CN100580954C - 具有源极连接场板的宽能带隙高电子迁移率晶体管 - Google Patents

具有源极连接场板的宽能带隙高电子迁移率晶体管 Download PDF

Info

Publication number
CN100580954C
CN100580954C CN200580015278A CN200580015278A CN100580954C CN 100580954 C CN100580954 C CN 100580954C CN 200580015278 A CN200580015278 A CN 200580015278A CN 200580015278 A CN200580015278 A CN 200580015278A CN 100580954 C CN100580954 C CN 100580954C
Authority
CN
China
Prior art keywords
field plate
electron mobility
mobility transistor
grid
high electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200580015278A
Other languages
English (en)
Other versions
CN1954440A (zh
Inventor
吴益逢
P·帕里克
U·米史拉
M·摩尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Lighting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Lighting Co filed Critical Cree Lighting Co
Publication of CN1954440A publication Critical patent/CN1954440A/zh
Application granted granted Critical
Publication of CN100580954C publication Critical patent/CN100580954C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种包含形成于基板上的多个活性半导体层的高电子迁移率晶体管(HEMT)。源电极、漏电极及栅极以与多个活性层电接触的方式形成。分隔层形成于多个活性层的表面的至少一部分上并覆盖该栅极。场板形成于该分隔层上并电连接至该源电极,其中场板降低该HEMT中的峰值工作电场。

Description

具有源极连接场板的宽能带隙高电子迁移率晶体管
本申请要求2004年5月11日提交的Wu等人的临时申请第60/570,519号的优先权。
本发明是根据ONR/DARPA政府合约第N00014-02-0306号在政府支持下作出的。政府在本发明中具有特定的权利。
发明背景
发明领域
本发明涉及晶体管,尤其涉及利用场板的晶体管。
现有技术的描述
AlGaN/GaN半导体材料的制造中的改进已帮助推进AlGaN/GaN晶体管的开发,诸如用于高频、高温及高功率应用的高电子迁移率晶体管(HEMT)。AlGaN/GaN具有大能带隙、高峰值及饱和电子速度值[B.Gelmont、K.Kim及M.Shur,MonteCarlo Simulation of Electron Transport in Gallium Nitride,J.Appl.Phys.74,(1993),第1818-1821页]。AlGaN/GaN HEMT也可具有超过1013cm2的2DEG薄片密度及相对较高的电子迁移率(高达2019cm2/Vs)[R.Gaska等人,Electron Transport inAlGaN-GaN Heterostructures Grown on 6H-SIC Substrates,Appl.phys.Lett.72,(1998),第707-709页]。这些特征允许AlGaN/GaN HEMT在RF、微波及毫米波频率下提供非常高的电压及高功率的工作。
AlGaN/GaN HEMT已生长于蓝宝石基板上,且已展示出4.6W/mm的功率密度及7.6W的总功率[Y.F.Wu等人,GaN-Based FETs for Microwave PowerAmplification,IEICE Trans.Electron.E-82-C,(1999).第1895-1905页]。更近地,生长于SiC上的AlGaN/GaN HEMT已展示出在8GHz下的9.8W/mm的功率密度[Y.F.Wu等人,Very-High Power Density AlGaN/GaN HEMTs,IEEE Trans.Electron.Dev.48,(2001),第586-590页],及在9GHz下的22.9W的总输出功率[M.Micovic,等人,AlGaN/GaN Heterojunction Field Effect Transistors Grown by Nitrogen PlasmaAssisted Molecular Beam Epitaxy,IEEE Trans.Electron.Dev.48,(2001),第591-596页]。
Khan等人的美国专利第5,192,987号公开了生长于缓冲器及基板上的基于GaN/AlGaN的HEMT。其它AlGaN/GaN HEMT及场效应晶体管(FET)已描述于Gaska等人的High-Temperature Performance of AlGaN/GaN HEFT’s on SiCSubstrates,IEEE电子器件期刊(IEEE Electron Device Letters),18,(1997),第492-494页中;及描述于Ping等人的DC and Microwave Performance of High Current AlGaNHeterostructure Field Effect Transistors Grown on P-type SiC Substrates,IEEE电子器件期刊,19,(1998),第54-56页中。这些器件中的某一些已展示出高达67千兆赫的增益频宽产品(fT)[K.Chu等人WOCSEMMAD,Monterey,CA(1998年2月)],及在10GHz下高达2.84W/mm的高功率密度[G.Sullivan等人,High Power 10-GHzOperation of AlGaN HFET’s in Insulating SiC,IEEE电子器件期刊19,(1998),第198-200页;及Wu等人,High Al-Content AlGaN/GaN MODFETs for UltrahighPerformance,IEEE电子器件期刊19,(1998),第50-53页]。
电子俘获及DC与RF特征之间所得的差异已成为这些器件的性能中的限制因素。已成功地使用氮化硅(SiN)钝化以减轻该俘获问题,从而导致在10Ghz下具有10W/mm以上的功率密度的高性能器件。举例而言,美国专利第6,586,781号公开了用于降低基于GaN的晶体管中的俘获效应的方法与结构,该申请的全文以引用的方式并入本文中。然而,由于存在于这些结构中的高电场,电荷俘获仍是一个问题。
已使用场板以增强基于GaN的HEMT在微波频率下的性能[参看S Kamalkar及U.K.Mishra,Very High Voltage AlGaN/GaN High Electron Mobility TransistorsUsing a Field Plate Deposited on a Stepped Insulator,固态电子学(Solid StateElectronics)45,(2001),第1645-1662页]。然而,这些方法涉及连接至晶体管的栅极的场板,其中该场板在沟道的漏极侧的顶部上。这可导致显著的(FP)-漏极电容,且连接至栅极的场板将额外之栅-漏电容(Cgd)添加至该器件。这不仅会减少增益,而且也可能由于较差的输入-输出隔离而导致不稳定性。
发明概述
本发明提供具有连接至源电极的场板的晶体管,其中利用本发明的典型晶体管为HEMT。根据本发明的HEMT的一实施例包含形成于基板上的多个活性半导体层,其中在所述多个活性层的两个之间的异质界面处具有二维电子气(2DEG)。源电极与漏电极以与2DEG接触的方式形成,且栅极形成于源电极与漏电极之间并在多个活性层上。分隔层形成于栅极与漏电极之间的多个活性层的表面的至少一部分上。场板形成于该分隔层上,其中至少一条导电路径将该场板电连接至源电极,该至少一条导电路径覆盖小于栅极与源电极之间的所有最顶部表面的区域。根据本发明的HEMT的另一实施例包含连续形成于基板上的缓冲层及阻挡层及在缓冲层与阻挡层之间的异质界面处的二维电子气(2DEG)。同时包括了源电极及漏电极以与2DEG进行欧姆接触,且在该源电极与漏电极之间的阻挡层上包括栅极。分隔层覆盖栅极与漏电极之间的阻挡层的至少一部分。场板被包括在与阻挡层隔离的分隔层上,且自栅极向漏电极延伸距离Lf。该场板通过至少一条导电路径而电连接至源电极,该导电路径覆盖小于栅极与源电极之间的所有最顶部层的区域。
根据本发明的HEMT的又一实施例包含形成于基板上的多个活性半导体层及在多个活性层的两个之间的异质界面处的二维电子气(2DEG)。包括了源电极及漏电极以与2DEG接触。栅极被包括在源电极与漏电极之间且在多个活性层上。场板自栅极的边缘向漏电极延伸距离Lf,其中该场板与栅电极及活性层隔离。至少一条导电路径将场板电连接至源电极,其中该至少一条导电路径覆盖小于栅极与源电极之间的所有最顶部表面的区域。
从以下详细描述以及附图中,本领域的技术人员将明白本发明的这些及其它进一步的特征与优点。
附图简述
图1是根据本发明的HEMT的一实施例的平面图;
图2是图1中的HEMT的截面图;
图3是根据本发明的HEMT的另一实施例的平面图;
图4是图3中的HEMT的截面图;
图5是比较根据本发明的HEMT与没有场板的HEMT及具有栅极连接场板的HEMT的工作特性的表;
图6是示出具有栅极连接场板的HEMT的工作特性的图;
图7是示出具有源极连接场板的HEMT的工作特性的图;
图8是根据本发明的具有伽玛形栅极的HEMT的截面图;以及
图9是根据本发明的具有凹陷栅极的HEMT的截面图。
发明的详细描述
根据本发明的场板配置可与多种不同的晶体管结构一起使用。宽能带隙晶体管结构一般包括一活性区,其中金属源电极与漏电极以与该活性区域电接触的方式形成;以及形成于源电极与漏电极之间以调节活性区内的电场的栅电极。在活性区上方形成分隔层。该分隔层可包含介电层或多个介电层的组合。导电场板形成于该分隔层上方,且自栅电极的边缘向漏电极延伸距离Lf
可将场板电连接至源电极。该场板配置可降低该器件中的峰值电场,从而导致增大的击穿电压及减少的俘获。电场的降低也可产生诸如减少的漏电流及增强的可靠性等其它益处。通过使场板电连接至源电极,由栅极连接场板所产生的减少的增益及不稳定性的状况得以减少。当根据本发明来配置时,源极连接场板的屏蔽效应可减少Cgd,这增强了输入-输出隔离。
可利用根据本发明的场板配置的一种类型的晶体管是高电子迁移率晶体管(HEMT),它通常包括缓冲层及该缓冲层上的阻挡层。在缓冲层与阻挡层之间的结处形成二维电子气(2DEG)层/沟道。在源电极与漏电极之间的阻挡层上形成栅电极。
根据本发明,在阻挡层上形成分隔层,从而覆盖栅极与漏电极之间的阻挡层的至少一部分,使得可用与阻挡层电隔离的方式在分隔层上形成场板。在其它实施例中,分隔层也可覆盖全部或某些栅极,使得场板可与栅极重叠,同时保持与栅极及阻挡层电隔离。在一较佳实施例中,分隔层覆盖栅极及在栅极与源和漏电极之间的阻挡层的表面。分隔层可包括介电层或多个介电层的组合。可使用诸如SiN、SiO2、Si、Ge、MgOx、MgNx、ZnO、SiNx、SiOx、其合金或层序列、或如下所述的外延材料等不同的介电材料。
导电场板形成于分隔层上,且自栅极的边缘向漏电极延伸距离Lf,其中该场板及栅电极通常在单独的沉积步骤期间形成。场板也电连接至源电极。
应了解,当一元件或层被称为“在另一元件或层上”、“连接至另一元件或层”、“耦合至另一元件或层”或“与另一元件或层接触”时,它可直接在另一元件或层上、连接或耦合至另一元件或层、或与另一元件或层接触、或可存在介入元件或层。相反,当一元件被称为“直接在另一元件或层上”、“直接连接至另一元件或层”、“直接耦合至另一元件或层”或“与另一元件或层直接接触”时,不存在介入元件或层。同样,当第一元件或层被称为“与第二元件或层电接触”或“电耦合至第二元件或层”时,存在允许电流在第一元件或层与第二元件或层之间流动的电路径。该电路径可包括电容器、耦合电感器和/或甚至在导电元件之间没有直接接触的情况下允许电流流动的其它元件。
图1与2示出根据本发明的基于氮化物的HEMT 10的一实施例,它包含基板12,该基板由碳化硅、蓝宝石、尖晶石、ZnO、硅、氮化镓、氮化铝或任何其它能够支持III族氮化物材料的生长的材料制成。在某些实施例中,基板12可包含可从北卡罗莱纳州达勒姆市的Cree,Inc.购得的半绝缘4H-SiC。
可在基板12上形成成核层14以减少HEMT 10中基板12与下一层之间的晶格失配。成核层14应近似为1000埃
Figure C20058001527800081
厚,虽然可使用其它厚度。成核层14可包含多种不同材料,其中一适当材料为AlzGa1-zN(0<=z<=1)。可使用诸如金属氧化物化学汽相沉积(MOCVD)、氢化物汽相外延生长(HVPE)或分子束外延生长(MBE)等已知的半导体生长技术在基板12上形成成核层14。
成核层14的形成可取决于用于基板12的材料。举例而言,在多种基板上形成成核层14的方法被教示于美国专利第5,290,393号及第5,686,738号中,这两个专利都以如同本文中完全陈述那样引用的方式并入。在碳化硅基板上形成成核层的方法公开于美国专利第5,393,993号、第5,523,589号及第5,739,554号中,每一专利都以如同本文完全陈述那样引用的方式并入本文中。
HEMT 10进一步包含形成于成核层14上的高电阻率缓冲层16,其中适当的缓冲层16由诸如AlxGayIn(1-x-y)N(0<=x<=1,0<=y<=1,x+y<=1)等III族氮化物材料制成。在根据本发明的另一实施例中,缓冲层16包含近似2μm厚的GaN层,其中该层的一部分掺杂了Fe。
阻挡层18形成于缓冲层16上,使得将缓冲层16夹于阻挡层18与成核层14之间。缓冲层16与阻挡层18中的每一个可包含经掺杂或未经掺杂的III族氮化物材料。阻挡层18可包含诸如InGaN、AlGaN、AlN或其组合物等不同材料的一层或多层。在一实施例中,阻挡层18包含0.8nm的AlN及22.5nm的AlxGa1-xN(x≈0.195,如通过荧光所测得的)。示例性结构示于美国专利第6,316,793号、第6,586,781号、第6,548,333号及美国公开专利申请第2002/0167023号与第2003/00020092号中,每一专利都以如同本文完全陈述那样引用的方式并入。其它基于氮化物的HEMT结构示于美国专利第5,192,987号与第5,296,395号中,每一专利都以如同本文完全陈述那样引用的方式并入本文中。可使用用于生长成核层14的相同方法来制造缓冲层16与阻挡层18。在缓冲层16与阻挡层18之间的异质界面处形成二维电子气(2DEG)层/沟道17。在HEMT的活性区域以外用台面蚀刻或离子布植(ion implementation)来事先这些器件之间的电隔离。
形成通过阻挡层18进行欧姆接触的金属源电极20与漏电极22,且在源电极20与漏电极22之间的阻挡层18上形成栅极24。当以适当电平对栅电极24加偏压时,电流可通过缓冲层16与阻挡层18之间的异质界面处感应的二维电子气(2DEG)17在源电极20与漏电极22之间流动。在以上引用的专利与出版物中详细描述了源极欧姆接触20与漏极欧姆接触22的形成。
源电极20与漏电极22可由包括(但不限于)钛、铝、金或镍的合金的不同材料制成。栅极24也可由包括(但不限于)镍、金、铂、钛、铬、钛与钨的合金、或硅化铂的不同材料制成。栅极24可具有多种不同长度,其中一较佳栅极长度(Lg)为大约0.5微米。如图1中最佳地示出的,栅极24连接至栅电极28并在栅电极28处与其接触。如下所述,在根据本发明的其它晶体管实施例中,栅极24可至少部分地凹陷于阻挡层18中。
可在栅极24上及栅极24与源电极20和漏电极22之间的阻挡层18的表面上形成非导电分隔层26,尽管如上所述该分隔层可覆盖较少区域。分隔层26可包含诸如电介质等非导电材料的层。或者,它可包含若干不同电介质层或介电层的组合。分隔层可具有多种不同厚度,其中一适当范围的厚度为约0.05至2微米。
当在器件金属化之前形成分隔层26时,分隔层26可包含诸如具有诸如Al、Ga或In的合金等不同的III族元素的III族氮化物材料等外延材料,其中一适当分隔层材料为AlxGa1-xN(0≤x≤1)。在阻挡层18的外延生长之后,可使用相同的外延生长方法来生长分隔层26。接着蚀刻分隔层26,使得可以与缓冲层18及2DEG 17接触的方式适当形成栅极24、源电极20与漏电极22。接着可将场板沉积于栅极24与漏电极22之间的分隔层上。在场板与栅极重叠的实施例中,应至少部分地在栅极上包括介电材料的额外分隔层以将栅极与场板隔离。
在栅极24与漏电极22之间的分隔层26上形成场板30,其中场板30非常靠近栅极24但不与其重叠。保留栅极24与场板之间的间隔(Lgf),且该间隔应足够宽以与场板30隔离,同时应足够小以最大化由场板30提供的场效应。若Lgf太宽,则可降低场效应。在根据本发明的一实施例中,Lgf应为约0.4微米或更小,尽管也可使用更大和更小的间隔。
场板30可自栅极24的边缘延伸不同的距离Lf,其中Lf的距离的适当范围为约0.1至2微米。场板30可包括多种使用标准金属化方法沉积的不同导电材料,其中一适当材料为金属或金属的组合。在根据本发明的一实施例中,场板30包含钛/金或镍/金。
场板30电连接至源电极20,且图1示出了可根据本发明使用的两种连接结构,尽管也可使用其它连接结构。导电总线32可形成于分隔层26上以在场板30与源电极20之间延伸。可使用不同数目的总线32,尽管总线的数目越大,可由总线引入的不当电容越大,且总线32应覆盖小于栅极24与源电极20之间的全部最顶部表面的区域。总线应具有足够的数目以使电流自源电极20有效传播至场板30中,同时不覆盖HEMT的太多活性区域,其中总线32的适当数目为二。
场板30或者可通过在HEMT 10的活性区域、场板及源电极20以外延伸的导电路径34来电连接至源电极20。如图1所示,路径34在与栅电极28相对的一侧处的HEMT的活性区域以外延伸。在根据本发明的替换实施例中,导电路径可在栅电极28一侧上的HEMT 10的活性区域以外延伸,或HEMT 10可包括两个或两个以上在HEMT 10的相同侧或不同侧上延伸的导电路径。
在场板30沉积及其连接至源电极20之后,该活性结构可由诸如氮化硅等介电钝化层(未示出)覆盖。在以上引用的专利与出版物中详细描述了形成介电钝化层的方法。
图3和4示出了根据本发明的HEMT 40的另一实施例,它具有类似于图1与2的HEMT 10中的特征的多种特征。对于类似特征,使用相同的参考标号,且通过以上特征的描述等同地应用于HEMT 40的了解,可引入这些特征而不需充分描述。
HEMT 40包含基板12、成核层14、缓冲层16、2DEG 17、阻挡层18、源电极20、漏电极22、栅极24、分隔层26及栅电极28。HEMT 40还包含形成于主要在栅极24与漏电极22之间的分隔层26上而且与栅极24的一部分重叠的场板42。对于图1与2中的HEMT 10,Lgf较小,它可能造成制造期间的某些困难。通过使场板42与栅极24重叠,可制造HEMT 40而不需满足Lgf的容限。然而,场板42的重叠部分可能引入额外的不当电容。在判定使用场板30还是使用场板42时,必须使使用场板42制造的简易与由场板30提供的减少的电容平衡。
HEMT 40还包含总线44或导电路径46以将场板42电连接至源电极20。在场板42沉积及其连接至源电极20之后,活性结构也可由诸如氮化硅等介电钝化层(未示出)覆盖。
图5示出了将不具有场板的基于GaN的HEMT的工作特性与具有连接到栅极的场板及连接到源极的场板的HEMT的工作特性进行比较的表50。在具有栅极长度(Lg)=0.5微米、场板长度(Lf)=1.1微米及器件宽度(w)=500微米的HEMT上进行测试。具有源极连接场板的HEMT展示出改良的最大稳定增益(MSG)与减少的反向功率传输(S12)。与无场板器件相比较,具有栅极连接场板的HEMT的S12在4GHz下增加了71%,而具有源极连接场板器件的S12实际上减少了28%。与无场板器件相比较,后者的S12的减少归因于由接地场板引起的法拉第(Faraday)屏蔽效应。结果,在4GHz下,源极连接场板器件展示出高于无场板器件1.3dB的MSG及高于栅极连接场板器件5.2dB的MSG。在较高偏压下可维持源极连接场板器件的该优势。大信号性能的特点在于4GHz下的负载牵引功率测量(load-pull powermeasurement)。在48V及以上,栅极连接场板器件与源极连接场板器件在输出功率与功率附加效率(PAE)方面均优于无场板器件,同时,源极连接场板器件始终表现出比栅极连接场板器件高5-7dB的大信号增益。
图6是示出栅极连接场板器件的性能的图表60,图7是示出源极连接场板器件的性能的图表70。两个场板器件都能够在118V dc的偏压下工作,其中使调整最优化以用于3dB压缩(P3dB)下的增益、PAE与输出功率的最佳组合。在两个器件产生约20W/mm的功率密度时,源极连接场板器件提供高7dB的相关联的增益。游乐所达成的在4GHz下的21dB的大信号增益及所估算的224V的电压摆动,电压频率增益的乘积接近10kV-GHz。
根据本发明的源极连接场板配置可用于除上述以外的多种不同HEMT。举例而言,图8示出了根据本发明的HEMT 80的另一实施例,它具有类似于HEMT 10与40中的特征的多种特征,包括基板12、成核层14、缓冲层16、2DEG 17、阻挡层18、源电极20及漏电极22。然而,HEMT 80具有特定适用于高频工作的伽玛(Γ)形栅极82。栅极长度(Lg)是确定器件的速度时重要的器件尺寸之一,且对于较高频率的器件,栅极长度较短。较短的栅极长度可导致可消极影响高频工作的高电阻。T栅极通常用于高频工作,但事先具有T栅极的场板的良好耦合放置可能是困难的。
伽玛栅极82提供低栅极电阻,且允许栅极占据面积的受控界定。包括分隔层84以覆盖伽玛栅极82及伽玛栅极82与源电极20和漏电极22之间的阻挡层18的表面。在伽玛栅极82的水平部分与分隔层84的顶部之间可保留一间隔。HEMT 80还包括在与伽玛栅极82重叠的分隔层84上的场板86,其中场板86较佳地沉积于伽玛栅极82的不具有水平悬垂部分的一侧上。该配置允许场板86与其下方的活性层之间的紧密放置及有效耦合。在其它伽玛栅极实施例中,可将场板配置为类似于场板86,但并非与栅极重叠,在栅极的边缘与场板之间可存在一类似于图2中所示的间隔Lgf的间隔。
场板86可以多种不同方式电连接至源电极20。由于栅极82的水平部分的下表面与分隔层84之间的间隔,在场板86与源电极20之间直接提供导电路径可能是困难的。相反,导电路径可包括于场板86与源电极20之间,即在HEMT 80的活性区域以外延伸。或者,可由分隔层84完全覆盖伽玛栅极82,其中栅极的水平部分下方的间隔被填充。接着,导电路径可在分隔层84上自场板86直接延伸至源电极。接着,该活性结构可由介电钝化层(未示出)覆盖。
图9示出了根据本发明的也可用源极连接场板配置的又一HEMT 90。HEMT90也具有类似于图1-4中的HEMT 10与40中的特征的多种特征,包括基板12、成核层14、缓冲层16、2DEG 17、阻挡层18、源电极20及漏电极22。然而,栅极92凹陷于阻挡层18中,且由分隔层94覆盖。在其它实施例中,栅极的底面可仅部分地凹陷,或栅极的不同部分可在阻挡层18中凹陷至不同深度。场板96被设置于分隔层94上,且电连接至源电极20,且该活性结构可由介电钝化层(未示出)覆盖。
以上实施例提供在微波与毫米波频率下具有改良功率的宽能带隙晶体管,尤其是HEMT。由于较高的输入-输出隔离,所以HEMT展示出同时的高增益、高功率及更稳定的工作。可将该结构扩大至较大尺寸以用于较低频率下的高压应用。
尽管已参考本发明的某些较佳配置相当详细地描述了本发明,但其它形式也是可能的。场板配置可用于多种不同器件中。场板也可具有多种不同形状且可以多种不同方式连接至源电极。本发明的精神及范畴不应限于以上描述的本发明的较佳形式。

Claims (16)

1.一种高电子迁移率晶体管,包含:
在基板上的多个活性半导体层;
在所述多个活性半导体层中的两个之间的异质界面处的二维电子气;
与所述二维电子气接触的源电极与漏电极;
在所述源电极与漏电极之间且在所述多个活性半导体层上的栅极;
在所述栅极与所述漏电极之间的所述多个活性半导体层的表面的至少一部分上的分隔层;
在所述分隔层上的场板;以及
将所述场板电连接至所述源电极的至少一条导电路径,所述至少一条导电路径覆盖小于所述栅极与所述源电极之间的所有最顶部表面的区域。
2.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述场板在所述分隔层上自所述栅极的边缘向所述漏电极延伸一段距离Lf
3.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述分隔层至少部分地覆盖所述栅极,且所述场板至少部分地与所述栅极重叠且在所述分隔层上自所述栅极的边缘向所述漏电极延伸一段距离Lf
4.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述至少一条导电路径在所述场板与源电极之间延伸,所述至少一条路径在所述分隔层以外延伸并提供所述场板与所述源电极的电连接。
5.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述分隔层在所述栅极与所述源电极之间的所述多个活性半导体层的最顶部的表面上。
6.如权利要求5所述的高电子迁移率晶体管,其特征在于,所述至少一条导电路径在所述分隔层上在所述场板与源电极之间延伸,并提供所述场板与所述源电极的电连接。
7.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述多个活性半导体层包括基于氮化镓的半导体材料。
8.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述分隔层包含介电材料。
9.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述分隔层包含多个介电材料层。
10.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述栅极为伽玛形的。
11.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述栅极至少部分地凹陷于阻挡层中。
12.如权利要求1所述的高电子迁移率晶体管,其特征在于,所述场板降低所述高电子迁移率晶体管中的峰值工作电场。
13.如权利要求12所述的高电子迁移率晶体管,其特征在于,所述峰值工作电场的降低增大所述高电子迁移率晶体管的击穿电压。
14.如权利要求12所述的高电子迁移率晶体管,其特征在于,所述峰值工作电场的降低减少所述高电子迁移率晶体管中的俘获。
15.如权利要求12所述的高电子迁移率晶体管,其特征在于,所述峰值工作电场的降低减少所述高电子迁移率晶体管中的漏电流。
16.一种高电子迁移率晶体管,包含:
在基板上的多个活性半导体层;
在所述多个活性半导体层中的两个之间的异质界面处的二维电子气;
与所述二维电子气接触的源电极与漏电极;
在所述源电极与漏电极之间且在所述多个活性半导体层上的栅极;
自所述栅极的边缘向所述漏电极延伸一段距离Lf的场板,所述场板与所述栅极及活性半导体层隔离;以及
将所述场板电连接至所述源电极的至少一条导电路径,所述至少一条导电路径从所述场板向所述源电极凸出。
CN200580015278A 2004-05-11 2005-03-24 具有源极连接场板的宽能带隙高电子迁移率晶体管 Active CN100580954C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US57051904P 2004-05-11 2004-05-11
US60/570,519 2004-05-11
US10/958,970 2004-10-04
US10/958,970 US7550783B2 (en) 2004-05-11 2004-10-04 Wide bandgap HEMTs with source connected field plates
PCT/US2005/009884 WO2005114744A2 (en) 2004-05-11 2005-03-24 Wide bandgap hemts with source connected field plates

Publications (2)

Publication Number Publication Date
CN1954440A CN1954440A (zh) 2007-04-25
CN100580954C true CN100580954C (zh) 2010-01-13

Family

ID=34964651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200580015278A Active CN100580954C (zh) 2004-05-11 2005-03-24 具有源极连接场板的宽能带隙高电子迁移率晶体管

Country Status (8)

Country Link
US (3) US7550783B2 (zh)
EP (4) EP2270871B1 (zh)
JP (3) JP5390768B2 (zh)
KR (1) KR101101671B1 (zh)
CN (1) CN100580954C (zh)
CA (1) CA2566756C (zh)
TW (2) TWI485785B (zh)
WO (1) WO2005114744A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328523A (zh) * 2015-06-15 2017-01-11 北大方正集团有限公司 射频横向双扩散mos器件的制作方法

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920434B1 (ko) 2001-07-24 2009-10-08 크리, 인코포레이티드 절연 게이트 갈륨 비소 질화물/갈륨 질화물계 고전자이동도 트랜지스터
KR100514379B1 (ko) * 2002-07-23 2005-09-13 김용철 사과를 이용한 주류제조방법
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
JP4744109B2 (ja) 2004-07-20 2011-08-10 トヨタ自動車株式会社 半導体装置とその製造方法
US20060073621A1 (en) * 2004-10-01 2006-04-06 Palo Alto Research Center Incorporated Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US20060226442A1 (en) 2005-04-07 2006-10-12 An-Ping Zhang GaN-based high electron mobility transistor and method for making the same
US7598576B2 (en) * 2005-06-29 2009-10-06 Cree, Inc. Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
US7855401B2 (en) 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7525122B2 (en) * 2005-06-29 2009-04-28 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7638818B2 (en) * 2005-09-07 2009-12-29 Cree, Inc. Robust transistors with fluorine treatment
JP5162823B2 (ja) * 2005-12-08 2013-03-13 三菱電機株式会社 半導体装置及び半導体装置の製造方法
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
JP5105160B2 (ja) * 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US8212290B2 (en) 2007-03-23 2012-07-03 Cree, Inc. High temperature performance capable gallium nitride transistor
CN101320750A (zh) * 2007-06-06 2008-12-10 西安能讯微电子有限公司 Hemt器件及其制造方法
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
CN101252088B (zh) * 2008-03-28 2010-04-14 西安电子科技大学 一种增强型A1GaN/GaN HEMT器件的实现方法
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
CN101419985B (zh) * 2008-12-01 2011-06-01 西安电子科技大学 绝缘栅型源场板异质结场效应晶体管
US7898004B2 (en) * 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US7884394B2 (en) * 2009-02-09 2011-02-08 Transphorm Inc. III-nitride devices and circuits
SE533700C2 (sv) * 2009-03-24 2010-12-07 Transic Ab Bipolär transistor i kiselkarbid
US8008977B2 (en) * 2009-04-14 2011-08-30 Triquint Semiconductor, Inc. Field-plated transistor including feedback resistor
US8754496B2 (en) * 2009-04-14 2014-06-17 Triquint Semiconductor, Inc. Field effect transistor having a plurality of field plates
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8168486B2 (en) * 2009-06-24 2012-05-01 Intersil Americas Inc. Methods for manufacturing enhancement-mode HEMTs with self-aligned field plate
CN102484070B (zh) 2009-06-26 2014-12-10 康奈尔大学 用于铝-硅氮化物的化学气相沉积处理
US9306050B2 (en) 2009-06-26 2016-04-05 Cornell University III-V semiconductor structures including aluminum-silicon nitride passivation
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
CN102013437B (zh) 2009-09-07 2014-11-05 苏州捷芯威半导体有限公司 半导体器件及其制造方法
US7999287B2 (en) 2009-10-26 2011-08-16 Infineon Technologies Austria Ag Lateral HEMT and method for the production of a lateral HEMT
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
WO2011100304A1 (en) 2010-02-09 2011-08-18 Massachusetts Institute Of Technology Dual-gate normally-off nitride transistors
EP2383786B1 (en) 2010-04-29 2018-08-15 Ampleon Netherlands B.V. Semiconductor transistor comprising two electrically conductive shield elements
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
JP5688556B2 (ja) 2010-05-25 2015-03-25 パナソニックIpマネジメント株式会社 電界効果トランジスタ
JP2011249728A (ja) * 2010-05-31 2011-12-08 Toshiba Corp 半導体装置および半導体装置の製造方法
JP5712516B2 (ja) * 2010-07-14 2015-05-07 住友電気工業株式会社 半導体装置
JP5649347B2 (ja) 2010-07-20 2015-01-07 住友電工デバイス・イノベーション株式会社 半導体装置
US8513703B2 (en) * 2010-10-20 2013-08-20 National Semiconductor Corporation Group III-nitride HEMT with multi-layered substrate having a second layer of one conductivity type touching a top surface of a first layers of different conductivity type and a method for forming the same
JP2012109492A (ja) * 2010-11-19 2012-06-07 Sanken Electric Co Ltd 化合物半導体装置
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
JP5866773B2 (ja) * 2011-02-25 2016-02-17 富士通株式会社 化合物半導体装置及びその製造方法
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
JP5597581B2 (ja) * 2011-03-23 2014-10-01 株式会社東芝 窒化物半導体装置及びその製造方法
SE1150386A1 (sv) 2011-05-03 2012-11-04 Fairchild Semiconductor Bipolär transistor av kiselkarbid med förbättrad genombrottsspänning
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
JP5979836B2 (ja) * 2011-09-09 2016-08-31 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
KR101616157B1 (ko) * 2011-09-21 2016-04-27 한국전자통신연구원 전력 반도체 소자 및 그 제조 방법
US8772833B2 (en) * 2011-09-21 2014-07-08 Electronics And Telecommunications Research Institute Power semiconductor device and fabrication method thereof
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US8664718B2 (en) * 2011-11-30 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFETs and methods for forming the same
US10002957B2 (en) 2011-12-21 2018-06-19 Power Integrations, Inc. Shield wrap for a heterostructure field effect transistor
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
JP2013182992A (ja) * 2012-03-01 2013-09-12 Toshiba Corp 半導体装置
JP2013183062A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 半導体装置
JP2013183061A (ja) * 2012-03-02 2013-09-12 Toshiba Corp 半導体装置
JP2013183060A (ja) 2012-03-02 2013-09-12 Toshiba Corp 半導体装置
JP5895666B2 (ja) * 2012-03-30 2016-03-30 富士通株式会社 化合物半導体装置及びその製造方法
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9443941B2 (en) 2012-06-04 2016-09-13 Infineon Technologies Austria Ag Compound semiconductor transistor with self aligned gate
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9024324B2 (en) * 2012-09-05 2015-05-05 Freescale Semiconductor, Inc. GaN dual field plate device with single field plate metal
JP6268366B2 (ja) * 2012-09-28 2018-01-31 パナソニックIpマネジメント株式会社 半導体装置
US9991399B2 (en) 2012-10-04 2018-06-05 Cree, Inc. Passivation structure for semiconductor devices
US9812338B2 (en) 2013-03-14 2017-11-07 Cree, Inc. Encapsulation of advanced devices using novel PECVD and ALD schemes
US8994073B2 (en) 2012-10-04 2015-03-31 Cree, Inc. Hydrogen mitigation schemes in the passivation of advanced devices
KR101946009B1 (ko) 2012-10-11 2019-02-08 삼성전자주식회사 고전자이동도 트랜지스터 및 그 구동방법
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
US8969927B2 (en) 2013-03-13 2015-03-03 Cree, Inc. Gate contact for a semiconductor device and methods of fabrication thereof
US9343561B2 (en) 2013-03-13 2016-05-17 Cree, Inc. Semiconductor device with self-aligned ohmic contacts
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9306012B2 (en) * 2013-03-15 2016-04-05 Taiwan Semiconductor Manufacturing Company Limited Strip-ground field plate
US9048184B2 (en) * 2013-03-15 2015-06-02 Northrop Grumman Systems Corporation Method of forming a gate contact
US9082722B2 (en) * 2013-03-25 2015-07-14 Raytheon Company Monolithic integrated circuit (MMIC) structure and method for forming such structure
KR102065113B1 (ko) 2013-05-01 2020-01-10 삼성전자주식회사 고전자이동도 트랜지스터 및 그 제조 방법
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9407214B2 (en) 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
TWI615977B (zh) * 2013-07-30 2018-02-21 高效電源轉換公司 具有匹配臨界電壓之積體電路及其製造方法
CN103367403B (zh) * 2013-08-01 2019-10-08 苏州能讯高能半导体有限公司 半导体器件及其制造方法
JP2015046445A (ja) * 2013-08-27 2015-03-12 富士通株式会社 化合物半導体装置及びその製造方法
KR102100928B1 (ko) * 2013-10-17 2020-05-15 삼성전자주식회사 고전자 이동도 트랜지스터
US9905658B2 (en) 2013-11-26 2018-02-27 Nxp Usa, Inc. Transistors with field plates resistant to field plate material migration and methods of their fabrication
US9123791B2 (en) 2014-01-09 2015-09-01 Infineon Technologies Austria Ag Semiconductor device and method
JP2015195288A (ja) * 2014-03-31 2015-11-05 住友電工デバイス・イノベーション株式会社 半導体装置及び半導体装置の製造方法
WO2015163916A1 (en) * 2014-04-25 2015-10-29 Hrl Laboratories, Llc Fet transistor on a iii-v material structure with substrate transfer
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
CN104332498B (zh) * 2014-09-01 2018-01-05 苏州捷芯威半导体有限公司 一种斜场板功率器件及斜场板功率器件的制备方法
US9640623B2 (en) 2014-10-17 2017-05-02 Cree, Inc. Semiconductor device with improved field plate
US9608078B2 (en) * 2014-10-17 2017-03-28 Cree, Inc. Semiconductor device with improved field plate
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
JP6496149B2 (ja) * 2015-01-22 2019-04-03 ローム株式会社 半導体装置および半導体装置の製造方法
CN106206309A (zh) * 2015-05-07 2016-12-07 中国科学院苏州纳米技术与纳米仿生研究所 二次外延p型氮化物实现增强型hemt的方法及增强型hemt
US9647075B2 (en) 2015-09-16 2017-05-09 Nxp Usa, Inc. Segmented field plate structure
US10056478B2 (en) * 2015-11-06 2018-08-21 Taiwan Semiconductor Manufacturing Company Ltd. High-electron-mobility transistor and manufacturing method thereof
US20170128658A1 (en) * 2015-11-11 2017-05-11 CreatiVasc Medical Inc. Arteriovenous access valve system with separate valve tubes
JP6888013B2 (ja) 2016-01-15 2021-06-16 トランスフォーム テクノロジー,インコーポレーテッド AL(1−x)Si(x)Oゲート絶縁体を有するエンハンスメントモードIII族窒化物デバイス
JP6544264B2 (ja) * 2016-02-23 2019-07-17 サンケン電気株式会社 半導体装置
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
DE102016123931A1 (de) 2016-12-09 2018-06-14 United Monolithic Semiconductors Gmbh Transistor
DE102016123934A1 (de) 2016-12-09 2018-06-14 United Monolithic Semiconductors Gmbh Verfahren zur Herstellung eines Transistors
CN107170804B (zh) * 2017-03-29 2020-06-16 西安电子科技大学 复合源场板电流孔径异质结场效应晶体管
US11508821B2 (en) 2017-05-12 2022-11-22 Analog Devices, Inc. Gallium nitride device for high frequency and high power applications
US20190097001A1 (en) 2017-09-25 2019-03-28 Raytheon Company Electrode structure for field effect transistor
US10720497B2 (en) 2017-10-24 2020-07-21 Raytheon Company Transistor having low capacitance field plate structure
US10700188B2 (en) 2017-11-02 2020-06-30 Rohm Co., Ltd. Group III nitride semiconductor device with first and second conductive layers
US11355598B2 (en) 2018-07-06 2022-06-07 Analog Devices, Inc. Field managed group III-V field effect device with epitaxial back-side field plate
WO2020070831A1 (ja) * 2018-10-03 2020-04-09 三菱電機株式会社 電界効果トランジスタ
TWI732155B (zh) * 2018-11-19 2021-07-01 世界先進積體電路股份有限公司 半導體裝置及其形成方法
US10903350B2 (en) 2019-02-21 2021-01-26 Vanguard International Semiconductor Corporation Semiconductor devices and methods for forming the same
JP7227048B2 (ja) * 2019-03-25 2023-02-21 株式会社アドバンテスト 半導体装置
TWI719484B (zh) * 2019-05-20 2021-02-21 世界先進積體電路股份有限公司 半導體結構
US11607226B2 (en) 2019-05-21 2023-03-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device with corrugations
US11862691B2 (en) 2019-11-01 2024-01-02 Raytheon Company Field effect transistor having field plate
CN113035943A (zh) * 2019-12-25 2021-06-25 华润微电子(重庆)有限公司 具有场板结构的hemt器件及其制备方法
US20210359118A1 (en) * 2020-05-18 2021-11-18 Cree, Inc. Group III-Nitride High-Electron Mobility Transistors Configured with Recessed Source and/or Drain Contacts for Reduced On State Resistance and Process for Implementing the Same
JP2021190501A (ja) * 2020-05-27 2021-12-13 ローム株式会社 窒化物半導体装置
CN111937157B (zh) * 2020-06-30 2023-12-01 英诺赛科(珠海)科技有限公司 半导体装置和其制作方法
US20220102344A1 (en) * 2020-09-25 2022-03-31 Intel Corporation Gallium nitride (gan) three-dimensional integrated circuit technology
US11502178B2 (en) 2020-10-27 2022-11-15 Wolfspeed, Inc. Field effect transistor with at least partially recessed field plate
US11749726B2 (en) 2020-10-27 2023-09-05 Wolfspeed, Inc. Field effect transistor with source-connected field plate
US11658234B2 (en) 2020-10-27 2023-05-23 Wolfspeed, Inc. Field effect transistor with enhanced reliability
EP4342001A1 (en) * 2021-05-20 2024-03-27 Wolfspeed, Inc. Field effect transistor with source-connected field plate
US11869964B2 (en) 2021-05-20 2024-01-09 Wolfspeed, Inc. Field effect transistors with modified access regions
US11621672B2 (en) 2021-08-05 2023-04-04 Wolfspeed, Inc. Compensation of trapping in field effect transistors

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US316793A (en) * 1885-04-28 William klose
US5187552A (en) * 1979-03-28 1993-02-16 Hendrickson Thomas E Shielded field-effect transistor devices
US4290077A (en) * 1979-05-30 1981-09-15 Xerox Corporation High voltage MOSFET with inter-device isolation structure
US4947232A (en) 1980-03-22 1990-08-07 Sharp Kabushiki Kaisha High voltage MOS transistor
JPS56169368A (en) * 1980-05-30 1981-12-26 Sharp Corp High withstand voltage mos field effect semiconductor device
NL8103218A (nl) 1981-07-06 1983-02-01 Philips Nv Veldeffekttransistor met geisoleerde stuurelektrode.
US4551905A (en) 1982-12-09 1985-11-12 Cornell Research Foundation, Inc. Fabrication of metal lines for semiconductor devices
US5196359A (en) 1988-06-30 1993-03-23 Texas Instruments Incorporated Method of forming heterostructure field effect transistor
JPH0335536A (ja) * 1989-06-30 1991-02-15 Fujitsu Ltd 電界効果型半導体装置
US5053348A (en) * 1989-12-01 1991-10-01 Hughes Aircraft Company Fabrication of self-aligned, t-gate hemt
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
EP0576566B1 (en) 1991-03-18 1999-05-26 Trustees Of Boston University A method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US5192957A (en) * 1991-07-01 1993-03-09 Motorola, Inc. Sequencer for a shared channel global positioning system receiver
JPH0521793A (ja) 1991-07-09 1993-01-29 Mitsubishi Electric Corp 半導体装置及びその製造方法
JPH0661266A (ja) * 1992-08-06 1994-03-04 Mitsubishi Electric Corp 半導体装置とその製造方法
JPH06224225A (ja) 1993-01-27 1994-08-12 Fujitsu Ltd 電界効果半導体装置
JPH06267991A (ja) * 1993-03-12 1994-09-22 Hitachi Ltd 半導体装置およびその製造方法
JP3188346B2 (ja) * 1993-06-10 2001-07-16 ローム株式会社 電界効果トランジスタ
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
JP2658860B2 (ja) 1993-12-20 1997-09-30 日本電気株式会社 半導体装置およびその製造方法
US5523589A (en) * 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US6002148A (en) 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
US5569937A (en) 1995-08-28 1996-10-29 Motorola High breakdown voltage silicon carbide transistor
EP0772249B1 (en) * 1995-11-06 2006-05-03 Nichia Corporation Nitride semiconductor device
KR0167273B1 (ko) 1995-12-02 1998-12-15 문정환 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
US6700157B2 (en) * 1996-01-22 2004-03-02 Fuji Electric Co., Ltd. Semiconductor device
TW360982B (en) * 1996-01-26 1999-06-11 Matsushita Electric Works Ltd Thin film transistor of silicon-on-insulator type
JPH09232827A (ja) 1996-02-21 1997-09-05 Oki Electric Ind Co Ltd 半導体装置及び送受信切り替え型アンテナスイッチ回路
US5652179A (en) 1996-04-24 1997-07-29 Watkins-Johnson Company Method of fabricating sub-micron gate electrode by angle and direct evaporation
US5710455A (en) * 1996-07-29 1998-01-20 Motorola Lateral MOSFET with modified field plates and damage areas
KR100571071B1 (ko) 1996-12-04 2006-06-21 소니 가부시끼 가이샤 전계효과트랜지스터및그제조방법
JP3958404B2 (ja) 1997-06-06 2007-08-15 三菱電機株式会社 横型高耐圧素子を有する半導体装置
JPH118256A (ja) * 1997-06-13 1999-01-12 Oki Electric Ind Co Ltd 電界効果トランジスタの製造方法
JP3457511B2 (ja) 1997-07-30 2003-10-20 株式会社東芝 半導体装置及びその製造方法
US5898198A (en) 1997-08-04 1999-04-27 Spectrian RF power device having voltage controlled linearity
JP4219433B2 (ja) * 1997-12-04 2009-02-04 ユーディナデバイス株式会社 半導体装置
US6346451B1 (en) 1997-12-24 2002-02-12 Philips Electronics North America Corporation Laterial thin-film silicon-on-insulator (SOI) device having a gate electrode and a field plate electrode
DE19800647C1 (de) 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
JP3233207B2 (ja) * 1998-03-20 2001-11-26 日本電気株式会社 電界効果トランジスタの製造方法
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3111985B2 (ja) * 1998-06-16 2000-11-27 日本電気株式会社 電界効果型トランジスタ
DE19835454A1 (de) 1998-08-05 2000-02-10 Aventis Res & Tech Gmbh & Co Geschütztes supraleitendes Bauteil und Verfahren zu dessen Herstellung
JP3180776B2 (ja) 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
US6621121B2 (en) * 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
JP2000164926A (ja) 1998-11-24 2000-06-16 Sony Corp 化合物半導体の選択エッチング方法、窒化物系化合物半導体の選択エッチング方法、半導体装置および半導体装置の製造方法
JP4182376B2 (ja) * 1998-12-02 2008-11-19 富士通株式会社 半導体装置
US5973341A (en) * 1998-12-14 1999-10-26 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) JFET device
US6495409B1 (en) 1999-01-26 2002-12-17 Agere Systems Inc. MOS transistor having aluminum nitride gate structure and method of manufacturing same
JP3429700B2 (ja) * 1999-03-19 2003-07-22 富士通カンタムデバイス株式会社 高電子移動度トランジスタ
KR100302611B1 (ko) * 1999-06-07 2001-10-29 김영환 고전압 반도체 소자 및 그 제조방법
US6127703A (en) 1999-08-31 2000-10-03 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region
JP3438133B2 (ja) * 1999-09-27 2003-08-18 富士通株式会社 電界効果半導体装置及びその製造方法
JP3371871B2 (ja) * 1999-11-16 2003-01-27 日本電気株式会社 半導体装置の製造方法
JP2001160656A (ja) * 1999-12-01 2001-06-12 Sharp Corp 窒化物系化合物半導体装置
US6639255B2 (en) 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
JP4592938B2 (ja) 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP4186032B2 (ja) 2000-06-29 2008-11-26 日本電気株式会社 半導体装置
TWI257179B (en) 2000-07-17 2006-06-21 Fujitsu Quantum Devices Ltd High-speed compound semiconductor device operable at large output power with minimum leakage current
US6624488B1 (en) 2000-08-07 2003-09-23 Advanced Micro Devices, Inc. Epitaxial silicon growth and usage of epitaxial gate insulator for low power, high performance devices
US6690042B2 (en) 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
US6891235B1 (en) * 2000-11-15 2005-05-10 International Business Machines Corporation FET with T-shaped gate
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP2001230263A (ja) 2001-01-29 2001-08-24 Nec Corp 電界効果型トランジスタ
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6468878B1 (en) 2001-02-27 2002-10-22 Koninklijke Philips Electronics N.V. SOI LDMOS structure with improved switching characteristics
JP2002270830A (ja) * 2001-03-12 2002-09-20 Fuji Electric Co Ltd 半導体装置
US6617652B2 (en) * 2001-03-22 2003-09-09 Matsushita Electric Industrial Co., Ltd. High breakdown voltage semiconductor device
GB0107408D0 (en) 2001-03-23 2001-05-16 Koninkl Philips Electronics Nv Field effect transistor structure and method of manufacture
JP4220683B2 (ja) * 2001-03-27 2009-02-04 パナソニック株式会社 半導体装置
JP4972842B2 (ja) * 2001-05-11 2012-07-11 富士電機株式会社 半導体装置
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
US6475857B1 (en) 2001-06-21 2002-11-05 Samsung Electronics Co., Ltd. Method of making a scalable two transistor memory device
KR100920434B1 (ko) 2001-07-24 2009-10-08 크리, 인코포레이티드 절연 게이트 갈륨 비소 질화물/갈륨 질화물계 고전자이동도 트랜지스터
GB0122122D0 (en) 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
JP2003174039A (ja) * 2001-09-27 2003-06-20 Murata Mfg Co Ltd ヘテロ接合電界効果トランジスタ
US6906350B2 (en) 2001-10-24 2005-06-14 Cree, Inc. Delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
AU2002339582A1 (en) 2001-11-01 2003-05-12 Koninklijke Philips Electronics N.V. Lateral soi field-effect transistor
KR100445904B1 (ko) 2001-12-12 2004-08-25 한국전자통신연구원 소스 필드 플레이트를 갖는 드레인 확장형 모스 전계 효과트랜지스터 및그 제조방법
KR100438895B1 (ko) 2001-12-28 2004-07-02 한국전자통신연구원 고전자 이동도 트랜지스터 전력 소자 및 그 제조 방법
JP2003203930A (ja) 2002-01-08 2003-07-18 Nec Compound Semiconductor Devices Ltd ショットキーゲート電界効果型トランジスタ
JP2003203923A (ja) 2002-01-10 2003-07-18 Mitsubishi Electric Corp 半導体装置およびその製造方法
GB0202437D0 (en) 2002-02-02 2002-03-20 Koninkl Philips Electronics Nv Cellular mosfet devices and their manufacture
DE10206739C1 (de) 2002-02-18 2003-08-21 Infineon Technologies Ag Transistorbauelement
JP3908572B2 (ja) 2002-03-18 2007-04-25 株式会社東芝 半導体素子
JP3705431B2 (ja) 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
JP3723780B2 (ja) * 2002-03-29 2005-12-07 ユーディナデバイス株式会社 半導体装置及びその製造方法
US6559513B1 (en) 2002-04-22 2003-05-06 M/A-Com, Inc. Field-plate MESFET
US7232726B2 (en) * 2002-05-31 2007-06-19 Nxp, B.V. Trench-gate semiconductor device and method of manufacturing
US6740535B2 (en) * 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6884704B2 (en) * 2002-08-05 2005-04-26 Hrl Laboratories, Llc Ohmic metal contact and channel protection in GaN devices using an encapsulation layer
US20040021152A1 (en) * 2002-08-05 2004-02-05 Chanh Nguyen Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US6838325B2 (en) * 2002-10-24 2005-01-04 Raytheon Company Method of forming a self-aligned, selectively etched, double recess high electron mobility transistor
US8089097B2 (en) * 2002-12-27 2012-01-03 Momentive Performance Materials Inc. Homoepitaxial gallium-nitride-based electronic devices and method for producing same
CN100388509C (zh) 2003-01-29 2008-05-14 株式会社东芝 功率半导体器件
US6933544B2 (en) 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
JP3940699B2 (ja) 2003-05-16 2007-07-04 株式会社東芝 電力用半導体素子
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
CA2538077C (en) * 2003-09-09 2015-09-01 The Regents Of The University Of California Fabrication of single or multiple gate field plates
US7126426B2 (en) * 2003-09-09 2006-10-24 Cree, Inc. Cascode amplifier structures including wide bandgap field effect transistor with field plates
JP4417677B2 (ja) 2003-09-19 2010-02-17 株式会社東芝 電力用半導体装置
US7488992B2 (en) * 2003-12-04 2009-02-10 Lockheed Martin Corporation Electronic device comprising enhancement mode pHEMT devices, depletion mode pHEMT devices, and power pHEMT devices on a single substrate and method of creation
US7071498B2 (en) * 2003-12-17 2006-07-04 Nitronex Corporation Gallium nitride material devices including an electrode-defining layer and methods of forming the same
JP4041075B2 (ja) * 2004-02-27 2008-01-30 株式会社東芝 半導体装置
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
JP2006032552A (ja) 2004-07-14 2006-02-02 Toshiba Corp 窒化物含有半導体装置
US7229903B2 (en) * 2004-08-25 2007-06-12 Freescale Semiconductor, Inc. Recessed semiconductor device
US7312481B2 (en) 2004-10-01 2007-12-25 Texas Instruments Incorporated Reliable high-voltage junction field effect transistor and method of manufacture therefor
JP2006114652A (ja) * 2004-10-14 2006-04-27 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
US7506015B1 (en) 2004-11-05 2009-03-17 Xilinx, Inc. Generation of a remainder from division of a first polynomial by a second polynomial
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
US7465967B2 (en) * 2005-03-15 2008-12-16 Cree, Inc. Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions
WO2006132419A1 (ja) * 2005-06-10 2006-12-14 Nec Corporation 電界効果トランジスタ
CN101976686A (zh) * 2005-06-10 2011-02-16 日本电气株式会社 场效应晶体管
US8120066B2 (en) * 2006-10-04 2012-02-21 Selex Sistemi Integrati S.P.A. Single voltage supply pseudomorphic high electron mobility transistor (PHEMT) power device and process for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Design and Demonstration of High Breakdown Voltage GaNHigh Electron Mobility Transistor (HEMT) Using Field PlateStructure for Power Electronics Applications. Wataru SAITO et al.Japanese Journal of Applied Physics,Vol.43 No.4B. 2004
Design and Demonstration of High Breakdown Voltage GaNHigh Electron Mobility Transistor (HEMT) Using Field PlateStructure for Power Electronics Applications. Wataru SAITO et al.Japanese Journal of Applied Physics,Vol.43 No.4B. 2004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328523A (zh) * 2015-06-15 2017-01-11 北大方正集团有限公司 射频横向双扩散mos器件的制作方法
CN106328523B (zh) * 2015-06-15 2019-10-15 北大方正集团有限公司 射频横向双扩散mos器件的制作方法

Also Published As

Publication number Publication date
JP5390768B2 (ja) 2014-01-15
US7550783B2 (en) 2009-06-23
US8592867B2 (en) 2013-11-26
EP2270870A1 (en) 2011-01-05
CN1954440A (zh) 2007-04-25
US20090236635A1 (en) 2009-09-24
CA2566756A1 (en) 2005-12-01
EP1751803B1 (en) 2019-01-09
KR20070012852A (ko) 2007-01-29
EP2270871A1 (en) 2011-01-05
EP1751803A2 (en) 2007-02-14
TW200618278A (en) 2006-06-01
TWI485785B (zh) 2015-05-21
KR101101671B1 (ko) 2011-12-30
JP2012235153A (ja) 2012-11-29
JP5809608B2 (ja) 2015-11-11
EP2270871B1 (en) 2023-01-11
EP2270870B1 (en) 2021-08-04
JP6228167B2 (ja) 2017-11-08
TW201243964A (en) 2012-11-01
WO2005114744A3 (en) 2006-04-13
US20110169054A1 (en) 2011-07-14
JP2015228508A (ja) 2015-12-17
WO2005114744A2 (en) 2005-12-01
JP2007537593A (ja) 2007-12-20
US7915644B2 (en) 2011-03-29
TWI397998B (zh) 2013-06-01
US20060006415A1 (en) 2006-01-12
CA2566756C (en) 2015-05-19
EP3432362A1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
CN100580954C (zh) 具有源极连接场板的宽能带隙高电子迁移率晶体管
US20230420526A1 (en) Wide bandgap transistors with gate-source field plates
CN1950945B (zh) 具有多个场板的宽能带隙晶体管
CN1938859B (zh) 具有场板的宽能带隙晶体管装置
EP3522231A1 (en) Multi-gate transistor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: North Carolina

Patentee after: Cree Inc

Address before: North Carolina

Patentee before: Cree Inc.