EP0979281B1 - ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen - Google Patents

ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen Download PDF

Info

Publication number
EP0979281B1
EP0979281B1 EP98920059A EP98920059A EP0979281B1 EP 0979281 B1 EP0979281 B1 EP 0979281B1 EP 98920059 A EP98920059 A EP 98920059A EP 98920059 A EP98920059 A EP 98920059A EP 0979281 B1 EP0979281 B1 EP 0979281B1
Authority
EP
European Patent Office
Prior art keywords
domain
polypeptide
light chain
chain variable
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98920059A
Other languages
English (en)
French (fr)
Other versions
EP0979281A2 (de
Inventor
Robert Arathoon
Paul J. Carter
Anne M. Merchant
Leonard G. Presta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of EP0979281A2 publication Critical patent/EP0979281A2/de
Application granted granted Critical
Publication of EP0979281B1 publication Critical patent/EP0979281B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/972Modified antibody, e.g. hybrid, bifunctional

Definitions

  • This invention relates to a method for making multispecific antibodies having heteromultimericheavy chain components and common light chain components such as bispecific antibodies, bispecific immunoadhesins,as well as antibody-immunoadhesinchimeras and the heteromultimeric polypeptides made using the method.
  • Bispecific antibodies which have binding specificities for at least two different antigens have significant potential in a wide range of clinical applications as targeting agents for in vitro and in vivo immunodiagnosis and therapy, and for diagnostic immunoassays.
  • bispecific antibodies have been very useful in probing the functional properties of cell surface molecules and in defining the ability of the different Fc receptors to mediate cytotoxicity(Fanger et al ., Crit. Rev. Immunol. 12 :101-124 (1992)).
  • Nolan et al ., Biochem. Biophys. Acta. 1040 :1-11 (1990) describe other diagnostic applications for BsAbs.
  • BsAbs can be constructed to immobilize enzymes for use in enzyme immunoassays.
  • one arm of the BsAb can be designed to bind to a specific epitope on the enzyme so that binding does not cause enzyme inhibition, the other arm of the BsAb binds to the immobilizing matrix ensuring a high enzyme density at the desired site.
  • diagnostic BsAbs include the rabbit anti-IgG/anti-ferritin BsAb described by Hammerling et al ., J. Exp. Med. 128 :1461-1473 (1968) which was used to locate surface antigens.
  • BsAbs having binding specificities for horse radish peroxidase (HRP) as well as a hormone have also been developed.
  • Another potential immunochemical application for BsAbs involves their use in two-site immunoassays.
  • two BsAbs are produced binding to two separate epitopes on the analyte protein - onc BsAb binds the complex to an insoluble matrix, the other binds an indicator enzyme (see Nolan et al., supra ).
  • Bispecific antibodies can also be used for in vitro or in vivo immunodiagnosis of various diseases such as cancer (Songsivilaiet al ., Clin. Exp. Immunol. 79 :315 (1990)).
  • one arm of the BsAb can bind a tumor associated antigen and the other arm can bind a detectable marker such as a chelator which tightly binds a radionuclide.
  • a detectable marker such as a chelator which tightly binds a radionuclide.
  • Bispecific antibodies can also be used for human therapy in redirected cytotoxicity by providing one arm which binds a target (e . g . pathogen or tumor cell) and another arm which binds a cytotoxic trigger molecule, such as the T-cell receptor or the Fc ⁇ receptor. Accordingly, bispecific antibodies can be used to direct a patient's cellular immune defense mechanisms specifically to the tumor cell or infectious agent. Using this strategy, it has been demonstrated that bispecific antibodies which bind to the Fc ⁇ RIII ( i . e . CD16) can mediate tumor cell killing by natural killer (NK) cell/large granular lymphocyte (LGL) cells in vitro and are effective in preventing tumor growth in vivo.
  • NK natural killer
  • LGL large granular lymphocyte
  • the bispecific antibodies link the CD3 complex on T cells to a tumor-associatedantigen.
  • a fully humanized F(ab') 2 BsAb consisting of anti-CD3 linked to anti-p185 HER2 has been used to target T cells to kill tumor cells overexpressingthe HER2 receptor.
  • Bispecific antibodies have been tested in several early phase clinical trials with encouraging results. In one trial, 12 patients with lung, ovarian or breast cancer were treated with infusions of activated T-lymphocytes targeted with an anti-CD3/anti-tumor (MOC31) bispecific antibody. deLeij et al .
  • Bispecific antibodies may also be used as fibrinolyticagents or vaccine adjuvants. Furthermore, these antibodies may be used in the treatment of infectious diseases (e.g . for targeting of effector cells to virally infected cells such as HIV or influenza virus or protozoa such as Toxoplasma gondii ), used to deliver immunotoxinsto tumorcells, or target immune complexes to cell surface receptors (see Fanger et al ., supra ).
  • BsAbs have been effectively hindered by the difficulty of obtaining BsAbs in sufficient quantity and purity.
  • bispecific antibodies were made using hybrid-hybridomatechnology (Millstein and Cuello, Nature 305 :537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure (see Fig. 1A). The purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. See, for example, (Smith, W., et al .
  • the Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives.
  • TAB thionitrobenzoate
  • One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivativeto form the BsAb.
  • the BsAbs produced can be used as agents for the selective immobilization of enzymes.
  • the BsAb thus formed was able to bind to cells overexpressing the HER2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytesagainst human breast tumor targets. See also Rodrigues et al ., Int. J. Cancers (Suppl.) 7 :45-50 (1992).
  • bispecific F(ab') 2 heterodimers have been produced using leucine zippers (Kostelny et al ., J. Immunol. 148(5) :1547-1553 (1992)).
  • the leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of anti-CD3 and anti-interleukin-2 receptor (IL-2R) antibodies by gene fusion.
  • the antibody homodimers were reduced at the hinge region to form monomers and then reoxidized to form the antibody heterodimers.
  • the BsAbs were found to be highly effective in recruiting cytotoxic T cells to lyse HuT-102 cells in vitro.
  • the advent of the "diabody" technology described by Hollinger et al ., PNAS (USA) 90 :6444-6448 (1993) has provided an alternative mechanism for making BsAb fragments.
  • the fragments comprise a heavy chain variable domain (V H ) connected to a light chain variable domain (V L ) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V H and V L domains of one fragment are forced to pair with the complementary V L and V H domains of another fragment, thereby forming two antigen-binding sites.
  • Immunoadhesins are antibody-like molecules which combine the binding domain of a protein such as a cell-surface receptor or a ligand (an "adhesin") with the effector functions of an immunoglobulin constant domain.
  • Immunoadhesins can possess many of the valuable chemical and biological properties of human antibodies. Since immunoadhesinscan be constructed from a human protein sequence with a desired specificity linked to an appropriate human immunoglobulin hinge and constant domain (Fc) sequence, the binding specificity of interest can be achieved using entirely human components. Such immunoadhesins are minimally immunogenic to the patient, and are safe for chronic or repeated use.
  • Immunoadhesins reported in the literature include fusions of the T cell receptor (Gascoigne et al ., Proc. Natl. Acad. Sci. USA 84 :2936-2940(1987)); CD4 (Capon et al ., Nature 337 :525-531 (1989); Traunecker et al ., Nature 339 :68-70 (1989); Zettmeissl et al ., DNA Cell Biol. USA 9 :347-353 (1990); and Byrn et al ., Nature 344 :667-670 (1990)); L-selectin or homing receptor (Watson et al ., J. Cell. Biol.
  • immunoadhesins which have been described for therapeutic use include the CD4-IgG immunoadhesin for blocking the binding of HIV to cell-surface CD4. Data obtained from Phase I clinical trials in which CD4-IgG was administered to pregnant women just before delivery suggests that this immunoadhesin may be useful in the prevention of maternal-fetal transfer of HIV. Ashkenazi et al ., Intern. Rev. Immunol. 10 :219-227 (1993). An immunoadhesin which binds tumor necrosis factor (TNF) has also been developed. TNF is a proinflammatory cytokine which has been shown to be a major mediator of septic shock.
  • TNF tumor necrosis factor
  • a TNF receptor immunoadhesin has shown promise as a candidate for clinical use in treating septic shock (Ashkenazi et al ., supra ).
  • Immunoadhesins also have non-therapeutic uses.
  • the L-selectin receptor immunoadhesin was used as an reagent for histochemical staining of peripheral lymph node high endothelial venules (HEV). This reagent was also used to isolate and characterize the L-selectin ligand (Ashkenazi et al., supra ).
  • the immunoadhesin is called a "bispecific immunoadhesin" by analogy to bispecific antibodies. Dietsch et al ., J. lmmunol. Methods 162 :123 (1993) describe such a bispecific immunoadhesin combining the extracellular domains of the adhesion molecules, E-selectin and P-selectin. Binding studies indicated that the bispecific immunoglobulin fusion protein so formed had an enhanced ability to bind to a myeloid cell line compared to the monospecific immunoadhesins from which it was derived.
  • Antibody-immunoadhesin (Ab/la) chimeras have also been described in the literature. These molecules combine the binding region of an immunoadhesin with the binding domain of an antibody.
  • Wftile Berg et al . supra describe a bispecific molecule that was tetrameric in structure, it is possible to produce a trimeric hybrid molecule that contains only one CD4-IgG fusion.
  • the first arm of this construct is formed by a humanized anti-CD3 ⁇ light chain and a humanizedanti-CD3 ⁇ heavy chain.
  • the second arm is a CD4-IgG immunoadhesin which combines part of the extracellular domain of CD4 responsible for gp120 binding with the Fc domain of IgG.
  • the resultant Ab/Ia chimera mediated killing of HIV-infected cells using either pure cytotoxic T cell preparations or whole peripheral blood lymphocyte (PBL) fractions that additionally included Fc receptor-bearing large granular lymphocyte effector cells.
  • PBL peripheral blood lymphocyte
  • heavy (H) chains typically form homodimers as well as the desired heterodimers.
  • light (L) chains frequently mispair with non-cognate heavy chains.
  • coexpression of two antibodies may produce up to ten heavy and light chain pairings (Suresh, M.R., et al . Methods Enzymol. 121 :210-228 (1986)).
  • These unwanted chain pairings compromise the yield of the BsAb and inevitably impose significant, and sometimes insurmountable, purification challenges (Smith, et al . (1992) supra ; and Massimo, et al . (1997) supra ).
  • Antibody heavy chains have previously been engineered to drive heterodimerization by introducing sterically complementary mutations in multimerization domains at the C H 3 domain interface (Ridgway et al. Protein Eng. 9 :617-621 (1996)) and optimization by phage display as described herein. Chains containing the modified C H 3 domains yield up to approximately 90% heterodimer as judged by formation of an antibody/immunoadhesin hybrid (Ab/Ia). Heterodimerized heavy chains may still mispair with the non-cognate light chain, thus hampering recovery of the BsAb of interest.
  • This application describes a strategy wh ich serves to enhance the formation of a desired heteromultimeric bispecific antibody from a mixture of monomers by engineering an interface between a first and second polypeptide for hetero-oligomerizationand by providing a common variable light chain to interact with each of the heteromeric variable heavy chain regions of the bispecific antibody.
  • a method of enhancing the formation of the desired heteromultimer can greatly enhance the yield over undesired heteromultimers and homomultimers.
  • the preferred interface between a first and second polypeptide of the heteromultimeric antibody comprises at least a part of the C H 3 domain of an antibody constant domain.
  • the domain of each of the first and second polypeptides that interacts at the interface is called the multimerization domain.
  • the multimerizationdomain promotes interaction between a specific first polypeptide and a second polypeptide, thereby increasing the yield of desired heteromultimer (Fig. 1B). Interaction may be promoted at the interface by the formation of protuberance-into-cavitycomplementary regions; the formation of non-naturally occurring disulfide bonds; leucine zipper; hydrophobic regions; and hydrophilic regions.
  • Protuberances are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e . g . tyrosine or tryptophan).
  • Compensatory "cavities” of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g . alanine or threonine).
  • a suitably positioned and dimensioned protuberance or cavity exists at the interface of either the first or second polypeptide, it is only necessary to engineer a corresponding cavity or protuberance, respectively, at the adjacent interface.
  • Non-naturally occurring disulfide bonds are constructed by replacing on the first polypeptide a naturally occurring amino acid with a free thiol-containing residue, such as cysteine, such that the free thiol interacts with another free thiol-containingresidue on the second polypeptide such that a disulfide bond is formed between the first and second polypeptides (Fig. 1B).
  • Single chain Fv fragments from a large non-immunizedphage display library revealed V-gene usage in which V H and V L sequences derived from certain germline V-gene segments predominated, families predominated in the repertoire. Examples of chain promiscuity in the repertoire were noted in which a particular heavy or light chain is found in combination with different partner chains (Vaughan, T.J. et al. (1996) supra ).
  • a common variable light chain reduces the number of monomers that must correctly pair to form the antigen binding domains by limiting the number of light chains from two or more light chains (in a bispecific or multispecificantibody, respectively, prior to disclosure of the instant invention) to one light chain (in a multispecific antibody of the invention, see Fig. 1C).
  • the invention relates to a method of preparing a heteromultimeric multispecific antibody, the antibody comprising 1) a first polypeptide and a second polypeptide (and additional polypeptides accord to the multiplicity of the antibody) which meet at an interface, wherein the first and additional polypeptides (i.e. , a first and second polypeptide) each include a multimerization domain forming an interface between the first and second (or at least one additional) polypeptides, and the multimerization domains promote stable interaction between first and additional polypeptides, and 2) a binding domain in each of the first and at least one additional polypeptide ( i . e .
  • the interface of the first polypeptide comprises a free thiol-containing residue which is positioned to interact with a free thiol-containing residue of the interface of the second polypeptide such that a disulfide bond is formed between the first and second polypeptides.
  • the nucleic acid encoding the first polypeptide has been altered from the original nucleic acid to encode the free thiol-containing residue or the nucleic acid encoding the second polypeptide has been altered from the original nucleic acid to encode the free thiol-containing residue, or both.
  • the nucleic acid encoding both the first polypeptide and at least one additional polypeptide are altered to encode the protuberance and cavity, respectively.
  • the first and second polypeptides each comprise an antibody constant domain such as the C H 3 domain of a human IgG 1 .
  • the invention provides a heteromultimer (such as a bispecific antibody, bispecific immunoadhesin or antibody/immunoadhesinchimera) comprising a first polypeptide and a second polypeptide which meet at an interface.
  • the interface of the first polypeptide comprises a multimerization domain which is positioned to interact with a multimerizationdomain on the at least one additional polypeptide ( i . e ., a second polypeptide)to form an interface between the first and second polypeptide.
  • the multimerization domains are altered to promote interaction between a specific first polypeptide and a specific second polypeptide, which alterations include, but are not limited to, the generation of a protuberanceor cavity, or both; the generation of non-naturally occurring disulfide bonds; the generation of complementary hydrophobic regions; and the generation of complementary hydrophilic regions.
  • the heteromultimeric multispecfic antibody may be provided in the form of a composition further comprising a pharmaceutically acceptable carrier.
  • the invention also relates to a host cell comprising nucleic acid encoding the heteromultimeric multispecificantibody of the preceding paragraph wherein the nucleic acid encoding the first polypeptide and at least one additional polypeptide (i.e ., a second polypeptide) is present in a single vector or in separate vectors.
  • the host cell can be used in a method of making a heteromultimeric multispecific antibody which involves culturing the host cell so that the nucleic acid is expressed, and recovering the heteromultimeric antibody from the cell culture.
  • the invention provides a method of preparing a heteromultimeric multispecific antibody comprising:
  • a multispecific antibody such as a bispecific antibody
  • a multispecific antibody such as a bispecific antibody
  • a bispecific antibody that incorporates a previously identified antibody.
  • the methods of Figini et al . may be used to identify such a heavy chain.
  • First a phage library would be treated with guanidine hydrochloride to dissociate the original light chain.
  • the heavy chains displayed on phage would be reconstituted with the light chain of interest by removing the denaturant(such as by dialysis).
  • the invention further embodies a multispecific antibody prepared by this method of selecting a heavy chain to pair with a chosen light chain, nucleic acid encoding the antibody, and a host cell comprising the nucleic acid.
  • the invention provides a mechanism for increasing the yields of the heteromultimerover other unwanted end-products such as undesired heteromultimers and/or homomultimers (see Fig. 1A-1C).
  • the yields of the desired heteromultimer recovered from recombinantcell culture are at least greater than 80% by weight and preferably greater than 90% by weight compared to the by-product undesired heterodimer or homomultimer(s).
  • heteromultimer is a molecule comprising at least a first polypeptide and a second polypeptide, wherein the second polypeptide differs in amino acid sequence from the first polypeptide by at least one amino acid residue.
  • the heteromultimer has binding specificity for at least two different ligands or binding sites.
  • the heteromultimer can comprise a "heterodimer” formed by the first and second polypeptide or can form higher order tertiary structures where polypeptides in addition to the first and second polypeptide are present.
  • Exemplary structures for the heteromultimer include heterodimers ( e.g .
  • bispecific immunoadhesin described by Dietsch et al ., supra
  • heterotrimers e . g . the Ab/la chimera described by Chamow et al ., supra
  • heterotetramers e . g . a bispecific antibody
  • multimerization domain refers to a region of each of the polypeptides of the heteromultimer.
  • the “multimerizationdomain” promotes stable interaction of the chimeric molecules within the heteromultimer complex.
  • the multimerization domain promotes interaction between a specific first polypeptide and a specific second polypeptide, thereby enhancing the formation of the desired heteromultimer and substantially reducing the probability of the formation of undesired heteromultimers or homomultimers.
  • the multimerizationdomains may interact via an immunoglobulin sequence, leucine zipper, a hydrophobic region, a hydrophilic region, or a free thiol which forms an intermolecular disulfide bond between the chimeric molecules of the chimeric heteromultimer.
  • the free thiol may be introduced into the interface of one or more interacting polypeptides by substituting a naturally occurring residue of the polypeptide with, for example, a cysteine at a position allowing for the formation of a disulfide bond between the polypeptides.
  • the multimerizationdomain may comprise an immunoglobulin constant region.
  • a possible multimerization domain useful in the present invention is disclosed in PCT/US90/06849 in which hybrid immunoglobulins are described.
  • a multimerization region may be engineered such that steric interactions not only promote stable interaction, but further promote the formation of heterodimers over homodimers from a mixture of monomers.
  • protuberance-into-cavity strategy is disclosed for an interface between a first and second polypeptide for hetero-oligomerization.
  • Protuberances are constructed by replacing small amino acid side chains from the interface of the first polypeptide with larger side chains (e.g. tyrosine or tryptophan).
  • Compensatory "cavities" of identical or similar size to the protuberances are optionally created on the interface of the second polypeptide by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine).
  • the immunoglobulin sequence preferably, but not necessarily, is an immunoglobulin constant domain.
  • the immunoglobulin moiety in the chimeras of the present invention may be obtained from IgG 1 , IgG 2 , IgG 3 or IgG 4 subtypes, IgA, IgE, IgD or IgM, but preferably IgG 1 , IgG 2 , IgG 3 or IgG 4 .
  • free thiol-containing compound a compound that can be incorporated into or reacted with an amino acid of a polypeptide interface of the invention such that the free thiol moiety of the compound is positionedto interact with a free thiol of moiety at the interface of additional polypeptide of the invention to form a disulfide bond.
  • the free thiol-containing compound is cysteine.
  • epitope tagged when used herein refers to a chimeric polypeptide comprising the entire chimeric heteroadhesin, or a fragment thereof, fused to a "tag polypeptide".
  • the tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the chimeric heteroadhesin.
  • the tag polypeptide preferably is fairly unique so that the antibody thereagainst does not substantially cross-react with other epitopes.
  • Suitable tag polypeptides generally have at least 6 amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues).
  • An embodimentof the invention encompassesa chimeric heteroadhesin linked to an epitope tag, which tag is used to detect the adhesin in a sample or recover the adhesin from a sample.
  • common light chain or “common amino acid sequence of the light chain” refers to the amino acid sequence of the light chain in the multispecific antibody of the invention.
  • Panels of antibodies were generated against at least two different antigens by panning a phage display library such as that described by Vaughan, et al. (1996) supra .
  • the light chain sequences were compared with respect to the variable light chain amino acid sequences.
  • Useful light chains from the compared panels are those having amino acid sequence identity of at least 80%, preferably at least 90%, more preferably at least 95%, and most preferably 100% identity.
  • a common light chain sequence is a sequence designed to be an approximation of the two compared light chain sequences.
  • the common light chain is identical to the light chains from the selected library clones, even though the light chain functions in a different binding domain of the multispecific antibody.
  • the common light chain may differ from one or the other, or both, of the compared light chains from the library clones.
  • the differing residues occur outside of the antigen binding CDR residues of the antibody light chain.
  • the position of the antigen binding CDR residues may be determined according to a sequence definition (Kabat et al. (1991) supra ) or structural defmition (Chothia and Lesk (1987) J. Mol. Biol. 196 :901-917).
  • amino acid sequence identity refers to the percentage of the amino acids of one sequence are the same as the amino acids of a second amino acid sequence. 100% sequence identity between polypeptide chains means that the chains are identical.
  • polypeptide refers generally to peptides and proteins having more than about ten amino acids.
  • mammalian polypeptides polypeptides that were originally derived from a mammalian organism
  • bacterial polypeptides include, e . g ., alkaline phosphatase and ⁇ -lactamase.
  • mammalian polypeptides include molecules such as renin, a growth hormone, including human growth hormone; bovine growth hormone; growth hormone releasing factor; parathyroidhormone; thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; tumor necrosis factor-alpha and -beta; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (
  • ILs interleukins
  • IL-1 interleukins
  • superoxide dismutase superoxide dismutase
  • T-cell receptors surface membrane proteins
  • decay accelerating factor viral antigen such as, for example, a portion of the AIDS envelope
  • transport proteins homing receptors
  • addressins regulatory proteins
  • antibodies and fragments of any of the above-listed polypeptides.
  • the "first polypeptide” is any polypeptide which is to be associated with a second polypeptide.
  • the first and second polypeptide meet at an "interface” (defined below).
  • the first polypeptide may comprise one or more additional domains, such as “binding domains” (e.g . an antibody variable domain, receptor binding domain, ligand binding domain or enzymatic domain) or antibody constant domains (or parts thereof) including C H 2, C H 1 and C L domains.
  • binding domains e.g . an antibody variable domain, receptor binding domain, ligand binding domain or enzymatic domain
  • antibody constant domains or parts thereof
  • the first polypeptide will comprise at least one domain which is derived from an antibody. This domain conveniently is a constant domain, such as the C H 3 domain of an antibody and can form the interface of the first polypeptide.
  • Exemplary first polypeptides include antibody heavy chain polypeptides, chimeras combining an antibody constant domain with a binding domain of a heterologouspolypeptide (i . e . an immunoadhesin, see definition below), receptor polypeptides (especially those which form dimers with another receptor polypeptide, e.g ., interleukin-8 receptor (IL-8R) and integrin heterodimers (e.g . LFA-1 or GPIllb/Illa)), ligand polypeptides (e.g . nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) - see Arakawa et al . J. Biol. Chem.
  • a heterologouspolypeptide i . e . an immunoadhesin, see definition below
  • receptor polypeptides especially those which form dimers with another receptor polypeptide, e.g ., interleukin-8 receptor (IL-8R)
  • the preferred first polypeptide is selected from an antibody heavy chain fused to a constantdomain of an immunoglobulin,wherein the constantdomain has been altered at the interface to promote preferential interaction with a second polypeptide of the invention.
  • the "second polypeptide” is any polypeptide which is to be associated with the first polypeptide via an "interface".
  • the second polypeptide may comprise additional domains such as a "binding domain” (e . g . an antibody variable domain, receptor binding domain, ligand binding domain or enzymatic domain), or antibody constant domains (or parts thereof) including C H 2, C H 1 and C L domains.
  • a binding domain e . g . an antibody variable domain, receptor binding domain, ligand binding domain or enzymatic domain
  • antibody constant domains or parts thereof
  • the second polypeptide will comprise at least one domain which is derived from an antibody. This domain conveniently is a constant region, such as the C H 3 domain of an antibody and can form the interface of the second polypeptide.
  • Exemplary second polypeptides include antibody heavy chain polypeptides, chimeras combining an antibody constant domain with a binding domain of a heterologous polypeptide (i . e . an immunoadhesin, see definition below), receptor polypeptides (especially those which form dimers with another receptor polypeptide, e.g ., interieukin-8 receptor (IL-8R) and integrin heterodimers ( e.g . LFA-1 or GPIIIb/IIIa)), ligand polypeptides (e . g . nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) - see Arakawa et al . J. Biol. Chem.
  • a heterologous polypeptide i . e . an immunoadhesin, see definition below
  • receptor polypeptides especially those which form dimers with another receptor polypeptide, e.g ., interieukin-8 receptor (IL-8R)
  • the preferred second polypeptide is selected from an antibody heavy chain fused to a constant domain of an immunoglobulin, wherein the constant domain has been altered at the interface to promote preferential interaction with a first polypeptide of the invention.
  • a "binding domain” comprises any region of a polypeptide which is responsible for selectively binding to a moleculeof interest( e.g . an antigen, ligand, receptor,substrateor inhibitor).
  • exemplarybinding domains include an antibody variable domain, receptor binding domain, ligand binding domain and an enzymatic domain.
  • the binding domain includes an immunoglobulin heavy chain and light chain. According to the bispecific antibodies of the invention and the method of making them, the light chain for each binding domain of the bispecific antibody is a common light chain, thereby avoiding the formation of undesired hetermultimers in which mispairing of heavy and light chains occurs.
  • antibody as it refers to the invention shall mean a polypeptide containing one or more domains that bind an epitope on an antigen of interest, where such domain(s) are derived from or have sequence identity with the variable region of an antibody.
  • antibodies include full length antibodies, antibody fragments, single chain molecules, bispecific or bifunctional molecules, diabodies, chimeric antibodies ( e.g . humanized and PRIMATIZEDTM antibodies), and immunoadhesins.
  • Antibody fragments include Fv, Fv', Fab, Fab', and F(ab') 2 fragments.
  • Humanized forms of non-human (e.g. rodent or primate) antibodies are specific chimeric immunoglobulins, immunoglobu lin chains or fragments thereof which contain minimal sequencederived from non-human immunoglobulin.
  • humanized antibodies are human immunoglobulins(recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, rabbit or primate having the desired specificity, affinity and capacity.
  • donor antibody such as mouse, rat, rabbit or primate having the desired specificity, affinity and capacity.
  • Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • the humanized antibody may comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications are made to further refine and maximize antibody performance.
  • the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence.
  • the humanized antibody preferably also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • the humanized antibody includes a PRIMATIZEDTM antibody wherein the antigen-binding region of the antibody is derived from an antibody produced by immunizing macaque monkeys with the antigen of interest.
  • a “multispecificantibody” is a molecule having binding specificities for at least two different antigens. While such molecules normally will only bind two antigens ( i . e . bispecific antibodies, BsAbs), antibodies with additional specificities such as trispecific antibodies are encompassed by this expression when used herein.
  • BsAbs include those with one arm directed against a tumor cell antigen and the other arm directed against a cytotoxic trigger molecule such as anti-Fc ⁇ RI/anti-CD15, anti-p185 HER2 /Fc ⁇ RIII (CD16), anti-CD3/anti-malignant B-cell (1D10), anti-CD3/anti-p185 HER2 , anti-CD3/anti-p97, anti-CD3/anti-renal cell carcinoma, anti-CD3/anti-OVCAR-3, anti-CD3/L-D1 (anti-colon carcinoma), anti-CD3/anti-melanocyte stimulating hormone analog, anti-EGF receptor/anti-CD3,anti-CD3/anti-CAMA1, anti-CD3/anti-CD19, anti-CD3/MoV18, anti-neural cell ahesion molecule (NCAM)/anti-CD3, anti-folate binding protein (FBP)/anti-CD3, anti-pan carcinoma associated antigen (AMOC-31)/anti-CD3; BsAbs with one arm which binds
  • BsAbs for use in therapy of infectious diseases such as anti-CD3/anti-herpes simplex virus (HSV), anti-T-cell receptor:CD3 complex/anti-influenza, anti-Fc ⁇ R/anti-HIV; BsAbs for tumor detection in vitro or in vivo such as anti-CEA/anti-EOTUBE,anti-CEA/anti-DPTA, anti-p185 HER2 /anti-hapten; BsAbs as vaccine adjuvants (see Fanger et al., supra ); and BsAbs as diagnostic tools such as anti-rabbit IgG/anti-ferritin, anti-horse radish peroxidase (HRP)/anti-hormone, anti-somatostatin/anti-substance P, anti-HRP/anti-FITC, anti-CEA/anti- ⁇ -galactosidase (see Nolan et al., supra ).
  • HRP anti-horse radish peroxidase
  • immunoadhesin designates antibody-like molecules which combine the "binding domain" of a heterologous protein (an “adhesin”, e.g . a receptor, ligand or enzyme) with the effector functionsof immunoglobulin constant domains.
  • adhesin e.g . a receptor, ligand or enzyme
  • the immunoadhesins comprise a fusion of the adhesin amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site (antigen combining site) of an antibody ( i . e . is "heterologous") and an immunoglobulin constant domain sequence.
  • the immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG 1 , IgG 2 , IgG 3 , or IgG 4 subtypes, IgA, IgE, IgD or IgM.
  • ligand binding domain refers to any native cell-surface receptor or any region or derivative thereof retaining at least a qualitative ligand binding ability, and preferably the biological activity of a correspondingnative receptor.
  • the receptor is from a cell-surface polypeptide having an extracellular domain which is homologous to a member of the immunoglobulin supergenefamily.
  • receptors for cytokines are not members of the immunoglobulin supergenefamily but are nonetheless specifically covered by this definition, are receptors for cytokines, and in particular receptors with tyrosine kinase activity (receptor tyrosine kinases), members of the hematopoietin and nerve growth factor receptor superfamilies, and cell adhesion molecules, e. g. (E-, L- and P-) selectins.
  • receptorbinding domain is used to designate any native ligand for a receptor, including cell adhesion molecules, or any region or derivative of such native ligand retaining at least a qualitative receptor binding ability, and preferably the biological activity of a correspondingnative ligand. This definition, among others, specifically includes binding sequences from ligands for the above-mentioned receptors.
  • multispecific immunoadhesin designates immunoadhesins (as hereinabove defined) having at least two binding specificities (i . e . combining two or more adhesin binding domains).
  • Multispecific immunoadhesins can be assembled as heterodimers,heterotrimersor heterotetramers, essentially as disclosed in WO 89/02922 (published 6 April 1989), in EP 314,317 (published 3 May 1989), and in U.S. Patent No. 5,116,964 issued 2 May 1992.
  • Preferred muitispecific immunoadhesins are bispecific.
  • bispecific immunoadhesins examples include CD4-IgG/TNFreceptor-IgG and CD4-IgG/L-selectin-IgG.
  • the last mentioned molecule combines the lymph node binding function of the lymphocyte homing receptor (LHR, L-selectin), and the HIV binding function of CD4, and fmds potential application in the prevention or treatment of HIV infection, related conditions, or as a diagnostic.
  • an “antibody-immunoadhesinchimera (Ab/Ia chimera)” comprises a molecule which combines at least one binding domain of an antibody (as herein defined) with at least one immunoadhesin (as defined in this appiication).
  • Exemplary Ab/la chimeras are the bispecific CD4-IgG chimeras described by Berg et al ., supra and Chamow et al ., supra .
  • the “interface” comprises those "contact” amino acid residues (or other non-amino acid groups such as carbohydrate groups, NADH, biotin, FAD or haem group) in the first polypeptide which interact with one or more "contact” amino acid residues (or other non-amino acid groups) in the interface of the second polypeptide.
  • the preferred interface is a domain of an immunoglobulinsuch as a variable domain or constant domain (or regions thereof), however the interface between the polypeptides forming a heteromultimeric receptor or the interface between two or more ligands such as NGF, NT-3 and BDNF are included within the scope of this term.
  • the preferred interface comprises the C H 3 domain of an immunoglobulin which preferably is derived from an IgG antibody and most preferably a human IgG 1 antibody.
  • an “original” amino acid residue is one which is replaced by an "import” residue which can have a smaller or larger side chain volume than the original residue.
  • the import amino acid residue can be a naturally occurring or non-naturally occurring amino acid residue, but preferably is the former.
  • “Naturally occurring” amino acid residues are those residues encoded by the genetic code and listed in Table 1 of PCT/US96/0 1598.
  • “non-naturally occurring” amino acid residue is meant a residue which is not encoded by the genetic code, but which is able to covalently bind adjacent amino acid residue(s)in the polypeptide chain.
  • non-naturally occurring amino acid residues are norleucine, ornithine, norvaline, homoserine and other amino acid residue analogues such as those described in Ellman et al ., Meth. Enzym. 202 :301-336 (1991), for example.
  • the procedures of Noren et al . Science 244: 182 (1989) and Ellman et al ., supra can be used. Briefly, this involves chemically activating a suppressor tRNA with a non-naturally occurring amino acid residue followed by in vitro transcription and translation of the RNA.
  • the method of the instant invention involves replacing at least one original amino acid residue, but more than one original residue can be replaced.
  • no more than the total residues in the interface of the first or second polypeptide will comprise original amino acid residues which are replaced.
  • the preferred original residues for replacement are "buried". By “buried” is meant that the residue is essentially inaccessible to solvent.
  • the preferred import residue is not cysteine to prevent possible oxidation or mispairing of disulfide bonds.
  • original nucleic acid is meant the nucleic acid encoding a polypeptide of interest which can be altered to encode within the multimerization domain amino acids whose side chains interact at the interface between the first and second polypeptide promoting stable interaction between the polypeptides.
  • Such alterations may generate without limitation such stable interactions as protuberance-into-cavity, non-naturally occurring disulfide bonds, leucine zipper, hydrophobic interactions, and hydrophilic interations.
  • the alteration is chosen which promotes specific interaction between a first and second polypeptide of interest and effectively excludes interactions that result in undesired heteromer pairing or the formation of homomers.
  • the original or starting nucleic acid may be a naturally occurring nucleic acid or may comprise a nucleic acid which has been subjected to prior alteration (e.g. a humanized antibody fragment).
  • altering the nucleic acid is meant that the original nucleic acid is genetically engineered or mutated by inserting, deleting or replacing at least one codon encoding an amino acid residue of interest. Normally, a codon encoding an original residue is replaced by a codon encoding an import residue.
  • Techniques for genetically modifying a DNA in this manner have been reviewed in Mutagenesis: a Practical Approach, M.J. McPherson, Ed., (IRL Press, Oxford, UK. (1991), and include site-directedmutagenesis, cassette mutagenesis and polymerase chain reaction (PCR) mutagenesis, for example.
  • the protuberance, cavity, or free thiol can be "introduced" into the interface of the first or second polypeptide by synthetic means, e.g . by recombinant techniques, in vitro peptide synthesis, those techniques for introducing non-naturally occurring amino acid residues previously described, by enzymatic or chemical coupling of peptides or some combination of these techniques.
  • the protuberance, cavity or free thiol which is "introduced” is "non-naturally occurring” or “non-native", which means that it does not exist in nature or in the original polypeptide ( e.g . a humanized monoclonal antibody).
  • the import amino acid residue for forming the protuberance has a relatively small number of “rotamers” ( e . g . about 3-6).
  • a “rotamer” is an energetically favorable conformation of an amino acid side chain. The number of rotamers of the various amino acid residues are reviewed in Ponders and Richards, J. Mol. Biol. 193 :775-791 (1987).
  • isolated heteromultimer means heteromultimer which has been identified and separated and/or recovered from a component of its natural cell culture environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the heteromultimer, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes.
  • the heteromultimer will be purified (1) to greaterthan 95% by weight of protein as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain.
  • the heteromultimers of the present invention are generally purified to substantial homogeneity.
  • the phrases "substantially homogeneous”, “substantially homogeneous form” and “substantial homogeneity” are used to indicate that the product is substantiailydevoid of by-products originated from undesired polypeptide combinations ( e . g . homomultimers).
  • substantial homogeneity means that the amount of by-products does not exceed 10%, and preferably is below 5%, more preferably below 1%, most preferably below 0.5%, wherein the percentages are by weight.
  • control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
  • the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, a ribosome binding site, and possibly, other as yet poorly understood sequences.
  • Eukaryotic cells are known to utilize promoters, polyadenylationsignals, and enhancers.
  • Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence.
  • DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
  • a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
  • a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
  • "operably linked” means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accord with conventional practice.
  • the first and second polypeptide (and any additional polypeptides forming the heteromultimer)are selected.
  • the nucleic acid encoding these polypeptides needs to be isolated so that it can be altered to encode the protuberance or cavity, or both, as herein defined.
  • the mutations can be introduced using synthetic means, e . g . by using a peptide synthesizer.
  • the method of Noren et al., supra is available for making polypeptides having such substitutions.
  • part of the heteromultimer is suitably made recombinantly in cell culture and other part(s) of the molecule are made by those techniques mentioned above.
  • heteromultimer can be formed from, or incorporate, other polypeptides using techniques which are known in the art.
  • nucleic acid encoding a polypeptide of interest e.g. a ligand, receptor or enzyme
  • a polypeptide of interest e.g. a ligand, receptor or enzyme
  • libraries are screened with probes (such as antibodies or oligonucleotides of about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook et al ., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989).
  • a protein that is immunogenic in the species to be immunized e.g .,
  • Animals are immunized against the immunogenic conjugates or derivatives by combining I mg of 1 ⁇ g of conjugate (for rabbits or mice, respectively) with 3 volumes of Freud's complete adjuvant and injecting the solution intradermally at multiple sites.
  • the animals are boosted with 1/5 to 1/10 the original amount of conjugate in Freud's complete adjuvant by subcutaneous injection at multiple sites.
  • 7 to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus.
  • the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent.
  • Conjugates also can be made in recombinantcell culture as protein fusions. Also, aggregating agents such as alum are used to enhance the immune response.
  • Monoclonal antibodies are obtained from a population of substantially homogeneous antibodies using the hybridoma method first described by Kohler and Milstein, Nature 256 :495 (1975) or may be made by recombinant DNA methods (Cabilly et al ., U.S. Patent No. 4,816,567).
  • a mouse or other appropriate host animal such as hamster
  • lymphocytes may be immunized in vitro .
  • Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).
  • a suitable fusing agent such as polyethylene glycol
  • the hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells.
  • the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substancespreventthe growth of HGPRT-deficient cells.
  • HAT medium hypoxanthine, aminopterin, and thymidine
  • Preferred myeloma cells are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium.
  • preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 cells available from the American Type Culture Collection, Rockville, Maryland USA.
  • Human myeloma and mouse-human heteromyelomacell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133 :3001 (1984); and Brodeur et al ., Monoclonal Antibody Production Techniques and Applications, pp.51-63, Marcel Dekker, Inc., New York, 1987). See, also, Boerner et al ., J.
  • the clones may be subcloned by limiting dilution procedures and grown by standard methods. Goding, Monoclonal Antibodies: Principles and Practice, pp.59-104 (Academic Press, 1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium or RPM1-1640 medium.
  • the hybridoma cells may be grown in vivo as ascites tumors in an animal.
  • the monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
  • transgenic animals e.g. mice
  • transgenic animals e.g. mice
  • J H antibody heavy chain joining region
  • antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al ., Nature, 348 :552-554 (1990), using the antigen of interest to select for a suitable antibody or antibody fragment.
  • Clackson et al ., Nature, 352 :624-628 (1991) and Marks et al ., J. Mol. Biol., 222 :581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries.
  • Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Mark et al ., Bio/Technol.
  • DNA encoding the antibodies of the invention is readily isolated and sequenced using conventional procedures (e.g ., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies).
  • the hybridoma cells of the invention serve as a preferred source of such DNA.
  • the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells.
  • the DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences, Morrison et al ., Proc. Nat. Acad. Sci. 81 :6851 (1984). In that manner, "chimeric" antibodies are prepared that have the binding specificity of an anti-antigen monoclonal antibody herein.
  • a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. Humanization can be performed essentially following the method of Winter and co-workers (Jones et al ., Nature 321 :522-525 (1986); Riechmann et al ., Nature 332 :323-327 (1988); Verhoeyen et al ., Science 239 :1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody.
  • humanized antibodies are chimeric antibodies (Cabilly, supra ), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.
  • humanized antibodies are typically human antibodies in which some CDR residues, and possibly some FR residues, are substituted by residues from analogous sites in rodent antibodies. It is important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties.
  • humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three dimensional models of the parental and humanized sequences. Three dimensional immunoglobulin models are familiar to those skilled in the art.
  • Immunoglobulins and certain variants thereof are known and many have been prepared in recombinant cell culture. For example, see U.S. Patent No. 4,745,055; EP 256,654; Faulkner et al ., Nature 298 :286 (1982); EP 120,694; EP 125,023; Morrison, J. Immun. 123 :793 (1979); Köhler et al ., Proc. Natl. Acad. Sci. USA 77 :2197 (1980); Raso et al ., Cancer Res. 41 :2073 (1981); Morrison et al ., Ann. Rev. Immunol.
  • Immunoadhesins constructed from an adhesin binding domain sequence linked to an appropriate immunoglobulin constant domain sequence (immunoadhesins)are known in the art. Immunoadhesinsreported in the literature include fusions of the T cell receptor (Gascoigne et al ., Proc. Natl. Acad. Sci. USA 84 :2936-2940 (1987)); CD4 (Capon et al ., Nature 337 :525-531 (1989); Traunecker et al ., Nature 339 :68-70 (1989); Zettmeissl et al ., DNA Cell Biol.
  • CD22 (Stamenkovic et al ., Cell 66 :1133-1144 (1991)); TNF receptor (Ashkenazi et al ., Proc. Natl. Acad. Sci. USA 88 :10535-10539 (1991); Lesslauer et al ., Eur. J. Immunol. 27 :2883-2886 (1991); and Peppel et al ., J. Exp. Med. 174 :1483-1489(1991)); and IgE receptor ⁇ (Ridgwayand Gorman, J. Cell. Biol. Vol. 115 , Abstract No. 1448 (1991)).
  • the simplest and most straightforward immunoadhesin design combines the binding domain(s) of the adhesin (e.g . the extracellular domain (ECD) of a receptor) with the hinge and Fc regions of an immunoglobu lin heavy chain.
  • ECD extracellular domain
  • nucleic acid encoding the binding domain of the adhesin will be fused C-terminally to nucleic acid encoding the N-terminus of an immunoglobulin constant domain sequence, however N-terminal fusions are also possible.
  • the encoded chimeric polypeptide will retain at least functionally active hinge, C H 2 and C H 3 domains of the constant region of an immunoglobulin heavy chain. Fusions are also made to the C-terminus of the Fc portion of a constant domain, or immediately N-terminal to the C H 1 of the heavy chain or the correspondingregion of the light chain.
  • the precise site at which the fusion is made is not critical; particular sites are well known and may be selected in order to optimize the biological activity, secretion, or binding characteristics of the 1a.
  • the adhesin sequence is fused to the N-terminus of the Fc domain of immunoglobu lin G 1 (IgG 1 ). It is possible to fuse the entire heavy chain constant region to the adhesin sequence. However, more preferably, a sequence beginning in the hinge region just upstream of the papain cleavage site which defines IgG Fc chemically ( i . e. residue 216, taking the first residue of heavy chain constant region to be 114), or analogous sites of other immunoglobulins is used in the fusion.
  • the adhesin amino acid sequence is fused to (a) the hinge region and C H 2 and C H 3 or (b) the C H 1, hinge, C H 2 and C H 3 domains, of an IgG 1 , IgG 2 , or IgG 3 heavy chain.
  • the precise site at which the fusion is made is not critical, and the optimal site can be determined by routine experimentation.
  • the immunoadhesins are assembled as multimers, and particularly as heterodimers or heterotetramers.
  • these assembled immunoglobulins will have known unit structures.
  • a basic four chain structural unit is the form in which IgG, IgD, and IgE exist.
  • a four chain unit is repeated in the higher molecular weight immunoglobulins;IgM generally exists as a pentamer of four basic units held together by disulfide bonds.
  • IgA globulin, and occasionally IgG globulin may also exist in multimeric form in serum. In the case of multimer, each of the four units may be the same or different.
  • the adhesin sequences can be inserted between immunoglobulin heavy chain and light chain sequences, such that an immunoglobulin comprising a chimeric heavy chain is obtained.
  • the adhesin sequences are fused to the 3' end of an immunoglobulin heavy chain in each arm of an immunoglobulin, either between the hinge and the C H 2 domain, or between the C H 2 and C H 3 domains. Similar constructs have been reported by Hoogenboom, et al ., Mol. Immunol. 28 :1027-1037 (1991).
  • An immunoglobulin light chain might be present either covalently associated to an adhesin-immunoglobulin heavy chain fusion polypeptide, or directly fused to the adhesin.
  • DNA encoding an immunoglobulin light chain is typically coexpressed with the DNA encoding the adhesin-immunoglobulin heavy chain fusion protein.
  • the hybrid heavy chain and the light chain will be covalently associated to provide an immunoglobulin-like structure comprising two disulfide-linked immunoglobulin heavy chain-light chain pairs.
  • the immunoglobulin sequences used in the construction of the immunoadhesins of the present invention are from an lgG immunoglobulin heavy chain constant domain.
  • human immunoadhesins the use of human IgG 1 and IgG 3 immunoglobulin sequences is preferred.
  • a major advantage of using IgG 1 is that IgG 1 immunoadhesins can be purified efficiently on immobilized protein A. In contrast, purification of IgG 3 requires protein G, a significantly less versatile medium.
  • other structural and functional properties of immunoglobulins should be considered when choosing the lg fusion partner for a particular immunoadhesinconstruction.
  • the IgG 3 hinge is longer and more flexible, so it can accommodate larger "adhesin" domains that may not fold or function properly when fused to IgG 1 .
  • Another consideration may be valency; IgG immunoadhesins are bivalent homodimers, whereas Ig subtypes like IgA and IgM may give rise to dimeric or pentameric structures, respectively, of the basic Ig homodimer unit.
  • the pharmacokinetic properties and the effector functions specified by the Fc region are important as well.
  • IgG 1 , IgG 2 and IgG 4 all have in vivo half-lives of 21 days, their relative potencies at activating the complement system are different. IgG 4 does not activate complement, and IgG 2 is significantly weaker at complement activation than IgG 1 . Moreover, unlike IgG 1 , IgG 2 does not bind to Fc receptors on mononuclear cells or neutrophils. While IgG 3 is optimal for complement activation, its in vivo half-life is approximately one third of the other IgG isotypes. Another important consideration for immunoadhesins designed to be used as human therapeutics is the number of allotypic variants of the particular isotype.
  • IgG isotypes with fewer serologically-definedallotypes are preferred.
  • IgG 1 has only four serologically-defined allotypic sites, two of which (G1m and 2) are located in the Fc region; and one of these sites, G1m1, is non-immunogenic.
  • the potential immunogenicity of a ⁇ 3 immunoadhesin is greater than that of a ⁇ 1 immunoadhesin.
  • Immunoadhesins are most conveniently constructed by fusing the cDNA sequence encoding the adhesin portion in-frame to an 1g cDNA sequence.
  • fusion to genomic 1g fragments can also be used (see, e.g. Gascoigneet al ., supra ; Aruffo et al ., Cell 61 :1303-1313 (1990); and Stamenkovic et al ., Cell 66 :1133-1144 (1991)).
  • the latter type of fusion requires the presence of Ig regulatory sequences for expression.
  • cDNAs encoding IgG heavy-chain constant regions can be isolated based on published sequences from cDNA libraries derived from spleen or peripheral blood lymphocytes, by hybridization or by polymerase chain reaction (PCR) techniques.
  • PCR polymerase chain reaction
  • the cDNAs encoding the "adhesin" and the lg parts of the immunoadhesin are inserted in tandem into a plasmid vector that directs efficient expression in the chosen host cells.
  • the three-dimensional structure of the heteromultimeris obtained using techniques which are well known in the art such as X-ray crystallography or NMR. Based on the three-dimensional structure, those skilled in the art will be able to identify the interface residues.
  • the preferred interface is the C H 3 domain of an immunoglobulin constant domain.
  • the interface residues of the C H 3 domains of IgG, IgA, IgD, IgE and IgM have been identified (see, for example, PCT/US96/01598), including those which are optimal for replacing with import residues; as were the interface residues of various IgG subtypes and "buried" residues.
  • the basis for engineering the C H 3 interface is that X-ray crystallography has demonstrated that the intermolecu lar association between human IgG 1 heavy chains in the Fc region includes extensive protein/protein interaction between C H 3 domains whereas the glycosylated C H 2 domains interact via their carbohydrate (Deisenhofer, Biochem.
  • the experiments described herein demonstrated that it was possible to promote the formation of heteromultimers over homomultimers using this approach.
  • a polypeptide fusion comprising a polypeptide of interest and the C H 3 domain of an antibody to form a first or second polypeptide.
  • the preferred C H 3 domain is derived from an IgG antibody, such as an human IgG 1 .
  • examination of the three-dimensional structure of the interface will reveal a suitably positioned and dimensioned protuberance on the interface of the first polypeptide or a cavity on the interface of the second polypeptide.
  • the C H 3/C H 3 interface of human IgG 1 involves sixteen residues on each domain located on four anti-parallel ⁇ -strands which buries 1090 ⁇ 2 from each surface (Deisenhofer, supra ) and Miller, J. Mol. Biol. 216 :965 (1990)). Mutations are preferably targeted to residues located on the two central anti-parallel ⁇ -strands. The aim is to minimize the risk that the protuberances which are created can be accommodated by protruding into surrounding solvent rather than by compensatory cavities in the partner C H 3 domain.
  • the amino acid replacements are introduced into the polypeptide using techniques which are well known in the art. Normally the DNA encoding the polypeptide is genetically engineered using the techniques described in Mutagenesis: a Practical Approach , supra .
  • Oligonucleotide-mediated mutagenesis is a preferred method for preparing substitution variants of the DNA encoding the first or second polypeptide.
  • This technique is well known in the art as described by Adelman et al ., DNA, 2 :183 (1983). Briefly, first or second polypeptide DNA is altered by hybridizing an oligonucleotideencodingthe desired mutation to a DNA template, where the template is the single-stranded form of a plasmid or bacteriophage containing the unaltered or native DNA sequence of heteromultimer. After hybridization, a DNA polymerase is used to synthesize an entire second complementary strand of the template that will thus incorporate the oligonucleotide primer, and will code for the selected alteration in the heteromultimer DNA.
  • Cassette mutagenesis can be performed as described Wells et al . Gene 34 :315 (1985) by replacing a region of the DNA of interest with a synthetic mutant fragment generated by annealing complimentary oligonucleotides.
  • PCR mutagenesis is also suitable for making variants of the first or second polypeptide DNA. While the following discussion refers to DNA, it is understood that the technique also finds application with RNA. The PCR technique generally refers to the following procedure (see Erlich, Science, 252 :1643-1650 (1991), the chapter by R. Higuchi, p. 61-70).
  • This invention also encompasses, in addition to the protuberance or cavity mutations, amino acid sequence variants of the heteromultimer which can be prepared by introducing appropriate nucleotide changes into the heteromultimer DNA, or by synthesis of the desired heteromultimer polypeptide.
  • variants include, for example, deletions from, or insertions or substitutions of, residues within the amino acid sequences of the first and second polypeptides forming the heteromultimer. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired antigen-binding characteristics.
  • the amino acid changes also may alter post-translational processes of the heteromultimer, such as changing the number or position of glycosylation sites.
  • a useful method for identification of certain residues or regions of the heteromultimer polypeptides that are preferred locations for mutagenesis is called "alanine scanning mutagenesis," as described by Cunningham and Wells, Science, 244 :1081-1085 (1989).
  • a residue or group of target residues are identified (e.g. charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell.
  • Those domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at or for the sites of substitution.
  • the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined.
  • mutations will involve conservative amino acid replacements in non-functional regions of the heteromultimer. Exemplary mutations are shown in Table 2.
  • Covalent modifications of the heteromultimer polypeptides are included within the scope of this invention. Covalent modifications of the heteromultimer can be introduced into the molecule by reacting targeted amino acid residues of the heteromultimer or fragments thereof with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C-terminal residues.
  • Another type of covalent modification of the heteromultimerpolypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. By altering is meant deleting one or more carbohydrate moieties found in the original heteromultimer, and/or adding one or more glycosylation sites that are not present in the original heteromultimer.
  • Addition of glycosylation sites to the heteromultimer polypeptide is conveniently accomplished by altering the amino acid sequence such that it contains one or more N-linked glycosylationsites.
  • the alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the original heteromultimer sequence (for O-linked glycosylation sites).
  • the heteromultimeramino acid sequence is preferably altered through changes at the DNA level, particularly by mutating the DNA encoding the heteromultimer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.
  • Another means of increasing the number of carbohydrate moieties on the heteromultimer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide.
  • heteromultimer polypeptide comprises linking the heteromultimer polypeptide to one of a variety of nonproteinaceouspolymers, e.g ., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835;4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
  • nonproteinaceouspolymers e.g ., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes
  • the DNA encoding the molecules is expressed using recombinanttechniqueswhich are widely available in the art. Often, the expression system of choice will involve a mammalian cell expression vector and host so that the heteromultimer is appropriately glycosylated (e.g . in the case of heteromultimerscomprising antibody domains which are glycosylated). However, the molecules can also be produced in the prokaryotic expression systems elaborated below. Normally, the host cell will be transformed with DNA encoding both the first polypeptide, the second polypeptide, the common light chain polypeptide, and other polypeptide(s) required to form the heteromultimer, on a single vector or independent vectors. However, it is possible to express the first polypeptide, second polypeptide, and common light chain polypeptide (the heteromultimer components) in independent expression systems and couple the expressed polypeptides in vitro.
  • the nucleic acid(s) e . g ., cDNA or genomic DNA
  • the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • the polypeptides of the heteromultimer components may be produced as fusion polypeptides with a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide.
  • the signal sequence may be a component of the vector, or it may be a part of the DNA that is inserted into the vector.
  • the heterologous signal sequence selected preferably is one that is recognized and processed ( i . e ., cleaved by a signal peptidase) by the host cell.
  • the signal sequence may be substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
  • a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders.
  • the native signal sequence may be substituted by, e.g ., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces ⁇ -factor leaders, the latter described in U.S. Pat. No. 5,010,182 issued 23 April 1991), or acid phosphatase leader, the C .
  • albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990.
  • the native signal sequence e.g ., the antibody or adhesin presequence that normally directs secretion of these molecules from human cells in vivo
  • the native signal sequence e.g ., the antibody or adhesin presequence that normally directs secretion of these molecules from human cells in vivo
  • other mammalian signal sequences may be suitable as well as viral secretory leaders, for example, the herpes simplex gD signal.
  • the DNA for such precursorregion is ligated in reading frame to DNA encoding the polypeptides forming the heteromultimer.
  • Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells.
  • this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences.
  • origins of replication or autonomously replicating sequences are well known for a variety of bacteria, yeast, and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ⁇ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.
  • the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).
  • Selection genes encode proteins that (a) confer resistance to antibioticsor other toxins, e . g ., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g ., the gene encoding D-alanine racemase for Bacilli .
  • antibioticsor other toxins e.g ., ampicillin, neomycin, methotrexate, or tetracycline
  • b complement auxotrophic deficiencies
  • c supply critical nutrients not available from complex media, e.g ., the gene encoding D-alanine racemase for Bacilli .
  • One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen.
  • neomycin Southern et al ., J. Molec. Appl. Genet. 1 :327 (1982)
  • mycophenolic acid Methyl et al .
  • hygromycin Sugden et al ., Mol. Cell. Biol. 5 :410-413 (1985)
  • the three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.
  • suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the heteromultimer nucleic acid, such as DHFR or thymidine kinase.
  • the mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes heteromultimer. Increased quantities of heteromultimer are synthesized from the amplified DNA.
  • Other examples of amplifiable genes include metallothionein-I and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, etc.
  • cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR.
  • Mtx methotrexate
  • An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity, prepared and propagated as described by Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77 :4216 (1980).
  • the transformed cells are then exposed to increased levels of methotrexate. This leads to the synthesis of multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding the components of the heteromultimer.
  • This amplification technique can be used with any otherwise suitable host, e.g ., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060).
  • host cells particularly wild-type hosts that contain endogenous DHFR transformed or co-transformed with DNA sequences encoding heteromultimer, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g. , kanamycin, neomycin, or G418. See U.S. Patent No. 4,965,199.
  • APH aminoglycoside 3'-phosphotransferase
  • a suitable selection gene for use in yeast is the trp 1 gene present in the yeast plasmid YRp7 (Stinchcomb et al ., Nature 282 :39 (1979); Kingsman et al ., Gene 7 :141 (1979); or Tschemper et al ., Gene 10 :157 (1980)).
  • the trp 1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones, Genetics 85 :12 (1977)).
  • the presence of the trp 1 lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.
  • Leu 2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the Leu 2 gene.
  • vectors derived from the 1.6 ⁇ m circular plasmid pKD 1 can be used for transformation of Kluyveromyces yeasts. Bianchi et al ., Curr. Genet. 12 :185 (1987). More recently, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis . Van den Berg, Bio/Technology 8 :135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of Kluyveromyces have also been disclosed (Fleer et al ., Bio/Technology 9 :968-975 (1991)).
  • Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the heteromultimer nucleic acid.
  • a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to heteromultimer-encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector.
  • Promoters suitable for use with prokaryotic hosts include the ⁇ -lactamase and lactose promoter systems (Chang et al ., Nature 275 :615 (1978); and Goeddel et al ., Nature 281 :544 (1979)), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel, Nucleic Acids Res., 8 :4057 (1980) and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al ., Proc. Natl. Acad. Sci. USA 80 :21-25 (1983)).
  • trp tryptophan
  • hybrid promoters such as the tac promoter (deBoer et al ., Proc. Natl. Acad. Sci. USA 80 :21-25 (1983)).
  • other known bacterial promoters are suitable.
  • Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.
  • Suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglyceratekinase (Hitzeman et al ., J. Biol. Chem. 255 :2073 (1980)) or other glycolytic enzymes (Hess et al ., J. Adv. Enzyme Reg.
  • yeast promoters which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoterregions for alcohol dehydrogenase2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.
  • Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al ., EP 73,657A.
  • Yeast enhancers also are advantageously used with yeast promoters.
  • Heteromultimer transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g. , the actin promoter or an immunoglobulin promoter or from heat-shock promoters.
  • viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus
  • the early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. Fiers et al ., Nature 273 :113 (1978); Mulligan and Berg, Science 209 :1422-1427 (1980); Pavlakis et al ., Proc. Natl. Acad. Sci. USA 78 :7398-7402 (1981).
  • the immediate early promoter of the human cytomegalovirus is conveniently obtained as a Hin dIII E restriction fragment. Greenaway et al ., Gene 18 :355-360 (1982).
  • a system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No.
  • Enhancers are relatively orientation and position independent,having been found 5' (Laimins et al ., Proc. Natl. Acad. Sci. USA 78 :993 (1981)) and 3' (Lusky et al ., Mol. Cell Bio. 3 :1108 (1983)) to the transcription unit, within an intron (Banerji et al ., Cell 33 :729 (1983)), as well as within the coding sequence itself (Osborne et al ., Mol. Cell Bio. 4 :1293 (1984)).
  • enhancer sequences are now known from mammalian genes (globin, elastase, albumin, ⁇ -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297 :17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the heteromuitimer-encodingsequence, but is preferably located at a site 5' from the promoter.
  • Expression vectors used in eukaryotic host cells will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslatedregions of eukaryoticor viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding the heteromultimer.
  • Plasmids containing one or more of the above listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.
  • the ligation mixtures are used to transform E. coli K12 strain 294 (ATCC 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al ., Nucleic Acids Res. 9 :309 (1981) or by the method of Maxam et al ., Methods in Enzymology 65 :499 (1980).
  • transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector.
  • Transient expression systems comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptidesencoded by cloned DNAs, as well as for the rapid screening of heteromultimers having desired binding specificities/affinities or the desired gel migration characteristics relative to heteromultimers or homomultimers lacking the non-natural disulfide bonds generated according to the instant invention.
  • the choice of host cell line for the expression of heteromultimer depends mainly on the expression vector. Another consideration is the amount of protein that is required. Milligram quantities often can be produced by transient transfections.
  • the adenovirus EIA-transformed 293 human embryonic kidney cell line can be transfected transiently with pRK5-based vectors by a modification of the calcium phosphate method to allow efficient heteromultimerexpression.
  • CDM8-basedvectors can be used to transfect COS cells by the DEAE-dextran method (Aruffo et al ., Cell 61 :1303-1313 (1990); and Zettmeissl et al ., DNA Cell Biol. (US) 9 :347-353 (1990)).
  • the immunoadhesin can be expressed after stable transfection of a host cell line.
  • a pRK5-based vector can be introduced into Chinese hamster ovary (CHO) cells in the presence of an additional plasmid encoding dihydrofolate reductase (DHFR) and conferring resistance to G418.
  • DHFR dihydrofolate reductase
  • Clones resistant to G418 can be selected in culture. These clones are grown in the presence of increasing levels of DHFR inhibitor methotrexate and clones are selected in which the number of gene copies encoding the DHFR and heteromultimer sequences is co-amplified.
  • immunoadhesin contains a hydrophobic leader sequence at its N-terminus, it is likely to be processed and secreted by the transfected cells.
  • the expression of immunoadhesins with more complex structures may require uniquely suited host cells.
  • components such as light chain or J chain may be provided by certain myeloma or hybridoma host cells (Gascoigne et al., supra ; and Martin et al ., J. Virol. 67 :3561-3568 (1993)).
  • Suitable host cells for cloning or expressing the vectors herein are prokaryote, yeast, or other higher eukaryote cells described above.
  • Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positiveorganisms, for example, Enterobacteriaceaesuch as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans , and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B.
  • E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E . coli X 1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.
  • Strain W3110 is a particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations.
  • the host cell should secrete minimal amounts of proteolytic enzymes.
  • strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins, with examples of such hosts including E. coli W3110 strain 27C7.
  • the complete genotype of 27C7 is tonA ⁇ ptr3 phoA ⁇ E15 ⁇ (argF-lac)169 ompT ⁇ degP41kan r .
  • Strain 27C7 was deposited on 30 October 1991 in the American Type Culture Collection as ATCC No. 55,244.
  • the strain of E. coli having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990 may be employed.
  • methods of cloning e.g ., PCR or other nucleic acid polymerase reactions, are suitable.
  • eukaryoticmicrobes such as filamentous fungi or yeast are suitable cloning or expression hosts for heteromultimer-encoding vectors.
  • Saccharomyces cerevisiae or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms.
  • Schizosaccharomyces pombe Beach and Nurse, Nature 290 :140 (1981); EP 139,383 published May 2, 1985
  • Kluyveromyces hosts U.S. Patent No. 4,943,529; Fleer et al ., supra ) such as, e .
  • K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 737 (1983)), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al ., supra), K thermotolerans , and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al ., J. Basic Microbiol.
  • Candida Trichodermareesia (EP 244,234); Neurosporacrassa (Case et al ., Proc. Natl. Acad. Sci. USA 76 :5259-5263 (1979)); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e . g ., Neurospora, Penicillium, Tolypocladium (WO 91/003 57 published 10 January 1991), and Aspergillus hosts such as A . nidulans (Ballance et al ., Biochem. Biophys. Res. Commun.
  • Suitable host cells for the expression of glycosylated heteromultimer are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebratecells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodopterafrugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified.
  • a variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts.
  • plant cells are transfected by incubation with certain strains of the bacterium Agrobacterium tumefaciens , which has been previously manipulated to contain the heteromultimer DNA.
  • Agrobacterium tumefaciens the DNA encoding the heteromultimer is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the heteromultimer DNA.
  • regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al ., J. Mol.
  • DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue.
  • the preferred hosts are vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture, Academic Press, Kruse and Patterson, editors (1973)).
  • useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al ., J. Gen Virol. 36 :59 (1977)); baby hamster kidney ceils (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci.
  • mice sertoli cells TM4, Mather, Biol. Reprod. 23 :243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinomacells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al ., Annals N.Y. Acad. Sci. 383 :44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
  • Host cells are transfected with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. Depending on the host cell used, transfection is done using standard techniques appropriate to such cells.
  • the calcium treatment employing calcium chloride, as described in section 1.82 of Sambrook et al., supra , or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers.
  • Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al ., Gene 23 :315 (1983) and WO 89/05859 published 29 June 1989.
  • plants may be transfected using ultrasound treatment as described in WO 91/00358 published 10 January 1991.
  • Prokaryot ic cells used to produce the heteromultimer polypeptide of this invention are cultured in suitable media as described generally in Sambrook et al., supra .
  • the mammalian host cells used to produce the heteromultimer of this invention may be cultured in a variety of media.
  • Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells.
  • 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; U.S. Patent Re. 30,985; or U.S. Patent No. 5,122,469, may be used as culture media for the host cells.
  • any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
  • the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
  • the host cells referred to in this disclosure encompass cells in culture as well as cells that are within a host animal.
  • the heteromultimer preferably is generally recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysate when directly produced without a secretory signal. If the heteromultimer is membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g . Triton-X 100).
  • a suitable detergent solution e.g . Triton-X 100
  • the heteromultimer When the heteromultimer is produced in a recombinant cell other than one of human origin, it is completely free of proteins or polypeptides of human origin. However, it is necessary to purify the heteromultimer from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to heteromultimer.
  • the culture medium or lysate is normally centrifuged to remove particulate cell debris.
  • Heterodimers having antibody constant domains can be conveniently purified by hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography, with affinity chromatography being the preferred purification technique.
  • affinity chromatography being the preferred purification technique.
  • the heteromultimer comprises a C H 3 domain
  • the Bakerbond ABXTM resin J. T. Baker, Phillipsburg, NJ is useful for purification.
  • Protein A can be used to purify immunoadhesinsthat are based on human ⁇ 1, ⁇ 2, or ⁇ 4 heavy chains (Lindmarket al ., J. Immunol. Meth. 62 :1-13 (1983)). Protein G is recommended for all mouse isotypes and for human ⁇ 3 (Guss et al ., EMBO J. 5 :15671575 (1986)).
  • the matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose.
  • the conditions for binding an immunoadhesin to the protein A or G affinity column are dictated entirely by the characteristics of the Fc domain; that is, its species and isotype. Generally, when the proper ligand is chosen, efficient binding occurs directly from unconditioned culture fluid.
  • One distinguishing feature of immunoadhesins is that, for human ⁇ 1 molecules, the binding capacity for protein A is somewhat diminished relative to an antibody of the same Fc type. Bound immunoadhesin can be efficiently eluted either at acidic pH (at or above 3.0), or in a neutral pH buffer containing a mildly chaotropic salt. This affinity chromatography step can result in a heterodimer preparation that is >95% pure.
  • the heteromultim er can be used for redirected cytotoxicity (e.g . to kill tumor cells), as a vaccine adjuvant, for delivering thrombolytic agents to clots, for converting enzyme activated prodrugs at a target site ( e . g . a tumor), for treating infectious diseases, targeting immune complexes to cell surface receptors, or for delivering immunotoxinsto tumor cells.
  • cytotoxicity e.g . to kill tumor cells
  • thrombolytic agents e.g . to kill tumor cells
  • a target site e. g . a tumor
  • a target site e. g . a tumor
  • tumor vasculature targeting has been accomplished by targeting a model endothelial antigen, class II major histocompatibility complex, with an antibody-ricin immunotoxin (Burrows, F.J. and Thorpe, P.E.
  • bispecific diabodies have been used successfully to direct cytotoxic T-cells to kill target breast tumor cells and B-cell lymphoma cells in vitro (Zhu, Z. et al . (1996) Bio/Technology 14 :192-196; and Holliger, P. et al . (1996) Protein Engin. 9 :299-305).
  • Therapeutic formulations of the heteromultimer are prepared for storage by mixing the heteromultimer having the desired degree of purity with optional physiologically acceptable carriers, excipients, or stabilizers (Remington's Pharmaceutical Sciences, 16th edition, Osol, A., Ed., (1980)), in the form of lyophilized cake or aqueous solutions.
  • Acceptable carriers, excipients or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides,disaccharides,and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as Tween, Pluronics or polyethylene glycol (PEG).
  • buffers such as phosphate, citrate, and other organic acids
  • antioxidants including ascorbic acid
  • the heteromultimer also may be entrapped in microcapsulesprepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-[methylmethacylate]microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes,albumin microspheres,microemulsions,nano-particles and nanocapsules), or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes,albumin microspheres,microemulsions,nano-particles and nanocapsules
  • the heteromultimerto be used for in vivo administrationmust be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution.
  • the heteromultimer ordinarily will be stored in lyophilized form or in solution.
  • Therapeutic heteromultimer compositions generally are placed into a containerhaving a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
  • the route of heteromultimer administration is in accord with known methods, e.g ., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, or intralesional routes, or by sustained release systems as noted below.
  • the heteromultimer is administered continuously by infusion or by bolus injection.
  • sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the protein, which matrices are in the form of shaped articles, e.g. , films, or microcapsules.
  • sustained-release matrices include polyesters, hydrogels ( e.g ., poly(2-hydroxyethyl-methacrylate) as described by Langer et al ., J. Biomed. Mater. Res. 15 :167-277 (1981) and Langer, Chem. Tech. 12 :98-105 (1982) or poly(vinylalcohol)), polylactides (U.S. Patent No.
  • stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.
  • Sustained-release heteromultimer compositions also include liposomally entrapped heteromultimer.
  • Liposomes containing heteromultimer are prepared by methods known per se: DE 3,218,121; Epstein et al ., Proc. Natl. Acad. Sci. USA 82 :3688-3692 (1985); Hwang et al ., Proc. Natl. Acad. Sci. USA 77 :4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese patent application 83-118008; U.S. Patent Nos. 4,485,045 and 4,544,545; and EP 102,324.
  • the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. % cholesterol, the selected proportion being adjusted for the optimal heteromultimer therapy.
  • heteromultimer to be employed therapeutically will depend, for example, upon the therapeutic objectives, the route of administration, and the condition of the patient. Accordingly, it will be necessary for the therapist to titer the dosage and modify the route of administration as required to obtain the optimal therapeutic effect.
  • a typical daily dosage might range from about 1 ⁇ g/kg to up to 10 mg/kg or more, depending on the factors mentioned above.
  • the clinician will administer heteromultimer until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.
  • the heteromultimersdescribed herein can also be used in enzyme immunoassays.
  • one arm of the heteromultimer can be designed to bind to a specific epitope on the enzyme so that binding does not cause enzyme inhibition
  • the other arm of the heteromultimer can be designed to bind to the immobilizing matrix ensuring a high enzyme density at the desired site.
  • diagnostic heteromuhimers include those having specificity for IgG as well as ferritin, and those having binding specificities for horse radish peroxidase (HRP) as well as a hormone, for example.
  • the heteromultimers can be designed for use in two-site immunoassays. For example, two bispecific heteromultimers are produced binding to two separate epitopes on the analyte protein - one heteromultimer binds the complex to an insoluble matrix, the other binds an indicator enzyme.
  • Heteromultimers can also be used for in vitro or in vivo immunodiagnosis of various diseases such as cancer.
  • one arm of the heteromuttimer can be designed to bind a tumor associated antigen and the other arm can bind a detectable marker (e.g . a chelatorwhich binds a radionuclide).
  • a detectable marker e.g . a chelatorwhich binds a radionuclide
  • a heteromultimerhaving specificities for the tumor associated antigen CEA as well as a bivalent hapten can be used for imaging of colorectal and thryroid carcinomas.
  • Other non-therapeutic, diagnostic uses for the heteromultimer will be apparent to the skilled practitioner.
  • the detectable moiety can be any one which is capable of producing, either directly or indirectly, a detectable signal.
  • the detectable moiety may be a radioisotope, such as 3 H, 14 C, 32 P, 35 S, or 125 I; a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase (HRP).
  • a radioisotope such as 3 H, 14 C, 32 P, 35 S, or 125 I
  • a fluorescent or chemiluminescent compound such as fluorescein isothiocyanate, rhodamine, or luciferin
  • an enzyme such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase (HRP).
  • any method known in the art for separately conjugating the heteromultimer to the detectable moiety may be employed, including those methods described by Hunter et al ., Nature 144 :945 (1962); David et al ., Biochemistry 13 :1014 (1974); Pain et al ., J. lmmunol. Meth. 40 :219 (1981); and Nygren, J. Histochem. and Cytochem. 30 :407 (1982).
  • heteromultimers of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp.147-158 (CRC Press, Inc., 1987).
  • the heteromu ltimers are particularly useful for sandwich assays which involve the use of two molecules, each capable of binding to a different immunogenic portion, or epitope, of the sample to be detected.
  • sandwich assay the test sample analyte is bound by a first arm of the heteromultimer which is immobilizedon a solid support, and thereafter a second arm of the heteromultimer binds to the analyte, thus forming an insoluble three part complex. See, e.g ., US Pat No. 4,376,110.
  • the second arm of the heteromultimer may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulinantibody that is labeled with a detectablemoiety (indirect sandwich assay).
  • sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.
  • mutations were constructed in the C H 3 domain of the humanized anti-CD3 antibody heavy chain and in CD4-IgG by site-directed mutagenesis using mismatched oligonucleotides (Kunkel et al ., Methods Enzymol. 154 :367 (1987) and P. Carter, in Mutagenesis: a Practical Approach, M. J. McPherson, Ed., IRL Press, Oxford, UK, pp. 1-25 (1991)) and verified by dideoxynucleotide sequencing (Sanger et al ., Proc. Natl. Acad. Sci. USA 74 :5463 (1977)). See Table 3 below.
  • Residue T366 is within hydrogen-bonding distance of residue Y407 on the partner C H 3 domain. Indeed the principal intermolecular contact to residue T366 is to residue Y407 and vice versa .
  • One protuberance-into-cavitypair was created by inverting these residues with the reciprocal mutations of T366Y in one C H 3 domain and Y407T in the partner domain thus maintaining the volume of side chains at the interface. Mutations are denoted by the wild-type residue followed by the position using the Kabat numbering system (Kabat et al. (1991) supra ) and then the replacement residue in single-letter code. Multiple mutations are denoted by listing component single mutations separated by a colon.
  • Phagemids encoding anti-CD3 light (L) and heavy (H) chain variants (Shalaby et al ., J. Exp. Med. 175 :217 (1992) and Rodrigues et al ., Int. J. Cancer (Suppi.) 7 :45 (1992)) were co-transfected into human embryonic kidney cells, 293S, together with a CD4-IgG variant encoding phagemid (Byrn et al ., Nature 344:667 (1990)) as previously described (Chamow et al ., J. lmmunol. 153 :4268 (1994)).
  • the total amount of transfectedphagemid DNAs was fixed whereas the ratio of different DNAs was varied to maximize the yield of Ab/la chimera.
  • the ratio (by mass) of la : heavy chain : light chain input DNAs (15 ⁇ g total) was varied as follows: 8:1:3; 7:1:3; 6:1:3; 5:1:3; 4:1:3; 3:1:3; 1:0:0; 0:1:3.
  • the products were affinity purified using Staphylococcal protein A (ProSep A, BioProcessing Ltd, UK) prior to analysis by SDS-PAGE followed by scanning LASER densitometry. Excess light over heavy chain DNA was used to avoid the light chain from being limiting. The identity of products was verified by electroblotting on to PVDF membrane (Matsudaira, J. Biol. Chem. 262 :10035 (1987)) followed by amino terminal sequencing.
  • the fraction of Ab/Ia hybrid was not significantly changed by increasing the size of both protuberance and cavity (Ab T366W, Ia Y407A).
  • a second protuberance and cavity pair (Ab F405A, Ia T394W) yielded up to 71 % Ab/Ia chimera using a small fraction of Ia input DNA to offset the unanticipated proclivity of the Ia T394W protuberance variant to homodimerize.
  • Combining the two independent protuberance-into-cavity mutant pairs did not improve the yield of Ab/Ia hybrid over the Ab T366Y, Ia Y407T pair.
  • the fraction of Ab/Ia chimera obtained with T366Y and Y407T mutant pair was virtually independent of the ratio of input DNAs over the range tested. Furthermore the contaminating species were readily removed from the Ab/Ia chimera by ion exchange chromatography (0-300 mM NaCl in 20 mM Tris-HCl , pH8.0) on a mono S HR 5/5 column (Pharmacia, Piscataway, NJ). This augurs well for the preparation of larger quantities Ab/Ia chimeras using stable cell lines where the relative expression levels of Ab and Ia are less readily manipulated than in the transient expression system.
  • the protuberance-into-cavitymutations identified are anticipatedto increase the potential applications of Fc-containing BsAb by reducing the complexity of the mixture of products obtained from a possible ten major species (Suresh et al ., Methods Enzymol. 121 :210 (1990)) down to four or less (Figs. 1A-1B). It is expected that the T366Y and Y407T mutant pair will be useful for generating heteromultimers of other human IgG isotypes (such as IgG 2 , IgG 3 or IgG 4 ) since T366 and Y407 are fully conserved and other residues at the C H 3 domain interface of IgG 1 are highly conserved.
  • the C ⁇ separation preferably is similar to those found in natural disulfide bonds (5.0 to 6.8 ⁇ ) (Srinivasan, N., et al ., Int. J. Peptides Protein Res. 36 :147-155 (1990)). Distances of up to 7.6 ⁇ were permitted to allow for main chain movement and to take into account the uncertainty of atomic positions in the low resolution crystal structure (Deisenhofer, Biochemistry 20 :2361-2370 (1981)). ii) The C ⁇ atoms should be on different residues on the two C H 3 domains. iii) The residues are positioned to permit disulfide bonding (Srinivasan, N., et al ., (1990) supra ).
  • Disulfide bonds were modeled into the human IgG 1 Fc (Deisenhofer, supra ) as described for humAb4D5-Fv (Rodrigues et al., Cancer Res. 55 :63-70 (1995)) using Insight II release 95.0 (Biosym/MSI).
  • Mutations are denoted by the amino acid residue and number (Eu numbering scheme of Kabat et al ., supra (1991), followed by the replacement amino acid. Multiple mutations are represented by the single mutation separated by a colon. Mutants were verified by dideoxynucleotide sequencing (Sanger et al., supra (1977)) using Sequenase version 2.0 (United States Biochemicals, Cleveland, OH).
  • D An inter-chain disulfide enhances heterodimer formation .
  • Six pairs of molecules containing inter-chain disulfide bonds in the C H 3 domain (“disulfide-C H 3" variants; v1-v6, Table 4) were compared with parent molecules in their ability to direct the formation of an Ab/la hybrid, anti-CD3/CD4-lgG (Chamow et al., supra (1994)).
  • Plasmids encoding CD4-IgG and anti-CD3 heavy chain variants were co-transfected into 293S cells, along with an excess of plasmid encoding the anti-CD3 light chain. The yield of heterodimer was optimized by transfecting with a range of la:H chain:L chain DNA ratios.
  • the Ab/la heterodimer, IgG and la homodimer products were affinity-purified using Staphylococcal protein A and quantified by SDS-PAGE and scanning laser densitometry (Ridgway et al ., supra (1996)).
  • Each disulfide-C H 3 pair gave rise to three major species, similar to the parent molecules.
  • Ab/Ia heterodimer from disulfide-C H 3 variants was shifted in electrophoretic mobility, consistent with formation of an inter-chain disulfide in the C H 3 domain. Further evidence of disulfide bond formation was provided by the inter-chain disulfides in the hinge. Covalently bonded Ab/Ia hybrids were observed by SDS-PAGE for disulfide-C H 3 variants but not for molecules with wildtype C H 3 domains in which hinge cysteines were mutated to serine.
  • Disulfide-C H 3 variants were prepared and designated Y349C/S354'C, Y349C/E356'C, Y349C/E357'C, L351C/E354'C, T394C/E397'C, and D399C/K392C. Only one variant (D399C/K392'C) substantially increased the yield of Ab/Ia hybrid over wildtype (76% vs. 52%, respectively) as determined by SDS-PAGE analysis of the variants. Mutations are denoted by the amino acid residue and number (Eu numbering scheme of Kabat et al. (1991) supra ), followed by the replacement amino acid.
  • Example 3 Structure-guided phage display selection for complementary mutations that enhance protein-protein interaction in heteromultimers
  • the following strategy is useful in the selection of complementary mutations in polypeptides that interact at an interface via a multimerization domain.
  • the strategy is illustrated below as it applies to the selection of complementary protuberance-into-cavity mutations.
  • the example is not meant to be limiting and the strategy may be similarly applied to the selection of mutations appropriate for the formation of non-naturally occurring disulfide bonds, leucine zipper motifs, hydrophobic interactions, hydrophilic interactions, and the like.
  • Example 4 Generation and assembly of heteromultimeric antibodies or antibody/immunoadhesins having common light chains
  • the following example demonstrates preparation of a heteromultimeric bispecific antibody sharing the same light chain according to the invention and the ability of that antibody to bind its target antigens.
  • a large human single chain Fv (scFv) antibody library (Vaughan et al . (1996), supra ) was panned for antibodies specific for eleven antigens including Axl(human receptor tyrosine kinase ECD), GCSF-R (human granulocyte colony stimulating factor receptor ECD), IgE (murine IgE), IgE-R (human IgE receptor ⁇ -chain), MPL (human thrombopoietin receptor tyrosine kinase ECD), MusK (human muscle specific receptor tyrosine kinase ECD), NpoR (human orphan receptor NpoR ECD), Rse (human receptor tyrosine kinase, Rse, ECD), HER3 (human receptor tyrosine kinase HER3/c-erbB3 ECD), Ob-R (human leptin receptor ECD), and VEGF (human vascular endothelial growth factor) where ECD
  • the nucleotide sequence data for scFv fragments from populations of antibodies raised to each antigen was translated to derive corresponding protein sequences.
  • the V L sequences were then compared using the program "align" with the algorithm of Feng and Doolittle (1985, 1987, 1990) to calculate the percentage identity between all pairwise combinations of chains (Feng, D.F. and Doolittle, R.F. (1985) J. Mol. Evol. 21 :112-123; Feng, D.F. and Doolittle, R.F. (1987) J. Mol. Evol. 25 :351-360; and Feng, D.F. and Doolittle, R.F. (1990) Methods Enzymol. 183 :375-387).
  • the percent sequence identity results of each pairwise light chain amino acid sequence comparison were arranged in matrix format (see Appendix).
  • Table 5 is a comparison of the V L chains showing the frequencies of scFv sharing identical light chains (100% identity) determined by alignment of 117 V L amino acid sequences.
  • the entry 4/9 (HER3 x Ob-R, highlighted in a black box), denotes that 4 clones that bind HER3 were found to share their V L sequence with one or more anti-Ob-R clones, whereas 9 clones binding the Ob-R share their V L sequence with one or more anti-HER3 clones.
  • the entries on the diagonal represent the number of antibody clones within a population that share a V L sequence with one or more clones in the population.
  • Fig. 4 is a comparison of V L sequences of eight different antibodies with specificities for Axl (clone Ax1.78), Rse (clones Rse.23, Rse.04, Rse.20, and Rse.15), IgER (clone IgER.MAT2C1G11), Ob-R (clone obr.4), and VEGF (clone vegf.5).
  • Axl clone Ax1.78
  • Rse clones Rse.23, Rse.04, Rse.20, and Rse.15
  • IgER clone IgER.MAT2C1G11
  • Ob-R clone obr.4
  • VEGF clone vegf.5
  • ScFv fragments that bound human leptin receptor (Ob-R) or the extracellular domain of the HER3/c-erbB3 gene product (HER3) were obtained by three rounds of panning using a large human scFv phage library (Vaughan et al . (1996), supra ).
  • Leptin receptor-IgG and HER3-IgG (10 ⁇ g in 1 ml PBS were used to coat separate Immunotubes(Nunc; Maxisorp) overnight at 4°C. Panning and phage rescue were then performed as described by Vaughan et al . (1996), supra , with the following modifications.
  • a humanized antibody, huMAb4D5-8 Carter, P. et al .
  • the leptin receptor was separated from the Fc by site-specific proteolysis of leptin receptor-IgG with the engineered protease, Genenase (Carter, P., et al . (1989) Proteins: Structure, Function and Genetics 6 :240-248) followed by protein A Sepharose chromatography.
  • the leptin receptor was biotinylated and used at a concentration of 100 nM, 25 nM and 5nM for the first, second, and third rounds of panning, respectively. Phage binding biotinylated antigen were captured using streptavidin-coated paramagnetic beads (Dynabeads, Dynal, Oslo, Norway).
  • Clones from rounds 2 and 3 of each panning were screened by phage and scFv ELISA using the corresponding antigen and also a control immunoadhesinor antibody.
  • the diversity of antigen-positiveclones was analyzed by PCR-amplificationof the scFv insert using the primers, fdtetseq and PUC reverse (Vaughan et al . (1996), supra ) and by digestion with BstNI (Marks et al . (1991) supra ).
  • One to five clones per BstN1 fingerprint were then cycle-sequencedusing fluorescent dideoxy chain terminators(Applied Biosystems) using PCR heavy link and myc seq 10 primers (Vaughan et al.
  • anti-Ob-R/anti-HER3 a bispecific antibody having a common light chain was performed as follows. Altered C H 3 first and second polypeptides having the complementary protuberances and cavities as well as the non-naturally occurring disulfide bonds between the first and second polypeptides were used in the construction of a Fc-containing bispecific antibody. The V L from anti-Ob-R clone #26 and anti-HER3 clone #18, which clones share the same light chain, as well as the heavy chains from each antibody were used to prepare the bispecific antibody according to the procedures disclosed herein.
  • This antibody had an electrophoretic mobility shift in apparent molecular weight relative to a bispecific antibody that differed only by a lack of alterations for generating non-natural disulfide bonds.
  • An 8% SDS-PAGE gel of heterodimeric antibody variants with and without non-naturally occurring disulfide bonds showed a mobility shift from approximately 230 apparent MW for wild type heterodimer to approximately 200 apparent MW for a heterodimerhaving one non-natural disul fide bond. The MW shift was sufficient to allow determination of the percent of each variant that successfully formed the non-natural disulfide bond.
  • the binding specificity for both Ob-R and for HER3 of the bispecific antibody is tested by standard ELISA procedures such as the following method.
  • Ob-R binding is demonstrated in an ELISA assay with Ob-R present as an Ob-R-Ig fusion protein.
  • the Ob-R-Ig fusion protein is coated onto the well of a 96-well microtitre plate and the bispecific antibody is added.
  • a biotinylated HER3-Ig fusion protein is added and detected by means of streptavidin-horseradishperoxidasecomplex binding to the biotinylated HER3-Ig fusion protein. Binding is detected by generation of a color change upon addition of hydrogen peroxide and TMB peroxidase substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD).
  • the bispecific antibody expected to bind both Ob-RIg and HER3-Ig, forms the complex yielding a positive result in the assay, demonstrating that the bispecific antibody, having a common light chain, binds both HER3 and Ob-R.
  • Expression and purificationof the anti-(Ob-R/HER3)bispecific antibody was performed as follows. Human embryonic kidney 293S cells were transfected with three plasmid DNAs each separately encoding anti-Ob-R heavy chain, anti-HER3 heavy chain, or the light chain from clone 26 or 18 that was common to each of the antibodies,as described supra . For each transfection, the ratio of heavy chain-encoding DNA to light chain-encodingDNA was 1:3 so that light chain would not be limiting for assembly of anti-Ob-R/anti-HER3 bispecific antibody. Both heavy chains were transfected in a 1:1 ratio with respect to each other.
  • an anti-(CD3/CD4) antibody/immunoadhesin was performed as follows. Human embryonic kidney 293S cells were transfected with three plasmid DNAs, each plasmid separately encoding anti-CD3 light chain, anti-CD3 IgG 1 heavy chain, or anti-CD4 IgG 1 immunoadhesin. For each transfection, the ratio of light chain-encoding DNA to heavy chain-encodin g DNA was 3:1 so that light-chain would not be limiting for assembly of anti-CD3 IgG. Additionally,because the immunoadhesin is poorly expressed, the ratio of immunoadhesin encoding plasmid was added in excess to heavy chain encoding plasmid.
  • the ratios tested ranged from 3:1:3 through 8:1:3 for immunoadhesin:heavychain:light chain phagemids.
  • 10 ⁇ g total plasmid DNA were then co-transfected into 293S cells by means of calcium phosphate precipitation (Gorman, C. (1985), supra ), washing cells with PBS prior to transfection.
  • Fc-containing proteins were purified from cell supernatants using immobilized protein A (ProSep A, BioProcessingLtd., UK) and buffer-exchanged into PBS. lodoacetamide was added to protein preparations to a final concentration of 50 mM to prevent reshuffling of disulfide bonds.
  • Non-natural(engineered)disulfide bonds introduced into the C H 3 domain has been disclosed herein to enhance heterodimerformation.
  • One pair of polypeptides, K392C/D399'C enhanced heterodimer formation by generating up to 76% heterodimer (Table 4, variant v6).
  • Table 4 variants v11, v12, and v16 were obtained.
  • the method of characterizing the product heteromultimers by electrophoretic mobility analysis allows for the determination of the relative amount of desired heteromultimers relative to undesired products.
  • Selection of a common light chain as described herein further increases yield of the desired heteromultimer by eliminating the possibility of mispairing between variable heavy chains and light chains of a multispecific antibody.
  • V H and V L amino acid sequences of the anti-HER3 scFv were compared with 23 scFv that bind to the human thrombopoietin receptor, c-Mpl.
  • Five of the eleven anti-HER3 clones share an identical V L amino acid sequence with one or more Mpl-binding clones.
  • seven out of twenty-three anti-Mpl scFv shared the same V L as one of the anti-HER3 clones (see Table 5, supra , open box).
  • the V H amino acid sequences were much more diverse, with an identity level of 40 to 90% between any anti-Mpl and anti-HER3 clone.
  • the anti-Mpl scFv, 12B5 (Genbank accession number AF048775; SEQ ID NO:27) and anti HER3 scFv clone H6 (Genbank accession number AF048774; SEQ ID NO:28) utilize identical V L sequences and substantially different V H sequences. These scFv fragments were used to construct the anti-Mpl/anti-HER3 bispecific IgG antibody capable of efficient heterodimerizationdue to the shared light chain as well as through the use of knobs-into-holes mutations (described herein) and an engineered disulfide bond between the C H 3 domains.
  • Antibodies that share the same L chain were chosen to circumvent the problem of L chains pairing with non-cognate H chains. Two naturally occurring hinge region disulfide bonds were also present.
  • the common L chain was cotransfected with the two H chains containing the C H 3 mutations from variant v11.
  • the IgG products were purified by protein A affinity chromatography and analyzed by SDS-PAGE using standard techniques.
  • bispecific IgG antibody (BsIgG) preparation gave rise to a single major band showing greater mobility than IgG containing wild-type C H 3 domains. This increase in eiectrophoreticmobilitywas consistent with the formation of the engineered disulfide bond in the BslgG forming a more compact protein species.
  • the ability of the engineered anti-Mpl/anti-HER3 BsIgG antibody to bind both Mp1 and HER3 ECD antigens was assessed using an ELISA as follows. Using PBS buffer in all steps, individual wells of a 96 well plate (Maxisorp, Nunc) were coated overnight with HER3-lgG or Mp1-IgG at 5 ⁇ g/ml, washed and then blocked for 1 hour with 0.5% (w/v) BSA.
  • the primary antibodies were the anti-Mp1 x anti-HER3 BsIgG containing the mutations, Y349C:T366S:L368A:Y407V/T366'W:S354'C and corresponding parental anti-Mp1 oranti-HER3 IgG with mutated Fc regions.
  • the primary antibodies (1 ⁇ g/mL) were individually incubated at 2 h at 23° C with biotinylated HER3-IgG and a 1:5000 dilution of streptavidin-horse radish peroxidase conjugate (Boehringer Mannheim) and then added to the wells and incubated for an additional 1 h at 23° C. Peroxidase activity was detected with TMB reagents as directed by the vendor (Kirkegaard and Perry Laboratories, Inc., Gaithersburg, MD).
  • the anti-Mp1/anti-HER3Bs1gG bound efficiently and simultaneouslyto each Mpl and HER3 ECD antigens individually as well as to both antigens simultaneously.
  • the parental anti-Mpi and parental anti-HER3 IgG bound only to their corresponding cognate antigen (Fig. 6).
  • Antibodies containing an engineered Fc region are capable of efficient antibody-dependent cell-mediated cytotoxicity .
  • the C H 3 mutations maintain the ability to support efficient antibody-dependent cell-mediated cytotoxicity (ADCC) as demonstrated using the method of Lewis, G.D. et al. (Lewis, G.D, et al. (1993) Cancer Immunol. Immunother. 37 :255-263). Briefly, cytotoxicity assays were performed with 51 Cr-labeled SK-BR-3 and HBL-100 target cells (ATCC accession numbers HTB-30 and 45509, respectively)and human peripheral blood lymphocytes as effectorcells. However, unlike Lewis et al., the lymphocytes were not activated with IL-2.
  • the C H 3 mutations S354:T366W and Y349:T366S:L368A:Y407V were introduced separately into the H chain of the humanized anti-HER2 antibody, huMAb4D5-5 prepared by Carter et al. (Carter, P. et al. (1992) PNAS USA 89 :4285-4289).
  • Antibodies containing remodeled and wild-type Fc regions had similar potency in ADCC with the HER2-overexpressingbreast cancer cell line, SK-BR-3 (Fig. 7). Both remodeled and wild-type antibodies showed comparable, low activity against the normal breast epithelial cell line.
  • the effects in the H-chain are independent of the binding domains, predicting that these BsIgG's will function in antibody-dependent cell-mediated cytotoxicity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Steroid Compounds (AREA)

Claims (53)

  1. Verfahren zur Herstellung eines multispezifischen Antikörpers, umfassend zumindest zwei unterschiedliche Bindedomänen, worin
       eine erste Bindedomäne ein erstes Molekül bindet und eine zweite Bindedomäne ein zweites Molekül bindet, das sich vom ersten Molekül unterscheidet,
       wobei jede Bindedomäne (i) eine variable Schwerketten-Domäne, die Teil eines Polypeptids ist, das weiters eine Multimerisations-Domäne umfasst, und (ii) eine variable Leichtketen-Domäne umfasst,
       worin die erste Bindedomäne eine erste variable Schwerketten-Domäne eines ersten Polypeptids umfasst, die zweite Bindedomäne eine zweite variable Schwerketten-Domäne eines zweiten Polypeptids umfasst und sich die erste und die zweite variable Schwerketten-Domäne unterscheiden, und
       die Polypeptide durch Wechselwirkung der Multimerisations-Domänen multimerisieren,
    und worin
       entweder alle variablen Leichtketten-Domänen identisch sind,
       oder der multispezifische Antikörper eine erste variable Leichtketten-Domäne und eine zweite variable Leichtketten-Domäne umfasst, worin sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 80 % Aminosäuresequenz-Identität aufweisen, und die erste Bindedomäne das erste Molekül bindet, unabhängig davon, ob die erste Bindedomäne die erste variable Leichtketten-Domäne oder die zweite variable Leichtketten-Domäne umfasst, und die zweite Bindedomäne das zweite Molekül bindet, unabhängig davon, ob die zweite Bindedomäne die zweite variable Leichtketten-Domäne oder die erste variable Leichtketten-Domäne umfasst,
       wobei das Verfahren folgende Schritte umfasst:
    (i) das Kultivieren einer Wirtszelle, die Nucleinsäure umfasst, die für die Polypeptide und die Leichtkette oder Leichtketten kodiert, worin das Kultivieren so erfolgt, dass die Nucleinsäure exprimiert wird und die Polypeptide und die Leichtkette oder Leichtketten produziert werden; und
    (ii) die Gewinnung des multispezifischen Antikörpers aus der Wirtszellkultur.
  2. Verfahren nach Anspruch 1, worin für die Multimerisations-Domäne des ersten Polypeptids kodierende Nucleinsäure oder für die Multimerisations-Domäne des zweiten Polypeptids kodierende Nucleinsäure oder beide durch Änderung von Nucleinsäure zur Änderung der kodierten Aminosäuresequenz bereitgestellt wird/werden.
  3. Verfahren nach Anspruch 2, worin Nucleinsäure, die für die Multimerisations-Domäne des ersten Polypeptids, des zweiten Polypeptids oder von beiden kodiert, so geändert wird, dass die Multimerisations-Domäne des ersten bzw. des zweiten Polypeptids jeweils einen freies Thiol enthaltenden Rest umfasst, der eine Disulfidbindung mit einem freies Thiol enthaltenden Rest der Multimerisations-Domäne des jeweils anderen, ersten oder zweiten, Polypeptids bildet.
  4. Verfahren nach Anspruch 1, worin Multimerisation des Polypeptids eine "Protuberanz-in-Hohlraum"- ("protuberance-in-cavity"-) Wechselwirkung umfasst, worin das Verfahren vor Schritt (i) weiters Folgendes umfasst:
    das Bereitstellen von für das erste Polypeptid kodierender Nucleinsäure durch Änderung von Nucleinsäure zur Erzeugung einer Protuberanz in der Multimerisations-Domäne des kodierten Polypeptids durch Ersetzen eines Aminosäurerests durch einen Importrest mit einem größeren Seitenkettenvolumen, und
    das Bereitstellen von für das zweite Polypeptid kodierender Nucleinsäure durch Änderung von Nucleinsäure zur Erzeugung eines Kompensationshohlraums in der Multimerisations-Domäne des kodierten Polypeptids durch Ersetzen eines Aminosäurerests durch einen Importrest mit einem kleineren Seitenkettenvolumen.
  5. Verfahren nach Anspruch 4, worin Nucleinsäure, die für ein eine Multimerisations-Domäne mit einer Protuberanz umfassendes erstes Polypeptid, ein eine Multimerisations-Domäne mit einem Hohlraum umfassendes zweites Polypeptid, oder für ein eine Multimerisations-Domäne mit einer Protuberanz umfassendes erstes Polypeptid und ein eine Multimerisations-Domäne mit einem Hohlraum umfassendes zweites Polypeptid kodiert, mittels Phagendisplay-Selektion bereitgestellt wird.
  6. Verfahren nach Anspruch 4, worin der lmportrest mit einem größeren Seitenkettenvolumen aus der aus Arginin (R), Phenylalanin (F), Tyrosin (Y), Tryptophan (W), Isoleucin (1) und Leucin (L) bestehenden Gruppe ausgewählt ist.
  7. Verfahren nach Anspruch 4, worin der lmportrest mit einem kleineren Seitenkettenvolumen aus der aus Glycin (G), Alanin (A), Serin (S), Threonin (T) und Valin (V) bestehenden Gruppe ausgewählt ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, worin das erste und das zweite Polypeptid jeweils eine konstante Antikörper-Domäne aufweisen.
  9. Verfahren nach Anspruch 8, worin das erste und zweite Polypeptid jeweils eine konstante Antikörper-Domäne aufweisen, die aus der aus einer CH3-Domäne und einer konstanten lgG-Domäne bestehenden Gruppe ausgewählt ist.
  10. Verfahren nach Anspruch 1, worin der multispezifische Antikörper ein Immunadhäsin ist.
  11. Verfahren nach Anspruch 1, weiters umfassend einen Schritt vor Schritt (i), worin die Nucleinsäure in die Wirtszelle eingeführt wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, worin alle variablen Leichtketten-Domänen identisch sind.
  13. Verfahren nach Anspruch 1, worin der multispezifische Antikörper eine erste variable Leichtketten-Domäne und eine zweite variable Leichtketten-Domäne umfasst und sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 90 % Aminosäuresequenz-Identität aufweisen.
  14. Verfahren nach Anspruch 13, worin die erste und die zweite variable Leichtketten-Domäne zumindest 95 % Aminosäuresequenzidentität aufweisen.
  15. Verfahren nach Anspruch 14, worin die erste und die zweite variable Leichtketten-Domäne zumindest 98 % Sequenzidentität aufweisen.
  16. Verfahren nach Anspruch 15, worin die erste und die zweite variable Leichtketten-Domäne zumindest 99 % Sequenzidentität aufweisen.
  17. Multispezifischer Antikörper, umfassend zumindest zwei unterschiedliche Bindedomänen, worin
       eine erste Bindedomäne ein erstes Molekül bindet und eine zweite Bindedomäne ein zweites Molekül bindet, das sich vom ersten Molekül unterscheidet,
       worin jede Bindedomäne (i) eine variable Schwerketten-Domäne, die Teil eines Polypeptids ist, das weiters eine Multimerisationsdomäne umfasst, und (ii) eine variable Leichtketten-Domäne umfasst,
       worin die erste Bindedomäne eine erste variable Schwerketten-Domäne eines ersten Polypeptids, die zweite Bindedomäne eine zweite variable Schwerketten-Domäne eines zweiten Polypeptids umfasst und sich die erste und die zweite variable Schwerketten-Domäne unterscheiden, und
       die Polypeptide durch Wechselwirkung der Multimerisations-Domänen multimerisieren,
    und worin
       entweder alle variablen Leichtketten-Domänen identisch sind,
       oder der multispezifische Antikörper eine erste variable Leichtketten-Domäne und eine zweite variable Leichtketten-Domäne umfasst, worin sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 80 % Aminosäuresequenz-Identität aufweisen, und die erste Bindedomäne das erste Molekül bindet, unabhängig davon, ob die erste Bindedomäne die erste variable Leichtketten-Domäne oder die zweite variable Leichtketten-Domäne umfasst, und die zweite Bindedomäne das zweite Molekül bindet, unabhängig davon, ob die zweite Bindedomäne die zweite variable Leichtketten-Domäne oder die erste variable Leichtketten-Domäne umfasst.
  18. Multispezifischer Antikörper nach Anspruch 17, worin die Multimerisations-Domäne des ersten Polypeptids oder die Multimerisationsdomäne des zweiten Polypeptids oder beide durch Änderung einer Aminosäure bereitgestellt sind.
  19. Multispezifischer Antikörper nach Anspruch 18, worin die Multimerisations-Domäne des ersten bzw. des zweiten Polypeptids jeweils einen freies Thiol enthaltenden Rest umfasst, der mit einem freies Thiol enthaltenden Rest der Multimerisationsdomäne des jeweils anderen, ersten oder zweiten, Polypeptids eine Disulfidbindung bildet.
  20. Multispezifischer Antikörper nach Anspruch 18, worin Multimerisation der Polypeptide eine "Protuberanz-in-Hohlraum"- ("protuberance-in-cavity"-) Wechselwirkung umfasst und die Multimerisations-Domäne des ersten Polypeptids eine Protuberanz und die Multimerisations-Domäne des zweiten Polypeptids einen Kompensationshohlraum umfasst.
  21. Multispezifischer Antikörper nach Anspruch 20, worin die Protuberanz und der Hohlraum durch Änderungen erzeugt sind, bei denen natürlich vorkommende Aminosäuren in das erste und das zweite Polypeptid importiert sind.
  22. Multispezifischer Antikörper nach einem der Ansprüche 17 bis 21, worin alle variablen Leichtketten-Domänen identisch sind.
  23. Multispezifischer Antikörper nach Anspruch 17, worin der multispezifische Antikörper eine erste variable Leichtketten-Domäne und eine zweite variable Leichtketten-Domäne umfasst, und sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 90 % Aminosäuresequenz-Identität aufweisen.
  24. Multispezifischer Antikörper nach Anspruch 23, worin die erste und die zweite variable Leichtketten-Domäne zumindest 95 % Aminosäuresequenz-Identität aufweisen.
  25. Multispezifischer Antikörper nach Anspruch 24, worin die erste und die zweite variable Leichtketten-Domäne zumindest 98 % Sequenzidentität aufweisen.
  26. Multispezifischer Antikörper nach Anspruch 25, worin die erste und die zweite variable Leichtketten-Domäne zumindest 99 % Sequenzidentität aufweisen.
  27. Zusammensetzung, die einen multispezifischen Antikörper nach Anspruch 17 und einen Träger umfasst.
  28. Wirtszelle, die Nucleinsäure umfasst, die für einen multispezifischen Antikörper nach Anspruch 17 kodiert.
  29. Wirtszelle nach Anspruch 28, worin die Wirtszelle eine Säugetierzelle ist.
  30. Verfahren zur Herstellung eines multispezifischen Antikörpers, der eine erste Bindedomäne, die ein erstes Molekül bindet, und eine zweite Bindedomäne, die ein zweites Molekül bindet, das sich vom ersten Molekül unterscheidet, umfasst, worin das Verfahren Folgendes umfasst:
    (a) das Auswählen einer ersten Nucleinsäure, die für ein eine erste variable Schwerketten-Domäne und eine Multimerisations-Domäne umfassendes erstes Polypeptid kodiert, und Auswählen einer zweiten Nucleinsäure, die für ein eine zweite variable Schwerketten-Domäne und eine Multimerisations-Domäne umfassendes zweites Polypeptid kodiert, worin sich die erste und die zweite variable Schwerketten-Domäne unterscheiden und die Multimerisations-Domäne des ersten und des zweiten Polypeptids jeweils einen Aminosäurerest umfassen, der spezifisch mit einem Aminosäurerest in der Multimerisations-Domäne des jeweils anderen, ersten oder zweiten, Polypeptids wechselwirkt, wodurch eine stabile Wechselwirkung zwischen dem ersten und dem zweiten Polypeptid erzeugt wird;
    (b) entweder
    (i) das Auswählen von Nucleinsäure, die für eine variable Leichtkette kodiert, worin die variable Leichtkette sowohl mit dem ersten als auch mit dem zweiten Polypeptid wechselwirkt, um die erste und zweite Bindedomäne zu bilden,
       oder
    (ii) das Auswählen von für die erste variable Leichtkette kodierender Nucleinsäure und von für die zweite variable Leichtkette kodierender Nucleinsäure, worin sich die erste und die zweite variable Leichtkette voneinander unterscheiden, jedoch zumindest 80 % Aminosäuresequenz-Identität aufweisen, die erste und die zweiten variable Leichtkette jeweils mit einem von erstem und zweitem Polypeptid wechselwirken, um die erste und die zweite Bindedomäne zu bilden, und die erste Bindedomäne das erste Molekül bindet, unabhängig davon, ob die erste Bindedomäne durch Wechselwirkung des ersten Polypeptids mit der ersten variablen Leichtkette oder durch Wechselwirkung des ersten Polypeptids mit der zweiten variablen Leichtkette gebildet ist, und die zweite Bindedomäne das zweite Molekül bindet, unabhängig davon, ob die zweite Bindedomäne durch Wechselwirkung des zweiten Polypeptids mit der zweiten variablen Leichtkette oder durch Wechselwirkung des zweiten Polypeptids mit der ersten variablen Leichtkette gebildet ist;
    (c) das Einführen der für das erste und das zweite Polypeptid und die variable Leichtkette oder die variablen Leichtketten kodierendern Nucleinsäure in eine Wirtszelle und das Kultivieren der Zelle, sodass Expression der Nucleinsäure erfolgt und die kodierten Polypeptide und die variable Leichtkette oder die variablen Leichtketten produziert werden;
    (d) die Gewinnung des multispezifischen Antikörpers aus der Zellkultur.
  31. Verfahren nach Anspruch 30, worin die erste, für das erste Polypeptid kodierende Nucleinsäure, die zweite, für das zweite Polypeptid kodierende Nucleinsäure oder beide aus Nucleinsäuren ausgewählt werden, die zur Änderung der kodierten Aminosäuresequenz geändert werden.
  32. Verfahren nach Anspruch 31, worin das erste und das zweite Polypeptid durch eine "Protuberanz-in-Hohlraum"- ("protuberance-in-cavity"-) Wechselwirkung wechselwirken.
  33. Verfahren nach Anspruch 31, worin Nucleinsäure zum Import eines freies Thiol enthaltenden Rests in die kodierte Aminosäuresequenz geändert wird.
  34. Verfahren nach Anspruch 30, worin das erste und das zweite Polypeptid jeweils eine konstante Antikörper-Domäne umfassen.
  35. Verfahren nach Anspruch 34, worin die konstante Antikörper-Domäne eine CH3-Domäne ist.
  36. Verfahren nach Anspruch 34, worin die konstante Antikörper-Domäne von menschlichem IgG herrührt.
  37. Verfahren nach Anspruch 30, worin Nucleinsäure gemäß (i) ausgewählt wird.
  38. Verfahren nach Anspruch 30, worin Nucleinsäure gemäß (ii) ausgewählt wird.
  39. Verfahren nach Anspruch 38, worin sich die erste und die zweite variable Leichtkette voneinander unterscheiden, jedoch zumindest 90 % Aminosäuresequenz-Identität aufweisen.
  40. Verfahren nach Anspruch 39, worin die erste und die zweite variable Leichtkette zumindest 95 % Aminosäuresequenz-Identität aufweisen.
  41. Verfahren nach Anspruch 40, worin die erste und die zweite variable Leichtkette zumindest 98 % Sequenzidentität aufweisen.
  42. Verfahren nach Anspruch 41, worin die erste und die zweite variable Leichtkette zumindest 99 % Sequenzidentität aufweisen.
  43. Verfahren zum Messen der Bildung eines heteromultimeren multispezifischen Antikörpers aus einem Polypeptid-Gemisch, worin der multispezifische Antikörper zumindest zwei unterschiedliche Bindedomänen umfasst, worin
       eine erste Bindedomäne ein erstes Molekül bindet und eine zweite Bindedomäne ein zweites Molekül bindet, das sich vom ersten Molekül unterscheidet,
       jede Bindedomäne (i) eine variable Schwerketten-Domäne, die Teil eines Polypeptids ist, das weiters eine Multimerisations-Domäne umfasst, und (ii) eine variable Leichtketten-Domäne umfasst,
       worin die erste Bindedomäne eine erste variable Schwerketten-Domäne eines ersten Polypeptids, die zweite Bindedomäne eine zweite variable Schwerketten-Domäne eines zweiten Polypeptids umfasst und sich die erste und die zweite variable Schwerketten-Domäne unterscheiden, und
       die Polypeptide durch Wechselwirkung der Multimerisations-Domänen multimerisieren, worin die Multimerisationsdomäne des ersten oder des zweiten Polypeptids einen freies Thiol enthaltenden Rest umfasst, der mit einem freies Thiol enthaltenden Rest der Multimerisations-Domäne des jeweils anderen, ersten oder zweiten, Polypeptids eine Disulfidbindung bildet,
    und worin
       entweder alle variablen Leichtketten-Domänen identisch sind,
       oder der multispezifische Antikörper eine erste variable Leichtketten-Domäne und eine zweite variable Leichtketten-Domäne umfasst, worin sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 80 % Aminosäuresequenz-Identität aufweisen, und die erste Bindedomäne das erste Molekül bindet, unabhängig davon, ob die erste Bindedomäne die erste variable Leichtketten-Domäne oder die zweite variable Leichtketten-Domäne umfasst, und die zweite Bindedomäne das zweite Molekül bindet, unabhängig davon, ob die zweite Bindedomäne die zweite variable Leichtketten-Domäne oder die erste variable Leichtketten-Domäne umfasst,
       wobei das Verfahren die folgenden Schritte umfasst:
    (a) das Auslösen von Migration beider multispezifischer Antikörper in eine Gelmatrix; und
    (b) das Bestimmen der relativen Menge einer Bande, die dem multispezifischen Antikörper mit einer nicht natürlich vorkommenden Disulfidbindung zwischen erstem und zweitem Polypeptid entspricht, und einer langsamer migrierenden Bande, die einem Heteromultimer ohne nicht natürlich vorkommende Disulfidbindung zwischen erstem und zweitem Polypeptid entspricht.
  44. Verfahren nach Anspruch 43, worin Multimerisation der Polypeptide durch eine "Protuberanz-in-Hohlraum"- ("protuberance-in-cavity"-) Wechselwirkung zwischen den Multimerisations-Domänen unterstützt wird.
  45. Verfahren nach Anspruch 43, worin alle variablen Leichtketten-Domänen identisch sind.
  46. Verfahren nach Anspruch 43, worin sich die erste und die zweite variable Leichtketten-Domäne voneinander unterscheiden, jedoch zumindest 90 % Aminosäuresequenz-tdentität aufweisen.
  47. Verfahren nach Anspruch 46, worin die erste und die zweite variable Leichtketten-Domäne zumindest 95 % Aminosäuresequenz-Identität aufweisen.
  48. Verfahren nach Anspruch 47, worin die erste und die zweite variable Leichtketten-Domäne zumindest 98 % Sequenzidentität aufweisen.
  49. Verfahren nach Anspruch 48, worin die erste und die zweite variable Leichtketten-Domäne zumindest 99 % Aminosäuresequenz-Identität aufweisen.
  50. Verfahren nach Anspruch 1, worin der multispezifische Antikörper aus der aus Anti-Human-Leptin-Rezeptor ECD (Ob-R) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 und Anti-Human-Thrombopoietin-Rezeptor-Tyrosin-Kinase (Mpl) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 bestehenden Gruppe ausgewählt ist.
  51. Multispezifischer Antikörper nach Anspruch 17, der aus der aus Anti-Human-Leptin-Rezeptor ECD (Ob-R) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 und Anti-Human-Thrombopoietin-Rezeptor-Tyrosin-Kinase (Mpl) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 bestehenden Gruppe ausgewählt ist.
  52. Zusammensetzung, die einen multispezifischen Antikörper nach Anspruch 51 und einen Träger umfasst.
  53. Wirtszelle nach Anspruch 28, worin der multispezifische Antikörper aus der aus Anti-Human-Leptin-Rezeptor ECD (Ob-R) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 und Anti-Human-Thrombopoietin-Rezeptor-Tyrosin-Kinase (Mpl) / Anti-Human-Rezeptor-Tyrosin-Kinase HER3 bestehenden Gruppe ausgewählt ist.
EP98920059A 1997-05-02 1998-04-30 ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen Expired - Lifetime EP0979281B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US85005897A 1997-05-02 1997-05-02
US850058 1997-05-02
US5066197P 1997-06-24 1997-06-24
US50661P 1997-06-24
PCT/US1998/008762 WO1998050431A2 (en) 1997-05-02 1998-04-30 A method for making multispecific antibodies having heteromultimeric and common components

Publications (2)

Publication Number Publication Date
EP0979281A2 EP0979281A2 (de) 2000-02-16
EP0979281B1 true EP0979281B1 (de) 2005-07-20

Family

ID=26728503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98920059A Expired - Lifetime EP0979281B1 (de) 1997-05-02 1998-04-30 ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen

Country Status (11)

Country Link
US (2) US8642745B2 (de)
EP (1) EP0979281B1 (de)
JP (2) JP4213224B2 (de)
AT (1) ATE299938T1 (de)
AU (1) AU751659B2 (de)
CA (1) CA2288600C (de)
DE (1) DE69830901T2 (de)
DK (1) DK0979281T3 (de)
ES (1) ES2246069T3 (de)
IL (1) IL132560A0 (de)
WO (1) WO1998050431A2 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858941B2 (en) 2011-09-23 2014-10-14 Oncomed Pharmaceuticals, Inc. VEGF/DLL4 binding agents and uses thereof
US9228020B2 (en) 2006-09-29 2016-01-05 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
US9480744B2 (en) 2010-09-10 2016-11-01 Oncomed Pharmaceuticals, Inc. Methods for treating melanoma
US9511139B2 (en) 2009-10-16 2016-12-06 Oncomed Pharmaceuticals, Inc. Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent
US9599620B2 (en) 2012-10-31 2017-03-21 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a DLL4 antagonist
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10597465B2 (en) 2010-08-16 2020-03-24 Novimmune Sa Methods for the generation of multispecific and multivalent antibodies
WO2020212415A1 (en) 2019-04-17 2020-10-22 Novo Nordisk A/S Bispecific antibodies
US11046760B2 (en) 2014-10-31 2021-06-29 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
US11339213B2 (en) 2015-09-23 2022-05-24 Mereo Biopharma 5, Inc. Methods and compositions for treatment of cancer
US12030926B2 (en) 2014-05-06 2024-07-09 Genentech, Inc. Production of heteromultimeric proteins using mammalian cells

Families Citing this family (620)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
EP1591456A1 (de) * 1999-03-01 2005-11-02 Genentech Inc. Antikörper zur Krebsbehandlung und -Diagnose
IL144559A0 (en) * 1999-03-01 2002-05-23 Genentech Inc Antibodies for cancer therapy and diagnosis
EP1074563A1 (de) * 1999-08-02 2001-02-07 F. Hoffmann-La Roche Ag Erhöhte Bildung von Chimären Polypeptiden durch Ausbildung von Dimeren mittels elektrostatischen wechselwirkungen und Disulfidbindungen sowie Verfahren zur Herstellung und Anwendungen
SE0000597D0 (sv) * 2000-02-24 2000-02-24 Active Biotech Ab Novel antibody
WO2001080883A1 (en) * 2000-04-26 2001-11-01 Elusys Therapeutics, Inc. Bispecific molecules and uses thereof
CA2431600C (en) 2000-12-12 2012-04-17 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
CZ20033119A3 (cs) 2001-04-24 2005-01-12 Merck Patent Gmbh Kombinovaná terapie za použití antiangiogenových činidel a TNF alfa
EP1500665B1 (de) 2002-04-15 2011-06-15 Chugai Seiyaku Kabushiki Kaisha VERFAHREN ZUR HERSTELLUNG VON scDb-BIBLIOTHEKEN
WO2003091424A1 (fr) 2002-04-26 2003-11-06 Chugai Seiyaku Kabushiki Kaisha Procede de criblage d'un anticorps agoniste
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
NZ537277A (en) * 2002-07-18 2008-04-30 Crucell Holland Bv Recombinant production of mixtures of antibodies
AU2013200009B2 (en) * 2002-07-18 2015-05-07 Merus N.V. Recombinant production of mixtures of antibodies
JP4477579B2 (ja) * 2003-01-21 2010-06-09 中外製薬株式会社 抗体の軽鎖スクリーニング方法
CA2527694C (en) 2003-05-30 2015-07-14 Hendricus Renerus Jacobus Mattheus Hoogenboom Fab library for the preparation of anti vegf and anti rabies virus fabs
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
US8597911B2 (en) 2003-06-11 2013-12-03 Chugai Seiyaku Kabushiki Kaisha Process for producing antibodies
WO2005035753A1 (ja) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha 機能蛋白質を代替する二重特異性抗体
AU2003280713A1 (en) * 2003-11-04 2005-05-19 Chugai Seiyaku Kabushiki Kaisha Process for producing antibody
TW200530269A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
EP1737971B1 (de) 2004-01-20 2017-08-16 Merus N.V. Gemische bindender proteine
US7744887B2 (en) * 2004-06-01 2010-06-29 Merck & Co., Inc. Human antibodies interacting with HIV gp41
EP1870458B1 (de) 2005-03-31 2018-05-09 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2-STRUKTURISOMERE
CA2603264C (en) * 2005-04-08 2017-03-21 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
KR101360671B1 (ko) 2005-06-10 2014-02-07 추가이 세이야쿠 가부시키가이샤 sc(Fv)2를 함유하는 의약조성물
TW200732350A (en) 2005-10-21 2007-09-01 Amgen Inc Methods for generating monovalent IgG
CA2637387A1 (en) 2006-01-18 2007-07-26 Simon Goodman Specific therapy using integrin ligands for treating cancer
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP2009101B1 (de) 2006-03-31 2017-10-25 Chugai Seiyaku Kabushiki Kaisha Antikörpermodifikationsverfahren für die aufreinigung eines bispezifischen antikörpers
JP5759102B2 (ja) * 2006-04-07 2015-08-05 ノボ ノルディスク ヘルス ケア アーゲー Vii因子・組織因子共有結合複合体
JP2009539403A (ja) 2006-06-13 2009-11-19 オンコメッド ファーマシューティカルズ インコーポレイテッド 癌を診断および処置するための組成物および方法
WO2007147898A1 (en) 2006-06-22 2007-12-27 Novo Nordisk A/S Soluble heterodimeric receptors and uses thereof
JP2009541275A (ja) * 2006-06-22 2009-11-26 ノボ・ノルデイスク・エー/エス 二重特異性抗体の生産
CN102719444B (zh) 2006-09-01 2016-12-14 人类多细胞株治疗学公司 人或人源化免疫球蛋白在非人转基因动物中增强的表达
CA2675813A1 (en) 2007-01-18 2008-07-24 Merck Patent Gesellschaft Mit Beschraenkter Haftung Specific therapy and medicament using integrin ligands for treating cancer
US8088617B2 (en) 2007-01-24 2012-01-03 Oncomed Pharmaceuticals, Inc. Antibodies that bind the glutamate ligand binding region of Notch1
EP2139924B1 (de) 2007-03-29 2016-07-06 Genmab A/S Bispezifische antikörper und verfahren zu deren herstellung
KR101680906B1 (ko) 2007-09-26 2016-11-30 추가이 세이야쿠 가부시키가이샤 항체 정상영역 개변체
AU2008304778B9 (en) 2007-09-26 2014-05-08 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
CN106244651A (zh) 2007-10-15 2016-12-21 中外制药株式会社 抗体的制备方法
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8557243B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute EFGR antibodies comprising modular recognition domains
US8454960B2 (en) 2008-01-03 2013-06-04 The Scripps Research Institute Multispecific antibody targeting and multivalency through modular recognition domains
US8557242B2 (en) 2008-01-03 2013-10-15 The Scripps Research Institute ERBB2 antibodies comprising modular recognition domains
US8574577B2 (en) 2008-01-03 2013-11-05 The Scripps Research Institute VEGF antibodies comprising modular recognition domains
CA2711256C (en) 2008-01-03 2019-01-15 The Scripps Research Institute Antibody targeting through a modular recognition domain
EP2275443B1 (de) 2008-04-11 2015-12-02 Chugai Seiyaku Kabushiki Kaisha Antigen bindendes molekül, das dazu in der lage ist, wiederholt zwei oder mehr antigenmoleküle zu binden
RU2559524C2 (ru) * 2008-06-27 2015-08-10 Мерюс Б.В. Продуцирующие антитела млекопитающие, не являющиеся человеком
US9132189B2 (en) 2008-07-08 2015-09-15 Oncomed Pharmaceuticals, Inc. Notch1 binding agents and methods of use thereof
WO2010005566A2 (en) 2008-07-08 2010-01-14 Oncomed Pharmaceuticals, Inc. Notch-binding agents and antagonists and methods of use thereof
US8652843B2 (en) 2008-08-12 2014-02-18 Oncomed Pharmaceuticals, Inc. DDR1-binding agents and methods of use thereof
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
US8775090B2 (en) 2008-12-12 2014-07-08 Medimmune, Llc Crystals and structure of a human IgG Fc variant with enhanced FcRn binding
EP2826789A1 (de) 2009-03-19 2015-01-21 Chugai Seiyaku Kabushiki Kaisha Variante einer konstanten Region eines Antikörpers
US9228017B2 (en) 2009-03-19 2016-01-05 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
EP2414391B1 (de) 2009-04-02 2018-11-28 Roche Glycart AG Multispezifische antikörper, umfassend vollständige antikörper und einzelketten-fab-fragmente
CN102459346B (zh) 2009-04-27 2016-10-26 昂考梅德药品有限公司 制造异源多聚体分子的方法
NZ597339A (en) 2009-05-25 2013-10-25 Merck Patent Gmbh Continuous administration of cilengitide in cancer treatments
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
DK2517556T4 (da) 2009-07-08 2023-05-15 Kymab Ltd Fremgangsmåde til punkt-specifik rekombination, gnavere og gnaverceller i stand til at udtrykke kimære antistoffer eller kæder
US20120302737A1 (en) 2009-09-16 2012-11-29 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
US10150808B2 (en) 2009-09-24 2018-12-11 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
ES2565208T3 (es) 2009-12-11 2016-04-01 F. Hoffmann-La Roche Ag Anticuerpos anti-VEGF-C y métodos de uso de los mismos
MY161868A (en) 2009-12-23 2017-05-15 Genentech Inc Anti-bv8 antibodies and uses thereof
ES2777901T3 (es) 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Método de modificación de polipéptidos para purificar multímeros polipeptídicos
AU2010344596B2 (en) 2010-01-29 2013-08-01 Toray Industries, Inc. Polylactic acid-based resin sheet
US20120021409A1 (en) * 2010-02-08 2012-01-26 Regeneron Pharmaceuticals, Inc. Common Light Chain Mouse
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
SG183149A1 (en) 2010-02-08 2012-09-27 Regeneron Pharma Common light chain mouse
US10435458B2 (en) 2010-03-04 2019-10-08 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variants with reduced Fcgammar binding
AR080793A1 (es) 2010-03-26 2012-05-09 Roche Glycart Ag Anticuerpos biespecificos
CA2796181C (en) 2010-04-20 2023-01-03 Genmab A/S Heterodimeric antibody fc-containing proteins and methods for production thereof
ES2617777T5 (es) 2010-04-23 2022-10-13 Hoffmann La Roche Producción de proteínas heteromultiméricas
US20120100166A1 (en) 2010-07-15 2012-04-26 Zyngenia, Inc. Ang-2 Binding Complexes and Uses Thereof
WO2012007137A1 (en) 2010-07-16 2012-01-19 Merck Patent Gmbh Peptide for use in the treatment of breast cancer and/or bone metastases
JP5953303B2 (ja) 2010-07-29 2016-07-20 ゼンコア インコーポレイテッド 改変された等電点を有する抗体
CN104474546A (zh) 2010-08-13 2015-04-01 弗·哈夫曼-拉罗切有限公司 用于疾病治疗的针对IL-1β和IL-18的抗体
EP2609111B1 (de) 2010-08-24 2017-11-01 F. Hoffmann-La Roche AG Bispezifische antikörper die ein disulfid-stabilisiertes fv enthalten
KR101962483B1 (ko) * 2010-11-17 2019-03-29 추가이 세이야쿠 가부시키가이샤 혈액응고 제viii 인자의 기능을 대체하는 기능을 갖는 다중특이성 항원 결합 분자
ES2693232T3 (es) 2010-11-30 2018-12-10 Chugai Seiyaku Kabushiki Kaisha Agente terapéutico que induce citotoxicidad
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
JP5766296B2 (ja) 2010-12-23 2015-08-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ポリペプチド−ポリヌクレオチド複合体、およびエフェクター成分の標的化された送達におけるその使用
WO2012106587A1 (en) * 2011-02-04 2012-08-09 Genentech, Inc. Fc VARIANTS AND METHODS FOR THEIR PRODUCTION
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
ES2549638T3 (es) 2011-02-28 2015-10-30 F. Hoffmann-La Roche Ag Proteínas de unión a antígeno
CN103403025B (zh) 2011-02-28 2016-10-12 弗·哈夫曼-拉罗切有限公司 单价抗原结合蛋白
AU2012222833B2 (en) 2011-03-03 2017-03-16 Zymeworks Inc. Multivalent heteromultimer scaffold design and constructs
EP2683735A1 (de) 2011-03-10 2014-01-15 HCO Antibody, Inc. Bispezifische dreikettige antikörperähnliche moleküle
WO2012122512A1 (en) 2011-03-10 2012-09-13 Hco Antibody, Inc. Recombinant production of mixtures of single chain antibodies
CA2827188C (en) 2011-03-17 2020-02-11 Itai Benhar Bi- and monospecific, asymmetric antibodies and methods of generating the same
KR102108521B1 (ko) * 2011-03-25 2020-05-11 아이크노스 사이언스 에스. 아. 헤테로 이량체 면역글로불린
CN106432506A (zh) 2011-05-24 2017-02-22 泽恩格尼亚股份有限公司 多价和单价多特异性复合物及其用途
GB201109965D0 (en) 2011-06-10 2011-07-27 Cancer Res Inst Royal Materials and methods for treating estrogen receptor alpher(ER) positive cancer
GB201109966D0 (en) 2011-06-10 2011-07-27 Cancer Res Inst Royal Materials and methods for treating pten mutated or deficient cancer
KR20140033152A (ko) 2011-06-20 2014-03-17 교와 핫꼬 기린 가부시키가이샤 항erbB3 항체
US9890218B2 (en) 2011-06-30 2018-02-13 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
UA117901C2 (uk) 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
US9353172B2 (en) 2011-07-18 2016-05-31 Arts Biologics A/S Long acting biologically active luteinizing hormone (LH) compound
SI2739740T1 (sl) 2011-08-05 2019-12-31 Regeneron Pharmaceuticals, Inc. Humanizirane univerzalne lahkoverižne miši
CN107586340B (zh) 2011-08-23 2022-01-21 罗切格利卡特公司 对t细胞活化性抗原和肿瘤抗原特异性的双特异性抗体及使用方法
CA2846319A1 (en) 2011-09-19 2013-03-28 Kymab Limited Antibodies, variable domains & chains tailored for human use
CA2791109C (en) 2011-09-26 2021-02-16 Merus B.V. Generation of binding molecules
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
ES2971444T3 (es) 2011-10-11 2024-06-05 F Hoffmann Lar Roche Ag Ensamblaje mejorado de anticuerpos biespecíficos
WO2013063155A2 (en) 2011-10-24 2013-05-02 Halozyme, Inc. Companion diagnostic for anti-hyaluronan agent therapy and methods of use thereof
EP2771364B1 (de) * 2011-10-27 2019-05-22 Genmab A/S Herstellung von heterodimeren proteinen
RU2681885C2 (ru) 2011-10-31 2019-03-13 Чугаи Сейяку Кабусики Кайся Антигенсвязывающая молекула с регулируемой конъюгацией между тяжелой цепью и легкой цепью
WO2013096291A2 (en) 2011-12-20 2013-06-27 Medimmune, Llc Modified polypeptides for bispecific antibody scaffolds
JP2015503907A (ja) * 2011-12-22 2015-02-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 真核細胞のための全長抗体提示システムおよびその使用
BR112014019579A2 (pt) * 2012-02-10 2019-10-15 Genentech, Inc Anticorpo de cadeia única, polinucleotídeo, vetor, célula hospedeira, método de produção de um anticorpo de cadeia única, heteromultímero e método de produção do heteromultímero
CN107361011B (zh) 2012-03-16 2021-08-27 瑞泽恩制药公司 制备表达ph敏感性免疫球蛋白序列的非人动物的方法
NZ629639A (en) 2012-03-16 2017-03-31 Regeneron Pharma Histidine engineered light chain antibodies and genetically modified non-human animals for generating the same
CN106318951A (zh) 2012-03-16 2017-01-11 瑞泽恩制药公司 生产具有ph依赖性结合特性的抗原结合蛋白的小鼠
US20140013456A1 (en) 2012-03-16 2014-01-09 Regeneron Pharmaceuticals, Inc. Histidine Engineered Light Chain Antibodies and Genetically Modified Non-Human Animals for Generating the Same
US10251377B2 (en) 2012-03-28 2019-04-09 Kymab Limited Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies
BR112014024903A2 (pt) 2012-04-05 2017-07-11 Hoffmann La Roche anticorpos biespecíficos contra tweak humanao e il17 humana e seus usos
EA035344B1 (ru) 2012-04-20 2020-05-29 Мерюс Н.В. Способ получения двух антител из одной клетки-хозяина
CA2872908C (en) * 2012-05-10 2023-11-14 Gerhard Frey Multi-specific monoclonal antibodies
EP2862875B1 (de) 2012-06-14 2023-09-06 Chugai Seiyaku Kabushiki Kaisha Antigenbindendes molekül mit modifizierter fc-region
EP2867253B1 (de) 2012-06-27 2016-09-14 F. Hoffmann-La Roche AG Verfahren zur auswahl und herstellung massgeschneiderter, hochselektiver und multispezifischer targeting-einheiten mit mindestens zwei verschiedenen bindungseinheiten sowie verwendungen davon
JP6309002B2 (ja) 2012-06-27 2018-04-11 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 標的に特異的に結合する少なくとも1つの結合実体を含む抗体Fc領域結合体を作製するための方法およびその使用
RU2630664C2 (ru) 2012-07-04 2017-09-11 Ф. Хоффманн-Ля Рош Аг Антитела к теофиллину и способы их применения
HUE030858T2 (en) 2012-07-04 2017-06-28 Hoffmann La Roche Covalently linked antigen-antibody conjugates
CA2872192A1 (en) 2012-07-04 2014-01-09 F. Hoffmann-La Roche Ag Anti-biotin antibodies and methods of use
CN104736174B (zh) 2012-07-06 2019-06-14 根马布私人有限公司 具有三重突变的二聚体蛋白质
EP3632462A1 (de) 2012-07-06 2020-04-08 Genmab B.V. Dimerprotein mit dreifacher mutation
CN104768571B (zh) 2012-07-13 2018-11-09 酵活有限公司 多价异多聚体支架设计和构建体
TW202237660A (zh) 2012-08-24 2022-10-01 日商中外製藥股份有限公司 FcγRIIb特異性Fc區域變異體
EA201590640A1 (ru) * 2012-09-27 2015-11-30 Мерюс Б.В. БИСПЕЦИФИЧЕСКИЕ АНТИТЕЛА КЛАССА IgG В КАЧЕСТВЕ РЕКРУТЕРОВ Т-КЛЕТОК
JP6444874B2 (ja) 2012-10-08 2018-12-26 ロシュ グリクアート アーゲー 2つのFabフラグメントを含むFc不含抗体および使用方法
WO2014062856A1 (en) 2012-10-16 2014-04-24 Halozyme, Inc. Hypoxia and hyaluronan and markers thereof for diagnosis and monitoring of diseases and conditions and related methods
WO2014069647A1 (ja) 2012-11-05 2014-05-08 全薬工業株式会社 抗体又は抗体組成物の製造方法
EP2917238A1 (de) 2012-11-08 2015-09-16 Eleven Biotherapeutics, Inc. Il6-antagonisten und verwendungen davon
CN105102618B (zh) 2012-12-27 2018-04-17 中外制药株式会社 异源二聚化多肽
KR20200024345A (ko) 2013-01-10 2020-03-06 젠맵 비. 브이 인간 IgG1 Fc 영역 변이체 및 그의 용도
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
JP6618362B2 (ja) 2013-01-14 2019-12-11 ゼンコア インコーポレイテッド 新規異種二量体タンパク質
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
EP2945969A1 (de) 2013-01-15 2015-11-25 Xencor, Inc. Schnelle beseitigung von antigenkomplexen unter verwendung neuartiger antikörper
WO2014131712A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
RU2015140915A (ru) 2013-02-26 2017-04-03 Роше Гликарт Аг Биспецифические антигенсвязывающие молекулы, активирующие т-клетки
HUE055845T2 (hu) * 2013-03-14 2021-12-28 Macrogenics Inc Aktiváló receptort expresszáló immuneffektor sejtekkel immunreaktív bispecifikus molekulák
AU2014232416B2 (en) 2013-03-15 2017-09-28 Xencor, Inc. Modulation of T Cells with Bispecific Antibodies and FC Fusions
EA201890895A1 (ru) 2013-03-15 2019-02-28 Зинджения, Инк. Мультивалентные и моновалентные мультиспецифические комплексы и их применение
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
CA2908653A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases
CA2904806C (en) 2013-04-29 2021-11-23 F. Hoffmann-La Roche Ag Human fcrn-binding modified antibodies and methods of use
ES2871383T3 (es) 2013-04-29 2021-10-28 Hoffmann La Roche Anticuerpos asimétricos modificados que se unen al receptor de Fc y procedimientos de uso
US9783593B2 (en) 2013-05-02 2017-10-10 Kymab Limited Antibodies, variable domains and chains tailored for human use
US11707056B2 (en) 2013-05-02 2023-07-25 Kymab Limited Animals, repertoires and methods
ES2776706T3 (es) 2013-07-05 2020-07-31 Genmab As Anticuerpos contra CD3 humanizados o quiméricos
KR20160034404A (ko) * 2013-07-31 2016-03-29 암젠 인크 Fc-함유 폴리펩타이드의 안정화
RU2758952C1 (ru) 2013-09-27 2021-11-03 Чугаи Сейяку Кабусики Кайся Способ получения полипептидного гетеромультимера
EP3037525B1 (de) 2013-09-30 2021-06-02 Chugai Seiyaku Kabushiki Kaisha Verfahren zur herstellung eines antigenbindenden moleküls unter verwendung von modifizierten helferphagen
EP3794941B1 (de) 2013-10-01 2024-09-25 Kymab Limited Tiermodelle und therapeutische moleküle
CA2922912A1 (en) 2013-10-11 2015-04-16 F. Hoffmann-La Roche Ag Multispecific domain exchanged common variable light chain antibodies
US20160280787A1 (en) 2013-11-11 2016-09-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
TWI747385B (zh) 2013-12-17 2021-11-21 美商建南德克公司 抗cd3抗體及使用方法
DK3083680T3 (da) 2013-12-20 2020-03-16 Hoffmann La Roche Humaniserede anti-Tau(pS422)-antistoffer og fremgangsmåder til anvendelse
MX2016008098A (es) * 2013-12-20 2017-01-11 Hoffmann La Roche Anticuerpos biespecificos del receptor 2 de factor de crecimiento ipidermico himano (her2) y metodo de uso.
RU2694981C2 (ru) 2014-01-03 2019-07-18 Ф. Хоффманн-Ля Рош Аг Ковалентно связанные конъюгаты хеликар-антитело против хеликара и их применения
MX2016008191A (es) 2014-01-03 2017-11-16 Hoffmann La Roche Conjugados de toxina polipeptidica-anticuerpo unidos covalentemente.
BR112016013849A2 (pt) 2014-01-03 2017-10-10 Hoffmann La Roche conjugados de anticorpos biespecíficos antihapteno/antirreceptores da barreira hematoencefálica, seus usos, e formulação farmacêutica
EP3092251B1 (de) 2014-01-06 2021-01-20 F. Hoffmann-La Roche AG Monovalente shuttle-module für blut-hirn-schranke
MX2016008539A (es) 2014-01-15 2016-09-26 Hoffmann La Roche Variantes de region fc con propiedades de union a receptor fc neonatal (fcrn) modificadas y de union a proteina a mantenidas.
KR20160124165A (ko) 2014-02-21 2016-10-26 제넨테크, 인크. 항-il-13/il-17 이중특이적 항체 및 그의 용도
EP3805268A1 (de) 2014-02-28 2021-04-14 Merus N.V. Erbb-2- und erbb-3-bindender antikörper
EP3110846B1 (de) 2014-02-28 2020-08-19 Merus N.V. Egfr- und erbb3-bindende antikörper
PL3116999T3 (pl) 2014-03-14 2021-12-27 F.Hoffmann-La Roche Ag Sposoby i kompozycje do wydzielania polipeptydów heterologicznych
RU2016141307A (ru) 2014-03-21 2018-04-24 Регенерон Фармасьютикалз, Инк. Отличные от человека животные, которые вырабатывают однодоменные связывающие белки
PE20161431A1 (es) 2014-03-28 2017-01-22 Xencor Inc Anticuerpos biespecificos que se unen a cd38 y cd3
EP3825326A1 (de) * 2014-04-01 2021-05-26 Adimab, LLC Multispezifische antikörperanaloga mit einer gemeinsamen leichten kette sowie verfahren zu deren herstellung und verwendung
SG11201608054YA (en) 2014-04-02 2016-10-28 Hoffmann La Roche Method for detecting multispecific antibody light chain mispairing
UA117289C2 (uk) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Мультиспецифічне антитіло
CA2943943C (en) 2014-04-07 2023-01-10 Chugai Seiyaku Kabushiki Kaisha Immunoactivating antigen-binding molecule
EP3144388B1 (de) 2014-05-13 2020-07-01 Chugai Seiyaku Kabushiki Kaisha T-zell-umleitendes antigenbindendes molekül für zellen mit immunsuppressionsfunktion
ES2833230T3 (es) 2014-05-13 2021-06-14 Univ Pennsylvania Composiciones que comprenden AVV que expresan construcciones y usos de doble anticuerpo del mismo
AR100978A1 (es) 2014-06-26 2016-11-16 Hoffmann La Roche LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS
RU2705299C2 (ru) 2014-06-26 2019-11-06 Ф. Хоффманн-Ля Рош Аг Антитела против 5-бром-2'-дезоксиуридина и способы применения
US10512688B2 (en) 2014-07-11 2019-12-24 Genmab A/S Antibodies binding AXL
EP2982692A1 (de) 2014-08-04 2016-02-10 EngMab AG Bispezifische Antikörper gegen CD3-Epsilon und BCMA
LT3177643T (lt) 2014-08-04 2019-08-12 F. Hoffmann-La Roche Ag T ląstelę aktyvinantį antigeną surišančios bispecifinės molekulės
BR112017004802A2 (pt) 2014-09-12 2017-12-12 Genentech Inc anticorpos anti-cll-1 e imunoconjugados
CR20170131A (es) 2014-09-12 2017-07-19 Genentech Inc Anticuerpos anti-her2 e inmunoconjugados
RU2017107502A (ru) 2014-09-12 2018-10-12 Дженентек, Инк. Антитела и конъюгаты, сконструированные введением цистеина
CA2957148A1 (en) 2014-09-17 2016-03-24 Genentech, Inc. Immunoconjugates comprising anti-her2 antibodies and pyrrolobenzodiazepines
TWI700300B (zh) 2014-09-26 2020-08-01 日商中外製藥股份有限公司 中和具有第viii凝血因子(fviii)機能替代活性的物質之抗體
TWI701435B (zh) 2014-09-26 2020-08-11 日商中外製藥股份有限公司 測定fviii的反應性之方法
US11952421B2 (en) 2014-10-09 2024-04-09 Bristol-Myers Squibb Company Bispecific antibodies against CD3EPSILON and ROR1
CN108064282A (zh) 2014-10-14 2018-05-22 哈洛齐梅公司 腺苷脱氨酶-2(ada2)、其变体的组合物及使用其的方法
US11773166B2 (en) 2014-11-04 2023-10-03 Ichnos Sciences SA CD3/CD38 T cell retargeting hetero-dimeric immunoglobulins and methods of their production
KR20170078677A (ko) 2014-11-06 2017-07-07 에프. 호프만-라 로슈 아게 Fcrn-결합이 개질된 fc-영역 변이체 및 이의 사용 방법
MX2017005150A (es) 2014-11-06 2017-08-08 Hoffmann La Roche Variantes de region fc con propiedades modificadas de union a receptor neonatal fc (fcrn) y proteina a.
SG10202103420PA (en) 2014-11-07 2021-05-28 Eleven Biotherapeutics Inc Improved il-6 antibodies
WO2016073894A1 (en) 2014-11-07 2016-05-12 Eleven Biotherapeutics, Inc. Therapeutic agents with increased ocular retention
TWI705976B (zh) 2014-11-10 2020-10-01 美商建南德克公司 抗介白素-33抗體及其用途
CN107250158B (zh) 2014-11-19 2022-03-25 基因泰克公司 抗转铁蛋白受体/抗bace1多特异性抗体和使用方法
MX2017006626A (es) * 2014-11-20 2017-08-21 Hoffmann La Roche Cadenas ligeras comunes y metodos de uso.
EP3023437A1 (de) 2014-11-20 2016-05-25 EngMab AG Bispezifische Antikörper gegen CD3epsilon und BCMA
WO2016079050A1 (en) 2014-11-20 2016-05-26 F. Hoffmann-La Roche Ag Combination therapy of t cell activating bispecific antigen binding molecules cd3 abd folate receptor 1 (folr1) and pd-1 axis binding antagonists
JP2017536830A (ja) 2014-11-26 2017-12-14 ゼンコー・インコーポレイテッドXencor、 Inc. Cd3及びcd38に結合するヘテロ二量体抗体
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
HUE055115T2 (hu) 2014-11-26 2021-10-28 Xencor Inc CD3-at és CD20-at kötõ heterodimer antitestek
CN107001482B (zh) 2014-12-03 2021-06-15 豪夫迈·罗氏有限公司 多特异性抗体
JP2018502840A (ja) 2014-12-10 2018-02-01 ジェネンテック, インコーポレイテッド 血液脳関門受容体抗体及び使用方法
UA127961C2 (uk) 2014-12-19 2024-02-28 Чугей Сейяку Кабусікі Кайся Антитіло до латентного міостатину
WO2016097300A1 (en) 2014-12-19 2016-06-23 Genmab A/S Rodent bispecific heterodimeric proteins
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
CN107438622A (zh) 2015-03-19 2017-12-05 瑞泽恩制药公司 选择结合抗原的轻链可变区的非人动物
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
JP2018516933A (ja) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド 抗il−34抗体を使用して神経学的疾患を治療するための組成物及び方法
CN107849132B (zh) 2015-06-16 2022-03-08 豪夫迈·罗氏有限公司 人源化的和亲和力成熟的针对FcRH5的抗体和使用方法
CN107847568B (zh) 2015-06-16 2022-12-20 豪夫迈·罗氏有限公司 抗cll-1抗体和使用方法
AR105089A1 (es) 2015-06-24 2017-09-06 Hoffmann La Roche ANTICUERPOS ANTI-TAU(pS422) HUMANIZADOS Y MÉTODOS DE UTILIZACIÓN
CN107531788B (zh) * 2015-06-24 2022-06-21 豪夫迈·罗氏有限公司 对her2和血脑屏障受体特异性的三特异性抗体及使用方法
PL3319993T3 (pl) 2015-07-10 2020-07-27 Genmab A/S Specyficzne wobec AXL koniugaty przeciwciało-lek do leczenia raka
PL3115376T3 (pl) 2015-07-10 2019-01-31 Merus N.V. Ludzkie przeciwciało wiążące cd3
KR20180030635A (ko) 2015-07-15 2018-03-23 젠맵 에이/에스 인간화 또는 키메라 cd3 항체
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
AR106201A1 (es) 2015-10-02 2017-12-20 Hoffmann La Roche Moléculas biespecíficas de unión a antígeno activadoras de células t
EP3356407B1 (de) 2015-10-02 2021-11-03 F. Hoffmann-La Roche AG Bispezifische anti-cd19xcd3-t-zell-aktivierende antigenbindende moleküle
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
WO2017055391A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules binding mesothelin and cd3
US20170096495A1 (en) 2015-10-02 2017-04-06 Hoffmann-La Roche Inc. Bispecific t cell activating antigen binding molecules
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
EP3150637A1 (de) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Multispezifische antikörper
JP6734919B2 (ja) 2015-10-02 2020-08-05 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 同時結合を測定するための細胞ベースのfretアッセイ法
US20180282410A1 (en) 2015-10-02 2018-10-04 Hoffmann-La Roche Inc. Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
WO2017055404A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific antibodies specific for pd1 and tim3
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
EP3359192A4 (de) 2015-10-08 2019-05-01 MacroGenics, Inc. Kombinationstherapie zur krebsbehandlung
MA43354A (fr) 2015-10-16 2018-08-22 Genentech Inc Conjugués médicamenteux à pont disulfure encombré
MA45326A (fr) 2015-10-20 2018-08-29 Genentech Inc Conjugués calichéamicine-anticorps-médicament et procédés d'utilisation
EP3365373B1 (de) 2015-10-23 2021-03-10 Merus N.V. Bindungsmoleküle zur hemmung von krebswachstum
KR20180069065A (ko) 2015-10-29 2018-06-22 에프. 호프만-라 로슈 아게 항-변이체 fc-부위 항체 및 사용 방법
CN113897371A (zh) * 2015-10-29 2022-01-07 豪夫迈·罗氏有限公司 具有共同轻链的转基因兔
WO2017075173A2 (en) 2015-10-30 2017-05-04 Genentech, Inc. Anti-factor d antibodies and conjugates
EP3378488A4 (de) 2015-11-18 2019-10-30 Chugai Seiyaku Kabushiki Kaisha Verfahren zur verbesserung der humoralen immunreaktion
JP6931329B2 (ja) 2015-11-18 2021-09-01 中外製薬株式会社 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
EP3178848A1 (de) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antikörper zur verringerung der bildung von antikörpern gegen medikamente
WO2017097723A2 (en) 2015-12-09 2017-06-15 F. Hoffmann-La Roche Ag Treatment method
SG11201803989WA (en) 2015-12-28 2018-06-28 Chugai Pharmaceutical Co Ltd Method for promoting efficiency of purification of fc region-containing polypeptide
WO2017117304A1 (en) 2015-12-30 2017-07-06 Genentech, Inc. Use of tryptophan derivatives for protein formulations
CN108472379B (zh) 2015-12-30 2022-06-21 豪夫迈·罗氏有限公司 减少聚山梨酯降解的制剂
KR20180097615A (ko) 2016-01-08 2018-08-31 에프. 호프만-라 로슈 아게 Pd-1 축 결합 길항물질 및 항-cea/항-cd3 이중특이성 항체를 사용하는 cea-양성 암의 치료 방법
AU2017223687A1 (en) 2016-02-23 2018-08-09 Sesen Bio, Inc. IL-6 antagonist formulations and uses thereof
US11072666B2 (en) 2016-03-14 2021-07-27 Chugai Seiyaku Kabushiki Kaisha Cell injury inducing therapeutic drug for use in cancer therapy
DK3433280T5 (da) 2016-03-22 2024-09-16 F Hoffmann La Roche Ag Protease-aktiverede T-celle-bispecifikke molekyler
SG11201808783XA (en) 2016-04-15 2018-11-29 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
WO2017181148A2 (en) 2016-04-15 2017-10-19 Alpine Immune Sciences, Inc. Icos ligand variant immunomodulatory proteins and uses thereof
UA123323C2 (uk) 2016-05-02 2021-03-17 Ф. Хоффманн-Ля Рош Аг Димерний злитий поліпептид
ES2858151T3 (es) 2016-05-20 2021-09-29 Hoffmann La Roche Conjugados de PROTAC-anticuerpo y procedimientos de uso
US20170370906A1 (en) 2016-05-27 2017-12-28 Genentech, Inc. Bioanalytical analysis of site-specific antibody drug conjugates
TW201902512A (zh) 2016-06-02 2019-01-16 瑞士商赫孚孟拉羅股份公司 治療方法
EP3252078A1 (de) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Typ ii anti-cd20 antikörper und anti-cd20/cd3 bispecific antikörper zur behandlung von krebs
WO2017214024A1 (en) 2016-06-06 2017-12-14 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
AU2017285218B2 (en) 2016-06-14 2024-08-22 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
KR20190039929A (ko) 2016-06-17 2019-04-16 제넨테크, 인크. 다중 특이적 항체의 정제
WO2018005706A1 (en) 2016-06-28 2018-01-04 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
JP7308034B2 (ja) 2016-07-01 2023-07-13 リゾルブ セラピューティクス, エルエルシー 最適化二重ヌクレアーゼ融合物および方法
EP3478717B1 (de) 2016-07-04 2022-01-05 F. Hoffmann-La Roche AG Neuartiges antikörperformat
MA45672A (fr) 2016-07-14 2019-05-22 Biontech Ag Anticorps multispécifiques dirigés contre cd40 et cd137
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
CA3032120A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
EP3496763A1 (de) 2016-08-11 2019-06-19 Genentech, Inc. Pyrrolobenzodiazepin-prodrugs und antikörperkonjugate davon
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
CN109661241A (zh) 2016-09-06 2019-04-19 中外制药株式会社 使用识别凝血因子ix和/或活化凝血因子ix以及凝血因子x和/或活化凝血因子x的双特异性抗体的方法
PL4050034T3 (pl) 2016-09-14 2024-07-22 Teneoone, Inc. Przeciwciała wiążące cd3
JP6785372B2 (ja) 2016-09-30 2020-11-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 多重特異性分子の機能分析のためのsprに基づく二重結合アッセイ
US10882918B2 (en) 2016-09-30 2021-01-05 Hoffmann-La Roche Inc. Bispecific T cell activating antigen binding molecules
WO2018065501A1 (en) 2016-10-05 2018-04-12 F. Hoffmann-La Roche Ag Methods for preparing antibody drug conjugates
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
JP7142630B2 (ja) 2016-10-14 2022-09-27 ゼンコア インコーポレイテッド IL15/IL15Rαヘテロ二量体FC-融合タンパク質
US20190276549A1 (en) 2016-11-01 2019-09-12 Genmab B.V. Polypeptide variants and uses thereof
AU2017361081A1 (en) 2016-11-15 2019-05-23 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
TW201829463A (zh) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 抗hla-g抗體及其用途
MA46959A (fr) 2016-12-02 2019-10-09 Juno Therapeutics Inc Cellules b modifiées et compositions et méthodes associées
KR102633423B1 (ko) 2016-12-21 2024-02-06 테네오바이오, 인코포레이티드 항-bcma 중쇄-단독 항체
MX2019009106A (es) 2017-02-01 2019-09-10 Novo Nordisk As Anticuerpos procoagulantes.
AU2018218345A1 (en) 2017-02-10 2019-08-29 Genmab B.V. Polypeptide variants and uses thereof
FI3592769T3 (fi) 2017-03-09 2024-07-30 Genmab As Vasta-aineita PD-L1:tä vastaan
MX2019010575A (es) 2017-03-10 2019-10-15 Hoffmann La Roche Metodo para producir anticuerpos multiespecificos.
HRP20231382T1 (hr) 2017-03-16 2024-02-16 Alpine Immune Sciences, Inc. Pd-l1 varijanta imunomodulacijskih proteina i njihova upotreba
CN110809581A (zh) 2017-03-16 2020-02-18 高山免疫科学股份有限公司 Pd-l2变体免疫调节蛋白及其用途
SG11201907769XA (en) 2017-03-16 2019-09-27 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
AU2018240938A1 (en) 2017-03-24 2019-10-10 Zenyaku Kogyo Co., Ltd. Anti-IgM/B cell surface antigen bispecific antibody
AU2018246873B2 (en) 2017-03-31 2021-05-06 Merus N.V. ErbB-2 and ErbB3 binding bispecific antibodies for use in the treatment f cells that have an NRG1 fusion gene
SG11201908772TA (en) 2017-03-31 2019-10-30 Genmab Holding B V Bispecific anti-cd37 antibodies, monoclonal anti-cd37 antibodies and methods of use thereof
EP3606947B1 (de) 2017-04-03 2022-12-21 F. Hoffmann-La Roche AG Immunokonjugat von il-2 mit einem bispezifischen antikörper gerichtet gegen pd-1 und tim-3
AU2018247765B2 (en) 2017-04-03 2023-11-23 F. Hoffmann-La Roche Ag Immunoconjugates of an Anti-PD-1 antibody with a mutant IL-2 or with IL-15
ES2955852T3 (es) 2017-04-03 2023-12-07 Hoffmann La Roche Anticuerpos de unión a STEAP-1
CR20190434A (es) 2017-04-05 2019-11-01 Hoffmann La Roche Anticuerpos anti-lag3
SG11201909154SA (en) 2017-04-05 2019-10-30 Hoffmann La Roche Bispecific antibodies specifically binding to pd1 and lag3
SG11201909160WA (en) 2017-04-11 2019-10-30 Inhibrx Inc Multispecific polypeptide constructs having constrained cd3 binding and methods of using the same
CA3058279A1 (en) 2017-04-13 2018-10-18 F.Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
JP2020522254A (ja) * 2017-05-31 2020-07-30 エルスター セラピューティクス, インコーポレイテッド 骨髄増殖性白血病(mpl)タンパク質に結合する多特異性分子およびその使用
MX2019014407A (es) 2017-06-07 2020-02-05 Genmab Bv Anticuerpos terapeuticos basados en hexameros de inmunoglobulina g (igg) mutados.
BR112019026907A2 (pt) 2017-06-20 2020-06-30 Teneobio, Inc. Anticorpos apenas de cadeia pesadaanti-bcma, polinucleotídeo, vetor, célula,composição farmacêutica, seus usos e método paraproduzir os mesmos
US11427642B2 (en) 2017-06-20 2022-08-30 Teneoone, Inc. Anti-BCMA heavy chain-only antibodies
GB201709970D0 (en) 2017-06-22 2017-08-09 Kymab Ltd Bispecific antigen-binding molecules
MA49517A (fr) 2017-06-30 2020-05-06 Xencor Inc Protéines de fusion fc hétérodimères ciblées contenant il-15/il-15ra et domaines de liaison à l'antigène
BR112020000209A8 (pt) 2017-07-06 2020-08-11 Merus Nv moléculas de ligação que modulam uma atividade biológica expressa por uma célula
GB201710984D0 (en) 2017-07-07 2017-08-23 Kymab Ltd Cells, vertebrates, populations & methods
AR112603A1 (es) 2017-07-10 2019-11-20 Lilly Co Eli Anticuerpos biespecíficos inhibidores de punto de control
DE102017115966A1 (de) 2017-07-14 2019-01-17 Immatics Biotechnologies Gmbh Polypeptidmolekül mit verbesserter zweifacher Spezifität
WO2019012141A1 (en) 2017-07-14 2019-01-17 Immatics Biotechnologies Gmbh IMPROVED POLYPEPTIDE MOLECULE WITH DOUBLE SPECIFICITY
JP7290013B2 (ja) 2017-08-04 2023-06-13 ジェンマブ エー/エス Pd-l1およびcd137に結合する結合物質ならびにその使用
BR112020002695A2 (pt) 2017-08-09 2020-08-25 Merus N.V. anticorpos que se ligam à egfr e cmet
BR112020003670A2 (pt) 2017-08-22 2020-09-01 Sanabio, Llc receptores de interferon solúveis e usos dos mesmos
EP3457139A1 (de) 2017-09-19 2019-03-20 Promise Advanced Proteomics Antikörperähnliche peptide zur quantifizierung therapeutischer antikörper
TW202423960A (zh) 2017-09-29 2024-06-16 日商中外製藥股份有限公司 具有第viii凝血因子(fviii)輔因子機能替代活性的多重特異性抗原結合分子及含有此分子作為有效成分之藥學製劑
EP3694870A1 (de) 2017-10-10 2020-08-19 Alpine Immune Sciences, Inc. Ctla-4-variante immunmodulatorische proteine und verwendungen davon
EA202090974A1 (ru) 2017-10-18 2020-08-05 Элпайн Иммьюн Сайенсиз, Инк. Вариантные иммуномодулирующие белки лиганда icos и сопутствующие композиции и способы
CA3078157A1 (en) 2017-10-20 2019-04-25 F.Hoffmann-La Roche Ag Method for generating multispecific antibodies from monospecific antibodies
JP7438942B2 (ja) 2017-10-30 2024-02-27 エフ. ホフマン-ラ ロシュ アーゲー 単一特異性抗体から多重特異性抗体をインビボ生成させるための方法
JP2021500930A (ja) 2017-11-01 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Compボディ−多価標的結合物質
PE20210844A1 (es) 2017-11-01 2021-05-10 Hoffmann La Roche Contorsbodies 2 + biespecificos
KR102559706B1 (ko) 2017-11-01 2023-07-25 에프. 호프만-라 로슈 아게 Trifab-콘톨스바디
WO2019089544A1 (en) 2017-11-01 2019-05-09 Tufts Medical Center, Inc. Bispecific antibody constructs and methods of use
CN111246884A (zh) 2017-11-01 2020-06-05 豪夫迈·罗氏有限公司 新颖的含有tnf家族配体三聚体的抗原结合分子
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
CA3081854A1 (en) 2017-11-08 2019-05-16 Kyowa Kirin Co., Ltd. Bispecific antibody which binds to cd40 and epcam
CA3082383A1 (en) 2017-11-08 2019-05-16 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-pd-1 sequences
CA3086199A1 (en) 2017-12-19 2019-06-27 Xencor, Inc. Engineered il-2 fc fusion proteins
US11773171B2 (en) 2017-12-19 2023-10-03 Surrozen Operating, Inc. WNT surrogate molecules and uses thereof
WO2019126401A1 (en) 2017-12-19 2019-06-27 Surrozen, Inc. Anti-lrp5/6 antibodies and methods of use
WO2019126399A1 (en) 2017-12-19 2019-06-27 Surrozen, Inc. Anti-frizzled antibodies and methods of use
SG11202005632SA (en) 2017-12-21 2020-07-29 Hoffmann La Roche Antibodies binding to hla-a2/wt1
CN111491951B (zh) 2017-12-22 2024-05-24 豪夫迈·罗氏有限公司 通过疏水相互作用色谱法耗尽轻链错配的抗体变体
RU2020124623A (ru) 2017-12-27 2022-01-27 Тенеобио, Инк. Антитела, специфичные к гетеродимеру cd3-дельта/эпсилон
JP7369127B2 (ja) 2017-12-28 2023-10-25 ナンジン レジェンド バイオテック カンパニー,リミテッド Tigitに対する単一ドメイン抗体及びその変異体
TWI817974B (zh) 2017-12-28 2023-10-11 日商中外製藥股份有限公司 細胞毒性誘導治療劑
JP7436365B2 (ja) 2017-12-29 2024-02-21 エフ. ホフマン-ラ ロシュ アーゲー 抗vegf抗体及び使用の方法
SG11202006148UA (en) 2018-01-03 2020-07-29 Alpine Immune Sciences Inc Multi-domain immunomodulatory proteins and methods of use thereof
CA3084518A1 (en) 2018-01-15 2019-07-18 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against pd-1
EP3743440A1 (de) 2018-01-24 2020-12-02 Genmab B.V. Polypeptidvarianten und verwendungen davon
CN111630063A (zh) 2018-01-31 2020-09-04 豪夫迈·罗氏有限公司 稳定化的免疫球蛋白结构域
JP2021511793A (ja) 2018-01-31 2021-05-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Lag3に結合する抗原結合部位を含む二重特異性抗体
MX2020007527A (es) 2018-02-06 2020-09-09 Hoffmann La Roche Tratamiento de enfermedades oftalmologicas.
MX2020008289A (es) 2018-02-08 2020-09-25 Genentech Inc Moleculas biespecificas de union al antigeno y metodos de uso.
TWI829667B (zh) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 結合gprc5d之抗體
WO2019173832A2 (en) 2018-03-09 2019-09-12 AskGene Pharma, Inc. Novel cytokine prodrugs
MA52152A (fr) 2018-03-12 2021-01-20 Genmab As Anticorps
CN111936625A (zh) 2018-03-29 2020-11-13 豪夫迈·罗氏有限公司 调节哺乳动物细胞中的生乳活性
TW202003567A (zh) 2018-03-30 2020-01-16 大陸商南京傳奇生物科技有限公司 針對lag-3之單一結構域抗體及其用途
US11952424B2 (en) 2018-03-30 2024-04-09 Merus N.V. Multivalent antibody
CA3096052A1 (en) 2018-04-04 2019-10-10 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
KR20210006913A (ko) 2018-04-11 2021-01-19 인히브릭스, 인크. 제한된 cd3 결합을 갖는 다중특이적 폴리펩티드 컨스트럭트 및 관련된 방법 및 용도
AR115052A1 (es) 2018-04-18 2020-11-25 Hoffmann La Roche Anticuerpos multiespecíficos y utilización de los mismos
CA3097741A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Tim-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and tim-3 antigen binding domains
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
AU2019264217A1 (en) 2018-05-03 2020-12-17 Genmab B.V. Antibody variant combinations and uses thereof
GB201808927D0 (en) 2018-05-31 2018-07-18 Institute Of Cancer Res Royal Cancer Hospital Materials and methods for monitoring the development of resistance of cancers to treatment
SG11202011134XA (en) 2018-06-09 2020-12-30 Boehringer Ingelheim Int Dll3-cd3 bispecific antibodies
US12065476B2 (en) 2018-06-15 2024-08-20 Alpine Immune Sciences, Inc. PD-1 variant immunomodulatory proteins and uses thereof
US20210261669A1 (en) 2018-06-20 2021-08-26 Chugai Seiyaku Kabushiki Kaisha Method for activating immune response of target cell and composition therefor
US20210371539A1 (en) 2018-06-22 2021-12-02 Genmab Holding B.V. Anti-cd37 antibodies and anti-cd20 antibodies, compositions and methods of use thereof
MA53123A (fr) 2018-07-13 2021-05-19 Genmab As Thérapie à médiation par trogocytose utilisant des anticorps cd38
BR112020026432A2 (pt) 2018-07-13 2021-03-23 Genmab A/S variante de anticorpo, ácido nucleico isolado, vetor de expressão, ácido nucleico, combinação de ácidos nucleicos, veículo de dispensação, célula hospedeira recombinante, métodos para produção de uma variante de um anticorpo, para aumentar pelo menos uma função efetora de um anticorpo parental e para tratar uma doença, anticorpo, composição, composição farmacêutica, e, variante de anticorpo para uso
TW202035451A (zh) 2018-07-24 2020-10-01 美商英伊布里克斯公司 含有受限cd3結合域及受體結合區之多重特異性多肽構築體及其使用方法
US20210163562A1 (en) 2018-07-25 2021-06-03 AskGene Pharma, Inc. Novel IL-21 Prodrugs and Methods of Use Thereof
US11220554B2 (en) 2018-09-07 2022-01-11 Novo Nordisk A/S Procoagulant antibodies
CN117343188A (zh) * 2018-08-01 2024-01-05 诺和诺德股份有限公司 改进的促凝血抗体
IL280525B1 (en) 2018-08-08 2024-07-01 Genentech Inc Use of tryptophan and L-methionine for protein formulation
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
AU2019340647A1 (en) * 2018-09-10 2021-03-11 Genentech, Inc. Systems and methods for affinity capillary electrophoresis
KR20210089146A (ko) 2018-09-19 2021-07-15 알파인 이뮨 사이언시즈, 인코포레이티드 변이체 cd80 단백질 및 관련 구축물의 방법 및 용도
SG11202103192RA (en) 2018-10-03 2021-04-29 Xencor Inc Il-12 heterodimeric fc-fusion proteins
CN113365698A (zh) 2018-10-04 2021-09-07 健玛保控股有限公司 包含双特异性抗cd37抗体的药物组合物
CN113166261A (zh) 2018-10-11 2021-07-23 印希比股份有限公司 B7h3单域抗体及其治疗性组合物
JP2022504802A (ja) 2018-10-11 2022-01-13 インヒブルクス インコーポレイテッド 5t4シングルドメイン抗体およびその治療組成物
CN113166262A (zh) 2018-10-11 2021-07-23 英伊布里克斯公司 Pd-1单结构域抗体及其治疗组合物
TW202028245A (zh) 2018-10-11 2020-08-01 美商英伊布里克斯公司 Dll3單域抗體及其治療性組合物
WO2020086858A1 (en) 2018-10-24 2020-04-30 Genentech, Inc. Conjugated chemical inducers of degradation and methods of use
MA54052A (fr) 2018-10-29 2022-02-09 Hoffmann La Roche Formulation d'anticorps
WO2020089437A1 (en) 2018-10-31 2020-05-07 Engmab Sàrl Combination therapy
BR112021008774A2 (pt) 2018-11-06 2021-11-30 BioNTech SE Formulação farmacêutica, agente de ligação, métodos para tratamento de uma doença, para produzir uma formulação farmacêutica, para induzir a morte celular ou inibir o crescimento e/ou a proliferação de uma célula tumoral, e, uso de uma formulação farmacêutica
KR20210135987A (ko) 2018-11-30 2021-11-16 알파인 이뮨 사이언시즈, 인코포레이티드 Cd86 변이체 면역조절 단백질 및 그의 용도
US20220041719A1 (en) 2018-12-05 2022-02-10 Morphosys Ag Multispecific antigen-binding molecules
JP2022513198A (ja) 2018-12-10 2022-02-07 ジェネンテック, インコーポレイテッド Fc含有タンパク質への部位特異的コンジュゲーションのための光架橋性ペプチド
GB201820687D0 (en) 2018-12-19 2019-01-30 Kymab Ltd Antagonists
SG11202102859TA (en) 2018-12-21 2021-04-29 Hoffmann La Roche Antibodies binding to cd3
EP3723858B1 (de) 2018-12-21 2021-10-27 Kymab Limited Fixaxfx-bispezifischer antikörper mit einer gemeinsamen leichten kette
EP3902560A1 (de) 2018-12-28 2021-11-03 F. Hoffmann-La Roche AG Peptide-mhc-i-antikörper-fusionsprotein zur therapeutischen verwendung bei einem patienten mit verstärkter immunantwort
JP7506607B2 (ja) 2018-12-28 2024-06-26 協和キリン株式会社 TfRに結合するバイスペシフィック抗体
CA3124688A1 (en) * 2018-12-31 2020-07-09 Merus N.V. Truncated multivalent multimers
SG11202106686PA (en) 2019-01-04 2021-07-29 Resolve Therapeutics Llc Treatment of sjogren's disease with nuclease fusion proteins
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
EP3930850A1 (de) 2019-03-01 2022-01-05 Xencor, Inc. Enpp3 und cd3 bindende heterodimere antikörper
JP7412440B2 (ja) 2019-03-29 2024-01-12 エフ. ホフマン-ラ ロシュ アーゲー アビド結合多重特異性抗体を作製する方法
JP7249432B2 (ja) 2019-03-29 2023-03-30 エフ. ホフマン-ラ ロシュ アーゲー 多価分子の機能分析のための、sprをベースとする結合アッセイ
WO2020214867A1 (en) 2019-04-17 2020-10-22 Alpine Immune Sciences, Inc. Methods and uses of variant icos ligand (icosl) fusion proteins
TW202106714A (zh) 2019-04-25 2021-02-16 瑞士商赫孚孟拉羅股份公司 藉由多肽鏈交換製造抗體衍生之多肽
WO2020216879A1 (en) 2019-04-25 2020-10-29 F. Hoffmann-La Roche Ag Therapeutic multispecific polypeptides activated by polypeptide chain exchange
EP3959238A1 (de) 2019-04-25 2022-03-02 F. Hoffmann-La Roche AG Aktivierbare therapeutische multispezifische polypeptide mit verlängerter halbwertszeit
US20220315661A1 (en) 2019-05-09 2022-10-06 Genmab B.V. Dosage regimens for a combination of anti-dr5 antibodies for use in treating cancer
EP3969907A1 (de) 2019-05-13 2022-03-23 F. Hoffmann-La Roche AG Interferenzunterdrücktes pharmakokinetisches immunoassay
JP7502281B2 (ja) 2019-05-15 2024-06-18 協和キリン株式会社 Cd40とgpc3に結合するバイスペシフィック抗体
US20220259328A1 (en) 2019-05-15 2022-08-18 Kyowa Kirin Co., Ltd. Bispecific antibody binding to cd40 and fap
US20220324975A1 (en) 2019-06-05 2022-10-13 Chugai Seiyaku Kabushiki Kaisha Antibody cleavage site binding molecule
KR20220020879A (ko) 2019-06-12 2022-02-21 에스크진 파마, 아이엔씨. 새로운 il-15 프로드럭 및 이를 사용하는 방법
AR119746A1 (es) 2019-06-14 2022-01-05 Teneobio Inc Anticuerpos multiespecíficos de cadena pesada que se unen a cd22 y cd3
MX2021015536A (es) 2019-06-19 2022-02-10 Hoffmann La Roche Metodo para la generacion de una celula que expresa proteina mediante integracion dirigida usando acido ribonucleico mensajero (arnm) de cre.
EP3990646A1 (de) 2019-06-26 2022-05-04 F. Hoffmann-La Roche AG Säugetierzelllinien mit sirt-1-gen-knockout
TW202115115A (zh) 2019-07-02 2021-04-16 瑞士商赫孚孟拉羅股份公司 免疫結合物
BR112021023173A2 (pt) 2019-07-10 2022-01-04 Chugai Pharmaceutical Co Ltd Moléculas de ligação à claudin-6 e usos das mesmas
AR119382A1 (es) 2019-07-12 2021-12-15 Hoffmann La Roche Anticuerpos de pre-direccionamiento y métodos de uso
AR119393A1 (es) 2019-07-15 2021-12-15 Hoffmann La Roche Anticuerpos que se unen a nkg2d
CA3147239A1 (en) 2019-07-16 2021-01-21 Sanofi Neutralizing anti-amyloid beta antibodies for the treatment of alzheimer's disease
EP4004045A1 (de) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG An gprc5d bindende antikörper
KR20220028035A (ko) 2019-07-31 2022-03-08 에프. 호프만-라 로슈 아게 Gprc5d에 결합하는 항체
CA3148505A1 (en) 2019-08-12 2021-02-18 AskGene Pharma, Inc. Novel il-2 fusion molecules
JP2022545439A (ja) 2019-08-21 2022-10-27 アスクジーン・ファーマ・インコーポレイテッド 新規il-21プロドラッグおよびその使用方法
PE20221906A1 (es) 2019-09-18 2022-12-23 Genentech Inc Anticuerpos anti-klk7, anticuerpos anti-klk5, anticuerpos multiespecificos anti-klk5/klk7 y metodos de uso
JP2022549351A (ja) * 2019-09-27 2022-11-24 アジェナス インコーポレイテッド ヘテロ二量体タンパク質
JP2022549344A (ja) 2019-09-28 2022-11-24 アスクジーン・ファーマ・インコーポレイテッド サイトカインプロドラッグおよびデュアルプロドラッグ
WO2021057991A1 (zh) 2019-09-29 2021-04-01 北京加科思新药研发有限公司 对lif具有特异性的结合分子及其用途
EP4055046A1 (de) 2019-11-06 2022-09-14 Genmab B.V. Antikörpervariantenkombinationen und verwendungen davon
CA3152314A1 (en) 2019-11-15 2021-05-20 Andrea ALLMENDINGER Prevention of visible particle formation in aqueous protein solutions
AR120741A1 (es) 2019-12-13 2022-03-16 Genentech Inc Anticuerpos anti-ly6g6d y métodos de uso
US11739142B2 (en) 2019-12-18 2023-08-29 Hoffmann-La Roche Inc. Bispecific anti-CCL2 antibodies
PE20221282A1 (es) 2019-12-18 2022-09-05 Hoffmann La Roche Anticuerpos que se unen a hla-a2/mage-a4
GB201919061D0 (en) 2019-12-20 2020-02-05 Ucb Biopharma Sprl Multi-specific antibody
GB201919062D0 (en) 2019-12-20 2020-02-05 Ucb Biopharma Sprl Antibody
WO2021133723A2 (en) 2019-12-23 2021-07-01 Genentech, Inc. Apolipoprotein l1-specific antibodies and methods of use
KR102645629B1 (ko) 2019-12-27 2024-03-07 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
WO2021136772A1 (en) 2020-01-02 2021-07-08 F. Hoffmann-La Roche Ag Method for determining the amount of a therapeutic antibody in the brain
AU2021205981A1 (en) 2020-01-11 2022-07-14 AskGene Pharma, Inc. Novel masked cytokines and methods of use thereof
TW202140511A (zh) 2020-01-15 2021-11-01 瑞士商赫孚孟拉羅股份公司 減少來自重組蛋白生產過程中的雜質之方法
CN114980927A (zh) 2020-01-16 2022-08-30 健玛保 Cd38抗体的配制剂及其用途
EP4097129A1 (de) 2020-01-29 2022-12-07 Inhibrx, Inc. Cd28 einzeldomänenantikörper sowie multivalente und multispezifische konstrukte davon
GB202001447D0 (en) 2020-02-03 2020-03-18 Ucb Biopharma Sprl Antibodies
WO2021155916A1 (en) 2020-02-04 2021-08-12 BioNTech SE Treatment involving antigen vaccination and binding agents binding to pd-l1 and cd137
WO2021173844A1 (en) 2020-02-26 2021-09-02 Biograph 55, Inc. C19 c38 bispecific antibodies
KR20220152262A (ko) 2020-03-13 2022-11-15 제넨테크, 인크. 항-인터루킨-33 항체 및 이의 용도
PE20230444A1 (es) 2020-03-18 2023-03-08 Genmab As Anticuerpos
EP4127153A2 (de) 2020-03-26 2023-02-08 Genentech, Inc. Modifizierte säugetierzellen mit reduzierten wirtszellproteinen
US20230348616A1 (en) 2020-03-30 2023-11-02 Mie University Bispecific antibody
AU2021250381A1 (en) 2020-03-31 2022-10-06 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
CR20220512A (es) 2020-04-15 2022-11-07 Hoffmann La Roche Inmunoconjugados
BR112022021203A2 (pt) 2020-04-24 2022-12-06 Hoffmann La Roche Modulação de enzima e via com compostos sulfidrila e seus derivados
CN115894703A (zh) 2020-04-29 2023-04-04 特尼奥生物股份有限公司 具有经修饰重链恒定区的多特异性重链抗体
MX2022013465A (es) 2020-04-30 2023-01-11 Bristol Myers Squibb Co Metodos para tratar eventos adversos relacionados con citocinas.
WO2021226553A2 (en) 2020-05-08 2021-11-11 Alpine Immune Sciences, Inc. April and baff inhibitory immunomodulatory proteins with and without a t cell inhibitory protein and methods of use thereof
KR20230008775A (ko) 2020-05-08 2023-01-16 젠맵 에이/에스 Cd3 및 cd20에 대한 이중특이적 항체
BR112022022614A2 (pt) 2020-05-11 2023-02-07 Hoffmann La Roche Métodos para estimular uma resposta imune, melhorar uma imunoterapia, tratar uma doença, reduzir crescimento tumoral, produzir um imunoconjugado e produzir uma composição, método de vacinação, imunoconjugados, composição, usos e kits
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
WO2021228917A1 (en) 2020-05-15 2021-11-18 F. Hoffmann-La Roche Ag Prevention of visible particle formation in parenteral protein solutions
WO2021233853A1 (en) 2020-05-19 2021-11-25 F. Hoffmann-La Roche Ag The use of chelators for the prevention of visible particle formation in parenteral protein solutions
JPWO2021241616A1 (de) 2020-05-27 2021-12-02
CA3184495A1 (en) 2020-06-08 2021-12-16 F. Hoffmann-La Roche Ag Anti-hbv antibodies and methods of use
TWI811703B (zh) 2020-06-19 2023-08-11 瑞士商赫孚孟拉羅股份公司 與cd3及cd19結合之抗體
CA3176552A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Immune activating fc domain binding molecules
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
JP2023531625A (ja) 2020-06-19 2023-07-25 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト CD3及びFolR1に結合する抗体
WO2021255142A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3
IL299161A (en) 2020-06-24 2023-02-01 Genentech Inc Cell lines resistant to apoptosis
CA3165342A1 (en) 2020-06-29 2022-01-06 James Arthur Posada Treatment of sjogren's syndrome with nuclease fusion proteins
JP2023532764A (ja) 2020-07-07 2023-07-31 エフ. ホフマン-ラ ロシュ アーゲー 治療用タンパク質製剤の安定剤としての代替界面活性剤
MX2023000339A (es) 2020-07-10 2023-02-09 Hoffmann La Roche Anticuerpos que se unen a celulas cancerosas y dirigen radionucleotidos a dichas celulas.
MX2023000617A (es) 2020-07-17 2023-02-13 Genentech Inc Anticuerpos anti-notch2 y metodos de uso.
KR20230042032A (ko) 2020-07-21 2023-03-27 제넨테크, 인크. Brm 분해의 항체 접합 화학 유도제 및 이의 방법
EP4185388A1 (de) 2020-07-23 2023-05-31 Genmab B.V. Kombination aus anti-dr5-antikörpern und einem immunmodulatorischen imidwirkstoff zur verwendung bei der behandlung von multiplem myelom
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
CN116194124A (zh) 2020-07-31 2023-05-30 中外制药株式会社 包含表达嵌合受体的细胞的药物组合物
US20220033522A1 (en) * 2020-08-03 2022-02-03 Janssen Biotech, Inc. Materials and methods for multidirectional biotransportation in virotherapeutics
KR20230065256A (ko) 2020-08-06 2023-05-11 비온테크 에스이 코로나바이러스 s 단백질용 결합제
JP2023538891A (ja) 2020-08-19 2023-09-12 ゼンコア インコーポレイテッド 抗cd28組成物
US20230416371A1 (en) 2020-08-28 2023-12-28 Chugai Seiyaku Kabushiki Kaisha Heterodimer fc polypeptide
TW202227625A (zh) 2020-08-28 2022-07-16 美商建南德克公司 宿主細胞蛋白質之CRISPR/Cas9多重剔除
CA3190349A1 (en) 2020-09-10 2022-03-17 Brian Elliott Bispecific antibodies against cd3 and cd20 for treating chronic lymphocytic leukemia
IL301100A (en) 2020-09-10 2023-05-01 Genmab As A bispecific antibody against CD3 and CD20 in combination therapy for the treatment of diffuse large B-cell lymphoma
US20240034812A1 (en) 2020-09-10 2024-02-01 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
EP4210743A1 (de) 2020-09-10 2023-07-19 Genmab A/S Bispezifischer antikörper gegen cd3 und cd20 in einer kombinationstherapie zur behandlung von follikellymphom
CN116507363A (zh) 2020-09-10 2023-07-28 健玛保 用于治疗滤泡性淋巴瘤的联合疗法中的针对cd3和cd20的双特异性抗体
BR112023004296A2 (pt) 2020-09-10 2023-04-04 Genmab As Método para tratar linfoma de célula b grande difusa em um indivíduo humano
CA3191328A1 (en) 2020-09-21 2022-03-24 Genentech, Inc. Purification of multispecific antibodies
EP4217482A1 (de) 2020-09-24 2023-08-02 F. Hoffmann-La Roche AG Säugetierzellinien mit gen-knockout
WO2022069724A1 (en) 2020-10-02 2022-04-07 Genmab A/S Antibodies capable of binding to ror2 and bispecific antibodies binding to ror2 and cd3
WO2022076462A1 (en) 2020-10-05 2022-04-14 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202233671A (zh) 2020-10-20 2022-09-01 美商建南德克公司 Peg結合抗mertk抗體及其使用方法
KR20230107305A (ko) 2020-11-10 2023-07-14 상하이 치루 파마슈티컬 리서치 앤 디벨롭먼트 센터 리미티드 클라우딘 18a2 및 cd3에 대한 이중특이성 항체 및 이중특이성 항체의 용도
JP7078237B1 (ja) 2020-11-16 2022-05-31 アステラス製薬株式会社 抗tspan8-抗cd3二重特異性抗体及び抗tspan8抗体
AU2021376837A1 (en) 2020-11-16 2023-06-15 F. Hoffmann-La Roche Ag Fab high mannose glycoforms
JP2023551983A (ja) 2020-12-07 2023-12-13 ユーシービー バイオファルマ エスアールエル インターロイキン-22に対する抗体
KR20230117588A (ko) 2020-12-07 2023-08-08 유씨비 바이오파마 에스알엘 다중특이적 항체 및 항체 조합
PE20240819A1 (es) 2020-12-17 2024-04-18 Hoffmann La Roche Anticuerpos anti-hla-g y uso de estos
CN116601175A (zh) 2020-12-18 2023-08-15 豪夫迈·罗氏有限公司 用于靶向疗法的前体蛋白和试剂盒
CN116670282A (zh) 2020-12-22 2023-08-29 豪夫迈·罗氏有限公司 靶向xbp1的寡核苷酸
MX2023007846A (es) 2021-01-06 2023-07-07 Hoffmann La Roche Tratamiento conjunto que usa un anticuerpo biespecifico contra pd1-lag3 y un anticuerpo biespecifico de linfocitos t cd20.
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
EP4277705A1 (de) 2021-01-12 2023-11-22 F. Hoffmann-La Roche AG An krebszellen bindende geteilte antikörper und target-radionuklide an diese zellen
KR20230131205A (ko) 2021-01-13 2023-09-12 에프. 호프만-라 로슈 아게 병용 요법
CN117255691A (zh) 2021-01-14 2023-12-19 奥美药业有限公司 干扰素前药、制备方法及应用
US20240076331A1 (en) 2021-02-01 2024-03-07 AskGene Pharma, Inc. Chimeric Molecules Comprising an IL-10 or TGF-Beta Agonist Polypeptide
JP2024509695A (ja) 2021-02-03 2024-03-05 ジェネンテック, インコーポレイテッド 多重特異性結合タンパク質分解プラットフォームおよび使用方法
WO2022178103A1 (en) 2021-02-17 2022-08-25 AskGene Pharma, Inc. Il-2 receptor beta subunit mutants
CN116888473A (zh) 2021-02-18 2023-10-13 豪夫迈·罗氏有限公司 用于解析复杂、多步骤抗体相互作用的方法
CA3212665A1 (en) 2021-03-09 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3
CN116964085A (zh) 2021-03-12 2023-10-27 根马布股份公司 非激活抗体变体
AR125074A1 (es) 2021-03-12 2023-06-07 Genentech Inc Anticuerpos anti-klk7, anticuerpos anti-klk5, anticuerpos multiespecíficos anti-klk5 / klk7 y métodos de uso
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
EP4314009A1 (de) 2021-03-31 2024-02-07 F. Hoffmann-La Roche AG Reinigung von antikörpern durch mischmoduschromatographie
US20240301031A1 (en) 2021-03-31 2024-09-12 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Truncated taci polypeptide and fusion protein and use thereof
EP4320444A1 (de) 2021-04-09 2024-02-14 F. Hoffmann-La Roche AG Verfahren zur selektion von zellklonen, die ein heterologes polypeptid exprimieren
US20240228659A1 (en) 2021-04-14 2024-07-11 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to improve nk cells cytotoxicity
WO2022219076A1 (en) 2021-04-14 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to improve the anti-tumoral activity of macrophages
IL307501A (en) 2021-04-19 2023-12-01 Hoffmann La Roche Modified mammalian cells
CA3213632A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
WO2022228706A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
EP4334355A1 (de) 2021-05-03 2024-03-13 UCB Biopharma SRL Antikörper
CN117396509A (zh) 2021-05-07 2024-01-12 健玛保 包含结合b7h4和cd3的双特异性抗体的药物组合物
CA3216795A1 (en) 2021-05-07 2022-11-10 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
TW202306990A (zh) 2021-05-12 2023-02-16 大陸商江蘇恆瑞醫藥股份有限公司 特異性結合rankl和ngf的抗原結合分子及其醫藥用途
AU2022273737A1 (en) 2021-05-14 2023-11-16 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen-binding molecule
EP4341385A1 (de) 2021-05-21 2024-03-27 Genentech, Inc. Modifizierte zellen zur herstellung eines rekombinanten produkts von interesse
EP4355786A1 (de) 2021-06-16 2024-04-24 Alector LLC Bispezifische anti-mertk- und anti-pdl1-antikörper und verfahren zur verwendung davon
WO2022266221A1 (en) 2021-06-16 2022-12-22 Alector Llc Monovalent anti-mertk antibodies and methods of use thereof
AU2022295067A1 (en) 2021-06-18 2023-12-21 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
EP4359435A1 (de) 2021-06-21 2024-05-01 Genmab A/S Kombinationsdosierungsschema von cd137- und pd-l1-bindenden wirkstoffen
WO2022272128A1 (en) 2021-06-24 2022-12-29 Erasca, Inc. Antibodies against egfr and their uses
JP7477127B2 (ja) 2021-06-25 2024-05-01 中外製薬株式会社 抗ctla-4抗体の使用
KR102690141B1 (ko) 2021-06-25 2024-07-30 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체
EP4363449A2 (de) 2021-07-02 2024-05-08 Genentech, Inc. Verfahren und zusammensetzungen zur behandlung von krebs
WO2023287663A1 (en) 2021-07-13 2023-01-19 Genentech, Inc. Multi-variate model for predicting cytokine release syndrome
AU2022309554A1 (en) 2021-07-14 2024-02-22 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen-binding molecule specifically binding to hgfr and egfr, and pharmaceutical use thereof
TW202309097A (zh) 2021-07-14 2023-03-01 美商建南德克公司 抗c-c模體趨化因子受體8(ccr8)抗體及其使用方法
KR20240036570A (ko) 2021-07-22 2024-03-20 에프. 호프만-라 로슈 아게 이종이량체 Fc 도메인 항체
JP2024527020A (ja) 2021-07-27 2024-07-19 モルフォシス・アーゲー 抗原結合分子の組合せ
CN117715936A (zh) 2021-07-28 2024-03-15 豪夫迈·罗氏有限公司 用于治疗癌症的方法和组合物
WO2023012147A1 (en) 2021-08-03 2023-02-09 F. Hoffmann-La Roche Ag Bispecific antibodies and methods of use
GB202111905D0 (en) 2021-08-19 2021-10-06 UCB Biopharma SRL Antibodies
JP2024533234A (ja) 2021-09-06 2024-09-12 ジェンマブ エー/エス Cd27に結合する能力を有する抗体、そのバリアントおよびその使用
CA3231335A1 (en) 2021-09-08 2023-03-16 Sergei Aleksandrovich LEGOTSKII Bispecific antibody comprising a heterodimer based on mhc proteins
EP4406968A1 (de) 2021-09-23 2024-07-31 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Anti-klb-antikörper und verwendungen
WO2023053282A1 (ja) 2021-09-29 2023-04-06 中外製薬株式会社 がんの治療に用いるための細胞傷害誘導治療剤
KR20240067099A (ko) 2021-09-30 2024-05-16 지앙수 헨그루이 파마슈티컬스 컴퍼니 리미티드 항-il23 항체 융합 단백질 및 용도
US20230190805A1 (en) 2021-10-06 2023-06-22 Immatics Biotechnologies Gmbh Methods of identifying metastatic lesions in a patient and treating thereof
EP4413039A1 (de) 2021-10-08 2024-08-14 Genmab A/S Antikörper, die an cd30 und cd3 binden
TW202333781A (zh) 2021-10-08 2023-09-01 日商中外製藥股份有限公司 抗hla-dq2﹒5抗體製劑
EP4429706A1 (de) 2021-10-14 2024-09-18 F. Hoffmann-La Roche AG Alternative pd1-il7v-immunkonjugate zur behandlung von krebs
CA3234731A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
US20230192886A1 (en) 2021-11-08 2023-06-22 Immatics Biotechnologies Gmbh Adoptive cell therapy combination treatment and compositions thereof
CN118284809A (zh) 2021-11-25 2024-07-02 豪夫迈·罗氏有限公司 少量抗体副产物的定量
AR127887A1 (es) 2021-12-10 2024-03-06 Hoffmann La Roche Anticuerpos que se unen a cd3 y plap
AU2022413942A1 (en) 2021-12-13 2024-05-30 William Robert Arathoon Living Trust Dated August 29, 2016 Anti-abcb1 antibodies
EP4416301A1 (de) 2021-12-21 2024-08-21 F. Hoffmann-La Roche AG Verfahren zur bestimmung von hydrolytischer aktivität
WO2023141445A1 (en) 2022-01-19 2023-07-27 Genentech, Inc. Anti-notch2 antibodies and conjugates and methods of use
AU2023213099A1 (en) 2022-01-28 2024-07-18 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
US20230241211A1 (en) 2022-01-28 2023-08-03 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
CN118574855A (zh) 2022-02-07 2024-08-30 江苏恒瑞医药股份有限公司 特异性结合psma和cd3的抗原结合分子及其医药用途
CN118510815A (zh) 2022-02-11 2024-08-16 江苏恒瑞医药股份有限公司 免疫缀合物及其用途
WO2023159220A1 (en) 2022-02-18 2023-08-24 Kenjockety Biotechnology, Inc. Anti-cd47 antibodies
WO2023172883A1 (en) 2022-03-07 2023-09-14 Alpine Immune Sciences, Inc. Immunomodulatory proteins of variant cd80 polypeptides, cell therapies thereof and related methods and uses
WO2023174521A1 (en) 2022-03-15 2023-09-21 Genmab A/S Binding agents binding to epcam and cd137
WO2023175064A1 (en) 2022-03-17 2023-09-21 Astrazeneca Ab Methods for purifying bispecific antibodies
AU2023238766A1 (en) 2022-03-23 2024-07-25 F. Hoffmann-La Roche Ag Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023198839A2 (en) 2022-04-13 2023-10-19 Genmab A/S Bispecific antibodies against cd3 and cd20
JP2024517042A (ja) 2022-04-13 2024-04-19 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト 抗cd20/抗cd3二重特異性抗体の薬学的組成物及び使用方法
WO2023202967A1 (en) 2022-04-19 2023-10-26 F. Hoffmann-La Roche Ag Improved production cells
AR129198A1 (es) 2022-05-02 2024-07-31 Novo Nordisk As Nuevos anticuerpos anti-angptl3 adecuados para composiciones de concentración alta
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202409090A (zh) 2022-05-12 2024-03-01 丹麥商珍美寶股份有限公司 在組合療法中能夠結合到cd27之結合劑
TW202413412A (zh) 2022-05-12 2024-04-01 丹麥商珍美寶股份有限公司 在組合療法中能夠結合到cd27之結合劑
WO2023219121A1 (ja) * 2022-05-12 2023-11-16 アステラス製薬株式会社 抗taa-抗cd3多重特異性抗体
WO2023218431A1 (en) 2022-05-13 2023-11-16 BioNTech SE Rna compositions targeting hiv
WO2023232961A1 (en) 2022-06-03 2023-12-07 F. Hoffmann-La Roche Ag Improved production cells
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202413433A (zh) 2022-07-19 2024-04-01 美商建南德克公司 用抗fcrh5/抗cd3雙特異性抗體進行治療之給藥
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024026472A2 (en) 2022-07-29 2024-02-01 Alector Llc Transferrin receptor antigen-binding domains and uses therefor
WO2024026471A1 (en) 2022-07-29 2024-02-01 Alector Llc Cd98hc antigen-binding domains and uses therefor
WO2024077018A2 (en) 2022-10-04 2024-04-11 Alpine Immune Sciences, Inc. Methods and uses of taci-fc fusion immunomodulatory protein
WO2024077239A1 (en) 2022-10-07 2024-04-11 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
TW202423970A (zh) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Gprc5d tcb及cd38抗體之組合療法
WO2024079015A1 (en) 2022-10-10 2024-04-18 F. Hoffmann-La Roche Ag Combination therapy of a gprc5d tcb and imids
TW202423969A (zh) 2022-10-10 2024-06-16 瑞士商赫孚孟拉羅股份公司 Gprc5d tcb及蛋白酶體抑制劑之組合療法
WO2024079069A1 (en) 2022-10-12 2024-04-18 F. Hoffmann-La Roche Ag Method for classifying cells
WO2024081918A1 (en) 2022-10-14 2024-04-18 Talem Therapeutics Llc Anti-trkb/cd3 antibodies and uses thereof
WO2024088921A1 (en) 2022-10-24 2024-05-02 F. Hoffmann-La Roche Ag Predicting response to il-6 antagonists
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024094660A1 (en) 2022-10-31 2024-05-10 Genmab A/S Cd38 antibodies and uses thereof
WO2024094822A1 (en) 2022-11-02 2024-05-10 Genmab A/S Bispecific antibodies against cd3 and cd20 for treating richter's syndrome
WO2024102948A1 (en) 2022-11-11 2024-05-16 Celgene Corporation Fc receptor-homolog 5 (fcrh5) specific binding molecules and bispecific t-cell engaging antibodies including same and related methods
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
WO2024104933A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Antigen binding molecules
WO2024104988A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Recombinant binding proteins with activatable effector domain
WO2024110426A1 (en) 2022-11-23 2024-05-30 F. Hoffmann-La Roche Ag Method for increasing recombinant protein expression
WO2024110905A1 (en) 2022-11-24 2024-05-30 Beigene, Ltd. Anti-cea antibody drug conjugates and methods of use
WO2024119193A2 (en) 2022-12-02 2024-06-06 AskGene Pharma, Inc. Mutant il-2 polypeptides and il-2 prodrugs
WO2024129594A1 (en) 2022-12-12 2024-06-20 Genentech, Inc. Optimizing polypeptide sialic acid content
WO2024141955A1 (en) 2022-12-28 2024-07-04 BioNTech SE Rna compositions targeting hiv
WO2024155807A1 (en) 2023-01-18 2024-07-25 Genentech, Inc. Multispecific antibodies and uses thereof
WO2024153168A2 (en) 2023-01-19 2024-07-25 Beigene, Ltd. Anti-cmet antibodies and methods of use
WO2024153722A1 (en) 2023-01-20 2024-07-25 F. Hoffmann-La Roche Ag Immunoconjugates
WO2024156672A1 (en) 2023-01-25 2024-08-02 F. Hoffmann-La Roche Ag Antibodies binding to csf1r and cd3
WO2024163494A1 (en) 2023-01-31 2024-08-08 F. Hoffmann-La Roche Ag Methods and compositions for treating non-small cell lung cancer and triple-negative breast cancer
WO2024163009A1 (en) 2023-01-31 2024-08-08 Genentech, Inc. Methods and compositions for treating urothelial bladder cancer
WO2024183635A1 (en) 2023-03-03 2024-09-12 Beigene, Ltd. Muc1 and cd16a antibodies and methods of use
WO2024183637A1 (en) 2023-03-03 2024-09-12 Beigene Switzerland Gmbh Muc1 antibodies and methods of use
WO2024183636A1 (en) 2023-03-03 2024-09-12 Beigene Switzerland Gmbh Cd16a antibodies and methods of use
WO2024184811A1 (en) 2023-03-06 2024-09-12 Beigene Switzerland Gmbh Anti-cd3 multispecific antibodies and methods of use
WO2024184810A1 (en) 2023-03-06 2024-09-12 Beigene Switzerland Gmbh Anti-cldn6 and anti-cd3 multispecific antibodies and methods of use
WO2024184812A1 (en) 2023-03-06 2024-09-12 Beigene Switzerland Gmbh Anti-cldn6 antibodies and methods of use
WO2024184287A1 (en) 2023-03-06 2024-09-12 F. Hoffmann-La Roche Ag Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
NZ226414A (en) 1987-10-02 1992-07-28 Genentech Inc Cd4 peptide adhesion variants and their preparation and use
US5116964A (en) 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
DE3920358A1 (de) * 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
EP0563214A4 (en) * 1990-12-04 1994-08-17 Wistar Inst Bifunctional antibodies and method of preparing same
JP4124480B2 (ja) 1991-06-14 2008-07-23 ジェネンテック・インコーポレーテッド 免疫グロブリン変異体
US7018809B1 (en) 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
US5932448A (en) 1991-11-29 1999-08-03 Protein Design Labs., Inc. Bispecific antibody heterodimers
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
WO1996037621A2 (en) 1995-05-23 1996-11-28 Morphosys Gesellschaft Für Proteinoptimierung Mbh Multimeric proteins
US20020062010A1 (en) * 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
US7951917B1 (en) * 1997-05-02 2011-05-31 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
WO2003054164A2 (en) * 2001-12-19 2003-07-03 Immunex Corporation C-type lectin polypeptide, polynucleotide and methods of making and use thereof
NZ537277A (en) * 2002-07-18 2008-04-30 Crucell Holland Bv Recombinant production of mixtures of antibodies

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US9228020B2 (en) 2006-09-29 2016-01-05 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
US9376497B2 (en) 2006-09-29 2016-06-28 Oncomed Pharmaceuticals, Inc. Compositions and methods for diagnosing and treating cancer
US9982042B2 (en) 2009-10-16 2018-05-29 Oncomed Pharmaceuticals, Inc. Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent
US9511139B2 (en) 2009-10-16 2016-12-06 Oncomed Pharmaceuticals, Inc. Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent
US10870693B2 (en) 2009-10-16 2020-12-22 Oncomed Pharmaceuticals, Inc. Therapeutic combination and methods of treatment with a DLL4 antagonist and an anti-hypertensive agent
US10597465B2 (en) 2010-08-16 2020-03-24 Novimmune Sa Methods for the generation of multispecific and multivalent antibodies
US9480744B2 (en) 2010-09-10 2016-11-01 Oncomed Pharmaceuticals, Inc. Methods for treating melanoma
US9879084B2 (en) 2011-09-23 2018-01-30 Oncomed Pharmaceuticals, Inc. Modified immunoglobulin molecules that specifically bind human VEGF and DLL4
US8858941B2 (en) 2011-09-23 2014-10-14 Oncomed Pharmaceuticals, Inc. VEGF/DLL4 binding agents and uses thereof
US9376488B2 (en) 2011-09-23 2016-06-28 Oncomed Pharmaceuticals, Inc. VEGF binding antibodies
US10730940B2 (en) 2011-09-23 2020-08-04 Oncomed Pharmaceuticals, Inc. VEGF/DLL4 binding agents and uses thereof
US9574009B2 (en) 2011-09-23 2017-02-21 Oncomed Pharmaceuticals, Inc. Polynucleotides encoding VEGF/DLL4 binding agents
US11512128B2 (en) 2011-09-23 2022-11-29 Mereo Biopharma 5, Inc. VEGF/DLL4 binding agents and uses thereof
US9599620B2 (en) 2012-10-31 2017-03-21 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a DLL4 antagonist
US12030926B2 (en) 2014-05-06 2024-07-09 Genentech, Inc. Production of heteromultimeric proteins using mammalian cells
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US11046760B2 (en) 2014-10-31 2021-06-29 Oncomed Pharmaceuticals, Inc. Combination therapy for treatment of disease
US11339213B2 (en) 2015-09-23 2022-05-24 Mereo Biopharma 5, Inc. Methods and compositions for treatment of cancer
WO2020212415A1 (en) 2019-04-17 2020-10-22 Novo Nordisk A/S Bispecific antibodies

Also Published As

Publication number Publication date
DK0979281T3 (da) 2005-11-21
WO1998050431A2 (en) 1998-11-12
JP2001523971A (ja) 2001-11-27
DE69830901T2 (de) 2006-05-24
JP2009039122A (ja) 2009-02-26
JP4324231B2 (ja) 2009-09-02
EP0979281A2 (de) 2000-02-16
ATE299938T1 (de) 2005-08-15
JP4213224B2 (ja) 2009-01-21
DE69830901D1 (de) 2005-08-25
AU7270998A (en) 1998-11-27
US8642745B2 (en) 2014-02-04
US9409989B2 (en) 2016-08-09
IL132560A0 (en) 2001-03-19
WO1998050431A3 (en) 1999-01-14
US20140322756A1 (en) 2014-10-30
AU751659B2 (en) 2002-08-22
ES2246069T3 (es) 2006-02-01
CA2288600C (en) 2010-06-01
US20070178552A1 (en) 2007-08-02
CA2288600A1 (en) 1998-11-12

Similar Documents

Publication Publication Date Title
EP0979281B1 (de) ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen
US8765412B2 (en) Method for making multispecific antibodies having heteromultimeric and common components
US7183076B2 (en) Method for making multispecific antibodies having heteromultimeric and common components
EP0812357B1 (de) Verfahren zur herstellung heteromultimerer polypeptide
US20070184523A1 (en) Method for Making Multispecific Antibodies Having Heteromultimeric and Common Components
EP1999154A2 (de) Gentechnisch hergestellte heterodimere proteindomänen
WO2018026942A1 (en) Heteromeric polypeptides

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991129

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69830901

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2246069

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170322

Year of fee payment: 20

Ref country code: MC

Payment date: 20170329

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20170328

Year of fee payment: 20

Ref country code: GB

Payment date: 20170328

Year of fee payment: 20

Ref country code: IE

Payment date: 20170328

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170424

Year of fee payment: 20

Ref country code: CY

Payment date: 20170321

Year of fee payment: 20

Ref country code: DE

Payment date: 20170428

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170419

Year of fee payment: 20

Ref country code: LU

Payment date: 20170404

Year of fee payment: 20

Ref country code: ES

Payment date: 20170330

Year of fee payment: 20

Ref country code: AT

Payment date: 20170328

Year of fee payment: 20

Ref country code: SE

Payment date: 20170410

Year of fee payment: 20

Ref country code: IT

Payment date: 20170414

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69830901

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180429

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20180430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180429

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 299938

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180430

Ref country code: BE

Ref legal event code: MK

Effective date: 20180430

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180429

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180501