鍍法。在形成通道保護層1418之後,以蝕刻處理其形狀。此處,以藉由濺鍍法形成及藉由使用光致微影所形成的遮罩以蝕刻處理氧化矽膜之此種方法來形成通道保護層1418。當在去除此光致微影步驟中所使用的抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層的露出區域。
然後,將導電膜形成在通道保護層1418和氧化物半導體層1403上。
作為導電膜的材料,可利用諸如下面材料等具有可見光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、 In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇導電膜的厚度在30 nm至200 nm的範圍內。
接著,使用由光致微影所形成的遮罩,選擇性蝕刻導電膜,以在通道保護層1418和氧化物半導體層1403上形成源極電極層1405a和汲極電極層1405b;如此,製造薄膜電晶體1430(見圖7B)。
此實施例可與實施例1、2、或3自由組合。
[實施例6]
在此實施例中,參考圖8A至8D、圖9A至9C、圖10、圖11、圖12A至12D、圖13A至13C、圖14A及14B、和圖15說明將實施例1所說明的薄膜電晶體置放在像素部之液晶顯示裝置的製造例子。
在圖8A中,由鋇硼矽酸玻璃、鋁硼矽酸玻璃等所形成的玻璃基板可被使用作為具有光透射特性的基板100。作為具有光透射特性的基板100,可使用具有尺寸例如1000 mm×1200 mm、1100 mm×1250 mm、或1150 mm×1300 mm之大面積的基板。當使用此種大面積基板時,可使用一基板製造複數個液晶顯示裝置,及可降低製造成 本。在此實施例中,使用尺寸為600 mm×720 mm之玻璃基板。
接著,在將具有可見光透射特性之導電膜形成在基板100的整個表面上之後,執行第一光致微影步驟,以形成抗蝕遮罩,及可藉由蝕刻去除導電膜的不必要部位,以形成配線和電極(包括閘極電極層101的閘極配線、電容器配線108、及第一終端121)。在此時,執行蝕刻,使得閘極電極層101的至少端部位具有錐型。
在使用大面積基板的例子中,取代將昂貴光遮罩用於光致微影,可藉由噴墨法形成抗蝕遮罩。當抗蝕遮罩係由噴墨法所形成時,可降低製造成本。需注意的是,為了降低製造成本,在下面光致微影處理的至少一步驟中,可以噴墨法形成抗蝕遮罩。
作為包括閘極電極層101的閘極配線、電容器配線108、及終端部的第一終端121之材料,可利用諸如下面材料等具有光透射特性的導電材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇包括閘極電極層101的閘極配線、電容器配線108、及終端部的第一終端121之厚度在30 nm至200 nm的範圍內。作為導電膜 的沈積方法,可使用濺鍍法、真空蒸發法(電子束蒸發法等)、電弧放電離子電鍍法、噴灑法、或噴墨法。在以噴墨法形成導電膜之例子中,光致微影步驟變成不必要,及可進一步達成成本降低。
在此實施例中,作為導電膜,藉由濺鍍法,使用In-Sn-O為基的目標來形成In-Sn-O為基的導電膜。在形成之後,導電膜可接受熱處理,以具有低電阻。目標係藉由將目標材料裝附到支承板(用於裝附目標之板)所形成。關於裝附目標到支承板,可將目標分割及裝附到一支承板。當分割目標時,在裝附目標到支承板時可鬆弛目標的彎曲。尤其是,當薄膜形成在大基板上時,此種分割的目標可適用於根據大基板的尺寸而擴大之目標。無須說,一目標可裝附到一支承板。
濺鍍法的例子包括RF濺鍍法,其中高頻電源被使用作為濺鍍電源;DC濺鍍法;及脈衝式DC濺鍍法,其中以脈衝方式施加偏壓。RF濺鍍法主要用於形成絕緣膜的例子中,及DC濺鍍法主要用於形成金屬膜之例子中。
此外,亦可具有安裝不同材料的複數個目標之多源濺鍍設備。利用多源濺鍍設備,不同材料的膜係可被形成堆疊在同一室中,或複數種材料的膜係可在同一室中同時以放電來形成。
此外,具有設置有磁鐵系統在室內且被用於磁電管濺鍍之濺鍍設備;以及用於ECR濺鍍之濺鍍設備,其中在未使用輝光放電之下,使用藉由使用微波所產生的電漿。
而且,作為藉由濺鍍之沈積法,亦具有反應性濺鍍法,其中在沈積期間目標物質和濺鍍氣體組成彼此起化學反應,以形成其薄的化合物膜;以及在沈積期間亦施加電壓到基板之偏壓濺鍍。
接著,閘極絕緣層102係形成在閘極電極層101的整個表面上。藉由濺鍍法、PCVD法等將閘極絕緣層102形成大於或等於50 nm及小於或等於250 nm的厚度。閘極絕緣層102被形成具有使用無機絕緣膜之單層結構或疊層結構,諸如氧化矽膜、氮氧化矽膜、氧氮化矽膜、氮化矽膜、或氧化鉭膜等。
在此實施例中,以下面方式將具有厚度100 nm之閘極絕緣層102形成在閘極電極層101上:單矽烷氣體(SiH4)、氮的氧化物(N2O),及稀有氣體引進到高密度電漿設備的室內作為來源氣體,及在壓力10 Pa至30 Pa下產生高密度電漿。閘極絕緣層102為氮氧化矽膜。在此實施例中,高密度電漿設備意指能夠實現大於或等於1×1011/cm3的電漿密度之設備。例如,藉由施加微波功率3 kW至6 kW產生電漿,使得絕緣膜被形成。當形成絕緣膜時,引進到室內之單矽烷氣體(SiH4)到氮的氧化物(N2O)之流率是在1:10至1:200的範圍中。此外,作為引進到室內之稀有氣體,可使用氦、氬、氪、氙等。尤其是,使用不昂貴的氬較佳。
此外,因為以高密度電漿設備所形成之閘極絕緣層102具有均勻厚度,所以閘極絕緣層102具有絕佳的步階 覆蓋。另外,藉由使用高密度電漿設備形成絕緣膜,可精確控制絕緣膜的厚度。
利用高密度電漿設備所獲得之絕緣膜與利用習知平行板PCVD設備所形成之絕緣膜大不相同。利用高密度電漿設備所獲得之絕緣膜具有低於利用習知平行板PCVD設備所形成之絕緣膜的蝕刻率之蝕刻率,在彼此比較利用相同蝕刻劑之蝕刻率時,大於或等於10%或大於或等於20%。如此,可說是,利用高密度電漿設備所獲得之絕緣膜是密集膜。
接著,氧化物半導體膜(In-Ga-Zn-O為基的非單晶膜)係形成在閘極絕緣層102上。在電漿處理之後,於未暴露至空氣之下形成In-Ga-Zn-O為基的非單晶膜是有效的,因為可防止灰塵或濕氣附著到閘極絕緣層和半導體膜之間的介面。此處,在目標為具有直徑8英吋之含有In、Ga、及Zn的氧化物半導體目標(In-Ga-Zn-O為基的氧化物半導體目標(In2O3:Ga2O3:ZnO=1:1:1))、基板和目標之間的距離為170 mm、壓力為0.4 Pa、及直流電(DC)電源為0.5 kW之條件下,在氧氛圍中、在氬大氣中、或在包括氬和氧的大氣中形成氧化物半導體膜。需注意的是,使用脈衝直流電(DC)電源較佳,因為此可降低灰塵,及使膜厚度均勻。In-Ga-Zn-O為基的非單晶膜被形成具有厚度2 nm至200 nm。作為氧化物半導體膜,具有厚度50 nm之In-Ga-Zn-O為基的非單晶膜以濺鍍法,使用In-Ga-Zn-O為基的氧化物半導體目標所形成。氧化物半導體膜具有小於 或等於50 nm之厚度較佳,以保持非晶。尤其是在通道蝕刻薄膜電晶體中,進一步蝕刻氧化物半導體膜,使得小厚度區域(即、通道形成區)具有小於或等於30 nm之厚度,及完成的薄膜電晶體之小厚度區域具有大於或等於5 nm及小於或等於20 nm的厚度。此外,完成的薄膜電晶體之通道寬度大於或等於0.5μm及小於或等於10 μm較佳。
目標係藉由將目標材料裝附到支承板(用於裝附目標之板)及真空封裝所形成。在形成氧化物半導體層中,為了獲得薄膜電晶體的絕佳電特性,在盡可能遠離空氣中的濕氣等同時,包括裝附至此的目標材料之支承板被安裝在濺鍍設備中較佳。較佳的是,不僅在安裝目標材料到濺鍍設備時,而且在直到真空封裝為止的週期期間、在執行製造目標、裝附目標材料至支撐板等期間都盡可能使目標遠離空氣中的濕氣等。
接著,執行第二光致微影步驟,以形成抗蝕遮罩,然後蝕刻氧化物半導體膜。例如,藉由使用磷酸、醋酸、及硝酸的混合溶液之濕蝕刻來去除不必要的部位,使得第一氧化物半導體層133被形成(見圖8A)。需注意的是,此處的蝕刻並不侷限於濕蝕刻,亦可執行乾蝕刻。
作為用於乾蝕刻的蝕刻氣體,使用含有氯的氣體(諸如氯(Cl2)、氯化硼(BCl3)、氯化矽(SiCl4)、或四氯化碳(CCl4)等以氯為基的氣體)較佳。
其他選擇是,可使用含有氟的氣體(諸如四氟化碳(CF4)、氟化硫(SF6)、氟化氮(NF3)、或三氟甲烷(CHF3)等 以氟為基的氣體);氧(O2);添加諸如氦(He)或氬(Ar)等稀有氣體之這些氣體的任一個等等。
作為乾蝕刻方法,可使用平行板RIE(反應性離子蝕刻)方法或ICP(電感耦合式電漿)蝕刻方法。為了將膜蝕刻成想要的形狀,適當調整蝕刻條件(施加到線圈形電極之電力量、施加到基板側上之電極的電力量、基板側上之電極的溫度等)。
作為濕蝕刻所使用的蝕刻劑,可使用磷酸、醋酸、及硝酸等的混合溶液。其他選擇是,亦可使用ITO07N(由KANTO CHEMICAL CO.,INC.所生產)。
與蝕刻掉的材料一起清洗來去除濕蝕刻所使用的蝕刻劑。可淨化包括蝕刻劑和蝕刻掉的材料之廢棄液體,以再利用包含在廢棄液體中的材料。當在蝕刻之後從廢棄液體收集到包括在氧化物半導體層中之諸如銦等材料及再使用時,可有效利用資源,如此可降低成本。
依據材料適當調整蝕刻條件(諸如蝕刻劑、蝕刻時間、及溫度等),使得可將膜蝕刻成想要的形狀。
第一氧化物半導體層133接受用於脫水作用或除氫作用的第一熱處理。在第一氧化物半導體層133於氧氛圍中接受第一熱處理之後,執行氧氛圍中之慢速冷卻。
例如,在氧氛圍中以溫度650℃執行第一熱處理達一小時。從氧化物半導體層被脫水或除氫的加熱溫度T至足夠低到防止水再次進來的溫度來執行慢速冷卻,尤其是至低於加熱溫度T之大於100℃的溫度,使得第二氧化物半 導體層134被形成。其他選擇是,執行慢速冷卻到低於稍後欲執行之第二熱處理的溫度,然後從熱處理設備取出基板。氧化物半導體層在氧氛圍中接受熱處理,藉以包含在氧化物半導體層中之諸如水等雜質可被去除,同時使第二氧化物半導體層134成為氧過量的狀態(見圖8B)。在一些例子中,依據第一熱處理的條件或氧化物半導體層的材料,使氧化物半導體層結晶及改變成微晶膜或複晶膜。
然後,藉由濺鍍法、真空蒸發法(電子束蒸發法等)、電弧放電離子電鍍法、噴灑法、或噴墨法,將具有光透射特性之導電膜132形成在第二氧化物半導體層134上(見圖8C)。
可利用諸如下面材料等具有可見光透射特性之導電材料作為具有光透射特性之導電膜132的材料:In-Sn-Zn-O為基的金屬氧化物、In-Al-Zn-O為基的金屬氧化物、Sn-Ga-Zn-O為基的金屬氧化物、Al-Ga-Zn-O為基的金屬氧化物、Sn-Al-Zn-O為基的金屬氧化物、In-Zn-O為基的金屬氧化物、Sn-Zn-O為基的金屬氧化物、Al-Zn-O為基的金屬氧化物、In-O為基的金屬氧化物、Sn-O為基的金屬氧化物、和Zn-O為基的金屬氧化物。適當選擇具有光透射特性之導電膜132的厚度在30 nm至200 nm的範圍內。
在此實施例中,說明在形成具有光透射特性的導電膜132之前執行用於脫水作用或除氫作用的第一熱處理之例子;然而,本發明並不特別侷限於此,可在形成具有光透 射特性的導電膜132之後執行第一熱處理。當在形成具有光透射特性的導電膜132之後執行第一熱處理時,可將氧化物半導體層脫水或除氫,同時藉由此熱處理具有光透射特性的導電膜132可具有提高的晶性和低電阻。
接著,執行第三光致微影步驟,以形成抗蝕遮罩,然後蝕刻掉不必要部位,使得形成源極電極層105a、汲極電極層105b、電容器電極135、及第二終端122。此時利用濕蝕刻或乾蝕刻作為蝕刻方法。在此蝕刻步驟中,局部蝕刻氧化物半導體層的露出區域,使得形成具有凹下之氧化物半導體層103。因此,未與源極電極層105a和汲極電極層105b重疊之氧化物半導體層103的區域具有小厚度。在圖8D中,藉由乾蝕刻,一次執行用以形成源極電極層105a、汲極電極層105b、和氧化物半導體層之蝕刻。因此,在氧化物半導體層103的端部和汲極電極層105b彼此對準和連續的同時,氧化物半導體層103的端部和源極電極層105a彼此對準及連續(這些端部位在閘極電極層101上方)。
在第三光致微影步驟中,使用與源極電極層105a或汲極電極層105b相同的材料所形成之第二終端122被留在終端部。需注意的是,第二終端122電連接到源極配線(包括源極電極層105a之源極配線)。
此外,在第三光致微影步驟中,儲存電容器係使用閘極電極層102作為介電,藉由電容器配線108和使用與源極電極層105a或汲極電極層105b相同的材料所形成之電 容器電極135所形成。
另外,藉由使用使用多調遮罩所形成的具有有著複數個厚度(典型上兩個不同厚度)之區域的抗蝕遮罩,可降低抗蝕遮罩的數目,如此實現簡化處理和較低成本。
接著,去除抗蝕遮罩。當在去除抗蝕遮罩中執行氧灰化時,將氧引進氧化物半導體層103的露出區域。然後,充作保護絕緣層之第一保護絕緣層107係形成與氧化物半導體層103的部分接觸。第一保護絕緣層107係使用典型上氧化矽膜、氮氧化矽膜、氧化鋁膜、氮氧化鋁膜等所形成。無須說,第一保護絕緣層107為具有光透射特性之絕緣膜。
然後,在形成第一保護絕緣層107之後執行熱處理。可在氧氛圍中或在氮氛圍中,以大於或等於150℃及低於350℃的溫度執行熱處理。藉由熱處理,氧化物半導體層103在與第一保護絕緣層107接觸的同時被加熱;如此,可使氧化物半導體層103具有較高電阻,藉以可提高電晶體的電特性,及可降低電晶體的電特性變化。只要在形成第一保護絕緣層107之後,並不特別限制此熱處理的時序(以大於或等於150℃及低於或等於350℃的溫度較佳)。當此熱處理亦充作另一步驟中的熱處理時,如,形成樹脂膜時的熱處理,或用以降低具有光透射特性之導電膜的電阻之熱處理,可防止步驟數目增加。
經由上述步驟,可完成薄膜電晶體170。
之後,形成第二保護絕緣層131(見圖9A)。第二保護 絕緣層131係使用未含有諸如濕氣、氫離子、或OH-等雜質的無機絕緣膜所形成,其防止這些從外面侵入;典型上,使用氮化矽膜、氮化鋁膜、氧氮化矽膜、氮氧化鋁膜等。無須說,第二保護絕緣層131為具有光透射特性之絕緣膜。
另外,第二保護絕緣層131與設置在第二保護絕緣層131下方之閘極絕緣層102或充作基座的絕緣膜接觸較佳,藉以防止諸如濕氣、氫離子、或OH-等雜質從基板的側表面侵入。上述結構在氮化矽膜用於與第二保護絕緣層131接觸之閘極絕緣層102或充作基座的絕緣膜時特別有效。
接著,執行第四光致微影步驟,以形成抗蝕遮罩。第一保護絕緣層107、第二保護絕緣層131、及閘極絕緣層102被蝕刻,以形成到達汲極電極層105b之接觸孔125。此外,亦在同一蝕刻步驟中形成到達第二終端122之接觸孔127和到達第一終端121之接觸孔126。圖9B圖解此階段的橫剖面圖。需注意的是,圖10為此階段的平面圖和沿著對應於圖9B的點線A1-A2和B1-B2所取之橫剖面圖。此外,如圖10所示,亦在同一蝕刻步驟形成到達電容器電極135之接觸孔124。
接著,去除抗蝕遮罩,然後形成具有光透射特性之導電膜。具有光透射特性之導電膜係以濺鍍法、真空蒸發法等,使用氧化銦(In2O3)、氧化銦-氧化錫合金(In2O3-SnO2,簡稱ITO)等所形成。包括氮之Al-Zn-O為基的非單晶 膜,其例子為Al-Zn-O-N為基的非單晶膜;包括氮之Zn-O-N為基的非單晶膜;及包括氮之Sn-Zn-O-N為基的非單晶膜可被使用作為導電膜。需注意的是,鋅在Al-Zn-O-N為基的氧化物半導體膜中之相對比例(atomic%)小於或等於47 atomic%及大於鋁在氧化物半導體膜中之相對比例(atomic%)。鋁在氧化物半導體膜中之相對比例(atomic%)大於氮在具有光透射特性之導電膜中的相對比例(atomic%)。以鹽酸為基的溶液來蝕刻此種材料。然而,因為特別在蝕刻ITO時容易產生殘餘物,所以氧化銦-氧化鋅合金(In2O3-ZnO)可被用於提高蝕刻可處理性。另外,當用以降低具有光透射特性之導電膜的電阻之熱處理被執行時,熱處理可充作用以增加氧化物半導體層103的電阻之熱處理,結果提高電晶體的電特性,及降低其電特性的變化。
接著,執行第五光致微影步驟,以形成抗蝕遮罩。然後,蝕刻掉不必要部位,使得像素電極層110被形成。需注意的是,經由形成在第一保護絕緣層107和第二保護絕緣層131中之接觸孔,像素電極層110電連接到電容器電極135。
此外,在第五光致微影步驟中,第一終端121和第二終端122被覆蓋有抗蝕遮罩,及具有光透射特性之導電膜128及129被留在終端部中。具有光透射特性之導電膜128及129充作連接到PFC之電極或配線。形成在第一終端121上的具有光透射特性之導電膜128為充作閘極配線 的輸入終端之連接終端電極。形成在第二終端122上的具有光透射特性之導電膜129為充作源極配線的輸入終端之連接終端電極。
然後,去除抗蝕遮罩。此階段的橫剖面圖圖示在圖9C。圖11圖解此階段的平面圖,沿著對應於圖9C之點線A1-A2、B1-B2所取的橫剖面圖。雖然說明像素電極層110與電連接像素電極層110之薄膜電晶體170的通道形成區和閘極電極層101重疊之例子,但是本發明並不特別侷限於此,及薄膜電晶體170的通道形成區可與未電連接到通道形成區之鄰接像素的像素電極層重疊。當具有光透射特性之導電膜(此處為像素電極層110)被形成與薄膜電晶體170的通道形成區重疊時,在用以檢驗薄膜電晶體的可靠性之偏壓溫度應力測試(下面稱作BT測試)中,可降低BT測試之前和之後的薄膜電晶體170之臨界電壓的變化量。
圖12A及12B分別為此階段之閘極配線終端部的橫剖面圖和平面圖。圖12A為沿著圖12B的線E1-E2所取之橫剖面圖。在圖12A中,形成在第一保護絕緣層154和第二保護絕緣層157上的具有光透射特性之導電膜155為充作輸入終端之連接終端電極。而且,在圖12A的終端部中,由與閘極配線相同的材料所形成之第一終端151和與源極配線相同材料所形成之連接電極層153彼此重疊,具有閘極絕緣層152插入在其間,並且經由具有光透射特性之導電膜155彼此電連接。需注意的是,具有光透射特性 之導電膜128與圖9C中的第一終端121接觸之部位對應於具有光透射特性之導電膜155與圖12A中的第一終端151接觸之部位。
圖12C及12D分別為不同於圖9C所示者之源極配線終端部的橫剖面圖和平面圖。圖12C為沿著圖12D的線F1-F2所取之橫剖面圖。在圖12C中,形成在第一保護絕緣層154和第二保護絕緣層157上之具有光透射特性的導電膜155為充作輸入終端之連接終端電極。而且,在圖12C的終端部中,由與閘極配線相同的材料所形成之電極層156位在電連接到源極配線之第二終端150下方,並且與第二終端150重疊,具有閘極絕緣層152在其間。電極層156未電連接到第二終端150,及若電極層156的電位被設定成不同於第二終端150的電位,諸如浮動、GND、或0 V等,則可形成用以防止雜訊或靜電之電容器。另外,第二終端150電連接到具有光透射特性的導電膜155,具有第一保護絕緣層154和第二保護絕緣層157在其間。
依據像素密度而設置複數個閘極配線、源極配線、及電容器配線。同樣地在終端部中,與閘極配線相同電位之第一終端,與源極配線相同電位之第二終端,與電容器配線相同電位之第三終端等各個排列成複數個。終端的每一個之數目可以是任何數目,及終端的數目係可由實踐者適當決定。
經由這五個光致微影步驟,儲存電容器和包括底閘極 交錯式薄膜電晶體之薄膜電晶體170的像素薄膜電晶體部係可使用五個光遮罩來完成。藉由配置薄膜電晶體和儲存電容器在以矩陣形式排列像素之像素部的各個像素中,可獲得用以製造主動矩陣式顯示裝置之基板的其中之一。在此說明書中,為了方便,此種基板被稱作主動矩陣式基板。
在製造主動矩陣式液晶顯示裝置的例子中,主動矩陣式基板和設置有相對電極之相對基板彼此接合,具有液晶層插入在其間。需注意的是,電連接到相對基板上的相對電極之共同電極設置在主動矩陣式基板上,及電連接到共同電極之第四終端設置在終端部中。第四終端被設置,使得共同電極被設置成固定電位,諸如GND或0 V等。
其他選擇是,儲存電容器的結構並不侷限於此實施例所說明者;例如,取代設置電容器配線,像素電極層可與鄰接像素的閘極配線重疊,具有保護絕緣層和閘極絕緣層插入在其間,使得儲存電容器被形成。
作為液晶層設置在主動矩陣式基板和相對基板之間並且密封的方法,具有液晶滴落法、液晶注射法等。圖13A至13C圖解液晶層設置在主動矩陣式基板和相對基板之間的液晶面板,及裝附FPC 1924之例子。在圖13A的顯示面板1908中,利用密封劑1922,將設置像素電極層之第一基板1920以及面向第一基板1920之第二基板1923彼此裝附。密封劑1922被形成,以圍繞顯示部1921。液晶層設置在由第一基板1920、第二基板1923、及密封劑 1922所圍繞的區域中。在圖13A所示之顯示面板1908中,藉由利用液晶滴落法密封以及在減壓下裝附基板來密封液晶。利用間隔物來維持一對基板之間的間隙;尤其是,球狀間隔物、柱狀間隔物、密封劑中的填料等。需注意的是,可依據驅動顯示面板1908的液晶模式(TN模式、VA模式、IPS模式等)來適當密封間隔物。需注意的是,雖然在IPS模式中第二基板未總是被設置有電極,但是在其他液晶模式中,第二基板通常被設置有相對電極;及在此種例子中,當裝附一對基板時,亦完成用以電連接相對基板到設置在第一基板上的終端電極之連接。
圖13B圖解不同於圖13A之利用密封液晶的方法之方法所製造的面板之結構例子。需注意的是,在圖13B中,與圖13A者相同的部位係以與圖13A所使用者之相同參考號碼來表示。在圖13B所示之顯示面板中,使用液晶注射法等,經由以第一密封劑1925所形成的用以注射液晶之入口注射液晶,然後由第二密封劑1926密封用以注射液晶之入口。
圖13C圖解不同於圖13A的面板之面板的結構例子。在圖13C中,與圖13A者相同的部位係以與圖13A所使用者之相同參考號碼來表示。在圖13C的面板中,用以驅動顯示部之驅動器IC 1927安裝在第一基板1920上,使得電路被整合。
若需要的話,可適當設置諸如極化器、逆反射膜、或濾色器等想要的光學膜給圖13A至13C所示之顯示面 板。
圖14A及14B的方塊圖圖示對應於圖13C之主動矩陣式液晶顯示裝置的結構。在圖14A中,圖解設置在基板1300之顯示部1301和連接到基板1300外之驅動部1302的結構。驅動部1302包括信號線驅動器電路1303、掃描線驅動器電路1304等。在顯示部1301中,複數個像素1305被設置成矩陣。
在圖14A中,經由外部連接終端1309,將掃描信號從掃描線驅動器電路1304供應到掃描線1306。此外,經由外部連接終端1309,將資料從信號線驅動器電路1303供應到信號線1308。以從掃描線1306的第一列連續選擇像素1305之此種方式來供應來自掃描線1306的掃描信號。
需注意的是,在此實施例中,驅動部1302係形成在基板1300外,及藉由TAB(膠帶自動接合)法安裝在FPC(撓性印刷電路)上。其他選擇是,可藉由玻璃上晶片(COG)法驅動部1302安裝在基板1300上。
需注意的是,在此實施例中,驅動部1302係形成在基板1300外,及係使用利用單晶半導體之電晶體所形成。因此,在驅動部1302中可獲得諸如提高驅動頻率、藉由降低驅動電壓之低電力消耗、及抑制輸出信號的變化等優點。同樣需注意的是,經由外部連接終端1309,將信號、電壓、電流等從掃描線驅動器電路1304輸入到信號線驅動器電路1303。
在圖14A中,掃描線驅動器電路1304連接到n掃描線1306 G1至G n 。試想最小影像單元係由三個像素R(紅)、G(綠)、及B(藍)所組成之例子,信號線驅動器電路1303被連接到總共3.m信號線:對應於R之m信號線SR1至SRm ;對應於G之m信號線SG1至SGm ;對應於B之m信號線SB1至SBm 。也就是說,如圖14B所示,各個彩色元件被設置有信號線,及資料從信號線供應到對應於各個彩色元件之像素,使得像素1305可表示想要的顏色。
圖15的時序圖圖解用以在一框週期之各自列選擇週期中(顯示裝置的像素之一列的掃描週期)選擇掃描線1306(如、G1及G n )之掃描信號,及信號線1308(如、SR1)的資料信號。
需注意的是,圖14A及14B的方塊圖,各個像素被設置有n通道電晶體之薄膜電晶體170。同樣在圖15中,說明在控制n通道電晶體的開或關時之像素的驅動。
在圖15之時序圖中,在顯示一螢幕的影像期間之一圖框週期被設定成至少1/120秒(8.3 ms)(1/240秒更好),使得觀察者看不見殘像,及掃描線的數目被設定成n之假設上,列選擇週期為1/(120×n)秒。在包括2000掃描線之顯示裝置的例子中(考慮具有4096×2160像素、3840×2160像素之所謂的4k2k影像等),若由於配線未列入考量而導致信號延遲等,則列選擇週期為1/240000秒(4.2 μs)。
因為配置在各個像素中之薄膜電晶體170具有光透射特性,所以甚至當掃描線的數目增加到例如2000,仍可實現高孔徑比。
在主動矩陣式液晶顯示裝置中(例如,TN型液晶顯示裝置),排列成矩陣形式之像素電極層被驅動,以在螢幕上形成顯示圖案。尤其是,電壓施加在所選擇的像素電極層和對應於像素電極層的相對電極之間,如此,配置在像素電極層和相對電極之間的液晶層用光學調變。觀看者將此光學調變辨識作顯示圖案。
在TN型液晶顯示裝置中,在一對基板之間,以90°以扭轉狀態排列液晶,及在約平行或垂直於研磨方向中排列極化元件的吸收軸方向。在此種TN型液晶顯示裝置,當未施加電壓到像素電極層時,來自諸如背光等光源的入射光在光源側上之極化元件中變成線性極化,及沿著液晶層的扭轉傳輸此線性極化。此外,當其他極化元件的傳輸軸與線性極化的方位角對準時,線性極化都被發出,以顯示白色(正常白顯示)。
另外,在全彩液晶顯示裝置的例子中,當未施加電壓到像素電極層時,設置濾色器及執行彩色顯示。其他選擇是,當施加電壓到像素電極層時,來自光源的入射光在光源側上的極化元件中變成線性極化,及顯示包括在液晶層中之液晶分子軸的平均取向之單位向量的方向約垂直於基板表面。因此,在未改變光源側上的其方位角之下傳輸線性極化,及方位角與其他極化元件的吸收軸對準,及獲得 黑色顯示。
在此實施例中,圖示TN型液晶顯示裝置的例子;然而,並不特別限制,及本發明可應用到液晶顯示裝置的各種模式。例如,作為用以提高視角特性之方法,本發明可應用到橫向電場法(亦稱作IPS),其中到基板的主要表面之水平方向中的電場施加到液晶層。此外,藉由使用具有負介電各向異性的圓盤狀液晶材料作為液晶材料,本發明可應用到使用垂直對準膜作為對準膜之方法。使用垂直對準膜之此方法是電壓控制雙折射法(亦稱作ECB)的其中之一,及利用液晶分子的雙折射來控制透射比。
作為用以提高反應速度之方法,可提高液晶層的反應速度,以藉由使用鐵電液晶和逆鐵電液晶來反應移動影像。
其他選擇是,可使用不需要對準膜之展現藍相的液晶。藍相為液晶相的其中之一,其僅在增加膽固醇液晶的溫度同時膽固醇相位改變成各向同性相位之前出現。因為藍相只出現在溫度的狹窄範圍內,所以含有大於或等於5 wt%的對掌劑以提高溫度範圍之液晶組成被用於液晶層。包括展現藍相和對掌劑具有低於或等於1 msec的短反應時間之液晶組成具有光學各向同性,其使對準處理變得不需要,及具有小的視角相依性。
另外,本發明可應用到透射型液晶顯示裝置,其中利用OCB(光學補償雙折射)模式。OCB模式藉由使一對基板之間的液晶層變成稱作彎曲對準之狀態來提高液晶層的反 應速度。將與液晶層接觸之第一對準膜的預傾角和與液晶層接觸之第二對準膜的預傾角顛倒,藉以進行彎曲對準。在此OCB模式中,需要液晶層,以從最初的狀態之斜面對準轉移到彎曲對準狀態。
而且,本發明可應用到利用垂直對準模式之透射型液晶顯示裝置。在利用垂直對準模式之透射型液晶顯示裝置中,一像素被設定成複數個子像素,及凸出部被設置在定位在子像素的每一個之中心部分之相反基板中,藉以執行一像素的取向分割(多域);因此,可利用用以達成寬廣視角之驅動方法。此驅動方法被稱作子像素驅動。
因為配置在各個像素中之薄膜電晶體170具有光透射特性,所以甚至當為子像素驅動將一像素分成複數個子像素以實現寬廣視角時,仍可實現高孔徑比。
在顯示移動影像中,液晶顯示裝置具有液晶分子本身的長反應時間導致殘像或影像模糊之問題。為了改良液晶顯示裝置的移動影像特性,利用被稱作黑色插入的驅動方法,其中每隔一圖框週期將黑色顯示在整個螢幕上。
另外,具有所謂的雙圖框率驅動之另一驅動方法。在雙圖框率驅動中,垂直同步化頻率被設定如平常垂直同步化頻率一般高的1.5倍或更多,2倍或更多較佳,藉以改良移動影像特性。
另外其他選擇是,為了改良液晶顯示裝置的移動影像特性,可利用驅動方法,其中複數個LED(發光二極體)或複數個EL光源被用於形成表面光源作為背光,及在一圖 框週期中,以脈衝方式獨立驅動表面光源的各個光源。作為表面光源,可使用三或更多種LED,及可使用發出白光之LED。因為可獨立控制複數個LED,可與光學調變液晶層的時序同步化LED的光發射時序。根據此驅動方法,可部分關掉LED;因此,特別在一螢幕上顯示具有顯示黑色的大部分之影像的例子中,可獲得降低電力消耗的效果。
藉由組合這些驅動方法,與習知液晶顯示裝置的顯示特性比較,可改良諸如移動影像特性等液晶顯示裝置的顯示特性。
此說明書所揭示之n通道電晶體包括用於通道形成區的氧化物半導體膜,及具有絕佳動態特性;如此,能夠與這些驅動方法組合。
將氧化物半導體用於薄膜電晶體能夠降低製造成本。因為藉由用於脫水作用或除氫作用的熱處理將雜質的濕氣等降低,以增加氧化物半導體膜的純淨,所以不需要使用超純淨氧化物半導體目標,及設置有降低露點溫度之沈積室的特殊濺鍍設備。因此,可製造包括具有令人滿意的電特性和高可靠度之薄膜電晶體的半導體裝置。
氧化物半導體層中的通道形成區為高電阻區;如此,穩定化薄膜電晶體的電特性,及可防止斷開電流等的增加。因此,可設置包括具有令人滿意的電特性和高可靠度之薄膜電晶體的半導體裝置。
可與其他實施例所說明的結構組合適當實施此實施 例。
[實施例7]
將說明發光顯示裝置作為半導體裝置的例子。作為包括在顯示裝置中的顯示元件,此處說明利用電致發光之發光元件。根據發光材料是有機化合物還是無機化合物來分類利用電致發光之發光元件。通常,前者被稱作有機EL元件,及後者被稱作無機EL元件。
在有機EL元件中,藉由施加電壓到發光元件,從一對電極分開注射電子和電洞到含有發光有機化合物之層內,如此電流流動。然後,載子(電子和電洞)重組,使得發光有機化合物被激勵。發光有機化合物從激勵狀態回到接地狀態,藉以發光。由於此種機制,此發光元件被稱作電流激勵發光元件。
根據其元件結構將無機EL元件分類成分散型無機EL元件和薄膜無機EL元件。分散型無機EL元件具有發光材料的粒子分散在接合劑中之發光層,及其光發射機制為利用施體位準和受體位準之施體-受體重組型光發射。薄膜無機EL元件具有發光層夾置在介電層之間,而介電層另外夾置在電極之間的結構,及其光發射機制為利用金屬離子的內殼電子過渡之局部型光發射。需注意的是,此處使用有機EL元件作為發光元件來進行說明。
圖16為可應用數位時間灰階驅動之像素結構的例子作為半導體裝置的例子圖。
將說明可藉由數位時間灰階法驅動之像素的結構和操作。此處說明一像素包括各個將氧化物半導體層用於通道形成區之兩n通道電晶體的例子。
像素6400包括交換電晶體6401、驅動電晶體6402、發光元件6404、及電容器6403。交換電晶體6401的閘極連接到掃描線6406,交換電晶體6401的第一電極(源極電極和汲極電極的其中之一)連接到信號線6405,及交換電晶體6401的第二電極(源極電極和汲極電極的其中另一個)連接到驅動電晶體6402的閘極。經由電容器6403,將驅動電晶體6402的閘極連接到電源線6407,驅動電晶體6402的第一電極連接到電源線6407,及驅動電晶體6402的第二電極連接到發光元件6404的第一電極(像素電極層)。發光元件6404的第二電極對應於共同電極6408。共同電極6408電連接到設置在同一基板上之共同電位線。
需注意的是,發光元件6404的第二電極(共同電極6408)被設定成低電源電位。低電源電位低於供應到電源線6407之高電源電位。例如,GND、0 V等可被設定作低電源電位。高電源電位和低電源電位之間的差被應用到發光元件6404,使得電流流經發光元件6404,藉以發光元件6404發光。如此,各個電位被設定成高電源電位和低電源電位之間的差大於或等於發光元件6404的前向臨界電壓。
當驅動電晶體6402的閘極電容被使用作為電容器6403的替代物時,可省略電容器6403。驅動電晶體6402 的閘極電容係可形成在通道形成區和閘極電極之間。
此處,在使用電壓輸入電壓驅動法的例子中,視頻信號被輸入到驅動電晶體6402的閘極,以使驅動電晶體6402能完全開或關。也就是說,驅動電晶體6402在直線區域中操作,如此,高於電源線6407之電壓的電壓被施加到驅動電晶體6402的閘極。需注意的是,高於或等於“電源線電壓+驅動電晶體6402的Vth”之電壓被施加到信號線6405。
在使用類比灰階法取代數位時間灰階法之例子中,可藉由以不同方式輸入信號來利用與圖16相同之像素結構。
在使用類比灰階驅動法的例子中,大於或等於“發光元件6404的前向電壓+驅動電晶體6402的Vth”之電壓被施加到驅動電晶體6402的閘極。發光元件6404的前向電壓意指獲得想要的亮度之電壓,及包括至少前向臨界電壓。藉由輸入視頻信號,以使驅動電晶體6402能夠在飽和區域中操作,電流能夠流經發光元件6404。為了驅動電晶體6402能夠在飽和區域中操作,電源線6407的電位高於驅動電晶體6402的閘極電位。利用類比視頻信號,根據視頻信號的電流流經發光元件6404,及可執行類比灰階驅動法。
需注意的是,像素結構並不侷限於圖16所示者。例如,圖16的像素可進一步包括開關、電阻器、電容器、電晶體、邏輯電路等。
接著,參考圖17A至17C說明發光元件的結構。此處,藉由採用n通道驅動TFT作為例子來說明像素的橫剖面結構。可以類似於實施例1所說明的薄膜電晶體之方式的方式來分別形成圖17A、17B、及17C所示之半導體裝置所使用的驅動TFT 7001、7011、及7021,及它們是各個包括氧化物半導體層之高度可靠的薄膜電晶體。其他選擇是,實施例2或3所說明的薄膜電晶體亦可使用作為驅動TFT 7001、7011、及7021。
為了析取從發光元件所發出的光,需要陽極和陰極的至少其中之一以傳送光。薄膜電晶體和發光元件係形成在基板上。發光元件可具有頂發射結構,其中經由與基板相對的表面析取光;底發射結構,其中經由基板側上的表面析取光;或雙發射結構,其中經由與基板相對的表面和基板側上的表面析取光。像素結構可應用到具有這些發射結構的任一個之發光元件。
參考圖17A說明具有頂發射結構之發光元件。
圖17A為在驅動TFT 7001為n型TFT及從發光元件7002發光到陽極7005側之例子中的像素之橫剖面圖。在圖17A中,發光元件7002的陰極7003電連接到驅動TFT 7001,及發光層7004和陽極7005以此順序堆疊在陰極7003上。另外,驅動TFT 7001被覆蓋有氮化矽膜、氮化鋁膜等之保護絕緣層7006,及另外覆蓋有極化絕緣膜7007。只要它們具有低功函數並且反射光,可使用各種導電材料來形成陰極7003。例如,使用Ca、Al、MgAg、 AlLi等較佳。發光層7004係可使用單層或堆疊的複數個層來形成。當發光層7004係使用複數個層來形成時,發光層7004係藉由以下面順序在陰極7003上堆疊電子注射層、電子運送層、發光層、電洞運送層、及電洞注射層所形成。然而,並不需要形成所有這些層。陽極7005係使用具有光透射特性之導電膜所形成,諸如含氧化鎢的氧化銦之膜、含氧化鎢的銦鋅氧化物、含有氧化鈦之氧化銦、含有氧化鈦之銦錫、銦錫氧化物(下面稱作ITO)、銦鋅氧化物、或添加氧化矽之銦錫氧化物等。
藉由隔牆7009將陰極7003與鄰接像素的陰極7008絕緣。鄰接像素的陰極7008與驅動TFT 7001的氧化物半導體層及閘極絕緣層重疊。在完成用以檢驗薄膜電晶體的可靠性之偏壓溫度應力測試(下面稱作BT測試)之例子中,藉由形成與驅動TFT 7001的通道形成區重疊之鄰接像素的陰極7008,可降低BT測試之前和之後之間的驅動TFT 7001之臨界電壓的變化量。
將發光層7004夾置在陰極7003和陽極7005之間的區域對應於發光元件7002。在圖17A所示之像素的例子中,從發光元件7002發光到陽極7005,如箭頭所示。
接著,參考圖17B說明具有底發射結構之發光元件。圖17B為在驅動TFT 7011為n型TFT且從發光元件7012發光到陰極7013側之例子中的像素之橫剖面圖。在圖17B中,發光元件7012的陰極7013係形成在電連接到驅動TFT 7011的具有光透射特性之導電膜7017上,及發光 層7014和陽極7015以此順序堆疊在陰極7013上。當陽極7015具有光透射特性時,用以反射或阻隔光之阻光膜7016係可形成覆蓋陽極7015。就陰極7013而言,只要陰極7013係使用具有低功函數的導電材料所形成,可如同圖17A的例子一般使用各種材料。陰極7013被形成具有能夠傳輸光之厚度(約5 nm至30 nm較佳)。例如,可使用具有厚度20 nm的鋁膜作為陰極7013。與圖17A的例子類似,發光層7014係可使用單層或堆疊的複數個層來形成。不需要陽極7015來傳送光,但是可如同圖17A的例子一般,使用具有光透射特性之導電材料來形成。作為阻光膜7016,例如可使用反射光之金屬等;然而,並不侷限於金屬膜。例如,亦可使用添加黑色素之樹脂等。
藉由隔牆7019將陰極7013與鄰接像素的陰極7018絕緣。鄰接像素的陰極7018與驅動TFT 7011的氧化物半導體層及閘極絕緣層重疊。在完成用以檢驗薄膜電晶體的可靠性之偏壓溫度應力測試(下面稱作BT測試)之例子中,藉由形成與驅動TFT 7011的通道形成區重疊之鄰接像素的陰極7018,可降低BT測試之前和之後之間的驅動TFT 7011之臨界電壓的變化量。
將發光層7014夾置在陰極7013和陽極7015之間的區域對應於發光元件7012。在圖17B所示之像素的例子中,從發光元件7012發光到陰極7013,如箭頭所示。
另外,因為驅動TFT 7011具有光透射特性,所以經由驅動TFT 7011,將從鄰接於發光元件7012的像素之發 光元件所發出的光發射到陰極7013側,如箭頭所示。
接著,參考圖17C說明具有雙發射結構之發光元件。在圖17C中,發光元件7022的陰極7023係形成在電連接到驅動TFT 7021的具有光透射特性之導電膜7027上,及發光層7024和陽極7025係以此順序堆疊在陰極7023上。如圖17A的例子一般,只要陰極7023係使用具有低功函數的導電材料所形成,可使用各種材料的任一個來形成陰極7023。陰極7023被形成具有能夠傳輸光之厚度。例如,可使用具有厚度20 nm之Al膜作為陰極7023。如圖17A的例子一般,發光層7024係可使用單層或堆疊的複數個層來形成。如圖17A的例子一般,陽極7025係可使用具有光透射特性的導電材料來形成。
藉由隔牆7009將陰極7023與鄰接像素的陰極7028絕緣。鄰接像素的陰極7028與驅動TFT 7021的氧化物半導體層及閘極絕緣層重疊。在完成用以檢驗薄膜電晶體的可靠性之偏壓溫度應力測試(下面稱作BT測試)之例子中,藉由形成與驅動TFT 7021的通道形成區重疊之鄰接像素的陰極7028,可降低BT測試之前和之後之間的驅動TFT 7021之臨界電壓的變化量。
陰極7023、發光層7024、及陽極7025彼此重疊之區域對應於發光元件7022。在圖17C所示之像素的例子中,從發光元件7022發光到陽極7025側和陰極7023側二者,如箭頭所示。
另外,因為驅動TFT 7021具有光透射特性,所以經 由驅動TFT 7021將從鄰接於發光元件7022的像素之發光元件所發出的光發射到陰極7023側,如箭頭所示。
雖然在此實施例中說明像素電極層之陰極與鄰接像素的TFT之通道形成區重疊的例子,但是本發明並不特別侷限於此例,及可利用陰極與電連接陰極的TFT之通道形成區重疊的結構。
雖然此處說明有機EL元件作為發光元件,但是亦可設置無機EL元件作為發光元件。
需注意的是,說明控制發光元件的驅動之薄膜電晶體(驅動TFT)電連接到發光元件之例子;然而,可利用用於電流控制之TFT連接在驅動TFT和發光元件之間的結構。
需注意的是,半導體裝置的結構並不侷限於圖17A至17C所示者,及可依據此說明書所揭示的技術,以各種方式修改。
經由上述步驟,可製造高度可靠的發光顯示裝置(顯示面板)作為顯示裝置。
此實施例可適當組合其他實施例所說明的結構來實施。
[實施例8]
具有由此說明書所揭示之實施例1至7的任一個所說明之處理所製造的薄膜電晶體之半導體裝置可應用到各種電子器具(包括娛樂機)。電子器具的例子包括電視機(亦稱 作電視或電視接收器)、電腦的監視器等、諸如數位相機或數位視頻相機等相機、數位相框、行動電話機(亦稱作行動電話或行動電話裝置)、可攜式遊戲操作臺、可攜式資訊終端、聲頻再生裝置、諸如柏青哥機器等大尺寸遊戲機等等。
圖18A圖解行動電話1000的例子。行動電話1000包括結合在外殼1001中之顯示部1002、操作按鈕1003、外部連接埠1004、揚聲器1005、麥克風1006等。
當以手指等觸碰圖18A所示之行動電話1000的顯示部1002時,可輸入資料到行動電話1000內。而且,諸如打電話和寫郵件等操作亦可藉由以手指等觸碰顯示部1002來執行。
主要具有顯示部1002的三個螢幕模式。第一模式為主要用以顯示影像之顯示模式。第二模式主要用以輸入諸如正文等資料的輸入模式。第三模式為組合顯示模式和輸入模式的兩模式之顯示及輸入模式。
例如,在打電話或寫郵件時,主要用以輸入正文之正文輸入模式被選擇用於顯示部1002,使得顯示在螢幕上的正文可被輸入。在那例子中,在顯示部1002之螢幕的幾乎所有區域上顯示鍵盤或數字按鈕較佳。
當諸如迴轉儀或加速度感測器等包括用以感測傾斜的感測器之偵測裝置設置在行動電話1000內時,顯示部1002的螢幕上之顯示可藉由決定行動電話1000的安裝方向來自動切換(行動電話1000是用於風景模式或者肖像模 式的水平還是垂直置放)。
藉由觸碰顯示部1002或者操作外殼1001的操作按鈕1003來切換螢幕模式。其他選擇是,可依據顯示部1002上所顯示的影像種類來切換螢幕模式。例如,當顯示在顯示部上的影像之信號為移動影像資料的信號,所以螢幕模式被切換到顯示模式。當信號為正文資料的信號時,螢幕模式被切換到輸入模式。
另外,在輸入模式中,當在由顯示部1002中的光學感測器所偵測之信號被偵測的同時,未執行藉由觸碰顯示部1002的輸入達某段週期時,可控制螢幕模式以從輸入模式切換到顯示模式。
顯示部1002可充作影像感測器。例如,當以手掌或手指觸碰顯示部1002時,可取用掌印、指印等的影像,藉以可執行個人識別。另外,藉由提供發出近紅外線光之背光或者發出近紅外線光之感測光源給顯示部,可取用手指靜脈、手掌靜脈等的影像。
實施例1所說明之複數個薄膜電晶體被排列在顯示部1002中。因為薄膜電晶體和配線具有光透射特性,所以在提供光學感測器給顯示部1002時它們未阻隔入射光,因此有效。此外,同樣在提供發出近紅外線光之背光或者發出近紅外線光之感測光源給顯示部的例子中,薄膜電晶體和配線未阻隔光,因此有效。
圖18B亦圖解行動電話的例子。例子圖解在圖18B之可攜式資訊終端可具有複數個功能。例如,除了電話功 能之外,此種可攜式資訊終端可具有藉由結合電腦來處理各種資料段之功能。
圖18B所示之可攜式資訊終端具有外殼1800和外殼1801。外殼1800包括顯示面板1802、揚聲器1803、麥克風1804、定位裝置1806、相機透鏡1807、外部連接終端1808等。外殼1801包括鍵盤1810、外部記憶體插槽1811等。此外,天線結合在外殼1801中。
顯示面板1802被設置有觸碰面板。圖18B的短劃線圖解被顯視作影像之複數個操作鍵1805。
另外,除了上述結構以外,可結合無接觸IC晶片、小型記憶裝置等。
本發明的顯示裝置可用於顯示面板1802,及可依據應用模式來適當改變顯示的方向。另外,顯示裝置被設置有相機透鏡1807在與顯示面板1802相同的表面上,及如此可被使用作為視頻電話。揚聲器1803和麥克風1804可被用於視頻電話打電話、記錄、及播放聲音等以及語音呼叫。而且,如圖18B所示一般發展之狀態中的外殼1800及1801可位移,使得可藉由滑動將其中之一重疊在另一個上;因此,可降低可攜式資訊終端的尺寸,其使可攜式資訊終端適於攜帶。
外部連接終端1808可連接到AC配接器和諸如USB纜線等各種類型的纜線,及能夠充電和與個人電腦的資料通訊。而且,儲存媒體可插入到外部記憶體插槽1811,使得可儲存及可移動大量資料。
另外,除了上述功能之外,可提供紅外線通訊功能、電視接收功能等。
圖19A圖解電視機9600的例子。在電視機9600中,顯示部9603結合在外殼9601中。可將影像顯示在顯示部9603上。此處,外殼9601係由台9605所支撐。
可利用外殼9601的操作開關或者分開的遙控器9610來操作電視機9600。可利用遙控器9610的操作鍵9609來控制頻道和音量,使得可控制顯示在顯示部9603上的影像。而且,遙控器9610可被設置有顯示部9607,用以顯示從遙控器9610所輸出的資料。
需注意的是,電視機9600被設置有接收器、數據機等。利用接收器,可接收一般電視廣播。而且,當透過數據機,藉由有線或無線連接將電視機9600連接到通訊網路時,可執行單向(從發射器到接收器)或者雙向(在發射器和接收器之間,在接收器之間等)資料通訊。
因為實施例1所說明的具有光透射特性之複數個薄膜電晶體被排列在顯示部9603中,所以同樣在藉由增加掃描線數目例如到2000來實現具有高清晰度的影像之例子中孔徑比高(考慮具有4096×2160像素、3840×2160像素等所謂4k2k影像)。然而,當顯示部9603的尺寸為60英吋、120英吋等時,其超過10英吋,所以具有具有光透射特性之配線的配線電阻變成有問題之考量;因此,掃描線或來源線被設置有低電阻金屬配線作為輔助配線較佳。
圖19B圖解數位相框9700的例子。例如,在數位相 框9700中,顯示部9703結合在外殼9701中。各種影像可顯示在顯示部9703上。例如,顯示部9703可顯示由數位相機等所拍攝之影像的資料,以充作一般相框。
需注意的是,數位相框9700被設置有操作部、外部連接終端(USB終端、能夠連接到諸如USB纜線等各種纜線之終端等)、記錄媒體插入部等。雖然他們可被設置在與顯示部相同的表面上,但是為了數位相框9700的設計將他們設置在側表面或背表面上較佳。例如,儲存由數位相機所拍攝的影像之資料的記憶體可插入到數位相框的記錄媒體插入部,藉以可轉移影像資料和顯示在顯示部9703上。
數位相框9700可具有能夠無線傳輸和接收資料之組態。經由無線通訊,想要的影像資料可被轉移來顯示。
圖20圖解包括兩外殼之可攜式娛樂機:外殼9881及外殼9891。利用連接部9893連接外殼9881及外殼9891,以開和關。顯示部9882及顯示部9883被分別結合在外殼9881及外殼9891。此外,圖20所示之可攜式娛樂機包括揚聲器部9884、記錄媒體插入部9886、LED燈9890、輸入機構(操作鍵9885、連接終端9887、感測器9888(具有測量力、位移、位置、速度、加速度、角速度、旋轉數目、距離、光、液體、磁性、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流率、濕度、梯度、振動、氣味、或紅外線之功能)、及麥克風9889等)。無須說,可攜式遊戲機的結構 並不侷限於上述,而可利用被設置有至少此說明書所揭示的半導體裝置之其他結構。可攜式遊戲機可適當包括其他配件。圖20所示之可攜式遊戲機具有閱讀儲存在記憶媒體中的程式或資料以將其顯示在顯示部上之功能,及經由無線通訊與另一可攜式遊戲機分享資訊之功能。需注意的是,圖20所示之可攜式遊戲機的功能可具有各種功能,並不侷限於上述。
如上述,具有光透射特性的薄膜電晶體可排列在諸如上述等各種電子器具的顯示部或顯示面板中。藉由使用具有光透射特性的薄膜電晶體作為顯示面板的交換元件,可設置具有有著高孔徑比的顯示部之高度可靠的電子器具。
此實施例可與其他實施例所說明的結構適當組合來實施。
此申請案係依據日本專利局於2009、7、10所發表之日本專利申請案號2009-164265,藉以併入其全文做為參考。
400‧‧‧基板
401‧‧‧閘極電極層
402‧‧‧閘極絕緣層
403‧‧‧氧化物半導體層
405a‧‧‧源極電極層
405b‧‧‧汲極電極層
407‧‧‧氧化物絕緣膜
430‧‧‧第一氧化物半導體層
431‧‧‧第二氧化物半導體層
470‧‧‧薄膜電晶體
C1-C2‧‧‧線

Claims (18)

  1. 一種半導體裝置,包含:基板;端子部,包含:在該基板上的第一導電層;在該第一導電層上的絕緣層;在該絕緣層上的第二導電層;以及在該第二導電層上且與其接觸的第三導電層;以及與該第三導電層重疊且連接至該第三導電層的FPC(撓性印刷電路),其中該第二導電層和該第三導電層各個具有透光性,以及其中該第一導電層電接觸該第二導電層和該第三導電層。
  2. 一種半導體裝置,包含:基板;該基板上的顯示部,該顯示部包含:電容器,包含第一電極層和第二電極層;像素,該像素包含:電晶體,包含閘極電極層,半導體層,介於該閘極電極層和該半導體層間的閘極絕緣層,源極電極層,和汲極電極層;該電晶體上的保護絕緣層;以及 該保護絕緣層上且電連接至該源極電極層和該汲極電極層之一的像素電極層;以及端子部,包含:在該基板上的第一導電層;在該第一導電層上的絕緣層;在該絕緣層上的第二導電層;以及在該第二導電層上且與其接觸的第三導電層;以及與該第三導電層重疊且連接至該第三導電層的FPC(撓性印刷電路),其中該第二導電層和該第三導電層各個具有透光性,以及其中該像素電極層、該第一電極層、和該第二電極層各個具有透光性,以及其中該第一導電層電接觸該第二導電層和該第三導電層。
  3. 一種半導體裝置,包含:基板;該基板上的顯示部,該顯示部包含像素,該像素包含:電容器,包含第一電極層和第二電極層;電晶體,包含閘極電極層,半導體層,介於該閘極電極層和該半導體層間的閘極絕緣層,源極電極層,和汲極電極層; 該電晶體上的保護絕緣層;該保護絕緣層上且電連接至該源極電極層和該汲極電極層之一的像素電極層;以及該基板上的驅動部,該驅動部配置以控制該顯示部;端子部,包含:在該基板上的第一導電層;在該第一導電層上的絕緣層;在該絕緣層上的第二導電層;以及在該第二導電層上且與其接觸的第三導電層;以及與該第三導電層重疊且連接至該第三導電層的FPC(撓性印刷電路),其中該第二導電層和該第三導電層各個具有透光性,其中該第二導電層和該第一電極層由相同的第一導電膜形成,其中該第三導電層和該像素電極層由相同的第二導電膜形成,其中該絕緣層和該閘極絕緣層由相同的絕緣膜形成,其中該像素電極層、該第一電極層、和該第二電極層各個具有透光性,以及其中該第一導電層電接觸該第二導電層和該第三導電層。
  4. 如申請專利範圍第1項的半導體裝置,還包含: 該基板上的電晶體,該電晶體包含閘極電極層,半導體層,介於該閘極電極層和該半導體層間的閘極絕緣層,源極電極層,和汲極電極層,其中該絕緣層和該閘極絕緣層由相同的絕緣膜形成。
  5. 如申請專利範圍第1項的半導體裝置,還包含:電容器,包含第一電極層和第二電極層,其中該第二導電層和該第一電極層由相同的第一導電膜形成。
  6. 如申請專利範圍第1項的半導體裝置,還包含:該基板上的電晶體,該電晶體包含閘極電極層,半導體層,介於該閘極電極層和該半導體層間的閘極絕緣層,源極電極層,和汲極電極層;以及電容器,包含第一電極層和第二電極層,其中該絕緣層和該閘極絕緣層由相同的絕緣膜形成,以及其中該第二導電層和該第一電極層由相同的第一導電膜形成。
  7. 如申請專利範圍第1項的半導體裝置,還包含:顯示部;該顯示部上的電容器,該電容器包含第一電極層和第二電極層;像素電極層,其中該第二導電層和該第一電極層由相同的第一導電膜形成,以及 其中該第三導電層和該像素電極層由相同的第二導電膜形成。
  8. 如申請專利範圍第1至3項中任一項的半導體裝置,其中該第一導電層具有透光性。
  9. 如申請專利範圍第1至3項中任一項的半導體裝置,其中該第一導電層經由該第三導電層而與該第二導電層接觸。
  10. 如申請專利範圍第2、3、和6項中任一項的半導體裝置,其中該第一電極層和該源極電極層由相同的導電膜形成。
  11. 如申請專利範圍第2、3、和6項中任一項的半導體裝置,其中該第二電極層和該閘極電極層由相同的導電膜形成。
  12. 如申請專利範圍第2項的半導體裝置,其中該第二電極層和該像素電極層由相同的導電膜形成。
  13. 如申請專利範圍第3或7項的半導體裝置,其中該第二電極層和該像素電極層由相同的第二導電膜形成。
  14. 如申請專利範圍第2、3、和6項中任一項的半導 體裝置,其中該半導體層包含氧化物半導體層。
  15. 如申請專利範圍第1至3項中任一項的半導體裝置,其中該第二導電層和該第三導電層各個包含銦、鋅、和氧。
  16. 如申請專利範圍第2或3項的半導體裝置,其中該電容器為包括在該像素中的儲存電容器。
  17. 如申請專利範圍第7項的半導體裝置,其中該電容器為包括在該像素中的儲存電容器。
  18. 一種電子器具,包含如申請專利範圍第1至3項中任一項的半導體裝置。
TW102119754A 2009-07-10 2010-07-08 半導體裝置和電子器具 TWI487040B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164265 2009-07-10

Publications (2)

Publication Number Publication Date
TW201338056A true TW201338056A (zh) 2013-09-16
TWI487040B TWI487040B (zh) 2015-06-01

Family

ID=43426798

Family Applications (8)

Application Number Title Priority Date Filing Date
TW099122476A TWI521605B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW102119754A TWI487040B (zh) 2009-07-10 2010-07-08 半導體裝置和電子器具
TW108134100A TWI772680B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW106114308A TWI644366B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW107132843A TWI679706B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW104139667A TWI591732B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW102119752A TWI502650B (zh) 2009-07-10 2010-07-08 顯示裝置和電子器具
TW111128418A TW202247297A (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099122476A TWI521605B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法

Family Applications After (6)

Application Number Title Priority Date Filing Date
TW108134100A TWI772680B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW106114308A TWI644366B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW107132843A TWI679706B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW104139667A TWI591732B (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法
TW102119752A TWI502650B (zh) 2009-07-10 2010-07-08 顯示裝置和電子器具
TW111128418A TW202247297A (zh) 2009-07-10 2010-07-08 半導體裝置及其製造方法

Country Status (5)

Country Link
US (11) US8324027B2 (zh)
JP (8) JP5681401B2 (zh)
KR (10) KR101857405B1 (zh)
TW (8) TWI521605B (zh)
WO (1) WO2011004755A1 (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810699B1 (ko) 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
KR102501183B1 (ko) 2009-06-30 2023-02-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR101291395B1 (ko) * 2009-06-30 2013-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제조 방법
KR101857405B1 (ko) * 2009-07-10 2018-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101739154B1 (ko) * 2009-07-17 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
WO2011007677A1 (en) * 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010542A1 (en) 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
WO2011043164A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011043215A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device and driving method thereof
KR101803554B1 (ko) * 2009-10-21 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
KR101818265B1 (ko) * 2009-11-06 2018-01-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101876470B1 (ko) 2009-11-06 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101995704B1 (ko) 2009-11-20 2019-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011065208A1 (en) 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6126775B2 (ja) 2010-06-25 2017-05-10 株式会社半導体エネルギー研究所 表示装置
US8835917B2 (en) * 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101731047B1 (ko) 2010-12-01 2017-05-12 삼성디스플레이 주식회사 적외선 감지 트랜지스터, 이를 포함하는 표시 장치의 제조 방법
KR101459307B1 (ko) * 2010-12-24 2014-11-07 그래핀스퀘어 주식회사 그래핀을 이용한 압력 및 위치 동시감지 터치센서
US9799773B2 (en) * 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP5616252B2 (ja) * 2011-02-23 2014-10-29 太平洋セメント株式会社 スパッタリングターゲット及びその製造方法
WO2012117439A1 (ja) * 2011-02-28 2012-09-07 パナソニック株式会社 薄膜半導体装置及びその製造方法
TWI624878B (zh) * 2011-03-11 2018-05-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
KR101781532B1 (ko) * 2011-03-14 2017-10-24 삼성디스플레이 주식회사 유기 발광 표시 장치와 그 제조방법
US9082860B2 (en) * 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8716708B2 (en) 2011-09-29 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20140086954A (ko) * 2011-10-28 2014-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP6059968B2 (ja) * 2011-11-25 2017-01-11 株式会社半導体エネルギー研究所 半導体装置、及び液晶表示装置
KR102078213B1 (ko) * 2012-07-20 2020-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
KR102004398B1 (ko) 2012-07-24 2019-07-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP2014042004A (ja) * 2012-07-26 2014-03-06 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
WO2014021356A1 (en) * 2012-08-03 2014-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102013216824A1 (de) 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
TWI657539B (zh) 2012-08-31 2019-04-21 日商半導體能源研究所股份有限公司 半導體裝置
CN111477634B (zh) 2012-09-13 2023-11-14 株式会社半导体能源研究所 半导体装置
TWI467301B (zh) * 2012-10-24 2015-01-01 Au Optronics Corp 顯示面板
KR102241249B1 (ko) 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 저항 소자, 표시 장치, 및 전자기기
US9905585B2 (en) 2012-12-25 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising capacitor
KR102459007B1 (ko) 2012-12-25 2022-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9231002B2 (en) 2013-05-03 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
TWI809225B (zh) 2013-05-16 2023-07-21 日商半導體能源研究所股份有限公司 半導體裝置
KR102657220B1 (ko) * 2013-05-20 2024-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI649606B (zh) 2013-06-05 2019-02-01 日商半導體能源研究所股份有限公司 顯示裝置及電子裝置
KR102100880B1 (ko) * 2013-06-26 2020-04-14 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
KR102244553B1 (ko) 2013-08-23 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 용량 소자 및 반도체 장치
WO2015105124A1 (ja) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 抵抗器及び抵抗器の製造方法
WO2016063169A1 (en) 2014-10-23 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
JP6558007B2 (ja) * 2015-03-20 2019-08-14 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP6986831B2 (ja) * 2015-07-17 2021-12-22 株式会社半導体エネルギー研究所 半導体装置及び電子機器
DE112016004928B4 (de) * 2015-10-29 2020-08-06 Mitsubishi Electric Corporation Dünnschichttransistor-Substrat
US20170168333A1 (en) * 2015-12-11 2017-06-15 Semiconductor Energy Laboratory Co., Ltd. Display device and separation method
US10114263B2 (en) 2015-12-18 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2017162852A (ja) * 2016-03-07 2017-09-14 株式会社ジャパンディスプレイ 半導体装置および表示装置
JP6776931B2 (ja) * 2016-03-23 2020-10-28 三菱マテリアル株式会社 積層反射電極膜、積層反射電極パターン、積層反射電極パターンの製造方法
JP6888318B2 (ja) * 2016-03-23 2021-06-16 三菱マテリアル株式会社 積層透明導電膜、積層配線膜及び積層配線膜の製造方法
CN109716421B (zh) * 2016-09-14 2021-05-04 夏普株式会社 安装基板及显示面板
KR101980780B1 (ko) * 2016-10-31 2019-05-21 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN110462842B (zh) * 2017-04-07 2022-05-17 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN107275339B (zh) * 2017-04-20 2020-06-12 惠科股份有限公司 主动开关阵列基板及制造方法与应用的显示面板
US20180308876A1 (en) * 2017-04-20 2018-10-25 HKC Corporation Limited Active switch array substrate, manufacturing method therefor, and display panel using the same
KR102516699B1 (ko) 2017-11-29 2023-03-30 엘지디스플레이 주식회사 조명 장치용 oled 패널 및 그 제조 방법
CN108154863B (zh) * 2018-02-28 2019-09-17 深圳市华星光电技术有限公司 像素驱动电路、像素驱动方法和液晶显示装置
CN108807423B (zh) * 2018-06-13 2020-11-10 京东方科技集团股份有限公司 柔性电子器件及其制造方法、柔性显示装置
TWI662353B (zh) * 2018-07-13 2019-06-11 松翰科技股份有限公司 光學影像感測模組
WO2020047914A1 (zh) * 2018-09-07 2020-03-12 武汉华星光电技术有限公司 背光结构
CN117316973A (zh) * 2018-09-07 2023-12-29 株式会社半导体能源研究所 显示装置、显示模块及电子设备
JPWO2021124006A1 (zh) * 2019-12-20 2021-06-24
US11387213B2 (en) 2020-06-05 2022-07-12 Advanced Semiconductor Engineering, Inc. Method for manufacturing a semiconductor package
US11646262B2 (en) * 2021-06-21 2023-05-09 Nanya Technology Corporation Semiconductor device with horizontally arranged capacitor and method for fabricating the same
CN115058695B (zh) * 2022-08-11 2022-11-04 广州粤芯半导体技术有限公司 溅射方法及半导体器件的制造方法
CN116435417B (zh) * 2023-06-13 2023-08-29 安徽大学 具有栅极自发光功能的氮化镓器件和制备方法

Family Cites Families (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008100A (en) 1933-05-16 1935-07-16 Ford Henry Pipe cleaning apparatus
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0282221A (ja) 1988-09-20 1990-03-22 Seiko Epson Corp 電気光学素子の配線方法
US5162901A (en) 1989-05-26 1992-11-10 Sharp Kabushiki Kaisha Active-matrix display device with added capacitance electrode wire and secondary wire connected thereto
JPH07113728B2 (ja) 1989-05-26 1995-12-06 シャープ株式会社 アクティブマトリクス基板
FR2679057B1 (fr) 1991-07-11 1995-10-20 Morin Francois Structure d'ecran a cristal liquide, a matrice active et a haute definition.
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3098345B2 (ja) 1992-12-28 2000-10-16 富士通株式会社 薄膜トランジスタマトリクス装置及びその製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3663261B2 (ja) * 1995-10-05 2005-06-22 株式会社東芝 表示装置用アレイ基板及びその製造方法
US5835177A (en) 1995-10-05 1998-11-10 Kabushiki Kaisha Toshiba Array substrate with bus lines takeout/terminal sections having multiple conductive layers
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP3683643B2 (ja) 1996-05-09 2005-08-17 矢崎総業株式会社 ソレノイドユニット
JP3634089B2 (ja) 1996-09-04 2005-03-30 株式会社半導体エネルギー研究所 表示装置
DE69734054T8 (de) * 1996-09-26 2006-06-08 Seiko Epson Corp. Anzeigevorrichtung
JPH10293321A (ja) * 1997-04-17 1998-11-04 Mitsubishi Electric Corp 液晶表示装置およびその製造方法
JP4130490B2 (ja) 1997-10-16 2008-08-06 三菱電機株式会社 液晶表示装置
JP3819590B2 (ja) * 1998-05-07 2006-09-13 三菱電機株式会社 液晶表示素子ならびに該素子を用いた液晶表示装置、および反射型液晶表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
KR20000027776A (ko) * 1998-10-29 2000-05-15 김영환 액정 표시 장치의 제조방법
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
DE69942442D1 (de) 1999-01-11 2010-07-15 Semiconductor Energy Lab Halbleiteranordnung mit Treiber-TFT und Pixel-TFT auf einem Substrat
JP3683463B2 (ja) 1999-03-11 2005-08-17 シャープ株式会社 アクティブマトリクス基板、その製造方法、及び、該基板を用いたイメージセンサ
JP2000357586A (ja) 1999-06-15 2000-12-26 Sharp Corp 薄膜el素子の製造方法および薄膜el素子
TW483287B (en) * 1999-06-21 2002-04-11 Semiconductor Energy Lab EL display device, driving method thereof, and electronic equipment provided with the EL display device
JP4627822B2 (ja) * 1999-06-23 2011-02-09 株式会社半導体エネルギー研究所 表示装置
US6661096B1 (en) * 1999-06-29 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Wiring material semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
JP2001053283A (ja) * 1999-08-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
US6812493B2 (en) * 2000-04-04 2004-11-02 Matsushita Electric Industrial Co., Ltd. Thin-film semiconductor element and method of producing same
US6580475B2 (en) * 2000-04-27 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2001324725A (ja) 2000-05-12 2001-11-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP4777500B2 (ja) * 2000-06-19 2011-09-21 三菱電機株式会社 アレイ基板およびそれを用いた表示装置ならびにアレイ基板の製造方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR100695303B1 (ko) 2000-10-31 2007-03-14 삼성전자주식회사 제어 신호부 및 그 제조 방법과 이를 포함하는 액정 표시장치 및 그 제조 방법
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP4646420B2 (ja) 2001-02-28 2011-03-09 三菱電機株式会社 薄膜トランジスタアレイ基板およびそれを用いた表示装置
US7301279B2 (en) * 2001-03-19 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting apparatus and method of manufacturing the same
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2002289589A (ja) 2001-03-27 2002-10-04 Fujitsu Ltd エッチング方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
KR100391157B1 (ko) 2001-10-25 2003-07-16 엘지.필립스 엘시디 주식회사 액정 표시 장치용 어레이 기판 및 그의 제조 방법
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US6903377B2 (en) * 2001-11-09 2005-06-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method for manufacturing the same
US7042024B2 (en) * 2001-11-09 2006-05-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method for manufacturing the same
US6822264B2 (en) * 2001-11-16 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2003179233A (ja) * 2001-12-13 2003-06-27 Fuji Xerox Co Ltd 薄膜トランジスタ、及びそれを備えた表示素子
KR100484591B1 (ko) 2001-12-29 2005-04-20 엘지.필립스 엘시디 주식회사 능동행렬 유기전기발광소자 및 그의 제조 방법
US6835954B2 (en) 2001-12-29 2004-12-28 Lg.Philips Lcd Co., Ltd. Active matrix organic electroluminescent display device
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
TWI255432B (en) * 2002-06-03 2006-05-21 Lg Philips Lcd Co Ltd Active matrix organic electroluminescent display device and fabricating method thereof
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
KR100846581B1 (ko) 2002-09-19 2008-07-16 삼성에스디아이 주식회사 듀얼형 유기전자발광소자와 그 제조방법
CN101685028B (zh) * 2002-09-20 2011-09-21 矢崎总业株式会社 连接器组件以及使用了该组件的仪表
JP4067090B2 (ja) * 2002-10-03 2008-03-26 シャープ株式会社 Tft基板およびその製造方法
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
CN100593472C (zh) * 2002-10-23 2010-03-10 精工爱普生株式会社 液体存储包和液体喷射装置
JP2004247533A (ja) * 2003-02-14 2004-09-02 Casio Comput Co Ltd アクティブマトリックスパネル
TWI233760B (en) * 2003-02-20 2005-06-01 Sanyo Electric Co Color light emitting display device
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
US7333072B2 (en) * 2003-03-24 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device
JP2004302466A (ja) * 2003-03-29 2004-10-28 Lg Philips Lcd Co Ltd 水平電界印加型液晶表示装置及びその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7229900B2 (en) 2003-10-28 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method of manufacturing thereof, and method of manufacturing base material
JP4974452B2 (ja) * 2003-10-28 2012-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8247965B2 (en) * 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
KR100958246B1 (ko) 2003-11-26 2010-05-17 엘지디스플레이 주식회사 횡전계 방식의 액정표시장치 및 그 제조방법
CN1890698B (zh) * 2003-12-02 2011-07-13 株式会社半导体能源研究所 显示器件及其制造方法和电视装置
TWI226712B (en) 2003-12-05 2005-01-11 Au Optronics Corp Pixel structure and fabricating method thereof
KR101078509B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 박막 트랜지스터의 제조 방법
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
JP4661076B2 (ja) * 2004-04-16 2011-03-30 三菱電機株式会社 Tftアレイ基板、液晶表示パネル及び液晶表示装置
KR101086477B1 (ko) * 2004-05-27 2011-11-25 엘지디스플레이 주식회사 표시 소자용 박막 트랜지스터 기판 제조 방법
US7834948B2 (en) 2004-06-11 2010-11-16 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
KR101160824B1 (ko) * 2004-07-08 2012-07-02 삼성전자주식회사 박막 트랜지스터 표시판 및 이를 포함하는 액정 표시 장치
TWI382264B (zh) * 2004-07-27 2013-01-11 Samsung Display Co Ltd 薄膜電晶體陣列面板及包括此面板之顯示器裝置
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7470604B2 (en) 2004-10-08 2008-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP5110785B2 (ja) * 2004-10-08 2012-12-26 株式会社半導体エネルギー研究所 表示装置の作製方法
KR20060032034A (ko) * 2004-10-11 2006-04-14 엘지.필립스 엘시디 주식회사 횡전계방식 액정표시장치
US7382421B2 (en) 2004-10-12 2008-06-03 Hewlett-Packard Development Company, L.P. Thin film transistor with a passivation layer
WO2006041027A1 (ja) * 2004-10-13 2006-04-20 Sharp Kabushiki Kaisha 機能基板
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
CN102938420B (zh) 2004-11-10 2015-12-02 佳能株式会社 无定形氧化物和场效应晶体管
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
KR101054344B1 (ko) 2004-11-17 2011-08-04 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR100661725B1 (ko) * 2004-12-30 2006-12-26 엘지.필립스 엘시디 주식회사 박막 트랜지스터 어레이 기판 및 그 제조 방법
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
JP4522872B2 (ja) * 2005-01-27 2010-08-11 シャープ株式会社 ガラス基板の修復方法
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
JP4777078B2 (ja) * 2005-01-28 2011-09-21 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP5117667B2 (ja) * 2005-02-28 2013-01-16 カシオ計算機株式会社 薄膜トランジスタパネル
JP2006245031A (ja) 2005-02-28 2006-09-14 Casio Comput Co Ltd 薄膜トランジスタパネル
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
KR20060100872A (ko) * 2005-03-18 2006-09-21 삼성전자주식회사 반투과 액정 표시 장치 패널 및 그 제조 방법
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
JP4306654B2 (ja) * 2005-07-26 2009-08-05 カシオ計算機株式会社 トランジスタアレイパネル
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
KR101240656B1 (ko) 2005-08-01 2013-03-08 삼성디스플레이 주식회사 평판표시장치와 평판표시장치의 제조방법
KR101158903B1 (ko) * 2005-08-05 2012-06-25 삼성전자주식회사 표시장치용 기판, 그 제조방법 및 이를 갖는 표시장치
KR20070019458A (ko) 2005-08-12 2007-02-15 삼성전자주식회사 배선 및 그 형성 방법과 박막 트랜지스터 기판 및 그 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2007109918A (ja) 2005-10-14 2007-04-26 Toppan Printing Co Ltd トランジスタおよびその製造方法
JP2007115807A (ja) 2005-10-19 2007-05-10 Toppan Printing Co Ltd トランジスタ
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101707212B (zh) 2005-11-15 2012-07-11 株式会社半导体能源研究所 半导体器件及其制造方法
US7745798B2 (en) 2005-11-15 2010-06-29 Fujifilm Corporation Dual-phosphor flat panel radiation detector
JP5250929B2 (ja) * 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
JP4492528B2 (ja) 2005-12-02 2010-06-30 カシオ計算機株式会社 液晶表示装置
JP2007183629A (ja) 2005-12-29 2007-07-19 Samsung Electronics Co Ltd 薄膜トランジスタ表示基板及びその製造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
KR101381365B1 (ko) * 2006-01-26 2014-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 전계효과 트랜지스터 및 반도체장치
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP4930704B2 (ja) 2006-03-14 2012-05-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
US7435633B2 (en) 2006-03-14 2008-10-14 Seiko Epson Corporation Electroluminescence device, manufacturing method thereof, and electronic apparatus
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP4215068B2 (ja) * 2006-04-26 2009-01-28 エプソンイメージングデバイス株式会社 電気光学装置および電子機器
JP5312728B2 (ja) * 2006-04-28 2013-10-09 凸版印刷株式会社 表示装置およびその製造方法
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5250944B2 (ja) * 2006-04-28 2013-07-31 凸版印刷株式会社 構造体、透過型液晶表示装置、半導体回路の製造方法および透過型液晶表示装置の製造方法
JP2007334297A (ja) * 2006-05-10 2007-12-27 Epson Imaging Devices Corp 液晶表示装置及びその製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
KR101297358B1 (ko) * 2006-06-30 2013-08-14 엘지디스플레이 주식회사 액정표시장치용 어레이 기판과 그 제조방법
KR100920118B1 (ko) * 2006-06-30 2009-10-01 엘지디스플레이 주식회사 백라이트 어셈블리 및 이를 구비한 액정표시장치
US8570468B2 (en) * 2006-06-30 2013-10-29 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
JP4321557B2 (ja) * 2006-07-06 2009-08-26 エプソンイメージングデバイス株式会社 電気光学装置、電気光学装置の製造方法及び電子機器
JP4449953B2 (ja) 2006-07-27 2010-04-14 エプソンイメージングデバイス株式会社 液晶表示装置
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
US7927991B2 (en) * 2006-08-25 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
KR20080028042A (ko) * 2006-09-26 2008-03-31 삼성전자주식회사 박막트랜지스터 기판 및 그 제조 방법
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5116277B2 (ja) * 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
KR20080068240A (ko) * 2007-01-18 2008-07-23 삼성전자주식회사 박막 트랜지스터 기판의 제조 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4934599B2 (ja) 2007-01-29 2012-05-16 キヤノン株式会社 アクティブマトリクス表示装置
US7777224B2 (en) 2007-01-30 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP5121254B2 (ja) 2007-02-28 2013-01-16 キヤノン株式会社 薄膜トランジスタおよび表示装置
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP2008227316A (ja) * 2007-03-14 2008-09-25 Seiko Epson Corp 半導体装置、半導体装置の製造方法および電子機器
TWI487118B (zh) 2007-03-23 2015-06-01 Idemitsu Kosan Co Semiconductor device
JP5244331B2 (ja) 2007-03-26 2013-07-24 出光興産株式会社 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
JP5197058B2 (ja) * 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
JP5215589B2 (ja) 2007-05-11 2013-06-19 キヤノン株式会社 絶縁ゲート型トランジスタ及び表示装置
JP5261979B2 (ja) * 2007-05-16 2013-08-14 凸版印刷株式会社 画像表示装置
KR20080101237A (ko) 2007-05-16 2008-11-21 삼성전자주식회사 박막 트랜지스터 기판 및 이를 포함하는 액정 표시 장치
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
TWI456663B (zh) * 2007-07-20 2014-10-11 Semiconductor Energy Lab 顯示裝置之製造方法
KR101484297B1 (ko) 2007-08-31 2015-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 표시장치의 제작방법
TWI357530B (en) 2007-09-11 2012-02-01 Au Optronics Corp Pixel structure and liquid crystal display panel
JP2009099847A (ja) * 2007-10-18 2009-05-07 Canon Inc 薄膜トランジスタとその製造方法及び表示装置
JP5377940B2 (ja) * 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
KR101461127B1 (ko) 2008-05-13 2014-11-14 삼성디스플레이 주식회사 반도체 장치 및 이의 제조 방법
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
TWI711182B (zh) 2008-07-31 2020-11-21 日商半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
TWI627757B (zh) 2008-07-31 2018-06-21 半導體能源研究所股份有限公司 半導體裝置
JP5608347B2 (ja) 2008-08-08 2014-10-15 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法
JP5602390B2 (ja) 2008-08-19 2014-10-08 富士フイルム株式会社 薄膜トランジスタ、アクティブマトリクス基板、及び撮像装置
US8129718B2 (en) 2008-08-28 2012-03-06 Canon Kabushiki Kaisha Amorphous oxide semiconductor and thin film transistor using the same
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
WO2010029866A1 (en) * 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101999970B1 (ko) 2008-09-19 2019-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101874327B1 (ko) * 2008-09-19 2018-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치
KR101659925B1 (ko) * 2008-10-03 2016-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치
EP2172804B1 (en) * 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
CN101719493B (zh) * 2008-10-08 2014-05-14 株式会社半导体能源研究所 显示装置
US8330156B2 (en) 2008-12-26 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with a plurality of oxide clusters over the gate insulating layer
KR101810699B1 (ko) * 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
KR101857405B1 (ko) * 2009-07-10 2018-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
WO2011013523A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102386147B1 (ko) * 2009-07-31 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스 및 그 형성 방법
CN102473734B (zh) 2009-07-31 2015-08-12 株式会社半导体能源研究所 半导体装置及其制造方法
KR101716918B1 (ko) 2009-07-31 2017-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8115883B2 (en) * 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR101832698B1 (ko) 2009-10-14 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2011068033A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011108381A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011135987A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101779510B1 (ko) * 2010-11-11 2017-09-19 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN102116982B (zh) * 2010-11-26 2012-08-22 深圳市华星光电技术有限公司 液晶显示面板及其制造方法
US8928010B2 (en) * 2011-02-25 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device
US9960278B2 (en) * 2011-04-06 2018-05-01 Yuhei Sato Manufacturing method of semiconductor device
KR101976057B1 (ko) * 2011-08-19 2019-05-07 엘지디스플레이 주식회사 표시장치용 어레이 기판 및 그의 제조방법
KR101894328B1 (ko) * 2011-10-06 2018-09-03 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
JP6122275B2 (ja) * 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 表示装置
CN102651342B (zh) * 2012-03-13 2014-12-17 京东方科技集团股份有限公司 阵列基板及其制造方法
CN103928453B (zh) * 2013-01-11 2016-09-28 北京京东方光电科技有限公司 一种阵列基板及其制造方法
CN108598087B (zh) * 2018-04-26 2021-01-15 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板、电子装置
CN117316973A (zh) * 2018-09-07 2023-12-29 株式会社半导体能源研究所 显示装置、显示模块及电子设备
CN112640107A (zh) * 2018-09-07 2021-04-09 株式会社半导体能源研究所 摄像装置及电子设备
CN113016090A (zh) * 2018-11-02 2021-06-22 株式会社半导体能源研究所 半导体装置
KR20210083269A (ko) * 2018-11-02 2021-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JPWO2020121110A1 (zh) * 2018-12-14 2020-06-18
KR20220094259A (ko) * 2020-12-28 2022-07-06 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
KR20230073378A (ko) * 2021-11-18 2023-05-26 삼성디스플레이 주식회사 표시패널 및 그 제조방법

Also Published As

Publication number Publication date
US20130049001A1 (en) 2013-02-28
TW202247297A (zh) 2022-12-01
TW201338055A (zh) 2013-09-16
JP2019140409A (ja) 2019-08-22
US10916566B2 (en) 2021-02-09
KR20180105263A (ko) 2018-09-27
TWI591732B (zh) 2017-07-11
KR102416978B1 (ko) 2022-07-05
JP5973004B2 (ja) 2016-08-17
US8441011B2 (en) 2013-05-14
US20200075635A1 (en) 2020-03-05
KR20220100086A (ko) 2022-07-14
KR20210018551A (ko) 2021-02-17
US10522568B2 (en) 2019-12-31
US9754974B2 (en) 2017-09-05
JP2021015983A (ja) 2021-02-12
US20220278136A1 (en) 2022-09-01
KR101422362B1 (ko) 2014-07-22
JP2011035388A (ja) 2011-02-17
JP2014102512A (ja) 2014-06-05
US11374029B2 (en) 2022-06-28
KR20180045058A (ko) 2018-05-03
TW201730983A (zh) 2017-09-01
TWI644366B (zh) 2018-12-11
KR101900653B1 (ko) 2018-09-19
KR101643835B1 (ko) 2016-07-28
US20150004745A1 (en) 2015-01-01
KR101493662B1 (ko) 2015-02-13
TW201611126A (zh) 2016-03-16
KR102011614B1 (ko) 2019-08-16
KR20140054458A (ko) 2014-05-08
US20170365626A1 (en) 2017-12-21
KR20170130621A (ko) 2017-11-28
TWI487040B (zh) 2015-06-01
KR102216028B1 (ko) 2021-02-16
US9490277B2 (en) 2016-11-08
TWI772680B (zh) 2022-08-01
US8835920B2 (en) 2014-09-16
JP5681401B2 (ja) 2015-03-11
US9054138B2 (en) 2015-06-09
US20110006302A1 (en) 2011-01-13
TW201907487A (zh) 2019-02-16
JP5651769B2 (ja) 2015-01-14
TWI502650B (zh) 2015-10-01
KR101857405B1 (ko) 2018-05-11
TWI521605B (zh) 2016-02-11
JP2018046296A (ja) 2018-03-22
JP2015135493A (ja) 2015-07-27
US20130221350A1 (en) 2013-08-29
US20190088687A1 (en) 2019-03-21
US8324027B2 (en) 2012-12-04
US20210104556A1 (en) 2021-04-08
WO2011004755A1 (en) 2011-01-13
TW201947670A (zh) 2019-12-16
JP6525443B2 (ja) 2019-06-05
TW201133640A (en) 2011-10-01
JP2016192573A (ja) 2016-11-10
KR101801500B1 (ko) 2017-11-24
KR20160087401A (ko) 2016-07-21
KR20190096445A (ko) 2019-08-19
JP2022184860A (ja) 2022-12-13
US20170148824A1 (en) 2017-05-25
TWI679706B (zh) 2019-12-11
KR20140148483A (ko) 2014-12-31
KR20120031059A (ko) 2012-03-29
US20150270294A1 (en) 2015-09-24
US10157936B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
TWI487040B (zh) 半導體裝置和電子器具