TW202140511A - 減少來自重組蛋白生產過程中的雜質之方法 - Google Patents

減少來自重組蛋白生產過程中的雜質之方法 Download PDF

Info

Publication number
TW202140511A
TW202140511A TW110101694A TW110101694A TW202140511A TW 202140511 A TW202140511 A TW 202140511A TW 110101694 A TW110101694 A TW 110101694A TW 110101694 A TW110101694 A TW 110101694A TW 202140511 A TW202140511 A TW 202140511A
Authority
TW
Taiwan
Prior art keywords
mab
napri
buffer solution
chromatography
depth filter
Prior art date
Application number
TW110101694A
Other languages
English (en)
Inventor
馬克 彭皮耶第
克里斯多福 法伊斯特爾
Original Assignee
瑞士商赫孚孟拉羅股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商赫孚孟拉羅股份公司 filed Critical 瑞士商赫孚孟拉羅股份公司
Publication of TW202140511A publication Critical patent/TW202140511A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明涉及一種減少單株抗體 (mAb) 的緩衝溶液中的非聚集產物相關雜質 (NAPRI) 量之方法,其涉及使用合成深層過濾器。本發明可用於單株抗體之純化。

Description

減少來自重組蛋白生產過程中的雜質之方法
本發明涉及減少單株抗體 (mAb) 的溶液中產物相關雜質 (NAPRI) 量之方法。特別是,本發明之方法涉及使用深層過濾器以減少非聚集產物相關雜質 (NAPRI) 的量。
單株抗體 (mAbs) (例如雙特異性抗體 (BsAbs)) 是重要的治療方式 (1)。它們的高分子大小和複雜的摺疊結構,使哺乳動物細胞培養物成為表現這些蛋白質的一種理想手段 (2)。
哺乳動物細胞培養物的表現會導致產物和製程相關雜質,在純化 mAb 分子時,必須將其去除。用於除去這些雜質的純化步驟可包括離心、深層過濾、蛋白 A 層析、病毒去活化、陽離子交換層析、陰離子交換層析、多重模式 (混合模式) 層析、病毒過濾和超濾。
深層過濾器廣泛用於從液體介質中去除製程相關雜質,從而「澄清」介質,並防止後續純化步驟中出現膜結垢。比方說,業經細胞培養物中收穫之含抗體的介質,通常會通過深層過濾器以去除細胞培養製程相關的固體且不可溶的組分,例如宿主細胞蛋白 (HCP) 和 DNA 污染物 (3),以及外源和內源病毒 (4),在最終過濾前通過微濾膜 (5) 或管柱層析。
深層過濾器包含多孔材料,諸如纖維素紙漿、矽藻土、聚丙烯纖維和氧化矽,一些深層過濾器包含一層以上的多孔材料 (6)。
在蛋白 A 純化和病毒去活化之後,還觀察到深層過濾器透過靜電或疏水性交互作用去除產物相關複合種 (7)。
在蛋白質製造過程中,產物相關雜質包括高層次複合種,其為包含產物聚集體的複合物。這些產物相關聚集體和雜質可能包括 HCP 和 DNA (4)。其他非聚集產物相關雜質包括未反應的 (未配對的) 半抗體、非共價或共價連結的同型二聚體及非共價連結的異型二聚體,其與目標產物密切相關且難以藉由標準製程 (如蛋白 A 純化 (8)) 去除。
可以藉由趨向特定異型二聚體之形成的「knobs-into-holes (杵進入臼)」策略 (9),以較高的產率來生產包含來自不同單特異性單株抗體之重鍊和輕鏈的雙特異性異型二聚抗體。其是基於以下原理:「杵 (knobs)」(一個抗體鏈之區域中以大胺基酸取代小胺基酸) 優先咬合「臼 (holes)」(另一個抗體鏈之對應區域中以小胺基酸取代大胺基酸),以促進特定鏈之間的選擇性異型二聚作用。然而,該方法可能會產生另外的非聚集副產物,例如,由偽配對的「杵─杵 (knob-knob)」和「臼─臼 (hole-hole)」造成的副產物。
對於提供減少非聚集產物相關雜質量的方法仍存有需求。
本發明提供了新穎的方法和用途,其藉由使用包含氧化矽和聚丙烯纖維的深層過濾器,來減少單株抗體 (mAb) 的緩衝溶液中的非聚集產物相關雜質的量。發明人發現,使用這種深層過濾器使得非聚集產物相關雜質減少。
如本文所討論之,在重組蛋白生產過程中,深層過濾器已知會減少某些製程相關雜質,例如 HCP 和 DNA,以及聚集產物相關雜質。然而,發明人沒有預期深層過濾器會減少非聚集產物相關雜質。從最廣泛的意義上來說,本發明涉及這個意料之外的發現。
由此,本發明之一個態樣提供一種減少單株抗體 (mAb) 的緩衝溶液中的非聚集產物相關雜質 (NAPRI) 量之方法,其中該方法包含將單株抗體 (mAb) 的緩衝溶液通過包含氧化矽和聚丙烯纖維之深層過濾器,以移除來自緩衝溶液的一部分 NAPRI。藉由將 mAbs 的緩衝溶液通過深層過濾器,來減少 NAPRI 量。
在另一態樣,本發明提供一種製造具有經減少之非聚集產物相關雜質 (NAPRI) 量的單株抗體 (mAb) 的緩衝溶液之方法,其中該方法包含將單株抗體 (mAb) 的緩衝溶液通過包含氧化矽和聚丙烯纖維之深層過濾器,以製造具有經減少之非聚集產物相關雜質 (NAPRI) 量的單株抗體 (mAb) 的緩衝溶液。藉由將 mAbs 的緩衝溶液通過深層過濾器,來減少 NAPRI 量。
在另一態樣,本發明提供一種包含氧化矽和聚丙烯纖維之深層過濾器用於減少單株抗體 (mAb) 的緩衝溶液中的非聚集產物相關雜質 (NAPRI) 量之用途。
在另一態樣,本發明提供一種單株抗體 (mAb) 的緩衝溶液,其中非聚集產物相關雜質 (NAPRI) 量相對於該 mAb 量業經減少,該單株抗體的緩衝溶液是藉由執行本發明之任一方法或藉由本發明之任一用途而製造的。
在另一態樣,本發明提供一種製造 mAb 之方法,該方法包含下列步驟: (a) 培養包含編碼 mAb 的核酸之宿主細胞,使得該 mAb 與 NAPRI 一起被製造; (b) 形成該 mAb 和 NAPRI 的緩衝溶液; (c) 藉由執行本發明之任一方法或藉由本發明之任一用途,減少 NAPRI 的量;以及可選擇地 (d) 將該 mAb 自該緩衝溶液單離。
以下實施例是本發明之態樣的實施例。
在一些實施例中,mAb 的緩衝溶液是 mAb 的濃縮緩衝溶液。在一些實施例中,mAb 的濃縮緩衝溶液之濃度介於 2 mg/mL 與 20 mg/mL 之間、5 mg/mL 至 15 mg/mL 之間或 5 mg/mL 至10 mg/mL 之間。
在一些實施例中,mAb 是多特異性抗體。在一個實施例中,mAb 是雙特異性抗體。在一些實施例中,mAb 是抗體片段。在一些實施例中,mAb 是包含抗體或抗體片段和另一生物活性多肽之抗體融合蛋白。
在一些實施例中,單株抗體的緩衝溶液在低於環境溫度的溫度下通過深層過濾器。比方說,該溫度可介於約 4℃ 至約 22℃ 之間。該溫度可介於約 10℃ 至約 21℃ 之間。該溫度可介於約 15℃ 至約 20℃ 之間。
本發明允許大規模的抗體純化。可以將大量抗體裝載到氧化矽和聚丙烯纖維深層過濾器上。比方說,質量負荷可以超過 100 g/m2 、超過 200 g/m2 、超過 300 g/m2 、超過 500 g/m2 或超過 700 g/m2 。質量負荷可以高達 1500 g/m2 、2000 g/m2 或 2500 g/m2 。流速可以在約 1 L/min*m² 至約 10 L/min*m² 的範圍內,例如 1.5 L/min*m² 至約 8 L/min*m²。在較佳的實例中,流速在約 3 L/min*m² 至約 6 L/min*m² 的範圍內或約 4.3 L/min*m²。單位「L/min*m²」表示每分鐘每單位面積 (m²) 流過過濾器的體積 (升)。
甚至在通過深層過濾器之前,NAPRI 都以相對較低的濃度存在於初始緩衝的 mAb 溶液中,例如低於 mAb 的濃度至少 1.5 倍、至少 2 倍、至少 5 倍、至少 10 倍、至少 20 倍、至少 50 倍、至少 100 倍、至少 1000 倍或至少 10,000 倍。相對於 mAb 的濃度,本發明允許進一步降低 NAPRI 濃度。
類似地,減少相對於 mAb 絕對量的 NAPRI 絕對量 (例如以莫耳計) (並且在通過深層過濾器之後,溶液中 NAPRI 的絕對量減少)。此外,相對於溶液通過深層過濾器之前的 NAPRI 濃度,在溶液通過深層過濾器後,NAPRI 的濃度可降低(儘管不一定總是這樣,例如,如果洗提溶液中包括清洗流份,其體積會因此而增加)。
NAPRI 濃度相對於 mAb 濃度的減少可以表示為以下比率的減少;[mAb]:[NAPRI]。在溶液通過深層過濾器後,該比率會增加。
通常來說,非聚集產物相關雜質 (NAPRI) 是由 mAb 的不完全或不正確組裝之多肽鏈所組成的多肽。在一些實施例中,NAPRI 是缺少 mAb 的一個或多個多肽鏈之多肽。在一些實施例中,NAPRI 是包含與 mAb 不同的多肽鏈排列之多肽。在一些實施例中,非聚集產物相關雜質 (NAPRI) 包含具有與 mAb 不同之胺基酸序列及/或不同之抗體鏈構型的多肽。
在一個實施例中,mAb 是由四個不同多肽鏈所組成的多特異性抗體,而 NAPRI 是具有以下情況之多肽:(a) 缺少所述四個多肽鏈中的一個或多個;或 (b) 包含兩個或多個多肽鏈且與所述四個不同多肽鏈相同。在一個實施例中,mAb 是包含兩條彼此締合之重鏈的多特異性抗體,其中一條重鏈包含杵突變 (knob mutation),另一條重鏈包含臼突變 (hole mutation),且 NAPRI 是包含兩條重鏈的多肽,該兩條重鏈包含彼此締合之杵突變或包含彼此締合之臼突變。在一個實施例中,mAb 是包含兩個 Fab 片段的多特異性抗體,其中第一 Fab 片段包含在 N 端至 C 端方向中包含 VL 域和 CL 域的第一輕鏈,以及在 N 端至 C 端方向中包含 VH 域和 CH1 域的第一重鏈;以及,其中第二 Fab 片段包含 (a) 在 N 端至 C 端方向中包含 VL 域和 CH1 域的第二輕鏈,以及在 N 端至 C 端方向中包含 VH 域和 CL 域的第二重鏈,(b) 在 N 端至 C 端方向中包含 VH 域和 CH1 域的第二輕鏈,以及在 N 端至 C 端方向中包含 VL 域和 CL 域的第二重鏈,或 (c) 在 N 端至 C 端方向中包含 VH 域和 L 域的第二輕鏈,以及在 N 端至 C 端方向中包含 VL 域和 CH1 域的第二重鏈;以及,其中 NAPRI 是多肽,其中 (a) 第一輕鏈和第二重鏈締合,(b) 第二輕鏈和第一重鏈締合,(c) 兩條第一重鏈締合,(d) 兩條第二重鏈締合,或 (e) 該多肽缺少第一輕鏈、第一重鏈、第二輕鏈和第二重鏈中的至少一個。
在一些實施例中,NAPRI 包含兩條彼此相同的重鏈。在一些實施例中,NAPRI 包含兩條具有相同胺基酸序列的重鏈。在一些實施例中,NAPRIs 包含兩條彼此相同的重鏈及/或兩條彼此相同的輕鏈。比方說,在產物是業經工程改造成經由「杵-臼 (knob-hole)」交互作用配對的雙特異性單株抗體的情況下,NAPRI 可包含「杵─杵 (knob-knob)」及/或「臼─臼 (hole-hole)」偽配對的鏈。在一些實施例中,非聚集產物相關雜質 (a) 具有偽鏈構型; (b) 具有部分缺少,可選地缺掉輕鏈;(c) 具有部分附加,可選地其中雜質是具有輕鏈的單體;(d) 是 ¾ 抗體;(e) 是輕鏈錯誤配對;(f) 是杵/杵抗體;或 (g) 是臼/臼抗體。在一些實施例中,NAPRI 可以是輕鏈二聚體、游離輕鏈、其中一條重鏈被截短的重鏈二聚體、重鏈單體或 1+1 剪切二聚體。
在一些實施例中,緩衝溶液具有約 4.0 至約 7.5 的 pH 值。在一些實施例中,緩衝溶液具有約 4.0 至約 7.2 的 pH 值。在一些實施例中,緩衝溶液具有約 4.0 的 pH 值至約 5.5 的 pH 值。緩衝溶液可包含醋酸鈉或檸檬酸鈉。緩衝溶液可包含醋酸鈉。在一些實施例中,緩衝溶液可包含 150 mM 的醋酸鈉。在一些實施例中,緩衝溶液可包含 10 mM 或 50 mM 的檸檬酸鈉。在一些實施例中,緩衝溶液可包含組胺酸。在一些實施例中,緩衝溶液可包含乙酸。在一些實施例中,溶液的 pH 用 Tris 緩衝。
在一些實施例中,在根據本發明所述之方法減少 NAPRI 的量之後,已測量非聚集產物相關雜質 (NAPRI) 的濃度。
在一些實施例中,可能已經對 mAbs 的緩衝溶液 (或 mAb 的緩衝溶液) 進行過層析 (在使用深層過濾器之前)。在一些實施例中,可能已經對 mAbs 的緩衝溶液進行過親和力層析、陰離子交換層析、陽離子交換層析或多重模式 (混合模式) 層析。在一些實施例中,可能已經對 mAbs 的緩衝溶液進行過親和力層析,比方說使用蛋白 A 樹脂、蛋白 L 樹脂、Fc 選擇性樹脂、κ 輕鏈選擇性樹脂、或 λ 輕鏈選擇性樹脂。作為先前層析 (例如親和力層析) 的補充或替代,在一些實施例中,可能已經對 mAbs 的緩衝溶液進行過離子交換層析,比方說陰離子交換管柱、陽離子交換管柱、或多重模式 (混合模式) 層析。可以藉由進行親和力層析來濃縮緩衝溶液 mAbs。
深層過濾器可以是包含多級之深層過濾介質的多級深層過濾器。較佳地,深層過濾器是雙層深層過濾器。較佳地,深層過濾器不包含矽藻土。在一些實施例中,深層過濾器可以是 Millistak+® HC Pro 合成深層過濾器 X0SP。
本發明之方法和用途可進一步包括在溶液已通過深層過濾器之後,鑑定 mAbs 的緩衝溶液中 NAPRI 是否存在或測量 NAPRI 濃度的步驟。可測量其餘的 NAPRI 量。類似地,可以在溶液通過深層過濾器後測量 mAb 的量。在一些實施例中,可以藉由毛細管電泳 SDS Page 或粒徑篩析層析法測量其餘的 NAPRI 量。在一些實施例中,NAPRI 是其中一條重鏈被截短的重鏈二聚體;重鏈;或產物輕鏈,且其量可以在減少的環境中以毛細管電泳 SDS Page 進行測量。在一些實施例中,NAPRI 是 LMW;1+1 二聚體 (已被截短的重鏈);1+1 剪切二聚體 (重鏈在鉸鏈區被截短並被剪切);「臼─臼」錯誤配對;「臼─臼」錯誤配對;半臼 (half-hole);輕鍊或輕鏈二聚體,且其量可以在非減少的環境中以粒徑篩析層析及/或毛細管電泳 SDS Page 進行測量。在一些實施例中,NAPRI 是 HMW,且其量可以在非減少的環境中以疏水性交互作用層析及/或以毛細管電泳 SDS Page 進行測量。在一些實施例中,HMW NAPRI 是「杵─杵」錯誤配對。在一些實施例中,NAPRI 是重鏈杵或重鏈臼。
在一些實施例中,非聚集產物相關雜質 (NAPRI) 的總濃度或量,或非聚集產物相關雜質 (NAPRI) 小於 40%、小於 35%、小於 30%、小於 25%、小於 20%、小於 15%、小於 14%、小於 13%、小於 12%、小於 11%、小於 10%、小於 8%、小於 6%、小於 5%、小於 4%、小於 3%、小於 2% 或小於 1%。
在一些實施例中,非聚集產物相關雜質 (NAPRI) 的濃度以粒徑篩析層析 (SEC) 法進行測量,可選地其中使用高效液相層析法進行測量。
在一些實施例中,非聚集產物相關雜質 (NAPRI) 的濃度以毛細管電泳 SDS Page (CE-SDS) 進行測量,可選地其中使用 LabChip 設備或 LabChip GXII 設備進行測量。
抗體製造及純化
深層過濾器可用於單株抗體製造/純化的各個階段。製程可包含下列步驟:收穫 :從含有蛋白質的上清液中分離細胞和細胞碎片。收穫步驟通常採用離心及/或過濾方法來執行;Fc 結合 / 蛋白 A 親和力層析 :此步驟可藉由在 pH 為中性的情況下優先結合至 Fc 區域來捕獲 mAb 分子,並允許去除其餘收穫的上清液。然後在低 pH 值下洗提 mAb 分子。λ 輕鏈結合 / 蛋白 L 親和力層析 :此步驟可藉由在 pH 為中性的情況下優先結合至 Fab 區域中 λ 輕鏈來捕獲 mAb 分子,並允許去除其餘收穫的上清液。然後在低 pH 值下洗提 mAb 分子。κ 輕鏈結合 / 蛋白 L 親和力層析 :此步驟可藉由在 pH 為中性的情況下優先結合至 Fab 區域中 κ 輕鏈來捕獲 mAb 分子,並允許去除其餘收穫的上清液。然後在低 pH 值下洗提 mAb 分子。病毒去活化: 在低 pH 下孵育蛋白 A/L 洗提池,可以使外源病毒去活化;陽離子交換層析: 此步驟可以去除 HCP、mAb 聚集體和抗體片段,並可包含「結合─洗提 (bind-elute)」或「流─通 (flow-through)」步驟;陰離子交換層析: 此步驟可以去除 DNA、脫落蛋白 A/L (leached protein A/L) 和其他痕量污染物,並可在「流─通 (flow-through)」步驟中進行;病毒過濾: 具有薄膜的單道式(截流式,dead-end)過濾,旨在去除病毒;以及超濾: 在此步驟中,藉由使檢體通過半透膜 (孔徑範圍在 0.1-0.01 µm 之間),可以進一步濃縮 mAb 分子。如果這是最終的純化步驟,則可以將洗提緩衝液交換為最終的製劑緩衝液。
例如,可以在病毒去活化、陽離子交換層析、病毒過濾和超濾之前使用深層過濾,以去除如本文所揭露之不可溶的產物相關雜質和製程相關雜質。深層過濾可用於減少單株抗體 (mAbs) 緩衝溶液中的非聚集產物相關雜質。在一些實施例中,深層過濾可用於減少非聚集產物相關雜質,其是具有與 mAb 不同之胺基酸序列及/或不同之抗體鏈構型的多肽。在一些實施例中,深層過濾可用於減少包含兩個彼此相同之重鏈的非聚集產物相關雜質。
深層過濾也可用於純化過程的更下游的階段,以進行二級澄清和除霧,並進一步去除如本文所揭露之產物相關雜質。在一些實施例中,深層過濾可用於減少單株抗體 (mAbs) 的緩衝溶液中非聚集產物相關雜質。在一些實施例中,深層過濾可用於減少非聚集產物相關雜質,其是具有與 mAb 不同之胺基酸序列及/或不同之抗體鏈構型的多肽。在一些實施例中,深層過濾可用於減少包含兩個彼此相同之重鏈的非聚集產物相關雜質。
除非本文另外指出或與上下文明顯矛盾,否則本文揭露之所有方法可依任何合適的順序執行。
其他定義
就本說明書及所附之申請專利範圍之目的而言,除另有說明,否則在任何情況下,無論是否明確指出,在說明書和申請專利範圍中所使用之所有表示成分數量、材料之百分比或比例、反應條件和其他數值的數字均應理解為被術語「約」修飾。術語「約」通常是指人們認為等同於所列數值的數字範圍 ( 具有相同的作用或結果)。在許多情況下,術語「約」可以包括四捨五入到最接近之有效數字的數字。
因此,除非另有相反的說明,否則以下說明書和所附申請專利範圍中列出的數值參數是近似值,其可以根據本發明試圖獲得的所期望的特性而變化。至少,並且不意圖將均等理論的適用限制於申請專利範圍的範疇,每個數字參數至少應依據所報告之有效位數的數字並藉由應用通常的捨入法來解釋。
儘管闡明本發明之廣泛範疇的數字範圍和參數是近似值,但是在具體實例中所列的數值被盡可能精確地報告。然而,任何數值都固有地包含某些誤差,這些誤差必然是由它們各自之測試測量中的標準偏差所引起的。此外,本文所揭露之所有範圍均應理解為涵蓋其中所包含的所有子範圍。例如,範圍「1 到 10」包括最小值 1 和最大值 10 之間 (並包括兩者) 的任何及所有子範圍,意即,具有最小值等於或大於 1 且最大值等於或小於 10 的任何以及所有子範圍,例如 5.5 到 10。
在進一步詳細描述本發明之前,首先定義一些術語。這些術語的使用並不限制本發明的範籌,而僅用於促進本發明的描述。
如本文所使用,「多肽鏈排列」是指 mAb 內的多肽鏈的締合。常規 IgG 抗體包含兩條相同的重鏈和兩條相同的輕鏈,其中為了形成 IgG 分子,多肽鏈的排列方式如下:兩條重鏈彼此締合,且每一條輕鏈與重鏈之一締合。
如本文所使用,短語「細胞培養物」包括細胞、細胞碎片和膠體粒子、目標生物分子、HCP 和 DNA。
如本文所使用,術語「層析」是指將目標分析物 (例如單株抗體 (mAb)) 與混合物中存在的其他分子 (例如非聚集產物相關雜質) 分離之任何類型的技術。通常來說,在移動相的影響下,或在結合及洗提過程中,混合物的各個分子透過固定介質遷移的速率有差異,因而,目標分析物會與其他分子分離。
如本文所互換使用,術語「層析樹脂」或「層析介質」是指將目標分析物 (例如單株抗體 (mAb)) 與混合物中存在的其他分子 (例如非聚集產物相關雜質) 分離之任何類型的相 (例如固相)。通常來說,在移動相的影響下,或在結合及洗提過程中,混合物的各個分子透過固定固相遷移的速率有差異,因而,目標分析物會與其他分子分離。例如,各種層析介質的實例包括陽離子交換樹脂、親和樹脂、陰離子交換樹脂、多重模式 (混合模式) 樹脂 (例如,已被能夠進行多種模式的交互作用 (例如離子交換、羥基磷灰石、親和力、粒徑篩析和疏水性交互作用) 的配體官能化的樹脂)、離子交換膜、疏水性交互作用樹脂和離子交換單塊。
如本文所互換使用,術語「澄清步驟」或「澄清」通常是指生物分子純化過程中最初使用的一個或多個步驟。澄清步驟通常包含細胞及/或細胞碎片的去除,其使用一個或多個包括以下任何單獨或其各種組合的步驟。例如 離心和深層過濾、沉澱、絮凝和沈降。澄清步驟通常涉及一種或多種不期望之實體的去除,並且通常在涉及捕獲期望之目標分子的步驟之前進行。澄清的另一個態樣是去除檢體中可溶的和不可溶的組分,其隨後可能導致純化過程中無菌過濾器的結垢,從而使整個純化過程更有經濟效用。
在一些實施例中,純化過程另外採用一個或多個「層析步驟」。一般來說,如果需要,則在使用根據本發明所述之刺激響應性聚合物 (stimulus responsive polymer),將目標分子與一種或多種不期望的實體分離後,可以執行這些步驟。在一些實施例中,層析步驟包括親和力層析。在一些實施例中,親和力層析是 Fc 結合/蛋白 A 親和力層析。在一些實施例中,親和力層析是 λ 輕鏈結合/蛋白 L 親和力層析。在一些實施例中,親和層析是 κ 輕鏈結合/蛋白 L 親和力層析。在一些實施例中,可能已經對 mAbs 的緩衝溶液進行過親和力層析,比方說使用蛋白 A 樹脂、蛋白 L 樹脂、Fc 選擇性樹脂、κ 輕鏈選擇性樹脂、或 λ 輕鏈選擇性樹脂。在一些實施例中,使用管柱進行親和力層析,使抗體結合的目標在該管柱上固定不動,從而藉由對其目標的親和力來純化抗體。如本文所使用,術語「組成物」、「溶液」或「檢體」是指本文所述的目標分子或期望之產物 (例如單株抗體 (mAb)) 連同一種或多種不期望之實體或雜質 (例如非聚集產物相關雜質) 的混合物。在一些實施例中,檢體包含原料或細胞培養基,目標分子或期望之產物分泌到其中。在一些實施例中,檢體包含目標分子與一種或多種雜質 (例如宿主細胞蛋白、DNA、RNA、脂質、細胞培養添加劑、細胞和細胞碎片)。在一些實施例中,檢體包含目標分子 (例如單株抗體 (mAb)) 與非聚集產物相關雜質。
如本文所互換使用,術語「中國倉鼠卵巢細胞蛋白」及「CHOP」是指源自中國倉鼠卵巢 (「CHO」) 細胞培養物之宿主細胞蛋白 (「HCP」) 的混合物HCP 或 CHOP 通常作為雜質而存在於細胞培養基或溶解產物 (例如,收穫之含有目標蛋白或多肽的細胞培養液 (例如,在 CHO 細胞中表現的抗體或免疫粘附素)) 之中。通常來說,藉由包含目標蛋白的混合物中存在的 CHOP 量,可測量目標蛋白的純度。一般來說,蛋白混合物中 CHOP 的量相對於混合物中目標蛋白的量以百萬分點表示。其可以量化,例如藉由使用 ELISA 或 COBAS 免疫測定法進行測量。
如本文所互換使用,術語「污染物」、「雜質」和「碎片」是指任何異物或不良物質,包括生物大分子,例如非聚集產物相關雜質、DNA、RNA、一種或多種宿主細胞蛋白 (HCP 或 CHOP)、內毒素、病毒、脂質及一種或多種添加物,其可能存在於含有目標蛋白或多肽 (例如抗體) 的檢體中,該目標蛋白或多肽使用本文所述之方法從一種或多種異物或不良物質中分離出來。
應當理解的是,在宿主細胞是另一種哺乳動物細胞類型、大腸桿菌、酵母菌細胞、昆蟲細胞或植物細胞的情況下,HCP 是指在宿主細胞之溶解產物中發現的除目標蛋白以外的蛋白。
如本文所使用,術語「深層過濾器」在過濾器材料的深層內完成過濾。這種過濾器的常見類別是那些包含纖維黏合 (或以其他方式固定) 隨機而成的基質,以形成複雜、曲折之流道迷宮的過濾器。這些過濾器中的顆粒分離通常是由纖維基質的截留或吸附作用所致。最常使用於細胞培養液和其他原料之生物加工的深層過濾介質包括纖維素纖維、助濾劑 (例如矽藻土 (DE)) 和帶正電的樹脂黏結劑。在本發明之上下文中使用的深層過濾器是包含氧化矽和聚丙烯纖維的深層過濾器。在一些實施例中,深層過濾器是合成過濾器。在一些實施例中,深層過濾器包含氧化矽助濾劑及/或聚丙烯纖維。在一些實施例中,深層過濾器包含氧化矽助濾劑、及/或聚丙烯纖維、及/或非織物材料。紡織在一些實施例中,深層過濾器包含氧化矽和聚丙烯纖維作為非織物材料。深層過濾器可以包含尼龍。在一些實施例中,深層過濾器不包含矽藻土。在一些實施例中,深層過濾器不包含纖維素。深層過濾介質與絕對過濾器不同,前者在整個多孔介質中截留顆粒,從而截留大於和小於孔徑的顆粒。顆粒截留被認為既涉及粒徑篩析,也涉及透過疏水性、離子和其他交互作用的吸附。結垢機制可包括孔堵塞、濾餅形成及/或孔收縮。深層過濾器之所以具有優勢,是因為它們去除了污染物並且可以用完即丟棄,從而消除了驗證問題。深層過濾器可以是多層深層過濾器,其包含串聯層疊的多級深層過濾器介質。較佳地,深層過濾器是雙層深層過濾器。採用多個深層過濾器可確保更多的濾液流有效地與深層過濾器介質接觸,從而實現更好的雜質吸附特性 (3)。
在一些實施例中,深層過濾器具有 23 cm2 或更大、0.11 m2 或更大,0.55 m2 或更大,或者 1.1 m2 或更大的表面積。在一些實施例中,如申請專利範圍中所定義之緩衝溶液具有 100-1000 mL、50-500 L、250-2500 L 或 500-5000 L 的體積。
在一些實施例中,深層過濾器具有 23 cm2 或更大的表面積,且如申請專利範圍中所定義之緩衝溶液具有 100-1000 mL 的體積。在一些實施例中,深層過濾器具有 0.11 m2 或更大的表面積,且如申請專利範圍中所定義之緩衝溶液具有 50-500 L 的體積。在一些實施例中,深層過濾器具有 0.55 m2 或更大的表面積,且如申請專利範圍中所定義之緩衝溶液具有 250-2500 L 的體積。在一些實施例中,深層過濾器具有 1.1 m2 或更大的表面積,且如申請專利範圍中所定義之緩衝溶液具有 500-5000 L 的體積。
在一些實施例中,在每平方公尺之深層過濾器表面積以 10-1000 L、20-800 L、30-600 L、40-440 L 或 50-200 L 的緩衝溶液進行深層過濾。
如本文所使用,在「合成深層過濾器」之上下文中的術語「合成」意指在使用之前,該深層過濾器不包含或包含很少之源自於天然的材料 (例如矽藻土、纖維素等)。換句話說,深層過濾器是由或基本上是由合成材料 (例如氧化矽、聚丙烯、尼龍等) 所組成。
在使用所本文揭露之方法將目標分子 (例如單株抗體 (mAb)) 從包含目標分子和一種或多種雜質 (例如非聚集產物相關雜質) 之組成物或檢體中純化的上下文中,術語「單離」、「純化」和「分離」在本文可互換使用。在一些實施例中,藉由使用本文所描述之方法,從檢體中 (完全或部分地) 去除一種或多種雜質來增加檢體中目標分子的純度。
如本文所使用,術語「單株抗體」或「mAb」係指來自實質上同質之抗體群體的抗體,即包含該群體之所有的個別抗體係相同的及/或彼此結合相同的抗原決定位,除了可能存在的產物相關雜質,像是變異抗體 (例如,抗體含有天然存在之或於單株抗體製備過程中產生之突變),此等變異通常係以少量存在。(相同的 mAb 分子在本文中可稱為「產物」。)多株抗體製劑通常包括針對不同決定位 (抗原決定位),與之相反,單株抗體製劑之每個單株抗體彼此一般針對抗原上的相同決定位 (若為多特異性單株抗體,則為多個相同決定位)。因此,修飾詞「單株」表示抗體之特徵係獲自實質上同質之抗體群體,且不應解釋為需要藉由任何特定方法產生抗體。如本文所使用,術語「 mAb 」包括抗體、抗體片段及抗體融合蛋白。mAb 可以是單特異性或多特異性的 (例如雙特異性)。單株抗體由不同的多肽鏈所組成。常規的 IgG 抗體包含兩條相同的重鍊和兩條相同的輕鏈。更複雜的抗體,特別是多特異性抗體,通常包含兩個以上的不同多肽,這導致重組表現時,可能出現錯誤配對或不完全性的問題。在本發明的一個實施例中,「mAb」包含三個或更多個不同的多肽鏈。
「抗體片段」係指除完整抗體以外的分子,其包含結合完整抗體所結合抗原之完整抗體的一部分。抗體片段之實例包括 (但不限於) Fv、Fab、Fab'、Fab’-SH、F(ab')2;雙特異性抗體 (diabody);線性抗體;單鏈抗體分子 (例如 scFv 及 scFab);單域抗體 (dAb);及從抗體片段所形成的多特異性抗體。關於某些抗體片段的綜述,參見 Holliger 及 Hudson, Nature Biotechnology 23:1126-1136 (2005)。
多特異性抗體為對至少兩個不同位點 (即不同抗原上之不同抗原決定基或同一抗原上之不同抗原決定基) 具有結合特異性的單株抗體。在某些實施例中,多特異性抗體具有三種或更多種結合特異性。用於製備多特異性抗體之技術包括但不限於重組共表現兩個具有不同特異性之免疫球蛋白重鏈-輕鏈對 (參見 Milstein 和 Cuello,Nature 305: 537 (1983)) 和「杵進入臼」(knob-in-hole) 工程 (參見例如美國專利號 5,731,168,及 Atwell 等人 J. Mol. Biol. 270:26 (1997))。多特異性抗體也可透過以下方法進行製備:用於製備抗體 Fc-異型二聚體分子的工程靜電轉向效應 (參見例如 WO 2009/089004);交聯兩個或更多個抗體或片段 (參見例如美國專利號 4,676,980;及 Brennan 等人,Science,229: 81 (1985));使用白胺酸拉鏈產生雙特異性抗體 (參見例如,Kostelny 等人,J. Immunol.,148(5):1547-1553 (1992);及 WO 2011/034605);使用常用輕鏈技術規避輕鏈錯誤配對問題 (參見例如 WO 98/50431);使用「雙特異性抗體 (diabody)」技術製備雙特異性抗體片段 (參見例如,Hollinger 等人,Proc. Natl. Acad. Sci. USA,90:6444-6448 (1993));以及使用單鏈 Fv (sFv) 二聚體 (參見例如 Gruber 等人,J. Immunol,152:5368 (1994));以及按照例如 Tutt 等人 J. Immunol. 147: 60 (1991) 所述之方法製備三特異性抗體。
本文還包括具有三個或更多個抗原結合位點之工程化抗體,包括例如「章魚抗體」(Octopus antibodies) 或 DVD-Ig (參見例如 WO 2001/77342 及 WO 2008/024715)。具有三個或更多個抗原結合位點之多特異性抗體的其他實例可參見 WO 2010/115589、WO 2010/112193、WO 2010/136172、WO 2010/145792 及 WO 2013/026831 中。雙特異性抗體或其抗原結合片段還包括「雙重作用 FAb」或「DAF」,其包含與第一以及第二不同抗原或相同抗原之兩個不同決定位結合的抗原結合位點(參見例如 US 2008/0069820 及 WO 2015/095539)。
多特異性抗體也可提供為不對稱形式,其包含在一個或多個具有相同抗原特異性之結合臂中交叉的域,即透過交換 VH/VL 域 (參見例如 WO 2009/080252 及 WO 2015/150447)、CH1/CL 域 (參見例如 WO 2009/080253) 或完整的 Fab 臂 (參見例如 WO 2009/080251、WO 2016/016299,另見 Schaefer 等人,PNAS,108 (2011) 1187-1191,及 Klein 等人,MAbs 8 (2016) 1010-20) 實現。在一個方面,多特異性抗體包含 cross-Fab 片段。術語「cross-Fab 片段」或「xFab 片段」或「交叉 Fab 片段」 是指其中重鏈和輕鏈之變異區或恆定區發生交換的 Fab 片段。cross-Fab 片段包含由輕鏈變異區 (VL) 和重鏈恆定區 1 (CH1) 構成之多肽鏈以及由重鏈變異區 (VH) 和輕鏈恆定區 (CL) 構成之多肽鏈。還可透過將帶電荷或不帶電荷之胺基酸突變引入域界面引導正確 Fab 配對,從而設計不對稱之 Fab 臂。參見例如 WO 2016/172485。
用於多特異性抗體之各種其他分子形式為本技術領域中已知的並且包括在本文中 (參見例如 Spiess 等人,Mol Immunol 67 (2015) 95-106)。術語「雙特異性抗體」是指可以特異性結合至兩種不同之抗原決定位 (目標) 的抗體。
如本文所使用,「非聚集產物相關雜質」或「NAPRI」是期望之「mAb」的副產物,其可以由期望之 mAb 的不完全或不正確組裝之多肽鏈所組成。在一些實施例中,NAPRI 是缺少 mAb 的一個或多個多肽鏈之多肽。在一些實施例中,NAPRI 是包含與 mAb 不同的多肽鏈排列之多肽。在一些實施例中,NAPRI 的分子量低於期望之 mAb 的分子量。在一個實例中,期望之 mAb 是雙特異性抗體,其包含衍生自與第一抗原特異性結合之抗體的第一重鏈和第一輕鏈,以及衍生自與第二抗原特異性結合之抗體的第二重鏈和第二輕鏈,其中第一和第二輕鏈的 CH3 域藉由「杵進入臼」(knob-in-hole) 技術而改變(Merchant AM 等人,Nat Biotechnol. 1998 Jul;16(7):677-81)。在該實例中,具有不完全組裝之多肽鏈的 NAPRI 是例如缺少一條或多條輕鏈的抗體。同樣在該實例中,可能產生具有不正確組裝之多肽鏈的 NAPRI,像是相同重鏈的二聚體 (「杵─杵 (knob-knob)」二聚體或「臼─臼 (hole-hole)」二聚體) 或完整的雙特異性抗體,其中輕鏈與錯誤的重鏈配對導致形成無官能結合位點。mAb 的 NAPRI 可以區分為高分子量(「HMW」)和低分子量(「LMW」)多肽。LMW 多肽具有低於 mAb 的分子量。HMW 多肽具有等於或高於 mAb 的分子量(例如圖 2 中的 HMW 1)。然而,對於本發明且根據定義,NAPRI 明確排除聚集物。聚集物定義為由多於一個期望之 mAb (例如與輕鏈締合的期望之 mAb) 的副本所組成。因此,聚集物包括具有兩個或多個期望之 mAb 的副本的物質,例如目標產物的二聚體或多聚體。在一個實施例中,NAPRI 為 LMW 多肽。在一個實施例中,NAPRI 為 HMW 多肽。
如本文所互換使用,術語「百萬分點」或「ppm」是指使用本文所揭露之方法所純化之期望目標分子 (例如單株抗體 (mAb)) 的純度的度量單位。由此,此度量單位可用於評估純化過程後存在之目標分子的量,或用於評估不期望之實體的量。在一些實施例中,單位「ppm」在本文中用來指以毫克/毫升為單位之目標蛋白溶液 (例如 HCP 或 CHOP) 中,以毫微克/毫升為單位之雜質的量(即 CHOP ppm=(CHOP ng/ml)/(目標蛋白 mg/ml)。當蛋白質乾燥時 (例如藉由凍乾),ppm 是指 (CHOP ng)/(目標蛋白 mg)。
如本文所互換使用,多肽的術語「pI」或「等電點」是指多肽的正電荷平衡其負電荷的 pH。可以透過多肽之附著的碳水化合物的胺基酸殘基或唾液酸殘基的淨電荷來計算出 pI,或者可以藉由等電聚焦來確定。
如本文所使用,術語「孔徑」或「標稱孔徑」是指在額定孔徑之 60-98% 的範圍內截留大部分微粒的孔徑。
在一些實施例中,使用本文所揭露之方法以單離、分離或純化期望之目標分子 (例如單株抗體 (mAb)) 的「純化步驟」,可以是造成「同質的」或「純的」組成物或檢體之整個純化過程的一部分,本文所使用之術語「同質的」或「純的」是指在包含期望之目標分子的組合物中,包含小於 100 ppm HCP 的組成物或檢體,或者,小於 90 ppm、小於 80 ppm、小於 70 ppm、小於 60 ppm、小於 50 ppm、小於 40 ppm、小於 30 ppm、小於 20 ppm、小於 10 ppm、小於 5 ppm 或小於 3 ppm 的 HCP。
如本文所使用,術語「鹽」是指透過酸和鹼的交互作用所形成的化合物。可用於本文所述方法中的各種緩衝液中的各種鹽包括但不限於醋酸鹽 (例如醋酸鈉)、檸檬酸鹽 (例如檸檬酸鈉)、氯化物 (例如氯化鈉)、硫酸鹽 (例如硫酸鈉) 或鉀鹽。如本文所使用,術語「溶劑」通常是指能夠溶解或分散一種或多種其他物質以提供溶液的液體物質。溶劑包括水性溶劑和有機溶劑,其中有用的有機溶劑包括非極性溶劑、乙醇、甲醇、異丙醇、乙腈、異己二醇、丙二醇和 2,2-硫二乙醇。
如本文所互換使用,術語「目標分子」、「目標生物分子」、「期望之目標分子」及「期望之目標生物分子」通常是指期望從一種或多種不期望的實體中 (例如一種或多種雜質) 純化或分離出來的單株抗體 (mAb) 分子,該不期望的實體可能存在於含有目標多肽或產物的檢體中。
實例
以下實例旨在向本發明所屬技術領域中具有通常知識者提供有關如何製備本發明之組成物及如何實施本發明之方法的完整揭露和描述,而不意圖限制發明人所認為其發明所涵蓋的範疇。關於所用數字 (例如量、溫度等) 的準確性已被盡力確保,但是應考慮一些實驗誤差和偏差。除另有說明,否則溫度以攝氏度為單位,如所示,化學反應是在大氣壓力或跨膜壓力下進行,術語「環境溫度」是指大約 25℃,而「環境壓力」是指大氣壓力。藉由以下實例進一步闡明本發明,這些實例旨在舉例說明本發明。
實例 1 :在純化包含兩條重鏈多肽和三條輕鏈多肽的第一三價雙特異性抗體時, NAPRI 減少
在本實例中,當使用深層過濾純化第一三價雙特異性抗體時,觀察到 NAPRI 減少。
材料 Millistak POD 1.1m2 :MX0SP10FS1 Millistak POD Pilotholder:MP0DPIL0T; Millistak+ HC POD Millistak+® HC Pro X0SP 1.1m2 flat seal; MP0DADPTF Adapterkit ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 150 mM 醋酸鈉 pH 5.0 - 6.0 過濾緩衝液 (用 TRIS 調節 pH)
方法
將 1.1 m2 深層過濾器放入 Millistak+HC POD (製程尺架) 支架中。連接拋棄式轉接器 (3x 流通式和 3x 盲塞轉接器),並將 POD 連接到層析系統。將水力閥設置為開啟,液壓增加到 1000 PSI,此後再次關閉水力閥。實驗在 +15°C 至 +20°C 的溫度範圍內進行。
連接用於壓力和流量的連接器,並藉由打開進水閥和排氣閥沖洗過濾器,再關閉泄水閥。當液體透過排氣閥流出時,關閉排氣閥並打開泄水閥。
以過濾器滯留體積 3 倍的緩衝液 (150 mM 醋酸鈉,pH 5.0-6.0) 來沖洗系統,直到 pH 和傳導度恆定。
使用 TRIS 將含有第一三價雙特異性抗體 (在 150 mM 醋酸鈉中,pH 2.8) 的蛋白 A 池調節至 pH 5.0-6.0,然後將其施用於深層過濾器。質量負荷設置為 887 g/m2 ,且負載流量為 4.3 L/min *m2
收集全部的流通液,並使用適當的分析技術 (例如粒徑篩析層析 (SEC)、微流控毛細管電泳 (Labchip)、質譜分析和 cobas e 411 (COBAS) 或 ELISA 免疫測定) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
利用上述方法,使用 X0SP MX0SP10FS1 1.1m2 深層過濾器純化第一三價雙特異性抗體;與未進行深層過濾 (MabSelect SuRe pH 5.0) 的純化相比,NAPRI 和其他雜質的減少量是藉由粒徑篩析層析 (圖 1A 和下表 1) 和 LabChip (等同於 SDS-PAGE) (圖 1B 和下表 2),經由製程中控制來測定。
檢體 HMW [ 面積 %] HMW1 [ 面積 %] 主尖峰 [ 面積 %] LMW [ 面積 %]
負載:MabSelect SuRe pH 5.0 [SEC] 4.27 3.69 85.50 6.55
X0SP 析出液 [SEC] 2.91 3.19 89.04 4.86
增加/[減少] [1.36] [0.5] 3.54 [1.69]
表 1 –藉由 SEC 測定之 NAPRI 和純化的第一三價雙特異性抗體的波峰面積。
波峰 有/ 無深層過濾的波峰面積
7 (主產物) 91.43/ 86.34
6 n/a/1.56
5 0.97/1.49
4 n/a/0.17
3 4.86/7.79
2 1.59/1.57
1 1.15/1.08
表 2 –藉由 LabChip 測定之 NAPRI 和純化的第一三價雙特異性抗體的波峰面積
如表 1 和表 2 所示,藉由 SEC 和 LabChip 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW1 和 LMW) 量減少。
圖 2 顯示另一個 SEC 記錄曲線,其中確認表 1 的 HMW1 是主產物加輕鏈,並且確認表 1 的 HMW 是二聚體和多聚體 (非 NAPRI)。也確認表 1 中的 LMW 是 LMW B (臼─臼 NAPRI) 和 LMW 3(分解的單體,其失去了一種組分的一部分)。
實例 2 :在純化包含兩條重鏈多肽和三條輕鏈多肽的第二三價雙特異性抗體時, NAPRI 減少
在本實例中,當使用深層過濾純化第二三價雙特異性抗體時,觀察到 NAPRI 減少。
材料 Millistak POD 1.1m2 :MX0SP10FS1 Millistak POD Pilotholder:MP0DPIL0T; Millistak+ HC POD Millistak+® HC Pro X0SP 1.1m2 flat seal; MP0DADPTF Adapterkit ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 150 mM 醋酸鈉 pH 5.0 - 6.0 過濾緩衝液 (用 TRIS 調節 pH)
方法
將 1.1 m2 深層過濾器放入 Millistak+HC POD (製程尺架) 支架中。連接拋棄式轉接器 (3x 流通式和 3x 盲塞轉接器),並將 POD 連接到層析系統。將水力閥設置為開啟,液壓增加到 1000 PSI,此後再次關閉水力閥。實驗在 +15°C 至最高 +20°C 的溫度範圍內進行。質量負荷設置為 897.6 g/m2 且負載流量為 4.3 L/min *m2
連接用於壓力和流量的連接器,並藉由打開進水閥和排氣閥沖洗過濾器,再關閉泄水閥。當液體透過排氣閥流出時,關閉排氣閥並打開泄水閥。
以過濾器滯留體積 3 倍的緩衝液 (150 mM 醋酸鈉,pH 5.0-6.0) 來沖洗系統,直到 pH 和傳導度恆定。
使用 TRIS 將含有第二三價雙特異性抗體 (在 150 mM 醋酸鈉中,pH 2.8) 的蛋白 A 池調節至 pH 5.0-6.0,然後將其施用於深層過濾器。
收集全部的流通液,並使用適當的分析技術 (例如粒徑篩析層析 (SEC)、微流控毛細管電泳 (Labchip)、質譜分析和 cobas e 411 或 ELISA 免疫測定) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
利用上述方法,使用 X0SP MX0SP10FS1 1.1m2 深層過濾器純化第二三價雙特異性抗體;與未進行深層過濾 (MabSelect SuRe pH 5.5) 的純化相比,NAPRI 和其他雜質的減少量是藉由粒徑篩析層析 (圖 3A 和下表 3) 和 LabChip (等同於 SDS-PAGE) (圖 3B 和下表 4),經由製程中控制來測定。
檢體 HMW3 [ 面積 %] HMW2 [ 面積 %] HMW1 [ 面積 %] 單體 [ 面積 %] LMW1 [ 面積 %] LMW2 [ 面積 %] LMW3 [ 面積 %]
MabSelect SuRe pool pH 5.5 3.30 3.01 2.25 63.15 16.3 6.76 5.23
X0SP 析出液 - 2.76 1.21 78.34 12.29 4.57 0.84
增加 / [ 減少 ] [3.30] [0.25] [1.04] 15.19 [4.01] [2.19] [4.39]
表 3 –藉由 SEC 測定之 NAPRIs和純化的第二三價雙特異性抗體的波峰面積。整體而言,HMW 顯示總面積減少 4.59%。整體而言,LMW 顯示總面積減少 10.59%。
波峰 有/ 無深層過濾的波峰面積
8 (主產物) 70.79/53.79
6 10.78/10.85
5 n/a/0.35
4 13.51/16.71
3 n/a/0.54
2 1.72/2.65
1 3.20/2.65
表 4 –藉由 LabChip 測定之 NAPRI 和純化的第二三價雙特異性抗體的波峰面積。
確認 HMW1 是杵/杵 NAPRI,確認 HMW2 為非 NAPRI 二聚體,確認 HMW3 主要為非 NAPRI 聚集物,確認 LMW1 是臼/臼 NAPRI,確認 LMW2 是臼 (hole) NAPRI,確認 LMW3 是輕鏈 NAPRI。
如表 3 和表 4 所示,藉由 SEC 和 LabChip 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW1 和 LMW1/2/3) 量減少。與第一三價雙特異性抗體相比,產物質量可以進一步提高。
實例 3 :在純化包含抗原結合位點和經工程改造之細胞因子變異體的第一抗體融合蛋白時, NAPRI 減少
在本實施例中,當使用深層過濾純化第一抗體融合蛋白時,觀察到 NAPRI 減少。
材料 Millistak® HC Pro X0 series μPod 23 cm2 :MX0SP23CL3 ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 150 mM 醋酸鈉 pH 5.0 - 6.0 過濾緩衝液 (用 TRIS 調節 pH)
方法
將 23 cm2 深層過濾器以 4.4 L/min*m2 的流速,用 30 mL 的 150 mM 醋酸鈉 pH 5.0-6.0 緩衝液預沖洗。使用 TRIS 將含有第一抗體融合蛋白 (在 150 mM 醋酸鈉中,pH 2.8) 的蛋白 A 池調節至 pH 5.0-6.0,然後以 4,4 L/min*m2 的流速將其施用於深層過濾器。實驗在 +15°C 至最高 +20°C 的溫度範圍內進行。質量負荷設置為 2173 g/m2 且負載流量為 1,9 L/min *m2
在以下時間點,以 4.4 L/min*m² 的流速使用適當的分餾法進行流份流通:2、4、6、8、10、15、20、30 和 40 分鐘。
使用適當的分析技術 (例如粒徑篩析層析 (SEC)、微流控毛細管電泳 (Labchip)、質譜分析和 cobas e 411 或 ELISA 免疫測定) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
利用上述方法,使用 X0SP MX0SP23CL3 23 cm² 深層過濾器純化第一抗體融合蛋白;與未進行深層過濾 (MabSelect SuRe pH 5.5) 的純化相比,NAPRI 和其他雜質的減少量是藉由粒徑篩析層析和 LabChip (等同於 SDS-PAGE) (圖 4 和下表 5),經由製程中控制來測定。
RW363 SEC (%) Labchip
  HMW 單體 LMW nr (%) 臼/杵 (hole/knob)
           
MabSelect SuRe pH5.5 pool 11.84 86.17 1.38 93.65 1.17
MabSelect SuRe pH5.5 (X0SP 過濾器後 ) 6.66 91.96 1.99 93.45 1.17
增加 / [ 減少 ] [5.18] 5.79 [0.6] [0.2] -
表 5 –藉由 SEC 和 LabChip 測定之 NAPRI 和純化的第一抗體融合蛋白的波峰面積
如表 5 所示,藉由 SEC 和 LabChip 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW 和 LMW) 量減少。LMW 是偽配對的「臼─臼 (hole-hole)」。HMW 是偽配對的「杵─杵 (knob-knob)」。
藉由 LabChip 和 SEC 測量到 NAPRI 減少量之差異,可能是因為 Labchip (取決於條件) 具有較差的分辨率。這是因為在檢體製備過程中,諸如主產物+輕鏈的聚集物大部分被溶解了。與 SEC 中完全減少的條件相比,檢體製備是在非常輕度的減少條件下,在這種條件下可以更輕易地區分輕鍊和重鏈比率。
實例 4 :在多重模式層析後純化第一三價雙特異性抗體時, NAPRI 減少
在本實例中,當使用深層過濾純化第一三價雙特異性抗體時,觀察到 NAPRI 減少,其中該抗體業經使用多重模式層析予以純化。
材料 Millistak® HC Pro X0 series μPod 23 cm2 :MX0SP23CL3 Capto Adhere ImpRes 層析管柱 ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 50 mM 檸檬酸鈉 pH 4.0 過濾緩衝液
方法
將 23 cm2 深層過濾器以 10 mL/min*m² (即 4.3 L/min*m2 ) 的流速,用 30 mL 的 150 mM 醋酸鈉 pH 5.0-6.0 緩衝液預沖洗。該方法在 +15°C 至最高 +20°C 的溫度範圍內進行。質量負荷設置為 759 g/m2 且負載流量為 4.3 L/min *m2
隨後執行兩個不同的純化方法步驟: (i) 接著將包含第一三價雙特異性抗體的蛋白 A 池以 10 mL/min 的流速 (過濾緩衝液 50 mM 檸檬酸鈉 pH 4.0) 施用於深層過濾器。然後將析出液通過 Capto Adhere ImpRes 多重模式陰離子交換管柱 (洗提緩衝液 50 mM 檸檬酸鈉 pH 6.0 – 50 mM 檸檬酸鈉 pH 3.0;梯度 25CV),隨後將析出液以 10 mL/min 的流速施用於深層過濾器 (過濾緩衝液 50 mM 檸檬酸鈉 pH 4.0);或 (ii) 將包含第一三價雙特異性抗體的蛋白 A 池通過 Capto Adhere ImpRes 多重模式陰離子交換管柱 (洗提緩衝液 50 mM 檸檬酸鈉 pH 6.0 – 50 mM 檸檬酸鈉 pH 3.0;梯度 25CV),隨後將析出液以 10 mL/min 的流速施用於深層過濾器 (過濾緩衝液 50 mM 檸檬酸鈉 pH 4.0)。
按照這兩種方法之一,在以下時間點,以 10 mL/min 的流速使用適當的分餾法進行流份流通:2、4、6、8、10、15、20、30 和 40 分鐘。
使用適當的分析技術 (例如粒徑篩析層析 (SEC)、微流控毛細管電泳 (Labchip)、質譜分析和 cobas e 411 或 ELISA 免疫測定) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
使用 X0SP MX0SP23CL3 23cm2 深層過濾器純化第一三價雙特異性抗體,從而在蛋白 A 層析後進行多重模式陰離子交換層析 (Capto Adhere ImpRes) 步驟,並在每個步驟之後或在多重模式陰離子交換層析步驟後進行過濾。
NAPRI 和其他雜質的減少量是藉由粒徑篩析層析 (下表 6),經由製程中控制來測定。
洗提緩衝液 後過濾器 過濾器緩衝液 & pH 沉澱 / 混濁度減少? 深層過濾器類型和尺寸 主波峰增加; HMW/LMW 減少
50mM 檸檬酸鈉 pH6.0 – 50mM 檸檬酸鈉 pH3.0 洗提類型:梯度 25CV Capto Adhere ImpRes (蛋白 A 層析後無過濾) 50mM 檸檬酸鈉 pH4.0 沒有混濁或沉澱發生 HCP redn :98.5% (ng/mg) Millistak+® HC Pro Synthetic Depth Filters X0SP   MX0SP23CL3 23 cm² 主波峰 inc 0.53pp (SEC); HMW redn :0.14pp; LMW  redn :0.16pp 過濾器負載:97.34pp 單體 (SEC) 濾液:97.87pp 單體 (SEC)
50mM 檸檬酸鈉 pH6.0 – 50mM 檸檬酸鈉 pH3.0 洗提類型:梯度 25CV 蛋白 A (1.過濾) Capto Adhere ImpRes (2.過濾) 50mM 檸檬酸鈉 pH5.5 沒有混濁或沉澱發生 HCP redn :82.9% (ng/mg) Millistak+® HC Pro Synthetic Depth Filters X0SP   MX0SP23CL3 23 cm² 主波峰 inc 0.53pp (SEC); HMW redn :0.14pp; LMW  redn :0.16pp 過濾器負載:97.34pp 單體 (SEC) 濾液:97.87pp 單體 (SEC)
表 6 –藉由 SEC 測定之 NAPRI 和純化的第一三價雙特異性抗體 (以百分比為單位) 的波峰面積改變(LMW 是偽配對的「臼─臼 (hole-hole)」。HMW 是偽配對的「杵─杵 (knob-knob)」)
如表 6 所示,藉由 SEC 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW 和 LMW) 量減少。因此,在進行蛋白 A 層析、多重模式層析或兩者結合之前,加上深層過濾似乎會減少 NAPRI。
實例 5 :在純化包含兩條重鏈多肽和三條輕鏈多肽的第三三價雙特異性抗體時, NAPRI 減少
在本實例中,考慮了兩個具有不同 pH 值的檢體。使用 pH 5.5 和 pH 7.2 深層過濾來純化第三三價雙特異性抗體時,觀察到 NAPRI 減少。
材料 Millistak® HC Pro X0 series μPod 23 cm2 :MX0SP23CL3 ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 150 mM 醋酸鈉 pH 5.0 - 6.0 過濾緩衝液 (用 TRIS 調節 pH) 25 mM Tris/Tris-HCl,25mM 氯化鈉,pH 7.2
方法
將 23 cm2 的深層過濾器以 10 mL/min 的流速,用 30 mL 的 150 mM 醋酸鈉 pH 5.0-6.0 緩衝液預沖洗。
該方法在 +15°C 至最高 +20°C 的溫度範圍內進行。質量負荷設置為 822 g/m2 @pH 5.5 和 853 g/m2 @pH 7.2,且負載流量為 4.3 L/min *m2
使用 TRIS 將含有第三三價抗體蛋白 (在 150 mM 醋酸鈉中,pH 2.8) 的蛋白 A 池調節至 pH 5.5 或 pH 7.2,然後以 10 mL/min 的流速將其施用於深層過濾器。
在以下時間點,以 10 mL/min 的流速使用適當的分餾法進行流份流通:2、4、6、8、10、15、20、30 和 40 分鐘。
使用適當的分析技術 (例如粒徑篩析層析 (SEC)) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
利用上述方法,使用 X0SP MX0SP23CL3 23 cm2 深層過濾器純化第三三價抗體蛋白;與未進行未進行深層過濾 (MabSelect SuRe pH) 的純化相比,NAPRI 和其他雜質的減少量是藉由粒徑篩析層析 (表 6),經由製程中控制來測定。
LB015 SEC (%)
   HMW 單體 LMW
MabSelect Sure pH5.5 pool 9.7 74.7 15.0
MabSelect SuRe pH5.5 (X0SP 過濾器後 ) 7.8 83.9 8.3
增加 / [ 減少 ] [1.9] 9.2 [6.7]
MabSelect Sure pH7.2 pool 9.8 74.8 14.9
MabSelect SuRe pH7.2 (X0SP 過濾器後 ) 7.88 84.7 7.4
增加 / [ 減少 ] [1.9] 9.9 [7.5]
表 6 –藉由 SEC 測定之 NAPRI 和純化的第三三價抗體蛋白的波峰面積。
如表 6 所示,藉由 SEC 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW 和 LMW) 量減少。確認 HMW NAPRI 是非共價「杵─杵 (knob-knob)」物質。確認 LMW NAPRI 是輕鏈二聚體和游離輕鏈。
實例 6 :在純化包含兩條重鏈多肽和三條輕鏈多肽的第四三價雙特異性抗體時, NAPRI 減少
在本實例中,考慮了兩個具有不同 pH 值的檢體。使用 pH 5.5 和 7.2 深層過濾來純化第四三價雙特異性抗體時,觀察到 NAPRI 減少。
材料 Millistak® HC Pro X0 series μPod 23 cm2 :MX0SP23CL3 ÄktaAvant 150 蠕動幫浦 流份容器 乙酸 醋酸鈉* 3H2 O 150 mM 醋酸鈉 pH 5.0 - 6.0 過濾緩衝液 (用 TRIS 調節 pH) 25 mM Tris/Tris-HCl,25mM 氯化鈉,pH 7.2
方法
將 23 cm2 的深層過濾器以 10 mL/min 的流速,用 30 mL 的 150 mM 醋酸鈉 pH 5.0-6.0 緩衝液預沖洗。
該實驗在 +15°C 至最高 +20°C 的溫度範圍內進行。質量負荷設置為 848 g/m2 pH 5.5 和 838 g/m2 @pH 7.2,且負載流量為 4.3 L/min *m2
使用 TRIS 將含有第四三價抗體蛋白 (在 150 mM 醋酸鈉中,pH 2.8) 的蛋白 A 池調節至 pH 5.5 或 7.2,然後以 10 mL/min 的流速將其施用於深層過濾器。
在以下時間點,以 10 mL/min 的流速使用適當的分餾法進行流份流通:2、4、6、8、10、15、20、30 和 40 分鐘。
使用適當的分析技術 (例如粒徑篩析層析 (SEC)) 對 HCP 含量、宿主細胞 DNA 含量、產物相關雜質進行分析。
結果
利用上述方法,使用 X0SP MX0SP23CL3 23 cm² 深層過濾器純化第四三價抗體蛋白;與未進行深層過濾 (MabSelect SuRe pH ) 的純化相比,NAPRI 和其他雜質的減少量是藉由粒徑篩析層析 (表 7),經由製程中控制來測定。
AW013 SEC (%)
  HMW 單體 LMW
MabSelect SuRe pH5.5 pool 11.4 72.5 16.1
MabSelect SuRe pH5.5 (X0SP 過濾器後 ) 8.7 88.4 2.9
增加 / [ 減少 ] [2.7] 15.9 [13.2]
MabSelect SuRe pH7.2 pool 11.3 74.9 13.8
MabSelect SuRe pH7.2 (X0SP 過濾器後 ) 8.6 87.0 4.5
增加 / [ 減少 ] [3.0] 12.1 [9.3]
表 7 –藉由 SEC 測定之 NAPRI 和純化的第四三價抗體蛋白的波峰面積。
如表 7 所示,藉由 SEC 記錄曲線中波峰面積之百分比的測量,觀察到產物質量提高,而 NAPRI (HMW 和 LMW) 量減少。確認 HMW NAPRI 是「杵─杵 (knob-knob)」物質。確認 LMW NAPRI 是輕鏈二聚體和游離輕鏈物質。 ***
編號的段落: 1.一種減少單株抗體 (mAb) 的緩衝溶液中的非聚集產物相關雜質 (NAPRI) 量之方法,其中該方法包含將該單株抗體 (mAb) 的緩衝溶液通過包含氧化矽和聚丙烯纖維之合成深層過濾器,以移除來自該緩衝溶液中的一部分 NAPRI。 2.一種製造具有經減少之非聚集產物相關雜質 (NAPRI) 量的單株抗體 (mAb) 的緩衝溶液之方法,其中該方法包含將單株抗體 (mAb) 的緩衝溶液通過包含氧化矽和聚丙烯纖維之合成深層過濾器,以製造該具有經減少之非聚集產物相關雜質 (NAPRI) 量的單株抗體 (mAb) 的緩衝溶液。 3.一種包含氧化矽和聚丙烯纖維之合成深層過濾器減少單株抗體 (mAb) t的緩衝溶液中的非聚集產物相關雜質 (NAPRI) 量之用途。 4.如前述任一段落所述之方法、或如段落 3 所述之用途,其中,該 mAb 是多特異性抗體。 5.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該 mAb 是包含抗體或抗體片段和另一生物活性多肽之抗體融合蛋白。 6.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該 NAPRI 是包含不完全或不正確組裝的 mAb 多肽鏈之多肽。 7.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該 NAPRI 是缺少該 mAb 的一或多個多肽鏈之多肽。 8.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該 NAPRI 是包含與該 mAb 不同的多肽鏈排列之多肽。 9.如段落 1 至 6 中任一者所述之方法、或如段落 3 至 6 中任一者所述之用途,其中,該 NAPRI 包含兩條具有相同胺基酸序列之重鏈。 10.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該 mAb 的緩衝溶液業經予以親和力層析。 11.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該深層過濾器是包含多級深層過濾介質之多層深層過濾器。 12.如前述任一段落所述之方法、或如前述任一段落所述之用途,其中,該深層過濾器不含有矽藻土。 13.如前述任一段落所述之方法、或如前述任一段落所述之用途,其進一步包含在通過該深層過濾器後測量該 mAb 的緩衝溶液中的該 NAPRI 之濃度。 14.一種單株抗體 (mAb) 的緩衝溶液,其中非聚集產物相關雜質 (NAPRI) 量相對於該 mAb 的量已經減少,該單株抗體的緩衝溶液是藉由進行如前述請求項中任一項之方法、或藉由如前述請求項中任一項之用途所製造。 15.一種製造 mAb 之方法,該方法包含下列步驟: (a) 培養包含編碼 mAb 的核酸之宿主細胞,使得該 mAb 與 NAPRI 一起被製造; (b) 形成該 mAb 和 NAPRI 的緩衝溶液; (c) 藉由對該 mAb 和 NAPRI 的緩衝溶液進行如前述請求項中任一項之方法、或藉由如前述請求項中任一項之用途,減少該 NAPRI 的量;以及 (d) 將該 mAb 自該緩衝溶液單離。
參考文獻 1. van Dijk, M. A.; van de Winkel, J. G. Human antibodies as next generation therapeutics. Curr. Opin. Chem. Biol. 2001, 5 (4), 368- 74. 2.Chadd, H. E.; Chamow, S. M. Therapeutic antibody expression technology. Curr. Opin. Biotechnol. 2001, 12, 188-194. 3.Yigzaw 等人,Exploitation of the Adsorptive Properties of Depth Filters for Host Cell Protein Removal during Monoclonal Antibody Purification.Biotechnol. Prog.2006, 22, 288-296. 4.Singh 等人,Development of adsorptive hybrid filters to enable two-step purification of biologics.MABS 2017, VOL.9, NO. 2, 350–364. 5.Badmington, F. Prefiltration technology. In Filtration in the Biopharmaceutical Industry; Meltzer, T. H., Jornitz, M. W., Eds.; Marcel Dekker: New York, 1998; pp 783-817. 6.Onur 等人,Multi-Layer Filters: Adsorption and Filtration Mechanisms for Improved Separation.Frontiers in Chemistry 2018 Volume 6 Article 417. 7.Nguyen 等人,Improved HCP Reduction Using a New, All-Synthetic Depth Filtration Media Within an Antibody Purification Process.Biotechnol. J. 2018, 1700771. 8.Giese 等人,Bispecific antibody process development: Assembly and purification of knob and hole bispecific antibodies.Biotechnol. Prog., 34:397–404, 2018. 9.Ridgway 等人,'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization.Protein Engineering vol.9 no.7 pp.617-621, 1996. 10.Klein 等人,The use of CrossMAb technology for the generation of bi- and multispecific antibodies.MABS.2016, VOL.8, NO. 6, 1010-1020.
圖 1A 示出在經深層過濾 (灰線) 以及未經深層過濾 (黑色虛線) 的情況下,對第一三價雙特異性抗體之純化進行粒徑篩析層析 (SEC) 的記錄曲線,該第一三價雙特異性抗體包含兩個重鏈多肽和三個輕鏈多肽。深層過濾所致的雜質量減少於實例 1 中討論。 圖 1B 示出在經深層過濾 (灰線) 以及未經深層過濾 (黑色虛線) 的情況下,對第一三價雙特異性抗體之純化進行 LabChip (等同 SDS-Page) 的記錄曲線。深層過濾所致的雜質量減少於實例 1 中討論。所標記波峰下方之區域顯示在表 2 中。 圖 2 示出深層過濾後對第一三價雙特異性抗體之純化執行進一步粒徑篩析層析 (SEC) 的記錄曲線。這些波峰用可能對應之 NAPRI (HMW 1、LMW B 和 LMW 3) 和其他雜質 (HMW 2、HMW 3) 進行標記,這些於實例 1 中討論。 圖 3A 示出在經深層過濾 (灰線) 以及未經深層過濾 (黑色虛線) 的情況下,對第二三價雙特異性抗體之純化進行粒徑篩析層析 (SEC) 的記錄曲線。深層過濾所致的雜質量減少於實例 2 中討論。 圖 3B 示出在經深層過濾 (灰色) 以及未經深層過濾 (黑色) 的情況下,對第二三價雙特異性抗體之純化進行 LabChip (等同 SDS-Page) 的記錄曲線。深層過濾所致的雜質量減少於實例 2 中討論。所標記波峰下方之區域顯示在表 4 中。 圖 4 示出在經深層過濾 (黑色) 以及未經深層過濾 (灰線) 的情況下,對第一抗體融合蛋白之純化進行粒徑篩析層析 (SEC) 的記錄曲線。深層過濾所致的雜質量減少於實例 3 中討論。

Claims (29)

  1. 一種減少單株抗體(mAb)的緩衝溶液中的非聚集產物相關雜質(NAPRI)量之方法,其藉由將該單株抗體(mAb)的緩衝溶液通過包含氧化矽和聚丙烯纖維之合成深層過濾器,以移除來自該緩衝溶液中的一部分NAPRI, 其中,該NAPRI包含不完全或不正確組裝的mAb多肽。
  2. 一種製造具有經減少之非聚集產物相關雜質(NAPRI)量的單株抗體(mAb)的緩衝溶液之方法,其藉由將單株抗體(mAb)的緩衝溶液通過包含氧化矽和聚丙烯纖維之合成深層過濾器,以製造該具有經減少之非聚集產物相關雜質(NAPRI)量的單株抗體(mAb)的緩衝溶液, 其中,該NAPRI包含不完全或不正確組裝的mAb多肽。
  3. 一種包含氧化矽和聚丙烯纖維之合成深層過濾器之用途,其用於減少單株抗體(mAb)的緩衝溶液中的非聚集產物相關雜質(NAPRI)量之用途, 其中,該NAPRI包含不完全或不正確組裝的mAb多肽。
  4. 如前述請求項中任一項之方法、或如請求項3之用途,其中,該mAb是多特異性抗體。
  5. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,該mAb是包含抗體或抗體片段和另一生物活性多肽之抗體融合蛋白。
  6. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,將該單株抗體的緩衝溶液在低於環境溫度的溫度下通過該深層過濾器。
  7. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,該NAPRI是缺少該mAb的一個或多個多肽鏈之多肽。
  8. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,該NAPRI是包含與該mAb不同的多肽鏈排列之多肽。
  9. 如請求項1至6中任一項之方法、或如請求項3至6中任一項之用途,其中,該NAPRI包含兩條具有相同胺基酸序列之重鏈。
  10. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,已經對該mAb的緩衝溶液進行過親和力層析。
  11. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,該深層過濾器是包含多級深層過濾介質之多層深層過濾器。
  12. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,該深層過濾器不含有矽藻土。
  13. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其進一步包含在該mAb的緩衝溶液通過該深層過濾器後測量該緩衝溶液中的該NAPRI濃度。
  14. 如前述請求項中任一項之方法、或如前述請求項中任一項之用途,其中,已經在該mAb的緩衝溶液通過該合成深層過濾器之前對其進行過層析。
  15. 如請求項14之方法或用途,其中,該層析是親和力層析、陰離子交換層析、陽離子交換層析或多重模式(混合模式)層析。
  16. 如請求項15之方法或用途,其中,該層析是使用蛋白A樹脂、蛋白L樹脂、Fc選擇性樹脂、κ輕鏈選擇性樹脂、或λ輕鏈選擇性樹脂之親和力層析。
  17. 如請求項14至16中任一項之方法或用途,其中,該層析是離子交換層析。
  18. 如請求項17之方法或用途,其中,該離子交換層析使用陰離子交換管柱、陽離子交換管柱、或多重模式(混合模式)層析。
  19. 一種單株抗體(mAb)的緩衝溶液,其中非聚集產物相關雜質(NAPRI)量相對於該mAb的量已經減少,該單株抗體的緩衝溶液是藉由進行如前述請求項中任一項之方法、或藉由如前述請求項中任一項之用途所製造。
  20. 一種製造mAb之方法,該方法包含下列步驟: (a)培養包含編碼mAb的核酸之宿主細胞,使得該mAb與NAPRI一起被製造; (b)形成該mAb和NAPRI的緩衝溶液; (c)藉由對該mAb和NAPRI的緩衝溶液進行如前述請求項中任一項之方法、或藉由如前述請求項中任一項之用途,減少該NAPRI的量;以及 (d)將該mAb自該緩衝溶液單離。
  21. 如請求項20之方法,其中,已經在該mAb的緩衝溶液通過該合成深層過濾器之前對其進行過層析。
  22. 如請求項20之方法,其中,該層析是親和力層析、陰離子交換層析、陽離子交換層析或多重模式(混合模式)層析。
  23. 如請求項22之方法,其中,該層析是使用蛋白A樹脂、蛋白L樹脂、Fc選擇性樹脂、κ輕鏈選擇性樹脂、或λ輕鏈選擇性樹脂之親和力層析。
  24. 如請求項21至23中任一項之方法,其中,該層析是離子交換層析。
  25. 如請求項24之方法,其中,該離子交換層析使用陰離子交換管柱、陽離子交換管柱、或多重模式(混合模式)層析。
  26. 如前述請求項中任一項之方法或用途,其中,將該單株抗體的緩衝溶液在介於約10°C與約21°C之間、或介於約15°C與約20°C之間的溫度下通過該深層過濾器。
  27. 如前述請求項中任一項之方法或用途,其中,將該單株抗體的緩衝溶液在約100 g/m2 至約2500 g/m2 、約300 g/m2 至約2000 g/m2 、或約500 g/m2 至約1500 g/m2 的範圍內之質量負荷下通過該深層過濾器。
  28. 如前述請求項中任一項之方法或用途,其中,當該單株抗體的緩衝溶液通過該深層過濾器時,該緩衝溶液具有約4.0至約7.5、約4.0至約7.2、或約4.0至約5.5的範圍內之pH值。
  29. 如前述請求項中任一項之方法或用途,其中,將該單株抗體的緩衝溶液在約1 L/min*m²至約10 L/min*m²的範圍內之流速下、在約1.5 L/min*m²至約8 L/min*m²的範圍內之流速下、或在約4.3 L/min*m²之流速下通過該深層過濾器。
TW110101694A 2020-01-15 2021-01-15 減少來自重組蛋白生產過程中的雜質之方法 TW202140511A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20151994 2020-01-15
EP20151994.9 2020-01-15

Publications (1)

Publication Number Publication Date
TW202140511A true TW202140511A (zh) 2021-11-01

Family

ID=69191855

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101694A TW202140511A (zh) 2020-01-15 2021-01-15 減少來自重組蛋白生產過程中的雜質之方法

Country Status (13)

Country Link
US (1) US20230049176A1 (zh)
EP (1) EP4090666A1 (zh)
JP (1) JP2023510382A (zh)
KR (1) KR20220129003A (zh)
CN (1) CN114981284A (zh)
AR (1) AR121061A1 (zh)
AU (1) AU2021208515A1 (zh)
BR (1) BR112022013888A2 (zh)
CA (1) CA3167657A1 (zh)
IL (1) IL294545A (zh)
MX (1) MX2022008442A (zh)
TW (1) TW202140511A (zh)
WO (1) WO2021144422A1 (zh)

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
DE69830901T2 (de) 1997-05-02 2006-05-24 Genentech Inc., San Francisco ein verfahren zur herstellung multispezifischer antikörper die heteromultimere und gemeinsame komponenten besitzen
AU2001247616B2 (en) 2000-04-11 2007-06-14 Genentech, Inc. Multivalent antibodies and uses therefor
US20080044455A1 (en) 2006-08-21 2008-02-21 Chaim Welczer Tonsillitus Treatment
US10118970B2 (en) 2006-08-30 2018-11-06 Genentech, Inc. Multispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
DK2235064T3 (en) 2008-01-07 2016-01-11 Amgen Inc A process for the preparation of heterodimeric Fc molecules using electrostatic control effects
MX2011010159A (es) 2009-04-02 2011-10-17 Roche Glycart Ag Anticuerpos multiespecificos que comprenden anticuerpos de longitud completa y fragmentos fab de cadena sencilla.
JP5616428B2 (ja) 2009-04-07 2014-10-29 ロシュ グリクアート アクチェンゲゼルシャフト 三価の二重特異性抗体
EP2435473B1 (en) 2009-05-27 2013-10-02 F.Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
WO2011034605A2 (en) 2009-09-16 2011-03-24 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
PL2748202T3 (pl) 2011-08-23 2018-12-31 Roche Glycart Ag Dwuswoiste cząsteczki wiążące antygen
SG10202006161UA (en) * 2013-08-30 2020-07-29 Emd Millipore Corp High capacity composite depth filter media with low extractables
KR20230155605A (ko) 2013-12-20 2023-11-10 제넨테크, 인크. 이중 특이적 항체
UA117289C2 (uk) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Мультиспецифічне антитіло
EP3174897B1 (en) 2014-07-29 2020-02-12 F.Hoffmann-La Roche Ag Multispecific antibodies
US20160176921A1 (en) 2014-12-22 2016-06-23 Alexion Pharmaceuticals, Inc. Methods of purifying recombinant proteins
KR20240093813A (ko) 2015-04-24 2024-06-24 제넨테크, 인크. 다중특이적 항원-결합 단백질
FI3334747T3 (fi) * 2015-08-13 2023-11-30 Amgen Inc Antigeenia sitovien proteiinien varattu syväsuodatus
MX2018015173A (es) * 2016-06-17 2019-07-04 Genentech Inc Purificacion de anticuerpos multiespecificos.
WO2018200430A1 (en) * 2017-04-26 2018-11-01 Bristol-Myers Squibb Company Methods of antibody production that minimize disulfide bond reduction
TW202043253A (zh) 2019-01-28 2020-12-01 美商安進公司 藉由將藥物物質和藥物產品過程整體化的生物製劑製造之連續製造過程

Also Published As

Publication number Publication date
JP2023510382A (ja) 2023-03-13
KR20220129003A (ko) 2022-09-22
US20230049176A1 (en) 2023-02-16
AU2021208515A1 (en) 2022-08-04
MX2022008442A (es) 2022-08-02
EP4090666A1 (en) 2022-11-23
AR121061A1 (es) 2022-04-13
WO2021144422A1 (en) 2021-07-22
IL294545A (en) 2022-09-01
CN114981284A (zh) 2022-08-30
BR112022013888A2 (pt) 2022-09-13
CA3167657A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
KR102048598B1 (ko) Bis-tris 버퍼를 사용한 단백질 정제
JP6345184B2 (ja) 2段階接線流限外濾過を使用するポリペプチドの精製
KR101838039B1 (ko) 단백질 a 기반 크로마토그래피를 이용한 단백질 순도의 증가 방법
CN118271429A (zh) 用羟基磷灰石层析分离双特异性抗体和双特异性抗体生产副产物
TW201840580A (zh) 純化抗體的方法
CN110198952B9 (zh) 制备含有生物分子的高度浓缩的液体制剂的方法
TW201522365A (zh) 純化抗體的方法
US20180186866A1 (en) Affinity chromatography purification with low conductivity wash buffer
US20190330269A1 (en) Method for purifying antibodies using pbs
CA3086186A1 (en) Methods for enhanced removal of impurities during protein a chromatography
JP2023523823A (ja) タンパク質の精製の改善されたプロセス
TW202140511A (zh) 減少來自重組蛋白生產過程中的雜質之方法
AU2012269240B2 (en) Single unit chromatography antibody purification
US20210017223A1 (en) Separation Method
US12037360B2 (en) Compositions and methods for isolating proteins
US20230129803A1 (en) Compositions and methods for isolating proteins
US20090264630A1 (en) Method of separating monomeric protein(s)
RU2773852C2 (ru) Способы улучшенного удаления примесей при проведении хроматографии на основе связывания с белком а
US20210324001A1 (en) New purification method
Kumar et al. Industrial purification strategies for monoclonal antibodies
TW202204423A (zh) 用於產生和純化多價免疫球蛋白單可變域的方法
JP2024522902A (ja) 二重特異性抗体を分離する方法
WO2023170553A1 (en) Affinity chromatographic production of clinical human igg products
JP2021011446A (ja) タンパク質含有溶液のろ過方法
JP2017537890A (ja) 改善された製造方法