EP3184211A1 - Matériau obtenu par compaction et densification de poudre(s) métallique(s) - Google Patents

Matériau obtenu par compaction et densification de poudre(s) métallique(s) Download PDF

Info

Publication number
EP3184211A1
EP3184211A1 EP15201640.8A EP15201640A EP3184211A1 EP 3184211 A1 EP3184211 A1 EP 3184211A1 EP 15201640 A EP15201640 A EP 15201640A EP 3184211 A1 EP3184211 A1 EP 3184211A1
Authority
EP
European Patent Office
Prior art keywords
powder
powders
phase
process according
densification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15201640.8A
Other languages
German (de)
English (en)
Inventor
Jean-Claude EICHENBERGER
Hung Quoc TRAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA Manufacture Horlogere Suisse SA
Original Assignee
ETA Manufacture Horlogere Suisse SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA Manufacture Horlogere Suisse SA filed Critical ETA Manufacture Horlogere Suisse SA
Priority to EP15201640.8A priority Critical patent/EP3184211A1/fr
Priority to EP16801424.9A priority patent/EP3393701B1/fr
Priority to PCT/EP2016/078201 priority patent/WO2017108293A1/fr
Priority to JP2018532780A priority patent/JP6793730B2/ja
Priority to CN201680079730.2A priority patent/CN108495730B/zh
Priority to US16/064,314 priority patent/US10987732B2/en
Publication of EP3184211A1 publication Critical patent/EP3184211A1/fr
Priority to US17/193,309 priority patent/US11759857B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/06Manufacture or mounting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/15Intermetallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a material and its method of manufacturing powder metallurgy.
  • An area of application targeted with this new material is that of mechanics and, more specifically, micromechanics. It is even more specifically adapted for components having complex geometries with severe tolerances, as in watchmaking, for example.
  • Powder metallurgy materials are of considerable technological importance and are used in a wide range of fields from nuclear to biomedical.
  • the present invention proposes to select the composition of the starting powders according to the desired properties on the final product and to adapt the parameters of the process to limit the interactions between the powders and thus obtain the expected properties on the basis of the initial choice of the powders.
  • the figure 1 represents the microstructure of a three-phase material obtained with the method according to the invention.
  • the densification was carried out at a temperature close to 500 ° C on a compacted mixture of nickel, brass and bronze.
  • the figure 2 represents this same microstructure after image processing to reveal the different phases.
  • the Figures 3 and 4 represent the microstructure of the same triphasic material when the densification is operated at a temperature close to 700 ° C.
  • the Figures 5 and 6 represent, by way of comparison, the microstructures of materials of the prior art obtained by powder metallurgy.
  • To the figure 5 it is a bi-phased sintered solid ( US 5,294,269 ).
  • White represents the heavy phase consisting mainly of tungsten.
  • the black phase is the metallic binder phase consisting essentially of a nickel, iron, copper, cobalt and molybdenum alloy.
  • To the figure 6 it is a sintered cermet ( US 2004/0231459 ).
  • Binder is the binder phase made of stainless steel 347SS.
  • the ceramic phase is composed of TiC (titanium carbide).
  • the last phase consists of precipitates M 7 C 3 where M contains chromium, iron and titanium.
  • the present invention relates to a method of manufacturing a material by powder metallurgy and to the material resulting from the process.
  • the method is adapted so that the microstructure of the material is perfectly homogeneous through its volume and that it is an image as faithful as possible of the microstructure of the mixed powders and their initial distribution in the mixture.
  • the material resulting from the process may be a finished product or a semi-finished product requiring a subsequent machining step.
  • the material is a metallic material obtained from a three-step process.
  • the first step consists of selecting one or more metal powders and dosing them when several powders are present. It can be powders of a pure metal or an alloy.
  • the number of starting powders, their compositions and their respective percentages depend on the physico-mechanical properties desired on the consolidated product.
  • the powders are at least two in number to combine the properties of different compositions.
  • Each powder is formed of particles having a particle size chosen to guarantee the quality of the material.
  • their average diameter d 50 is preferably chosen in a range between 1 and 100 microns.
  • the metal powders are chosen from the non-exhaustive list comprising pure metals or alloys based on titanium, copper, zinc, iron, aluminum, nickel, chromium, cobalt, vanadium and zirconium. , niobium, molybdenum, palladium, silver, tantalum, tungsten, platinum and gold.
  • the mixture comprises three powders: a nickel powder, a bronze powder and a brass powder.
  • the percentages Cu, Sn and Cu, Zn can be respectively modulated.
  • the content of Cu and Zn can be respectively 60 and 40% and for bronze, the content of Cu and Sn can be respectively 90 and 10%.
  • a second step the different powders are mixed.
  • Mixing is carried out in a standard commercial dry blender.
  • the setting of the mixer and the duration of mixing are chosen so that at the end of this step, the mixture is perfectly homogeneous.
  • the mixing time is greater than 12 hours to ensure this homogeneity and less than 24 hours. It should be noted that in the presence of a single starting powder, the mixing step is optional.
  • the homogeneous mixture is shaped, i.e. compacted and densified at a temperature below the melting temperature of the respective powders.
  • Hot compaction and densification is performed using impact compaction technology as described in the application. WO 2014/199090 .
  • the mixed powders are placed in an impression made in a matrix and compaction of the mixture is carried out by means of a punch.
  • the compacted mixture is hot densified by subjecting the punch to impacts.
  • the cooling step under pressure can be omitted.
  • the process parameters are chosen to obtain a consolidated body with a relative density greater than or equal to 95% and better than or equal to 98%, while limiting the interactions between the different powders.
  • the objective is to achieve microstrain between particles to consolidate the material without significantly altering the microstructure of the various powders present.
  • the consolidation parameters are chosen to limit the degree of sintering to surface bond formation and not to volume bond formation as observed during actual sintering. Microstructurally, this intergranular bond results in the formation of bridges between particles. Limiting the interactions between particles makes it possible to maintain a distribution of the powders within the consolidated material close to that observed after mixing the powders.
  • Compaction and impact densification of the powder mixture thus makes it possible to weld the grains of the powders together while preserving a microstructure with high energy interfaces between the different constitutive phases.
  • the material resulting from the process has the characteristics that the constituent elements of the different powders do not mix and that the morphology of the base particles is retained after compaction and densification.
  • the morphology of the grains of the obtained material is an image of the morphology of the particles of the initial powder, which is advantageous for guaranteeing mechanical properties on the basis of the initial choice of morphology. powder.
  • the powder mixture is at a temperature below the melting temperature of the lower melting point powder during hot densification.
  • the mixture is brought to this temperature for a time of between 3 and 30 minutes and, preferably, between 5 and 20 minutes. It can be brought to this temperature before introduction in the press or in the press.
  • the time indicated above includes the heating time to reach the given temperature and the maintenance at this temperature.
  • the mixture is subjected to a number of impacts of between 1 and 50 with an energy level of between 500 and 2000J, this level being preferably 10 to 30% higher than the energy level required when compaction.
  • the product thus obtained has a relative density greater than or equal to 95% and, preferably, 98%, measured conventionally by weighing Archimedes.
  • a cut metallurgical reveals a very specific microstructure due to the process of shaping the material.
  • the material comprises a number of phases corresponding to the number of initial powders with a distribution of the phases substantially the same as that of the powders within the starting mixture.
  • Another very specific characteristic of this microstructure is that the surface energy of the phases thus consolidated is conserved at high levels.
  • the native morphology of the powder particles remains almost completely preserved with an interface between irregularly shaped phases, which can also be described as non-spherical.
  • the consolidated phases thus retain a high specific surface area.
  • Figures 1 and 2 reveal the microstructure obtained from a mixture of three powders: nickel, bronze, brass as shown in Table 1.
  • the mixture was compacted and densified at a temperature close to 500 ° C.
  • the microstructure has three distinct phases respectively consisting mainly of nickel, bronze and brass.
  • the homogeneity of the microstructure obtained is that obtained after the step of mixing the three kinds of powder.
  • the product thus obtained has a relative density greater than 95%.
  • Figures 3 and 4 this same homogeneity of microstructure with three distinct phases.
  • an interdiffusion between the two pairs nickel-bronze and bronze-brass is observed, the phase rich in nickel being surrounded by the phase rich in bronze. This interdiffusion makes it possible to increase the relative density to a value greater than or equal to 98%.
  • Tables 1 and 2 Three metal powders listed in Tables 1 and 2 below were selected in step 1) of the process.
  • the function of each powder is detailed in Table 1.
  • the compositions and percentages of the various powders are detailed in Table 2.
  • ⁇ u> Table 1 ⁇ / u> Selected powders Function and / or characteristic Pure nickel (Ni) metal powder Providing consolidated and densified material with good welding behavior, especially laser welding Brass alloy metal powder, with a nominal chemical composition of 60% copper (Cu) and 40% zinc (Zn). Offering good machinability Bronze alloy metal powder, with a nominal chemical composition of 90% copper (Cu) and 10% tin (Sn).
  • the powders were mixed in a commercial Turbula T10B mixer.
  • the mixing speed is an average speed of the order of 200 rpm for 24 hours.
  • the shaping was carried out using a high speed and high energy press of the manufacturer Hydropulsor.
  • the formatting was performed in two phases:
  • the dosing of the powders in the impression is done volumetrically with a given filling height.
  • this filling height is 6 mm to reach a compacted thickness of about 2 mm.
  • This parameter - filling height - can vary between 2 mm and 50 mm depending on the desired final thickness on the compacted solid.
  • the quantity of powders thus dosed is compacted between the punch above and the punch below, surrounded by a matrix to form a washer of a given diameter.
  • This compaction is done in the example with 25 impacts. The goal of this step is to get a solid enough dense for subsequent densification at hot. This compaction also serves to ensure that the solid thus compacted is sufficiently solid for handling operations during hot densification.
  • the relative density obtained at this stage is greater than 90%.
  • the compacted washer is brought to a temperature close to 700 ° C in an oven preheated to this temperature.
  • the compacted puck is placed in the oven for at least 5 minutes and preferably 15 minutes.
  • the thus heated washer is transported and placed in the cavity of diameter slightly larger than the diameter of the washer.
  • the duration of the transport of the preheated washer of the oven to the press, put in the matrix, is between 2 and 5 seconds.
  • the preheated disc is then hot densified between the top punch and the bottom punch with 25 impacts. In the absence of heating means, a decrease in temperature is observed during the densification by impact.
  • the final thickness in the example of the densified washer is about 1.8 mm.
  • the relative density of the washer is greater than 98%.
  • the microstructure is similar to that obtained at figure 3 .
  • the solid obtained is a multiphase material comprising phases having different functions.
  • the solid thus obtained has a homogeneous microstructure throughout its volume. As a result, there is no internal stress gradient across the solid. This provides geometric stability to the machined part.
  • Each phase of the solid obtained and, upstream, each powder is chosen to fulfill a specific function.
  • One of the phases may be chosen to improve the weldability, for example, by laser. This function is fulfilled by the phase consisting mainly of nickel in the example.
  • Another phase may be chosen to facilitate hot densification without sintering itself.
  • one of the phases of solid consists essentially of bronze which has the lowest melting range of the three constituents.
  • the third phase which is, as an example, the majority phase, is composed of consolidated brass powder. This phase thus mixed with the other two makes it possible to guarantee better machining aptitude by chip removal.
  • the process according to the invention also has advantages. It is thus observed that the morphology of the grains within the material is an image of the morphology of the particles of the starting powder. As the grain size plays an important role in the mechanical properties of the material, it is particularly advantageous to be able to predict the final properties on the basis of the choice of the morphology of the starting powder.
  • the morphology of the base powder or powders is maintained while obtaining a product with a high relative density, unlike the known sintering process where the consolidation at relative density values greater than or equal to 95, or even 98% is accompanied by a drastic change in morphology.

Abstract

La présente invention se rapporte à un matériau métallique compacté et densifié comprenant une ou plusieurs phases formées d'un agglomérat de grains, la cohésion du matériau étant assurée par des ponts formés entre grains, ledit matériau ayant une densité relative supérieure ou égale à 95% et, préférentiellement, à 98%.

Description

    OBJET DE L'INVENTION
  • La présente invention se rapporte à un matériau et à son procédé de fabrication par métallurgie des poudres. Un domaine d'application visé avec ce nouveau matériau est celui de la mécanique et, plus précisément, de la micromécanique. Il est encore plus spécifiquement adapté pour des composants ayant des géométries complexes avec des tolérances sévères, comme dans l'horlogerie par exemple.
  • ARRIÈRE-PLAN TECHNOLOGIQUE ET ÉTAT DE LA TECHNIQUE
  • Les matériaux obtenus par métallurgie des poudres ont une importance technologique considérable et sont utilisés dans un large panel de domaines allant du nucléaire au biomédical.
  • A titre d'exemple, on peut citer les documents US 5,294,269 et US 2004/0231459 divulguant respectivement un procédé de frittage d'alliages à base de tungstène et d'un cermet. Sans entrer dans les détails, les interactions entre particules de poudres (diffusion en surface et en volume) lors du frittage modifient drastiquement la microstructure et la distribution des poudres initialement mélangées. Il en résulte un produit avec des propriétés propres à cette nouvelle microstructure.
  • RÉSUMÉ DE L'INVENTION
  • La présente invention propose de sélectionner la composition des poudres de départ en fonction des propriétés recherchées sur le produit final et d'adapter les paramètres du procédé pour limiter les interactions entre les poudres et ainsi obtenir les propriétés attendues sur base du choix initial des poudres.
  • A cette fin, un procédé et un produit selon les revendications annexés sont proposés.
  • BRÈVE DESCRIPTION DES FIGURES
  • Les caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée ci-dessous faisant référence aux figures suivantes.
  • La figure 1 représente la microstructure d'un matériau triphasique obtenu avec le procédé selon l'invention. La densification a été opérée à une température proche de 500°C sur un mélange compacté de nickel, laiton et bronze. La figure 2 représente cette même microstructure après traitement d'images pour faire apparaître les différentes phases. Les figures 3 et 4 représentent la microstructure d'un même matériau triphasique lorsque la densification est opérée à une température proche de 700°C.
  • Les figures 5 et 6 représentent, à titre comparatif, les microstructures de matériaux de l'art antérieur obtenus par métallurgie des poudres. A la figure 5, il s'agit d'un solide fritté bi-phasé ( US 5,294,269 ). Le blanc représente la phase lourde constituée principalement de tungstène. La phase noire est la phase liante métallique composée essentiellement d'un alliage nickel, fer, cuivre, cobalt et molybdène. A la figure 6, il s'agit d'un cermet fritté ( US 2004/0231459 ). Binder est la phase liante composée d'un acier inoxidable 347SS. La phase céramique est composée de TiC (carbure de titane). La dernière phase est constituée de précipités M7C3 où M contient le chrome, le fer et le titane.
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • La présente invention se rapporte à un procédé de fabrication d'un matériau par métallurgie des poudres et au matériau issu du procédé. Le procédé est adapté pour que la microstructure du matériau soit parfaitement homogène au travers de son volume et pour qu'elle soit une image la plus fidèle possible de la microstructure des poudres mélangées et de leur distribution initiale dans le mélange. Le matériau issu du procédé peut être un produit fini ou un demi-produit nécessitant une étape ultérieure d'usinage.
  • Le matériau est un matériau métallique obtenu à partir d'un procédé comportant trois étapes.
  • La première étape consiste à sélectionner une ou plusieurs poudres métalliques et à les doser lorsque plusieurs poudres sont en présence. Il peut s'agir de poudres d'un métal pur ou d'un alliage. Le nombre de poudres de départ, leurs compositions et leurs pourcentages respectifs dépendent des propriétés physico-mécaniques désirées sur le produit consolidé. Préférentiellement, les poudres sont minimum au nombre de deux afin de combiner les propriétés propres à différentes compositions. Chaque poudre est formée de particules ayant une granulométrie choisie pour garantir la qualité du matériau. Bien que dépendant des propriétés visées, leur diamètre moyen d50 est préférentiellement choisi dans une gamme comprise entre 1 et 100 µm.
  • La ou les poudres métalliques sont choisies parmi la liste non exhaustive comprenant les métaux purs ou alliages à base de titane, de cuivre, de zinc, de fer, d'aluminium, de nickel, de chrome, de cobalt, de vanadium, de zirconium, de niobium, de molybdène, de palladium, d'argent, de tantale, de tungstène, de platine et d'or. A titre d'exemple, le mélange comprend trois poudres : une poudre de nickel, une poudre de bronze et une poudre de laiton. La proportion de poudre de bronze est comprise entre 2 et 20% en poids, la proportion de poudre de nickel est comprise entre 3 et 40% en poids, la proportion de poudre de laiton étant la proportion restante (= 100% - la somme des % de poudres de nickel et de bronze). Pour le bronze et le laiton, les pourcentages Cu, Sn et Cu, Zn peuvent être respectivement également modulés. Par exemple, pour le laiton, la teneur en Cu et Zn peut être respectivement de 60 et 40% et pour le bronze, la teneur en Cu et Sn peut être respectivement de 90 et 10%.
  • Dans une deuxième étape, les différentes poudres sont mélangées. Le mélange s'effectue dans un mélangeur standard du commerce à sec. Le paramétrage du mélangeur et la durée du mélange sont choisis de manière à ce qu'à la fin de cette étape, le mélange soit parfaitement homogène. Généralement, le temps de mélange est supérieur à 12h pour garantir cette homogénéité et inférieur à 24h. Il est à noter qu'en présence d'une seule poudre de départ, l'étape de mélange est optionnelle.
  • Dans une troisième étape, le mélange homogène est mis en forme, c.à.d. compacté et densifié à une température inférieure à la température de fusion des poudres respectives. La compaction et densification à chaud s'effectuent à l'aide d'une technologie de compaction par impact comme décrite dans la demande WO 2014/199090 . Ainsi, les poudres mélangées sont placées dans une empreinte réalisée dans une matrice et un compactage du mélange est réalisé au moyen d'un poinçon. Ensuite, le mélange compacté est densifié à chaud en soumettant le poinçon à des impacts. Contrairement au procédé décrit dans la demande WO 2014/199090 , l'étape de refroidissement sous pression peut être omise.
  • Les paramètres du procédé sont choisis pour obtenir un corps consolidé avec une densité relative supérieure ou égale 95% et mieux supérieure ou égale à 98%, tout en limitant les interactions entre les différentes poudres. L'objectif est de réaliser une microsoudure entre particules pour consolider la matière sans altérer notablement la microstructure des différentes poudres en présence. Plus précisément, les paramètres de consolidation sont choisis pour limiter le degré de frittage à une formation de liaison de surface et non à une formation de liaison de volume comme observé lors d'un frittage à proprement dit. Microstructurellement, cette liaison intergranulaire se traduit par la formation de ponts entre particules. Limiter les interactions entre particules permet de maintenir une répartition des poudres au sein du matériau consolidé proche de celle observée après mélange des poudres. La compaction et densification par impacts du mélange de poudres permet ainsi de souder les grains des poudres entre eux tout en préservant une microstructure avec des interfaces à haute énergie entre les différentes phases constitutives. En d'autres mots, le matériau issu du procédé a pour caractéristiques que les éléments constitutifs des différentes poudres ne se mélangent pas et que la morphologie des particules de base est conservée après compaction et densification. De même, en présence d'une seule poudre de départ, la morphologie des grains du matériau obtenu est une image de la morphologie des particules de la poudre initiale, ce qui est avantageux pour garantir des propriétés mécaniques sur base du choix initial de la morphologie de la poudre.
  • Pour obtenir cette microstructure particulière, le mélange de poudres se trouve à une température inférieure à la température de fusion de la poudre de plus bas point de fusion lors de la densification à chaud. Le mélange est porté à cette température pendant un temps compris entre 3 et 30 minutes et, préférentiellement, entre 5 et 20 minutes. Il peut être porté à cette température avant introduction dans la presse ou dans la presse. Le temps indiqué ci-dessus inclut le temps de chauffage pour arriver à la température donnée et le maintien à cette température. Lors de la densification, le mélange est soumis à un nombre d'impacts compris entre 1 et 50 avec un niveau d'énergie compris entre 500 et 2000J, ce niveau étant préférentiellement supérieur de 10 à 30% au niveau d'énergie requis lors de la compaction. Le produit ainsi obtenu a une densité relative supérieure ou égale à 95% et, de préférence, à 98%, mesurée de manière conventionnelle par pesée d'Archimède. Après cette étape de densification, une coupe métallurgique révèle une microstructure bien spécifique due au procédé de mise en forme du matériau. Le matériau comporte un nombre de phases correspondant au nombre de poudres initial avec une répartition des phases sensiblement la même que celle des poudres au sein du mélange de départ. Une autre caractéristique bien spécifique de cette microstructure est que l'énergie de surface des phases ainsi consolidée est conservée à des niveaux élevés. La morphologie native des particules de poudres reste presque totalement conservée avec une interface entre phases de forme irrégulière, qu'on peut également qualifier de non sphérique. Les phases consolidées conservent ainsi une surface spécifique élevée.
  • A titre d'exemple, les figures 1 et 2 révèlent la microstructure obtenue partant d'un mélange de trois poudres : nickel, bronze, laiton tel que présenté au tableau 1. Le mélange a été compacté et densifié à une température proche de 500°C. La microstructure présente trois phases distinctes respectivement constituées majoritairement de nickel, de bronze et de laiton. L'homogénéité de la microstructure obtenue est celle obtenue après l'étape de mélange des trois sortes de poudre. Le produit ainsi obtenu a une densité relative supérieure à 95%. Partant d'un même mélange mais avec une température de densification proche de 700°C, on observe aux figures 3 et 4 cette même homogénéité de microstructure avec trois phases distinctes. Cependant, une interdiffusion entre les deux couples nickel-bronze et bronze-laiton est observée, la phase riche en nickel étant entourée par la phase riche en bronze. Cette interdiffusion permet d'augmenter la densité relative à une valeur supérieure ou égale à 98%.
  • Par comparaison avec les matériaux obtenus par métallurgie des poudres dans les documents US 5,294,269 et US 2004/0231459 (figures 5 et 6 respectivement), on observe une nette différence au niveau des interfaces séparant les différentes phases. Dans ces documents, les interfaces sont lisses et, plus précisément, de forme essentiellement sphériques contrairement au matériau selon l'invention présentant des interfaces irrégulières, c.à.d. des interfaces à haute énergie, entre les phases.
  • Un exemple détaillé ci-dessous illustre le procédé selon l'invention.
  • Dans la première étape, les poudres ont été sélectionnées pour réaliser un matériau présentant un ensemble de propriétés :
    • mise en forme facile du demi-produit par un procédé d'usinage par enlèvement de copeaux avec absence de bavure,
    • stabilité dimensionnelle, pour éviter une déformation du matériau après l'opération d'usinage ;
    • soudable, notamment par laser.
  • Pour répondre à ces critères, trois poudres métalliques reprises dans les tableaux 1 et 2 ci-dessous ont été sélectionnées à l'étape 1) du procédé. La fonction de chaque poudre est détaillée au tableau 1. Les compositions et pourcentages des différentes poudres sont détaillés au tableau 2. Tableau 1
    Poudres choisies Fonction et/ou caractéristique
    Poudre métallique en nickel (Ni) pur Offrant au matériau consolidé et densifié un bon comportement au soudage, notamment soudage par laser
    Poudre métallique en alliage de laiton, avec une composition chimique nominale de 60% de cuivre (Cu) et 40% de zinc (Zn). Offrant une bonne usinabilité
    Poudre métallique en alliage de bronze, avec une composition chimique nominale de 90% de cuivre (Cu) et 10% d'étain (Sn). Offrant un meilleur comportement à la consolidation et la densification
    Tableau 2
    Type de poudre Teneur en poudre (en poids) Granulométrie (µm) (données fournisseur) Composition chimique nominale du matériau (en poids)
    Ni Cu Zn Sn
    Poudre Nickel (100% Ni)* 25% Fisher size : 1.8-2.8 25%
    Poudre laiton (60% Cu, 40% Zn)** d10 : 2 48% 26% 1%
    65% d50 : 6
    d90 : 20
    Poudre bronze (90% Cu, 10% Sn)*** d10 : 6
    10% d50 : 11
    d90 : 20
    * Poudre Ni2800A de Eurotungstene
    ** Poudre SF-BS6040 10µm de Nippon Atomized Metal Powders Corp.
    *** Poudre SF-BR9010 10µm de Nippon Atomized Metal Powders Corp.
  • Dans la seconde étape, les poudres ont été mélangées dans un mélangeur du commerce de type Turbula T10B. La vitesse de mélange est une vitesse moyenne de l'ordre de 200 tours par minute pendant 24 heures.
  • Dans la troisième étape, la mise en forme a été réalisée à l'aide d'une presse à haute vitesse et à haute énergie du fabriquant Hydropulsor. La mise en forme a été exécutée en deux phases :
  • Compactage à froid :
  • Le dosage des poudres dans l'empreinte se fait de manière volumétrique avec une hauteur de remplissage donnée. Dans l'exemple, cette hauteur de remplissage est de 6 mm pour arriver à une épaisseur compactée d'environ 2 mm. Ce paramètre - hauteur de remplissage - peut varier entre 2 mm et 50 mm en fonction de l'épaisseur finale désirée sur le solide compacté. La quantité de poudres ainsi dosée est compactée entre le poinçon du dessus et le poinçon du dessous, entourée d'une matrice pour former une rondelle d'un diamètre donné. Cette compaction est faite dans l'exemple avec 25 impacts. L'objectif de cette étape est d'obtenir un solide suffisamment dense pour la densification ultérieure à chaud. Cette compaction sert aussi à ce que le solide ainsi compacté soit suffisamment solide pour les opérations de manipulation lors de la densification à chaud. La densité relative obtenue à cette étape est supérieure à 90 %.
  • La densification à chaud
  • La rondelle compactée est portée à une température proche de 700°C dans un four préchauffé à cette température. La rondelle compactée est placée dans le four pendant au moins 5 minutes et, de préférence, 15 minutes. La rondelle ainsi chauffée est transportée et mise dans l'empreinte de diamètre légèrement plus grand que le diamètre de la rondelle. La durée du transport de la rondelle préchauffée du four à la presse, mise dans la matrice, est comprise entre 2 et 5 secondes. La rondelle préchauffée est ensuite densifiée à chaud entre le poinçon du dessus et le poinçon du dessous avec 25 impacts. En l'absence de moyens de chauffage, une diminution de la température est observée pendant la densification par impact. L'épaisseur finale dans l'exemple de la rondelle densifiée est d'environ 1.8 mm. La densité relative de la rondelle est supérieure à 98%. La microstructure est semblable à celle obtenue à la figure 3.
  • Grâce à la compaction et densification à chaud comme décrit ci-dessus, le solide obtenu est un matériau multi-phasé comprenant des phases ayant des fonctions différentes. De plus, le solide ainsi obtenu présente une microstructure homogène dans tout son volume. De ce fait, il y a absence de gradient de contraintes internes à travers du solide. Ceci offre une stabilité géométrique à la pièce usinée.
  • Chaque phase du solide obtenu et, en amont, chaque poudre, est choisie pour remplir une fonction bien précise. Une des phases peut être choisie pour améliorer la soudabilité, par exemple, par laser. Cette fonction est remplie par la phase composée principalement de nickel dans l'exemple. Une autre phase peut être choisie pour faciliter la densification à chaud sans frittage à proprement dit. Dans l'exemple, une des phases du solide est constituée essentiellement de bronze qui a l'intervalle de fusion le plus faible des trois constituants. La troisième phase qui est, toujours à titre d'exemple, la phase majoritaire, est composée de la poudre de laiton consolidée. Cette phase ainsi mélangée aux deux autres permet de garantir une meilleure aptitude à l'usinage par enlèvement de copeaux.
  • En présence d'une seule poudre de départ, le procédé selon l'invention présente également des avantages. On observe ainsi que la morphologie des grains au sein du matériau est une image de la morphologie des particules de la poudre de départ. La taille de grain jouant un rôle important dans les propriétés mécaniques du matériau, il est particulièrement avantageux de pouvoir prédire les propriétés finales sur base du choix de la morphologie de la poudre de départ.
  • Grâce au procédé selon l'invention, la morphologie de la ou des poudres de base est conservée tout en obtenant un produit à haute densité relative contrairement au procédé connu de frittage où la consolidation à des valeurs de densité relative supérieures ou égales à 95, voire 98% s'accompagne d'une modification drastique de la morphologie.

Claims (18)

  1. Matériau métallique compacté et densifié comprenant une ou plusieurs phases formées d'un agglomérat de grains, la cohésion du matériau étant assurée par des ponts formés entre grains, ledit matériau ayant une densité relative supérieure ou égale à 95% et, préférentiellement, à 98%.
  2. Matériau selon la revendication 1, dans lequel la ou les phases sont majoritairement composées d'un élément choisi parmi la liste constituée du Ni, Cu, Zn, Ti, Al, Fe, Cr, Co, V, Zr, Nb, Mo, Pd, Ag, Ta, W, Pt, Au et d'un alliage de ceux-ci.
  3. Matériau métallique selon la revendication 1 ou 2, dans lequel les phases sont séparées par des interfaces de forme irrégulière.
  4. Matériau selon l'une quelconque des revendications précédentes, comprenant trois phases, une première phase étant majoritairement composée de nickel, une seconde phase étant majoritairement composée de bronze et une troisième phase étant majoritairement composée de laiton.
  5. Matériau selon la revendication 4, dans lequel la fraction massique de la première phase est comprise entre 3 et 40%, la fraction massique de la seconde phase est comprise entre 2 et 20% et la fraction massique de la troisième phase correspond au pourcentage restant pour faire 100%.
  6. Pièce comportant le matériau selon l'une quelconque des revendications 1 à 5.
  7. Pièce selon la revendication 6 étant un composant horloger.
  8. Utilisation du matériau selon l'une quelconque des revendications 1 à 5 dans le domaine de la micromécanique.
  9. Procédé de fabrication d'un matériau par métallurgie des poudres comprenant les étapes suivantes :
    - mise à disposition d'une ou plusieurs poudres métalliques,
    - compaction de la ou des poudres métalliques pour former un ensemble compacté,
    - densification par impact de l'ensemble compacté à une température inférieure à la température de fusion de la poudre ayant la plus faible température de fusion, l'ensemble étant préalablement ou pendant la densification porté à ladite température pendant un temps compris entre 3 et 30 minutes et, de préférence, entre 5 et 20 minutes.
  10. Procédé selon la revendication 9, comprenant une étape de mélange de la ou des poudres avant compaction.
  11. Procédé selon la revendication 9 ou 10, dans lequel la ou les poudres sont choisies parmi une liste constituée des alliages ou métaux purs de Ni, Cu, Zn, Ti, Al, Fe, Cr, Co, V, Zr, Nb, Mo, Pd, Ag, Ta, W, Pt et Au.
  12. Procédé selon l'une quelconque des revendications 9 à 11, dans lequel au moins deux poudres de compositions différentes sont mises à disposition.
  13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel trois poudres sont mises à disposition, une première poudre étant une poudre de nickel, une seconde poudre étant une poudre de laiton et une troisième poudre étant une poudre de bronze.
  14. Procédé selon la revendication 13, dans lequel le pourcentage de poudre de nickel est compris entre 3 et 40%, le pourcentage de poudre de bronze est compris entre 2 et 20% et le pourcentage de poudre de laiton correspond au pourcentage restant pour faire 100%; les pourcentages étant exprimés en poids.
  15. Procédé selon la revendication 13 ou 14, dans lequel la teneur en Cu et en Zn de la poudre de laiton est respectivement de 60 et 40% et dans lequel la teneur en Cu et Sn dans la poudre de bronze est respectivement de 90 et 10%.
  16. Procédé selon la revendication 15, dans lequel la densification par impact s'effectue à une température supérieure ou égale à 500°C et, de préférence, supérieure ou égale à 700°C.
  17. Procédé selon l'une quelconque des revendications 9 à 16, dans lequel la compaction est réalisée à froid.
  18. Procédé selon l'une quelconque des revendications 9 à 17, dans lequel le nombre d'impacts lors de la densification est compris entre 1 et 50 avec une énergie comprise entre 500 et 2000J.
EP15201640.8A 2015-12-21 2015-12-21 Matériau obtenu par compaction et densification de poudre(s) métallique(s) Withdrawn EP3184211A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15201640.8A EP3184211A1 (fr) 2015-12-21 2015-12-21 Matériau obtenu par compaction et densification de poudre(s) métallique(s)
EP16801424.9A EP3393701B1 (fr) 2015-12-21 2016-11-18 Matériau obtenu par compaction et densification de poudres de nickel, bronze et laiton et son procédé
PCT/EP2016/078201 WO2017108293A1 (fr) 2015-12-21 2016-11-18 Materiau obtenu par compaction et densification de poudre(s) metallique(s)
JP2018532780A JP6793730B2 (ja) 2015-12-21 2016-11-18 金属性粉末を圧縮し高密度化して得られる材料
CN201680079730.2A CN108495730B (zh) 2015-12-21 2016-11-18 通过金属粉末的压缩和致密化获得的材料
US16/064,314 US10987732B2 (en) 2015-12-21 2016-11-18 Material obtained by compaction and densification of metallic powder(s)
US17/193,309 US11759857B2 (en) 2015-12-21 2021-03-05 Material obtained by compaction and densification of metallic powder(s)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15201640.8A EP3184211A1 (fr) 2015-12-21 2015-12-21 Matériau obtenu par compaction et densification de poudre(s) métallique(s)

Publications (1)

Publication Number Publication Date
EP3184211A1 true EP3184211A1 (fr) 2017-06-28

Family

ID=55070732

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15201640.8A Withdrawn EP3184211A1 (fr) 2015-12-21 2015-12-21 Matériau obtenu par compaction et densification de poudre(s) métallique(s)
EP16801424.9A Active EP3393701B1 (fr) 2015-12-21 2016-11-18 Matériau obtenu par compaction et densification de poudres de nickel, bronze et laiton et son procédé

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16801424.9A Active EP3393701B1 (fr) 2015-12-21 2016-11-18 Matériau obtenu par compaction et densification de poudres de nickel, bronze et laiton et son procédé

Country Status (5)

Country Link
US (2) US10987732B2 (fr)
EP (2) EP3184211A1 (fr)
JP (1) JP6793730B2 (fr)
CN (1) CN108495730B (fr)
WO (1) WO2017108293A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057905B (zh) * 2020-01-13 2022-03-04 西安理工大学 一种粉末冶金制备铌钛合金的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147568A (en) * 1976-07-15 1979-04-03 Institut Straumann Ag Copper-zinc-nickel-manganese alloys
US5294269A (en) 1992-08-06 1994-03-15 Poongsan Corporation Repeated sintering of tungsten based heavy alloys for improved impact toughness
US20040231459A1 (en) 2003-05-20 2004-11-25 Chun Changmin Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance
WO2010080064A1 (fr) * 2009-01-12 2010-07-15 Metec Powder Metal Ab Pièces à multiples niveaux obtenues à partir d'une poudre métallique sphérique agglomérée
WO2014199090A2 (fr) 2013-06-12 2014-12-18 Centre Technique Des Industries Mecaniques Procede et ensemble de production d'une piece mecanique par frittage d'un materiau metallique pulverulent
CN104959609A (zh) * 2015-06-05 2015-10-07 东睦新材料集团股份有限公司 一种铜基粉末冶金零件的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA972514A (en) * 1971-08-10 1975-08-12 Renzo Fedrigo Method of and press for compacting materials in powder form for pieces to be sintered
US4270114A (en) * 1980-04-07 1981-05-26 Cannom David L Energy transmission devices
DK0420962T3 (da) * 1989-04-07 1994-04-25 Electrolux Ab Fremgangsmåde til fremstilling af dimensionsnøjagtige stykker
SE0004122D0 (sv) * 2000-11-09 2000-11-09 Hoeganaes Ab High density compacts and method for the preparation thereof
JP2008038160A (ja) * 2006-08-01 2008-02-21 Kobe Steel Ltd 高密度粉末成形体の製造方法
US9243475B2 (en) * 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
JP4906972B1 (ja) * 2011-04-27 2012-03-28 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
KR101501067B1 (ko) * 2013-06-07 2015-03-17 한국생산기술연구원 비정질 형성능을 가지는 결정질 합금, 그 제조방법, 스퍼터링용 합금타겟 및 그 제조방법
JP6519100B2 (ja) * 2014-04-23 2019-05-29 セイコーエプソン株式会社 焼結造形方法、液状結合剤、および焼結造形物
US10639719B2 (en) * 2016-09-28 2020-05-05 General Electric Company Grain boundary engineering for additive manufacturing
WO2019044851A1 (fr) * 2017-08-28 2019-03-07 新日鐵住金株式会社 Élément d'horloge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147568A (en) * 1976-07-15 1979-04-03 Institut Straumann Ag Copper-zinc-nickel-manganese alloys
US5294269A (en) 1992-08-06 1994-03-15 Poongsan Corporation Repeated sintering of tungsten based heavy alloys for improved impact toughness
US20040231459A1 (en) 2003-05-20 2004-11-25 Chun Changmin Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance
WO2010080064A1 (fr) * 2009-01-12 2010-07-15 Metec Powder Metal Ab Pièces à multiples niveaux obtenues à partir d'une poudre métallique sphérique agglomérée
WO2014199090A2 (fr) 2013-06-12 2014-12-18 Centre Technique Des Industries Mecaniques Procede et ensemble de production d'une piece mecanique par frittage d'un materiau metallique pulverulent
CN104959609A (zh) * 2015-06-05 2015-10-07 东睦新材料集团股份有限公司 一种铜基粉末冶金零件的制备方法

Also Published As

Publication number Publication date
CN108495730A (zh) 2018-09-04
US10987732B2 (en) 2021-04-27
US11759857B2 (en) 2023-09-19
US20190009331A1 (en) 2019-01-10
JP6793730B2 (ja) 2020-12-02
EP3393701B1 (fr) 2022-05-11
CN108495730B (zh) 2021-06-15
JP2019508576A (ja) 2019-03-28
US20210187608A1 (en) 2021-06-24
WO2017108293A1 (fr) 2017-06-29
EP3393701A1 (fr) 2018-10-31

Similar Documents

Publication Publication Date Title
EP3853391B1 (fr) Procédé de fabrication d'une pièce en alliage d'aluminium
EP0930948B1 (fr) Piece d'usure composite
EP1728586B1 (fr) Poudre de superalliage
EP0297001B1 (fr) Procédé pour réduire la dispersion des valeurs des caractéristiques mécaniques d'alliages de tungstène-nickel-fer
TWI431140B (zh) Method for manufacturing sputtering standard materials for aluminum - based alloys
FR3077524A1 (fr) Procede de fabrication d'une piece en alliage d'aluminium et de chrome
WO2016192177A1 (fr) Procédé de moulage de matériau d'alliage dur à gradient fonctionnel
EP2951332B1 (fr) Cible avec Ga-Na, In-Na ou Ga-In-Na en phase intermétallique
CN111334762A (zh) 一种粉末冶金AlSnCu合金靶材及其制备方法
EP3404122A1 (fr) Procede d'elaboration par sla d'un materiau composite a matrice metallique
EP3393701B1 (fr) Matériau obtenu par compaction et densification de poudres de nickel, bronze et laiton et son procédé
US20110150694A1 (en) METHOD FOR MANUFACTURING Ti PARTICLE-DISPERSED MAGNESIUM-BASED COMPOSITE MATERIAL
FR2481166A1 (fr) Procede de production d'un comprime metallique a partir d'une poudre de metal pratiquement incompressible, et poudre de metal
CH711939A2 (fr) Matériau obtenu par compaction et densification de poudre(s) métallique(s).
EP0838288A1 (fr) Pièce d'usure composite
WO2020025880A1 (fr) Superalliage a base de nickel pour fabrication d'une piece par mise en forme de poudre
CH536672A (fr) Procédé de fabrication d'un produit métallique et produit obtenu par ce procédé
EP1707304B1 (fr) Flux à haute productivité pour plaquage electroslag
FR2841804A1 (fr) Procede de synthese d'un materiau composite metal-ceramique a durete renforcee et materiau obtenu par ce procede
FR3108919A1 (fr) Pièce en un matériau multicouche à gradient de composition et son procédé de fabrication
JP2024030381A (ja) スパッタリングターゲット材
FR3066418A1 (fr) Procede d'elaboration d'un materiau composite a matrice metallique par moulage par injection
FR3122591A1 (fr) Procédé de détermination de la température de frittage
JP3519152B2 (ja) WC粒子分散W強化Ni基合金およびこれを用いた複合材
JPS596339A (ja) アルミニウム系合金の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180102