KR20140012126A - 자성 재료 및 그것을 이용한 코일 부품 - Google Patents

자성 재료 및 그것을 이용한 코일 부품 Download PDF

Info

Publication number
KR20140012126A
KR20140012126A KR20137026678A KR20137026678A KR20140012126A KR 20140012126 A KR20140012126 A KR 20140012126A KR 20137026678 A KR20137026678 A KR 20137026678A KR 20137026678 A KR20137026678 A KR 20137026678A KR 20140012126 A KR20140012126 A KR 20140012126A
Authority
KR
South Korea
Prior art keywords
particle
metal
magnetic
metal particles
oxide film
Prior art date
Application number
KR20137026678A
Other languages
English (en)
Other versions
KR101549094B1 (ko
Inventor
히토시 마츠우라
켄지 오타케
Original Assignee
다이요 유덴 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이요 유덴 가부시키가이샤 filed Critical 다이요 유덴 가부시키가이샤
Publication of KR20140012126A publication Critical patent/KR20140012126A/ko
Application granted granted Critical
Publication of KR101549094B1 publication Critical patent/KR101549094B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

본 발명의 과제는 절연 저항의 향상 및 투자율의 향상을 양립할 수 있는 새로운 자성 재료를 제공하고, 이와 함께 그와 같은 자성 재료를 이용한 코일 부품을 제공하는데 있다. 본 발명에 의하면, Fe-Si-M계 연자성 합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)으로 이루어지는 복수의 금속 입자(11) 및 상기 금속 입자의 표면에 형성된 산화 피막(12)을 구비하고, 인접하는 금속 입자 표면에 형성된 산화 피막(12)을 개재한 결합부(22) 및 산화 피막(12)이 존재하지 않는 부분에서의 금속 입자(11)끼리의 결합부(21)를 포함하는 입자 성형체(1)로 이루어지는 자성 재료가 제공된다.

Description

자성 재료 및 그것을 이용한 코일 부품{MAGNETIC MATERIAL AND COIL COMPONENT USING SAME}
본 발명은 2011년 4월 27일에 일본에서 출원된 특원2011-100095에 기초한 우선권을 주장하고 있으며, 그 내용은 본 명세서에 포함되어 있다.
본 발명은 코일ㆍ인덕터 등에서 주로 자심(磁心)으로서 이용될 수 있는 자성 재료 및 그것을 이용한 코일 부품에 관한 것이다.
인덕터, 초크 코일, 트랜스 등과 같은 코일 부품(소위, 인덕턴스 부품)은 자성 재료와, 상기 자성 재료의 내부 또는 표면에 형성된 코일을 포함하고 있다. 자성 재료의 재질로서 Ni-Cu-Zn계 페라이트 등의 페라이트가 일반적으로 이용되고 있다.
최근, 이 종류의 코일 부품에는 대전류화(大電流化)[정격 전류의 고치화(高値化)를 의미한다]가 요구되고 있고, 그 요구를 만족시키기 위해서 자성체의 재질을 종전의 페라이트로부터 Fe-Cr-Si 합금으로 절체(切替)하는 것이 검토되고 있다(특허문헌 1을 참조). Fe-Cr-Si 합금이나 Fe-Al-Si 합금은 재료 자체의 포화 자속 밀도가 페라이트에 비해서 높다. 그 반면, 재료 자체의 체적 저항율이 종전의 페라이트에 비해서 상당히 낮다.
일본 특허 공개 제2007-027354호 공보에는 적층 타입의 코일 부품에서의 자성체부의 제작 방법으로서 Fe-Cr-Si 합금 입자군(群) 외에 유리 성분을 포함하는 자성체 페이스트에 의해 형성된 자성체층과 도체 패턴을 적층하여 질소 분위기(환원성 분위기)에서 소성(燒成)한 후, 그 소성물에 열경화성 수지를 함침(含浸)시키는 방법이 공개되어 있다.
1. 일본 특허 공개 제2007-027354호 공보
하지만 일본 특허 공개 제2007-027354호 공보에 기재된 제조 방법에서는 자성체 페이스트에 포함된 유리 성분이 자성체부 내에 잔존하기 때문에, 상기 자성체부 내에 잔존하는 유리 성분에 의해 Fe-Cr-Si 합금 입자의 체적율이 감소하고, 그 감소가 원인으로 부품 자체의 포화 자속 밀도도 저하한다.
또한 금속 자성체를 이용한 인덕터로서는 바인더와 혼합 성형한 압분(壓粉) 자심이 알려져 있다. 일반적인 압분 자심에서는 절연 저항이 낮기 때문에 전극을 직접 설치할 수 없다.
이를 고려하여, 본 발명은 절연 저항의 향상 및 투자율(透磁率)의 향상을 양립할 수 있는 새로운 자성 재료를 제공하고, 이와 함께 그와 같은 자성 재료를 이용한 코일 부품을 제공하는 것을 과제로 한다.
본 발명자들이 예의 검토한 결과, 이하와 같은 본 발명이 완성되었다. 본 발명의 자성 재료는 산화 피막이 형성된 금속 입자가 성형되어 이루어지는 입자 성형체로 이루어진다. 금속 입자는 Fe-Si-M계 연자성(軟磁性) 합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)으로 이루어지고, 입자 성형체는 인접하는 금속 입자 표면에 형성된 산화 피막을 개재한 결합부 및 산화 피막이 존재하지 않는 부분에서의 금속 입자끼리의 결합부를 포함한다. 여기서 「산화 피막이 존재하지 않는 부분에서의 금속 입자끼리의 결합부」란, 인접하는 금속 입자가 그것들의 금속 부분에서 직접 접촉하는 부분을 의미하고, 예컨대 엄밀한 의미에서의 금속 결합이나, 금속 부분끼리가 직접적으로 접촉하여 원자의 교환이 보이지 않는 형태와, 그들의 중간적인 형태도 포함하는 개념이다. 엄밀한 의미에서의 금속 결합이란, 「원자가 규칙적으로 배열」되는 등의 요건을 충족하는 것을 의미한다.
또한 산화 피막은 Fe-Si-M계 연자성 합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)의 산화물이며, Fe원소에 대한 상기 M으로 나타내어지는 금속 원소의 몰 비가, 상기 금속 입자에 비해 큰 것이 바람직하다.
또한 바람직하게는 입자 성형체의 단면에서의 금속 입자의 입자수(N)와 금속 입자끼리의 결합부의 수(B)의 비율(B/N)이 0.1~0.5이다.
또한 바람직하게는 본 발명의 자성 재료는 아토마이즈법으로 제조된 복수의 금속 입자를 성형하여 산화 분위기 하에서 열처리하는 것에 의해 얻을 수 있다.
또한 바람직하게는 입자 성형체는 내부에 공극(空隙)을 포함하고, 상기 공극의 적어도 일부에 고분자 수지가 함침되어 있다.
또한 본 발명에 의하면, 전술의 자성 재료와, 상기 자성 재료의 내부 또는 표면에 형성된 코일을 구비하는 코일 부품도 제공된다.
본 발명에 의하면, 고투자율 및 고절연 저항을 양립한 자성 재료가 제공되고, 이 재료를 이용하여 이루어지는 코일 부품은 전극이 직접 설치되어도 좋다.
도 1은 본 발명의 자성 재료의 미세 구조를 모식적으로 도시하는 단면도.
도 2는 본 발명의 자성 재료의 별도 예에 따른 미세 구조를 모식적으로 도시하는 단면도.
도 3은 본 발명의 일 실시예에서 제조한 자성 재료의 외관을 도시하는 측면도.
도 4는 본 발명의 일 실시예에서 제조한 코일 부품의 일 예의 일부를 도시하는 투시 측면도.
도 5는 도 4의 코일 부품의 내부 구조를 도시하는 종단면도(縱斷面圖).
도 6은 적층 인덕터의 외관 사시도.
도 7은 도 6의 S11-S11선에 따른 확대 단면도.
도 8은 도 6에 도시한 부품 본체의 분해도.
도 9는 비교예에서의 자성 재료의 미세 구조를 모식적으로 도시하는 단면도.
도면을 적절히 참조하면서 본 발명을 상세히 서술한다. 단, 본 발명은 도시된 형태에 한정되지 않고, 또한 도면에서는 발명의 특징적인 부분을 강조하여 표현하는 경우가 있기 때문에 도면 각(各) 부(部)에서 축척의 정확성이 반드시 담보되는 것은 아니다.
본 발명에 의하면, 자성 재료는 소정의 입자가 성형되어 이루어지는 입자 성형체로 이루어진다.
본 발명에서 자성 재료는 코일ㆍ인덕터 등의 자성 부품에서의 자로(磁路)의 역할을 하는 물품이며, 전형적으로는 코일에서의 자심 등의 형태를 갖는다.
도 1은 본 발명의 자성 재료의 미세 구조를 모식적으로 도시하는 단면도이다. 본 발명에서 입자 성형체(1)는 미시적으로는 원래 독립하던 다수의 금속 입자(11)끼리가 결합하여 이루어지는 집합체로서 파악되고, 각각의 금속 입자(11)는 그 주위의 대략 전체에 걸쳐서 산화 피막(12)이 형성되고, 이 산화 피막(12)에 의해 입자 성형체(1)의 절연성이 확보된다. 인접하는 금속 입자(11)끼리는 주로 각각의 금속 입자(11)의 주위에 있는 산화 피막(12)을 개재한 결합에 의해, 일정한 형상을 가지는 입자 성형체(1)를 구성한다. 본 발명에 의하면, 부분적으로는 인접하는 금속 입자(11)가 금속 부분끼리 결합한다(부호 21). 본 명세서에서 금속 입자(11)는 후술하는 합금 재료로 이루어지는 입자를 의미하고, 산화 피막(12)의 부분을 포함하지 않는 것을 특히 강조하는 경우에는 「금속 부분」이나 「코어」라고 표기하기도 한다. 종래의 자성 재료에서는 경화(硬化)한 유기 수지의 매트릭스 중에 자성 입자 또는 수개 정도의 자성 입자의 결합체가 분산되거나, 경화한 유리 성분의 매트릭스 중에 자성 입자 또는 수개 정도의 자성 입자의 결합체가 분산된 것이 사용되었다. 본 발명에서는 유기 수지로 이루어지는 매트릭스도, 유리 성분으로 이루어지는 매트릭스도 실질적으로 존재하지 않는 것이 바람직하다.
각각의 금속 입자(11)는 특정한 연자성 합금으로 주로 구성된다. 본 발명에서는 금속 입자(11)는 Fe-Si-M계 연자성 합금으로 이루어진다. 여기서 M은 Fe보다 산화하기 쉬운 금속 원소이며, 전형적으로는 Cr(크롬), Al(알루미늄), Ti(티타늄) 등을 들 수 있고, 바람직하게는 Cr 또는 Al이다.
Fe-Si-M계 연자성 합금에서의 Si의 함유율은 바람직하게는 0.5~7.0wt%이며, 보다 바람직하게는 2.0~5.0wt%이다. Si의 함유량이 많으면 고저항ㆍ고투자율이라는 점에서 바람직하고, Si의 함유량이 적으면 성형성이 양호한 것에 기초한다.
상기 M이 Cr인 경우, Fe-Si-M계 연자성 합금에서의 Cr의 함유율은 바람직하게는 2.0~15wt%이며, 보다 바람직하게는 3.0~6.0wt%이다. Cr의 존재는 열처리 시에 부동태를 형성하여 과잉 산화를 억제하는 것과 함께 강도 및 절연 저항을 발현한다는 점에서 바람직하고, 한편 자기(磁氣) 특성의 향상이라는 관점에서는 Cr이 적은 것이 바람직하고, 이들을 감안하여 상기 바람직한 범위가 제안된다.
상기 M이 Al인 경우, Fe-Si-M계 연자성 합금에서의 Al의 함유율은 바람직하게는 2.0~15wt%이며, 보다 바람직하게는 3.0~6.0wt%이다. Al의 존재는 열처리 시에 부동태를 형성하여 과잉 산화를 억제하는 것과 함께 강도 및 절연 저항을 발현한다는 점에서 바람직하고, 한편 자기 특성의 향상이라는 관점에서는 Al이 적은 것이 바람직하고, 이들을 감안하여 상기 바람직한 범위가 제안된다. 또한 Fe-Si-M계 연자성 합금에서의 각 금속 성분의 상기 바람직한 함유율에 대해서는 합금 성분의 전량(全量)을 100wt%로 하여 기술한다. 바꿔 말하면, 상기 바람직한 함유량의 계산에서는 산화 피막의 조성은 제외한다.
Fe-Si-M계 연자성 합금에서 Si 및 금속 M 이외의 잔부(殘部)는 불가피 불순물을 제외하면 Fe인 것이 바람직하다. Fe, Si 및 M 이외에 포함되어도 좋은 금속으로서는 Mn(망간), Co(코발트), Ni(니켈), Cu(구리) 등을 들 수 있다.
입자 성형체(1)에서의 각각의 금속 입자(11)를 구성하는 합금의 화학 조성은 예컨대 입자 성형체(1)의 단면(斷面)을 주사형 전자 현미경(SEM)을 이용하여 촬영하고, 조성을 에너지 분산형 X선 분석(EDS)에 의해 ZAF법으로 산출할 수 있다.
입자 성형체(1)를 구성하는 각각의 금속 입자(11)에는 그 주위에 산화 피막(12)이 형성된다. 전술한 연자성 합금으로 이루어지는 코어[즉, 금속 입자 (11)]와, 그 코어의 주위에 형성된 산화 피막(12)이 존재한다고 표현하는 것도 가능하다. 산화 피막(12)은 입자 성형체(1)를 형성하기 전의 원료 입자의 단계에서 형성되어도 좋고, 원료 입자의 단계에서는 산화 피막이 존재하지 않고 지극히 적게 성형 과정에서 산화 피막을 생성시켜도 좋다. 산화 피막(12)의 존재는 주사형 전자 현미경(SEM)에 의한 3,000배 정도의 촬영상(撮影像)에서 콘트라스트(밝기)의 차이로서 인식할 수 있다. 산화 피막(12)의 존재에 의해 자성 재료 전체로서의 절연성이 담보된다.
산화 피막(12)은 금속의 산화물이면 좋고, 바람직하게는 산화 피막(12)은 Fe-Si-M계 연자성 합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)의 산화물이며, Fe원소에 대한 상기 M으로 나타내어지는 금속 원소의 몰 비가, 금속 입자에 비해 크다. 이와 같은 구성의 산화 피막(12)을 얻기 위해서는 자성 재료를 얻기 위한 원료 입자에 Fe의 산화물이 가능한 한 적게 포함되거나 Fe의 산화물을 최대한 포함되지 않도록 하여, 입자 성형체(1)를 얻는 과정에서 가열 처리 등에 의해 합금의 표면 부분을 산화시키는 것 등을 들 수 있다. 이와 같은 처리에 의해, Fe보다도 산화하기 쉬운 금속(M)이 선택적으로 산화되어, 결과적으로 산화 피막(12)에서의 Fe에 대한 금속(M)의 몰 비가, 금속 입자(11)에서의 Fe에 대한 금속(M)의 몰 비보다 상대적으로 더 커진다. 산화 피막(12)에서 Fe원소보다 M으로 나타내어지는 금속 원소가 많이 포함되는 것에 의해, 합금 입자의 과잉 산화를 억제한다는 이점이 있다.
입자 성형체(1)에서의 산화 피막(12)의 화학 조성을 측정하는 방법은 이하와 같다. 우선, 입자 성형체(1)를 파단(破斷)하는 등 하여 그 단면을 노출시킨다. 이어서 이온 밀링 등에 의해 평활면(平滑面)을 내어 주사형 전자 현미경(SEM)으로 촬영하고, 산화 피막(12) 부분을 에너지 분산형 X선 분석(EDS)에 의해 ZAF법으로 산출한다.
산화 피막(12)에서의 금속(M)의 함유량은 철 1몰에 대하여, 바람직하게는 1.0~5.0몰이며, 보다 바람직하게는 1.0~2.5몰이며, 더욱 바람직하게는 1.0~1.7몰이다. 상기 함유량이 많으면 과잉 산화의 억제라는 점에서 바람직하고, 한편, 상기 함유량이 적으면 금속 입자간의 소결(燒結)이라는 점에서 바람직하다. 상기 함유량을 많게 하기 위해서는 예컨대 약산화 분위기에서 열처리를 하는 등의 방법을 들 수 있고, 반대로 상기 함유량을 적게 하기 위해서는 예컨대 강산화 분위기 중에서 열처리를 하는 등의 방법을 들 수 있다.
입자 성형체(1)에서는 입자끼리의 결합부는 주로 산화 피막(12)을 개재한 결합부(22)이다. 산화 피막(12)을 개재한 결합부(22)의 존재는 예컨대 약 3,000배로 확대한 SEM 관찰상(觀察像) 등에서 인접하는 금속 입자(11)가 포함하는 산화 피막(12)이 동일상(同一相)인 것을 시인(視認)하는 등 하여 명확히 판단할 수 있다. 예컨대 인접하는 금속 입자(11)가 포함하는 산화 피막(12)끼리가 접촉해도 인접하는 산화 피막(12)과의 계면이 SEM 관찰상 등에서 시인되는 개소(箇所)는 산화 피막(12)을 개재한 결합부(22)라고는 할 수 없다. 산화 피막(12)을 개재한 결합부(22)의 존재에 의해, 기계적 강도와 절연성의 향상이 도모된다. 입자 성형체(1) 전체에 걸쳐서 인접하는 금속 입자(11)가 포함하는 산화 피막(12)을 개재하여 결합하는 것이 바람직하지만, 일부라도 결합하면, 상응하는 기계적 강도와 절연성의 향상이 도모되고, 그와 같은 형태도 본 발명의 일 형태라고 할 수 있다. 또한 후술하는 바와 같이, 부분적으로는 산화 피막(12)을 개재하지 않고, 금속 입자(11)끼리의 결합도 존재한다. 또한 인접하는 금속 입자(11)가, 산화 피막(12)을 개재하는 결합도, 금속 입자(11)끼리의 결합도 모두 존재하지 않고, 단지 물리적으로 접촉 또는 접근하는데 지나지 않는 형태가 부분적으로 있어도 좋다.
산화 피막(12)을 개재한 결합부(22)를 생기게 하기 위해서는 예컨대 입자 성형체(1)의 제조 시에 산소가 존재하는 분위기 하(예컨대 공기 중)에서 후술하는 소정의 온도로 열처리를 가하는 것 등을 들 수 있다.
본 발명에 의하면, 입자 성형체(1)에서 산화 피막(12)을 개재한 결합부(22)뿐만 아니라, 금속 입자(11)끼리의 결합부(21)도 존재한다. 전술한 산화 피막(12)을 개재한 결합부(22)의 경우와 마찬가지로, 예컨대 약 3,000배로 확대한 SEM 관찰상 등에서 단면 사진에서 입자 표면이 그리는 곡선에 관하여, 비교적 깊은 요부(凹部)가 확인되고, 두 개의 입자였던 표면의 곡선이 교차하였다고 보이는 개소에서 인접하는 금속 입자(11)끼리가 산화 피막을 개재하지 않는 결합점을 가지는 것을 시인하는 것 등에 의해, 금속 입자(11)끼리의 결합부(21)의 존재를 명확히 판단할 수 있다. 금속 입자(11)끼리의 결합부(21)의 존재에 의해 투자율의 향상이 도모되는 것이 본 발명이 주요 효과 중 하나이다.
금속 입자(11)끼리의 결합부(21)를 생성시키기 위해서는 예컨대 원료 입자로서 산화 피막이 적은 입자를 이용하거나, 입자 성형체(1)를 제조하기 위한 열처리에서 온도나 산소 분압을 후술하는 바와 같이 조절하거나, 원료 입자로부터 입자 성형체(1)를 얻을 때의 성형 밀도를 조절하는 것 등을 들 수 있다. 열처리에서의 온도에 대해서는 금속 입자(11)끼리가 결합하고, 또한 산화물이 생성하기 어려운 정도인 것이 바람직하고, 구체적인 바람직한 온도 범위에 대해서는 후술한다. 산소 분압에 대해서는 예컨대 공기 중에서의 산소 분압이라도 좋고, 산소 분압이 낮을수록 산화물이 생성되기 어렵고, 결과적으로 금속 입자(11)끼리의 결합이 발생하기 쉽다.
본 발명의 바람직한 형태에 의하면, 입자 성형체(1)에서 인접하는 금속 입자(11)간의 결합부의 대부분은 산화 피막(12)을 개재한 결합부(22)이며, 부분적으로 금속 입자끼리의 결합부(21)가 존재한다. 금속 입자끼리의 결합부(21)가 존재하는 정도를 이하와 같이 정량화할 수 있다. 입자 성형체(1)를 절단하고, 그 단면에 대하여 약 3,000배로 확대한 SEM 관찰상을 취득한다. SEM 관찰 상에는 30~100개의 금속 입자(11)가 비치도록 시야 등을 조절한다. 그 관찰상에서의 금속 입자(11)의 수(N)와, 금속 입자(11)끼리의 결합부(21)의 수(B)를 센다. 이들의 수치의 비율 B/N을 금속 입자끼리의 결합부(21)의 존재의 정도의 평가 지표로 한다. 상기 N 및 B를 세는 방법에 대하여 도 1의 형태를 예로 설명한다. 도 1과 같은 상을 얻은 경우, 금속 입자(11)의 수(N)는 8이며, 금속 입자끼리의 결합부(21)의 수(B)는 4이다. 따라서 이 형태의 경우, 상기 비율(B/N)은 0.5이다. 본 발명에서는 상기 비율(B/N)이 바람직하게는 0.1~0.5이며, 보다 바람직하게는 0.1~0.35이며, 더욱 바람직하게는 0.1~0.25이다. B/N이 크면 투자율이 향상하고, 반대로 B/N이 작으면 절연 저항이 향상하기 때문에, 투자율과 절연 저항의 양립을 고려하여 상기 바람직한 범위가 제시된다.
본 발명의 자성 재료는 소정의 합금으로 이루어지는 금속 입자를 성형하는 것에 의해 제조할 수 있다. 그 때, 인접하는 금속 입자끼리가 주로 산화 피막을 개재하여 결합하고, 그리고 부분적으로 산화 피막을 개재하지 않고 결합하는 것에 의해 전체적으로 원하는 형상의 입자 성형체를 얻을 수 있다.
원료로서 이용하는 금속 입자(이하, 원료 입자라고도 한다)는 주로 Fe-Si-M계 연자성 합금으로 이루어지는 입자를 이용한다. 원료 입자의 합금 조성은 최종적으로 얻어지는 자성 재료에서의 합금 조성에 반영된다. 따라서 최종적으로 얻고자 하는 자성 재료의 합금 조성에 따라 원료 입자의 합금 조성을 적당히 선택할 수 있고, 그 바람직한 조성 범위는 전술한 자성 재료의 바람직한 조성 범위와 같다. 각각의 원료 입자는 산화 피막으로 피복되어도 좋다. 바꿔 말하면, 각각의 원료 입자는 소정의 연자성 합금으로 이루어지는 코어와 그 코어의 주위의 적어도 일부를 피복하는 산화 피막으로 구성되어도 좋다.
각각의 원료 입자의 사이즈는 최종적으로 얻어지는 자성 재료에서의 입자 성형체(1)를 구성하는 입자의 사이즈와 실질적으로 마찬가지이다. 원료 입자의 사이즈로서는 투자율과 입자 내 과전류 손해를 고려하면, d50이 바람직하게는 2~30μm이며, 보다 바람직하게는 2~20μm이며, d50의 더욱 바람직한 하한값은 5μm이다. 원료 입자의 d50은 레이저 회절ㆍ산란에 의한 측정 장치에 의해 측정할 수 있다.
원료 입자는 예컨대 아토마이즈법으로 제조되는 입자이다. 전술한 바와 같이, 입자 성형체(1)에는 산화 피막(12)을 개재한 결합부(22)뿐만 아니라 금속 입자(11)끼리의 결합부(21)도 존재한다. 그렇기 때문에 원료 입자에는 산화 피막이 존재해도 좋지만 과잉하게는 존재하지 않는 것이 좋다. 아토마이즈법에 의해 제조되는 입자는 산화 피막이 비교적 적다는 점에서 바람직하다. 원료 입자에서의 합금으로 이루어지는 코어와 산화 피막과의 비율은 이하와 같이 정량화할 수 있다. 원료 입자를 XPS에서 분석하고, Fe의 피크 강도에 착안하여, Fe가 금속 상태로서 존재하는 피크(706.9eV)의 적분값 FeMetal과, Fe가 산화물의 상태로서 존재하는 피크의 적분값 FeOxide를 구하고, FeMetal/(FeMetal+FeOxide)를 산출하는 것에 의해 정량화한다. 여기서 FeOxide의 산출에서는 Fe2O3(710.9eV), FeO(709.6eV) 및 Fe3O4(710.7eV)의 3종의 산화물의 결합 에너지를 중심으로 한 정규 분포의 중첩으로서 실측 데이터와 일치하도록 피팅을 수행한다. 그 결과, 피크 분리된 적분 면적의 합으로서 FeOxide를 산출한다. 열처리 시에 합금끼리의 결합부(21)를 발생하기 쉽게 하는 것에 의해 결과적으로 투자율을 높이는 관점에서는 상기 값은 바람직하게는 0.2 이상이다. 상기 값의 상한값은 특히 한정되지 않고, 제조의 용이함 등의 관점에서 예컨대 0.6 등을 들 수 있고, 바람직하게는 상한값은 0.3이다. 상기 값을 상승시키는 수단으로서 환원 분위기에서의 열처리에 제공하거나, 산(酸)에 의한 표면 산화층의 제거 등의 화학 처리 등에 제공하는 것 등을 들 수 있다. 환원 처리로서는 예컨대 질소 중에 또는 아르곤 중에 25~35%의 수소를 포함하는 분위기 하에서 750~850℃, 0.5~1.5시간 보지(保持)하는 것 등을 들 수 있다. 산화 처리로서는 예컨대 공기 중에서 400~600℃, 0.5~1.5시간 보지하는 것 등을 들 수 있다.
전술한 바와 같은 원료 입자는 합금 입자 제조의 공지의 방법을 이용해도 좋고, 예컨대 Epson Atmix(주) 사제(社製) PF20-F, Nippon Atomized Metal Powders(주) 사제 SFR-FeSiAl 등으로서 시판되는 것도 이용할 수 있다. 시판품에 대해서는 전술한 FeMetal/(FeMetal+FeOxide)의 값에 대하여 고려되지 않은 가능성이 지극히 높기 때문에 원료 입자를 선별하거나, 전술한 열처리나 화학 처리 등의 전(前)처리를 실시하는 것도 바람직하다.
원료 입자로부터 성형체를 얻는 방법에 대해서는 특별히 한정되지 않고, 입자 성형체 제조에서의 공지의 수단을 적절히 도입할 수 있다. 이하, 전형적인 제조 방법으로서 원료 입자를 비가열 조건 하에서 성형한 후에 가열 처리에 제공하는 방법을 설명한다. 본 발명에서는 이 제조법에 한정되지 않는다.
원료 입자를 비가열 조건 하에서 성형할 때는 바인더로서 유기 수지를 가하는 것이 바람직하다. 유기 수지로서는 열분해 온도가 500℃ 이하인 아크릴 수지, 부틸알 수지, 비닐 수지 등으로 이루어지는 것을 이용하는 것이 열처리 후에 바인더가 남기 어려워진다는 점에서 바람직하다. 성형 시에는 공지의 윤활제를 가해도 좋다. 윤활제로서는 유기산염 등을 들 수 있고, 구체적으로는 스테아린산 아연, 스테아린산 칼슘 등을 들 수 있다. 윤활제의 양은 원료 입자 100중량부에 대하여 바람직하게는 0~1.5중량부이며, 보다 바람직하게는 0.1~1.0중량부이다. 윤활제의 양이 제로란, 윤활제를 사용하지 않는다는 것을 의미한다. 원료 입자에 대하여 임의적으로 바인더 및 / 또는 윤활제를 첨가하여 교반한 후에 원하는 형상으로 성형한다. 성형 시에는 예컨대 5~10t/cm2의 압력을 가하는 것 등을 들 수 있다.
열처리의 바람직한 형태에 대하여 설명한다. 열처리는 산화 분위기 하에서 수행하는 것이 바람직하다. 보다 구체적으로는 가열 중의 산소 농도는 바람직하게는 1% 이상이며, 이에 의해 산화 피막을 개재한 결합부(22) 및 금속 입자끼리의 결합부(21)가 양방(兩方) 모두 생성되기 쉬워진다. 산소 농도의 상한이 특정된 것은 아니지만, 제조 비용 등을 고려하여 공기 중의 산소 농도(약 21%)를 들 수 있다. 가열 온도에 대해서는 산화 피막(12)을 생성하여 산화 피막(12)을 개재한 결합부를 생성시키기 쉽게 하는 관점에서는 바람직하게는 600℃이상이며, 산화를 적당히 억제하여 금속 입자끼리의 결합부(21)의 존재를 유지하여 투자율을 높이는 관점에서는 바람직하게는 900℃ 이하이다. 가열 온도는 보다 바람직하게는 700~800℃이다. 산화 피막(12)을 개재한 결합부(22) 및 금속 입자끼리의 결합부(21)를 양방 모두 생성시키기 쉽게 한다는 관점에서는 가열 시간은 바람직하게는 0.5~3시간이다.
얻어진 입자 성형체(1)에는 그 내부에 공극(30)이 존재해도 좋다. 도 2는 본 발명의 자성 재료의 별도의 예에 따른 미세 구조를 모식적으로 도시하는 단면도이다. 도 2에 기재된 실시 형태에 의하면, 입자 성형체(1)의 내부에 존재하는 공극의 적어도 일부에는 고분자 수지(31)가 함침된다. 고분자 수지(31)의 함침 시에는 예컨대 액체 상태의 고분자 수지나 고분자 수지의 용액 등의 고분자 수지의 액상물에 입자 성형체(1)를 침지(浸漬)하여 제조계의 압력을 내리거나, 전술의 고분자 수지의 액상물을 입자 성형체(1)에 도포하여 표면 근방의 공극(30)에 배어들게 하는 등의 수단을 들 수 있다. 입자 성형체(1)의 공극(30)에 고분자 수지가 함침되어 이루어지는 것에 의해, 강도의 증가나 흡습성의 억제라는 이점이 있다. 고분자 수지로서는 에폭시 수지, 불소 수지 등의 유기 수지나, 실리콘 수지 등을 특별한 한정없이 들 수 있다.
이와 같이 하여 얻어진 입자 성형체(1)를 자성 재료로서 여러 부품의 구성 요소로서 이용할 수 있다. 예컨대 본 발명의 자성 재료를 자심으로서 이용하여 그 주위에 절연 피복 도선을 권회(卷回)하는 것에 의해 코일을 형성해도 좋다. 또는 전술의 원료 입자를 포함하는 그린시트를 공지의 방법으로 형성하고, 거기에 소정 패턴의 도체 페이스트를 인쇄 등에 의해 형성한 후에 인쇄 완료된 그린시트를 적층하고 가압하는 것에 의해 성형하고, 이어서 전술의 조건으로 열처리를 실시하는 것에 의해 본 발명의 자성 재료의 내부에 코일을 형성하여 이루어지는 인덕터(코일 부품)도 얻을 수 있다. 그 외에 본 발명의 자성 재료를 이용하여, 그 내부 또는 표면에 코일을 형성하는 것에 의해 코일 부품을 얻을 수 있다. 코일 부품은 표면 실장 타입이나 쓰루홀(through hole) 실장 타입 등 각종의 실장 형태의 것이어도 좋고, 그와 같은 실장 형태의 코일 부품을 구성하는 수단을 포함시키고, 자성 재료로부터 코일 부품을 얻는 수단에 대해서는 후술하는 실시예의 기재를 참고할 수 있고, 또한 전자 부품의 분야에서의 공지의 제조 수법을 적절히 도입할 수 있다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 단, 본 발명은 이와 같은 실시예에 기재된 형태에 한정되지 않는다.
<실시예>
(원료 입자)
아토마이즈법으로 제조된 Cr 4.5wt%, Si 3.5wt%, 잔부 Fe의 조성을 가지고, 평균 입경 d50이 10μm인 시판되는 합금 분말을 원료 입자로서 이용하였다. 이 합금 분말의 집합체 표면을 XPS로 분석하여, 전술한 FeMetal/(FeMetal+FeOxide)을 산출하였더니, 0.25이었다.
(입자 성형체의 제조)
이 원료 입자 100중량부를, 열분해 온도가 400℃인 아크릴 바인더 1.5중량부와 함께 교반 혼합하고, 윤활제로서 0.5중량부의 스테아린산 Zn을 첨가하였다. 그 후, 소정의 형상으로 8t/cm2로 성형하고, 20.6%의 산소 농도인 산화 분위기 중 750℃로 1시간 열처리를 수행하여 입자 성형체를 얻었다. 얻어진 입자 성형체의 특성을 측정한 결과, 열처리 전의 투자율이 36이었던 것에 반해, 열처리 후는 48이 되었다. 비저항은 2×105Ωcm, 강도는 7.5kgf/mm2이었다. 입자 성형체의 3,000배의 SEM 관찰상을 취득하여, 금속 입자(11)의 수(N)는 42이며, 금속 입자(11)끼리의 결합부(21)의 수(B)는 6이며, B/N비율은 0.14인 것을 확인하였다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성 분석을 수행한 결과, Fe원소 1몰에 대하여 Cr원소가 1.5몰 포함되어 있었다.
[비교예 1]
원료 입자로서 전술의 FeMetal/(FeMetal+FeOxide)이 0.15인 것 이외에는 실시예 1과 동일한 합금 분말을 이용하여, 실시예 1과 동일한 조작에 의해 입자 성형체를 제조하였다. 실시예 1의 경우와는 달리, 비교예 1에서는 시판되는 합금 분말을 건조시키기 위해서 200℃로 12시간 항온조에 보관하였다. 열처리 전의 투자율 36에 대하여 열처리 후도 36이며, 입자 성형체에서 투자율의 증가는 발생하지 않았다. 이 입자 성형체의 3,000배의 SEM관찰상에 의하면, 금속 입자끼리의 결합부(21)의 존재는 발견되지 않았다. 바꿔 말하면, 이 관찰상에서 금속 입자(11)의 수(N)는 24이며, 금속 입자(11)끼리의 결합부(21)의 수(B)는 0이며, 비율B/N은 0이었다. 도 9는 비교예 1에서의 입자 성형체의 미세 구조를 모식적으로 도시하는 단면도이다. 도 9에 모식적으로 도시되는 입자 성형체(2)와 같이, 이 비교예에 의해 얻어진 입자 성형체에서는 금속 입자(11)끼리의 결합은 존재하지 않고, 산화 피막(12)을 개재하는 결합만이 발견되었다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성 분석을 수행한 결과, Fe원소 1몰에 대하여 Cr원소가 0.8몰 포함되어 있었다.
<실시예 2>
(원료 입자)
아토마이즈법으로 제조된 Al 5.0wt%, Si 3.0wt%, 잔부 Fe의 조성을 가지고, 평균 입경 d50이 10μm인 시판되는 합금 분말을 원료 입자로서 이용하였다. 이 합금 분말의 집합체 표면을 XPS로 분석하여 전술한 FeMetal/(FeMetal+FeOxide)을 산출한 결과, 0.21이었다.
(입자 성형체의 제조)
이 원료 입자(100) 중량부를 열분해 온도가 400℃인 아크릴 바인더 1.5중량부와 함께 교반 혼합하고, 윤활제로서 0.5중량부의 스테아린산 Zn을 첨가하였다. 그 후, 소정의 형상으로 8t/cm2로 성형하고, 20.6%의 산소 농도인 산화 분위기 중 750℃에서 1시간 열처리를 수행하여, 입자 성형체를 얻었다. 얻어진 입자 성형체의 특성을 측정한 결과, 열처리 전의 투자율이 24이었던 것에 대하여 열처리 후는 33이 되었다. 비저항은 3×105Ωcm, 강도는 6.9kgf/mm2이었다. SEM관찰상에서 금속 입자(11)의 수(N)는 55이며, 금속 입자(11)끼리의 결합부(21)의 수(B)는 11이며, B/N비율은 0.20이었다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성을 분석하였더니, Fe원소 1몰에 대하여 Al원소가 2.1몰 포함되어 있었다.
<실시예 3>
(원료 입자)
아토마이즈법으로 제조된 Cr 4.5wt%, Si 6.5wt%, 잔부 Fe의 조성을 가지고, 평균 입경 d50이 6μm인 시판되는 합금 분말을 원료 입자로서 이용하였다. 이 합금 분말의 집합체 표면을 XPS로 분석하여, 전술의 FeMetal/(FeMetal+FeOxide)을 산출하였더니 0.22였다.
(입자 성형체의 제조)
이 원료 입자 100중량부를 열분해 온도가 400℃인 아크릴 바인더 1.5중량부와 함께 교반 혼합하고, 윤활제로서 0.5중량부의 스테아린산 Zn을 첨가하였다. 그 후, 소정의 형상으로 8t/cm2로 성형하고, 20.146%의 산소 농도인 산화 분위기중 750℃에서 1시간 열처리를 수행하여, 입자 성형체를 얻었다. 얻어진 입자 성형체의 특성을 측정한 결과, 열처리 전의 투자율이 32였던 것에 반해 열처리 후는 37이 되었다. 비저항은 4×106Ωcm, 강도는 7.8kgf/mm2였다. SEM관찰상에서 금속 입자(11)의 수(N)는 51이며, 금속 입자(11)끼리의 결합부(21)의 수(B)는 9이며, B/N 비율은 0.18이었다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성 분석을 수행한 결과, Fe원소 1몰에 대하여 Cr원소가 1.2몰 포함되어 있었다.
<실시예 4>
(원료 입자)
아토마이즈법으로 제조된 Cr 4.5wt%, Si 3.5wt%, 잔부 Fe의 조성을 가지고, 평균 입경 d50이 10μm인 시판되는 합금 분말을 수소 분위기 중 700℃로 1시간 열처리를 수행한 합금 분말을 원료 입자로서 이용하였다. 이 합금 분말의 집합체 표면을 XPS로 분석하여, 전술한 FeMetal/(FeMetal+FeOxide)을 산출하였더니, 0.55였다.
(입자 성형체의 제조)
이 원료 입자 100중량부를 열분해 온도가 400℃인 아크릴 바인더 1.5중량부와 함께 교반 혼합하고, 윤활제로서 0.5중량부의 스테아린산 Zn을 첨가하였다. 그 후, 소정의 형상으로 8t/cm2로 성형하고, 20.6%의 산소 농도인 산화 분위기 750℃에서 1시간 열처리를 수행하여 입자 성형체를 얻었다. 얻어진 입자 성형체의 특성을 측정한 결과, 열처리 전의 투자율이 36이었던 것에 대해, 열처리 후는 54가 되었다. 비저항은 8×103Ωcm, 강도는 2.3kgf/mm2이었다. 얻어진 입자 성형체의 SEM관찰상에서 금속 입자(11)의 수(N)는 40이며, 금속 입자(11)끼리의 결합부(21)의 수(B)는 15이며, B/N비율은 0.38이었다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성 분석을 수행한 결과, Fe원소 1몰에 대하여 Cr원소가 1.5몰 포함되어 있었다. 본 예에서는 FeMetal/(FeMetal+FeOxide)이 크고, 비저항과 강도가 다소 낮지만, 투자율 증가의 효과는 얻을 수 있다.
<실시예 5>
(원료 입자)
실시예 1과 동등한 합금 분말을 원료 입자로서 이용하였다.
(입자 성형체의 제조)
이 원료 입자 100중량부를, 열분해 온도가 400℃인 아크릴 바인더 1.5중량부와 함께 교반 혼합하고, 윤활제로서 0.5중량부의 스테아린산 Zn을 첨가하였다. 그 후, 소정의 형상으로 8t/cm2로 성형하고, 20.6%의 산소 농도인 산화 분위기 850℃에서 1시간 열처리를 수행하여, 입자 성형체를 얻었다. 얻어진 입자 성형체의 특성을 측정한 결과, 열처리 전의 투자율이 36이었던 것에 반해, 열처리 후는 39가 되었다. 비저항은 6.0×105Ωcm, 강도는 9.2kgf/mm2이었다. 얻어진 입자 성형체의 SEM관찰상에서 금속 입자(11)의 수(N)는 44이며, 금속 입자(11)끼리의 결합부 (21)의 수(B)는 5이며, B/N비율은 0.11이었다. 얻어진 입자 성형체에서의 산화 피막(12)의 조성 분석을 수행한 결과, Fe원소 1몰에 대하여, Cr원소가 1.1몰 포함되어 있었다.
<실시예 6>
이 실시예에서는 코일 부품으로서의 권선형(捲線型) 칩 인덕터를 제조하였다. 도 3은 이 실시예에서 제조한 자성 재료의 외관을 도시하는 측면도이다. 도 4는 이 실시예에서 제조한 코일 부품의 일례의 일부를 도시하는 투시 측면도이다. 도 5는 도 4의 코일 부품의 내부 구조를 도시하는 종단면도이다. 도 3에 도시하는 자성 재료(110)는 권선형 칩 인덕터의 코일을 권회하기 위한 자심으로서 이용할 수 있다. 드럼형 자심(111)은 회로 기판 등의 실장면에 병행하여 배설(配設)되어 코일을 권회하기 위한 판 형상[板狀]의 권심부(111a)와, 권심부(111a)의 서로 대향하는 단부(端部)에 각각 배설된 한 쌍의 플랜지부[鍔部](111b)를 구비하고, 외관은 드럼형을 갖는다. 코일의 단부는 플랜지부(111b)의 표면에 형성된 외부 도체막(114)에 전기적으로 접속된다. 권심부(111a)의 사이즈는 폭 1.0mm, 높이 0.36mm, 길이 1.4mm로 하였다. 플랜지부(111b)의 사이즈는 폭 1.6mm, 높이 0.6mm, 두께 0.3mm로 하였다.
이 코일 부품으로서의 코일형 칩 인덕터(120)는 전술의 자심(111)과 도시를 생략한 한 쌍의 판 형상 자심(112)을 포함한다. 이 자심(111) 및 판 형상 자심(112)은 실시예 1의 것과 마찬가지의 원료 입자로부터 실시예 1과 동일한 조건으로 제조한 자성 재료(110)로 이루어진다. 판 형상 자심(112)은 자심(111)의 양 플랜지부(111b,111b) 사이를 각각 연결한다. 판 형상 자심(112)의 사이즈는 길이 2.0mm, 폭 0.5mm, 두께 0.2mm로 하였다. 자심(111)의 플랜지부(111b)의 실장면에는 한 쌍의 외부 도체막(114)이 각각 형성된다. 또한 자심(111)의 권심부(111a)에는 절연 피복 도선으로 이루어지는 코일(115)이 권회되어 권회부(115a)가 형성되는 것과 함께, 양 단부(115b)가 플랜지부(111b)의 실장면의 외부 도체막(114)에 각각 열 압착 접합된다. 외부 도체막(114)은 자성 재료(110)의 표면에 형성된 소부(燒付) 도체층(114a)과, 이 소부 도체층(114a) 상에 적층 형성된 Ni도금층(114b) 및 Sn도금층(114c)을 구비한다. 전술한 판 형상 자심(112)은 수지계 접착제에 의해 상기 자심(111)의 플랜지부(111b, 111b)에 접착된다. 외부 도체막(114)은 자성 재료(110)의 표면에 형성되고, 외부 도체막(114)에 자심의 단부가 접속된다. 외부 도체막(114)은 은에 유리를 첨가한 페이스트를 소정의 온도로 자성 재료(110)에 소성하여 형성하였다. 자성 재료(110)의 표면의 외부 도체막(114)의 소부 도체막층(114a)의 제조 시에는 구체적으로는 자성 재료(110)로 이루어지는 자심(111)의 플랜지부(111b)의 실장면에 금속 입자와 글래스 프릿을 포함하는 소부형(燒付型) 전극 재료 페이스트(본 실시예에서는 소부형 Ag페이스트)를 도포하고, 대기(大氣) 중에서 열처리를 수행하는 것에 의해 자성 재료(110)의 표면에 직접 전극 재료를 소결 고착시켰다. 이와 같이 하여 코일 부품으로서의 권선형 칩 인덕터를 제조하였다.
<실시예 7>
이 실시예에서는 코일 부품으로서의 적층 인덕터를 제조하였다. 도 6은 적층 인덕터의 외관 사시도이다. 도7은 도 6의 S11-S11선에 따른 확대 단면도이다. 도 8은 도 6에 도시한 부품 본체의 분해도이다. 이 실시예에서 제조한 적층 인덕터(210)는 도 6에서 길이(L)가 약 3.2mm이고, 폭(W)이 약 1.6mm이고, 높이(H)가 약 0.8mm이고, 전체가 직방체 형상을 이룬다. 이 적층 인덕터(210)는 직방체 형상의 부품 본체(211)와, 상기 부품 본체(211)의 길이 방향의 양단부에 설치된 1쌍의 외부 단자(214, 215)를 포함한다. 부품 본체(211)는 도 7에 도시한 바와 같이, 직방체 형상의 자성체부(212)와, 상기 자성체부(212)에 의해 피복된 나선 형상[螺旋狀]의 코일부(213)를 포함하고, 상기 코일부(213)의 일단(一端)은 외부 단자(214)에 접속하고 타단(他端)은 외부 단자(215)에 접속한다. 자성체부(212)는 도 8에 도시한 바와 같이, 총 20층의 자성체층(ML1~ML6)이 일체화한 구조를 가지고, 길이가 약 3.2mm, 폭이 약 1.6mm, 높이가 약0.8mm이다. 각 자성체층(ML1~ML6)의 길이는 약 3.2mm, 폭은 약 1.6mm, 두께는 약 40μm. 코일부(213)는 총 5개의 코일 세그먼트(CS1~CS5)와, 상기 코일 세그먼트(CS1~CS5)를 접속하는 총 4개의 중계 세그먼트(IS1~IS4)가 나선 형상으로 일체화한 구조를 가지고, 그 권회 횟수는 약 3.5이다. 이 코일부(213)는 d50이 5μm인 Ag입자를 원료로 한다.
4개의 코일 세그먼트(CS1~CS4)는 ㄷ자 형상을 이루고, 1개의 코일 세그먼트(CS5)는 띠 형상[帶狀]을 이루고, 각 코일 세그먼트(CS1~CS5)의 두께는 약 20μm이고, 폭은 약 0.2mm이다. 최상위의 코일 세그먼트(CS1)는 외부 단자(214)와의 접속에 이용되는 L자 형상의 인출 부분(LS1)을 연속해서 포함하고, 최하위의 코일 세그먼트(CS5)는 외부 단자(15)와의 접속에 이용되는 L자 형상의 인출 부분(LS2)을 연속하여 포함한다. 각 중계 세그먼트(IS1~IS4)는 자성체층(ML1~ML4)을 관통한 기둥 형상을 이루고, 각각의 구경(口徑)은 약 15μm이다. 각 외부 단자(214, 215)는 부품 본체(211)의 길이 방향의 각 단면(端面)과 그 단면 근방의 4측면에 미치고, 그 두께는 약 20μm이다. 일방(一方)의 외부 단자(214)는 최상위의 코일 세그먼트(CS1)의 인출 부분(LS1)의 단연(端緣)과 접속하고, 타방(他方)의 외부 단자(215)는 최하위의 코일 세그먼트(CS5)의 인출 부분(LS2)의 단연과 접속한다. 이 각 외부 단자(214, 215)는 d50이 5μm의 Ag입자를 원료로 한다.
적층 인덕터(210)의 제조 시에는 닥터 블레이드를 도공기(塗工機)로서 이용하여, 미리 준비한 자성체 페이스트를 플라스틱제 베이스 필름(도시 생략)의 표면에 도공하고, 이를 열풍 건조기를 이용하여 약 80℃, 약 5min의 조건으로 건조하여, 자성체층(ML1~ML6, 도 8을 참조)에 대응하고, 또한 다수 개 취하기 적합한 사이즈의 제1~제6 시트를 각각 제작하였다. 자성체 페이스트로서는 실시예 1에 이용한 원료 입자가 85wt%이고, 부틸카르비톨(용제)이 13wt%이고, 폴리비닐부틸알(바인더)이 2wt%이다. 계속해서 펀칭 가공기를 이용하여, 자성체층(ML1)에 대응하는 제1 시트에 천공을 수행하여, 중계 세그먼트(IS1)에 대응하는 관통공을 소정 배열로 형성하였다. 마찬가지로, 자성체층(ML2~ML4)에 대응하는 제2~제4 시트 각각, 중계 세그먼트(IS2~IS4)에 대응하는 관통공을 소정 배열로 형성하였다.
계속해서 스크린 인쇄기를 이용하여, 미리 준비한 도체 페이스트를 자성체층(ML1)에 대응하는 제1 시트의 표면에 인쇄하고, 이를 열풍 건조기 등을 이용하여, 약 80℃, 약 5min의 조건으로 건조하여, 코일 세그먼트(CS1)에 대응하는 제1 인쇄층을 소정 배열로 제작하였다. 마찬가지로, 자성체층(ML2~ML5)에 대응하는 제2~제5 시트 각각의 표면에 코일 세그먼트(CS2~CS5)에 대응하는 제2~제5 인쇄층을 소정 배열로 제작하였다. 도체 페이스트의 조성은 Ag원료가 85wt%이고, 부틸카르비톨(용제)이 13wt%이고, 폴리비닐부틸알(바인더)이 2wt%이다. 자성체층(ML1~ML4)에 대응하는 제1~제4 시트 각각 형성한 소정 배열의 관통공은 소정 배열의 제1~제4 인쇄층 각각의 단부에 중첩하는 위치에 존재하기 때문에, 제1~제4 인쇄층을 인쇄할 때에 도체 페이스트의 일부가 각 관통공에 충전되어 중계 세그먼트(IS1~IS4)에 대응하는 제1~제4 충전부가 형성된다.
계속해서 흡착 반송기와 프레스기(모두 도시 생략)를 이용하여, 인쇄층 및 충전부가 설치된 제1~제4 시트[자성체층(ML1~ML4)에 대응]와, 인쇄층만이 설치된 제5 시트[자성체층(ML5)에 대응]와, 인쇄층 및 충전부가 설치되지 않은 제6 시트[자성체층(ML6)에 대응]를, 도 8에 도시한 순서로 중첩하고 열압착하여 적층체를 제작하였다. 계속해서 다이싱기를 이용하여 적층체를 부품 본체 사이즈로 절단하여, 가열 처리 전 칩(가열 처리 전 자성체부 및 코일부를 포함한다)을 제작하였다. 계속해서 소성로 등을 이용하여 대기 분위기 하에서 가열 처리전 칩을 다수 개 일괄로 가열 처리하였다. 이 가열 처리는 탈(脫) 바인더 프로세스와 산화물 막 형성 프로세스를 포함하고, 탈 바인더 프로세스는 약 300℃, 약 1hr의 조건에서 실행하고, 산화물 막 형성 프로세스는 약 750℃, 약 2hr의 조건에서 실행하였다. 계속해서 딥 도포기를 이용하여 전술의 도체 페이스트를 부품 본체(211)의 길이 방향 양단부에 도포하고, 이를 소성로를 이용하여 약 600℃, 약 1hr의 조건으로 소부 처리를 수행하고, 그 소부 처리에 의해 용제 및 바인더의 소실과 Ag입자군의 소결을 수행하여 외부 단자(214, 215)를 제작하였다. 이와 같이 하여 코일 부품으로서의 적층 인덕터를 제조하였다.
본 발명에 의하면, 전자 부품의 분야에서의 코일 부품의 추가적인 소형화 및 고성능화를 달성하는 것이 기대된다.
본 명세서에서는 특정의 실시 형태에 대하여 기술하였지만, 첨부된 청구항에서 정해진 본 발명의 범위 내에서 상기 디바이스 및 기술에 대하여 갖가지 변경 및 치환이 존재한다는 것이 당업자들에게는 이해될 것이다.
1, 2: 입자 성형체 11: 금속 입자
12: 산화 피막 21: 금속 입자끼리의 결합부
22: 산화 피막을 개재한 결합부 30: 공극
31: 고분자 수지 110: 자성 재료
111, 112: 자심 114: 외부 도체막
115: 코일 210: 적층 인덕터
211: 부품 본체 212: 자성체부
213: 코일부 214, 215: 외부 단자

Claims (6)

  1. Fe-Si-M계 연자성(軟磁性)합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)으로 이루어지는 복수의 금속 입자와, 상기 금속 입자의 표면에 형성된 산화 피막을 구비하고,
    인접하는 금속 입자 표면에 형성된 산화 피막을 개재한 결합부 및 산화 피막이 존재하지 않는 부분에서의 금속 입자끼리의 결합부를 포함하는 입자 성형체로 이루어지는 자성 재료.
  2. 제1항에 있어서, 상기 산화 피막은 Fe-Si-M계 연자성 합금(단, M은 Fe보다 산화하기 쉬운 금속 원소이다)의 산화물로서 Fe원소에 대한 상기M으로 표시되는 금속 원자의 몰 비가 상기 금속 입자에 비해서 큰 자성 재료.
  3. 제1항 또는 제2항에 있어서, 상기 입자 성형체의 단면(斷面)에서의 금속 입자의 입자 수(N)와, 금속 입자끼리의 결합부의 수(B)의 비율(B/N)이 0.1~0.5인 자성 재료.
  4. 제1항 내지 제3항 중 한 항에 있어서, 아토마이즈 법으로 제조된 복수의 금속 입자를 성형하고 산화 분위기 하에서 열처리하는 것에 의해 얻어지는 자성 재료.
  5. 제1항에 내지 제4항 중 한 항에 있어서, 입자 성형체는 내부에 공극(空隙)을 포함하고, 상기 공극의 적어도 일부에 고분자 수지가 함침되어 이루어지는 자성 재료.
  6. 제1항 내지 제5항 중의 어느 한 항의 자성 재료 및 상기 자성 재료의 내부 또는 표면에 형성된 코일을 구비하는 코일 부품.
KR1020137026678A 2011-04-27 2011-10-13 자성 재료 및 그것을 이용한 코일 부품 KR101549094B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011100095 2011-04-27
JPJP-P-2011-100095 2011-04-27
PCT/JP2011/073559 WO2012147224A1 (ja) 2011-04-27 2011-10-13 磁性材料およびそれを用いたコイル部品

Publications (2)

Publication Number Publication Date
KR20140012126A true KR20140012126A (ko) 2014-01-29
KR101549094B1 KR101549094B1 (ko) 2015-09-01

Family

ID=46060773

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137026678A KR101549094B1 (ko) 2011-04-27 2011-10-13 자성 재료 및 그것을 이용한 코일 부품
KR20120022721A KR101187350B1 (ko) 2011-04-27 2012-03-06 자성 재료 및 그것을 이용한 코일 부품

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR20120022721A KR101187350B1 (ko) 2011-04-27 2012-03-06 자성 재료 및 그것을 이용한 코일 부품

Country Status (8)

Country Link
US (4) US9030285B2 (ko)
EP (2) EP2704160B1 (ko)
JP (3) JP4906972B1 (ko)
KR (2) KR101549094B1 (ko)
CN (3) CN103493155B (ko)
HK (1) HK1176738A1 (ko)
TW (2) TWI384502B (ko)
WO (1) WO2012147224A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170014790A (ko) * 2015-07-31 2017-02-08 삼성전기주식회사 자성 분말 및 이를 포함하는 코일 전자부품
KR102078260B1 (ko) 2019-07-01 2020-02-19 동아풍력주식회사 고온 공랭식 송풍장치
KR102237022B1 (ko) * 2020-08-07 2021-04-08 주식회사 포스코 연자성 철계 분말 및 그 제조방법, 연자성 부품

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4866971B2 (ja) 2010-04-30 2012-02-01 太陽誘電株式会社 コイル型電子部品およびその製造方法
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
JP5980493B2 (ja) * 2011-01-20 2016-08-31 太陽誘電株式会社 コイル部品
JP6081051B2 (ja) 2011-01-20 2017-02-15 太陽誘電株式会社 コイル部品
JP2012238841A (ja) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd 磁性材料及びコイル部品
JP2012238840A (ja) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd 積層インダクタ
JP4906972B1 (ja) 2011-04-27 2012-03-28 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
JP5926011B2 (ja) * 2011-07-19 2016-05-25 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
JP5048155B1 (ja) 2011-08-05 2012-10-17 太陽誘電株式会社 積層インダクタ
JP5082002B1 (ja) * 2011-08-26 2012-11-28 太陽誘電株式会社 磁性材料およびコイル部品
JP5930643B2 (ja) * 2011-09-29 2016-06-08 太陽誘電株式会社 軟磁性合金素体およびそれを用いた電子部品
JP6091744B2 (ja) * 2011-10-28 2017-03-08 太陽誘電株式会社 コイル型電子部品
JP5960971B2 (ja) 2011-11-17 2016-08-02 太陽誘電株式会社 積層インダクタ
JP6012960B2 (ja) * 2011-12-15 2016-10-25 太陽誘電株式会社 コイル型電子部品
JP5978766B2 (ja) * 2012-05-25 2016-08-24 Tdk株式会社 軟磁性圧粉磁芯
JP6277426B2 (ja) * 2012-10-31 2018-02-14 パナソニックIpマネジメント株式会社 複合磁性体およびその製造方法
KR101740749B1 (ko) * 2012-12-21 2017-05-26 삼성전기주식회사 자성체 복합 시트 및 전자기 유도 모듈
US8723629B1 (en) * 2013-01-10 2014-05-13 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
JP2014143286A (ja) * 2013-01-23 2014-08-07 Tdk Corp 軟磁性体組成物およびその製造方法、磁芯、並びに、コイル型電子部品
CN103943321B (zh) * 2013-01-23 2017-04-12 Tdk株式会社 磁芯和线圈型电子部件
JP2014216495A (ja) * 2013-04-25 2014-11-17 Tdk株式会社 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
JP6326207B2 (ja) * 2013-09-20 2018-05-16 太陽誘電株式会社 磁性体およびそれを用いた電子部品
JP2015101056A (ja) * 2013-11-27 2015-06-04 セイコーエプソン株式会社 液体吐出装置
CN105917422B (zh) 2014-01-14 2018-05-15 日立金属株式会社 磁芯以及使用磁芯的线圈部件
JP6227516B2 (ja) * 2014-01-29 2017-11-08 アルプス電気株式会社 電子部品および電子機器
EP3118865B1 (en) * 2014-03-10 2020-04-29 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
US10236110B2 (en) 2014-03-13 2019-03-19 Hitachi Metals, Ltd. Magnetic core, coil component and magnetic core manufacturing method
JP6508878B2 (ja) * 2014-03-17 2019-05-08 株式会社トーキン 軟磁性成型体
JP6427932B2 (ja) * 2014-04-18 2018-11-28 株式会社村田製作所 金属磁性材料及び電子部品
KR20160145665A (ko) * 2014-04-18 2016-12-20 도꼬가부시끼가이샤 금속 자성 재료 및 전자 부품
JP6427933B2 (ja) * 2014-04-18 2018-11-28 株式会社村田製作所 金属磁性材料及び電子部品
KR101525736B1 (ko) * 2014-05-07 2015-06-03 삼성전기주식회사 적층형 전자부품 및 그 제조방법
JP6478141B2 (ja) * 2014-05-29 2019-03-06 日立金属株式会社 磁心の製造方法、磁心およびそれを用いたコイル部品
JP6493778B2 (ja) * 2014-07-17 2019-04-03 日立金属株式会社 積層部品及びその製造方法
JP6653420B2 (ja) * 2014-07-22 2020-02-26 パナソニックIpマネジメント株式会社 複合磁性材料とこれを用いたコイル部品ならびに複合磁性材料の製造方法
JP6522462B2 (ja) 2014-08-30 2019-05-29 太陽誘電株式会社 コイル部品
JP6688373B2 (ja) * 2014-08-30 2020-04-28 太陽誘電株式会社 コイル部品
KR102105397B1 (ko) * 2014-12-08 2020-04-28 삼성전기주식회사 칩 전자부품 및 그 실장기판
JP6457838B2 (ja) * 2015-02-27 2019-01-23 太陽誘電株式会社 磁性体及びそれを含む電子部品
JP6545992B2 (ja) * 2015-03-31 2019-07-17 太陽誘電株式会社 磁性体及びそれを含む電子部品
JP6345146B2 (ja) * 2015-03-31 2018-06-20 太陽誘電株式会社 コイル部品
WO2017047761A1 (ja) * 2015-09-16 2017-03-23 日立金属株式会社 圧粉磁心
JP6702830B2 (ja) * 2015-09-28 2020-06-03 住友電気工業株式会社 圧粉磁心、及びコイル部品
DE102015120162A1 (de) * 2015-11-20 2017-05-24 Epcos Ag SMD-Induktivität mit hoher Spitzenstrombelastbarkeit und niedrigen Verlusten und Verfahren zur Herstellung
EP3184211A1 (fr) * 2015-12-21 2017-06-28 ETA SA Manufacture Horlogère Suisse Matériau obtenu par compaction et densification de poudre(s) métallique(s)
JP6462624B2 (ja) * 2016-03-31 2019-01-30 太陽誘電株式会社 磁性体およびそれを有するコイル部品
JP6683544B2 (ja) * 2016-06-15 2020-04-22 Tdk株式会社 軟磁性金属焼成体およびコイル型電子部品
US10777342B2 (en) * 2016-06-15 2020-09-15 Taiyo Yuden Co., Ltd. Coil component and method for manufacturing the same
US10622129B2 (en) * 2016-06-30 2020-04-14 Taiyo Yuden Co., Ltd. Magnetic material and electronic component
JP7015647B2 (ja) * 2016-06-30 2022-02-03 太陽誘電株式会社 磁性材料及び電子部品
CN109716454B (zh) * 2016-09-15 2020-09-04 日立金属株式会社 磁芯及线圈部件
US20180190416A1 (en) * 2016-12-30 2018-07-05 Industrial Technology Research Institute Magnetic material and magnetic component employing the same
KR102671964B1 (ko) * 2017-01-02 2024-06-05 삼성전기주식회사 코일 부품
JP6906970B2 (ja) 2017-02-03 2021-07-21 太陽誘電株式会社 巻線型のコイル部品
JP6453370B2 (ja) * 2017-02-27 2019-01-16 太陽誘電株式会社 積層インダクタ
JP6663138B2 (ja) * 2017-03-24 2020-03-11 日立金属株式会社 端子付き圧粉磁心およびその製造方法
JP2018166156A (ja) 2017-03-28 2018-10-25 セイコーエプソン株式会社 軟磁性粉末、圧粉磁心、磁性素子および電子機器
JP6875198B2 (ja) * 2017-05-31 2021-05-19 株式会社村田製作所 インダクタ
KR102004805B1 (ko) 2017-10-18 2019-07-29 삼성전기주식회사 코일 전자 부품
KR102004239B1 (ko) * 2017-10-20 2019-07-26 삼성전기주식회사 코일 부품
JP7145610B2 (ja) 2017-12-27 2022-10-03 Tdk株式会社 積層コイル型電子部品
JP6973234B2 (ja) * 2018-03-28 2021-11-24 Tdk株式会社 複合磁性体
US12112876B2 (en) * 2018-11-16 2024-10-08 Lg Innotek Co., Ltd. Magnetic core using composite material
JP6553279B2 (ja) * 2018-12-12 2019-07-31 太陽誘電株式会社 積層インダクタ
JP6902069B2 (ja) * 2018-12-12 2021-07-14 太陽誘電株式会社 インダクタ
JP7387269B2 (ja) * 2019-02-28 2023-11-28 太陽誘電株式会社 磁性体及びその製造方法、並びに磁性体を用いたコイル部品及びそれを載せた回路基板
JP2020161760A (ja) * 2019-03-28 2020-10-01 太陽誘電株式会社 巻線型コイル部品及びその製造方法、並びに巻線型コイル部品を載せた回路基板
JP7078016B2 (ja) * 2019-06-17 2022-05-31 株式会社村田製作所 インダクタ部品
JP7268520B2 (ja) 2019-07-25 2023-05-08 セイコーエプソン株式会社 磁性粉末、磁性粉末の製造方法、圧粉磁心およびコイル部品
US11804317B2 (en) * 2019-07-31 2023-10-31 Tdk Corporation Soft magnetic metal powder and electronic component
WO2021033567A1 (ja) * 2019-08-20 2021-02-25 日立金属株式会社 磁性楔、回転電機、および磁性楔の製造方法
JP7375469B2 (ja) 2019-10-30 2023-11-08 セイコーエプソン株式会社 絶縁体被覆磁性合金粉末粒子、圧粉磁心、およびコイル部品
CN110808138B (zh) * 2019-11-25 2022-07-12 佛山市中研非晶科技股份有限公司 非晶混合粉末、成品粉末、磁粉芯及其制备方法
CN111575603A (zh) * 2020-04-27 2020-08-25 江苏萌达新材料科技有限公司 一种铁硅铬软磁合金粉及其制备方法
CN112441827A (zh) * 2020-11-26 2021-03-05 天长市盛泰磁电科技有限公司 一种铁氧体磁环材料
JP2022096248A (ja) * 2020-12-17 2022-06-29 太陽誘電株式会社 コイル部品及びその製造方法
JP7464029B2 (ja) 2021-09-17 2024-04-09 株式会社村田製作所 インダクタ部品

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2193768A (en) 1932-02-06 1940-03-12 Kinzoku Zairyo Kenkyusho Magnetic alloys
US4129444A (en) 1973-01-15 1978-12-12 Cabot Corporation Power metallurgy compacts and products of high performance alloys
JPH0834154B2 (ja) * 1986-11-06 1996-03-29 ソニー株式会社 軟磁性薄膜
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
JPH04147903A (ja) 1990-10-12 1992-05-21 Tokin Corp 形状異方性軟磁性合金粉末とその製造方法
JPH04346204A (ja) 1991-05-23 1992-12-02 Matsushita Electric Ind Co Ltd 複合材料及びその製造方法
JP3688732B2 (ja) 1993-06-29 2005-08-31 株式会社東芝 平面型磁気素子および非晶質磁性薄膜
JPH07201570A (ja) 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd 厚膜積層インダクタ
JP3483012B2 (ja) 1994-07-01 2004-01-06 新光電気工業株式会社 セラミック基板製造用焼結体、セラミック基板およびその製造方法
JPH0974011A (ja) * 1995-09-07 1997-03-18 Tdk Corp 圧粉コアおよびその製造方法
JPH10144512A (ja) * 1996-11-13 1998-05-29 Tokin Corp 圧粉磁心の製造方法
JP3423569B2 (ja) 1997-02-28 2003-07-07 太陽誘電株式会社 積層電子部品とその特性調整方法
US6051324A (en) 1997-09-15 2000-04-18 Lockheed Martin Energy Research Corporation Composite of ceramic-coated magnetic alloy particles
JP2000030925A (ja) * 1998-07-14 2000-01-28 Daido Steel Co Ltd 圧粉磁芯およびその製造方法
US6764643B2 (en) 1998-09-24 2004-07-20 Masato Sagawa Powder compaction method
JP3039538B1 (ja) 1998-11-02 2000-05-08 株式会社村田製作所 積層型インダクタ
US6392525B1 (en) 1998-12-28 2002-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic element and method of manufacturing the same
JP2001011563A (ja) 1999-06-29 2001-01-16 Matsushita Electric Ind Co Ltd 複合磁性材料の製造方法
JP2001044037A (ja) 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd 積層インダクタ
US6432159B1 (en) 1999-10-04 2002-08-13 Daido Tokushuko Kabushiki Kaisha Magnetic mixture
JP2001118725A (ja) * 1999-10-21 2001-04-27 Denso Corp 軟磁性材およびそれを用いた電磁アクチュエータ
JP4684461B2 (ja) 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
JP4683178B2 (ja) * 2001-03-12 2011-05-11 株式会社安川電機 軟質磁性材料およびその製造方法
JP2002299113A (ja) 2001-04-03 2002-10-11 Daido Steel Co Ltd 軟磁性粉末およびそれを用いた圧粉磁心
JP2002313620A (ja) * 2001-04-13 2002-10-25 Toyota Motor Corp 絶縁皮膜を有する軟磁性粉末及びそれを用いた軟磁性成形体並びにそれらの製造方法
JP2002313672A (ja) 2001-04-13 2002-10-25 Murata Mfg Co Ltd 積層型セラミック電子部品およびその製造方法ならびにセラミックペーストおよびその製造方法
WO2003085150A1 (en) 2002-04-05 2003-10-16 Nippon Steel Corporation Fe-BASE AMORPHOUS ALLOY THIN STRIP OF EXCELLENT SOFT MAGNETIC CHARACTERISTIC, IRON CORE PRODUCED THEREFROM AND MASTER ALLOY FOR QUENCH SOLIDIFICATION THIN STRIP PRODUCTION FOR USE THEREIN
JP3861288B2 (ja) 2002-10-25 2006-12-20 株式会社デンソー 軟磁性材料の製造方法
CN100471600C (zh) * 2003-08-05 2009-03-25 三菱麻铁里亚尔株式会社 Fe-Ni-Mo系扁平金属软磁性粉末及含有该软磁性粉末的磁性复合材料
JP4265358B2 (ja) 2003-10-03 2009-05-20 パナソニック株式会社 複合焼結磁性材の製造方法
JP2005150257A (ja) 2003-11-12 2005-06-09 Fuji Electric Holdings Co Ltd 複合磁性粒子および複合磁性材料
JP4457682B2 (ja) 2004-01-30 2010-04-28 住友電気工業株式会社 圧粉磁心およびその製造方法
JP5196704B2 (ja) 2004-03-12 2013-05-15 京セラ株式会社 フェライト焼結体の製造方法
JP2005286145A (ja) 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性粉末および圧粉磁心
JP4548035B2 (ja) * 2004-08-05 2010-09-22 株式会社デンソー 軟磁性材の製造方法
EP1788588B1 (en) 2004-09-01 2015-08-26 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core and method for producing dust core
EP1808242B1 (en) 2004-09-06 2012-12-26 Diamet Corporation METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDIZED FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL USING SAID POWDER
JP4562483B2 (ja) * 2004-10-07 2010-10-13 株式会社デンソー 軟磁性材の製造方法
JP2006179621A (ja) 2004-12-21 2006-07-06 Seiko Epson Corp 成形体の製造方法および成形体
WO2006073029A1 (ja) 2005-01-07 2006-07-13 Murata Manufacturing Co., Ltd. 電子部品及び電子部品製造方法
JP4201043B2 (ja) 2005-01-07 2008-12-24 株式会社村田製作所 積層コイル
JP4613622B2 (ja) 2005-01-20 2011-01-19 住友電気工業株式会社 軟磁性材料および圧粉磁心
JP4650073B2 (ja) 2005-04-15 2011-03-16 住友電気工業株式会社 軟磁性材料の製造方法、軟磁性材料および圧粉磁心
JP4736526B2 (ja) 2005-05-11 2011-07-27 パナソニック株式会社 コモンモードノイズフィルタ
JP2007019134A (ja) 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd 複合磁性材料の製造方法
JP4794929B2 (ja) 2005-07-15 2011-10-19 東光株式会社 大電流用積層型インダクタの製造方法
CN101297382B (zh) 2005-10-27 2011-05-04 株式会社东芝 平面磁元件及利用该平面磁元件的电源ic封装
JP2007123703A (ja) 2005-10-31 2007-05-17 Mitsubishi Materials Pmg Corp Si酸化膜被覆軟磁性粉末
GB2432966A (en) 2005-11-25 2007-06-06 Seiko Epson Corp Dye-sensitised electrochemical cell
JP2007157983A (ja) 2005-12-05 2007-06-21 Taiyo Yuden Co Ltd 積層インダクタ
TWI277107B (en) 2006-01-11 2007-03-21 Delta Electronics Inc Embedded inductor structure and manufacturing method thereof
WO2007088914A1 (ja) 2006-01-31 2007-08-09 Hitachi Metals, Ltd. 積層部品及びこれを用いたモジュール
JP4777100B2 (ja) * 2006-02-08 2011-09-21 太陽誘電株式会社 巻線型コイル部品
JP4802795B2 (ja) 2006-03-23 2011-10-26 Tdk株式会社 磁性粒子及びその製造方法
JP2007299871A (ja) 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 複合磁性体の製造方法およびそれを用いて得られた複合磁性体
US7994889B2 (en) 2006-06-01 2011-08-09 Taiyo Yuden Co., Ltd. Multilayer inductor
CN101473388B (zh) 2006-06-20 2011-11-16 株式会社村田制作所 层叠线圈器件
KR101421453B1 (ko) 2006-07-05 2014-07-22 히타치 긴조쿠 가부시키가이샤 적층 부품
JP2008028162A (ja) 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
JP4585493B2 (ja) 2006-08-07 2010-11-24 株式会社東芝 絶縁性磁性材料の製造方法
JP2008169439A (ja) 2007-01-12 2008-07-24 Toyota Motor Corp 磁性粉末、圧粉磁心、電動機およびリアクトル
JP5099480B2 (ja) 2007-02-09 2012-12-19 日立金属株式会社 軟磁性金属粉末、圧粉体、および軟磁性金属粉末の製造方法
JP2008205152A (ja) 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 粉末軟磁性合金材料およびそれを用いた磁性材料とコイル部品
TW200845057A (en) 2007-05-11 2008-11-16 Delta Electronics Inc Inductor
CN101308719A (zh) 2007-05-16 2008-11-19 台达电子工业股份有限公司 电感元件
JP4971886B2 (ja) 2007-06-28 2012-07-11 株式会社神戸製鋼所 軟磁性粉体、軟磁性成形体およびそれらの製造方法
JP5368686B2 (ja) 2007-09-11 2013-12-18 住友電気工業株式会社 軟磁性材料、圧粉磁心、軟磁性材料の製造方法、および圧粉磁心の製造方法
JP2009088502A (ja) 2007-09-12 2009-04-23 Seiko Epson Corp 酸化物被覆軟磁性粉末の製造方法、酸化物被覆軟磁性粉末、圧粉磁心および磁性素子
JP5093008B2 (ja) * 2007-09-12 2012-12-05 セイコーエプソン株式会社 酸化物被覆軟磁性粉末の製造方法、酸化物被覆軟磁性粉末、圧粉磁心および磁性素子
TW200919498A (en) 2007-10-19 2009-05-01 Delta Electronics Inc Inductor and core thereof
US20090143216A1 (en) 2007-12-03 2009-06-04 General Electric Company Composition and method
JPWO2009075110A1 (ja) 2007-12-12 2011-04-28 パナソニック株式会社 インダクタンス部品およびその製造方法
CN102007549A (zh) * 2008-04-15 2011-04-06 东邦亚铅株式会社 复合磁性材料及其制造方法
CN102007550A (zh) 2008-04-15 2011-04-06 东邦亚铅株式会社 复合磁性材料的制造方法及复合磁性材料
CN101615465B (zh) * 2008-05-30 2012-10-17 株式会社日立制作所 压粉磁体用软磁性粉末和使用其的压粉磁体
JP2009295613A (ja) * 2008-06-02 2009-12-17 Fuji Electric Device Technology Co Ltd 圧粉磁心の製造方法
EP2131373B1 (de) 2008-06-05 2016-11-02 TRIDELTA Weichferrite GmbH Weichmagnetischer Werkstoff und Verfahren zur Herstellung von Gegenständen aus diesem weichmagnetischen Werkstoff
JP2010018823A (ja) 2008-07-08 2010-01-28 Canon Electronics Inc 複合型金属成形体およびその製造方法ならびにこれを用いた電磁駆動装置および光量調整装置
US8587400B2 (en) 2008-07-30 2013-11-19 Taiyo Yuden Co., Ltd. Laminated inductor, method for manufacturing the laminated inductor, and laminated choke coil
WO2010044213A1 (ja) 2008-10-14 2010-04-22 パナソニック株式会社 セラミック積層部品とその製造方法
JPWO2010084812A1 (ja) 2009-01-22 2012-07-19 住友電気工業株式会社 冶金用粉末の製造方法、圧粉磁心の製造方法、圧粉磁心およびコイル部品
US8366837B2 (en) 2009-03-09 2013-02-05 Panasonic Corporation Powder magnetic core and magnetic element using the same
TWI407462B (zh) 2009-05-15 2013-09-01 Cyntec Co Ltd 電感器及其製作方法
JP5650928B2 (ja) 2009-06-30 2015-01-07 住友電気工業株式会社 軟磁性材料、成形体、圧粉磁心、電磁部品、軟磁性材料の製造方法および圧粉磁心の製造方法
TWM388724U (en) 2010-02-25 2010-09-11 Inpaq Technology Co Ltd Chip type multilayer inductor
JP4866971B2 (ja) 2010-04-30 2012-02-01 太陽誘電株式会社 コイル型電子部品およびその製造方法
US8723634B2 (en) 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US8878642B2 (en) 2010-05-19 2014-11-04 Sumitomo Electric Industries, Ltd. Dust core and method for producing the same
JP4906972B1 (ja) 2011-04-27 2012-03-28 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
JP2012238840A (ja) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd 積層インダクタ
JP5997424B2 (ja) 2011-07-22 2016-09-28 住友電気工業株式会社 圧粉磁心の製造方法
JP6091744B2 (ja) * 2011-10-28 2017-03-08 太陽誘電株式会社 コイル型電子部品
JP5960971B2 (ja) * 2011-11-17 2016-08-02 太陽誘電株式会社 積層インダクタ
JP2013131578A (ja) 2011-12-20 2013-07-04 Taiyo Yuden Co Ltd 積層コモンモードチョークコイル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170014790A (ko) * 2015-07-31 2017-02-08 삼성전기주식회사 자성 분말 및 이를 포함하는 코일 전자부품
KR102078260B1 (ko) 2019-07-01 2020-02-19 동아풍력주식회사 고온 공랭식 송풍장치
KR102237022B1 (ko) * 2020-08-07 2021-04-08 주식회사 포스코 연자성 철계 분말 및 그 제조방법, 연자성 부품
WO2022030709A1 (ko) * 2020-08-07 2022-02-10 주식회사 포스코 연자성 철계 분말 및 그 제조방법, 연자성 부품

Also Published As

Publication number Publication date
WO2012147224A1 (ja) 2012-11-01
US9472341B2 (en) 2016-10-18
JP2012238828A (ja) 2012-12-06
CN103493155A (zh) 2014-01-01
EP2704160A4 (en) 2015-03-11
US20140049348A1 (en) 2014-02-20
US20120274437A1 (en) 2012-11-01
TW201237894A (en) 2012-09-16
TWI384502B (zh) 2013-02-01
JP5883437B2 (ja) 2016-03-15
CN106876078A (zh) 2017-06-20
EP2704160B1 (en) 2019-12-11
KR101549094B1 (ko) 2015-09-01
US20140139311A1 (en) 2014-05-22
US9287033B2 (en) 2016-03-15
TW201243872A (en) 2012-11-01
US9030285B2 (en) 2015-05-12
EP2518738B1 (en) 2016-03-02
CN102693801A (zh) 2012-09-26
CN103493155B (zh) 2016-11-09
KR101187350B1 (ko) 2012-10-02
EP2518738A1 (en) 2012-10-31
HK1176738A1 (zh) 2013-08-02
US8416051B2 (en) 2013-04-09
JP2012238842A (ja) 2012-12-06
JP4906972B1 (ja) 2012-03-28
EP2704160A1 (en) 2014-03-05
US20160163448A1 (en) 2016-06-09
CN102693801B (zh) 2016-01-20
TWI452580B (zh) 2014-09-11
JPWO2012147224A1 (ja) 2014-07-28
CN106876078B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
KR101187350B1 (ko) 자성 재료 및 그것을 이용한 코일 부품
KR20130126737A (ko) 자성 재료 및 코일 부품
KR101490772B1 (ko) 자성 재료 및 코일 부품
JP5980493B2 (ja) コイル部品
US8362866B2 (en) Coil component
JP2012238840A (ja) 積層インダクタ
JP5926011B2 (ja) 磁性材料およびそれを用いたコイル部品
JP5129893B1 (ja) 磁性材料およびコイル部品

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 4