CN102306658A - 具有场板的宽能带隙晶体管装置 - Google Patents

具有场板的宽能带隙晶体管装置 Download PDF

Info

Publication number
CN102306658A
CN102306658A CN2011102654868A CN201110265486A CN102306658A CN 102306658 A CN102306658 A CN 102306658A CN 2011102654868 A CN2011102654868 A CN 2011102654868A CN 201110265486 A CN201110265486 A CN 201110265486A CN 102306658 A CN102306658 A CN 102306658A
Authority
CN
China
Prior art keywords
layer
grid
field plate
transistor
separate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011102654868A
Other languages
English (en)
Inventor
P·帕里克
吴益逢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Lighting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Lighting Co filed Critical Cree Lighting Co
Publication of CN102306658A publication Critical patent/CN102306658A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明揭示一种晶体管结构,其包含一活性半导体层与所形成的与该活性层电接触的金属源极与漏极接点。在源极与漏极接点之间形成一栅极接点以用于调节该活性层内的电场。于该活性层上形成一分隔层,且于该分隔层上形成一导电场板,其自栅极接点的边缘向漏极接点延伸距离Lf。该场板电连接至该栅极接点。

Description

具有场板的宽能带隙晶体管装置
本申请是申请日为2004年9月8日、申请号为2004800032782.1的中国专利申请“具有场板的宽能带隙晶体管装置”的分案申请。
技术领域
本发明关于晶体管,且尤其关于利用场板的晶体管。
背景技术
高电子迁移率晶体管(HEMT)是通用类型的固态晶体管,其由诸如硅(Si)或砷化镓(GaAs)的半导体材料规则地制成。Si的劣势在于其具有低电子迁移率(600-1450 cm2/V-s),此产生高内电阻。此电阻可使基于Si的HEMT的高效能增益劣化。[CRC出版社,The Electrical Engineering Handbook,第二版,Dorf,第994页,(1997年)]。基于GaAs的HEMT已成为民用及军用雷达、手持蜂巢式电话及卫星通信中信号放大的标准。与Si相比,GaAs具有较高电子迁移率(约6000 cm2/V-s)及较低内电阻,此使得基于GaAs的装置可以较高频率运行。然而,GaAs具有相对较小的能带隙(室温下1.42 eV)及相对较小的击穿电压,此防止基于GaAs的HEMT于高频率下提供高功率。
宽能带隙半导体材料(如,AIGaN/GaN)的制造中的改良已集中于用于高频率、高温及高功率应用的AIGaN/GaN HEMT的发展。AIGaN/GaN具有大能带隙,以及高峰僮及饱和电子速度值[B.Belmont、K.Kim及M.Shur,J.Appl.Phys.74,1818(1993年)]。AIGaN/GaN HEMT亦可具有超过1013/cm2的二维电子气(2DEG)薄片密度及相对较高的电子迁移率(高达2019 cm2/Vs)[R.Gaska、J.W.Yang、A.Osinsky.Q.Chen、M.A.Khan、A.O.Orlov、G.L.Snider及M.S.Shur,Appl.Phys.Lett.,72,707(1998年)]。这些特征使AIGaN/GaNHEMT于RF、微波及毫米波频率下提供极高电压及高功率运作。
AIGaN/GaN HEMT已于蓝宝石基板上生长且已展示4.6 W/mm的功率密度及7.6 W的总功率[Y.F.Wu等人,IEICE Trans.Electron.,E-82-C,1895(1999年)]。新近,于SiC上生长的AIGaN/GaN HEMT已展示了于8 GHz下的9.8W/mm的功率密度[Y.F.Wu、D.Kapolnek、J.P.Ibbetson、P.Parikh、B.P.Keller及U.K.Mishra,IEEE Trans.Electron.Dev.,48,586(2001年)]及于9 GHz下的22.9的总输出功率[M.Micovic.A Kurdoghlian.P.Janke.P.Hashimoto.D.W.S.Wong,.J.S.Moon.L.McCray及C.Nguyen,IEEE Trans.Electron.Dev.,48,591(2001年)]。颁予Khan等人的美国专利第5,192,987号揭示了于缓冲层及基板上生长的基于GaN/AIGaN的HEMT。Gaska等人"High-TemperaturePerformance of AIGaN/GaN HFET′s on Sic Substrates,″IEEE Electron DeviceLetters,Vol.18,No.10,1997年10月,第492页;及Ping等人"DC and MicrowavePerformance of High Current AIGaN Heterostructure Field Effect TransistorsGrown on P-type SiC Substrates,″IEEE Electron Devices Letters,Vol.19,No.2,1998午2月,第54页,已描述了其它AIGaN/GaN HEMT及场效应晶体管(FET)。这些装置中的一些已展示了高达67千兆赫的增益频宽积(fT)[K.Chu等人WOCSEMMAD,Monterey,CA(1998年2月)]及于IO GHz下高达2.84 W/mm的高功率密度[G.Sullivan等人"High Power lO-GHz Operation of AIGaN HFET′sin Insulating SiC,″IEEE Electron Device Letters,Vol.19,No.6,第198页(1998年6月);及Wu等人,IEEE Electron Device Letters,第19卷,No.2,第50页(1998年2月)]。
电子收集及所得的DC与RF特性之间的差异已成为基于GaN晶体管(如,AIGaN/GaN HEMT)的效能中的限制因子。氮化硅(SiN)钝化已成功地用于缓和此收集问题,此已引起具有lO GHz下高于10 W/mm的功率密度的高效能装置。美国专利第6,586,781号揭示了用于减小基于GaN的晶体管中的收集效应的有法及结构。然而,由于存在于这些结构中的高电场,电荷收集仍为一问题。
发明内容
本发明提供改良的晶体管结构,其利用连接至场板的栅极以改良运作特征。根据本发明的晶体管包含形成于一基板上的多个活性半导体层。形成一与这些多个活性层电接触的源极接点,且亦形成一与这些多个活性层电接触的漏极接点,其中位于这些多个活性层最上部上的源极与漏极接点之间存在空间。在源极与漏极接点之间形成一与这些多个活性层的最上部电接触的栅极。在栅极与漏极接点之间,于这些多个活性层的最上部表面上形成由外延材料构成的分隔层,其中该栅极未被该分隔层覆盖。在与该栅极成一体的分隔层上形成一场板。
根据本发明的晶体管的另一实施例包含形成于一基板上的多个活性半导体层。形成一与这些多个活性层电接触的源极接点。亦形成一与这些多个活性层电接触的漏极接点,其中于这些多个活性层的最上部上的源极与漏极接点之间存在空间。在源极与漏极接点之间形成一与这些多个活性层的最上部电接触的栅极。在栅极与漏极接点之间,于这些多个活性层的最上部表面上形成一分隔层,且覆盖该栅极接点。于该分隔层上形成一场板,且该场板电连接至该栅极。
根据本发明晶体管的另一实施例包含形成于一基板上的多个活性半导体层。形成与这些多个活性层电接触的源极及漏极接点。在源极与漏极接点之间形成一与这些多个活性层的最上部电接触的栅极。在栅极与漏极接点之间,于这些多个活性层的最上部表面上形成一第一分隔层,其中该栅极未被该分隔层覆盖。一第一场板形成于与该栅极成一体的分隔层上且于该分隔层上向该漏极接点延伸。第二分隔层覆盖该场板及该场板与漏极接点之间的分隔层的表面,且进一步包含一位于该第二分隔层上且自栅极的边缘向漏极接点延伸的第二场板。
本领域的熟练技术人员自下文卖施方式连同附图将易于了解本发明的这些及其它特点及优势。
附图说明
图1为根据本发明之HEMT的实施例的俯视图;
图2为图1中HEMT的剖视图;
图3为根据本发明的HEMT的另一实施例的俯视图;
图4为图3中HEMT的剖视图;
图5为根据本发明的具有一伽马型栅极的HEMT的另一实施例的剖视图;
图6为根据本发明的具有一n+掺杂的接触层的HEMT的另一实施例的剖视图;
图7为根据本发明的具有多个分隔层的HEMT的另一实施例的剖视图;
图8为根据本发明的具有一凹陷栅极的HEMT的另一实施例的剖视图;
图9为根据本发明的具有一凹陷栅极的HEMT的另一实施例的剖视图;
图1 0为根据本发明的具有一凹陷栅极的HEMT的又一实施例的剖视图;
图11为根据本发明的具有多个场板的HEMT的另一实施例的剖视图;
图12为展示根据本发明而配置的特定HEMT的性能的图形;
图13为根据本发明的MESFET的一实施例的剖视图;
图14为根据本发明的MESFET的另一实施例的剖视图;及
图15为根据本发明的具有一凹陷栅极的MESFET的又一实施例。
具体实施方式
根据本发明的场板配置可与诸多不同晶体管结构一起使用。宽能带隙晶体管结构通常包括一活性区域,以及形成的与该活性区域电接触的金属源极及漏极接点,及在源极与漏极接点之间形成用于调节该活性区域内电场的栅极接点。在该活性区域上形成一分隔层。该分隔层可包含一介电层、一外延材料(如,未掺杂或耗尽的宽能带隙外延材料)层、或其组合。一导电场板形成于该分隔层之上且自栅极接点的边缘向漏极接点延伸距离Lf。该场板可电连接至该栅极接点。此场板配置可减小装置中的峰值电场,引起增加的击穿电压及减小的收集。电场的减小亦可产生其它益处,如减小的泄漏电流及增强的可靠性。
可利用根据本发明的场板配置的一种类型的晶体管为高电子迁移率晶体管(HEMT),其通常包括一缓冲层及一位于该缓冲层之上的势垒层。一二维电子气(2DEG)层/沟道形成于该缓冲层与该势垒层之间的接面处。一栅极接点形成于势垒层上源极与漏极接点之间,且根据本发明,一分隔层形成于势垒层上至少在栅极与漏极接点之间。该分隔层亦可覆盖栅极与源极接点之间的势垒层。该分隔层可在形成栅极接点之前或之后形成。该分隔层可包含一介电层、一未掺杂或耗尽材料第III族氮化物材料的层、或其组合。不同的第III族元素可用于该分隔层中,诸如Al、Ga或In的合金,其中适宜的分隔层材料为AlxGa1-xN(0≤x≤1)。一导电场板形成于该分隔层之上且自该栅极的边缘向该漏极接点延伸距离Lf。在一些实施例中,该场板在与栅极接点的延伸相同的沉积步骤中形成。在其它实施例中,该场板与栅电极在独立的沉积步骤中形成。该场板可电连接至该栅极接点。在另外的其它实施例中,该场板可连接至该源极接点。
可利用根据本发明的场板配置的另一类型的晶体管为金属半导体场效应晶体管(MESFET),其通常包含一位于一基板上的缓冲层及一位于该缓冲层上的沟道层,其中缓冲层位于基板与沟道层之间。包括一与该沟道层欧姆接触的源极接点,且亦包括一与该沟道层欧姆接触的漏极接点。一位于该沟道层上的空间保留在源极与漏极接点之间,且包括一位于沟道层上源极与漏极接点之间的栅极。包括一位于沟道层上至少栅极与漏极接点之间的分隔层。该分隔层亦可覆盖栅极与源极接点之间的空间。包括一位于该分隔层之上且与该栅极电接触的场板。
与不具有场板的装置相比,此用于HEMT及MESFET两者的场板配置可减小装置中的峰值电场,其可引起增加的击穿电压及减小的收集。电场的减小亦可产生其它益处,诸如减小的漏电流及增强的可靠性。
图1及2展示根据本发明的包含一基板12的基于氮化物的HEMT 10的一实施例,该基板可由碳化硅、蓝宝石、键琴(spinet)、ZnO、硅、氮化镓、氮化铝或能够支持第III族氮化物材料生长的任何其它材料制成。在一些实施例中,基板12可包含半绝缘4H-SiC,其可购自Durham,NC.的Cree,Inc.。
一长晶层14可形成于基板12上以减小HEMT 10中基板12与下一层之间的晶格失配。长晶层14应为约1000埃厚,但可使用其它厚度。长晶层14可包含诸多不同的材料,适宜材料为AlzGa1-zN(0<=z<=l)。在根据本发明之一实施例中,长晶层包含ALN(AlzGa1-zN,z=l)。长晶层14可使用已知半导体生长技术而形成于基板12上,这些技术如金属有机化学气相沉积(MOCVD)、高蒸汽压力外延法(HVPE)或分子束外延法(MBE)。在另外的其它实施例中,长晶层可作为HEMT 10中的另一层的一部分而形成,如缓冲层(下文将详细描述)。
长晶层14的形成可视用于基板12的材料而定。例如,于各种基板上形成一长晶层14的方法教示于美国专利第5,290,393号及第5,686,738号中,每一这些专利皆以引用之方式并入本文中,如同全部陈述于本文中一样。于碳化硅基板上形成长晶层的方法揭示于美国专利第5,393,993号、第5,523,589号及第5,739,554号中,每一这些专利皆以引用之方式并入本文中,如同全部陈述于本文中一样。
HEMT 10进一步包含一形成于长晶层14上的高电阻率缓冲层16,其中适宜的缓冲层16由第III族氮化物材料构成,如AlxGayIn(1-x-y)N(0<=x<=l,0<=y<=1,x+y<=1)。在根据本发明的另一实施例中,缓冲层16包含一厚约2μm的GaN层,其中该层的部分掺杂有Fe。
一势垒层18形成于缓冲层16上使得该缓冲层16夹于势垒层18与长晶层14之间。缓冲层16及势垒层18中的每一个可包含第III族。氮化物材料的经掺杂或未经掺杂层。势垒层18可包含一或多层不同材料,诸如InGaN、AIGaN、AIN或其组合。在一实施例中,势垒层18包含0.8 nm的AIN及22.5 nm的AlxGa1-xN(x≈0.195,如由光致发光而量测)。例示性结构说明于美国专利第6,316,793号、第6,586,781号、第6,548,333号及美国公开的专利申请案第2002/0167023号及第2003/00020092号中,每一这些专利及专利申请案皆以引用方式并入本文中,如同全部陈述于本文中一样。其它基于氮化物的HEMT结构说明于美国专利第5,192,987号及第5,296,395号中,每一这些专利皆以引用之方式并入本文中,如同全部陈述于本文中一样。可使用与用于生长长晶层14的方法相同的方法来制造缓冲层16及势垒层18。一二维电子气(2DEG)层/沟道17形成于缓冲层16与势垒层18之间的异质接口(heterointerface)处。通过主动HEMT之外的台面蚀刻或离子植入实现装置之间的电绝缘。
形成金属源极及漏极接点20、22,实现经由势垒层18的欧姆接触。一分隔层24可形成于势垒层18的表面上源极与漏极接点20、22之间。分隔层24可包含一层非导电材料(如介电质(SiN或SiO))或大量不同层的非导电材料(如不同的介电质)。在替代实施例中,分隔层可包含单独的或与多层介电材料组合之一或多层的外延材料。分隔层可为诸多不同厚度,其中适宜厚度范围为约0.05至0.5微米。分隔层24经主要配置以使一场板沉积于上方,其中该场板自栅极26向漏极接点22延伸。
因此,在根据本发明的一些实施例中,分隔层24可仅包括于势垒层1 8的表面上栅极26与漏极接点22之间。
在分隔层24覆盖源极与漏极接点20、22之间的势垒层18的实施例中,可将该分隔层24蚀刻至势垒层18且沉枳一栅极电极26,使得栅极电极26的底部位于势垒层18的表面上。在分隔层24仅覆盖势垒层18的一部分的实施例中,栅极26可沉积于邻近分隔层24的势垒层18上。在另外的其它实施例中,栅极26可在分隔层24之前沉积。
可通过将形成栅极电极的金属图案化以延伸穿过分隔层24而形成一与栅极成一体的场板28,从而栅极26的顶部形成一场板结构28,其自栅极26的边缘向漏极22延伸距离Lf。换言之,位于分隔层24上的栅极金属的部分形成一场板28。接着,可以一介电钝化层30(如氮化硅)覆盖该结构。形成介电钝化30的方法详细地描述于上文所参考的专利及公开案中。
当将栅极26偏压为适宜的电平时,电流可在源极与漏极接点20、22之间经由2DEG层/沟道17流动。源极与漏极接点20、22可由不同材料构成,其包括(但不限于)钛、铝、金或镍的合金。栅极26亦可由不同材料构成,其包括(但不限于)金、镍、铂、钯、铱、钛、铬、钛及钨的合金、或硅化铂。栅极26可具有诸多不同的长度,其中适宜的栅极长度范围为0.01至2微米。在根据本发明的一实施例中,一较佳的栅极长度(Lg)为约0.5微米。在一些实施例中,场板28在与栅极26的延伸相同的沉积步骤中形成。在其它实施例中,场板28与栅极26在独立的沉积步骤中形成。源极及漏极接点20、22的形成详细地描述于上文所参考的专利及公开案中。
场板28可在势垒层上自栅极26的边缘延伸不同的距离Lf,其中适宜距离范围为0.1至1.5μm,但亦可使用其它距离。场板28可包含诸多不同的导电材料,其中适宜的材料为(诸如)与栅极26所用的金属相同的金属。栅极26及场板28可使用标准金属化方法来加以沉积。
图3及4展示了类似于图1及2中的HEMT 10的根据本发明的HEMT 40的另一实施例。对于图3及4及随后附图中的HEMT 40的相同或相似特征,将使用来自图1及2的相同的参考数字。HEMT 40包含一基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20及漏极接点22。在形成势垒层1 8之后形成一栅极42。一分隔/钝化层44形成于该装置上且详言之在栅极42及位于栅极42与源极及漏极接点20、22之间的势垒层18的表面上。在其它实施例中,该分隔/钝化层可仅包括于栅极42及位于栅极42与漏极接点22之间的势垒层18之表面上。接着在分隔/钝化层44上形成一场板46,其与栅极42重叠且在栅极-漏极区域中延伸距离Lf。在图3及4所示的实施例中,分隔/钝化层44充当场板46的分隔层。为了达成最佳结果,场板46于栅极42上的重叠及距离Lf可以变化。
场板46可电连接至栅极42,且图3展示了可使用的两个替代栅极连接结构,但应理解亦可使用其它连接结构。场板46可经由一第一导电路径48连接至栅极42,该第一导电路径48运行(run)出HEMT 40的活性区域到达一用于实现与栅极42的电接触的栅极接点50。亦可使用一第二导电路径52(以虚影(phantom)展示),其在与栅极接点50相对的一侧运行出HEMT 40的活性区域。导电路径52耦合在栅极42与场板46之间。
导电通孔(示出)亦可用于将场板46连接至栅极42,其中每一通孔穿过钝化层44于场板与栅极之间运行。可将通孔周期性配置于场板46下以提供自栅极42至场板46的有效电流散布。
与图1及2中的HEMT 10中相同,场板46可在势垒层上自栅极42的边缘延伸不同距离Lf,其中适宜的距离范围为0.1至1.5μm,但亦可使用其它距离。在一些实施例中,场板46可延伸0.2至1μm的距离Lf。在其它实施例中,场板46可延伸0.5至0.9μm的距离Lf。在较佳实施例中,场板46可延伸约0.7μm的距离Lf。
图5展示了根据本发明的HEMT 60的另一实施例,其具有诸多类似于HEMT 10及40中的那些特征的特征,包括基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20与漏极接点22。然而,HEMT 60具有伽马(Γ)型栅极62,其尤其适于高频率运作。栅极长度在确定装置的速度时为重要的装置尺寸之一,且对于频率愈高的装置,栅极长度愈短。较短的栅极接点会引起可负面影响高频率运作的高电阻。T-栅极通常用于高频率运作,但通过T-栅极很难达成场板的良好耦合布置。
伽马栅极62提供低栅极电阻且允许栅极占据面积的可控界定。包括一分隔/钝化层64,其覆盖伽马栅极62及位于伽马栅极62与源极及漏极接点20、22之间的势垒层18的表面。伽马栅极62的水平部分与分隔层顶部之间可保留空间。HEMT 60亦可包括一位于分隔层64上的场板66,其与伽马栅极62重叠,其中场板66较佳地沉积于伽马栅极的不具有水平伸出区之侧。此配置允许紧密布置及场板与其下活性层之间的有效耦合。
如图3及4中所示及上文所描述的场板46,场板66可以诸多不同方式电连接至栅极62。一第一导电路径(未示出)可包括于场板66与栅极接点之间,或一第二导电路径(未示出)可包括于场板66与栅极62之间,其中两个导电路径均位于HEMT之活性区域之外。穿过分隔层64之导电通孔亦可用于场板66与栅极62之间。
图6展示了根据本发明的HEMT 80的另一实施例,其类似于图1中所示的HEMT 10,且亦包含一基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20、漏极接点22、分隔层24与栅极26与一场板结构28。HEMT80亦包括一形成于分隔层24上的n+掺杂的接触层82。在形成栅极接点26之前,蚀刻接触层82以显露分隔层24的表面的一部分。接着可将分隔层24的一小部分向下蚀刻至势垒层18。亦可将接触层82、分隔层24及势垒层向下蚀刻至缓冲层16使得可沉积源极与漏极接点20、22。接触层82便利了欧姆源极及漏极接点20、22的形成以及提供了低接取区域电阻。
图7展示了根据本发明的HEMT 90的另一实施例,其具有类似于上述HEMT中的那些的一基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20及漏极接点22。HEMT 90亦包含一栅极92及一场板94。然而,HEMT 90不是具有一分隔层而是包含多个分隔层95,在此状况下为两个,但应理解可使用更多的分隔层。一第一分隔层96形成于势垒层18上至少位于栅极92与漏极接点22之间,其中较佳的分隔层亦形成于栅极92与源极接点20之间的势垒层18上。一第二分隔层98形成于该第一分隔层96上且可以诸多不同的方式进行配置。其较佳覆盖少于该第一分隔层96之整个顶表面以形成阶跃100。场板94形成于分隔层上,且由于阶跃100,场板94基本上包含第一及第二场板部分102、104,每一这些部分在其与势垒层18之间具有不同的间距。
第一及第二分隔层96、98可包含诸多不同材料,这些层通常包含外延材料或介电材料,诸如SiN及SiO。在根据本发明的一实施例中,第一分隔层96可为外延材料且第二分隔层98可为介电材料。在另一实施例中,第一分隔层96可再次为外延材料且第二分隔层98亦可为与第一分隔层96的材料相同或不同的外延材料。亦有可能使第一分隔层96包含介电材料且第二分隔层98包含一外延层,但是视所用的介电材料的类型而定,由于晶体结构损失可难于形成第二(外延)层98。通常使用外延材料来提供较佳的场板耦合,但由外延材料引入的电容可高于由介电材料引入的电容。
通过具有第一及第二场板102、104,HEMT 90可显示出其在两个不同电压下的改良的运作特征,其中第一场板102提供HEMT 90于一电压下的改良运作且第二场板104提供于较高的第二电压下的改良运作。例如,在第一分隔层102为外延(通常为AIGaN或类似材料)的HEMT 90的实施例中,第一场板102下的层102的物理尺寸及介电常数相同。一致的尺寸及介电常数使第一场板提供于第一电压下改良的HEMT 90运作特征。
若第二层98由介电材料构成,则其通常具有低于第一层96中的外延材料的介电常数。因此,第二场板104下的材料的整体介电常数将低于第一场板102下的材料的介电常数。此引起较低的电容及减小的耦合。第二场板104与势垒层18之间的较大距离连同降低的介电常数使得第二场板104提供于较高电压下改良的运作特征。
在第一及第二层96、98为外延的HEMT 90的那些实施例中,第一及第二场板102、104下的介电常数保持相同,但第二场板104与势垒层18之间增加的距离仍提供于较高电压下改良的运作特征。然而,该较高的运作电压通常不同于若第二分隔层为介电材料时的较高运作电压。
可以诸多不同的方式形成栅极92、场板102、104及分隔层94、96,其中一种形成方法为于势垒层18上沉积第一(外延)分隔层94,且接着蚀刻该势垒层以为栅极92提供空间。接着可沉积栅极92,且第二分隔层96可沉积于第一分隔层94上。在其它实施例中,可在沉积栅极92之前蚀刻第二分隔层960或者,可沉积第一及第二分隔层96、98接着以两个蚀刻步骤进行蚀刻;第一蚀刻穿过层96、98且第二蚀刻穿过第二层98以形成阶跃100。接着可沉积栅极92,且随后在第一分隔及第二分隔层96、98上沉积场板102、104。或者,可形成第一及第二分隔层96、98且随后进行蚀刻,于一或多个形成步骤中形成栅极92及场板。在另外的其它实施例中,可蚀刻外延或介电材料的单一分隔层以提供一阶跃使得所得场板具有第一及第二部分。
根据本发明的栅极及场板结构可以上文图1-7中所示的那些方式之外的诸多不同方式来使用。图8、9及10分别展示了HEMT 110、130及140,其中每一HEMT具有类似于上述HEMT中的那些的一基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20及漏极接点22。HEMT llO(图8)类似于图1及2中的HEMT 10,不同之处在于HEMT 110的栅极112凹陷于势垒层1 8中。该HEMT的场板114沉积于分隔层116上且自栅极112向漏极接点22延伸。场板114提供与HEMT 10中的场板28相同的运作改良。HEMT130(图9)类似于图3及4中的HEMT 40,不同之处在于栅极132为凹陷的。场板134沉积于分隔层136上且提供相同的运作益处。此处所描述的HEMT亦可包含仅部分凹陷的栅极。HEMT 140类似于HEMT 130,不同之处在于其栅极142为部分凹陷的。其场板144沉积于分隔层146上且提供相同的运作益处。
图11展示根据本发明的HEMT 150的又一实施例,其具有一基板12、长晶层14、缓冲层16、2DEG 17、势垒层18、源极接点20及漏极接点22。HEMT150亦具有一栅极1 52、分隔层154及一体场板156。HEMT 150进一步包含一覆盖场板156、分隔层154及位于分隔层154之上的栅极152的部分的第二分隔层1 58。一第二场板1 59位于第二分隔层1 58之上,通常自栅极1 52向漏极22延伸,其中第二场板通过穿过第二分隔层158之一或多个通孔(未示出)或通过形成于HEMT 150的活性区域之外的一或多个导电路径而电耦合至栅极。根据本发明的其它HEMT可包含额外的分隔层及场板对,其中一额外对以虚影展示。该结构亦可覆盖有一介电钝化层(未示出)。
建构并测试一根据图3及4的实施例的基于GaN的HEMT结构,狈0试结果展示于图12的图形160中。初始测试展示了在82 V及4 GHz下等级B中运作的51%功率增加效率(PAE)的20.4 W/mm的功率密度。更新近的测试已达成了于120 V及4 GHz下的55%PAE的32 W/mm功率密度的改良效能。
测试场板距离(Lf)对装置效能的影响。场板长度Lf自0至0.9μm的距离变化,且随后量测所得装置的PAE。如图12中所说明,一旦将场板长度延伸至0.5μm,则PAE展示出改良,其中最佳长度为约0.7μm。然而,最佳长度可视特定装置设计以及运作电压及频率而定。
上述场板配置可用于其它类型的晶体管中。图13展示根据本发明的金属半导体场效应晶体管(MESFET)170的一实施例,其较佳为基于碳化硅(SiC),但亦可使用其它材料系统的MESFET。MESFET 170包含一碳化硅基板172,其上形成一碳化硅缓冲层174及一碳化硅沟道层176,其中缓冲层174夹于沟道层176与基板172之间。形成与沟道层176接触的源极及漏极接点178、180。
非导电分隔层182形成于沟道层176之上,位于源极与漏极接点178、180之间。类似于上述与图1及2中所示的分隔层24,分隔层1 82可包含一层非导电材料(如,介电质)或大量不同层的非导电材料(诸如,不同的介电质或外延材料)。
亦类似于图1及2中的分隔层24,可将分隔层182蚀刻至沟道层176且可沉积一栅极184,使得栅极184的底部位于沟道层176的表面上。可将形成栅极184之金属图案化以延伸穿过分隔层182,使得栅极184的顶部形成一场板结构186,其自栅极184的边缘向漏极接点180延伸距离Lf。最后,该结构可覆盖有一介电钝化层188,如氮化硅。
基于碳化硅的MESFET装置的制造于美国专利第5,686,737号及于2000年5月10日申请的题为″Silicon Carbide Metal-Semiconductor Field EffectTransistors and Methods of Fabricating Silicon Carbide Metal-Semiconductor FieldEffect Transistors"的美国专利申请案第09/567,717号中得以更详细地描述,该专利及申请案的全文均以引用之方式并入本文中。
图14展示根据本发明的MESFET 190的另一实施例,其类似于图12中的MESFET 170但具有类似于图3及4中所示的HEMT 40中的结构的栅极及场板结构。MESFET 190包含一碳化硅基板172、缓冲层174及沟道176。其亦包含一源极接点178、漏极接点180及一沉积于沟道176上的栅极192。一分隔层194沉积于栅极192之上且位于栅极192与源极及漏极接点178、180之,间的沟道176的表面上。一场板196沉积于分隔层194上且与栅极192重叠。场板196通过一如上述的图3及4的HEMT 40中的导电路径而耦合至栅极192。可使用诸多不同的导电路径,包括一通向栅极接点的第一导电路径(未示出)或一通向栅极192的第二寻电路径(未示出),两者均运行出MESFET活性区域之外。场板196亦可通过穿过分隔层194的导电通孔(未示出)耦合至栅极192。
正如前述HEMT,根据本发明的MESFET的不同实施例可包含凹陷栅极。图15展示了根据本发明的具有一凹陷栅极202的MESFET 200的一实施例。类似于图12及13中所示的MESFET 170及190,MESFET 200亦具有一碳化硅基板172、缓冲层174、沟道176、一源极接点178及一漏极接点180。栅极202沉积于沟道176上。一分隔层204沉积于栅极202上、栅极202与源极及漏极接点178、180之间的沟道176的表面上。分隔层204比图14中的分隔层194薄使得其更紧密的与栅极202的形状一致。栅极202为部分凹陷于沟道176中的且一场板206沉积于分隔层204之上,与栅极202重叠。场板206通过一或多个导电路径(如图3及4中的HEMT 40中所描述的那些导电路径)耦合至栅极202。
亦应了解,根据本发明的MESFET的不同实施例可包含多个分隔层,如图7的HEMT 90中所描述。在根据本发明的一些实施例中,MESFET可具有成阶跃结构的两个分隔层,但可使用两个以上的分隔层。亦如上所述这些层可包含外延或介电材料,其中阶跃结构有效地提供两个场板,这些场板提供于两个电压下改良的运作特征。亦应理解,根据本发明的MESFET亦可包含类似于图11中所示及上述的HEMT 150上的那些分隔层及场板的多个分隔层及场板。
尽管已参照本发明的特定较佳配置相当详细地描述了本发明,但其它版本亦为可能。该场板配置可用于诸多不同装置中。这些场板亦可具有诸多不同形状且可以诸多不同方式连接至源极接点。因此,本发明的精神及范畴不应限于上文所描述的本发明的较佳版本。

Claims (10)

1.一种晶体管,包括:
多个活性半导体层;
与所述多个活性层电接触的源极接点;
与所述多个活性层电接触的漏极接点,其中位于所述多个活性层的最上部上的所述源极接点与所述漏极接点之间存在空间;
与所述多个活性层的所述最上部电接触且位于所述源极与所述漏极接点之间的栅极;
形成于所述多个活性层的所述最上部的表面上并位于所述栅极与所述漏极接点之间的由单晶材料构成的分隔层;
直接位于所述分隔层上且与所述栅极成一体的场板,所述场板减小峰值运作电场。
2.如权利要求1所述的晶体管,其特征在于,所述场板于所述分隔层上自所述栅极的边缘向所述漏极接点延伸一距离Lf。
3.如权利要求1所述的晶体管,其特征在于,所述分隔层包括位于所述栅极与所述漏极接点之间成一阶跃结构的多个分隔层。
4.如权利要求3所述的晶体管,其特征在于,所述场板形成于所述分隔层阶跃结构上,所述场板包括多个场板部分,每一部分在其与所述多个活性层的最上部之间具有一不同距离。
5.如权利要求1所述的晶体管,其特征在于,包含一高电子迁移率晶体管且其中所述多个活性层包含至少一位于基板上的缓冲层及一位于所述缓冲层上的势垒层,其中所述缓冲层与所述势垒层之间存在二维电子气,所述势垒层为所述多个活性层的最上部。
6.如权利要求5所述的晶体管,其特征在于,进一步包含一位于所述缓冲层与所述基板之间的长晶层。
7.如权利要求1所述的晶体管,其特征在于,包含一金属半导体场效应晶体管,其中所述多个活性层包含至少一位于基板上的缓冲层及一位于所述缓冲层上的沟道层,该沟道层为所述多个活性层的最上部。
8.如权利要求1所述的晶体管,其特征在于,所述栅极至少部分凹陷于所述多个活性层的所述最上部中。
9.如权利要求1所述的晶体管,其特征在于,进一步包含一覆盖所述晶体管的至少一些暴露表面的钝化层。
10.如权利要求1所述的晶体管,其特征在于,进一步包含一覆盖所述场板及位于所述场板与漏极接点之间的所述分隔层的表面的第二分隔层,且进一步包含一位于所述第二分隔层上且自所述栅极的边缘向所述漏极接点延伸的第二场板。
CN2011102654868A 2003-09-09 2004-09-08 具有场板的宽能带隙晶体管装置 Pending CN102306658A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US50157603P 2003-09-09 2003-09-09
US60/501,576 2003-09-09
US10/930,160 US7501669B2 (en) 2003-09-09 2004-08-31 Wide bandgap transistor devices with field plates
US10/930,160 2004-08-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2004800327821A Division CN1938859B (zh) 2003-09-09 2004-09-08 具有场板的宽能带隙晶体管装置

Publications (1)

Publication Number Publication Date
CN102306658A true CN102306658A (zh) 2012-01-04

Family

ID=34228870

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2011102654868A Pending CN102306658A (zh) 2003-09-09 2004-09-08 具有场板的宽能带隙晶体管装置
CN2004800327821A Active CN1938859B (zh) 2003-09-09 2004-09-08 具有场板的宽能带隙晶体管装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2004800327821A Active CN1938859B (zh) 2003-09-09 2004-09-08 具有场板的宽能带隙晶体管装置

Country Status (7)

Country Link
US (4) US7501669B2 (zh)
EP (4) EP2432021B1 (zh)
JP (1) JP2007505501A (zh)
KR (1) KR101108300B1 (zh)
CN (2) CN102306658A (zh)
CA (1) CA2536030A1 (zh)
WO (1) WO2005029589A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916665A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置
CN106796953A (zh) * 2014-10-30 2017-05-31 英特尔公司 源极/漏极至氮化镓晶体管中的2d电子气的低接触电阻再生长
US10756183B2 (en) 2014-12-18 2020-08-25 Intel Corporation N-channel gallium nitride transistors
US10930500B2 (en) 2014-09-18 2021-02-23 Intel Corporation Wurtzite heteroepitaxial structures with inclined sidewall facets for defect propagation control in silicon CMOS-compatible semiconductor devices
US11177376B2 (en) 2014-09-25 2021-11-16 Intel Corporation III-N epitaxial device structures on free standing silicon mesas
US11233053B2 (en) 2017-09-29 2022-01-25 Intel Corporation Group III-nitride (III-N) devices with reduced contact resistance and their methods of fabrication
CN117716496A (zh) * 2021-08-03 2024-03-15 新唐科技日本株式会社 可变电容元件

Families Citing this family (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1557024B (zh) * 2001-07-24 2010-04-07 美商克立股份有限公司 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
TWI560783B (en) * 2003-09-09 2016-12-01 Univ California Fabrication of single or multiple gate field plates
US7279697B2 (en) * 2003-12-05 2007-10-09 International Rectifier Corporation Field effect transistor with enhanced insulator structure
US7045404B2 (en) * 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US8174048B2 (en) * 2004-01-23 2012-05-08 International Rectifier Corporation III-nitride current control device and method of manufacture
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US20060073621A1 (en) * 2004-10-01 2006-04-06 Palo Alto Research Center Incorporated Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer
US9640649B2 (en) * 2004-12-30 2017-05-02 Infineon Technologies Americas Corp. III-nitride power semiconductor with a field relaxation feature
WO2006080109A1 (ja) * 2005-01-25 2006-08-03 Fujitsu Limited Mis構造を有する半導体装置及びその製造方法
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US20060223293A1 (en) * 2005-04-01 2006-10-05 Raytheon Company Semiconductor devices having improved field plates
US7615774B2 (en) * 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US20060255377A1 (en) * 2005-05-12 2006-11-16 Der-Wei Tu Field effect transistor with novel field-plate structure
EP1901341A4 (en) * 2005-06-10 2009-07-15 Nec Corp FIELD EFFECT TRANSISTOR
US7800131B2 (en) * 2005-06-10 2010-09-21 Nec Corporation Field effect transistor
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US7548112B2 (en) * 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
US8183595B2 (en) * 2005-07-29 2012-05-22 International Rectifier Corporation Normally off III-nitride semiconductor device having a programmable gate
JP4751150B2 (ja) 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
EP2312635B1 (en) * 2005-09-07 2020-04-01 Cree, Inc. Transistors with fluorine treatment
CA2622750C (en) * 2005-09-16 2015-11-03 The Regents Of The University Of California N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor
US20070138515A1 (en) * 2005-12-19 2007-06-21 M/A-Com, Inc. Dual field plate MESFET
DE112007000092B4 (de) * 2006-01-09 2014-07-24 International Rectifier Corp. Gruppe-III-Nitrid-Leistungshalbleiter mit einem Feld-Relaxations-Merkmal
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7408208B2 (en) * 2006-03-20 2008-08-05 International Rectifier Corporation III-nitride power semiconductor device
US8264003B2 (en) * 2006-03-20 2012-09-11 International Rectifier Corporation Merged cascode transistor
US7388236B2 (en) * 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
KR100770132B1 (ko) * 2006-10-30 2007-10-24 페어차일드코리아반도체 주식회사 질화물계 반도체 소자
EP1921669B1 (en) * 2006-11-13 2015-09-02 Cree, Inc. GaN based HEMTs with buried field plates
US7692263B2 (en) * 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
JP4712683B2 (ja) * 2006-12-21 2011-06-29 パナソニック株式会社 トランジスタおよびその製造方法
US7838904B2 (en) * 2007-01-31 2010-11-23 Panasonic Corporation Nitride based semiconductor device with concave gate region
US8212290B2 (en) 2007-03-23 2012-07-03 Cree, Inc. High temperature performance capable gallium nitride transistor
JP4691060B2 (ja) * 2007-03-23 2011-06-01 古河電気工業株式会社 GaN系半導体素子
JP5266679B2 (ja) * 2007-07-11 2013-08-21 住友電気工業株式会社 Iii族窒化物電子デバイス
US7609115B2 (en) * 2007-09-07 2009-10-27 Raytheon Company Input circuitry for transistor power amplifier and method for designing such circuitry
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US7800132B2 (en) * 2007-10-25 2010-09-21 Northrop Grumman Systems Corporation High electron mobility transistor semiconductor device having field mitigating plate and fabrication method thereof
US8039301B2 (en) * 2007-12-07 2011-10-18 The United States Of America As Represented By The Secretary Of The Navy Gate after diamond transistor
US7750370B2 (en) * 2007-12-20 2010-07-06 Northrop Grumman Space & Mission Systems Corp. High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
JP5134378B2 (ja) * 2008-01-07 2013-01-30 シャープ株式会社 電界効果トランジスタ
US7965126B2 (en) 2008-02-12 2011-06-21 Transphorm Inc. Bridge circuits and their components
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
CN101604704B (zh) * 2008-06-13 2012-09-05 西安能讯微电子有限公司 Hemt器件及其制造方法
US7985986B2 (en) 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
JP5408929B2 (ja) 2008-08-21 2014-02-05 昭和電工株式会社 半導体装置および半導体装置の製造方法
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US7884394B2 (en) * 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
US8823012B2 (en) * 2009-04-08 2014-09-02 Efficient Power Conversion Corporation Enhancement mode GaN HEMT device with gate spacer and method for fabricating the same
US8742459B2 (en) * 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
JP5595685B2 (ja) * 2009-07-28 2014-09-24 パナソニック株式会社 半導体装置
US8390000B2 (en) * 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8138529B2 (en) 2009-11-02 2012-03-20 Transphorm Inc. Package configurations for low EMI circuits
JP5625336B2 (ja) * 2009-11-30 2014-11-19 サンケン電気株式会社 半導体装置
JP5037594B2 (ja) * 2009-12-08 2012-09-26 シャープ株式会社 電界効果トランジスタ
US8389977B2 (en) * 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8816497B2 (en) 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US8624662B2 (en) * 2010-02-05 2014-01-07 Transphorm Inc. Semiconductor electronic components and circuits
US20110241020A1 (en) * 2010-03-31 2011-10-06 Triquint Semiconductor, Inc. High electron mobility transistor with recessed barrier layer
US8907350B2 (en) * 2010-04-28 2014-12-09 Cree, Inc. Semiconductor devices having improved adhesion and methods of fabricating the same
EP2383786B1 (en) 2010-04-29 2018-08-15 Ampleon Netherlands B.V. Semiconductor transistor comprising two electrically conductive shield elements
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
JP2011249728A (ja) * 2010-05-31 2011-12-08 Toshiba Corp 半導体装置および半導体装置の製造方法
CN103026491B (zh) * 2010-07-06 2016-03-02 香港科技大学 常关断型三族氮化物金属-二维电子气隧穿结场效应晶体管
JP5655424B2 (ja) * 2010-08-09 2015-01-21 サンケン電気株式会社 化合物半導体装置
JP2012109492A (ja) * 2010-11-19 2012-06-07 Sanken Electric Co Ltd 化合物半導体装置
JP5707903B2 (ja) * 2010-12-02 2015-04-30 富士通株式会社 化合物半導体装置及びその製造方法
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8786327B2 (en) 2011-02-28 2014-07-22 Transphorm Inc. Electronic components with reactive filters
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8803232B2 (en) 2011-05-29 2014-08-12 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage and ultra-high voltage semiconductor devices with increased breakdown voltages
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8772833B2 (en) * 2011-09-21 2014-07-08 Electronics And Telecommunications Research Institute Power semiconductor device and fabrication method thereof
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US20130105817A1 (en) 2011-10-26 2013-05-02 Triquint Semiconductor, Inc. High electron mobility transistor structure and method
US8884308B2 (en) 2011-11-29 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor structure with improved breakdown voltage performance
US9209176B2 (en) 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
US10002957B2 (en) * 2011-12-21 2018-06-19 Power Integrations, Inc. Shield wrap for a heterostructure field effect transistor
JP2013131650A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 半導体装置及びその製造方法
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
TWI566402B (zh) * 2012-02-23 2017-01-11 高效電源轉換公司 具有閘極間隔件之增強模式氮化鎵高電子遷移率電晶體元件及其製造方法
US8648643B2 (en) 2012-02-24 2014-02-11 Transphorm Inc. Semiconductor power modules and devices
WO2013155108A1 (en) 2012-04-09 2013-10-17 Transphorm Inc. N-polar iii-nitride transistors
US9443941B2 (en) 2012-06-04 2016-09-13 Infineon Technologies Austria Ag Compound semiconductor transistor with self aligned gate
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US8803246B2 (en) 2012-07-16 2014-08-12 Transphorm Inc. Semiconductor electronic components with integrated current limiters
WO2014050054A1 (ja) * 2012-09-28 2014-04-03 パナソニック株式会社 半導体装置
JP6085442B2 (ja) 2012-09-28 2017-02-22 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
JP2014090037A (ja) 2012-10-29 2014-05-15 Advanced Power Device Research Association 半導体装置
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9048184B2 (en) * 2013-03-15 2015-06-02 Northrop Grumman Systems Corporation Method of forming a gate contact
US9059076B2 (en) 2013-04-01 2015-06-16 Transphorm Inc. Gate drivers for circuits based on semiconductor devices
US9142626B1 (en) 2013-04-23 2015-09-22 Hrl Laboratories, Llc Stepped field plate wide bandgap field-effect transistor and method
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9407214B2 (en) 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
US9537425B2 (en) 2013-07-09 2017-01-03 Transphorm Inc. Multilevel inverters and their components
US9455341B2 (en) * 2013-07-17 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having a back-barrier layer and method of making the same
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
TWI555209B (zh) * 2013-07-29 2016-10-21 高效電源轉換公司 具有降低的輸出電容之氮化鎵裝置及其製法
US10566429B2 (en) * 2013-08-01 2020-02-18 Dynax Semiconductor, Inc. Semiconductor device and method of manufacturing the same
US10665709B2 (en) 2013-09-10 2020-05-26 Delta Electronics, Inc. Power semiconductor device integrated with ESD protection circuit under source pad, drain pad, and/or gate pad
TWI577022B (zh) 2014-02-27 2017-04-01 台達電子工業股份有限公司 半導體裝置與應用其之半導體裝置封裝體
US10910491B2 (en) 2013-09-10 2021-02-02 Delta Electronics, Inc. Semiconductor device having reduced capacitance between source and drain pads
US10236236B2 (en) 2013-09-10 2019-03-19 Delta Electronics, Inc. Heterojunction semiconductor device for reducing parasitic capacitance
US10833185B2 (en) 2013-09-10 2020-11-10 Delta Electronics, Inc. Heterojunction semiconductor device having source and drain pads with improved current crowding
KR102100928B1 (ko) * 2013-10-17 2020-05-15 삼성전자주식회사 고전자 이동도 트랜지스터
US8980759B1 (en) 2014-05-22 2015-03-17 Hrl Laboratories, Llc Method of fabricating slanted field-plate GaN heterojunction field-effect transistor
US9543940B2 (en) 2014-07-03 2017-01-10 Transphorm Inc. Switching circuits having ferrite beads
US9590494B1 (en) 2014-07-17 2017-03-07 Transphorm Inc. Bridgeless power factor correction circuits
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9608078B2 (en) 2014-10-17 2017-03-28 Cree, Inc. Semiconductor device with improved field plate
US9640623B2 (en) 2014-10-17 2017-05-02 Cree, Inc. Semiconductor device with improved field plate
US9590087B2 (en) 2014-11-13 2017-03-07 Infineon Technologies Austria Ag Compound gated semiconductor device having semiconductor field plate
US9559161B2 (en) * 2014-11-13 2017-01-31 Infineon Technologies Austria Ag Patterned back-barrier for III-nitride semiconductor devices
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
JP2016171162A (ja) * 2015-03-12 2016-09-23 株式会社東芝 半導体装置
US10200030B2 (en) 2015-03-13 2019-02-05 Transphorm Inc. Paralleling of switching devices for high power circuits
CN104882483B (zh) * 2015-05-05 2018-06-26 西安电子科技大学 具有γ栅和凹陷缓冲层的场效应晶体管及其制备方法
CN104916684B (zh) * 2015-06-11 2018-04-27 大连理工大学 一种纵向短开启栅极沟道型hemt器件及其制备方法
WO2017015225A1 (en) * 2015-07-17 2017-01-26 Cambridge Electronics, Inc. Field-plate structures for semiconductor devices
WO2017111795A1 (en) * 2015-12-23 2017-06-29 Intel Corporation Multiple stacked field-plated gan transistor and interlayer dielectrics to improve breakdown voltage and reduce parasitic capacitances
JP6888013B2 (ja) 2016-01-15 2021-06-16 トランスフォーム テクノロジー,インコーポレーテッド AL(1−x)Si(x)Oゲート絶縁体を有するエンハンスメントモードIII族窒化物デバイス
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
KR102150007B1 (ko) 2016-06-01 2020-09-01 이피션트 파워 컨버젼 코퍼레이션 다단계 표면의 패시베이션 구조 및 그 제조 방법
DE102016122399A1 (de) * 2016-11-21 2018-05-24 Forschungsverbund Berlin E.V. Gate-Struktur und Verfahren zu dessen Herstellung
DE102016123931A1 (de) 2016-12-09 2018-06-14 United Monolithic Semiconductors Gmbh Transistor
DE102016123934A1 (de) 2016-12-09 2018-06-14 United Monolithic Semiconductors Gmbh Verfahren zur Herstellung eines Transistors
CN107134491B (zh) * 2017-03-29 2019-11-29 西安电子科技大学 基于弧形源场板的垂直结构电力电子器件
CN107134490B (zh) * 2017-03-29 2020-04-14 西安电子科技大学 基于弧形源场板和弧形漏场板的垂直型功率器件及其制作方法
CN107068740B (zh) * 2017-03-29 2019-12-03 西安电子科技大学 源阶梯场板垂直型功率晶体管
CN107170820B (zh) * 2017-03-29 2020-04-14 西安电子科技大学 弧形栅-漏复合场板电流孔径异质结器件
US10319648B2 (en) 2017-04-17 2019-06-11 Transphorm Inc. Conditions for burn-in of high power semiconductors
US10326002B1 (en) * 2018-06-11 2019-06-18 Globalfoundries Inc. Self-aligned gate contact and cross-coupling contact formation
FR3088485B1 (fr) * 2018-11-13 2021-04-30 Commissariat Energie Atomique Dispositif semi-conducteur a plaque de champ
CN109887836B (zh) * 2019-01-25 2021-03-02 西安交通大学 n型掺杂单晶金刚石场板结构的场效应晶体管的制备方法
US11121245B2 (en) 2019-02-22 2021-09-14 Efficient Power Conversion Corporation Field plate structures with patterned surface passivation layers and methods for manufacturing thereof
US10971612B2 (en) 2019-06-13 2021-04-06 Cree, Inc. High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability
CN110581170A (zh) * 2019-08-13 2019-12-17 中山市华南理工大学现代产业技术研究院 具有Г型栅的GaN基MIS-HEMT器件及制备方法
US11862691B2 (en) 2019-11-01 2024-01-02 Raytheon Company Field effect transistor having field plate
US11552190B2 (en) 2019-12-12 2023-01-10 Analog Devices International Unlimited Company High voltage double-diffused metal oxide semiconductor transistor with isolated parasitic bipolar junction transistor region
WO2021217651A1 (en) * 2020-04-30 2021-11-04 Innoscience (suzhou) Semiconductor Co., Ltd. Semiconductor device and method for manufacturing the same
US11769768B2 (en) 2020-06-01 2023-09-26 Wolfspeed, Inc. Methods for pillar connection on frontside and passive device integration on backside of die
US11228287B2 (en) 2020-06-17 2022-01-18 Cree, Inc. Multi-stage decoupling networks integrated with on-package impedance matching networks for RF power amplifiers
US11533025B2 (en) 2020-06-18 2022-12-20 Wolfspeed, Inc. Integrated doherty amplifier with added isolation between the carrier and the peaking transistors
US11581859B2 (en) 2020-06-26 2023-02-14 Wolfspeed, Inc. Radio frequency (RF) transistor amplifier packages with improved isolation and lead configurations
US11887945B2 (en) 2020-09-30 2024-01-30 Wolfspeed, Inc. Semiconductor device with isolation and/or protection structures
US11502178B2 (en) 2020-10-27 2022-11-15 Wolfspeed, Inc. Field effect transistor with at least partially recessed field plate
US11749726B2 (en) 2020-10-27 2023-09-05 Wolfspeed, Inc. Field effect transistor with source-connected field plate
US11658234B2 (en) 2020-10-27 2023-05-23 Wolfspeed, Inc. Field effect transistor with enhanced reliability
US20220157671A1 (en) 2020-11-13 2022-05-19 Cree, Inc. Packaged rf power device with pcb routing
CN112789731A (zh) * 2020-12-25 2021-05-11 英诺赛科(苏州)科技有限公司 半导体器件及其制造方法
WO2022134017A1 (en) * 2020-12-25 2022-06-30 Innoscience (Suzhou) Technology Co., Ltd. Semiconductor device and manufacturing method thereof
CN113016074B (zh) * 2021-02-19 2022-08-12 英诺赛科(苏州)科技有限公司 半导体器件
CN113053749B (zh) * 2021-03-12 2022-06-21 浙江大学 GaN器件及制备方法
WO2022212327A1 (en) * 2021-03-31 2022-10-06 Massachusetts Institute Of Technology Semiconductor device with electric field management structures
US12009417B2 (en) 2021-05-20 2024-06-11 Macom Technology Solutions Holdings, Inc. High electron mobility transistors having improved performance
US11869964B2 (en) 2021-05-20 2024-01-09 Wolfspeed, Inc. Field effect transistors with modified access regions
US20220376104A1 (en) 2021-05-20 2022-11-24 Cree, Inc. Transistors including semiconductor surface modification and related fabrication methods
US12015075B2 (en) 2021-05-20 2024-06-18 Macom Technology Solutions Holdings, Inc. Methods of manufacturing high electron mobility transistors having a modified interface region
US11842937B2 (en) 2021-07-30 2023-12-12 Wolfspeed, Inc. Encapsulation stack for improved humidity performance and related fabrication methods
US11621672B2 (en) 2021-08-05 2023-04-04 Wolfspeed, Inc. Compensation of trapping in field effect transistors
US20230075505A1 (en) 2021-09-03 2023-03-09 Wolfspeed, Inc. Metal pillar connection topologies for heterogeneous packaging
US20230078017A1 (en) 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess
WO2024037906A1 (en) * 2022-08-15 2024-02-22 Signify Holding B.V. Half bridge switch node shielded from input voltage and ground
US20240105823A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Barrier Structure for Dispersion Reduction in Transistor Devices
US20240105824A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Barrier Structure for Sub-100 Nanometer Gate Length Devices
US20240106397A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Transistor amplifier with pcb routing and surface mounted transistor die
US20240120202A1 (en) 2022-10-06 2024-04-11 Wolfspeed, Inc. Implanted Regions for Semiconductor Structures with Deep Buried Layers
CN118099209A (zh) * 2024-04-28 2024-05-28 英诺赛科(苏州)半导体有限公司 一种GaN功率器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100571A (en) * 1998-06-16 2000-08-08 Nec Corporation Fet having non-overlapping field control electrode between gate and drain
US20020005528A1 (en) * 2000-07-17 2002-01-17 Fujitsu Quantum Devices Limited High-speed compound semiconductor device operable at large output power with minimum leakage current
US20020017648A1 (en) * 2000-06-29 2002-02-14 Kensuke Kasahara Semiconductor device
US20030006437A1 (en) * 1998-09-22 2003-01-09 Nec Corporation Field effect transistor
US20030132463A1 (en) * 2002-01-08 2003-07-17 Yosuke Miyoshi Schottky gate field effect transistor

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187552A (en) 1979-03-28 1993-02-16 Hendrickson Thomas E Shielded field-effect transistor devices
US4947232A (en) * 1980-03-22 1990-08-07 Sharp Kabushiki Kaisha High voltage MOS transistor
JPS56169368A (en) * 1980-05-30 1981-12-26 Sharp Corp High withstand voltage mos field effect semiconductor device
NL8103218A (nl) 1981-07-06 1983-02-01 Philips Nv Veldeffekttransistor met geisoleerde stuurelektrode.
US4551905A (en) * 1982-12-09 1985-11-12 Cornell Research Foundation, Inc. Fabrication of metal lines for semiconductor devices
JPS59104706U (ja) 1982-12-29 1984-07-14 オカモト株式会社 手袋成形型
JPS62237763A (ja) 1986-04-08 1987-10-17 Agency Of Ind Science & Technol 半導体装置の製造方法
JPH0514463Y2 (zh) 1986-11-27 1993-04-16
US5196359A (en) * 1988-06-30 1993-03-23 Texas Instruments Incorporated Method of forming heterostructure field effect transistor
JPH0738108B2 (ja) 1988-11-28 1995-04-26 ヤマハ株式会社 電子楽器の楽音制御方法
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
JPH0750413Y2 (ja) 1991-02-25 1995-11-15 石川島播磨重工業株式会社 フラップ式保安ゲート
EP0576566B1 (en) 1991-03-18 1999-05-26 Trustees Of Boston University A method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films
US5192987A (en) * 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JPH0521793A (ja) 1991-07-09 1993-01-29 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH06204253A (ja) 1993-01-07 1994-07-22 Fujitsu Ltd 電界効果半導体装置
JPH06224225A (ja) * 1993-01-27 1994-08-12 Fujitsu Ltd 電界効果半導体装置
JP3188346B2 (ja) 1993-06-10 2001-07-16 ローム株式会社 電界効果トランジスタ
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
JP2658860B2 (ja) 1993-12-20 1997-09-30 日本電気株式会社 半導体装置およびその製造方法
JPH0864519A (ja) 1994-08-08 1996-03-08 Korea Electron Telecommun T字形のゲートの形成のためのフォトマスクおよびその製造方法
US5686737A (en) 1994-09-16 1997-11-11 Cree Research, Inc. Self-aligned field-effect transistor for high frequency applications
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
JP3051817B2 (ja) 1995-01-31 2000-06-12 シャープ株式会社 半導体装置の製造方法
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US6002148A (en) * 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
US5569937A (en) * 1995-08-28 1996-10-29 Motorola High breakdown voltage silicon carbide transistor
KR0167273B1 (ko) * 1995-12-02 1998-12-15 문정환 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
US6700157B2 (en) * 1996-01-22 2004-03-02 Fuji Electric Co., Ltd. Semiconductor device
TW360982B (en) 1996-01-26 1999-06-11 Matsushita Electric Works Ltd Thin film transistor of silicon-on-insulator type
JPH09232827A (ja) 1996-02-21 1997-09-05 Oki Electric Ind Co Ltd 半導体装置及び送受信切り替え型アンテナスイッチ回路
US5652179A (en) * 1996-04-24 1997-07-29 Watkins-Johnson Company Method of fabricating sub-micron gate electrode by angle and direct evaporation
US5710455A (en) 1996-07-29 1998-01-20 Motorola Lateral MOSFET with modified field plates and damage areas
US5929467A (en) * 1996-12-04 1999-07-27 Sony Corporation Field effect transistor with nitride compound
JP3958404B2 (ja) * 1997-06-06 2007-08-15 三菱電機株式会社 横型高耐圧素子を有する半導体装置
JPH118256A (ja) 1997-06-13 1999-01-12 Oki Electric Ind Co Ltd 電界効果トランジスタの製造方法
WO1999005725A1 (fr) * 1997-07-24 1999-02-04 Mitsubishi Denki Kabushiki Kaisha Dispositif a semi-conducteurs a effet de champ
TW334632B (en) 1997-07-24 1998-06-21 Mitsubishi Electric Corp Field effective semiconductor
JP3457511B2 (ja) * 1997-07-30 2003-10-20 株式会社東芝 半導体装置及びその製造方法
US5898198A (en) 1997-08-04 1999-04-27 Spectrian RF power device having voltage controlled linearity
US6346451B1 (en) * 1997-12-24 2002-02-12 Philips Electronics North America Corporation Laterial thin-film silicon-on-insulator (SOI) device having a gate electrode and a field plate electrode
DE19800647C1 (de) * 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
JP3127874B2 (ja) 1998-02-12 2001-01-29 日本電気株式会社 電界効果トランジスタ及びその製造方法
JP3233207B2 (ja) 1998-03-20 2001-11-26 日本電気株式会社 電界効果トランジスタの製造方法
JP3534624B2 (ja) 1998-05-01 2004-06-07 沖電気工業株式会社 半導体装置の製造方法
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP2000082671A (ja) 1998-06-26 2000-03-21 Sony Corp 窒化物系iii−v族化合物半導体装置とその製造方法
US6042975A (en) 1998-07-08 2000-03-28 Lucent Technologies Inc. Alignment techniques for photolithography utilizing multiple photoresist layers
DE19835454A1 (de) 1998-08-05 2000-02-10 Aventis Res & Tech Gmbh & Co Geschütztes supraleitendes Bauteil und Verfahren zu dessen Herstellung
US6100549A (en) 1998-08-12 2000-08-08 Motorola, Inc. High breakdown voltage resurf HFET
JP2000164926A (ja) 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
US6495409B1 (en) * 1999-01-26 2002-12-17 Agere Systems Inc. MOS transistor having aluminum nitride gate structure and method of manufacturing same
JP3497406B2 (ja) 1999-03-25 2004-02-16 株式会社クボタ 水田作業機
US6127703A (en) 1999-08-31 2000-10-03 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region
JP2001160656A (ja) 1999-12-01 2001-06-12 Sharp Corp 窒化物系化合物半導体装置
US6639255B2 (en) 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
JP4592938B2 (ja) * 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
JP2001189324A (ja) 1999-12-28 2001-07-10 Ricoh Co Ltd 半導体装置
US6586781B2 (en) * 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP4198339B2 (ja) 2000-07-17 2008-12-17 ユーディナデバイス株式会社 化合物半導体装置
US6624488B1 (en) * 2000-08-07 2003-09-23 Advanced Micro Devices, Inc. Epitaxial silicon growth and usage of epitaxial gate insulator for low power, high performance devices
JP4322414B2 (ja) 2000-09-19 2009-09-02 株式会社ルネサステクノロジ 半導体装置
US6690042B2 (en) * 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
JP2002118122A (ja) 2000-10-06 2002-04-19 Nec Corp ショットキゲート電界効果トランジスタ
US6891235B1 (en) 2000-11-15 2005-05-10 International Business Machines Corporation FET with T-shaped gate
TWI288435B (en) 2000-11-21 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor device and equipment for communication system
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP2001230263A (ja) 2001-01-29 2001-08-24 Nec Corp 電界効果型トランジスタ
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6468878B1 (en) * 2001-02-27 2002-10-22 Koninklijke Philips Electronics N.V. SOI LDMOS structure with improved switching characteristics
US6455409B1 (en) * 2001-02-28 2002-09-24 Advanced Micro Devices, Inc. Damascene processing using a silicon carbide hard mask
JP2002270830A (ja) 2001-03-12 2002-09-20 Fuji Electric Co Ltd 半導体装置
US7622322B2 (en) 2001-03-23 2009-11-24 Cornell Research Foundation, Inc. Method of forming an AlN coated heterojunction field effect transistor
GB0107408D0 (en) * 2001-03-23 2001-05-16 Koninkl Philips Electronics Nv Field effect transistor structure and method of manufacture
JP4220683B2 (ja) * 2001-03-27 2009-02-04 パナソニック株式会社 半導体装置
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP3744381B2 (ja) 2001-05-17 2006-02-08 日本電気株式会社 電界効果型トランジスタ
US6475857B1 (en) * 2001-06-21 2002-11-05 Samsung Electronics Co., Ltd. Method of making a scalable two transistor memory device
CN1557024B (zh) 2001-07-24 2010-04-07 美商克立股份有限公司 绝缘栅铝镓氮化物/氮化钾高电子迁移率晶体管(hemt)
GB0122122D0 (en) 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
JP2003100775A (ja) 2001-09-20 2003-04-04 Nec Compound Semiconductor Devices Ltd 半導体装置およびその製造方法
JP2003174039A (ja) 2001-09-27 2003-06-20 Murata Mfg Co Ltd ヘテロ接合電界効果トランジスタ
US6906350B2 (en) 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
WO2003038905A2 (en) 2001-11-01 2003-05-08 Koninklijke Philips Electronics N.V. Lateral soi field-effect transistor
KR100445904B1 (ko) 2001-12-12 2004-08-25 한국전자통신연구원 소스 필드 플레이트를 갖는 드레인 확장형 모스 전계 효과트랜지스터 및그 제조방법
JP2003188189A (ja) 2001-12-20 2003-07-04 Nec Compound Semiconductor Devices Ltd 半導体装置の製造方法
KR100438895B1 (ko) * 2001-12-28 2004-07-02 한국전자통신연구원 고전자 이동도 트랜지스터 전력 소자 및 그 제조 방법
JP2003203923A (ja) 2002-01-10 2003-07-18 Mitsubishi Electric Corp 半導体装置およびその製造方法
GB0202437D0 (en) 2002-02-02 2002-03-20 Koninkl Philips Electronics Nv Cellular mosfet devices and their manufacture
JP4251811B2 (ja) 2002-02-07 2009-04-08 富士通マイクロエレクトロニクス株式会社 相関二重サンプリング回路とこの相関二重サンプリング回路を備えたcmosイメージセンサ
DE10206739C1 (de) 2002-02-18 2003-08-21 Infineon Technologies Ag Transistorbauelement
JP3908572B2 (ja) 2002-03-18 2007-04-25 株式会社東芝 半導体素子
JP3705431B2 (ja) 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
JP3723780B2 (ja) 2002-03-29 2005-12-07 ユーディナデバイス株式会社 半導体装置及びその製造方法
US6559513B1 (en) * 2002-04-22 2003-05-06 M/A-Com, Inc. Field-plate MESFET
DE10304722A1 (de) 2002-05-11 2004-08-19 United Monolithic Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
US6740535B2 (en) 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6870219B2 (en) 2002-07-31 2005-03-22 Motorola, Inc. Field effect transistor and method of manufacturing same
US6838325B2 (en) 2002-10-24 2005-01-04 Raytheon Company Method of forming a self-aligned, selectively etched, double recess high electron mobility transistor
US8089097B2 (en) 2002-12-27 2012-01-03 Momentive Performance Materials Inc. Homoepitaxial gallium-nitride-based electronic devices and method for producing same
JP4077731B2 (ja) 2003-01-27 2008-04-23 富士通株式会社 化合物半導体装置およびその製造方法
CN100388509C (zh) 2003-01-29 2008-05-14 株式会社东芝 功率半导体器件
US6933544B2 (en) * 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
JP3940699B2 (ja) * 2003-05-16 2007-07-04 株式会社東芝 電力用半導体素子
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
TWI560783B (en) 2003-09-09 2016-12-01 Univ California Fabrication of single or multiple gate field plates
US7126426B2 (en) 2003-09-09 2006-10-24 Cree, Inc. Cascode amplifier structures including wide bandgap field effect transistor with field plates
JP4417677B2 (ja) 2003-09-19 2010-02-17 株式会社東芝 電力用半導体装置
US7488992B2 (en) 2003-12-04 2009-02-10 Lockheed Martin Corporation Electronic device comprising enhancement mode pHEMT devices, depletion mode pHEMT devices, and power pHEMT devices on a single substrate and method of creation
US7071498B2 (en) 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
JP4041075B2 (ja) 2004-02-27 2008-01-30 株式会社東芝 半導体装置
US7573078B2 (en) 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
JP2005340417A (ja) 2004-05-26 2005-12-08 Mitsubishi Electric Corp ヘテロ接合電界効果型半導体装置
JP2006032552A (ja) 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
US7229903B2 (en) 2004-08-25 2007-06-12 Freescale Semiconductor, Inc. Recessed semiconductor device
US7312481B2 (en) 2004-10-01 2007-12-25 Texas Instruments Incorporated Reliable high-voltage junction field effect transistor and method of manufacture therefor
JP2006114652A (ja) 2004-10-14 2006-04-27 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
US7456443B2 (en) 2004-11-23 2008-11-25 Cree, Inc. Transistors having buried n-type and p-type regions beneath the source region
US7709859B2 (en) 2004-11-23 2010-05-04 Cree, Inc. Cap layers including aluminum nitride for nitride-based transistors
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7385273B2 (en) 2005-06-10 2008-06-10 International Rectifier Corporation Power semiconductor device
US7800131B2 (en) 2005-06-10 2010-09-21 Nec Corporation Field effect transistor
EP1901341A4 (en) 2005-06-10 2009-07-15 Nec Corp FIELD EFFECT TRANSISTOR
CN1321340C (zh) 2005-09-01 2007-06-13 上海交通大学 基于面阵投影的同步扫描双目视觉三维成像的方法
US7679111B2 (en) 2005-09-16 2010-03-16 International Rectifier Corporation Termination structure for a power semiconductor device
JP2007150282A (ja) 2005-11-02 2007-06-14 Sharp Corp 電界効果トランジスタ
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
JP5307973B2 (ja) 2006-02-24 2013-10-02 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 半導体装置
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
US7629627B2 (en) 2006-04-18 2009-12-08 University Of Massachusetts Field effect transistor with independently biased gates
JP5065616B2 (ja) 2006-04-21 2012-11-07 株式会社東芝 窒化物半導体素子
JP5036233B2 (ja) 2006-07-06 2012-09-26 シャープ株式会社 半導体スイッチング素子および半導体回路装置
JP4304198B2 (ja) 2006-09-15 2009-07-29 株式会社東芝 半導体装置
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
US8502323B2 (en) 2007-08-03 2013-08-06 The Hong Kong University Of Science And Technology Reliable normally-off III-nitride active device structures, and related methods and systems
US7915643B2 (en) 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US7884394B2 (en) 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
JP5481103B2 (ja) 2009-06-11 2014-04-23 株式会社東芝 窒化物半導体素子
US20110241020A1 (en) 2010-03-31 2011-10-06 Triquint Semiconductor, Inc. High electron mobility transistor with recessed barrier layer
JP5548909B2 (ja) 2010-04-23 2014-07-16 古河電気工業株式会社 窒化物系半導体装置
JP5688556B2 (ja) 2010-05-25 2015-03-25 パナソニックIpマネジメント株式会社 電界効果トランジスタ
US20120175679A1 (en) 2011-01-10 2012-07-12 Fabio Alessio Marino Single structure cascode device
JP5874173B2 (ja) 2011-02-25 2016-03-02 富士通株式会社 化合物半導体装置及びその製造方法
JP5343100B2 (ja) 2011-03-17 2013-11-13 株式会社東芝 窒化物半導体装置
US9024357B2 (en) 2011-04-15 2015-05-05 Stmicroelectronics S.R.L. Method for manufacturing a HEMT transistor and corresponding HEMT transistor
ITTO20120675A1 (it) 2011-08-01 2013-02-02 Selex Sistemi Integrati Spa Dispositivo phemt ad arricchimento/svuotamento e relativo metodo di fabbricazione
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
JP5591776B2 (ja) 2011-09-21 2014-09-17 株式会社東芝 窒化物半導体装置およびそれを用いた回路
JP5908692B2 (ja) 2011-09-29 2016-04-26 トランスフォーム・ジャパン株式会社 化合物半導体装置及びその製造方法
JP2013157407A (ja) 2012-01-27 2013-08-15 Fujitsu Semiconductor Ltd 化合物半導体装置及びその製造方法
US8975664B2 (en) 2012-06-27 2015-03-10 Triquint Semiconductor, Inc. Group III-nitride transistor using a regrown structure
US9024324B2 (en) 2012-09-05 2015-05-05 Freescale Semiconductor, Inc. GaN dual field plate device with single field plate metal
JP5949527B2 (ja) 2012-12-21 2016-07-06 富士通株式会社 半導体装置及びその製造方法、電源装置、高周波増幅器
US8946779B2 (en) 2013-02-26 2015-02-03 Freescale Semiconductor, Inc. MISHFET and Schottky device integration
US9425267B2 (en) 2013-03-14 2016-08-23 Freescale Semiconductor, Inc. Transistor with charge enhanced field plate structure and method
JP6220161B2 (ja) 2013-06-03 2017-10-25 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100571A (en) * 1998-06-16 2000-08-08 Nec Corporation Fet having non-overlapping field control electrode between gate and drain
US20030006437A1 (en) * 1998-09-22 2003-01-09 Nec Corporation Field effect transistor
US20020017648A1 (en) * 2000-06-29 2002-02-14 Kensuke Kasahara Semiconductor device
US20020005528A1 (en) * 2000-07-17 2002-01-17 Fujitsu Quantum Devices Limited High-speed compound semiconductor device operable at large output power with minimum leakage current
US20030132463A1 (en) * 2002-01-08 2003-07-17 Yosuke Miyoshi Schottky gate field effect transistor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.ASANO ET AL.: "Novel High Power AlGaAs/GaAs HFET with a Field-Modulating Plate Operated at 35V Drain Voltage", 《IEDM98》 *
SHREEPAD KARMALKAR ET AL.: "Very high voltage AlGaN/GaN high electron mobility transistors using a field plate deposited on a stepped insulator", 《SOLID-STATE ELECTRONICS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916665A (zh) * 2014-03-14 2015-09-16 株式会社东芝 半导体装置
US10930500B2 (en) 2014-09-18 2021-02-23 Intel Corporation Wurtzite heteroepitaxial structures with inclined sidewall facets for defect propagation control in silicon CMOS-compatible semiconductor devices
US11177376B2 (en) 2014-09-25 2021-11-16 Intel Corporation III-N epitaxial device structures on free standing silicon mesas
CN106796953A (zh) * 2014-10-30 2017-05-31 英特尔公司 源极/漏极至氮化镓晶体管中的2d电子气的低接触电阻再生长
CN106796953B (zh) * 2014-10-30 2021-03-30 英特尔公司 源极/漏极至氮化镓晶体管中的2d电子气的低接触电阻再生长
US10756183B2 (en) 2014-12-18 2020-08-25 Intel Corporation N-channel gallium nitride transistors
US11233053B2 (en) 2017-09-29 2022-01-25 Intel Corporation Group III-nitride (III-N) devices with reduced contact resistance and their methods of fabrication
US11728346B2 (en) 2017-09-29 2023-08-15 Intel Corporation Group III-nitride (III-N) devices with reduced contact resistance and their methods of fabrication
CN117716496A (zh) * 2021-08-03 2024-03-15 新唐科技日本株式会社 可变电容元件

Also Published As

Publication number Publication date
US7501669B2 (en) 2009-03-10
CN1938859B (zh) 2011-11-23
US20050051796A1 (en) 2005-03-10
US20090224288A1 (en) 2009-09-10
EP1665385B1 (en) 2020-11-11
EP2437303A1 (en) 2012-04-04
EP2434546A1 (en) 2012-03-28
US20120132959A1 (en) 2012-05-31
US20070235761A1 (en) 2007-10-11
EP2432021B1 (en) 2021-06-09
CN1938859A (zh) 2007-03-28
US7928475B2 (en) 2011-04-19
US8120064B2 (en) 2012-02-21
WO2005029589A1 (en) 2005-03-31
EP2432021A1 (en) 2012-03-21
KR101108300B1 (ko) 2012-01-25
EP1665385A1 (en) 2006-06-07
US9397173B2 (en) 2016-07-19
CA2536030A1 (en) 2005-03-31
JP2007505501A (ja) 2007-03-08
KR20060071415A (ko) 2006-06-26

Similar Documents

Publication Publication Date Title
CN1938859B (zh) 具有场板的宽能带隙晶体管装置
CN1950945B (zh) 具有多个场板的宽能带隙晶体管
CN100580954C (zh) 具有源极连接场板的宽能带隙高电子迁移率晶体管
EP1866968B1 (en) Wide bandgap transistors with gate-source field plates
EP1390983B1 (en) Group-iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer
US7126426B2 (en) Cascode amplifier structures including wide bandgap field effect transistor with field plates
EP1921669B1 (en) GaN based HEMTs with buried field plates
CN100541745C (zh) 单个或多个栅极场板的制造
TWI404208B (zh) 具場板之寬能帶隙電晶體裝置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: North Carolina

Applicant after: kerry Corp.

Address before: North Carolina

Applicant before: Cree Lighting Company

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120104