JP7477203B2 - パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法 - Google Patents

パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法 Download PDF

Info

Publication number
JP7477203B2
JP7477203B2 JP2022177127A JP2022177127A JP7477203B2 JP 7477203 B2 JP7477203 B2 JP 7477203B2 JP 2022177127 A JP2022177127 A JP 2022177127A JP 2022177127 A JP2022177127 A JP 2022177127A JP 7477203 B2 JP7477203 B2 JP 7477203B2
Authority
JP
Japan
Prior art keywords
coating
nucleation
region
conductive coating
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022177127A
Other languages
English (en)
Other versions
JP2022190123A5 (ja
JP2022190123A (ja
Inventor
チャン イー-ルー
ワン チー
ヘランダー マイケル
チウ ジャッキー
ワン ジビン
レバー トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTI Lumionics Inc
Original Assignee
OTI Lumionics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTI Lumionics Inc filed Critical OTI Lumionics Inc
Publication of JP2022190123A publication Critical patent/JP2022190123A/ja
Priority to JP2023136246A priority Critical patent/JP2023153359A/ja
Publication of JP2022190123A5 publication Critical patent/JP2022190123A5/ja
Application granted granted Critical
Publication of JP7477203B2 publication Critical patent/JP7477203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

関連出願への相互参照
本出願は、2015年10月26日に出願された米国仮出願番号第62/246,597号、2016年1月13日に出願された米国仮出願番号第62/277,989号、2016年8月11日に出願された米国仮出願番号第62/373,927号、および2016年8月19日に出願された米国仮出願番号第62/377,429号に基づく優先権の利益を主張しており、それらの内容は、それら全体が本明細書中に参考として援用される。
技術分野
以下は、概して、表面上に導電性材料を堆積させるための方法に関する。具体的には、本方法は、デバイスの導電性構造を形成するための表面上の導電性材料の選択的堆積に関する。
背景
有機発光ダイオード(OLED)は、典型的には、有機層のうちの少なくとも1つがエレクトロルミネセント層である、伝導性薄膜電極の間に間置される有機材料のうちのいくつかの層を含む。電圧が電極に印加されるとき、正孔および電子が、それぞれ、アノードならびにカソードから注入される。電極によって注入される正孔および電子は、エレクトロルミネセント層に到達するように有機層を通って移動する。正孔および電子が近接近しているとき、それらは、クーロン力に起因して相互に引き付けられる。正孔および電子は、次いで、励起子と称される束縛状態を形成するように合体してもよい。励起子は、光子が放出される、放射再結合プロセスを通して減衰してもよい。代替として、励起子は、光子が放出されない、非放射再結合プロセスを通して減衰してもよい。本明細書で使用されるように、内部量子効率(IQE)は、放射再結合プロセスを通して減衰する、デバイスの中で生成される全ての電子・正孔対の割合であると理解されるであろうことに留意されたい。
放射再結合プロセスは、電子・正孔対(すなわち、励起子)のスピン状態に応じて、蛍光または燐光プロセスとして起こり得る。具体的には、電子・正孔対によって形成される励起子は、一重項または三重項スピン状態を有するものとして特徴付けられてもよい。概して、一重項励起子の放射減衰が、蛍光をもたらす一方で、三重項励起子の放射減衰は、燐光をもたらす。
ごく最近では、熱的活性化遅延蛍光(TADF)を含む、OLED用の他の発光機構が提案および調査されている。簡潔には、TADF発光は、熱エネルギーを用いた逆システム間交差プロセスを介した、一重項励起子への三重項励起子の変換を通して起こり、その後に、一重項励起子の放射減衰が続く。
OLEDデバイスの外部量子効率(EQE)は、デバイスによって放射されるいくつかの光子に対する、OLEDデバイスに提供される電荷担体の比を指し得る。例えば、100%のEQEは、1つの光子がデバイスに注入される電子毎に放射されることを示す。理解され得るように、デバイスのEQEは、概して、デバイスのIQEよりも実質的に低い。EQEとIQEとの間の差は、概して、デバイスの種々の構成要素によって引き起こされる光の吸収および反射等のいくつかの要因に起因し得る。
OLEDデバイスは、典型的には、光がデバイスから放射される相対方向に応じて、「底面発光」または「上面発光」デバイスのいずれかであるものとして分類されることができる。底面発光デバイスでは、放射再結合プロセスの結果として生成される光が、デバイスのベース基板に向かった方向に放射される一方で、上面発光デバイスでは、光は、ベース基板から離れた方向に放射される。故に、ベース基板の近位にある電極が、概して、底面発光デバイスでは光透過性(例えば、実質的に透明または半透明)であるように作製される一方で、上面発光デバイスでは、ベース基板の遠位にある電極は、概して、光の減衰を低減させるために光透過性であるように作製される。具体的デバイス構造に応じて、アノードまたはカソードのいずれかは、上面発光および底面発光デバイスの中で透過型電極として作用してもよい。
OLEDデバイスはまた、ベース基板に対して両方向に光を放射するように構成される、両面発光デバイスであってもよい。例えば、両面発光デバイスは、各ピクセルからの光が両方向に放射されるように、透過型アノードと、透過型カソードとを含んでもよい。別の実施例では、両面発光ディスプレイデバイスは、各ピクセルからの単一の電極が透過型であるように、一方の方向に光を放射するように構成されるピクセルの第1のセットと、他方の方向に光を放射するように構成されるピクセルの第2のセットとを含んでもよい。
上記のデバイス構成に加えて、デバイスが、外部光がデバイスを通して透過されることを可能にする透明部分を含む、透明または半透明OLEDデバイスもまた、実装されることができる。例えば、透明OLEDディスプレイデバイスでは、透明部分が、各隣接ピクセルの間の非放射領域中に提供されてもよい。別の実施例では、透明OLED照明パネルが、パネルの放射領域の間に複数の透明領域を提供することによって形成されてもよい。透明または半透明OLEDデバイスは、底面発光、上面発光、または両面発光デバイスであってもよい。
カソードまたはアノードのいずれかは、透過型電極として選択されることができるが、典型的上面発光デバイスは、光透過性カソードを含む。典型的には透過型カソードを形成するために使用される材料は、インジウムスズ酸化物(ITO)および酸化亜鉛(ZnO)等の透明伝導性酸化物(TCO)、ならびに銀(Ag)、アルミニウム(Al)、または体積比1:9~約9:1に及ぶ組成物を伴うマグネシウム銀(Mg:Ag)合金およびイッテルビウム銀(Yb:Ag)合金等の種々の金属合金の薄い層を堆積させることによって形成されるもの等の薄膜を含む。TCOおよび/または薄い金属膜の2つもしくはそれを上回る層を含む、多層カソードもまた、使用されることができる。
特に、薄膜の場合、最大約数十ナノメートルの比較的薄い層の厚さは、OLEDで使用するための増進した透明度および有利な光学的性質(例えば、低減した微小共振器効果)に寄与する。しかしながら、透過型電極の厚さの低減は、そのシート抵抗の増加を伴う。高いシート抵抗を伴う電極は、OLEDの性能および効率にとって有害である、デバイスが使用中であるときの大電流抵抗(IR)降下を生成するため、概して、OLEDで使用するためには望ましくない。IR降下は、電力供給レベルを増加させることによって、ある程度補償されることができるが、しかしながら、電力供給レベルが1つのピクセルのために増加させられるとき、他の構成要素に供給される電圧もまた、デバイスの適切な動作を維持するように増加させられ、したがって、不利である。
上面発光OLEDデバイスのための電力供給仕様を低減させるために、解決策が、デバイス上に母線構造または補助電極を形成するために提案されている。例えば、そのような補助電極は、OLEDデバイスの透過型電極と電気通信する伝導性コーティングを堆積させることによって形成されてもよい。そのような補助電極は、透過型電極のシート抵抗および関連付けられるIR降下を低下させることによって、電流がデバイスの種々の領域により効果的に運搬されることを可能にし得る。
補助電極が、典型的には、アノードと、1つまたはそれを上回る有機層と、カソードとを含む、OLEDスタックの上に提供されるため、補助電極のパターン化は、伝統的に、例えば、物理蒸着(PVD)プロセスによって、それを通して伝導性コーティングが選択的に堆積させられる、マスク開口を伴うシャドウマスクを使用して達成される。しかしながら、マスクが、典型的には、金属マスクであるため、それらは、高温堆積プロセス中に撓み、それによって、マスク開口および結果として生じる堆積パターンを歪ませる傾向を有する。さらに、マスクは、典型的には、伝導性コーティングがマスクに付着し、マスクの特徴を曖昧にするにつれて、連続的堆積を通して劣化させられる。その結果として、そのようなマスクは、時間のかかる高価なプロセスを使用して清掃されるべきであるか、またはいったんマスクが所望のパターンを生成することに無効であると見なされると処分されるべきであり、それによって、そのようなプロセスを高度に費用がかかり、複雑なものにする。故に、シャドウマスクプロセスは、OLEDデバイスの大量生産のためには商業的に実行可能ではない場合がある。また、大型金属マスクが、典型的には、シャドウマスク堆積プロセス中に伸張されるため、シャドウマスクプロセスを使用して生成されることができる特徴のアスペクト比は、典型的には、陰影効果および金属マスクの機械的(例えば、引張)強度に起因して制約される。
シャドウマスクを通して表面上に伝導性コーティングをパターン化することの別の課題は、全てではないが、あるパターンが、単一のマスクを使用して達成され得ることである。マスクの各部分が物理的に支持されると、全てのパターンが単一の処理段階で可能であるわけではない。例えば、パターンが単離された特徴を規定する場合、単一のマスク処理段階は、典型的には、所望のパターンを達成するために使用されることができない。加えて、デバイス表面全体を横断して拡散される反復構造(例えば、母線構造または補助電極)を生産するために使用されるマスクは、マスク上に形成される多数の穿孔または開口を含む。しかしながら、マスク上に多数の開口を形成することは、マスクの構造完全性を損ない、したがって、堆積させられた構造のパターンを歪ませ得る、処理中のマスクの有意な撓みまたは変形につながり得る。
要旨
いくつかの実施形態によると、デバイス(例えば、光電子デバイス)は、(1)基板と、(2)基板の第1の領域を被覆する核形成阻害コーティングと、(3)第1の部分および第2の部分を含む、伝導性コーティングとを含む。伝導性コーティングの第1の部分は、基板の第2の領域を被覆し、伝導性コーティングの第2の部分は、核形成阻害コーティングと部分的に重複し、伝導性コーティングの第2の部分は、間隙によって核形成阻害コーティングから離間される。
いくつかの実施形態によると、デバイス(例えば、光電子デバイス)は、(1)第1の領域および第2の領域を含む、基板と、(2)第1の部分および第2の部分を含む、伝導性コーティングとを含む。伝導性コーティングの第1の部分は、基板の第2の領域を被覆し、伝導性コーティングの第2の部分は、基板の第1の領域の一部と重複し、伝導性コーティングの第2の部分は、間隙によって基板の第1の領域から離間される。
いくつかの実施形態によると、デバイス(例えば、光電子デバイス)は、(1)基板と、(2)基板の第1の領域を被覆する、核形成阻害コーティングと、(3)側方に隣接する、基板の第2の領域を被覆する、伝導性コーティングとを含む。伝導性コーティングは、マグネシウムを含み、核形成阻害コーティングは、約0.02以内のマグネシウムの初期付着確率を有するものとして特徴付けられる。
いくつかの実施形態によると、デバイス(例えば、光電子デバイス)の製造方法は、(1)基板および基板の第1の領域を被覆する核形成阻害コーティングを提供するステップと、(2)基板の第2の領域を被覆する伝導性コーティングを堆積させるステップとを含む。伝導性コーティングは、マグネシウムを含み、核形成阻害コーティングは、0.02以内のマグネシウムの初期付着確率を有するものとして特徴付けられる。
本発明は、例えば、以下を提供する。
(項目1)
基板と、
前記基板の第1の領域を被覆する、核形成阻害コーティングと、
第1の部分および第2の部分を含む、伝導性コーティングであって、前記伝導性コーティングの第1の部分は、前記基板の第2の領域を被覆し、前記伝導性コーティングの第2の部分は、前記核形成阻害コーティングと部分的に重複する、伝導性コーティングと、
を備え、前記伝導性コーティングの第2の部分は、間隙によって前記核形成阻害コーティングから離間される、光電子デバイス。
(項目2)
前記伝導性コーティングの第2の部分は、前記核形成阻害コーティングの重複部分の上を延在し、前記間隙によって前記核形成阻害コーティングの重複部分から離間される、項目1に記載の光電子デバイス。
(項目3)
前記核形成阻害コーティングの別の部分は、前記伝導性コーティングから露出される、項目2に記載の光電子デバイス。
(項目4)
前記伝導性コーティングはさらに、前記核形成阻害コーティングと接触する第3の部分を含み、前記伝導性コーティングの第3の部分の厚さは、前記伝導性コーティングの第1の部分の厚さの5%以内である、項目1に記載の光電子デバイス。
(項目5)
前記伝導性コーティングの第2の部分は、前記伝導性コーティングの第3の部分の上を延在し、前記伝導性コーティングの第3の部分から離間される、項目4に記載の光電子デバイス。
(項目6)
前記伝導性コーティングはさらに、前記伝導性コーティングの第1の部分と前記伝導性コーティングの第2の部分との間に配置される第3の部分を含み、前記伝導性コーティングの第3の部分は、前記核形成阻害コーティングと接触する、項目1に記載の光電子デバイス。
(項目7)
前記伝導性コーティングはさらに、前記核形成阻害コーティングと接触する第3の部分を含み、前記伝導性コーティングの第3の部分は、前記核形成阻害コーティングの表面上に断絶したクラスタを含む、項目1に記載の光電子デバイス。
(項目8)
前記伝導性コーティングは、マグネシウムを含む、項目1に記載の光電子デバイス。
(項目9)
前記核形成阻害コーティングは、0.02以内の前記伝導性コーティングの材料の初期付着確率を有するものとして特徴付けられる、項目1に記載の光電子デバイス。
(項目10)
前記核形成阻害コーティングは、核部分と、前記核部分に結合された末端部分とをそれぞれ含む、有機分子を含み、前記末端部分は、ビフェニリル部分、フェニル部分、フルオレン部分、またはフェニレン部分を含む、項目1に記載の光電子デバイス。
(項目11)
前記核部分は、複素環部分を含む、項目10に記載の光電子デバイス。
(項目12)
前記核形成阻害コーティングは、核部分と、前記核部分に結合された複数の末端部分とをそれぞれ含む、有機分子を含み、前記複数の末端部分のうちの第1の末端部分は、ビフェニリル部分、フェニル部分、フルオレン部分、またはフェニレン部分を含み、前記複数の末端部分のうちの各残りの末端部分は、前記第1の末端部分の分子量の2倍以内である分子量を有する、項目1に記載の光電子デバイス。
(項目13)
前記伝導性コーティングの第1の部分と前記基板の第2の領域との間に配置される核形成助長コーティングをさらに備える、項目1に記載の光電子デバイス。
(項目14)
前記核形成助長コーティングは、フラーレンを含む、項目13に記載の光電子デバイス。
(項目15)
前記基板は、バックプレーンと、前記バックプレーン上に配置されるフロントプレーンとを含む、項目1に記載の光電子デバイス。
(項目16)
前記バックプレーンは、トランジスタを含み、前記フロントプレーンは、前記トランジスタに電気的に接続される電極と、前記電極上に配置される少なくとも1つの有機層とを含む、項目15に記載の光電子デバイス。
(項目17)
前記電極は、第1の電極であり、前記フロントプレーンはさらに、前記有機層上に配置される第2の電極を含む、項目16に記載の光電子デバイス。
(項目18)
第1の領域および第2の領域を含む、基板と、
第1の部分および第2の部分を含む、伝導性コーティングであって、前記伝導性コーティングの第1の部分は、前記基板の第2の領域を被覆し、前記伝導性コーティングの第2の部分は、前記基板の第1の領域の一部と重複する、伝導性コーティングと、
を備え、前記伝導性コーティングの第2の部分は、間隙によって前記基板の第1の領域から離間される、光電子デバイス。
(項目19)
前記伝導性コーティングの第2の部分は、前記基板の第1の領域の上を延在し、前記間隙によって前記基板の第1の領域から離間される、項目18に記載の光電子デバイス。
(項目20)
前記基板の第1の領域の別の部分は、前記伝導性コーティングから露出される、項目18に記載の光電子デバイス。
(項目21)
前記伝導性コーティングの第1の部分の厚さに対する前記伝導性コーティングの第2の部分の幅の比は、1:1~1:3の範囲内である、項目18に記載の光電子デバイス。
(項目22)
前記伝導性コーティングの第1の部分の厚さは、500nmまたはそれを上回る、項目18に記載の光電子デバイス。
(項目23)
前記伝導性コーティングは、マグネシウムを含む、項目18に記載の光電子デバイス。
(項目24)
前記伝導性コーティングの第1の部分と前記基板の第2の領域との間に配置される核形成助長コーティングをさらに備える、項目18に記載の光電子デバイス。
(項目25)
前記核形成助長コーティングは、フラーレンを含む、項目24に記載の光電子デバイス。
(項目26)
基板と、
前記基板の第1の領域を被覆する、核形成阻害コーティングと、
側方に隣接する、前記基板の第2の領域を被覆する、伝導性コーティングと、
を備え、前記伝導性コーティングは、導電性材料を含み、前記核形成阻害コーティングは、0.02以内の前記導電性材料の初期付着確率を有するものとして特徴付けられる、光電子デバイス。
(項目27)
前記導電性材料の前記初期付着確率は、0.01以内である、項目26に記載の光電子デバイス。
(項目28)
前記核形成阻害コーティングは、多環式芳香族化合物を含む、項目26に記載の光電子デバイス。
(項目29)
前記核形成阻害コーティングは、核部分と、前記核部分に結合された末端部分とを含む、有機化合物を含み、前記末端部分は、ビフェニリル部分、フェニル部分、フルオレン部分、またはフェニレン部分を含む、項目26に記載の光電子デバイス。
(項目30)
前記核部分は、複素環部分を含む、項目29に記載の光電子デバイス。
(項目31)
前記核形成阻害コーティングは、核部分と、前記核部分に結合された複数の末端部分とを含む、有機化合物を含み、前記複数の末端部分のうちの第1の末端部分は、ビフェニリル部分、フェニル部分、フルオレン部分、またはフェニレン部分を含み、前記複数の末端部分のうちの各残りの末端部分は、前記第1の末端部分の分子量の2倍以内である分子量を有する、項目26に記載の光電子デバイス。
(項目32)
前記伝導性コーティングは、第1の部分と、第2の部分とを含み、前記伝導性コーティングの第1の部分は、前記基板の第2の領域を被覆し、前記伝導性コーティングの第2の部分は、前記核形成阻害コーティングと部分的に重複し、間隙によって前記核形成阻害コーティングから離間される、項目26に記載の光電子デバイス。
(項目33)
前記導電性材料は、マグネシウムを含む、項目26に記載の光電子デバイス。
(項目34)
前記光電子デバイスは、有機発光ダイオード(OLED)デバイスである、項目1、18、または26に記載の光電子デバイス。
(項目35)
前記OLEDデバイスは、アクティブマトリクスOLEDデバイス、パッシブマトリクスOLEDデバイス、またはOLED照明パネルである、項目34に記載の光電子デバイス。
(項目36)
前記OLEDデバイスは、上面発光OLEDデバイス、底面発光OLEDデバイス、または両面発光OLEDデバイスである、項目34に記載の光電子デバイス。
(項目37)
前記OLEDデバイスは、それを通して光を透過させるように構成される光透過性部分を含む、項目34に記載の光電子デバイス。
(項目38)
前記伝導性コーティングは、前記OLEDデバイスの電極である、項目34に記載の光電子デバイス。
(項目39)
前記伝導性コーティングは、前記OLEDデバイスのカソードである、項目38に記載の光電子デバイス。
(項目40)
前記基板は、アノードと、前記アノードと前記カソードとの間に配置される1つまたはそれを上回る有機層とを含む、項目39に記載の光電子デバイス。
(項目41)
前記1つまたはそれを上回る有機層は、エレクトロルミネセント層と、正孔注入層、正孔輸送層、正孔遮断層、電子注入層、電子輸送層、および電子遮断層から成る群から選択される、1つまたはそれを上回る層とを含む、項目40に記載の光電子デバイス。
(項目42)
前記基板はさらに、前記アノードに電気的に接続される薄膜トランジスタを含む、項目40に記載の光電子デバイス。
(項目43)
前記伝導性コーティングは、前記OLEDデバイスの補助電極である、項目34に記載の光電子デバイス。
(項目44)
前記基板は、アノードと、カソードと、前記アノードと前記カソードとの間に配置される1つまたはそれを上回る有機層とを含み、前記カソードは、前記補助電極に電気的に接続される、項目43に記載の光電子デバイス。
(項目45)
前記1つまたはそれを上回る有機層は、エレクトロルミネセント層と、正孔注入層、正孔輸送層、正孔遮断層、電子注入層、電子輸送層、および電子遮断層から成る群から選択される、1つまたはそれを上回る層とを含む、項目44に記載の光電子デバイス。
(項目46)
前記基板はさらに、前記アノードに電気的に接続される薄膜トランジスタを含む、項目45に記載の光電子デバイス。
(項目47)
前記末端部分は、ビフェニリル部分を含み、前記ビフェニリル部分は、ジュウテロ、フルオロ、アルキル、シクロアルキル、アリールアルキル、シリル、アリール、ヘテロアリール、およびフルオロアルキルから成る群から独立して選択される、1つまたはそれを上回る置換基によって置換される、項目10または49に記載の光電子デバイス。
(項目48)
前記末端部分は、フェニル部分を含み、前記フェニル部分は、ジュウテロ、フルオロ、アルキル、シクロアルキル、シリル、およびフルオロアルキルから成る群から独立して選択される、1つまたはそれを上回る置換基によって置換される、項目10または29に記載の光電子デバイス。
(項目49)
前記末端部分は、フルオレン部分またはフェニレン部分を含む、項目10または29に記載の光電子デバイス。
(項目50)
前記核形成阻害コーティングは、ポリマーを含む、項目1または26に記載の光電子デバイス。
(項目51)
前記ポリマーは、フルオロポリマー、ポリビニリビフェニル、およびポリビニルカルバゾールから成る群から選択される、項目50に記載の光電子デバイス。
(項目52)
光電子デバイスの製造方法であって、
(1)基板および前記基板の第1の領域を被覆する核形成阻害コーティングを提供するステップと、
(2)前記基板の第2の領域を被覆する伝導性コーティングを堆積させるステップであって、前記伝導性コーティングは、マグネシウムを含み、前記核形成阻害コーティングは、0.02以内のマグネシウムの初期付着確率を有するものとして特徴付けられる、ステップと、
を含む、方法。
(項目53)
前記伝導性コーティングを堆積させるステップは、前記核形成阻害コーティングの少なくとも一部が前記伝導性コーティングから露出されたままである間に、前記核形成阻害コーティングおよび前記基板の第2の領域の両方を処理し、前記基板の第2の領域上に前記伝導性コーティングを堆積させるステップを含む、項目52に記載の製造方法。
(項目54)
前記伝導性コーティングを堆積させるステップは、前記核形成阻害コーティングの少なくとも一部が前記伝導性コーティングから露出されたままである間に、前記核形成阻害コーティングおよび前記基板の第2の領域の両方を蒸発したマグネシウムに暴露し、前記基板の第2の領域上に前記伝導性コーティングを堆積させるステップを含む、項目52に記載の製造方法。
(項目55)
前記伝導性コーティングを堆積させるステップは、開放マスクを使用して、またはマスクを伴わずに行われる、項目52に記載の製造方法。
(項目56)
前記基板の第2の領域上のマグネシウムの堆積速度は、前記核形成阻害コーティング上のマグネシウムの堆積速度よりも少なくとも80倍大きい、項目52に記載の製造方法。
(項目57)
マグネシウムの前記初期付着確率は、0.01以内である、項目52に記載の製造方法。
(項目58)
前記核形成阻害コーティングは、多環式芳香族化合物を含む、項目52に記載の製造方法。
(項目59)
前記核形成阻害コーティングは、核部分と、前記核部分に結合された複数の末端部分とをそれぞれ含む、有機分子を含み、前記複数の末端部分の第1の末端部分は、ビフェニリル部分、フェニル部分、フルオレン部分、またはフェニレン部分を含み、前記複数の末端部分のうちの各残りの末端部分は、前記第1の末端部分の分子量の2倍以内である分子量を有する、項目52に記載の製造方法。
(項目60)
前記基板を提供するステップは、前記伝導性コーティングを堆積させるステップに先立って、前記基板の第2の領域を被覆する核形成助長コーティングを堆積させるステップを含む、項目52に記載の製造方法。
(項目61)
前記核形成助長コーティングは、フラーレンを含む、項目60に記載の製造方法。
ここで、添付図面を参照して、いくつかの実施形態が一例として説明される。
図1は、一実施形態による、核形成阻害コーティングのシャドウマスク堆積を図示する概略図である。
図2A、図2B、および図2Cは、一実施形態による、核形成阻害コーティングのミクロ接触転写印刷プロセスを図示する概略図である。 図2A、図2B、および図2Cは、一実施形態による、核形成阻害コーティングのミクロ接触転写印刷プロセスを図示する概略図である。 図2A、図2B、および図2Cは、一実施形態による、核形成阻害コーティングのミクロ接触転写印刷プロセスを図示する概略図である。
図3は、一実施形態による、パターン化された表面上の伝導性コーティングの堆積を図示する概略図である。
図4は、プロセスの一実施形態に従って生産されたデバイスを図示する略図である。
図5A-5Cは、一実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。 図5A-5Cは、一実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。 図5A-5Cは、一実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。
図5D-5Fは、別の実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。 図5D-5Fは、別の実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。 図5D-5Fは、別の実施形態による、伝導性コーティングを選択的に堆積させるためのプロセスを図示する概略図である。
図6は、一実施形態による、エレクトロルミネセントデバイスを図示する略図である。
図7は、一実施形態による、プロセス段階を示すフロー図である。
図8は、別の実施形態による、プロセス段階を示すフロー図である。
図9A-9Dは、図8の実施形態における段階を図示する概略図である。 図9A-9Dは、図8の実施形態における段階を図示する概略図である。 図9A-9Dは、図8の実施形態における段階を図示する概略図である。 図9A-9Dは、図8の実施形態における段階を図示する概略図である。
図10は、さらに別の実施形態による、プロセス段階を示すフロー図である。
図11A-11Dは、図10の実施形態における段階を図示する概略図である。 図11A-11Dは、図10の実施形態における段階を図示する概略図である。 図11A-11Dは、図10の実施形態における段階を図示する概略図である。 図11A-11Dは、図10の実施形態における段階を図示する概略図である。
図12は、さらに別の実施形態による、プロセス段階を示すフロー図である。
図13A-13Dは、図12の実施形態における段階を図示する概略図である。 図13A-13Dは、図12の実施形態における段階を図示する概略図である。 図13A-13Dは、図12の実施形態における段階を図示する概略図である。 図13A-13Dは、図12の実施形態における段階を図示する概略図である。
図14は、一実施形態による、OLEDデバイスの上面図である。
図15は、図14のOLEDデバイスの断面図である。
図16は、別の実施形態による、OLEDデバイスの断面図である。
図16Bは、一実施例による、開放マスクを図示する上面図である。
図16Cは、別の実施例による、開放マスクを図示する上面図である。
図16Dは、さらに別の実施例による、開放マスクを図示する上面図である。
図16Eは、さらに別の実施例による、開放マスクを図示する上面図である。
図17は、一実施形態による、パターン化された電極を図示する上面図である。
図17Bは、一実施形態による、パッシブマトリクスOLEDデバイスの上面図を図示する概略図である。
図17Cは、図17BのパッシブマトリクスOLEDデバイスの概略断面図である。
図17Dは、カプセル化後の図17BのパッシブマトリクスOLEDデバイスの概略断面図である。
図17Eは、比較パッシブマトリクスOLEDデバイスの概略断面図である。
図18A-18Dは、種々の実施形態による、補助電極の部分を図示する。
図19は、一実施形態による、OLEDデバイスの電極に接続されたリード線の上面図を図示する。
図20は、一実施形態による、パターン化された電極の上面図を図示する。
図21A-21Dは、種々の実施形態による、パターン化された電極を図示する。 図21A-21Dは、種々の実施形態による、パターン化された電極を図示する。 図21A-21Dは、種々の実施形態による、パターン化された電極を図示する。 図21A-21Dは、種々の実施形態による、パターン化された電極を図示する。
図22は、一実施形態による、OLEDデバイス上に形成された反復電極ユニットを図示する。
図23は、別の実施形態による、OLEDデバイス上に形成された反復電極ユニットを図示する。
図24は、さらに別の実施形態による、OLEDデバイス上に形成された反復電極ユニットを図示する。
図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。 図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。 図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。 図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。 図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。 図25-28Jは、種々の実施形態による、OLEDデバイス上に形成された補助電極パターンを図示する。
図29は、一実施形態による、ピクセル配列を伴うデバイスの一部を図示する。
図30は、図29による、デバイスの線A-Aに沿って得られた断面図である。
図31は、図29による、デバイスの線B-Bに沿って得られた断面図である。
図32は、別の実施形態による、ピクセル配列を伴うデバイスの一部を図示する略図である。
図33は、図32に図示されるピクセル配列を有する、デバイスの顕微鏡写真である。
図34は、一実施形態による、伝導性コーティングおよび核形成阻害コーティングの界面の周囲の断面外形を図示する略図である。
図35は、別の実施形態による、伝導性コーティングおよび核形成阻害コーティングの界面の周囲の断面外形を図示する略図である。
図36は、一実施形態による、伝導性コーティング、核形成阻害コーティング、および核形成助長コーティングの界面の周囲の断面外形を図示する略図である。
図37は、別の実施形態による、伝導性コーティング、核形成阻害コーティング、および核形成助長コーティングの界面の周囲の断面外形を図示する略図である。
図38は、さらに別の実施形態による、伝導性コーティングおよび核形成阻害コーティングの界面の周囲の断面外形を図示する略図である。
図39は、一実施形態による、アクティブマトリクスOLEDデバイスの断面外形を図示する略図である。
図40は、別の実施形態による、アクティブマトリクスOLEDデバイスの断面外形を図示する略図である。
図41は、さらに別の実施形態による、アクティブマトリクスOLEDデバイスの断面外形を図示する略図である。
図42は、さらに別の実施形態による、アクティブマトリクスOLEDデバイスの断面外形を図示する略図である。
図43は、一実施形態による、透明アクティブマトリクスOLEDデバイスを図示する略図である。
図44は、図43による、デバイスの断面外形を図示する略図である。
図45Aは、サンプル1の上面図のSEM画像である。
図45Bおよび45Cは、図45Aのサンプルの一部の拡大図を示すSEM画像である。 図45Bおよび45Cは、図45Aのサンプルの一部の拡大図を示すSEM画像である。
図45Dは、図45Aのサンプルの断面図を示すSEM画像である。
図45Eは、図45Aのサンプルの断面図を示すSEM画像である。
図45Fは、図45Aのサンプルの別の部分の断面図を示すSEM画像である。
図45Gは、図45Fのサンプル部分を示す傾転SEM画像である。
図45Hは、図45Aのサンプルから得られたEDXスペクトルを示すプロットである。
図46Aは、サンプル2の上面図のSEM画像である。
図46Bは、図46Aのサンプルの一部の拡大図を示すSEM画像である。
図46Cは、図46Bのサンプル部分のさらなる拡大図を示すSEM画像である。
図46Dは、図46Aのサンプルの断面図を示すSEM画像である。
図46Eおよび46Fは、図46Aのサンプルの表面を示す傾転SEM画像である。 図46Eおよび46Fは、図46Aのサンプルの表面を示す傾転SEM画像である。
図46Gは、図46Aのサンプルから得られたEDXスペクトルを示すプロットである。
図46Hは、スペクトルが取得されたサンプルの対応する部分を示す、SEM画像の上に重ね合わせられたマグネシウムEDXスペクトルを示す。
図47は、水晶振動子マイクロバランス(QCM)を使用して堆積実験を行うためのチャンバ設定を図示する概略図である。
図48は、アクティブマトリクスOLEDディスプレイデバイス用の例示的駆動回路を示す回路図である。
図49は、核形成阻害コーティングの部分の間に堆積させられたマグネシウムコーティングの概略図である。
図50Aは、BAlq核形成阻害コーティングを使用して製作されたサンプルの上面図を示すSEM画像である。
図50Bは、図50Aのサンプルの拡大部分を示すSEM画像である。
図50Cおよび50Dは、図50Aのサンプルの拡大部分を示すSEM画像である。 図50Cおよび50Dは、図50Aのサンプルの拡大部分を示すSEM画像である。
図50Eは、図50Aのサンプルの表面を示す傾転SEM画像である。
図51Aは、HT211核形成阻害コーティングを使用して製作された比較サンプルの上面図を示すSEM画像である。
図51Bは、図51Aの比較サンプルの断面SEM画像である。
図52Aは、シャドウマスク堆積を使用して製作された比較サンプルの上面図を示すSEM画像である。
図52Bは、図52Aの比較サンプルの断面SEM画像である。
図53は、種々の堆積速度で堆積させられたHT211核形成阻害コーティングを伴って製作された比較サンプルの透過率対波長のプロットである。
図54は、種々の核形成阻害コーティングを伴って製作されたサンプルの透過率対波長のプロットである。
図55は、一例示的実施形態による、補助電極のパターンを示す上面図である。
図56は、種々のディスプレイパネルサイズのためのシート抵抗仕様および関連付けられる補助電極厚さを示すプロットである。
図57は、種々の核形成改質コーティングで被覆されたサンプルQCM表面上に堆積させられたマグネシウムの層厚さと対比した、参照QCM表面上に堆積させられたマグネシウムの層厚さを示すプロットである。
図58は、種々の核形成改質コーティングで被覆されたサンプルQCM表面上に堆積させられたマグネシウムの層厚さと対比した、サンプルQCM表面上のマグネシウム蒸気の付着確率を示すプロットである。
図59Aおよび59Bは、一実施形態による、伝導性コーティングの堆積に続いて核形成阻害コーティングを除去するためのプロセスを図示する。
詳細な説明
適切と見なされる場合、例証を簡単かつ明確にするために、参照番号が、対応または類似する構成要素を示すように図の間で繰り返され得ることが理解され得る。加えて、多数の具体的詳細が、本明細書に説明される例示的実施形態の徹底的な理解を提供するために記載される。しかしながら、本明細書に説明される例示的実施形態は、これらの具体的詳細のうちのいくつかを伴わずに実践され得ることが、当業者によって理解され得る。他の事例では、ある方法、手順、および構成要素は、本明細書に説明される例示的実施形態を曖昧にしないよう、詳細に説明されていない。
いくつかの実施形態による一側面では、表面上に導電性コーティングを堆積させるための方法が提供される。いくつかの実施形態では、本方法は、光電子デバイスの製造方法との関連で行われる。いくつかの実施形態では、本方法は、別のデバイスの製造方法との関連で行われる。いくつかの実施形態では、本方法は、基板の第1の領域上に核形成阻害コーティングを堆積させ、パターン化された基板を生産するステップを含む。パターン化された基板は、核形成阻害コーティングによって被覆される第1の領域と、核形成阻害コーティングから露出される、または核形成阻害コーティングを実質的に含まない、もしくは実質的に核形成阻害コーティングによって被覆されていない、基板の第2の領域とを含む。本方法はまた、パターン化された基板を処理し、基板の第2の領域上に伝導性コーティングを堆積させるステップも含む。いくつかの実施形態では、伝導性コーティングの材料は、マグネシウムを含む。いくつかの実施形態では、パターン化された基板を処理するステップは、核形成阻害コーティングが伝導性コーティングから露出されたままである、または伝導性コーティングを実質的に含まない、もしくは実質的に伝導性コーティングによって被覆されていない間に、核形成阻害コーティングおよび基板の第2の領域の両方を処理し、基板の第2の領域上に伝導性コーティングを堆積させるステップを含む。いくつかの実施形態では、パターン化された基板を処理するステップは、伝導性コーティングを形成するために使用されるソース材料の蒸発または昇華を行うステップと、核形成阻害コーティングおよび基板の第2の領域の両方を蒸発したソース材料に暴露するステップとを含む。
本明細書で使用されるように、「核形成阻害」という用語は、表面上の伝導性材料の堆積が阻害されるように、導電性材料の堆積に向けて比較的低い親和性を呈する表面を有する、材料のコーティングまたは層を指すために使用される一方で、「核形成助長」という用語は、表面上の伝導性材料の堆積が促進されるように、導電性材料の堆積に向けて比較的高い親和性を呈する表面を有する、材料のコーティングまたは層を指すために使用される。表面の核形成阻害または核形成助長性質の1つの尺度は、マグネシウム等の導電性材料の表面の初期付着確率である。例えば、マグネシウムに対する核形成阻害コーティングは、表面上のマグネシウムの堆積が阻害されるように、マグネシウム蒸気の比較的低い初期付着確率を呈する表面を有する、コーティングを指すことができる一方で、マグネシウムに対する核形成助長コーティングは、表面上のマグネシウムの堆積が促進されるように、マグネシウム蒸気の比較的高い初期付着確率を呈する表面を有する、コーティングを指すことができる。本明細書で使用されるように、「付着確率」および「付着係数」という用語は、同義的に使用されてもよい。表面の核形成阻害または核形成助長性質の別の尺度は、別の(参照)表面上の伝導性材料の初期堆積速度に対する、表面上のマグネシウム等の導電性材料の初期堆積速度であり、両方の表面は、伝導性材料の蒸発流束を受ける、またはそれに暴露される。
本明細書で使用されるように、「蒸発」および「昇華」という用語は、概して、ソース材料が、例えば、固体状態で標的表面上に堆積させられる蒸気に(例えば、加熱によって)変換される、堆積プロセスを指すために同義的に使用される。
本明細書で使用されるように、材料「を実質的に含まない」または材料「によって実質的に被覆されていない」表面(もしくは表面のある面積)は、表面(もしくは表面のある面積)上の材料の実質的欠如を指す。具体的に導電性コーティングに関して、マグネシウムを含む金属等の導電性材料が光を減衰させる、および/または吸収するため、表面上の導電性材料の量の1つの尺度は、光透過率である。故に、表面は、光透過率が電磁スペクトルの可視部分の中で90%を上回る、92%を上回る、95%を上回る、または98%を上回る場合に、導電性材料を実質的に含まないと見なされることができる。表面上の材料の量の別の尺度は、材料による被覆率が10%以内、8%以内、5%以内、3%以内、または1%以内である場合に、表面が材料を実質的に含まないと見なされることができる場合等の材料による表面の被覆率である。表面被覆は、透過電子顕微鏡法、原子間力顕微鏡法、または走査電子顕微鏡法を使用する等の撮像技法を使用して、査定されることができる。
図1は、一実施形態による、基板100の表面102上に核形成阻害コーティング140を堆積させるプロセスを図示する概略図である。図1の実施形態では、ソース材料を含むソース120は、ソース材料を蒸発または昇華させるように減圧下で加熱される。ソース材料は、核形成阻害コーティング140を形成するために使用される材料を含む、または実質的にそれから成る。蒸発したソース材料は、次いで、基板100に向かって矢印122によって示される方向に進行する。開口またはスリット112を有するシャドウマスク110は、開口112を通って進行する流束の一部が、基板100の表面102の領域に選択的に入射し、それによって、その上に核形成阻害コーティング140を形成するように、蒸発したソース材料の経路の中に配置される。
図2A-2Cは、一実施形態で基板の表面上に核形成阻害コーティングを堆積させるためのミクロ接触転写印刷プロセスを図示する。シャドウマスクプロセスと同様に、ミクロ接触印刷プロセスは、基板表面の領域上に核形成阻害コーティングを選択的に堆積させるために使用されてもよい。
図2Aは、突出212を含むスタンプ210が、突出212の表面上に核形成阻害コーティング240を提供される、ミクロ接触転写印刷プロセスの第1の段階を図示する。当業者によって理解されるであろうように、核形成阻害コーティング240は、種々の好適なプロセスを使用して、突出212の表面上に堆積させられてもよい。
図2Bに図示されるように、スタンプ210は、次いで、突出212の表面上に堆積させられた核形成阻害コーティング240が、基板100の表面102に接触するように、基板100と近接させられる。核形成阻害コーティング240が表面102に接触することに応じて、核形成阻害コーティング240は、基板100の表面102に付着する。
したがって、スタンプ210が図2Cに図示されるように基板100から離されるとき、核形成阻害コーティング240は、基板100の表面102上に効果的に転写される。
いったん核形成阻害コーティングが、基板の表面の領域上に堆積させられると、伝導性コーティングが、核形成阻害コーティングが存在しない表面の残りの被覆されていない領域上に堆積させられてもよい。図3を参照すると、伝導性コーティングソース410が、基板100の表面102に向かって蒸発した伝導性材料を指向するものとして図示されている。図3に図示されるように、伝導性コーティングソース410は、表面102の被覆または処理された面積(すなわち、その上に堆積させられた核形成阻害コーティング140を伴う表面102の領域)および被覆または処理されていない面積の両方に入射するように、蒸発した伝導性材料を指向してもよい。しかしながら、核形成阻害コーティング140の表面が、基板100の被覆されていない表面102のものと比較して、比較的低い初期付着係数を呈するため、伝導性コーティング440は、核形成阻害コーティング140が存在しない表面102の面積の上に選択的に堆積する。例えば、表面102の被覆されていない面積上の蒸発した伝導性材料の初期堆積速度は、核形成阻害コーティング140の表面上の蒸発した伝導性材料の初期堆積速度の少なくとも約80倍またはそれを上回り、少なくとも約100倍またはそれを上回り、少なくとも約200倍またはそれを上回り、少なくとも約500倍またはそれを上回り、少なくとも約700倍またはそれを上回り、少なくとも約1,000倍またはそれを上回り、少なくとも約1,500倍またはそれを上回り、少なくとも約1,700倍またはそれを上回り、もしくは少なくとも約2,000倍またはそれを上回り得る。伝導性コーティング440は、例えば、純粋または実質的に純粋なマグネシウムを含んでもよい。
シャドウマスクパターン化およびミクロ接触転写印刷プロセスが、上記で図示されて説明されているが、他のプロセスが、核形成阻害材料を堆積させることによって基板を選択的にパターン化するために使用され得ることが理解されるであろう。表面をパターン化する種々の加法および減法プロセスが、核形成阻害コーティングを選択的に堆積させるために使用されてもよい。そのようなプロセスの実施例は、フォトリソグラフィ、印刷(インクまたは蒸気ジェット印刷およびリールツーリール印刷を含む)、有機気相堆積(OVPD)、およびレーザ誘発熱的撮像(LITI)パターン化、ならびにそれらの組み合わせを含むが、それらに限定されない。
いくつかの用途では、伝導性コーティングが容易に堆積させられることができない基板表面上に、具体的材料性質を有する伝導性コーティングを堆積させることが望ましくあり得る。例えば、純粋または実質的に純粋なマグネシウムは、典型的には、種々の有機表面上のマグネシウムの低い付着係数に起因して、有機表面上に容易に堆積させられることができない。故に、いくつかの実施形態では、基板表面はさらに、マグネシウムを含むもの等の伝導性コーティングを堆積させることに先立って、その上に核形成助長コーティングを堆積させることによって処理される。
所見および実験観察に基づいて、フラーレンならびに他の核形成助長材料は、本明細書でさらに解説されるであろうように、マグネシウムを含む伝導性コーティングの堆積のための核形成部位として作用することが仮定される。例えば、マグネシウムが、フラーレン処理表面上に蒸発プロセスを使用して堆積させられる場合において、フラーレン分子は、マグネシウム堆積のための安定した核の形成を助長する核形成部位として作用する。フラーレンまたは他の核形成助長材料の単分子未満の層が、ある場合には、マグネシウムの堆積のための核形成部位として作用するように、処理された表面上に提供されてもよい。理解されるであろうように、核形成助長材料のいくつかの単分子層を堆積させることによって表面を処理することは、より多数の核形成部位、したがって、より高い初期付着確率をもたらし得る。
また、表面上に堆積させられるフラーレンまたは他の材料の量は、1つを上回る、または1つ未満の単分子層であり得ることも理解されるであろう。例えば、表面は、核形成助長材料または核形成阻害材料の0.1の単分子層、1つの単分子層、もしくは10の単分子層を堆積させることによって処理されてもよい。本明細書で使用されるように、材料の1つの単分子層を堆積させることは、材料の構成分子または原子の単一の層で表面の所望の面積を被覆する材料の量を指す。同様に、本明細書で使用されるように、材料の0.1の単分子層を堆積させることは、材料の構成分子または原子の単一の層で表面の所望の面積の10%を被覆する材料の量を指す。例えば、分子または原子の可能性として考えられる積層もしくはクラスタ化に起因して、堆積した材料の実際の厚さは、非一様であり得る。例えば、材料の1つの単分子層を堆積させることが、材料によって被覆されていない表面のいくつかの領域をもたらし得る一方で、表面の他の領域は、その上に堆積させられた複数の原子または分子層を有してもよい。
本明細書で使用されるように、「フラーレン」という用語は、炭素分子を含む材料を指す。フラーレン分子の実施例は、閉鎖シェルを形成し、形状が球形または半球形であり得る、複数の炭素原子を含む、3次元骨格を含む、炭素ケージ分子を含む。フラーレン分子は、nが、フラーレン分子の炭素骨格に含まれる炭素原子の数に対応する整数である、Cとして指定されることができる。フラーレン分子の実施例は、nが、C60、C70、C72、C74、C76、C78、C80、C82、およびC84等の50~250の範
囲内である、Cを含む。フラーレン分子の付加的実施例は、単一壁炭素ナノチューブおよび多重壁炭素ナノチューブ等の管または円筒形の炭素分子を含む。
図4は、核形成助長コーティング160が伝導性コーティング440の堆積に先立って堆積させられる、デバイスの実施形態を図示する。図4に図示されるように、核形成助長コーティング160は、核形成阻害コーティング140によって被覆されていない基板100の領域の上を堆積させられる。故に、伝導性コーティング440が堆積させられるとき、伝導性コーティング440は、優先的に核形成助長コーティング160上で形成する。例えば、核形成助長コーティング160の表面上の伝導性コーティング440の材料の初期堆積速度は、核形成阻害コーティング140の表面上の材料の初期堆積速度の少なくとも約80倍またはそれを上回り、少なくとも約100倍またはそれを上回り、少なくとも約200倍またはそれを上回り、少なくとも約500倍またはそれを上回り、少なくとも約700倍またはそれを上回り、少なくとも約1,000倍またはそれを上回り、少なくとも約1,500倍またはそれを上回り、約1,700倍またはそれを上回り、もしくは少なくとも約2,000倍またはそれを上回り得る。一般に、核形成助長コーティング160は、核形成阻害コーティング140の堆積に先立って、またはそれに続いて、基板100上に堆積させられてもよい。蒸発(熱蒸発および電子ビーム蒸発を含む)、フォトリソグラフィ、印刷(インクまたは蒸気ジェット印刷、リールツーリール印刷、およびミクロ接触転写印刷を含む)、OVPD、LITIパターン化、およびそれらの組み合わせを含むが、それらに限定されない、表面上に材料を選択的に堆積させるための種々のプロセスが、核形成助長コーティング160を堆積させるために使用されてもよい。
図5A-5Cは、一実施形態で基板の表面上に伝導性コーティングを堆積させるためのプロセスを図示する。
図5Aでは、基板100の表面102は、その上に核形成阻害コーティング140を堆積させることによって処理される。具体的には、図示される実施形態では、堆積は、ソース120の内側でソース材料を蒸発させ、その上に堆積させられる表面102に向かって蒸発したソース材料を指向することによって、達成される。蒸発した流束が表面102に向かって指向される、一般的方向は、矢印122によって示される。図示されるように、核形成阻害コーティング140の堆積は、核形成阻害コーティング140が処理された表面142を生成するように表面102全体を実質的に被覆するように、開放マスクを使用して、またはマスクを伴わずに行われてもよい。代替として、核形成阻害コーティング140は、例えば、上記で説明される選択的堆積技法を使用して、表面102の領域上に選択的に堆積させられてもよい。
核形成阻害コーティング140は、蒸発によって堆積させられるものとして図示されているが、スピンコーティング、浸漬コーティング、印刷、噴霧コーティング、OVPD、LITIパターン化、物理蒸着(PVD)(スパッタリングを含む)、化学蒸着(CVD)、およびそれらの組み合わせを含むが、それらに限定されない、他の堆積および表面コーティング技法が使用され得ることが、理解されるであろう。
図5Bでは、シャドウマスク110は、処理された表面142上に核形成助長コーティング160を選択的に堆積させるために使用される。図示されるように、ソース120から進行する蒸発したソース材料は、マスク110を通して基板100に向かって指向される。マスクは、マスク110に入射する蒸発したソース材料の一部が、マスク110を通り過ぎて進行しないように妨げられ、マスク110の開口112を通して指向される、蒸発したソース材料の別の部分が、処理された表面142上に選択的に堆積して核形成助長コーティング160を形成するように、開口またはスリット112を含む。故に、パターン化された表面144が、核形成助長コーティング160の堆積を完了することに応じて生成される。
図5Cは、パターン化された表面144上に伝導性コーティング440を堆積させる段階を図示する。伝導性コーティング440は、例えば、純粋または実質的に純粋なマグネシウムを含んでもよい。以下でさらに解説されるであろうように、伝導性コーティング440の材料は、核形成阻害コーティング140に対する比較的低い初期付着係数と、核形成助長コーティング160に対する比較的高い初期付着係数とを呈する。故に、堆積は、核形成助長コーティング160が存在する基板100の領域上に伝導性コーティング440を選択的に堆積させるように、開放マスクを使用して、またはマスクを伴わずに行われてもよい。図5Cに図示されるように、核形成阻害コーティング140の表面に入射する伝導性コーティング440の蒸発した材料は、核形成阻害コーティング140上に堆積させられないように、大部分が、または実質的に妨げられてもよい。
図5D-5Fは、別の実施形態における、基板の表面上に伝導性コーティングを堆積させるためのプロセスを図示する。
図5Dでは、核形成助長コーティング160は、基板100の表面102上に堆積させられる。例えば、核形成助長コーティング160は、開放マスクを使用して、またはマスクを伴わずに、熱蒸発によって堆積させられてもよい。代替として、スピンコーティング、浸漬コーティング、印刷、噴霧コーティング、OVPD、LITIパターン化、PVD(スパッタリングを含む)、CVD、およびそれらの組み合わせを含むが、それらに限定されない、他の堆積および表面コーティング技法が、使用されてもよい。
図5Eでは、核形成阻害コーティング140は、シャドウマスク110を使用して、核形成助長コーティング160の領域上に選択的に堆積させられる。故に、パターン化された表面が、核形成阻害コーティング140の堆積を完了することに応じて生成される。次いで、図5Fでは、伝導性コーティング440は、伝導性コーティング440が核形成助長コーティング160の露出領域の上を形成されるように、開放マスクまたはマスクを含まない堆積プロセスを使用して、パターン化された表面上に堆積させられる。
前述の実施形態では、プロセスによって形成される伝導性コーティング440は、電子デバイス用の電極または伝導性構造として使用され得ることが理解されるであろう。例えば、伝導性コーティング440は、OLEDデバイスまたは有機光起電(OPV)デバイス等の有機光電子デバイスのアノードもしくはカソードであってもよい。加えて、伝導性コーティング440はまた、活性層材料として量子ドットを含む、光電子デバイス用の電極として使用されてもよい。例えば、そのようなデバイスは、量子ドットを含む活性層を伴う一対の電極の間に配置される、活性層を含んでもよい。本デバイスは、例えば、光が、電極によって提供される電流の結果として、量子ドット活性層から放射される、エレクトロルミネセント量子ドットディスプレイデバイスであってもよい。伝導性コーティング440はまた、前述のデバイスのうちのいずれかのための母線または補助電極であってもよい。
故に、その上に種々のコーティングが堆積させられる基板100は、前述の実施形態で具体的には図示または説明されていない、1つもしくはそれを上回る付加的有機および/または無機層を含み得ることが理解されるであろう。例えば、OLEDデバイスの場合、基板100は、1つまたはそれを上回る電極(例えば、アノードおよび/またはカソード)と、電荷注入ならびに/もしくは輸送層と、エレクトロルミネセント層とを含んでもよい。基板100はさらに、1つまたはそれを上回るトランジスタと、アクティブマトリクスもしくはパッシブマトリクスOLEDデバイスに含まれる、抵抗器およびコンデンサ等の他の電子構成要素とを含んでもよい。例えば、基板100は、1つまたはそれを上回る上面ゲート薄膜トランジスタ(TFT)、1つまたはそれを上回る底面ゲートTFT、および/もしくは他のTFT構造を含んでもよい。TFTは、n型TFTまたはp型TFTであってもよい。TFT構造の実施例は、非晶質シリコン(a-Si)、インジウムガリウム亜鉛酸化物(IGZO)、および低温多結晶シリコン(LTPS)を含むものを含む。
基板100はまた、上記で識別された付加的有機および/または無機層を支持するためのベース基板を含んでもよい。例えば、ベース基板は、可撓性または剛性基板であってもよい。ベース基板は、例えば、シリコン、ガラス、金属、ポリマー(例えば、ポリイミド)、サファイア、またはベース基板として使用するために好適な他の材料を含んでもよい。
基板100の表面102は、有機表面または無機表面であってもよい。例えば、伝導性コーティング440がOLEDデバイスのカソードとして使用するためのものである場合、表面102は、有機層のスタックの頂面(例えば、電子注入層の表面)であってもよい。別の実施例では、伝導性コーティング440が上面発光OLEDデバイスの補助電極として使用するためのものである場合、表面102は、電極の頂面(例えば、共通カソード)であってもよい。代替として、そのような補助電極は、有機層のスタックの上の透過型電極の直下に形成されてもよい。
図6は、一実施形態による、エレクトロルミネセント(EL)デバイス600を図示する。ELデバイス600は、例えば、OLEDデバイスまたはエレクトロルミネセント量子ドットデバイスであってもよい。一実施形態では、デバイス600は、ベース基板616と、アノード614と、有機層630と、カソード602とを含む、OLEDデバイスである。図示される実施形態では、有機層630は、正孔注入層612と、正孔輸送層610と、エレクトロルミネセント層608と、電子輸送層606と、電子注入層604とを含む。
正孔注入層612は、概して、アノード614による正孔の注入を促進する、正孔注入材料を使用して形成されてもよい。正孔輸送層610は、概して、高い正孔移動度を呈する材料である、正孔輸送材料を使用して形成されてもよい。
エレクトロルミネセント層608は、例えば、エミッタ材料でホスト材料をドープすることによって形成されてもよい。エミッタ材料は、例えば、蛍光エミッタ、燐光性エミッタ、またはTADFエミッタであってもよい。複数のエミッタ材料もまた、エレクトロルミネセント層608を形成するようにホスト材料の中へドープされてもよい。
電子輸送層606は、概して、高い電子移動度を呈する、電子輸送材料を使用して形成されてもよい。電子注入層604は、概して、カソード602による電子の注入を促進するように作用する、電子注入材料を使用して形成されてもよい。
デバイス600の構造は、1つまたはそれを上回る層を省略する、もしくは組み合わせることによって変動され得ることが理解されるであろう。具体的には、正孔注入層612、正孔輸送層610、電子輸送層606、および電子注入層604のうちの1つまたはそれを上回るものが、デバイス構造から省略されてもよい。1つまたはそれを上回る付加的層もまた、デバイス構造の中に存在してもよい。そのような付加的層は、例えば、正孔遮断層、電子遮断層、付加的電荷輸送および/または注入層を含む。各層はさらに、任意の数の副層を含んでもよく、各層および/または副層は、種々の混合物ならびに組成勾配を含んでもよい。また、デバイス600は、無機および/または有機金属材料を含有する、1つもしくはそれを上回る層を含んでもよく、有機材料だけから成るデバイスに限定されないことも理解されるであろう。例えば、デバイス600は、量子ドットを含んでもよい。
デバイス600は、電流をデバイス600に供給するための電源620に接続されてもよい。
デバイス600がEL量子ドットデバイスである、別の実施形態では、EL層608は、概して、電流が供給されるときに光を放射する、量子ドットを含む。
図7は、一実施形態による、OLEDデバイスを製作する段階を概説するフロー図である。704では、有機層が、標的表面上に堆積させられる。例えば、標的表面は、例えば、ガラス、ポリマー、および/または金属箔を含み得る、ベース基板の上に堆積させられたアノードの表面であってもよい。上記で議論されるように、有機層は、例えば、正孔注入層と、正孔輸送層と、エレクトロルミネセンス層と、電子輸送層と、電子注入層とを含んでもよい。核形成阻害コーティングが、次いで、選択的堆積またはパターン化プロセスを使用して、段階706で有機層の上に堆積させられる。段階708では、核形成助長コーティングが、パターン化された表面を生成するように、核形成阻害コーティング上に選択的に堆積させられる。例えば、核形成助長コーティングおよび核形成阻害コーティングは、マスク、ミクロ接触転写印刷プロセス、フォトリソグラフィ、印刷(インクまたは蒸気ジェット印刷、およびリールツーリール印刷を含む)、OVPD、またはLITIパターン化を使用して、蒸発によって選択的に堆積させられてもよい。伝導性コーティングが、次いで、段階710で開放マスクまたはマスクを含まない堆積プロセスを使用して、パターン化された表面上に堆積させられる。伝導性コーティングは、OLEDデバイスのカソードまたは別の伝導性構造としての役割を果たしてもよい。
次に図8および9A-9Dを参照して、別の実施形態による、OLEDデバイスを製作するためのプロセスが提供される。図8は、OLEDデバイスを製作するための段階を概説するフロー図であり、図9A-9Dは、プロセスの各段階におけるデバイスを図示する概略図である。段階804では、有機層920が、ソース991を使用して標的表面912上に堆積させられる。図示される実施形態では、標的表面912は、ベース基板900の上に堆積させられたアノード910の表面である。有機層920は、例えば、正孔注入層と、正孔輸送層と、エレクトロルミネセンス層と、電子輸送層と、電子注入層とを含んでもよい。核形成助長コーティング930が、次いで、ソース993および開放マスクを使用して、またはマスクを伴わずに、段階806で有機層920の上に堆積させられる。段階808では、核形成阻害コーティング940が、マスク980およびソース995を使用して、核形成助長コーティング930上に選択的に堆積させられ、それによって、パターン化された表面を生成する。伝導性コーティング950が、核形成阻害コーティング940によって被覆されていない核形成助長コーティング930の領域上に堆積させられるように、伝導性コーティング950が、次いで、段階810で開放マスクまたはマスクを含まない堆積プロセスを使用して、パターン化された表面上に堆積させられる。
次に図10および11A-11Dを参照して、さらに別の実施形態による、OLEDデバイスを製作するためのプロセスが提供される。図10は、OLEDデバイスを製作するための段階を概説するフロー図であり、図11A-11Dは、そのようなプロセスの段階を図示する概略図である。段階1004では、有機層1120が、ソース1191を使用して標的表面1112上に堆積させられる。図示される実施形態では、標的表面1112は、ベース基板1100の上に堆積させられたアノード1110の表面である。有機層1120は、例えば、正孔注入層と、正孔輸送層と、エレクトロルミネセンス層と、電子輸送層と、電子注入層とを含んでもよい。核形成阻害コーティング1130が、マスク1180の開口を通して露出される有機層1120の表面の領域上に選択的に堆積させられるように、核形成阻害コーティング1130が、次いで、マスク1180およびソース1193を使用して、段階1006で有機層1120の上に堆積させられる。段階1008では、核形成助長コーティング1140が、マスク1182およびソース1195を使用して、選択的に堆積させられる。図示される実施形態では、核形成助長コーティング1140は、核形成阻害コーティング1130によって被覆されていない有機層1120の表面の領域の上を堆積させられ、それによって、パターン化された表面を生成するものとして示されている。伝導性コーティング1150が、次いで、段階1010で開放マスクまたはマスクを含まない堆積プロセスを使用して、パターン化された表面上に堆積させられ、核形成阻害コーティング1130の表面を伝導性コーティング1150の材料を実質的に含まない状態にしたまま、伝導性コーティング1150を核形成助長コーティング1140の表面上に堆積させる。
次に図12および13A-13Dを参照すると、さらに別の実施形態による、OLEDデバイスを製作するためのプロセスが提供される。図12は、OLEDデバイスを製作するための段階を概説するフロー図であり、図13A-13Dは、そのようなプロセスの段階を図示する概略図である。段階1204では、有機層1320が、ソース1391を使用して標的表面1312上に堆積させられる。図示される実施形態では、標的表面1312は、ベース基板1300の上に堆積させられたアノード1310の表面である。有機層1320は、例えば、正孔注入層と、正孔輸送層と、エレクトロルミネセンス層と、電子輸送層と、電子注入層とを含んでもよい。核形成助長コーティング1330が、マスク1380の開口を通して露出される有機層1320の表面の領域上に選択的に堆積させられるように、核形成助長コーティング1330が、次いで、マスク1380およびソース1393を使用して、段階1206で有機層1320の上に堆積させられる。段階1208では、核形成阻害層1340が、マスク1382およびソース1395を使用して、選択的に堆積させられる。図示される実施形態では、核形成阻害コーティング1340は、核形成助長コーティング1330によって被覆されていない有機層1320の表面の領域の上を堆積させられ、それによって、パターン化された表面を生成するものとして図示されている。伝導性コーティング1350が、次いで、段階1210で開放マスクまたはマスクを含まない堆積プロセスを使用して、パターン化された表面上に堆積させられ、核形成阻害コーティング1340の表面を伝導性コーティング1350の材料を実質的に含まない状態にしたまま、伝導性コーティング1350を核形成助長コーティング1330の表面上に堆積させる。このようにして形成される伝導性コーティング1350は、電極(例えば、カソード)としての役割を果たしてもよい。
上記の実施形態によると、伝導性コーティングが、核形成阻害コーティングまたは核形成阻害および核形成助長コーティングの組み合わせの使用を通して、開放マスクまたはマスクを含まない堆積プロセスを使用して、標的領域(例えば、非放射領域)上に選択的に堆積させられてもよい。対照的に、開放マスクまたはマスクを含まない堆積プロセスにおける十分な選択性の欠如は、標的領域を越え、かつ放射領域を覆う伝導性材料の堆積をもたらし、これは、放射領域を覆うそのような材料の存在が、概して、光の減衰、したがって、OLEDデバイスのEQEの減少に寄与するため、望ましくない。また、標的領域上に伝導性コーティングを堆積させることの高い選択性を提供することによって、伝導性コーティングは、OLEDデバイスにおいて所望の伝導度を達成するために十分な厚さを伴う電極としての役割を果たすことができる。例えば、上記の実施形態によって提供される高い選択性は、隣接ピクセルまたはサブピクセルの間の領域に限定されたままである、高いアスペクト比を有する補助電極の堆積を可能にする。対照的に、開放マスクまたはマスクを含まない堆積プロセスで厚い電極を形成することの十分な選択性の欠如は、放射および非放射領域の両方の上を伝導性材料の厚いコーティングの堆積をもたらし、したがって、結果として生じるOLEDデバイスの性能を実質的に減少させるであろう。
簡単かつ明確にするために、厚さプロファイルおよび縁プロファイルを含む、堆積させられた材料の詳細は、プロセス図から省略されている。
基板の表面上の蒸着中の薄膜の形成は、核形成および成長のプロセスを伴う。膜形成の初期段階中に、十分な数の蒸気モノマー(例えば、原子または分子)が、典型的には、表面上に初期核を形成するように気相から凝縮する。蒸気モノマーが表面に衝突し続けると、これらの初期核のサイズおよび密度は、小さいクラスタまたは島を形成するように増加する。飽和島密度に達した後、隣接する島が、典型的には、合体し始め、島密度を減少させながら、平均島サイズを増大させる。隣接する島の合体は、実質的に閉鎖された膜が形成されるまで継続する。
薄膜の形成のための3つの基本的成長モード、すなわち、1)島(フォルマー・ウェーバー)、2)層毎(フランク・ファン・デル・メルヴェ)、および3)ストランスキー・クラスタノフが存在し得る。島成長は、典型的には、モノマーの安定したクラスタが、表面上で核となり、離散島を形成するように成長するときに起こる。本成長モードは、モノマーの間の相互作用が、モノマーと表面との間のものよりも強いときに起こる。
核形成率は、単位時間につき表面上に形成する臨界サイズの核の数を説明する。膜形成の初期段階中に、核の密度が低く、したがって、核が表面の比較的小さい部分を被覆する(例えば、隣接する核の間に大きい間隙/空間がある)ため、核が表面上のモノマーの直接衝突から成長するであろう可能性は低い。したがって、臨界核が成長する速度は、典型的には、表面上の吸着されたモノマー(例えば、吸着原子)が移動し、近くの核に付着する速度に依存する。
表面上の吸着原子の吸着後、吸着原子は、表面から脱着してもよいか、または脱着すること、小さいクラスタを形成するように他の吸着原子と相互作用すること、もしくは成長する核に付着することのいずれかの前に、表面上である距離を移動してもよいかのいずれかである。吸着原子が初期吸着後に表面上に残留する平均時間量は、以下によって求められる。
上記の方程式では、vは、表面上の吸着原子の振動周波数であり、kは、ボルツマン定数であり、Tは、温度であり、Edesは、表面から吸着原子を脱着するために関与するエネルギーである。本方程式から、Edesの値が低いほど、吸着原子が表面から脱着することが容易であり、故に、吸着原子が表面上に残留するであろう時間が短いことに留意されたい。吸着原子が拡散することができる平均距離は、以下によって求められる。


式中、aは、格子定数であり、Eは、表面拡散のための活性化エネルギーである。Edesの低い値および/またはEの高い値に関して、吸着原子は、脱着前に、より短い距離で拡散し、故に、成長する核に付着する、または別の吸着原子もしくは吸着原子のクラスタと相互作用する可能性が低い。
膜形成の初期段階中に、吸着された吸着原子は、クラスタを形成するように相互作用してもよく、単位面積あたりのクラスタの臨界濃度は、以下によって求められ、


式中、Eは、i個の吸着原子を含有する臨界クラスタを別個の吸着原子に解離するために関与するエネルギーであり、nは、吸着部位の総密度であり、Nは、以下によって求められるモノマー密度である。


式中、


は、蒸気衝突速度である。典型的には、iは、堆積させられている材料の結晶構造に依存し、安定した核を形成する臨界クラスタサイズを判定するであろう。
成長するクラスタの臨界モノマー供給速度は、蒸気衝突速度と、脱着前にそれの上を吸着原子が拡散することができる平均面積とによって求められる。
臨界核形成速度は、したがって、上記の方程式の組み合わせによって求められる。
上記の方程式から、臨界核形成速度は、吸着された吸着原子のための低い脱着エネルギーと、吸着原子の拡散のための高い活性化エネルギーとを有する、高温である、または低い蒸気衝突速度を受ける表面のために抑制されるであろうことに留意されたい。
欠陥、レッジ、またはステップ縁等の基板の不均一性部位は、Edesを増加させ、そのような部位で観察される核のより高い密度につながり得る。また、表面上の不純物または汚染もまた、Edesを増加させ、核のより高い密度につながり得る。高減圧条件下で行われる蒸着プロセスに関して、表面上の汚染物質のタイプおよび密度は、減圧圧力ならびにその圧力を構成する残留ガスの組成による影響を受ける。
高減圧条件下で、(cm・秒あたりの)表面に衝突する分子の流束は、以下によって求められる。


式中、Pは、圧力であり、Mは、分子量である。したがって、HO等の反応性ガスのより高い分圧は、Edesの増加、故に、核のより高い密度につながる、蒸着中の表面上の汚染のより高い密度につながり得る。
薄膜の核形成および成長を特徴付けるための有用なパラメータは、以下によって求められる付着確率である。


式中、Nadsは、表面上に残留する(例えば、膜に組み込まれる)吸着されたモノマーの数であり、Ntotalは、表面上の衝突するモノマーの総数である。1に等しい付着確率は、表面に衝突する全てのモノマーが吸着され、続いて、成長する膜に組み込まれる
ことを示す。0に等しい付着確率は、表面に衝突する全てのモノマーが吸着され、続いて、いかなる膜も表面上に形成されないことを示す。種々の表面上の金属の付着確率は、Walker et al., J. Phys. Chem. C2007, 111, 765(2006年)によって、および以下の実施例の節で説明されるような二重水晶振動子マイクロバランス(QCM)技法等の付着確率を測定する種々の技法を使用して、評価されることができる。
島の密度が増加する(例えば、平均膜厚さを増加させる)と、付着確率が変化し得る。例えば、低い初期付着確率は、増加する平均膜厚さとともに増加し得る。これは、島がない表面(裸の基板)の面積と高密度の島を伴う面積との間の付着確率の差に基づいて、理解されることができる。例えば、島の表面に衝突するモノマーは、1に近い付着確率を有してもよい。
初期付着確率Sは、したがって、任意の有意数の臨界核の形成に先立った、表面の付着確率として規定されることができる。初期付着確率の1つの尺度は、表面を横断する堆積させられた材料の平均厚さが閾値である、またはそれを下回る、材料の堆積の初期段階中の材料の表面の付着確率を伴うことができる。いくつかの実施形態の説明では、初期付着確率の閾値は、1nmとして規定されることができる。平均付着確率は、次いで、以下によって求められる。


式中、Snucは、島によって被覆される面積の付着確率であり、Anucは、島によって被覆される基板表面の面積の割合である。
核形成阻害コーティングを形成するように使用するための好適な材料は、約0.1(もしくは10%)以内または未満、もしくは約0.05以内または未満、より具体的には、約0.03以内または未満、約0.02以内または未満、約0.01以内または未満、約0.08以内または未満、約0.005以内または未満、約0.003以内または未満、約0.001以内または未満、約0.0008以内または未満、約0.0005以内または未満、もしくは約0.0001以内または未満の伝導性コーティングの材料の初期付着確率を呈する、または有するものとして特徴付けられるものを含む。核形成助長コーティングを形成するように使用するための好適な材料は、少なくとも約0.6(もしくは60%)、少なくとも約0.7、少なくとも約0.75、少なくとも約0.8、少なくとも約0.9、少なくとも約0.93、少なくとも約0.95、少なくとも約0.98、または少なくとも約0.99の伝導性コーティングの材料の初期付着確率を呈する、または有するものとして特徴付けられるものを含む。
好適な核形成阻害材料は、小分子有機材料および有機ポリマー等の有機材料を含む。好適な有機材料の実施例は、随意に、窒素(N)、硫黄(S)、酸素(O)、リン(P)、およびアルミニウム(Al)等の1つまたはそれを上回るヘテロ原子を含み得る、有機分子を含む多環式芳香族化合物を含む。いくつかの実施形態では、多環式芳香族化合物は、核部分と、核部分に結合された少なくとも1つの末端部分とをそれぞれ含む、有機分子を含む。末端部分の数は、1またはそれを上回る、2またはそれを上回る、3またはそれを上回る、もしくは4またはそれを上回ってもよい。2つまたはそれを上回る末端部分の場合、末端部分は、同一もしくは異なり得る、または末端部分のサブセットは、同一であり得るが、少なくとも1つの残りの末端部分と異なり得る。いくつかの実施形態では、少なくとも1つの末端部分は、以下のような化学構造(I-a)、(I-b)、および(Ic)のうちの1つによって表される、ビフェニリル部分である、またはそれを含む。




点線は、ビフェニリル部分と核部分との間に形成される結合を示す。一般に、(I-a)、(I-b)、および(I-c)によって表されるビフェニリル部分は、非置換であり得る、またはその水素原子のうちの1つもしくはそれを上回るものを1つまたはそれを上回る置換基によって置換させることによって置換されてもよい。(I-a)、(I-b)、および(I-c)によって表される部分では、RおよびRは、1つまたはそれを上回る置換基の随意の存在を独立して表し、Rは、一、二、三、または四置換を表してもよく、Rは、一、二、三、四、または五置換を表してもよい。例えば、1つまたはそれを上回る置換基RおよびRは、ジュウテロ、フルオロ、C-Cアルキル、シクロアルキル、アリールアルキル、シリル、アリール、ヘテロアリール、フルオロアルキルを含む、アルキル、およびそれらの任意の組み合わせから独立して選択されてもよい。具体的には、1つまたはそれを上回る置換基RおよびRは、メチル、エチル、t-ブチル、トリフルオロメチル、フェニル、メチルフェニル、ジメチルフェニル、トリメチルフェニル、t-ブチルフェニル、ビフェニリル、メチルビフェニリル、ジメチルビフェニリル、トリメチルビフェニリル、t-ブチルビフェニリル、フルオロフェニル、ジフルオロフェニル、トリフルオロフェニル、ポリフルオロフェニル、フルオロビフェニリル、ジフルオロビフェニリル、トリフルオロビフェニリル、およびポリフルオロビフェニリルから独立して選択されてもよい。特定の理論によって拘束されることを所望するわけではないが、表面上の露出したビフェニリル部分の存在は、マグネシウム等の伝導性材料の堆積に向けた表面の親和性を低下させるように、表面エネルギー(例えば、脱着エネルギー)を調節または同調する役割を果たし得る。マグネシウムの堆積を阻害する表面エネルギーの類似同調を生じる、他の部分および材料が、核形成阻害コーティングを形成するために使用されてもよい。
別の実施形態では、少なくとも1つの末端部分は、以下のような構造(I-d)によって表されるフェニル部分である、またはそれを含む。


点線は、フェニル部分と核部分との間に形成される結合を示す。一般に、(I-d)によって表されるフェニル部分は、非置換であり得る、またはその水素原子のうちの1つもしくはそれを上回るものを1つまたはそれを上回る置換基によって置換させることによって置換されてもよい。(I-d)によって表される部分では、Rは、1つまたはそれを上回る置換基の随意の存在を表し、Rは、一、二、三、四、または五置換を表してもよい。1つまたはそれを上回る置換基Rは、ジュウテロ、フルオロ、C-Cアルキル、シクロアルキル、シリル、フルオロアルキルを含む、アルキル、およびそれらの任意の組み合わせから独立して選択されてもよい。具体的には、1つまたはそれを上回る置換基Rは、メチル、エチル、t-ブチル、フルオロメチル、ビフルオロメチル、トリフルオロメチル、フルオロエチル、ポリフルオロエチルから独立して選択されてもよい。
さらに別の実施形態では、少なくとも1つの末端部分は、フルオレン部分またはフェニレン部分(複数の(例えば、3つ、4つ、またはそれを上回る)縮合ベンゼン環を含有するものを含む)等の縮合環構造を含む、多環式芳香族部分である、もしくはそれを含む。そのような部分の実施例は、スピロビフルオレン部分、トリフェニレン部分、ジフフェニルフルオレン部分、ジメチルフルオレン部分、ジフルオロフルオレン部分、およびそれらの任意の組み合わせを含む。
いくつかの実施形態では、多環式芳香族化合物は、以下のような化学構造(II)、(III)、および(IV)のうちの少なくとも1つによって表される有機分子を含む。
(II)、(III)、および(IV)では、Cは、核部分を表し、T、T、およびTは、核部分に結合された末端部分を表す。1つ、2つ、および3つの末端部分が、(II)、(III)、ならびに(IV)で描写されているが、3つを上回る末端部分も含まれ得ることを理解されたい。
いくつかの実施形態では、Cは、実施例がトリアゾール部分である、1つまたはそれを上回る窒素原子を含む複素環部分等の複素環部分である、もしくはそれを含む。いくつかの実施形態では、Cは、アルミニウム原子、銅原子、イリジウム原子、および/または白金原子等の金属原子(遷移および遷移後原子を含む)である、もしくはそれを含む。いくつかの実施形態では、Cは、窒素原子、酸素原子、および/またはリン原子である、もしくはそれを含む。いくつかの実施形態では、Cは、芳香族であり得る、環状炭化水素部分である、またはそれを含む。いくつかの実施形態では、Cは、分岐または非分岐であり得る、置換もしくは非置換アルキル、シクロアルキニル(1~7個の炭素原子を含有するものを含む)、アルケニル、アルキニル、アリール(フェニル、ナフチル、チエニル、およびインドリルを含む)、アリールアルキル、複素環部分(モルホリノ、ピペリジノ、およびピロリジノ等の環状アミンを含む)、環状エーテル部分(テトラヒドロフランおよびテトラヒドロピラン部分等)、ヘテロアリール(ピロール、フラン、チオフェン、イミダゾール、オキサゾール、チアゾール、トリアゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、多環式複素芳香族部分、およびジベンジルチオフェニルを含む)、フルオレン部分、シリル、およびそれらの任意の組み合わせである、またはそれを含む。
(II)、(III)、および(IV)では、Tは、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、またはそれを含む。部分Tは、核部分に直接結合されてもよい、またはリンカ部分を介して核部分に結合されてもよい。リンカ部分の実施例は、-O-(Oは酸素原子を表す)、-S-(Sは硫黄原子を表す)、および1つ、2つ、3つ、4つ、またはそれを上回る炭素原子を含み、非置換もしくは置換であり得、随意に、1つまたはそれを上回るヘテロ原子を含み得る、環状もしくは非環状炭化水素部分を含む。核部分と1つまたはそれを上回る末端部分との間の結合は、共有結合、もしくは特に有機金属化合物の場合、金属要素と有機要素との間に形成される結合であってもよい。
(III)では、TおよびTは、少なくともTが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、またはそれを含む限り、同一であり得る、もしくは異なり得る。例えば、TおよびTはそれぞれ、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分であってもよい、またはそれを含んでもよい。別の実施例として、Tが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、またはそれを含む一方で、Tは、そのような部分が欠けていてもよい。いくつかの実施形態では、Tは、芳香族であり得る、単環構造を含み得る、または多環式であり得る、置換または非置換であり得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、環状炭化水素部分である、もしくはそれを含む。いくつかの実施形態では、Tは、単環構造を含み得る、または多環式であり得る、置換または非置換であり得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、1つまたはそれを上回る窒素原子を含む複素環部分等の複素環部分である、もしくはそれを含む。いくつかの実施形態では、Tは、置換または非置換であり得る、随意に、1つまたはそれを上回るヘテロ原子を含み得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、環状炭化水素部分である、もしくはそれを含む。TおよびTが異なる、いくつかの実施形態では、Tは、Tと同等のサイズを有する部分から選択されてもよい。具体的には、Tは、Tの分子量の約2倍以内、約1.9倍以内、約1.7倍以内、約1.5倍以内、約1.2倍以内、または約1.1倍以内の分子量を有する、上記に列挙された部分から選択されてもよい。特定の理論によって拘束されることを所望するわけではないが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分と異なる、またはそれが欠けている、末端部分Tが含まれるとき、Tに対するTの同等のサイズは、分子積層、立体障害、またはそのような効果の組み合わせに起因して、Tの暴露を妨げ得る大型末端基とは対照的に、表面上のTの暴露を助長し得ることが仮定される。
(IV)では、T、T、およびTは、少なくともTが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、またはそれを含む限り、同一であり得る、もしくは異なり得る。例えば、T、T、およびTはそれぞれ、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分であってもよい、またはそれを含んでもよい。別の実施例として、TおよびTがそれぞれ、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分であってもよい、またはそれを含んでもよい一方で、Tは、そのような部分が欠けていてもよい。別の実施例として、TおよびTがそれぞれ、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分であってもよい、またはそれを含んでもよい一方で、Tは、そのような部分が欠けていてもよい。さらなる実施例として、Tが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、またはそれを含む一方で、TおよびTは両方とも、そのような部分が欠けていてもよい。いくつかの実施形態では、少なくとも1つのTおよびTは、芳香族であり得る、単環構造を含み得る、または多環式であり得る、置換または非置換であり得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、環状炭化水素部分である、もしくはそれを含む。いくつかの実施形態では、少なくとも1つのTおよびTは、単環構造を含み得る、または多環式であり得る、置換または非置換であり得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、1つまたはそれを上回る窒素原子を含む複素環部分等の複素環部分である、もしくはそれを含む。いくつかの実施形態では、少なくとも1つのTおよびTは、置換または非置換であり得る、随意に、1つまたはそれを上回るヘテロ原子を含み得る、かつ核部分に直接結合され得る、またはリンカ部分を介して核部分に結合され得る、非環状炭化水素部分である、もしくはそれを含む。T、T、およびTが異なる、いくつかの実施形態では、TおよびTは、Tと同等のサイズを有する部分から選択されてもよい。具体的には、TおよびTは、Tの分子量の約2倍以内、約1.9倍以内、約1.7倍以内、約1.5倍以内、約1.2倍以内、または約1.1倍以内の分子量を有する、上記に列挙された部分から選択されてもよい。特定の理論によって拘束されることを所望するわけではないが、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分と異なる、またはそれが欠けている、末端部分TおよびTが含まれるとき、Tに対するTおよびTの同等のサイズは、分子積層、立体障害、またはそのような効果の組み合わせに起因して、Tの暴露を妨げ得る大型末端基とは対照的に、表面上のTの暴露を助長し得ること
が仮定される。
好適な核形成阻害材料は、ポリマー材料を含む。そのようなポリマー材料の実施例は、ペルフルオロ化ポリマーおよびポリテトラフルオロエチレン(PTFE)、ポリビニリビフェニル、ポリビニルカルバゾール(PVK)、ならびに上記で説明されるような複数の多環式芳香族化合物を重合することによって形成されるポリマーを含むが、それらに限定されない、フルオロポリマーを含む。別の実施例では、ポリマー材料は、複数のモノマーを重合することによって形成されるポリマーを含み、モノマーのうちの少なくとも1つは、(I-a)、(I-b)、(I-c)、または(I-d)によって表される部分、もしくは上記で説明されるような縮合環構造を含む多環式芳香族部分である、もしくはそれを含む、末端部分を含む。
図14および15は、一実施形態による、OLEDデバイス1500を図示する。具体的には、図14は、OLEDデバイス1500の上面図を示し、図15は、OLEDデバイス1500の構造の断面図を図示する。図14では、カソード1550は、カソード材料が堆積させられなかったデバイス1500の領域に対応する、その中に形成された複数の開口または正孔1560を有する、もしくは画定する、単一のモノリシックまたは連続構造として図示されている。これはさらに、ベース基板1510と、アノード1520と、有機層1530と、核形成助長コーティング1540と、核形成助長コーティング1540のある領域の上を選択的に堆積させられる核形成阻害コーティング1570と、核形成阻害コーティング1570が存在しない核形成助長コーティング1540の他の領域の上を堆積させられるカソード1550とを含む、OLEDデバイス1500を示す、図15に図示されている。より具体的には、デバイス1500の製作中に核形成助長コーティング1540の表面のある領域を被覆するように、核形成阻害コーティング1570を選択的に堆積させることによって、カソード材料は、開放マスクまたはマスクを含まない堆積プロセスを使用して、核形成助長コーティング1540の表面の露出領域上に選択的に堆積させられる。OLEDデバイス1500の透明度または透過率は、カソード1550に形成された正孔1560の平均サイズおよび正孔1560の密度等の付与されたパターンの種々のパラメータを変更することによって、調節または修正されてもよい。故に、OLEDデバイス1500は、OLEDデバイスに入射する外部光の少なくとも一部がそれを通して透過されることを可能にする、実質的に透明なOLEDデバイスであってもよい。例えば、OLEDデバイス1500は、実質的に透明なOLED照明パネルであってもよい。そのようなOLED照明パネルは、例えば、一方向(例えば、ベース基板1510に向かって、またはそれから離れてのいずれか)に、または両方向に(例えば、ベース基板1510に向かって、および離れて)光を放射するように構成されてもよい。
図16は、カソード1650がデバイス面積全体を実質的に被覆する、別の実施形態による、OLEDデバイス1600を図示する。具体的には、OLEDデバイス1600は、ベース基板1610と、アノード1620と、有機層1630と、核形成助長コーティング1640と、カソード1650と、カソード1650のある領域の上を選択的に堆積させられる核形成阻害コーティング1660と、核形成阻害コーティング1660が存在しないカソード1650の他の領域の上を堆積させられる補助電極1670とを含む。
補助電極1670は、カソード1650に電気的に接続される。具体的には、上面発光構成では、カソード1650の存在に起因する光学干渉(例えば、減衰、反射、拡散等)を低減させるように、カソード1650の比較的薄い層を堆積させることが望ましい。しかしながら、カソード1650の低減した厚さは、概して、カソード1650のシート抵抗を増加させ、したがって、OLEDデバイス1600の性能および効率を低減させる。カソード1650に電気的に接続される補助電極1670を提供することによって、シート抵抗、したがって、カソード1650と関連付けられるIR降下が、減少されることができる。さらに、他の領域が被覆されていないままである間に、デバイス面積のある領域を被覆するように補助電極1670を選択的に堆積させることによって、補助電極1670の存在に起因する光学干渉が、制御および/または低減されてもよい。
電極シート抵抗の効果が、ここで、p型TFTを伴う上面発光アクティブマトリクスOLED(AMOLED)ピクセルの回路図の実施例を示す、図48を参照して解説されるであろう。図48では、回路4800は、電力供給(VDD)線4812と、制御線4814と、ゲート線4816と、データ線4818とを含む。駆動回路は、第1のTFT4831と、第2のTFT4833とを含み、蓄電コンデンサ4841が提供され、駆動回路構成要素は、図に図示される様式で、データ線4818、ゲート線4816、およびVDD線4812に接続される。概して、経時的にTFT4831および4833の製造分散または劣化によって引き起こされる、トランジスタ性質の任意の偏差を補償するように作用する、補償回路4843も提供される。
OLEDピクセルまたはサブピクセル4850、および回路図で抵抗器として表されるカソード4852は、第2のTFT4833(「駆動トランジスタ」とも称される)と直列に接続される。駆動トランジスタ4833は、OLEDピクセル4850が所望の輝度を出力するように、蓄電コンデンサ4841の中に貯蔵された電荷の電圧に従って、OLEDピクセル4850を通過させられる電流を調整する。蓄電コンデンサ4841の電圧は、第1のTFT4831(「スイッチトランジスタ」とも称される)を介して蓄電コンデンサ4841をデータ線4818に接続することによって設定される。
OLEDピクセルまたはサブピクセル4850およびカソード4852を通した電流が、駆動トランジスタ4833のゲート電圧とソース電圧との間の電位差に基づいて調整されるため、カソード4852のシート抵抗の増加は、電力供給(VDD)を増加させることによって補償される、より大きいIR降下をもたらす。しかしながら、VDDが増加させられるとき、TFT4833およびOLEDピクセル4850に供給される他の電圧もまた、適切な動作を維持するように増加させられ、したがって、不利である。
図48を参照すると、補助電極4854が、カソード4852に並列に接続された抵抗器として図示されている。補助電極4854の抵抗がカソード4852のものよりも実質的に低いため、補助電極4854およびカソード4852の複合実効抵抗は、カソード4852単独のものよりも低い。故に、VDDの増加は、補助電極4854の存在によって軽減されることができる。
補助電極の利点が上面発光OLEDデバイスを参照して解説されているが、底面発光または両面発光OLEDデバイスのカソードの上を補助電極を選択的に堆積させることも有利であり得る。例えば、カソードは、デバイスの光学特性に実質的に影響を及ぼすことなく、底面発光OLEDデバイスの中の比較的厚い層として形成されてもよいが、比較的薄いカソードを形成することが依然として有利であり得る。例えば、透明または半透明ディスプレイデバイスでは、カソードを含むデバイス全体の層は、実質的に透明または半透明であるように形成されることができる。故に、典型的視認距離から裸眼によって容易に検出されることができない、パターン化された補助電極を提供することが有益であり得る。また、説明されるプロセスは、OLEDデバイス以外のデバイス用の電極の抵抗を減少させるための母線または補助電極を形成するために使用され得ることも理解されるであろう。
いくつかの実施形態では、製作プロセス中に堆積させられる核形成阻害コーティングは、伝導性コーティングが堆積させられた後に、例えば、溶媒またはプラズマエッチングを使用することによって、除去されてもよい。
図59Aは、基板5910と、基板5910の表面の個別の領域の上を堆積させられる、核形成阻害コーティング5920および伝導性コーティング5915(例えば、マグネシウムコーティング)とを含む、一実施形態による、デバイス5901を図示する。
図59Bは、伝導性コーティング5915が、基板5910上に残留し、核形成阻害コーティング5920によって被覆された基板5910の領域が、現在、露出されている、または被覆されていないように、デバイス5901の中に存在する核形成阻害コーティング5920が基板5910の表面から除去された後のデバイス5902を図示する。例えば、デバイス5901の核形成阻害コーティング5920は、伝導性コーティング5915に実質的に影響を及ぼすことなく、核形成阻害コーティング5920を優先的に反応させる、および/またはエッチングする、溶媒もしくはプラズマに基板5910を暴露することによって除去されてもよい。
上記の実施形態のうちの少なくともいくつかが、蒸発プロセスを使用して形成されている、核形成助長コーティング、核形成阻害コーティング、および伝導性コーティングを含む、種々の層またはコーティングを参照して説明されている。理解されるであろうように、蒸発プロセスは、1つまたはそれを上回るソース材料が、低圧(例えば、減圧)環境下で蒸発もしくは昇華され、1つまたはそれを上回る蒸発したソース材料の凝結を通して標的表面上に堆積させられる、PVDプロセスのタイプである。種々の異なる蒸発ソースが、ソース材料を加熱するために使用されてもよく、したがって、ソース材料は、種々の方法で加熱され得ることが理解されるであろう。例えば、ソース材料は、電気フィラメント、電子ビーム、誘導加熱によって、または抵抗加熱によって、加熱されてもよい。加えて、そのような層またはコーティングは、フォトリソグラフィ、印刷、OVPD、LITIパターン化、およびそれらの組み合わせを含む、他の好適なプロセスを使用して、堆積および/またはパターン化されてもよい。これらのプロセスはまた、種々のパターンを達成するために、シャドウマスクと組み合わせて使用されてもよい。
例えば、マグネシウムは、毎秒約10~30nmまたはそれを上回る等のより高い堆積速度を達成するように、最大約600℃のソース温度で堆積させられてもよい。以下の表1を参照すると、約1nmのフラーレン処理有機表面上に実質的に純粋なマグネシウムを堆積させるために、クヌーセンセルソースを使用して測定された種々の堆積速度が提供されている。ソースと基板との間の距離、基板の特性、基板上の核形成助長コーティングの存在、使用されるソースのタイプ、およびソースから蒸発させられる材料の流束の形状を含むが、それらに限定されない、他の要因もまた、堆積速度に影響を及ぼし得ることが理解されるであろう。
使用される特定の処理条件は、堆積を行うために使用されている機器に応じて変動し得ることが、当業者によって理解されるであろう。また、より高い堆積速度が、概して、より高いソース温度で達成されることも理解されるであろう。しかしながら、例えば、堆積ソースのより近くに基板を設置することによって等、他の堆積条件も選択されることができる。
また、伝導性コーティング、核形成阻害コーティング、および核形成助長コーティングを含む、種々の層またはコーティングのうちのいずれかの堆積に使用される開放マスクが、基板のある領域上の材料の堆積を「覆い隠し」得る、または「防止」し得ることも理解されるであろう。しかしながら、約数十ミクロンまたはそれよりも小さい特徴サイズを伴う比較的小さい特徴を形成するために使用される、微細金属マスク(FMM)と異なり、開放マスクの特徴サイズは、製造されているOLEDデバイスのサイズと略同等である。例えば、開放マスクは、製造中にディスプレイデバイスの縁を覆い隠してもよく、これは、ディスプレイデバイスのサイズ(例えば、マイクロディスプレイについては約1インチ、モバイルディスプレイについては約4~6インチ、ラップトップまたはタブレットディスプレイについては約8~17インチ等)にほぼ対応する開口を有する、開放マスクをもたらすであろう。例えば、開放マスクの特徴サイズは、約1cmまたはそれを上回り得る。
図16Bは、その中に形成された開口1734を有する、または画定する、開放マスク1731の実施例を図示する。図示される実施例では、マスク1731の開口1734は、マスク1731が重ね合わせられるときに、マスク1731がデバイス1721の縁を被覆するように、デバイス1721のサイズよりも小さい。具体的には、図示される実施形態では、デバイス1721の全てまたは実質的に全ての放射領域もしくはピクセル1723が、開口1734を通して露出される一方で、露出されていない領域1727が、デバイス1721および開口1734の外縁1725の間に形成される。理解されるであろうように、電気接点または他のデバイス構成要素は、これらの構成要素が開放マスク堆積プロセスを通して影響を受けていないままであるように、露出されていない領域1727中に位置してもよい。
図16Cは、重ね合わせられたときに、マスク1731がデバイス1721の少なくともいくつかの放射領域またはピクセル1723を被覆するように、マスク1731の開口1734が図16Bのものよりも小さい、開放マスク1731の別の実施例を図示する。具体的には、最外ピクセル1723’は、マスク1731の開口1734とデバイス1721の外縁1725との間に形成されたデバイス1721の露出されていない領域1727内に位置するものとして図示されている。
図16Dは、マスク1731の開口1734が、デバイス1721の他のピクセル1723を露出しながらいくつかのピクセル1723’を被覆する、パターンを画定する、開放マスク1731のさらに別の実施例を図示する。具体的には、(開口1734と外縁1725との間に形成される)デバイス1721の露出されていない領域1727内に位置するピクセル1723’は、蒸気流束が露出されていない領域1727に入射しないように阻止するために、堆積プロセス中に覆い隠される。
最外ピクセルが、図16B-16Dの実施例では覆い隠されているものとして図示されているが、開放マスクの開口は、デバイスの他の放射および非放射領域を覆い隠すように成形され得ることが理解されるであろう。さらに、開放マスクが、1つの開口を有するものとして前述の実施例で図示されているが、開放マスクはまた、基板またはデバイスの複数の領域を露出するための付加的開口を含んでもよい。
図16Eは、マスク1731が複数の開口1734a-1734dを有する、または画定する、開放マスク1731の別の実施例を図示する。開口1734a-1734dは、他の領域を覆い隠しながら、それらがデバイス1721のある領域を選択的に露出するように位置付けられる。例えば、ある放射領域またはピクセル1723が、開口1734a-dを通して露出される一方で、露出されていない領域1727内に位置する他のピクセル1723’は、覆い隠される。
本明細書に説明される種々の実施形態では、開放マスクの使用は、所望される場合、省略され得ることが理解されるであろう。具体的には、本明細書に説明される開放マスク堆積プロセスは、代替として、標的表面全体が露出されるように、マスクを使用することなく行われてもよい。
あるプロセスが、核形成助長材料、核形成阻害材料、およびマグネシウムを堆積させる目的のための蒸発を参照して説明されているが、種々の他のプロセスが、これらの材料を堆積させるために使用され得ることが理解されるであろう。例えば、堆積は、他のPVDプロセス(スパッタリングを含む)、CVDプロセス(プラズマ強化化学蒸着(PECVD)を含む)、またはそのような材料を堆積させるための他の好適なプロセスを使用して、行われてもよい。いくつかの実施形態では、マグネシウムは、抵抗加熱器を使用してマグネシウムソース材料を加熱することによって、堆積させられる。他の実施形態では、マグネシウムソース材料は、加熱されたるつぼ、加熱されたボート、クヌーセンセル(例えば、流出蒸発器ソース)、または任意の他のタイプの蒸発ソースの中に装填されてもよい。
伝導性コーティングを堆積させるために使用される堆積ソース材料は、混合物または化合物であってもよく、いくつかの実施形態では、混合物または化合物のうちの少なくとも1つの成分は、堆積中に基板上に堆積させられない(もしくは、例えば、マグネシウムと比較して比較的少量で堆積させられる)。いくつかの実施形態では、ソース材料は、銅・マグネシウム(Cu-Mg)混合物またはCu-Mg化合物であってもよい。いくつかの実施形態では、マグネシウム堆積ソースのためのソース材料は、マグネシウムと、例えば、Cu等のマグネシウムよりも低い蒸気圧を伴う材料とを含む。他の実施形態では、マグネシウム堆積ソースのためのソース材料は、実質的に純粋なマグネシウムである。具体的には、実質的に純粋なマグネシウムは、純粋なマグネシウム(99.99%およびそれより高い純度のマグネシウム)と比較して、実質的に類似する性質(例えば、核形成阻害および助長コーティング上の初期付着確率)を呈することができる。例えば、核形成阻害コーティング上の実質的に純粋なマグネシウムの初期付着確率は、核形成阻害コーティング上の99.99%純度マグネシウムの初期付着確率の±10%以内または±5%以内であることができる。マグネシウムの純度は、約95%またはそれより高く、約98%またはそれより高く、約99%またはそれより高く、もしくは約99.9%またはそれより高くあり得る。伝導性コーティングを堆積させるために使用される堆積ソース材料は、マグネシウムの代わりに、またはそれと組み合わせて、他の金属を含んでもよい。例えば、ソース材料は、イッテルビウム(Yb)、カドミウム(Cd)、亜鉛(Zn)、またはそれらの任意の組み合わせ等の高い蒸気圧材料を含んでもよい。
さらに、種々の実施形態のためのプロセスは、有機光電子デバイスの電子注入層、電子輸送層、エレクトロルミネセント層、および/またはピクセル画定層(PDL)として使用される、他の種々の有機もしくは無機材料の表面上で行われ得ることが理解されるであろう。そのような材料の実施例は、PCT公開第WO2012/016074号で説明されるもの等の有機分子ならびに有機ポリマーを含む。また、種々の元素および/または無機化合物でドープされた有機材料が、依然として有機材料と見なされ得ることが、当業者によって理解されるであろう。さらに、種々の有機材料が使用され得、本明細書に説明されるプロセスは、概して、そのような有機材料の範囲全体に適用可能であることが、当業者によって理解されるであろう。
また、無機基板または表面は、主に無機材料を含む、基板または表面を指し得ることも理解されるであろう。さらに明確にするために、無機材料は、概して、有機材料と見なされない任意の材料であると理解されるであろう。無機材料の実施例は、金属、ガラス、および鉱物を含む。具体的には、マグネシウムを含む伝導性コーティングが、フッ化リチウム(LiF)、ガラス、およびシリコン(Si)の表面上に、本開示によるプロセスを使用して堆積させられてもよい。本開示によるプロセスが適用され得る、他の表面は、シリコンまたはシリコーン系ポリマー、無機半導体材料、電子注入材料、塩、金属、および金属酸化物を含む。
基板は、半導体材料を含み得、故に、そのような基板の表面は、半導体表面であり得ることが理解されるであろう。半導体材料は、概して、バンドギャップを呈する材料として説明され得る。例えば、そのようなバンドギャップは、最高被占分子軌道(HOMO)と最低空分子軌道(LUMO)との間に形成されてもよい。半導体材料は、したがって、概して、伝導性材料(例えば、金属)のもの未満であるが、絶縁材料(例えば、ガラス)のものを上回る、電気伝導度を保有する。半導体材料は、有機半導体材料または無機半導体材料であり得ることが理解されるであろう。
図17は、一実施形態による、パターン化されたカソード1710を示す。カソード1710は、離間され、相互に対して実質的に平行に配列される、複数の実質的に直線状の導体区画を含む、単一のモノリシックまたは連続構造として図示されている。各導体区画は、複数の実質的に直線状の導体区画と実質的に垂直に配列される、末端導体区画に、その端部の両方において接続される。カソード1710は、上記で説明される堆積プロセスに従って形成されることができる。
図17Bは、カソード1712が、複数の離間された伸長伝導性ストリップを含む、別の実施形態による、パターン化されたカソード1712を示す。例えば、カソード1712は、パッシブマトリクスOLEDデバイス(PMOLED)1715で使用されてもよい。PMOLEDデバイス1715では、放射領域またはピクセルは、概して、対電極が重複する領域において形成される。故に、図17Bの実施形態では、放射領域またはピクセル1751は、複数の離間された伸長伝導性ストリップを含む、カソード1712およびアノード1741の重複領域において形成される。非放射領域1755は、カソード1712およびアノード1741が重複しない、領域において形成される。概して、カソード1712のストリップおよびアノード1741のストリップは、図示されるようにPMOLEDデバイス1715の中で相互と実質的に垂直に配向される。カソード1712およびアノード1741は、電流を個別の電極に供給するための電源ならびに関連付けられる駆動回路に接続されてもよい。
図17Cは、図17Bの線A-Aに沿って得られた断面図を図示する。図17Cでは、例えば、透明基板であり得る、ベース基板1702が提供される。アノード1741は、図17Bに図示されるように、ストリップの形態でベース基板1702の上を提供される。1つまたはそれを上回る有機層1761は、アノード1741の上を堆積させられる。例えば、有機層1761は、デバイス全体を横断する共通層として提供されてもよく、正孔注入および輸送層、エレクトロルミネセンス層、ならびに電子輸送および注入層等の本明細書に説明される有機および/または無機材料の任意の数の層を含んでもよい。有機層1761の頂面のある領域は、上記で説明される堆積プロセスに従ってカソード1712を選択的にパターン化するために使用される、核形成阻害コーティング1771によって被覆されるものとして図示されている。カソード1712およびアノード1741は、ピクセル1751からの発光を制御する、それらの個別の駆動回路(図示せず)に接続されてもよい。
核形成阻害コーティング1771およびカソード1712の厚さは、所望の用途ならびに性能に応じて変動され得るが、少なくともいくつかの実施形態では、核形成阻害コーティング1771の厚さは、図17Cに図示されるように、カソード1712の厚さと同等であり得る、または実質的にそれ未満であり得る。カソードのパターン化を達成するための比較的薄い核形成阻害コーティングの使用は、その上に障壁コーティングが適用され得る、比較的平面的な表面を提供することができるため、可撓性PMOLEDデバイスのために特に有利であり得る。
図17Dは、カソード1712の上を適用された障壁コーティング1775および核形成阻害コーティング1771を伴う図17CのPMOLEDデバイス1715を図示する。理解されるであろうように、障壁コーティング1775は、概して、有機層と、酸化する傾向があり得るカソード1712とを含む、種々のデバイス層が、湿気および周囲空気に暴露されないように阻止するために提供される。例えば、障壁コーティング1775は、印刷、CVD、スパッタリング、原子層堆積(ALD)、前述の任意の組み合わせによって、または任意の他の好適な方法によって形成される、薄膜カプセル化であってもよい。障壁コーティング1775はまた、接着剤(図示せず)を使用して、デバイス1715上に事前形成された障壁膜を積層製作することによって提供されてもよい。例えば、障壁コーティング1775は、有機材料、無機材料、または両方の組み合わせを備える、多層コーティングであってもよい。障壁コーティング1775はさらに、ゲッタ材料および/または乾燥剤を備えてもよい。
比較目的のために、比較PMOLEDデバイス1719の実施例が、図17Eに図示されている。図17Eの比較実施例では、伝導性材料が、開放マスクまたはマスクを含まない堆積プロセスを使用して堆積させられるとき、伝導性材料が、カソード1712を形成するために隣接ピクセル画定構造1783の間に位置する両方の放射領域上に、ならびに伝導性ストリップ1718を形成するためにピクセル画定構造1783の上に堆積させられるように、複数のピクセル画定構造1783が、デバイス1719の非放射領域中に提供される。しかしながら、カソード1712の各区画が、伝導性ストリップ1718から電気的に単離されていることを確実にするために、ピクセル画定構造1783の厚さまたは高さは、カソード1712の厚さを上回るように形成される。ピクセル画定構造1783はまた、伝導性ストリップ1718と電気接触するカソード1712の可能性をさらに減少させるように、下を切り取った外形を有してもよい。障壁コーティング1775は、カソード1712と、ピクセル画定構造1783と、伝導性ストリップ1718とを含む、PMOLEDデバイス1719を被覆するように提供される。
図17Eに図示される比較PMOLEDデバイス1719では、その上に障壁コーティング1775が適用される表面は、ピクセル画定構造1783の存在に起因して、非一様である。これは、障壁コーティング1775の適用を困難にし、障壁コーティング1775の適用に応じてさえも、下層表面への障壁コーティング1775の付着は、比較的不良であり得る。不良な付着は、特にデバイス1719が屈曲または撓曲されるときに、デバイス1719から剥離する障壁コーティング1775の可能性を増加させる。加えて、非一様な表面に起因して、適用手順中にエアポケットが障壁コーティング1775と下層表面との間に閉じ込められる比較的高い確率がある。エアポケットの存在および/または障壁コーティング1775の剥離は、欠陥および部分的または全体的デバイス故障を引き起こし得、もしくはそれに起因し得、したがって、極めて望ましくない。これらの要因は、図17Dの実施形態では軽減または低減される。
図17および17Bに示される、パターン化されたカソード1710ならびに1712は、OLEDデバイスのカソードを形成するために使用されてもよいが、類似パターンが、OLEDデバイス用の補助電極を形成するために使用され得ることが理解される。具体的には、そのようなOLEDデバイスは、補助電極が共通カソードと電気通信するように、共通カソード、および共通カソードの上または下に堆積させられる補助電極を提供されてもよい。例えば、そのような補助電極は、補助電極が放射領域を覆わないが非放射領域の上を形成されるように、複数の放射領域(例えば、AMOLEDデバイス)を含む、OLEDデバイスで実装されてもよい。別の実施例では、補助電極が、OLEDデバイスの非放射領域ならびに少なくともいくつかの放射領域を被覆するように提供されてもよい。
図18Aは、複数の放射領域1810a-1810fと、非放射領域1820とを含む、OLEDデバイス1800の一部を描写する。例えば、OLEDデバイス1800は、AMOLEDデバイスであってもよく、放射領域1810a-1810fはそれぞれ、そのようなデバイスのピクセルまたはサブピクセルに対応してもよい。簡単にするために、図18B-18Dは、OLEDデバイス1800の一部を描写する。具体的には、図18B-18Dは、2つの隣接する放射領域である、第1の放射領域1810aおよび第2の放射領域1810bを取り囲む領域を示す。明示的に図示されていないが、デバイス1800の放射領域および非放射領域の両方を実質的に被覆する、共通カソードが提供されてもよい。
図18Bでは、補助電極1830が2つの隣接する放射領域1810aと1810bとの間に配置される、一実施形態による、補助電極1830が示されている。補助電極1830は、共通カソード(図示せず)に電気的に接続される。具体的には、補助電極1830は、隣接する放射領域1810aと1810bとの間の分離距離(d)未満である幅(α)を有し、したがって、補助電極1830の各側面上に非放射間隙領域を作成するものとして図示されている。例えば、そのような配列は、デバイス1800の光学出力に干渉する補助電極1830の可能性が、非放射間隙領域を提供することによって低減されることができるため、隣接する放射領域1810aと1810bとの間の分離距離が、十分な幅の補助電極1830に適応するために十分である、デバイス1800で望ましくあり得る。さらに、そのような配列は、補助電極1830が比較的厚い(例えば、厚さ数百ナノメートルまたは約数ミクロンを上回る)場合において、特に有益であり得る。例えば、その幅に対する補助電極1830の高さまたは厚さの比(すなわち、アスペクト比)は、約0.1またはそれを上回る、約0.2またはそれを上回る、約0.5またはそれを上回る、約0.8またはそれを上回る、約1またはそれを上回る、もしくは約2またはそれを上回る等、約0.05を上回り得る。例えば、補助電極1830の高さまたは厚さは、約80nmまたはそれを上回る、約100nmまたはそれを上回る、約200nmまたはそれを上回る、約500nmまたはそれを上回る、約700nmまたはそれを上回る、約1,000nmまたはそれを上回る、約1,500nmまたはそれを上回る、約1,700nmまたはそれを上回る、もしくは約2,000nmまたはそれを上回る等、約50nmを上回り得る。
図18Cでは、別の実施形態による、補助電極1832が示されている。補助電極1832は、共通カソード(図示せず)に電気的に接続される。図示されるように、補助電極1832は、補助電極1832が隣接する放射領域1810aと1810bとの間に提供される非放射領域全体を実質的に完全に占有するように、2つの隣接する放射領域1810aと1810bとの間の分離距離と実質的に同一の幅を有する。そのような配列は、例えば、2つの隣接する放射領域1810aと1810bとの間の分離距離が、高ピクセル密度ディスプレイデバイスの中等で比較的小さい場合において、望ましくあり得る。
図18Dでは、さらに別の実施形態による、補助電極1834が図示されている。補助電極1834は、共通カソード(図示せず)に電気的に接続される。補助電極1834は、2つの隣接する放射領域1810aと1810bとの間の分離距離(d)を上回る、幅(α)を有するものとして図示されている。故に、補助電極1834の一部は、第1の放射領域1810aの一部および第2の放射領域1810bの一部に重複する。そのような配列は、例えば、隣接する放射領域1810aと1810bとの間の非放射領域が、所望の幅の補助電極1834に完全に適応するために十分ではない場合において、望ましくあり得る。補助電極1834は、第2の放射領域1810bと実質的に同一の程度に第1の放射領域1810aと重複するものとして図18Dに図示されているが、補助電極1834が隣接放射領域と重複する程度は、他の実施形態では変調されてもよい。例えば、他の実施形態では、補助電極1834は、第2の放射領域1810bよりも大きい程度に第1の放射領域1810aと重複してもよく、その逆も同様である。さらに、補助電極1834と放射領域との間の重複のプロファイルもまた、変動されることができる。例えば、補助電極1834の重複部分は、補助電極1834が、同一の放射領域の別の部分と重複するよりも大きい程度に放射領域の一部と重複し、非一様な重複領域を作成するように成形されてもよい。
図19では、放射領域1910および放射領域1910を取り囲む非放射領域1920が提供される、一実施形態による、OLEDデバイス1900が図示されている。リード線1912は、デバイス1900の非放射領域1920中に形成されるものとして図示されている。リード線1912は、デバイス1900の放射領域1910を被覆する電極(図示せず)に電気的に接続される。リード線1912は、そのような電極に給電するための外部電力供給部に接続するための接点を提供してもよい。例えば、電極は、(電線が電力供給部にはんだ付けされて接続され得る)リード線1912に不可欠である、提供されるはんだ付けパッドによって、リード線1912を介して外部電力供給部に接続されてもよい。明示的に図示されていないが、補助電極が、存在し、デバイス1900の放射領域1910を被覆する電極に接続され得ることが理解されるであろう。そのような補助電極が存在する場合、リード線1912は、補助電極、補助電極が接続される電極、または両方に直接接続されてもよい。
リード線1912は、それが接続される電極と同一の平面上に提供され得る、または異なる平面上に提供され得ることが理解されるであろう。例えば、リード線1912は、1つまたはそれを上回る垂直接続(例えば、ビア)を通して、バックプレーン等のOLEDデバイス1900の別の層に接続されてもよい。
図20は、別の実施形態による、OLEDデバイス2000の一部を図示する。OLEDデバイス2000は、放射領域2010と、非放射領域2020とを含む。OLEDデバイス2000はさらに、デバイス2000の電極(図示せず)と電気通信する、グリッド様補助電極2030を含む。図20に図示されるように、補助電極2030の第1の部分が、放射領域2010内に配置される一方で、補助電極2030の第2の部分は、放射領域2010の外側およびデバイス2000の非放射領域2020内に配置される。補助電極2030のそのような配列は、補助電極2030がデバイス2000の光学出力に有意に干渉しないように妨げながら、電極のシート抵抗が低減されることを可能にし得る。
いくつかの用途では、デバイス面積全体またはその一部の上を補助電極の規則的反復パターンを形成することが望ましくあり得る。図21A-21Dは、使用され得る補助電極の反復ユニットの種々の実施形態を図示する。具体的には、図21Aでは、補助電極2110は、補助電極2110によって被覆されていない、4つの領域2120を包含する。補助電極2110は、領域2120がT字形に配列されるように形成される。例えば、領域2120はそれぞれ、複数の放射領域を含む、OLEDデバイスの放射領域に実質的に対応してもよい。故に、共通カソード等の他の層またはコーティングが、領域2120中に存在し得ることが理解されるであろう。図21Bでは、補助電極2112が、逆T字形に形成され、4つの被覆されていない領域2122を包含する。図21Cでは、補助電極2114が、4つの被覆されていない領域2124を包含するように形成され、同様に、図21Dでは、補助電極2116が、4つの被覆されていない領域2126を包含するように形成される。
図21A-21Dに図示されるもの等の補助電極の反復ユニットを使用することの潜在的利点は、デバイスを製作する際のパターン化の容易性を含む。例えば、補助電極の形成中に核形成助長または核形成阻害コーティングをパターン化する際に使用されるマスクは、デバイス表面の異なる部分をパターン化するために繰り返し使用されてもよく、したがって、より複雑な、および/またはより大きいマスクの必要性を排除する。
図22は、デバイス2200が、その上に形成された複数の反復補助電極ユニット2230a-dを含む、一実施形態による、OLEDデバイス2200の一部を描写する。具体的には、各補助電極ユニット2230a-dは、L字形であり、3つの明確に異なる発光領域2210を包含する。例えば、各発光領域2210は、デバイス2200のピクセルまたはサブピクセルに対応してもよい。図示されるように、隣接する補助電極ユニットは、相互と相互係止してもよい。例えば、第1の補助電極ユニット2230aが、第2の補助電極ユニット2230bと相互係止関係であるように形成され、同様に、第3の補助電極ユニット2230cが、第4の補助電極ユニット2230dと相互係止される。補助電極ユニット2230a-dは、非放射領域2220上に形成される。補助電極ユニット2230a-dは、それらが相互と直接電気通信するように形成され得ることが理解されるであろう。例えば、反復補助電極ユニット2230a-dは、製作中に一体的に形成されてもよい。代替として、補助電極ユニット2230a-dは、それらが共通電極を介して電気的に接続されるように形成されてもよい。
図23は、別の実施形態による、OLEDデバイス2300の一部を図示する。図23の実施形態では、各補助電極ユニット2330a、2330bが、5つの明確に異なる放射領域2310を包含するように形成される。補助電極ユニット2330aおよび2330bは、デバイス2300の非放射領域2320上に形成される。図示されるように、第1の補助電極ユニット2330aが、第2の補助電極ユニット2330bと相互係止関係ではないが、それに隣接して位置付けられる。
図24に図示される別の実施形態では、図23に図示されるものに類似する補助電極ユニットが提供される。しかしながら、図24では、補助電極ユニット2430a-dが、相互と相互係止関係で配列される。図23の実施形態と同様に、各補助電極ユニット2430a-dは、5つの明確に異なる放射領域2410を包含し、デバイス2400の非放射領域2420上に形成される。
各補助電極ユニットが、3、4、または5つの放射領域を包含する、種々の実施形態が、説明および図示されているが、各補助電極ユニットは、1、2、3、4、5、6つまたはそれを上回る放射領域を含む、任意の数の放射領域を包含し得ることが理解されるであろう。
図25は、補助電極2530がOLEDデバイス2500の上をグリッドとして形成される、実施形態を図示する。図示されるように、補助電極2530は、放射領域2510のいずれの部分も実質的に被覆しないように、デバイス2500の非放射領域2520の上を提供される。
図26は、補助電極ユニット2630がOLEDデバイス2600の上を一連の伸長構造として形成される、実施形態を図示する。図示されるように、補助電極ユニット2630は、放射領域2610のいずれの部分も実質的に被覆しないように、デバイス2600の非放射領域2620の上を提供される。補助電極ユニット2610は、離間され、相互に物理的に接続されないが、むしろ共通電極(図示せず)を介して電気的に接続される。理解されるであろうように、相互に直接相互接続されない補助電極ユニット2610は、接続された共通電極の全体的シート抵抗を低下させることによって、実質的な利点を依然として提供してもよい。
図27は、補助電極ユニット2730がOLEDデバイス2700の上を「階段」パターンで形成される、実施形態を図示する。図示されるように、補助電極ユニット2730は、放射領域2710のいずれの部分も実質的に被覆しないように、デバイス2700の非放射領域2720の上を提供される。
図28A-28Jは、補助電極が隣接するサブピクセルの間に提供される、種々の実施形態を図示する。
図28Aでは、補助電極ユニット2830が、サブピクセル2812の隣接する列の間に伸長ストリップとして提供される。具体的には、図28Aの実施形態では、第1のサブピクセル2812a、第2のサブピクセル2812b、および第3のサブピクセル2812cが、第1のピクセル2810aを集合的に形成する。例えば、第1のピクセル2810aは、RGBピクセルであってもよく、その場合、各サブピクセル2812a-cは、赤色、緑色、および青色サブピクセルに対応するであろう。ピクセル2810は、同一のサブピクセルパターン(例えば、赤色、緑色、青色)がディスプレイデバイスを横断して繰り返されるように、配列されてもよい。具体的には、第2のピクセル2810bおよび第3のピクセル2810cのサブピクセル配列は、第1のピクセル2810aのものと同じであり得る。そのような配列では、サブピクセル2812の各列の中のサブピクセル2812の全て(例えば、Yと標識された第1の軸に沿って直線的に配列されるサブピクセル)は、色が同じであり得、第1の軸Yと実質的に平行に延在する補助電極ユニット2830は、図28Aに図示されるように、サブピクセル2812の隣接する列の間に提供されてもよい。
簡単にするために、図28B-28Jは、上記の図28Aを参照して説明されるものと同じピクセルおよびサブピクセル配列を使用して図示されている。
図28Bでは、補助電極ユニット2830は、ピクセル2810の隣接する列の間に提供されるものとして図示されている。具体的には、第1の軸Yと実質的に平行に延在する、補助電極ユニット2830は、相互に対して第2の軸Xの方向に整合される、第1のピクセル2810aと第2のピクセル2810bとの間に提供される。しかしながら、いかなる補助電極ユニット2830も、相互に対して第1の軸Yの方向に整合される、第1のピクセル2810aと第3のピクセル2810cとの間に提供されない。第1の軸Yおよび第2の軸Xは、図に図示されるように、相互と垂直である。補助電極ユニット2830は、第1の軸Yに沿って延在するものとして図28Bに図示されているが、補助電極ユニット2830は、別の実施形態では、第2の軸Xに沿って延在し得ることが理解されるであろう。
図28Cは、補助電極2830が、隣接するサブピクセル2812の間でディスプレイデバイスを横断してグリッドとして提供される、実施形態を図示する。具体的には、補助電極2830は、各一対の隣接するサブピクセル2812a-2812cの間に提供される。故に、補助電極2830は、サブピクセル2812a-2812cの間にメッシュまたはグリッドを形成するように、第1の軸Yおよび第2の軸Xと実質的に平行して延在する、区画を含む。
図28Dに図示される別の実施形態では、補助電極2830が、隣接するピクセル2810の間に提供される。具体的には、補助電極2830は、相互に対して第2の軸Xに沿って整合される、第1のピクセル2810aと第2のピクセル2810bとの間に、ならびに相互に対して第1の軸Yに沿って整合される、第1のピクセル2810aと第3のピクセル2810cとの間に提供される。故に、補助電極2830は、ピクセル2810a-cの間にメッシュまたはグリッドを形成する。
図28Eでは、離散補助電極ユニット2830が、隣接するサブピクセル2812の間に提供される、さらに別の実施形態が図示されている。具体的には、補助電極ユニット2830は、第1の軸Yと実質的に平行に配向され、隣接するサブピクセル2812a-cの間に提供される。
図28Fでは、離散補助電極ユニット2830が、隣接するサブピクセルs2810の間に提供される、実施形態が図示されている。具体的には、補助電極ユニット2830は、第1の軸Yと実質的に平行に配向され、第2の軸Xに沿って相互に隣接して配列される、第1のピクセル2810aと第2のピクセル2810bとの間に提供される。
図28Gでは、離散補助電極ユニット2830が、ディスプレイデバイスを横断してグリッドまたはメッシュを作成するように、隣接するサブピクセル2812の間に提供される。図示されるように、第1の軸Yと実質的に平行に延在する、伸長補助電極ユニット2830は、第2の軸Xに沿って整合される、隣接するサブピクセル2812の間に配置される。同様に、第2の軸Xと実質的に平行に延在する伸長補助電極ユニット2830は、第1の軸Yに沿って整合される、隣接するサブピクセル2812の間に配置される。
図28Hでは、離散補助電極ユニット2830が、ディスプレイデバイスを横断してグリッドまたはメッシュを作成するように、隣接するサブピクセル2810の間に提供される。図示されるように、第1の軸Yと実質的に平行に延在する、伸長補助電極ユニット2830は、第2の軸Xに沿って整合される、隣接するピクセル2810aと2810bとの間に配置される。同様に、第2の軸Xと実質的に平行に延在する伸長補助電極ユニット2830は、第1の軸Yに沿って整合される、隣接するサブピクセル2810aと2810cとの間に配置される。
図28Iは、離散補助電極ユニット2830が、ディスプレイデバイスを横断してグリッドまたはメッシュを形成するように、隣接するサブピクセル2812の間に提供される、別の実施形態を図示する。補助電極ユニット2830はそれぞれ、第1の軸Yと実質的に平行に延在する第1の区画と、第2の軸Xと実質的に平行に延在する第2の区画とを備える。第1の軸Yおよび第2の軸Xは、相互と垂直である。図28Iでは、第1の区画および第2の区画は、逆L字形を形成するように末端間で接続される。
図28Jは、離散補助電極ユニット2830が、ディスプレイデバイスを横断してグリッドまたはメッシュを形成するように、隣接するサブピクセル2812の間に提供される、別の実施形態を図示する。補助電極ユニット2830はそれぞれ、第1の軸Yと実質的に平行に延在する第1の区画と、第2の軸Xと実質的に平行に延在する第2の区画とを備える。第1の軸Yおよび第2の軸Xは、相互と垂直である。図28Jでは、第1の区画および第2の区画は、十字形を形成するように、第1および第2の区画の中間点の近傍に接続される。
補助電極ユニットは、ある実施形態では、相互に物理的に接続されていないものとして図示されているが、それらは、それでもなお、共通電極を介して相互と電気通信し得る。例えば、共通電極を介して相互に間接的に接続される、離散補助電極ユニットを提供することは、依然としてシート抵抗を実質的に低下させ、したがって、デバイスの光学特性に実質的に干渉することなく、OLEDデバイスの効率を増加させ得る。
補助電極もまた、他のピクセルまたはサブピクセル配列とともにディスプレイデバイスで使用されてもよい。例えば、補助電極は、菱形ピクセル配列が使用される、ディスプレイデバイス上に提供されてもよい。そのようなピクセル配列の実施例が、図29-33に図示されている。
図29は、一実施形態による、菱形ピクセル配列を有する、OLEDデバイス2900の概略図である。OLEDデバイス2900は、複数のピクセル画定層(PDL)2930と、隣接するPDL2930の間に配置される放射領域2912(サブピクセル)とを含む。放射領域2912は、例えば、緑色サブピクセルに対応し得る、第1のサブピクセル2912a、例えば、青色サブピクセルに対応し得る、第2のサブピクセル2912b、および例えば、赤色サブピクセルに対応し得る、第3のサブピクセル2912cに対応するものを含む。
図30は、図29に示される線A-Aに沿って得られたOLEDデバイス2900の概略図である。図30でより明確に図示されるように。デバイス2900は、基板2903と、ベース基板2903の表面上に形成される複数のアノードユニット2921とを含む。基板2903はさらに、明確にするために図から省略されている、複数のトランジスタと、ベース基板とを含んでもよい。有機層2915が、隣接するPDL2930の間の領域中で各アノードユニット2921の上に提供され、共通カソード2942が、第1のサブピクセル2912aを形成するように、有機層2915およびPDL2930の上を提供される。有機層2915は、複数の有機および/または無機層を含んでもよい。例えば、そのような層は、正孔輸送層、正孔注入層、エレクトロルミネセンス層、電子注入層、および/または電子輸送層を含んでもよい。核形成阻害コーティング2945は、PDL2930の実質的に平面的な領域に対応する、共通カソード2942の被覆されていない領域の上を、補助電極2951の選択的堆積を可能にするように、第1のサブピクセル2912aに対応する共通カソード2942の領域の上を提供される。核形成阻害コーティング2945はまた、指数合致コーティングとして作用してもよい。薄膜カプセル化層2961が、随意に、デバイス2900をカプセル化するように提供されてもよい。
図31は、図29に示される線B-Bに沿って得られたOLEDデバイス2900の概略図を示す。デバイス2900は、基板2903の表面上に形成される複数のアノードユニット2921と、隣接するPDL2930の間の領域中で各アノードユニット2921の上に提供される有機層2916または2917とを含む。共通カソード2942は、それぞれ、第2のサブピクセル2912bおよび第3のサブピクセル2912cを形成するように、有機層2916および2917ならびにPDL2930の上を提供される。核形成阻害コーティング2945は、PDL2930の実質的に平面的な領域に対応する、共通カソード2942の被覆されていない領域の上を、補助電極2951の選択的堆積を可能にするように、サブピクセル2912bおよび2912cに対応する共通カソード2942の領域の上を提供される。核形成阻害コーティング2945はまた、指数合致コーティングとして作用してもよい。薄膜カプセル化層2961が、随意に、デバイス2900をカプセル化するように提供されてもよい。
図32は、別の実施形態による、ピクセル配列を伴うOLEDデバイス3200の概略図である。具体的には、デバイス3200は、放射領域3212(サブピクセル)を分離する複数のPDL3230を含む。例えば、第1のサブピクセル3212aは、緑色サブピクセルに対応してもよく、第2のサブピクセル3212bは、青色サブピクセルに対応してもよく、第3のサブピクセル3212cは、赤色サブピクセルに対応してもよい。図33は、図32の実施形態による、ピクセル配列を伴うOLEDデバイスの画像である。示されていないが、デバイス3200はさらに、デバイス3200の非放射領域の上を提供される補助電極を含んでもよい。例えば、補助電極は、PDL3230の実質的に平面的な部分に対応する、共通カソードの領域の上を配置されてもよい。
いくつかの実施形態による、別の側面では、デバイスが提供される。いくつかの実施形態では、本デバイスは、光電子デバイスである。いくつかの実施形態では、本デバイスは、別の電子デバイスまたは他の製品である。いくつかの実施形態では、本デバイスは、基板と、核形成阻害コーティングと、伝導性コーティングとを含む。核形成阻害コーティングは、基板の第1の領域を被覆する。伝導性コーティングは、基板の第2の領域を被覆し、核形成阻害コーティングの少なくとも一部が、伝導性コーティングから露出される、または伝導性コーティングを実質的に含まない、もしくは実質的に伝導性コーティングによって被覆されていないように、核形成阻害コーティングに部分的に重複する。いくつかの実施形態では、伝導性コーティングは、第1の部分と、第2の部分とを含み、伝導性コーティングの第1の部分は、基板の第2の領域を被覆し、伝導性コーティングの第2の部分は、核形成阻害コーティングの一部に重複する。いくつかの実施形態では、伝導性コーティングの第2の部分は、間隙によって核形成阻害コーティングから離間される。いくつかの実施形態では、核形成阻害コーティングは、有機材料を含む。いくつかの実施形態では、伝導性コーティングの第1の部分および伝導性コーティングの第2の部分は、相互と一体的に形成される。
いくつかの実施形態による、別の側面では、デバイスが提供される。いくつかの実施形態では、本デバイスは、光電子デバイスである。いくつかの実施形態では、本デバイスは、別の電子デバイスまたは他の製品である。いくつかの実施形態では、本デバイスは、基板と、伝導性コーティングとを含む。基板は、第1の領域と、第2の領域とを含む。伝導性コーティングは、基板の第2の領域を被覆し、基板の第1の領域の少なくとも一部が、伝導性コーティングから露出される、または伝導性コーティングを実質的に含まない、もしくは実質的に伝導性コーティングによって被覆されていないように、基板の第1の領域に部分的に重複する。いくつかの実施形態では、伝導性コーティングは、第1の部分と、第2の部分とを含み、伝導性コーティングの第1の部分は、基板の第2の領域を被覆し、伝導性コーティングの第2の部分は、基板の第1の領域の一部に重複する。いくつかの実施形態では、伝導性コーティングの第2の部分は、間隙によって基板の第1の領域から離間される。いくつかの実施形態では、伝導性コーティングの第1の部分および伝導性コーティングの第2の部分は、相互と一体的に形成される。
図34は、一実施形態による、デバイスの一部を図示する。本デバイスは、表面3417を有する基板3410を含む。核形成阻害コーティング3420は、基板3410の表面3417の第1の領域3415を被覆し、伝導性コーティング3430は、基板3410の表面3417の第2の領域3412を被覆する。図34に図示されるように、第1の領域3415および第2の領域3412は、基板3410の表面3417の明確に異なる非重複領域である。伝導性コーティング3430は、第1の部分3432と、第2の部分3434とを含む。図に図示されるように、伝導性コーティング3430の第1の部分3432は、基板3410の第2の領域3412を被覆し、伝導性コーティング3430の第2の部分3434は、核形成阻害コーティング3420の一部に部分的に重複する。具体的には、第2の部分3434は、下層基板表面3417と垂直(法線)である方向に核形成阻害コーティング3420の一部に重複するものとして図示されている。
特に、その表面3422が、伝導性コーティング3430を形成するために使用される材料に対して比較的低い初期付着確率を呈するように、核形成阻害コーティング3420が形成される場合において、伝導性コーティング3430の重複する第2の部分3434と核形成阻害コーティング3420の表面3422との間に形成される間隙3441がある。故に、伝導性コーティング3430の第2の部分3434は、核形成阻害コーティング3420と直接物理的に接触していないが、矢印3490によって示されるように、基板3410の表面3417と垂直な方向に沿って、間隙3441によって核形成阻害コーティング3420から離間される。それでもなお、伝導性コーティング3430の第1の部分3432は、基板3410の第1の領域3415と第2の領域3412との間の界面または境界において、核形成阻害コーティング3420と直接物理的に接触してもよい。
いくつかの実施形態では、伝導性コーティング3430の重複する第2の部分3434は、伝導性コーティング3430の厚さと同等の程度によって、核形成阻害コーティング3420の上を側方に延在してもよい。例えば、図34を参照すると、第2の部分3434の幅w(または基板3410の表面3417と平行な方向に沿った寸法)は、伝導性コーティング3430の第1の部分3432の厚さt(または基板3410の表面3417と垂直な方向に沿った寸法)と同等であり得る。例えば、w:tの比は、約1:1~約1:3、約1:1~約1:1.5、または約1:1~約1:2の範囲内であってもよい。厚さtは、概して、伝導性コーティング3430を横断して比較的一様であろうが、第2の部分3434が核形成阻害コーティング3420と重複する程度(すなわち、w)は、表面3417の異なる部分を横断して、ある程度変動し得る。
図35に図示される別の実施形態では、伝導性コーティング3430はさらに、第2の部分3434と核形成阻害コーティング3420との間に配置される第3の部分3436を含む。図示されるように、伝導性コーティング3430の第2の部分3434は、伝導性コーティング3430の第3の部分3436の上を側方に延在し、そこから離間され、第3の部分3436は、核形成阻害コーティング3420の表面3422と直接物理的に接触してもよい。第3の部分3436の厚さtは、伝導性コーティング3430の第1の部分3432の厚さt未満、ある場合には、実質的にそれ未満であり得る。さらに、少なくともいくつかの実施形態では、第3の部分3436の幅wは、第2の部分3434の幅wを上回り得る。故に、第3の部分3436は、第2の部分3434よりも大きい程度に核形成阻害コーティング3420と重複するように、側方に延在してもよい。例えば、w:tの比は、約1:2~約3:1または約1:1.2~約2.5:1の範囲内であってもよい。厚さtは、概して、伝導性コーティング3430を横断して比較的一様であろうが、第3の部分3436が核形成阻害コーティング3420と重複する程度(すなわち、w)は、表面3417の異なる部分を横断して、ある程度変動し得る。第3の部分3436の厚さtは、第1の部分3432の厚さtの約5%以内または未満であり得る。例えば、tは、tの約4%以内または未満、約3%以内または未満、約2%以内または未満、約1%以内または未満、もしくは約0.5%以内または未満であり得る。図35に示されるように薄膜として形成されている第3の部分3436の代わりに、またはそれに加えて、伝導性コーティング3430の材料は、核形成阻害コーティング3420の一部の上で島もしくは断絶したクラスタとして形成してもよい。例えば、そのような島または断絶したクラスタは、島またはクラスタが連続層として形成されないように、相互から物理的に分離される特徴を含んでもよい。
図36に図示される、さらに別の実施形態では、核形成助長コーティング3451が、基板3410と伝導性コーティング3430との間に配置される。具体的には、核形成助長コーティング3451は、伝導性コーティング3430の第1の部分3432と基板3410の第2の領域3412との間に配置される。核形成助長コーティング3451は、核形成阻害コーティング3420が堆積させられる、第1の領域3415の上ではなく、基板3410の第2の領域3412の上に配置されるものとして図示されている。核形成助長コーティング3451は、核形成助長コーティング3451と伝導性コーティング3430との間の界面または境界において、核形成助長コーティング3451の表面が、伝導性コーティング3430の材料の比較的高い初期付着確率を呈するように、形成されてもよい。したがって、核形成助長コーティング3451の存在は、堆積中の伝導性コーティング3430の形成および成長を助長してもよい。伝導性コーティング3430(第1の部分3432および第2の部分3434の寸法を含む)ならびに図36の他のコーティングの種々の特徴は、図34-35について上記で説明されるものに類似し得、簡潔にするために繰り返されない。
図37に図示される、さらに別の実施形態では、核形成助長コーティング3451は、基板3410の第1の領域3415および第2の領域3412の両方の上に配置され、核形成阻害コーティング3420は、第1の領域3415上に配置される核形成助長コーティング3451の一部を被覆する。核形成助長コーティング3451の別の部分は、核形成阻害コーティング3420から露出され、または核形成阻害コーティング3420を実質的に含まず、もしくは実質的に核形成阻害コーティング3420によって被覆されておらず、伝導性コーティング3430は、核形成助長コーティング3451の露出部分を被覆する。伝導性コーティング3430および図37の他のコーティングの種々の特徴は、図34-35について上記で説明されるものに類似し得、簡潔にするために繰り返されない。
図38は、伝導性コーティング3430が、基板3410の第3の領域3419中で核形成阻害コーティング3420の一部に部分的に重複する、さらに別の実施形態を図示する。具体的には、第1の部分3432および第2の部分3434に加えて、伝導性コーティング3430はさらに、第3の部分3480を含む。図に図示されるように、伝導性コーティング3430の第3の部分3480は、伝導性コーティング3430の第1の部分3432と第2の部分3434との間に配置され、第3の部分3480は、核形成阻害コーティング3420の表面3422と直接物理的に接触してもよい。この点に関して、第3の領域3419中の重複は、開放マスクまたはマスクを含まない堆積プロセス中の伝導性コーティング3430の側方成長の結果として形成されてもよい。より具体的には、核形成阻害コーティング3420の表面3422は、伝導性コーティング3430の材料の比較的低い初期付着確率を呈してもよく、したがって、表面3422上で核となる材料の確率は低いが、伝導性コーティング3430が厚さを成長させると、コーティング3430はまた、側方に成長してもよく、図38に図示されるように、核形成阻害コーティング3420の一部を被覆してもよい。
デバイスおよび伝導性コーティング3430のある特徴に関する詳細は、図36-38の実施形態のための上記の説明では省略されているが、図34および図35に関して説明される、間隙3441と、伝導性コーティング3430の第2の部分3434および第3の部分3436とを含む、種々の特徴の説明は、同様に、そのような実施形態に適用されるであろうことが理解されるであろう。
明示的に図示されていないが、核形成阻害コーティング3420を形成するために使用される材料もまた、伝導性コーティング3430と下層表面(例えば、核形成助長層3451または基板3410の表面)との間の界面において、ある程度存在し得ることが理解されるであろう。そのような材料は、堆積させられたパターンがマスクのパターンと同じではなく、ある蒸発した材料を、標的表面の覆い隠された部分の上に堆積させ得る、陰影効果の結果として、堆積させられてもよい。例えば、そのような材料は、島または断絶したクラスタとして、もしくは実質的に核形成阻害コーティング3420の平均厚さ未満である厚さを有する薄膜として、形成してもよい。
いくつかの実施形態では、核形成阻害コーティング3420は、図34-38の実施形態における核形成阻害コーティング3420によって被覆される下層表面の少なくとも一部が露出されるように、伝導性コーティング3430の堆積に続いて除去されてもよい。例えば、核形成阻害コーティング3420は、核形成阻害コーティング3420をエッチングすること、または溶解させることによって、もしくは伝導性コーティング3430に実質的に影響を及ぼす、またはそれを浸食することなく、プラズマもしくは溶媒処理技法を使用して、選択的に除去されてもよい。
いくつかの実施形態のデバイスは、電子デバイス、より具体的には、光電子デバイスであってもよい。光電子デバイスは、概して、電気信号を光子に変換する、または逆も同様である、任意のデバイスを包含する。したがって、有機光電子デバイスは、デバイスの1つまたはそれを上回る活性層が、主に有機材料、より具体的には、有機半導体材料で形成される、任意の光電子デバイスを包含することができる。有機光電子デバイスの実施例は、OLEDデバイスおよびOPVデバイスを含むが、それらに限定されない。
また、有機光電子デバイスは、種々のタイプのベース基板上に形成され得ることも理解されるであろう。例えば、ベース基板は、可撓性または剛性基板であってもよい。ベース基板は、例えば、シリコン、ガラス、金属、ポリマー(例えば、ポリイミド)、サファイア、またはベース基板として使用するために好適な他の材料を含んでもよい。
また、デバイスの種々の構成要素は、蒸着、スピンコーティング、ラインコーティング、印刷、および種々の他の堆積技法を含む、多種多様な技法を使用して堆積させられ得ることも理解されるであろう。
いくつかの実施形態では、有機光電子デバイスは、有機半導体層が、エレクトロルミネセント層を含む、OLEDデバイスである。いくつかの実施形態では、有機半導体層は、電子注入層、電子輸送層、正孔輸送層、および/または正孔注入層等の付加的層を含んでもよい。例えば、OLEDデバイスは、AMOLEDデバイス、PMOLEDデバイス、またはOLED照明パネルもしくはモジュールであってもよい。さらに、光電子デバイスは、電子デバイスの一部であってもよい。例えば、光電子デバイスは、スマートフォン、タブレット、ラップトップ等のコンピューティングデバイス、またはモニタもしくはテレビセット等の他の電子デバイスのOLEDディスプレイモジュールであってもよい。
図39-41は、アクティブマトリクスOLED(AMOLED)ディスプレイデバイスの種々の実施形態を図示する。簡単にするために、図34-38を参照して上記で説明される、伝導性コーティングと核形成阻害コーティングとの間の界面またはその近傍における伝導性コーティングの種々の詳細および特性は、省略されている。しかしながら、図34-38を参照して説明される特徴はまた、図39-41の実施形態に適用可能であり得ることも理解されるであろう。
図39は、一実施形態による、AMOLEDデバイス3802の構造を図示する概略図である。
デバイス3802は、ベース基板3810と、ベース基板3810の表面の上を堆積させられる緩衝層3812とを含む。薄膜トランジスタ(TFT)3804が、次いで、緩衝層3812の上を形成される。具体的には、半導体活性面積3814が、緩衝層3812の一部の上を形成され、ゲート絶縁層3816が、半導体活性面積3814を実質的に被覆するように堆積させられる。次に、ゲート電極3818が、ゲート絶縁層3816の上に形成され、層間絶縁層3820が、堆積させられる。ソース電極3824およびドレイン電極3822が、層間絶縁層3820およびゲート絶縁層3816を通して形成される開口部を通って延在し、半導体活性層3814と接触するように、形成される。絶縁層3842が、次いで、TFT3804の上を形成される。第1の電極3844が、次いで、絶縁層3842の一部の上を形成される。図39に図示されるように、第1の電極3844は、ドレイン電極3822と電気通信するように、絶縁層3842の開口部を通って延在する。ピクセル画定層(PDL)3846が、次いで、その外縁を含む、第1の電極3844の少なくとも一部を被覆するように形成される。例えば、PDL3846は、絶縁有機または無機材料を含んでもよい。有機層3848が、次いで、特に、隣接するPDL3846の間の領域中で、第1の電極3844の上を堆積させられる。第2の電極3850が、有機層3848およびPDL3846の両方を実質的に被覆するように堆積させられる。第2の電極3850の表面が、次いで、実質的に核形成助長コーティング3852で被覆される。例えば、核形成助長コーティング3852は、開放マスクまたはマスクを含まない堆積技法を使用して、堆積させられてもよい。核形成阻害コーティング3854が、核形成助長コーティング3852の一部の上を選択的に堆積させられる。例えば、核形成阻害コーティング3854は、シャドウマスクを使用して、選択的に堆積させられてもよい。故に、補助電極3856が、開放マスクまたはマスクを含まない堆積プロセスを使用して、核形成助長コーティング3852の露出表面の上を選択的に堆積させられる。さらに具体的にするために、開放マスクを使用して、またはマスクを用いて、補助電極3856(例えば、マグネシウムを含む)の熱的堆積を行うことによって、補助電極3856は、補助電極3856の材料を実質的に含まない核形成阻害コーティング3854の表面を残しながら、核形成助長コーティング3852の露出表面の上を選択的に堆積させられる。
図40は、核形成助長コーティングが省略されている、別の実施形態による、AMOLEDデバイス3902の構造を図示する。例えば、核形成助長コーティングは、補助電極が堆積させられる表面が、補助電極の材料の比較的高い初期付着確率を有する場合において、省略されてもよい。換言すると、比較的高い初期付着確率を伴う表面に関して、核形成助長コーティングは、省略されてもよく、伝導性コーティングが、依然としてその上に堆積させられてもよい。簡単にするために、TFTを含むバックプレーンのある詳細は、以下の実施形態を説明する際に省略される。
図40では、有機層3948が、第1の電極3944と第2の電極3950との間に堆積させられる。有機層3948は、PDL3946の部分と部分的に重複してもよい。核形成阻害コーティング3954が、第2の電極3950の一部(例えば、放射領域に対応する)の上を堆積させられ、それによって、補助電極3956を形成するために使用される材料の比較的低い初期付着確率(例えば、比較的低い脱着エネルギー)を伴う表面を提供する。故に、補助電極3956は、核形成阻害コーティング3954から露出される第2の電極3950の一部の上を選択的に堆積させられる。理解されるであろうように、補助電極3956は、第2の電極3950のシート抵抗を低減させるよう、下層の第2の電極3950と電気通信する。例えば、第2の電極3950および補助電極3956は、補助電極3956の材料の高い初期付着確率を確実にするように、実質的に同一の材料を含んでもよい。具体的には、第2の電極3950は、実質的に純粋なマグネシウム(Mg)、またはマグネシウムおよび銀(Ag)等の別の金属の合金を含んでもよい。Mg:Ag合金に関して、合金組成は、体積比約1:9~約9:1に及んでもよい。補助電極3956は、実質的に純粋なマグネシウムを含んでもよい。
図41は、さらに別の実施形態による、AMOLEDデバイス4002の構造を図示する。図示される実施形態では、有機層4048が、PDL4046の部分と部分的に重複するように、第1の電極4044と第2の電極4050との間に堆積させられる。核形成阻害コーティング4054が、第2の電極4050の表面を実質的に被覆するように堆積させられ、核形成助長コーティング4052が、核形成阻害コーティング4054の一部の上に選択的に堆積させられる。補助電極4056が、次いで、核形成助長コーティング4052の上を形成される。随意に、キャッピング層4058が、核形成阻害コーティング4054および補助電極4056の露出表面を被覆するように堆積させられてもよい。
補助電極3856または4056は、図39および41の実施形態では第2の電極3850または4050と直接物理的に接触しないものとして図示されているが、補助電極3856または4056および第2の電極3850または4050は、それでもなお、電気通信し得ることが理解されるであろう。例えば、補助電極3856または4056と第2の電極3850または4050との間の核形成助長材料もしくは核形成阻害材料の比較的薄い膜(例えば、最大約100nm)の存在は、電流がそれを通って通過することを依然として十分に可能にし、したがって、第2の電極3850または4050のシート抵抗が低減されることを可能にし得る。
図42は、核形成阻害コーティング4154と補助電極4156との間の界面が、PDL4146によって作成される傾斜表面上に形成される、さらに別の実施形態による、AMOLEDデバイス4102の構造を図示する。デバイス4102は、第1の電極4144と第2の電極4150との間に堆積させられる有機層4148を含み、核形成阻害コーティング4154は、デバイス4102の放射領域に対応する、第2の電極4150の一部の上を堆積させられる。補助電極4156は、核形成阻害コーティング4154から露出される第2の電極4150の部分の上を堆積させられる。
示されていないが、図42のAMOLEDデバイス4102はさらに、補助電極4156と第2の電極4150との間に配置される核形成助長コーティングを含んでもよい。核形成助長コーティングはまた、特に、核形成助長コーティングが、開放マスクまたはマスクを含まない堆積プロセスを使用して堆積させられる場合において、核形成阻害コーティング4154と第2の電極4150との間に配置されてもよい。
図43は、AMOLEDデバイス4300が複数の光透過性領域を含む、さらに別の実施形態による、AMOLEDデバイス4300の一部を図示する。図示されるように、AMOLEDデバイス4300は、複数のピクセル4321と、隣接するピクセル4321の間に配置される補助電極4361とを含む。各ピクセル4321は、複数のサブピクセル4333、4335、4337をさらに含む、サブピクセル領域4331と、光透過性領域4351とを含む。例えば、サブピクセル4333は、赤色サブピクセルに対応してもよく、サブピクセル4335は、緑色サブピクセルに対応してもよく、サブピクセル4337は、青色サブピクセルに対応してもよい。解説されるであろうように、光透過性領域4351は、光がデバイス4300を通過することを可能にするように実質的に透明である。
図44は、図43に示されるような線A-Aに沿って得られたデバイス4300の断面図を図示する。簡潔には、デバイス4300は、ベース基板4310と、TFT4308と、絶縁層4342と、絶縁層4342の上に形成され、TFT4308と電気通信するアノード4344とを含む。第1のPDL4346aおよび第2のPDL4346bが、絶縁層4342の上を形成され、アノード4344の縁を被覆する。1つまたはそれを上回る有機層4348が、アノード4344の露出領域およびPDL4346a、4346bの一部を被覆するように堆積させられる。カソード4350が、次いで、1つまたはそれを上回る有機層4348の上を堆積させられる。次に、核形成阻害コーティング4354が、光透過性領域4351およびサブピクセル領域4331に対応するデバイス4300の部分の上を堆積させられる。デバイス表面全体が、次いで、マグネシウム蒸気流束に暴露され、したがって、カソード4350のコーティングされていない領域の上をマグネシウムの選択的堆積を引き起こす。このようにして、下層カソード4350と電気接触する補助電極4361が形成される。
デバイス4300では、光透過性領域4351は、それを通る光の透過に実質的に影響を及ぼし得る、いかなる材料も実質的に含まない。具体的には、TFT4308、アノード4344、および補助電極4361は全て、これらの構成要素が光透過性領域4351を通して透過されている光を減衰または妨害しないように、サブピクセル領域4331内に位置付けられる。そのような配列は、ピクセルがオフである、または発光していないときに、典型的視認距離からデバイス4300を視認する視認者がデバイス4300を通して見ることを可能にし、したがって、透明AMOLEDディスプレイを作成する。
示されていないが、図44のAMOLEDデバイス4300はさらに、補助電極4361とカソード4350との間に配置される核形成助長コーティングを含んでもよい。核形成助長コーティングはまた、核形成阻害コーティング4354とカソード4350との間に配置されてもよい。
他の実施形態では、有機層4348およびカソード4350を含む、種々の層またはコーティングは、そのような層またはコーティングが実質的に透明である場合、光透過性領域4351の一部を被覆してもよい。代替として、PDL4346a、4346bは、所望である場合、光透過性領域4351の中に提供されなくてもよい。
図43および44に図示される配列以外のピクセルおよびサブピクセル配列もまた、使用され得、補助電極4361は、ピクセルの他の領域中に提供され得ることが理解されるであろう。例えば、補助電極4361は、サブピクセル領域4331と光透過性領域4351との間の領域中に提供されてもよい、および/または所望である場合、隣接するサブピクセルの間に提供されてもよい。
前述の実施形態では、核形成阻害コーティングが、その上の伝導性材料(例えば、マグネシウム)の核形成および堆積を阻害することに加えて、デバイスからの光の脱結合を増進するように作用してもよい。具体的には、核形成阻害コーティングは、指数合致コーティングおよび/または反射防止コーティングとして作用してもよい。
障壁コーティング(図示せず)が、AMOLEDディスプレイデバイスを描写する前述の実施形態に図示されるデバイスをカプセル化するように提供されてもよい。理解されるであろうように、そのような障壁コーティングは、有機層と、酸化する傾向があり得る有機層およびカソードとを含む、種々のデバイス層が、湿気および周囲空気に暴露されないように阻止してもよい。例えば、障壁コーティングは、印刷、CVD、スパッタリング、ALD、前述の任意の組み合わせによって、または任意の他の好適な方法によって形成される、薄膜カプセル化であってもよい。障壁コーティングはまた、接着剤を使用して、デバイス上に事前形成された障壁膜を積層製作することによって提供されてもよい。例えば、障壁コーティングは、有機材料、無機材料、または両方の組み合わせを備える、多層コーティングであってもよい。障壁コーティングはさらに、いくつかの実施形態では、ゲッタ材料および/または乾燥剤を備えてもよい。
AMOLEDディスプレイデバイスの共通電極のシート抵抗仕様は、ディスプレイデバイスのサイズ(例えば、パネルサイズ)および電圧変動に対する耐性に従って変動し得る。一般に、シート抵抗仕様は、より大きいパネルサイズおよびパネルを横断する電圧変動に対するより低い耐性とともに増加する(例えば、より低いシート抵抗が規定される)。
シート抵抗仕様およびある実施形態による仕様に準拠する補助電極の関連付けられる厚さが、種々のパネルサイズについて計算され、図56にプロットされた。シート抵抗および補助電極厚さは、0.1Vおよび0.2Vの電圧公差について計算された。具体的には、電圧公差は、上記で解説されるように、透明電極および補助電極の複合IR降下を補償するように、縁におけるピクセルおよびパネルの中心におけるピクセルに供給されるであろう、電圧の差を示す。計算の目的のために、0.64の口径比が、全てのディスプレイパネルサイズに仮定された。
例示的パネルサイズにおける補助電極の規定厚さが、以下の表2で要約される。
理解されるであろうように、薄膜トランジスタ(TFT)(例えば、図39に示されるTFT3804)を含む、バックプレーンの種々の層および部分が、種々の好適な材料ならびにプロセスを使用して製作されてもよい。例えば、TFTは、CVD、PECVD、レーザ焼鈍、およびPVD(スパッタリングを含む)等の技法を使用して、堆積および/または処理され得る、有機もしくは無機材料を使用して製作されてもよい。理解されるであろうように、そのような層は、下層デバイス層を被覆するフォトレジストの選択的部分を紫外線に暴露するためにフォトマスクを使用する、フォトリソグラフィを使用してパターン化されてもよい。使用されるフォトレジストのタイプに応じて、フォトマスクの露出部分または露出されていない部分が、次いで、下層デバイス層の所望の部分を見せるように洗い落とされてもよい。パターン化された表面が、次いで、デバイス層の露出部分を効果的に除去するように、化学的または物理的にエッチングされてもよい。
さらに、上面ゲートTFTが、上記のある実施形態で図示および説明されているが、他のTFT構造も使用され得ることが理解されるであろう。例えば、TFTは、底面ゲートTFTであってもよい。TFTは、n型TFTまたはp型TFTであってもよい。TFT構造の実施例は、非晶質シリコン(a-Si)、インジウムガリウム亜鉛酸化物(IGZO)、および低温多結晶シリコン(LTPS)を利用するものを含む。
電極と、1つまたはそれを上回る有機層と、ピクセル画定層と、キャッピング層とを含む、フロントプレーンの種々の層および部分が、熱蒸発ならびに/もしくは印刷を含む、任意の好適な堆積プロセスを使用して堆積させられてもよい。例えば、シャドウマスクが、そのような材料を堆積させるときに、所望のパターンを生成するために適宜使用され得、種々のエッチングおよび選択的堆積プロセスもまた、種々の層をパターン化するために使用され得ることが理解されるであろう。そのような方法の実施例は、フォトリソグラフィ、印刷(インクまたは蒸気ジェット印刷およびリールツーリール印刷を含む)、OVPD、およびLITIパターン化を含むが、それらに限定されない。
ある実施形態が、カソードまたは共通カソードのための補助電極を形成するように伝導性コーティングを選択的に堆積させることを参照して上記で説明されているが、類似材料およびプロセスが、他の実施形態では、アノードまたはアノードのための補助電極を形成するために使用され得ることが理解されるであろう。
いくつかの実施形態の側面が、ここで、いかようにも本開示の範囲を限定することを意図していない、以下の実施例を参照して図示および説明されるであろう。
本明細書の実施例で使用されるように、材料の層厚さという言及は、参照される層厚さを有する材料の一様に厚い層で標的表面を被覆する材料の量に対応する、標的表面(または選択的堆積の場合、表面の標的領域)上に堆積させられる材料の量を指す。一例として、10nmの層厚さを堆積させることは、厚さ10nmである材料の一様に厚い層を形成する材料の量に対応する、表面上に堆積させられる材料の量を示す。例えば、分子または原子の可能性として考えられる積層もしくはクラスタ化に起因して、堆積した材料の実際の厚さは、非一様であり得ることが理解されるであろう。例えば、10nmの層厚さを堆積させることは、10nmを上回る実際の厚さを有する堆積した材料のいくつかの部分、または10nm未満の実際の厚さを有する堆積した材料の他の部分を生じてもよい。表面上に堆積させられる材料のある層厚さは、表面を横断する堆積した材料の平均厚さに対応することができる。
例証的実施例で使用される、ある材料の分子構造が、以下で提供される。
実施例1
核形成阻害コーティングと隣接マグネシウムコーティングとの間の界面を特徴付けるために、核形成阻害コーティングおよびマグネシウムコーティングの変動する層厚さを有する、一連のサンプルが、調製されて分析された。サンプルが、ステンレス鋼シャドウマスクを使用して、クライオポンプ式処理チャンバおよびターボ分子ポンプ式ロードロックチャンバを伴う高減圧堆積システムの中で調製された。材料が、堆積速度を監視するように、水晶振動子マイクロバランス(QCM)を使用して、クヌーセンセル(Kセル)から熱的に堆積させられた。システムの基礎圧力は、約10-5Pa未満であり、HOの分圧は、堆積中に約10-8トル未満であった。マグネシウムが、約1~5Å/秒の堆積速度で約430~570℃のソース温度において堆積させられた。SEM顕微鏡写真が、Hitachi S-5200を使用して撮影された。
サンプルは、最初に、熱的堆積を使用して、シリコン基板の上を約30nmの銀を堆積させることによって調製された。核形成阻害コーティングが、次いで、シャドウマスクを使用して、銀表面の領域上に選択的に堆積させられた。サンプルの全てでは、3-(4-ビフェニル)-4-フェニル-5-tert-ブチルフェニル-1,2,4-トリアゾール(TAZ)が、核形成阻害コーティングを形成するために使用された。いったん核形成阻害コーティングが堆積させられると、実質的に純粋なマグネシウム(約99.99%純度)が、開放マスク堆積を使用して堆積させられた。より具体的には、露出した銀表面および核形成阻害コーティング表面の両方が、開放マスク堆積中に蒸発したマグネシウム流束を受けた。核形成阻害コーティングの層厚さおよび関連付けられる堆積速度は、以下の表3で要約される。全ての堆積は、減圧(約10-4~約10-6Pa)下で行われ、層厚さおよび堆積速度は、水晶振動子マイクロバランス(QCM)を使用して監視された。
サンプルは、走査電子顕微鏡法(SEM)およびエネルギー分散型X線分光法(EDX)を使用して分析された。
図45Aは、サンプル1の上面図のSEM画像である。画像の第1の領域4501は、それの上をマグネシウムが露出した銀表面の上に堆積させられた領域に対応し、第2の領域4503は、核形成阻害コーティング(TAZ)によって被覆された領域に対応する。図45Bおよび45Cは、図45Aに示されるようなサンプル1の一部の拡大上面図を示す。EDX元素分析に基づいて、マグネシウムの存在は、第2の領域4503の大部分にわたって検出されなかった。しかしながら、マグネシウム含有島またはクラスタ4505の形成が観察され(図45A参照)、これらの島4503の中のマグネシウムの存在が、EDX元素分析に基づいて確認された。
図45Dおよび45Eは、マグネシウムコーティング(領域4501)と核形成阻害コーティング(領域4503)との間の界面を示す、サンプル1のSEM断面画像である。下層基板4510もまた、これらの画像で見られることができる。
図45Fおよび45Gは、図45Dおよび45Eとは異なるサンプルの部分において撮影されたサンプル1の付加的SEM断面画像である。
図45D-45Gから分かり得るように、マグネシウムコーティング(領域4501)は、マグネシウムコーティングおよび核形成阻害コーティングの界面の近傍の部分的重複領域中の核形成阻害コーティング(領域4503)の上を側方に延在する一部を含む。具体的には、マグネシウムコーティングの一部は、核形成阻害コーティングの表面と直接接触していない突出部を形成し、したがって、界面においてマグネシウムコーティングと核形成阻害コーティングとの間に間隙を作成すると見なされることができる。
図45Hは、サンプル1の第1の領域4501および第2の領域4503から得られたEDXスペクトルを示す。図45Hのプロットから分かり得るように、マグネシウムに対応するピークが、第1の領域4501から得られたスペクトルの中で明確に観察される一方で、いかなる顕著なピークも第2の領域4503から得られたスペクトルの中で検出されない。EDX測定が、約2μmのサンプル面積にわたって5keVで行われた。
図46Aは、サンプル2の上面図のSEM画像である。画像の第1の領域4601は、それの上をマグネシウムが露出した銀表面の上に堆積させられた領域に対応し、第2の領域4603は、核形成阻害コーティング(TAZ)によって被覆された領域に対応する。図46Aの一部の拡大画像が、図46Bに示され、図46Bの一部のさらなる拡大画像が、図46Cに示されている。サンプルの断面外形が、基板4610も示す、図46D、46E、および46Fの画像に示されている。図46B-Fの画像で見られ得るように、マグネシウムコーティング(領域4601)とTAZコーティング(領域4603)との間の界面の近傍に堆積させられるマグネシウム4607の比較的薄い膜または層がある。薄膜4607の中のマグネシウムの存在が、EDX測定を通して確認された。また、マグネシウム含有島またはクラスタ4605の形成が観察された(図46A参照)。
図46Gは、サンプル2の第1の領域4601および第2の領域4603から得られたEDXスペクトルを示す。図46Gのプロットから分かり得るように、マグネシウムに対応するピークが、第1の領域4601から得られたスペクトルの中で明確に観察される一方で、いかなる顕著なピークも第2の領域4603から得られたスペクトルの中で検出されない。EDX測定が、約2μmのサンプル面積にわたって5keVで行われた。
図46Hは、サンプル2の走査線に沿って得られたマグネシウムスペクトルの線形EDX走査を示す。EDXスペクトルは、EDXスペクトルが取得されたサンプルの部分を示す、対応するSEM画像の上に重ね合わせられる。分かり得るように、マグネシウムスペクトルの強度は、第1の領域4601と薄膜4607との間の界面から約1.7μmにおいて減少し始める。本観察は、界面の近傍で徐々に減少する、またはテーパ状になる、マグネシウムコーティングの厚さを示す、サンプル(例えば、図46D)について観察される断面外形と一致する。
実施例2
核形成阻害コーティングまたは核形成助長コーティングとして使用するための種々の材料の性質を測定するために、一連の実験が、水晶振動子マイクロバランス(QCM)のセットを使用して行われた。
理解されるであろうように、QCMが、薄膜堆積プロセスにおいて堆積速度を監視するために使用されることができる。簡潔には、そのような監視は、共振器の表面上の材料の追加または除去によって引き起こされる水晶共振器の周波数の変化を測定することによって行われる。
図47は、QCMの表面上のマグネシウムの堆積プロファイルを測定するための実験装置を図示する概略図である。図示されるように、蒸発チャンバ4701は、第1の蒸発ソース4710と、第2の蒸発ソース4712とを含む。一対のQCM4731および4741が、QCM4731および4741のそれぞれの共振器表面がソース4710および4712に向かって対面する状態でチャンバ4701の内側に位置付けられる。サンプルシャッタ4721およびソースシャッタ4725が、QCM4731および4741と蒸発ソース4710および4712との間に配置される。サンプルシャッタ4721およびソースシャッタ4725は、それぞれ、QCM4731および4741に入射する蒸気の流束ならびにソース4710および4712から流出する蒸気の流束を制御するように適合される、可動シャッタである。
図示される例示的設定では、本明細書では「参照QCM」とも称されるであろう、第1のQCM4731は、本明細書では「サンプルQCM」とも称されるであろう、第2のQCM4741上のマグネシウムの堆積プロファイルが、それに対して比較される、基準としての役割を果たす。LapTech Precision Inc.から入手された、光学的に研磨された水晶(部品番号:XL1252、周波数:6.000MHz、AT1、中心:5.985MHz、直径:13.97mm±3mm、光学的に研磨された)が、各実験で参照QCMおよびサンプルQCMとして使用された。
各実験は、以下のように行われた。第1に、参照QCM4731およびサンプルQCM4741は、図47に図示されるように、蒸発チャンバ4701の内側に位置付けられた。チャンバ4701は、次いで、チャンバ圧力が約10-5Paを下回るまで送出された。サンプルシャッタ4721は、次いで、参照QCM4731およびサンプルQCM4741の両方の共振器表面が覆い隠されるように作動された。第1の蒸発ソース4710は、次いで、(本明細書では「核形成改質材料」とも称される)核形成助長または阻害材料の蒸発を開始するように起動された。いったん安定した蒸発速度が達成されると、サンプルシャッタ4721は、参照QCM4731の表面を露出されていない状態で保ち、したがって、核形成改質材料がサンプルQCM4741の表面上に堆積させられることを可能にしながら、サンプルQCM4741の共振器表面が蒸気流束に暴露されるように移動された。サンプルQCM4741の表面上に核形成改質材料の所望の層厚さを堆積させることに応じて、ソースシャッタ4725は、第1のソース4710から流出する蒸気流束を遮断し、したがって、さらなる堆積を防止するように作動された。第1のソース4710が、次いで、遮断された。
次に、第2の蒸発ソース4712が、マグネシウムの蒸発を開始するように起動された。シャッタ4721は、安定した堆積速度に達するまで、QCM4731および4741を被覆するために使用された。いったん安定した堆積速度に達すると、シャッタ4721は、マグネシウム蒸気がQCM4731および4741の両方の表面に入射するように、サンプルQCM4741の改質された表面および参照QCM4731の表面の両方を被覆しないように作動された。QCM4731および4741の共振周波数が、QCM4731および4741のそれぞれの上のマグネシウムの堆積プロファイルを判定するように監視された。
核形成阻害コーティングを形成するために使用されることができるものを含む、種々の核形成改質材料が、その上に核形成改質コーティングを形成するように、サンプルQCM4741の共振器表面上に堆積させられた。核形成改質材料毎に図47に図示されるチャンバ構成を使用して、上記の実験手順を繰り返すことによって、種々の表面上のマグネシウムの堆積速度が分析された。以下の材料、すなわち、3-(4-ビフェニル)-4-フェニル-5-tert-ブチルフェニル-1,2,4-トリアゾール(TAZ)、アルミニウム(III)ビス(2-メチル-8-キノリナト)-4-フェニルフェノラート(BAlq)、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ-[D]イミダゾール(LG201)、8-ヒドロキシキノリンリチウム(Liq)、およびN(ジフェニル-4-イル)9,9-ジメチル-N-(4(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミン(HT211)が、核形成改質コーティングを形成するために使用された。
図57は、サンプルQCM表面上に堆積させられるマグネシウムの層厚さ(サンプル層厚さ、または図57で標識されるような「平均膜厚さ」)に対して、参照QCM表面上に堆積させられるマグネシウムの層厚さ(参照層厚さ、または図57で標識されるような「堆積した厚さ」)を示す、対数・対数プロットである。各場合において、参照QCM表面は、実験を行うことに先立って実質的に純粋な銀で事前にコーティングされた。
図57のプロットに基づいて、両方のQCM表面上に堆積させられるマグネシウムの層厚さ、したがって、表面を同一のマグネシウム蒸気流束に暴露することの結果としてのマグネシウムの堆積速度が、判定されることができる。具体的には、サンプルQCM表面上のマグネシウムの堆積速度を、サンプルQCM表面上のマグネシウムの比較的薄い層の形成中(すなわち、層厚さが最大1nmまたは10nmの堆積の初期段階中)の参照QCM表面上のものと比較することによって、サンプルQCM表面上に存在するコーティングの核形成阻害性質が判定されてもよい。議論を容易にするために、サンプルQCM表面上に堆積させられるマグネシウムの層厚さは、サンプル層厚さと称され、参照QCM表面上に堆積させられるマグネシウムの層厚さは、参照層厚さと称されるであろう。
ある実験に関して、種々のサンプルのための1nmおよび10nmにおけるサンプル層厚さに対応する、参照層厚さが、以下の表4で要約される。具体的には、表4で提供される参照層厚さは、サンプル毎に1nmまたは10nm層厚さがサンプルQCM表面上に堆積させられるための同一時間周期内の参照QCM表面上に堆積させられるマグネシウムの層厚さに対応する。有機材料が、約10-5Paの減圧圧において約1Å/秒の堆積速度で堆積させられた。マグネシウムが、約520~530℃のソース温度および約10-5Paの減圧圧において約2Å/秒の堆積速度で堆積させられた。
上記に基づいて、1nmのサンプル層厚さに達したときに堆積させられた参照層厚さは、サンプルQCM表面を被覆する核形成改質材料に実質的に応じて、変動したことが分かり得る。1nmの閾値サンプル層厚さが、本実施例では、サンプルQCM表面上の膜形成の初期段階中の相対堆積速度を判定するように選択された。参照QCM表面が銀で事前にコーティングされたため、参照QCM表面上のマグネシウムの堆積速度は比較的一定のままであったことが観察された。
TAZでコーティングされたサンプルQCMのために1nmのサンプル層厚さに達する前に、2000nmを超えるマグネシウムの比較的厚いコーティングが、参照QCM上に堆積させられた。BAlqでコーティングされたサンプルQCMのために1nmのサンプル層厚さに達する前に、104nmの参照層厚さが堆積させられた。しかしながら、LG201、Liq、またはHT211でコーティングされたサンプルQCMのために閾値厚さに達する前に、62nm未満の層厚さを伴うマグネシウムの比較的薄いコーティングが、参照QCM上に堆積させられた。
理解されるであろうように、より優れた選択性が、概して、比較的高い参照層厚さ、したがって、比較的低い初期堆積速度および付着確率を呈する、核形成改質コーティングを使用することによって、伝導性コーティング堆積中に達成されることができる。例えば、高い参照層厚さを呈する核形成改質コーティングは、効果的な核形成阻害コーティングであってもよく、標的表面がマグネシウム蒸気流束に暴露されるときに、マグネシウムが標的表面の被覆されていない領域の上を選択的に形成し、核形成阻害コーティングの表面がマグネシウムを実質的に含まない、またはそれによって実質的に被覆されていないままであるように、標的表面の領域を被覆するために使用されてもよい。例えば、1nmの閾値サンプル層厚さにおいて少なくとも約80nmまたはそれを上回る参照層厚さを呈する、核形成改質コーティングが、核形成阻害コーティングとして使用されてもよい。例えば、1nm閾値厚さにおいて少なくとも約100nmまたはそれを上回る、少なくとも約200nmまたはそれを上回る、少なくとも約500nmまたはそれを上回る、少なくとも約700nmまたはそれを上回る、少なくとも約1,000nmまたはそれを上回る、少なくとも約1,500nmまたはそれを上回る、少なくとも約1,700nmまたはそれを上回る、もしくは少なくとも約2,000nmまたはそれを上回る参照層厚さを呈する、核形成改質コーティングが、核形成阻害コーティングとして使用されてもよい。換言すると、参照表面上のマグネシウムの初期堆積速度は、核形成阻害コーティングの表面上のマグネシウムの初期堆積速度の少なくとも約80倍またはそれを上回り、少なくとも約100またはそれを上回り、少なくとも約200またはそれを上回り、少なくとも約500またはそれを上回り、少なくとも約700またはそれを上回り、少なくとも約1,000またはそれを上回り、少なくとも約1,500またはそれを上回り、少なくとも約1,700またはそれを上回り、もしくは少なくとも約2,000またはそれを上回り得る。
図58は、サンプルQCM表面上に堆積させられたマグネシウムの層厚さと対比した、サンプルQCM表面上のマグネシウム蒸気の付着確率の対数・対数プロットである。
付着確率は、以下の方程式に基づいて導出された。


式中、Nadsは、サンプルQCMの表面上のマグネシウムコーティングに組み込まれる、吸着されたモノマーの数であり、Ntotalは、参照QCM上のマグネシウムの堆積を監視することに基づいて判定された、表面上の衝突するモノマーの総数である。
図58のプロットから分かり得るように、着確率は、概して、より多くのマグネシウムが表面上に堆積させられるにつれて増加する。マグネシウムコーティングの選択的堆積を達成する目的のために、比較的低い初期付着確率(例えば、初期堆積段階中の低い付着確率)を呈する核形成阻害コーティングが、望ましくは使用される。より具体的には、本実施例の初期付着確率は、核形成阻害コーティングの表面上の1nmの平均厚さを伴う密集したマグネシウム層を形成することに対応する、マグネシウムの量を堆積させることに応じて測定される、付着確率を指す。種々の核形成阻害コーティング表面上のマグネシウムの1nm層厚さの堆積に応じて測定される付着確率は、以下の表5で要約される。
実験に応じて、マグネシウム蒸気に対する約0.03(または3%)以内もしくは未満の初期付着確率を呈するコーティングは、核形成阻害コーティングとして作用してもよい。理解されるであろうように、より低い初期付着確率を伴う核形成阻害コーティングは、比較的厚いマグネシウムコーティングの堆積を達成するため等のいくつかの用途のために、より望ましくあり得る。例えば、約0.02以内または未満、約0.01以内または未満、約0.08以内または未満、約0.005以内または未満、約0.003以内または未満、約0.001以内または未満、約0.0008以内または未満、約0.0005以内または未満、もしくは約0.0001以内または未満の初期付着確率を伴うコーティングが、核形成阻害コーティングとして使用されてもよい。例えば、そのような核形成阻害コーティングは、BAlqおよび/またはTAZを堆積させることによって形成されるものを含んでもよい。
実施例3
隣接コーティングを伴う界面の近傍のマグネシウムコーティングの側方成長とマグネシウムコーティングの垂直成長との間の相関を特徴付けるために、変動するマグネシウムおよびTAZ層厚さを伴う一連のサンプルが調製された。
サンプルは、最初に、熱的堆積を使用して、シリコン基板の上を約30nmの銀を堆積させることによって調製された。核形成阻害コーティングが、次いで、シャドウマスクを使用して、銀表面の領域上に選択的に堆積させられた。サンプルの全てでは、3-(4-ビフェニル)-4-フェニル-5-tert-ブチルフェニル-1,2,4-トリアゾール(TAZ)が、核形成阻害コーティングを形成するために使用された。いったん核形成阻害コーティングが堆積させられると、露出した銀表面および核形成阻害コーティング表面の両方が、開放マスク堆積中に蒸発したマグネシウム流束を受けるように、実質的に純粋なマグネシウム(約99.99%純度)が、開放マスク堆積を使用して堆積させられた。全ての堆積は、減圧(約10-4~約10-6Pa)下で行われた。マグネシウムは、約2Å/秒の速度で堆積させられた。
図49は、調製されたサンプルを図示する概略図である。示されるように、核形成阻害コーティングの部分4901および4903は、銀表面の領域上に選択的に堆積させられ、マグネシウムコーティング4907は、部分4901と4903との間に堆積させられた。議論を容易にするために、シリコン基板および銀層は、図49の略図から省略されている。核形成阻害コーティングの部分4901と4903との間に位置する露出した銀表面の側方距離は、dとして示され、マグネシウムコーティング4907の幅は、d+Δdとして示される。このようにして、マグネシウムコーティング4907の側方成長距離は、マグネシウムコーティング4907の幅から露出した銀表面の側方距離を減算することによって、判定されることができる。dおよびd+Δdは両方とも、サンプルの上面図SEM画像の分析を行うことによって測定された。マグネシウムの層厚さhは、堆積プロセス中に水晶振動子マイクロバランス(QCM)を使用して監視された。
変動するマグネシウム層厚さ(h)および核形成阻害層厚さを伴うサンプルについて測定された側方成長距離(Δd)が、以下の表6で要約される。Δdの測定精度は、約0.5μmである。
上記の結果から観察され得るように、側方成長のいかなる検出可能な量も、比較的厚いTAZコーティングを伴って調製されたサンプルでは観察されなかった。具体的には、いかなる側方成長も、100nmのTAZ核形成阻害コーティングおよび0.25μmならびに0.75μmのマグネシウムコーティングを伴って調製されたサンプルには検出されなかった。
比較的薄い(10nm層厚さ)TAZコーティングを伴って調製されたサンプルに関して、いかなる側方成長も、厚さ0.25μmのマグネシウムコーティングを伴うサンプルに検出されなかった。しかしながら、より厚いマグネシウムコーティングを伴って調製されたサンプルに関して、マグネシウムの側方成長が観察された。具体的には、厚さ10nmのTAZ核形成阻害コーティングおよび厚さ0.75μmのマグネシウムコーティングを伴って調製されたサンプルは、約2.5μmの側方マグネシウム成長を呈し、厚さ10nmのTAZ核形成阻害コーティングおよび厚さ1.5μmのマグネシウムコーティングを伴って調製されたサンプルは、約3.5μmの側方成長を呈した。
実施例4
サンプルが、BAlqを含む、別の核形成阻害コーティングを使用して調製された。
具体的には、サンプルは、以下の構造、すなわち、シリコンベース基板/LG201(40nm)/Mg:Ag(20nm)/BAlq(500nm)/Mg(300nm)に従って製作された。具体的には、約40nmの2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ-[D]イミダゾール(LG201)が、シリコン基板上に堆積させられ、その後に、約20nmのMg:Ag(約1:9の体積比でMg:Agを含む)が続いた。約500nmのアルミニウム(III)ビス(2-メチル-8-キノリナト)-4-フェニルフェノラート(BAlq)の形態の核形成阻害コーティングが、次いで、Mg:Ag表面の領域の上を選択的に堆積させられた。いったん核形成阻害コーティングが堆積させられると、露出したMg:Ag表面および核形成阻害コーティング表面が両方とも、開放マスク堆積中に蒸発したマグネシウム流束を受けるように、実質的に純粋なマグネシウム(約99.99%純度)が、開放マスク堆積を使用して堆積させられた。全ての堆積は、減圧(約10-4~約10-6Pa)下で行われた。マグネシウムコーティングは、約3.5Å/秒の速度で堆積させられた。
図50Aは、BAlq核形成阻害コーティングを使用して調製されたサンプルの上面図のSEM画像である。第1の領域5003は、BAlqコーティングが存在し、したがって、有意量のマグネシウムが堆積させられなかった領域に対応し、第2の領域5001は、マグネシウムが堆積させられた領域に対応する。図50Cおよび50Dは、それぞれ、領域5007および5005の拡大図を示す。図50Bは、第1の領域5003と第2の領域5001との間の界面の拡大図を示す。
図50Bで見られ得るように、界面の近傍に形成された、いくつかの島5011があった。具体的には、島5011は、概して、核形成阻害コーティングの表面上に形成する、断絶したマグネシウム含有クラスタである。例えば、島はマグネシウムおよび/または酸化マグネシウムを含み得ることが仮定される。
図50Cは、プロセスによって形成されるマグネシウムコーティングの「バルク」を表す領域である、図50Aの領域5007の拡大図を示す。図50Dは、第1の領域5003と第2の領域5001との間の界面の近傍にある、領域5005の拡大図を示す。分かり得るように、界面の近傍のマグネシウムコーティングの形態は、コーティングのバルクにおけるものと異なる。
図50Eはさらに、島5011が核形成阻害コーティングの表面上に示される、サンプルの断面SEM画像を示す。
実施例5
(比較実施例A)
比較サンプルが、比較的不良な核形成阻害性質を呈する材料を使用して形成された構造を特徴付けるように調製された(例えば、核形成阻害コーティングは、マグネシウム蒸気の比較的高い初期付着係数を呈する)。
比較サンプルは、以下の構造、すなわち、シリコンベース基板/LG201(40nm)/Mg:Ag(20nm)/HT211(500nm)/Mg(300nm)に従って製作された。具体的には、約40nmの2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ-[D]イミダゾール(LG201)が、シリコン基板上に堆積させられ、その後に、約20nmのMg:Ag(体積比約1:9)が続いた。約500nmのN(ジフェニル-4-イル)9,9-ジメチル-N-(4(9-フェニル-9H-カルバゾール-3-イル)フェニル)-9H-フルオレン-2-アミン(HT211)の形態の核形成阻害コーティングが、次いで、Mg:Ag表面の領域の上を選択的に堆積させられた。いったん核形成阻害コーティングが堆積させられると、露出したMg:Ag表面および核形成阻害コーティング表面が両方とも、開放マスク堆積中に蒸発したマグネシウム流束を受けるように、実質的に純粋なマグネシウム(約99.99%純度)が、開放マスク堆積を使用して堆積させられた。全ての堆積は、減圧(約10-4~約10-6Pa)下で行われた。マグネシウムコーティングは、約3.5Å/秒の速度で堆積させられた。
図51Aは、第1の領域5103が、それの上をHT211の形態の核形成阻害コーティングが堆積させられた領域に対応し、第2の領域5101が、マグネシウムコーティングが形成された領域に対応する、比較サンプルの上面図SEM画像を示す。分かり得るように、第1の領域5103中の有意量のマグネシウムが、明確に観察されることができる。
図51Bは、比較サンプルの断面SEM画像を示す。第1の領域5103と第2の領域5101との間の近似界面が、点線を使用して示される。
実施例6
(比較実施例B)
別の比較サンプルが、シャドウマスク技法を使用して表面上に堆積させられるマグネシウムコーティングのプロファイルを判定するように調製された。
比較サンプルは、シリコンウエハの上に銀の約30nm層厚さを堆積させ、その後に続いて、マグネシウムの約800nm層厚さのシャドウマスク堆積によって、製作された。具体的には、シャドウマスク堆積は、銀表面の他の領域を覆い隠しながら、銀表面のある領域がシャドウマスク開口を通してマグネシウム流束に暴露されることを可能にするように構成された。マグネシウムは、約2Å/秒の速度で堆積させられた。
図52Aは、比較サンプルのSEM画像の上面図である。近似界面が、図52Aで点線を使用して示されている。第1の領域5203は、覆い隠された領域に対応し、第2の領域5201は、それの上をマグネシウムコーティングが堆積させられた、露出した領域に対応する。
図52Bは、比較サンプルの断面SEM画像である。図52Bで見られ得るように、第2の領域5201の上を堆積させられるマグネシウムコーティングは、部分5214の厚さが徐々にテーパ状になる、比較的長い(約6μm)テーパまたはテール部分5214を含む。
実施例7
(比較実施例C)
HT211を含む、核形成阻害コーティングの核形成阻害性質への堆積速度の影響を特徴付けるために、HT211の変動する層厚さを伴う一連の比較サンプルが製作された。
具体的には、サンプルは、ガラス基板の表面全体の上をHT211の約10nm層厚さを堆積させ、その後に続いて、マグネシウムの開放マスク堆積によって、製作された。種々の蒸発速度が、マグネシウムコーティングを堆積させるために使用されたが、しかしながら、各サンプルを調製する際に、堆積時間は、約100nmまたは約1000nmのいずれかのマグネシウムの参照層厚さを取得するように、それに応じて調節された。
本実施例で使用されるように、参照層厚さは、高い初期付着係数を呈する参照表面(例えば、約1.0またはそれに近い初期付着係数を伴う表面)上に堆積させられる、マグネシウムの層厚さを指す。例えば、参照表面は、堆積速度および参照層厚さを監視する目的のために、堆積チャンバの内側に位置付けられるQCMの表面であってもよい。換言すると、参照層厚さは、標的表面(例えば、核形成阻害コーティングの表面)上に堆積させられるマグネシウムの実際の厚さを示さないが、むしろ、参照表面上に堆積させられるマグネシウムの層厚さを指す。
図53は、種々の堆積速度および関連付けられる参照層厚さを使用して製作された種々のサンプルの透過率対波長のプロットを示す。透過率データに基づいて、約0.2Å/秒の低い堆積速度で堆積させられた、約100nmの比較的低いマグネシウム参照層厚さを伴うサンプルが、最高透過率を呈したことが分かり得る。しかしながら、実質的に同じ参照層厚さを伴うサンプルが、約2Å/秒のより高い堆積速度で堆積させられたとき、透過率は、測定されたスペクトル全体にわたってより低かった。最低透過率が、約2Å/秒の比較的高い速度を使用して堆積させられた約1000nmの比較的高いマグネシウム参照層厚さを伴うサンプルに検出された。
3つ全てのサンプルのためのスペクトルの青色領域(約400~475nm)中で観察される、低減した透過率は、堆積したマグネシウムの酸化に起因してサンプル中に存在し得る、酸化マグネシウムによる吸収に起因し得ることが仮定される。
実施例8
核形成阻害コーティングを形成するために種々の材料を使用することの影響を特徴付けるために、一連のサンプルが、核形成阻害コーティングを形成するように異なる材料を使用して調製された。
サンプルは、ガラス基板表面の上に核形成阻害コーティングの約10nm層厚さを堆積させることによって製作された。サンプルは、次いで、マグネシウムの開放マスク堆積を受けた。サンプル毎に、マグネシウムは、約1000nmの参照層厚さに達するまで、約2Å/秒の速度で堆積させられた。
図54は、種々の材料で製作されたサンプルの透過率対波長のプロットである。分かり得るように、TAZで製作されたサンプルは、最高透過率を呈し、その後にBAlqが続いた。HT211およびLiqで製作された両方のサンプルは、HT211およびLiqの表面上に堆積させられている、より大量のマグネシウムに起因して、TAZおよびBAlqを伴って調製されたものと比較して、実質的により低い透過率を呈することが見出された。
実施例9
一連のサンプルが、例示的実施形態による、補助電極を提供することの影響を査定するように調製された。
第1の参照サンプルが、上面発光AMOLEDディスプレイデバイスで使用される典型的共通カソードを複製するように、基板表面上にMg:Agの層を堆積させることによって調製された。
第2の参照サンプルが、非伝導性基板表面の上に反復グリッドの形態の補助電極を選択的に堆積させることによって調製された。補助電極のパターンが、図55に示されている。具体的には、補助電極5501は、補助電極5501がAMOLEDデバイス上に製作される場合、各開口5505が、非放射領域(例えば、ピクセル間またはサブピクセル間領域)上に堆積させられている補助電極5501を伴うデバイスの放射領域(例えば、ピクセルまたはサブピクセル)に実質的に対応するように、その上に形成された複数の開口5505を含む。各開口5505の平均幅またはサイズは、約70μmであって、補助電極5501の各ストリップまたは区画の幅は、約15~18μmであった。補助電極5501は、実質的に純粋な(約99.99%純度)マグネシウムを使用して形成された。
評価サンプルが、第1の参照サンプルのMg:Ag層の上に(第2の参照サンプルに使用される条件下で)補助電極を堆積させることによって調製された。具体的には、核形成阻害コーティングが、シャドウマスクを使用して、Mg:Ag層の上に選択的に堆積させられ、結果として生じるパターン化された表面が、次いで、マグネシウム補助電極を選択的に堆積させて、図55に示されるような類似パターンをもたらすように、マグネシウム蒸気に暴露された。
サンプルのシート抵抗が測定され、測定の結果が、以下の表7で要約される。
上記の表に示されるように、第1の参照サンプル(Mg:Ag層)は、約22.3Ω/平方の比較的高いシート抵抗を呈することが見出された。第2の参照サンプルおよび評価サンプルは、それぞれ、約0.13Ω/平方および約0.1Ω/平方の実質的により低いシート抵抗を有することが見出された。故に、薄膜導体(例えば、共通カソード)と電気接続して例示的実施形態による補助電極を提供することによって、薄膜導体のシート抵抗が実質的に低減され得ることが確認された。
本明細書で使用されるように、「実質的に」、「実質的な」、「およそ」、および「約」という用語は、わずかな変動を表して構成するために使用される。事象または状況と併せて使用されるとき、用語は、事象または状況が精密に起こる事例、ならびに事象または状況が密接に接近して起こる事例を指すことができる。例えば、数値と併せて使用されるとき、用語は、±5%未満またはそれと等しい、±4%未満またはそれと等しい、±3%未満またはそれと等しい、±2%未満またはそれと等しい、±1%未満またはそれと等しい、±0.5%未満またはそれと等しい、±0.1%未満またはそれと等しい、もしくは±0.05%未満またはそれと等しい等の数値の±10%未満またはそれと等しい変動の範囲を指すことができる。
いくつかの実施形態の説明では、別の構成要素の「上に」、またはそれを「覆って」提供される、もしくは別の構成要素を「被覆している」または「被覆する」構成要素は、後者の構成要素が前者の構成要素の直接上にある(例えば、物理的に接触する)場合、ならびに1つまたはそれを上回る介在構成要素が前者の構成要素と後者の構成要素との間に位置する場合を包含することができる。
加えて、量、比、および他の数値は、ある時は、本明細書では範囲形式で提示される。そのような範囲形式は、便宜上、簡潔にするために使用されることが理解され得るが、範囲の限界として明示的に規定される数値だけでなく、各数値および下位範囲が明示的に規定される場合のように、その範囲内に包含される全ての個々の数値または下位範囲も柔軟に含むことが理解されるべきである。
本開示は、ある具体的実施形態を参照して説明されているが、その種々の修正は、当業者に明白であろう。本明細書で提供される任意の実施例は、本開示のある側面を例証する目的のためのみに含まれ、いかようにも本開示を限定することを意図していない。本明細書で提供される任意の図面は、本開示のある側面を例証する目的のためのみのものであり、一定の縮尺で描かれない場合があり、いかようにも本開示を限定しない。本明細書に添付される請求項の範囲は、上記の説明に記載される具体的実施形態によって限定されるべきではないが、全体として本開示に一致する、それらの全範囲を与えられるべきである。本明細書に記載される全ての文書の開示は、参照することによってそれらの全体として本明細書に組み込まれる。

Claims (22)

  1. エレクトロルミネセントデバイスであって、前記エレクトロルミネセントデバイスは、
    第1の領域と、第2の領域と、前記第1の領域と前記第2の領域との間に配置されている中間領域と、
    前記第2の領域に配置されている伝導性コーティングであって、前記伝導性コーティングは、マグネシウムを含む、伝導性コーティングと、
    前記第1の領域に配置されている核形成阻害コーティングであって、前記核形成阻害コーティングは、前記中間領域の少なくとも一部を被覆するように延在し、前記中間領域における前記核形成阻害コーティングの平均厚さは、前記第1の領域における前記核形成阻害コーティングの平均厚さ以下である、核形成阻害コーティングと
    を備え、
    前記核形成阻害コーティングは、前記第1の領域における前記核形成阻害コーティングの露出された表面上の前記伝導性コーティングの材料の堆積に対する初期付着確率を有し、前記第1の領域における前記核形成阻害コーティングの前記露出された表面上の前記伝導性コーティングの材料の堆積に対する前記初期付着確率は、前記第1の領域において前記核形成阻害コーティングが堆積した層の露出された表面上の前記伝導性コーティングの材料の堆積に対する前記初期付着確率よりも小さく、前記第1の領域における前記核形成阻害コーティングの前記露出された表面は、前記伝導性コーティングの閉鎖されたコーティングを実質的に欠いているものとして特徴付けられており、
    前記核形成阻害コーティングは、前記伝導性コーティングの材料に対して約0.03以下の初期付着確率を有するものとして特徴付けられている、エレクトロルミネセントデバイス。
  2. 前記伝導性コーティングは、前記中間領域の少なくとも一部を被覆するように延在する、請求項1に記載のエレクトロルミネセントデバイス。
  3. 前記伝導性コーティングは、前記中間領域において第1の厚さを有し、前記第2の領域において第2の厚さを有し、前記第2の厚さは、前記第1の厚さ以上である、請求項2に記載のエレクトロルミネセントデバイス。
  4. 前記中間領域における前記核形成阻害コーティングの厚さは、前記第1の領域における前記核形成阻害コーティングの厚さの約20%以下である、請求項1~3のいずれか一項に記載のエレクトロルミネセントデバイス。
  5. 前記第2の領域は、前記核形成阻害コーティングを実質的に欠いている、請求項1~3のいずれか一項に記載のエレクトロルミネセントデバイス。
  6. 前記第1の領域は、光透過領域を含む、請求項1~5のいずれか一項に記載のエレクトロルミネセントデバイス。
  7. 前記光透過領域の光透過率は、少なくとも約50%である、請求項6に記載のエレクトロルミネセントデバイス。
  8. 前記第2の領域は、発光領域を含む、請求項1~7のいずれか一項に記載のエレクトロルミネセントデバイス。
  9. 前記中間領域は、前記第2の領域の周囲から前記第1の領域に向かって横方向に延在するように配置されている、請求項1~8のいずれか一項に記載のエレクトロルミネセントデバイス。
  10. 前記中間領域における前記伝導性コーティングの表面被覆率は、前記第2の領域における前記伝導性コーティングの表面被覆率以下である、請求項1~9のいずれか一項に記載のエレクトロルミネセントデバイス。
  11. 前記エレクトロルミネセントデバイスは、界面コーティングをさらに備え、前記界面コーティングは、前記第2の領域における前記伝導性コーティングの下に配置されており、かつ、前記第2の領域における前記伝導性コーティングに直接的に接触している、請求項1~10のいずれか一項に記載のエレクトロルミネセントデバイス。
  12. 前記界面コーティングは、前記中間領域における前記伝導性コーティングの下に配置されるように横方向に延在する、請求項11に記載のエレクトロルミネセントデバイス。
  13. 前記界面コーティングは、前記中間領域における前記伝導性コーティングに直接的に接触している、請求項12に記載のエレクトロルミネセントデバイス。
  14. 前記界面コーティングは、核形成助長材料を含む、請求項11~13のいずれか一項に記載のエレクトロルミネセントデバイス。
  15. 前記界面コーティングは、前記中間領域における前記核形成阻害コーティングの下に配置されている、請求項11~14のいずれか一項に記載のエレクトロルミネセントデバイス。
  16. 前記伝導性コーティングは、前記中間領域において第1の光透過率を有し、前記第2の領域において第2の光透過率を有し、前記第1の光透過率は、前記第2の光透過率以上である、請求項1~15のいずれか一項に記載のエレクトロルミネセントデバイス。
  17. 前記伝導性コーティングは、前記中間領域において第1の光反射率を有し、前記第2の領域において第2の光反射率を有し、前記第2の光反射率は、前記第1の光反射率以上である、請求項1~16のいずれか一項に記載のエレクトロルミネセントデバイス。
  18. 前記伝導性コーティングは、前記エレクトロルミネセントデバイスの電極の少なくとも一部を形成する、請求項1~17のいずれか一項に記載のエレクトロルミネセントデバイ
    ス。
  19. 前記電極は、カソードである、請求項18に記載のエレクトロルミネセントデバイス。
  20. 前記核形成阻害コーティングは、前記中間領域における前記伝導性コーティングの下に配置されるように横方向に延在する、請求項1~19のいずれか一項に記載のエレクトロルミネセントデバイス。
  21. 前記核形成阻害コーティングは、前記伝導性コーティングの材料に対して0.02以下の初期付着確率を有するものとして特徴付けられている、請求項1~20のいずれか一項に記載のエレクトロルミネセントデバイス。
  22. 前記エレクトロルミネセントデバイスは、補助電極をさらに備え、前記補助電極は、前記伝導性コーティングに電気的に結合されている、請求項1~21のいずれか一項に記載のエレクトロルミネセントデバイス。
JP2022177127A 2015-10-26 2022-11-04 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法 Active JP7477203B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023136246A JP2023153359A (ja) 2015-10-26 2023-08-24 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201562246597P 2015-10-26 2015-10-26
US62/246,597 2015-10-26
US201662277989P 2016-01-13 2016-01-13
US62/277,989 2016-01-13
US201662373927P 2016-08-11 2016-08-11
US62/373,927 2016-08-11
US201662377429P 2016-08-19 2016-08-19
US62/377,429 2016-08-19
JP2018521242A JP7016535B2 (ja) 2015-10-26 2016-10-26 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
PCT/IB2016/056442 WO2017072678A1 (en) 2015-10-26 2016-10-26 Method for patterning a coating on a surface and device including a patterned coating
JP2021196079A JP7464290B2 (ja) 2015-10-26 2021-12-02 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021196079A Division JP7464290B2 (ja) 2015-10-26 2021-12-02 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023136246A Division JP2023153359A (ja) 2015-10-26 2023-08-24 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Publications (3)

Publication Number Publication Date
JP2022190123A JP2022190123A (ja) 2022-12-22
JP2022190123A5 JP2022190123A5 (ja) 2023-09-04
JP7477203B2 true JP7477203B2 (ja) 2024-05-01

Family

ID=58629871

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2018521242A Active JP7016535B2 (ja) 2015-10-26 2016-10-26 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
JP2021196079A Active JP7464290B2 (ja) 2015-10-26 2021-12-02 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
JP2022177127A Active JP7477203B2 (ja) 2015-10-26 2022-11-04 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
JP2023136246A Pending JP2023153359A (ja) 2015-10-26 2023-08-24 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2018521242A Active JP7016535B2 (ja) 2015-10-26 2016-10-26 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
JP2021196079A Active JP7464290B2 (ja) 2015-10-26 2021-12-02 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023136246A Pending JP2023153359A (ja) 2015-10-26 2023-08-24 パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法

Country Status (6)

Country Link
US (9) US10270033B2 (ja)
JP (4) JP7016535B2 (ja)
KR (2) KR20180075589A (ja)
CN (2) CN108496260B (ja)
CA (1) CA3002752A1 (ja)
WO (1) WO2017072678A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10439081B2 (en) 2012-11-06 2019-10-08 Oti Lumionics Inc. Method for depositing a conductive coating on a surface
CN108496260B (zh) 2015-10-26 2020-05-19 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
KR102563713B1 (ko) * 2017-04-26 2023-08-07 오티아이 루미오닉스 인크. 표면의 코팅을 패턴화하는 방법 및 패턴화된 코팅을 포함하는 장치
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
JP2019047056A (ja) * 2017-09-06 2019-03-22 株式会社ジャパンディスプレイ 表示装置
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
WO2019215591A1 (en) * 2018-05-07 2019-11-14 Oti Lumionics Inc. Method for providing an auxiliary electrode and device including an auxiliary electrode
CN110767682B (zh) * 2018-10-31 2022-10-21 苏州清越光电科技股份有限公司 显示屏及显示终端
US10957590B2 (en) 2018-11-16 2021-03-23 Applied Materials, Inc. Method for forming a layer
WO2020101861A1 (en) * 2018-11-16 2020-05-22 Applied Materials, Inc. Method for forming a layer
JP2022508040A (ja) * 2018-11-23 2022-01-19 オーティーアイ ルミオニクス インコーポレーテッド 光透過領域を含むオプトエレクトロニクスデバイス
KR20200093737A (ko) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
WO2020178804A1 (en) * 2019-03-07 2020-09-10 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN113950630A (zh) * 2019-04-18 2022-01-18 Oti照明公司 用于形成成核抑制涂层的材料和结合所述成核抑制涂层的装置
KR20220017918A (ko) * 2019-05-08 2022-02-14 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
KR102650716B1 (ko) * 2019-10-21 2024-03-25 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN110867523A (zh) * 2019-10-30 2020-03-06 深圳市华星光电半导体显示技术有限公司 显示面板及其制造方法
KR20220131245A (ko) * 2019-12-24 2022-09-27 오티아이 루미오닉스 인크. 캡핑 층을 포함하는 발광 장치 및 그 제조방법
CN111146363B (zh) * 2020-01-02 2022-11-01 京东方科技集团股份有限公司 一种显示装置及其制备方法
CN111312924A (zh) * 2020-02-26 2020-06-19 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
JPWO2021172371A1 (ja) 2020-02-26 2021-09-02
US20230141768A1 (en) * 2020-04-09 2023-05-11 Oti Lumionics Inc. Display panel having blind hole to accomodate signals exchanged with under-display component
JPWO2022004493A1 (ja) 2020-06-30 2022-01-06
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
JP2022104577A (ja) 2020-12-28 2022-07-08 大日本印刷株式会社 有機デバイス、マスク群、マスク、及び有機デバイスの製造方法
JP2022104578A (ja) 2020-12-28 2022-07-08 大日本印刷株式会社 有機デバイス、マスク群、マスク、及び有機デバイスの製造方法
CN113054133B (zh) * 2021-03-09 2022-09-16 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113053978B (zh) * 2021-03-12 2022-09-27 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113061842A (zh) * 2021-03-19 2021-07-02 合肥维信诺科技有限公司 掩膜版、掩膜版的制作方法以及显示面板的制作方法
KR20220134367A (ko) 2021-03-26 2022-10-05 주식회사 랩토 핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자
KR20220134849A (ko) 2021-03-26 2022-10-06 주식회사 랩토 핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자
CN113073292B (zh) * 2021-03-26 2023-01-31 昆山工研院新型平板显示技术中心有限公司 图案结构制作方法和掩膜结构
KR20220135161A (ko) 2021-03-26 2022-10-06 주식회사 랩토 핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자
CN113410411B (zh) * 2021-06-17 2023-04-07 昆山工研院新型平板显示技术中心有限公司 发光器件、发光器件的制造方法及显示面板
CN113540389B (zh) * 2021-07-19 2024-02-02 昆山梦显电子科技有限公司 一种oled阳极的制备方法
JP2023124719A (ja) 2022-02-25 2023-09-06 大日本印刷株式会社 電子デバイス及びその製造方法
JP2024004358A (ja) 2022-06-28 2024-01-16 大日本印刷株式会社 電子デバイス及び電子デバイスの製造方法
WO2024003849A1 (en) * 2022-07-01 2024-01-04 Oti Lumionics Inc. Opto-electronic device with patterned metal and metal fluoride injection layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220656A (ja) 2000-11-22 2002-08-09 Sanyo Electric Co Ltd 蒸着用マスクおよびその製造方法
JP2011048962A (ja) 2009-08-26 2011-03-10 Canon Inc 有機el表示装置
US20120104422A1 (en) 2010-10-28 2012-05-03 Samsung Mobile Display Co., Ltd. Organic light emitting display device and method of manufacturing the same

Family Cites Families (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022928A (en) 1975-05-22 1977-05-10 Piwcyzk Bernhard P Vacuum deposition methods and masking structure
JPH05307997A (ja) 1992-04-30 1993-11-19 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
US6016033A (en) 1997-07-11 2000-01-18 Fed Corporation Electrode structure for high resolution organic light-emitting diode displays and method for making the same
KR100269878B1 (ko) * 1997-08-22 2000-12-01 윤종용 반도체소자의금속배선형성방법
US6391769B1 (en) * 1998-08-19 2002-05-21 Samsung Electronics Co., Ltd. Method for forming metal interconnection in semiconductor device and interconnection structure fabricated thereby
US6465115B2 (en) 1998-12-09 2002-10-15 Eastman Kodak Company Electroluminescent device with anthracene derivatives hole transport layer
JP4434411B2 (ja) 2000-02-16 2010-03-17 出光興産株式会社 アクティブ駆動型有機el発光装置およびその製造方法
ATE441726T1 (de) 2000-02-23 2009-09-15 Hope City Pyrophosphorolyse-aktivierte polymerisierung (pap): anwendung für allel-spezifische amplifizierung und sequenzbestimmung von nukleinsäuren
IL150429A0 (en) 2000-03-06 2002-12-01 Fumakilla Ltd Fan type chemicals diffusing device
US6439083B1 (en) 2000-03-23 2002-08-27 Dbm Innovation, Inc. Universal spring tool
US6602782B2 (en) * 2000-05-31 2003-08-05 Samsung Electronics Co., Ltd. Methods for forming metal wiring layers and metal interconnects and metal interconnects formed thereby
US7363308B2 (en) 2000-12-28 2008-04-22 Fair Isaac Corporation System and method for obtaining keyword descriptions of records from a large database
KR100399417B1 (ko) * 2001-01-08 2003-09-26 삼성전자주식회사 반도체 집적 회로의 제조 방법
US6407408B1 (en) 2001-03-12 2002-06-18 Universal Display Corporation Method for patterning devices
US6900470B2 (en) 2001-04-20 2005-05-31 Kabushiki Kaisha Toshiba Display device and method of manufacturing the same
SG143063A1 (en) 2002-01-24 2008-06-27 Semiconductor Energy Lab Light emitting device and method of manufacturing the same
US7986672B2 (en) 2002-02-25 2011-07-26 Qualcomm Incorporated Method and apparatus for channel quality feedback in a wireless communication
US7099299B2 (en) 2002-03-04 2006-08-29 Agency For Science, Technology And Research CDMA system with frequency domain equalization
US6835950B2 (en) 2002-04-12 2004-12-28 Universal Display Corporation Organic electronic devices with pressure sensitive adhesive layer
TWI271131B (en) * 2002-04-23 2007-01-11 Via Tech Inc Pattern fabrication process of circuit substrate
JP2003317971A (ja) 2002-04-26 2003-11-07 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
KR100446300B1 (ko) * 2002-05-30 2004-08-30 삼성전자주식회사 반도체 소자의 금속 배선 형성 방법
US7018713B2 (en) 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
US6995035B2 (en) 2003-06-16 2006-02-07 Eastman Kodak Company Method of making a top-emitting OLED device having improved power distribution
JP2005213623A (ja) 2004-01-30 2005-08-11 Seiko Epson Corp 成膜方法、金属膜、電子部品および電子機器
US7427783B2 (en) 2004-04-07 2008-09-23 Samsung Sdi Co., Ltd. Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode
JP4121514B2 (ja) 2004-07-22 2008-07-23 シャープ株式会社 有機発光素子、及び、それを備えた表示装置
KR100700643B1 (ko) 2004-11-29 2007-03-27 삼성에스디아이 주식회사 보조 전극 라인을 구비하는 유기전계발광소자 및 그의제조 방법
KR100712111B1 (ko) 2004-12-14 2007-04-27 삼성에스디아이 주식회사 보조 전극 라인을 구비하는 유기전계발광소자 및 그의제조 방법
JP5233074B2 (ja) 2005-03-02 2013-07-10 三菱レイヨン株式会社 金属パターン及び有機電子デバイスとその製造方法
US7947247B2 (en) * 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP2008544529A (ja) 2005-06-17 2008-12-04 イルミネックス コーポレーション 光発電ワイヤ
US20100193768A1 (en) * 2005-06-20 2010-08-05 Illuminex Corporation Semiconducting nanowire arrays for photovoltaic applications
US20070077349A1 (en) 2005-09-30 2007-04-05 Eastman Kodak Company Patterning OLED device electrodes and optical material
JP5420249B2 (ja) 2005-12-08 2014-02-19 メルク パテント ゲーエムベーハー 有機エレクトロルミネセンス素子のための新規な材料
JP4702136B2 (ja) 2006-03-28 2011-06-15 セイコーエプソン株式会社 発光装置および電子機器
KR101245217B1 (ko) 2006-06-12 2013-03-19 엘지디스플레이 주식회사 전계발광소자 및 그 제조방법
CN102903734B (zh) 2006-06-19 2015-07-15 索尼株式会社 发光显示装置及其制造方法
WO2008001577A1 (fr) 2006-06-30 2008-01-03 Pioneer Corporation pile solaire organique
EP1895608A3 (de) * 2006-09-04 2011-01-05 Novaled AG Organisches lichtemittierendes Bauteil und Verfahren zum Herstellen
GB2444491A (en) * 2006-12-06 2008-06-11 Univ Muenster Wilhelms Selective growth of organic molecules
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
US7839083B2 (en) 2007-02-08 2010-11-23 Seiko Epson Corporation Light emitting device and electronic apparatus
US20080265377A1 (en) 2007-04-30 2008-10-30 International Business Machines Corporation Air gap with selective pinchoff using an anti-nucleation layer
DE102007024850A1 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2009004560A2 (en) 2007-07-04 2009-01-08 Koninklijke Philips Electronics N.V. A method for forming a patterned layer on a substrate
KR20090011831A (ko) 2007-07-27 2009-02-02 삼성전자주식회사 표시장치 및 그 제조방법
KR101432110B1 (ko) 2007-09-11 2014-08-21 삼성디스플레이 주식회사 유기 발광 장치 및 그 제조 방법
KR100875103B1 (ko) 2007-11-16 2008-12-19 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
US8647754B2 (en) 2007-12-28 2014-02-11 Idemitsu Kosan Co., Ltd. Aromatic diamine derivative and organic electroluminescent device using the same
KR20140056245A (ko) 2008-03-19 2014-05-09 이데미쓰 고산 가부시키가이샤 안트라센 유도체, 발광 재료 및 유기 전기발광 소자
JP5890177B2 (ja) 2008-06-02 2016-03-22 スリーエム イノベイティブ プロパティズ カンパニー 接着剤封入組成物及びそれを用いて作製される電子デバイス
KR101415794B1 (ko) 2008-06-12 2014-07-11 삼성디스플레이 주식회사 유기전계 발광 표시장치 및 그 제조방법
JP5950079B2 (ja) 2008-10-21 2016-07-13 オーエルイーディーワークス ゲーエムベーハーOLEDWorks GmbH 透明oledデバイス
KR20100054630A (ko) 2008-11-14 2010-05-25 엘지디스플레이 주식회사 유기 박막 트랜지스터와 이의 제조방법 그리고 이를 이용한표시장치
DE102008061843B4 (de) 2008-12-15 2018-01-18 Novaled Gmbh Heterocyclische Verbindungen und deren Verwendung in elektronischen und optoelektronischen Bauelementen
DE102008064200A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
KR101147428B1 (ko) 2009-02-09 2012-05-23 삼성모바일디스플레이주식회사 유기 발광 표시 장치
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
US8178427B2 (en) * 2009-03-31 2012-05-15 Commissariat A. L'energie Atomique Epitaxial methods for reducing surface dislocation density in semiconductor materials
JP2010258410A (ja) 2009-04-02 2010-11-11 Mitsubishi Rayon Co Ltd 金属膜のパターン形成方法及び部材
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009034625A1 (de) 2009-07-27 2011-02-03 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
KR101084171B1 (ko) 2009-08-10 2011-11-17 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치 및 유기 발광 디스플레이 장치의 제조 방법
EP2468731B1 (en) 2009-08-21 2014-11-05 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
KR100991105B1 (ko) 2009-10-23 2010-11-01 한국기계연구원 자기패턴된 전도성 패턴과 도금을 이용한 고전도도 미세패턴 형성방법
KR101074803B1 (ko) 2009-11-24 2011-10-19 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101193186B1 (ko) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치
KR101640772B1 (ko) 2010-06-10 2016-07-19 삼성전자주식회사 무선 전력 수신기의 송전 영역 유도 장치 및 방법
EP2583328B1 (en) 2010-06-18 2017-08-02 OLEDWorks GmbH Transparent light emitting device with controlled emission
US9254506B2 (en) 2010-07-02 2016-02-09 3M Innovative Properties Company Moisture resistant coating for barrier films
US20120018770A1 (en) 2010-07-23 2012-01-26 Min-Hao Michael Lu Oled light source having improved total light emission
US8467177B2 (en) 2010-10-29 2013-06-18 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices
KR101889918B1 (ko) 2010-12-14 2018-09-21 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 이의 제조 방법
US8927308B2 (en) 2011-05-12 2015-01-06 Universal Display Corporation Method of forming bus line designs for large-area OLED lighting
KR101407587B1 (ko) 2011-06-02 2014-06-13 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
KR20130022986A (ko) 2011-08-26 2013-03-07 엘지디스플레이 주식회사 유기전계 발광표시장치
US8963137B2 (en) 2011-09-02 2015-02-24 Lg Display Co., Ltd. Organic light-emitting display device and method of fabricating the same
US20130056784A1 (en) 2011-09-02 2013-03-07 Lg Display Co., Ltd. Organic Light-Emitting Display Device and Method of Fabricating the Same
CN103890993A (zh) 2011-10-28 2014-06-25 皇家飞利浦有限公司 具有结构化的阴极的透明oled设备和制造这样的oled设备的方法
KR20130053053A (ko) 2011-11-14 2013-05-23 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조방법
JP2013219278A (ja) * 2012-04-11 2013-10-24 Shin Etsu Polymer Co Ltd 有機エレクトロルミネッセンス素子
KR101931176B1 (ko) 2012-06-11 2018-12-21 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
EP2875092B1 (de) 2012-07-23 2017-02-15 Merck Patent GmbH Verbindungen und organische elektrolumineszierende vorrichtungen
US8940568B2 (en) 2012-08-31 2015-01-27 Universal Display Corporation Patterning method for OLEDs
US9059427B2 (en) 2012-09-11 2015-06-16 Apple Inc. Device and method for top emitting AMOLED
US9385172B2 (en) 2012-10-19 2016-07-05 Universal Display Corporation One-way transparent display
KR20140050994A (ko) 2012-10-22 2014-04-30 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그 제조 방법
US10439081B2 (en) 2012-11-06 2019-10-08 Oti Lumionics Inc. Method for depositing a conductive coating on a surface
KR101994816B1 (ko) 2012-11-14 2019-07-01 엘지디스플레이 주식회사 투명 유기발광소자
KR20140067527A (ko) * 2012-11-26 2014-06-05 삼성디스플레이 주식회사 표시 장치 및 유기 발광 표시 장치
KR102059940B1 (ko) 2012-11-29 2019-12-30 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102090555B1 (ko) 2012-12-27 2020-03-18 엘지디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR102020805B1 (ko) 2012-12-28 2019-09-11 엘지디스플레이 주식회사 투명 유기 발광 표시 장치 및 투명 유기 발광 표시 장치 제조 방법
KR20140088369A (ko) 2013-01-02 2014-07-10 삼성디스플레이 주식회사 유기 발광 표시 장치
US9310843B2 (en) 2013-01-02 2016-04-12 Apple Inc. Electronic devices with light sensors and displays
KR20140088731A (ko) 2013-01-03 2014-07-11 삼성디스플레이 주식회사 마스크 및 그 마스크 세정 방법과 그 마스크를 이용한 복수의 유기전계발광소자 제조 방법
KR102017118B1 (ko) 2013-01-03 2019-09-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP5584319B2 (ja) 2013-02-08 2014-09-03 株式会社東芝 有機電界発光素子、照明装置及び照明システム
KR102023896B1 (ko) 2013-02-15 2019-09-24 삼성디스플레이 주식회사 표시기판 및 그 제조방법
KR101548304B1 (ko) 2013-04-23 2015-08-28 엘지디스플레이 주식회사 유기 전계 발광 표시장치 및 그 제조방법
KR101606558B1 (ko) 2013-05-02 2016-03-28 삼성디스플레이 주식회사 유기발광 디스플레이 장치, 그 제조방법 및 제조에 사용되는 마스크
KR102083983B1 (ko) 2013-05-29 2020-03-04 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR102056865B1 (ko) 2013-05-29 2020-01-15 삼성디스플레이 주식회사 표시 장치용 필름 및 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법
KR102085320B1 (ko) 2013-06-18 2020-03-06 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102131248B1 (ko) 2013-07-04 2020-07-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102117607B1 (ko) 2013-07-23 2020-06-02 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
KR102092705B1 (ko) 2013-08-16 2020-03-25 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
KR102155736B1 (ko) 2013-09-13 2020-09-15 삼성디스플레이 주식회사 유기 발광 표시장치 및 그 제조방법
JP6211873B2 (ja) 2013-09-30 2017-10-11 株式会社ジャパンディスプレイ 有機el表示装置及び有機el表示装置の製造方法
KR102227455B1 (ko) 2013-10-08 2021-03-11 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20150061921A (ko) 2013-11-28 2015-06-05 엘지디스플레이 주식회사 유기전계발광표시장치
US9478591B2 (en) 2013-12-23 2016-10-25 Lg Display Co., Ltd. Organic light emitting display device and repair method thereof
CN104752619A (zh) 2013-12-26 2015-07-01 东丽先端材料研究开发(中国)有限公司 有机发光元件
EP3122841A4 (en) 2014-03-25 2017-11-01 Molecular Glasses, Inc. Pi-conjugated semiconductive organic glass mixtures for oled and oeds
KR102207605B1 (ko) 2014-05-07 2021-01-25 엘지디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
CN104037359B (zh) 2014-06-20 2017-01-25 上海和辉光电有限公司 一种oled阴极结构及其制造方法
US20150376768A1 (en) 2014-06-30 2015-12-31 Palo Alto Research Center Incorporated Systems and methods for implementing digital vapor phase patterning using variable data digital lithographic printing techniques
US9806279B2 (en) 2014-07-08 2017-10-31 Lg Display Co., Ltd. Organic light emitting display device comprising auxiliary electrode having void therein and manufacturing method thereof
US10181573B2 (en) 2014-07-11 2019-01-15 Lg Display Co., Ltd. Organic light-emitting diode display device and method of fabricating the same
US9570471B2 (en) 2014-08-05 2017-02-14 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR102192589B1 (ko) * 2014-08-08 2020-12-18 삼성디스플레이 주식회사 플렉서블 디스플레이 장치
US10032843B2 (en) 2014-09-11 2018-07-24 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
EP2998997B1 (en) 2014-09-17 2020-01-08 LG Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
JP2016081562A (ja) 2014-10-09 2016-05-16 ソニー株式会社 表示装置、表示装置の製造方法および電子機器
KR102273654B1 (ko) 2014-10-08 2021-07-06 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102290785B1 (ko) 2014-11-18 2021-08-19 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102374833B1 (ko) 2014-11-25 2022-03-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN105633297B (zh) 2014-11-25 2018-04-20 乐金显示有限公司 透视有机发光显示装置及其制造方法
KR20160076179A (ko) 2014-12-22 2016-06-30 삼성디스플레이 주식회사 전계발광 디스플레이 장치 및 그 구동 방법
US20160211454A1 (en) 2015-01-20 2016-07-21 Samsung Display Co., Ltd. Organic light-emitting device
KR102394427B1 (ko) 2015-04-02 2022-05-04 엘지디스플레이 주식회사 유기발광표시장치 및 이를 제조하는 방법
US10056440B2 (en) 2015-05-28 2018-08-21 Lg Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR102483434B1 (ko) 2015-05-28 2022-12-30 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102555656B1 (ko) 2015-05-29 2023-07-14 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102458597B1 (ko) 2015-06-30 2022-10-25 엘지디스플레이 주식회사 유기발광다이오드 표시장치 및 그 제조방법
TWI599556B (zh) 2015-07-03 2017-09-21 友達光電股份有限公司 有機發光元件
CN105097877A (zh) 2015-07-06 2015-11-25 上海和辉光电有限公司 一种透明显示器及其制造方法
KR102348876B1 (ko) 2015-07-29 2022-01-10 엘지디스플레이 주식회사 유기발광 표시장치
KR102427672B1 (ko) * 2015-08-11 2022-08-02 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
KR102405695B1 (ko) 2015-08-31 2022-06-03 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20170030168A (ko) 2015-09-09 2017-03-17 대림산업 주식회사 용존공기 부상법과 입상 산화철 공정을 결합한 해수 담수화 설비용 전처리 장치
CN105094451A (zh) 2015-09-18 2015-11-25 上海和辉光电有限公司 一种透明显示设备
CN105206650A (zh) 2015-10-10 2015-12-30 上海和辉光电有限公司 一种透明显示面板及其制造方法
KR102500273B1 (ko) * 2015-10-19 2023-02-16 삼성디스플레이 주식회사 표시 장치
CN108496260B (zh) 2015-10-26 2020-05-19 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
KR102465826B1 (ko) 2015-10-29 2022-11-09 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102448611B1 (ko) 2015-10-30 2022-09-27 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102397686B1 (ko) 2015-10-30 2022-05-12 엘지디스플레이 주식회사 유기 발광 표시 장치
KR101795579B1 (ko) 2015-11-10 2017-11-08 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102552272B1 (ko) 2015-11-20 2023-07-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102469949B1 (ko) 2015-11-30 2022-11-22 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102484645B1 (ko) 2015-12-15 2023-01-03 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102506532B1 (ko) 2015-12-17 2023-03-03 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102481737B1 (ko) 2015-12-23 2022-12-27 엘지디스플레이 주식회사 유기전계발광표시 장치
KR102458907B1 (ko) 2015-12-29 2022-10-25 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20170113066A (ko) 2016-03-24 2017-10-12 삼성전자주식회사 디스플레이를 가진 전자 장치 및 그의 이미지 표시 방법
KR102606277B1 (ko) 2016-04-06 2023-11-27 삼성디스플레이 주식회사 유기 발광 소자
EP3240036B1 (en) 2016-04-29 2024-05-01 LG Display Co., Ltd. Organic light-emitting display device and method of manufacturing the same
KR102627284B1 (ko) 2016-05-12 2024-01-22 엘지디스플레이 주식회사 캐소드 전극과 보조 캐소드 전극의 접속구조 형성 방법과 그를 이용한 유기발광 다이오드 표시장치
KR102525501B1 (ko) 2016-05-23 2023-04-24 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102521254B1 (ko) 2016-06-01 2023-04-17 삼성디스플레이 주식회사 표시 패널 및 이의 제조 방법
KR102354865B1 (ko) 2016-06-28 2022-01-25 삼성디스플레이 주식회사 표시장치
CN107565041B (zh) 2016-06-30 2019-12-31 乐金显示有限公司 有机发光显示装置及其制造方法
KR102651858B1 (ko) 2016-07-04 2024-03-28 삼성디스플레이 주식회사 유기 발광 표시 패널
KR102543639B1 (ko) 2016-07-18 2023-06-15 삼성디스플레이 주식회사 표시 패널, 이의 제조 방법 및 이를 구비하는 표시 장치
KR102650330B1 (ko) 2016-08-24 2024-03-21 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102656232B1 (ko) 2016-08-31 2024-04-09 엘지디스플레이 주식회사 유기 발광 어레이 및 이를 이용한 유기 발광 표시 장치
KR102576557B1 (ko) 2016-09-21 2023-09-11 삼성디스플레이 주식회사 유기 발광 표시 장치
US10224386B2 (en) 2016-09-23 2019-03-05 Apple Inc. Display with power supply mesh
CN106206995B (zh) 2016-09-30 2018-08-14 昆山工研院新型平板显示技术中心有限公司 一种有机发光二极管散射层的制备方法及其产品
KR20180036434A (ko) 2016-09-30 2018-04-09 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102602164B1 (ko) 2016-10-12 2023-11-14 삼성디스플레이 주식회사 유기 발광 표시 장치
KR20180046229A (ko) 2016-10-27 2018-05-08 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20180047584A (ko) 2016-10-31 2018-05-10 엘지디스플레이 주식회사 보조 전극을 포함하는 디스플레이 장치
KR20180047578A (ko) 2016-10-31 2018-05-10 엘지디스플레이 주식회사 보조 전극을 포함하는 디스플레이 장치
KR20180062284A (ko) 2016-11-30 2018-06-08 엘지디스플레이 주식회사 유기 발광 표시 장치
KR20230144094A (ko) 2016-12-02 2023-10-13 오티아이 루미오닉스 인크. 방출 영역 위에 배치된 전도성 코팅을 포함하는 디바이스 및 이를 위한 방법
KR20180066320A (ko) 2016-12-07 2018-06-19 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR20180066948A (ko) 2016-12-09 2018-06-20 삼성디스플레이 주식회사 유기 발광 표시 장치
KR20180068549A (ko) 2016-12-14 2018-06-22 엘지디스플레이 주식회사 유기발광 표시장치와 그의 제조방법
KR20180082808A (ko) 2017-01-11 2018-07-19 삼성전자주식회사 유기금속 화합물, 유기금속 화합물-함유 조성물 및 유기 발광 소자
KR20180088099A (ko) 2017-01-26 2018-08-03 삼성전자주식회사 전자 장치에 있어서 광 검출 장치 및 방법
KR102370355B1 (ko) 2017-03-09 2022-03-07 삼성디스플레이 주식회사 유기발광 표시장치
CN108630830B (zh) 2017-03-22 2020-10-23 上海和辉光电股份有限公司 透明oled显示面板及其制作方法
JP2018170152A (ja) 2017-03-29 2018-11-01 Tianma Japan株式会社 Oled表示装置の製造方法、マスク及びマスクの設計方法
KR102315502B1 (ko) 2017-04-14 2021-10-22 삼성디스플레이 주식회사 표시 기판
KR102563713B1 (ko) 2017-04-26 2023-08-07 오티아이 루미오닉스 인크. 표면의 코팅을 패턴화하는 방법 및 패턴화된 코팅을 포함하는 장치
KR20180121304A (ko) 2017-04-28 2018-11-07 (주)에스엔텍 소자 기판을 이용한 소자의 공정처리 수행방법
CN106992267A (zh) 2017-04-28 2017-07-28 深圳市华星光电技术有限公司 一种顶发射oled器件及制备方法、显示面板
EP3401701B1 (en) 2017-05-11 2021-08-11 ams AG Optical sensor arrangement
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
KR102446877B1 (ko) 2017-05-18 2022-09-23 삼성전자주식회사 디스플레이를 포함하는 전자 장치
CN106981585B (zh) 2017-05-23 2019-02-12 上海天马微电子有限公司 透明oled面板和显示装置
US10333098B2 (en) 2017-06-15 2019-06-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Transparent OLED display panel and manufacturing method thereof
CN110024366B (zh) 2017-07-07 2020-08-14 华为技术有限公司 一种具有摄像头的终端和拍摄方法
CN109299631B (zh) 2017-07-24 2021-03-23 华为技术有限公司 一种屏幕及终端
CN107564945A (zh) 2017-08-30 2018-01-09 上海天马微电子有限公司 透明显示面板、透明显示装置及透明显示面板的制作方法
CN107579102B (zh) 2017-08-31 2020-07-07 上海天马微电子有限公司 显示面板及显示装置
WO2019047126A1 (zh) 2017-09-07 2019-03-14 华为技术有限公司 一种有机发光显示oled屏幕及终端
US10636359B2 (en) 2017-09-21 2020-04-28 Apple Inc. OLED voltage driver with current-voltage compensation
WO2019062236A1 (zh) 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN109599030B (zh) 2017-09-30 2020-12-11 昆山国显光电有限公司 显示屏及电子产品
WO2019062223A1 (zh) 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏和电子产品
CN108389878B (zh) 2017-09-30 2022-01-25 昆山国显光电有限公司 显示屏及显示装置
WO2019062221A1 (zh) 2017-09-30 2019-04-04 云谷(固安)科技有限公司 显示屏及显示装置
CN107768407B (zh) 2017-10-19 2020-05-12 上海天马微电子有限公司 一种有机电致发光显示面板及显示装置
CN107808895B (zh) 2017-10-24 2019-10-01 深圳市华星光电半导体显示技术有限公司 透明oled显示器及其制作方法
KR102507742B1 (ko) 2017-10-30 2023-03-09 삼성전자주식회사 디스플레이를 포함하는 전자 장치
CN108010947B (zh) 2017-11-29 2021-01-08 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
KR102461360B1 (ko) 2017-12-15 2022-11-02 삼성디스플레이 주식회사 표시 장치 및 그의 제조 방법
CN110060578B (zh) 2018-01-19 2021-09-14 华为技术有限公司 终端设备和显示方法
KR102443229B1 (ko) 2018-01-23 2022-09-15 삼성전자주식회사 센서를 장착하기 위한 개구를 포함하는 디스플레이
CN108196388B (zh) 2018-02-12 2022-04-19 京东方科技集团股份有限公司 一种显示装置及其制造方法
CN110224003B (zh) 2018-03-01 2023-06-09 天马日本株式会社 显示装置
WO2019178782A1 (zh) 2018-03-21 2019-09-26 华为技术有限公司 一种显示屏及其制备方法、移动终端
US11073712B2 (en) 2018-04-10 2021-07-27 Apple Inc. Electronic device display for through-display imaging
US10983652B2 (en) 2018-04-13 2021-04-20 Samsung Electronics Co., Ltd. Display having opaque member disposed in area surrounded by pixels and electronic apparatus having the same
KR102664717B1 (ko) 2018-04-13 2024-05-10 삼성전자 주식회사 표시 영역에 의해 둘러싸인 홀 영역을 우회하는 복수의 배선들을 포함하는 디스플레이 및 이를 포함하는 전자 장치
CN108574054B (zh) 2018-04-17 2020-03-06 京东方科技集团股份有限公司 一种显示面板、显示装置和显示装置的制作方法
KR102528560B1 (ko) 2018-05-04 2023-05-04 삼성전자주식회사 디스플레이 드라이버, 디스플레이 시스템 및 디스플레이 드라이버의 동작 방법
CN108648679B (zh) 2018-05-18 2020-06-26 京东方科技集团股份有限公司 显示面板的驱动方法及装置、显示设备
CN108418928A (zh) 2018-05-23 2018-08-17 Oppo广东移动通信有限公司 电子装置
CN108376019A (zh) 2018-05-28 2018-08-07 Oppo广东移动通信有限公司 电子装置
CN108900659B (zh) 2018-05-28 2020-09-18 Oppo广东移动通信有限公司 电子装置
CN108881531A (zh) 2018-06-04 2018-11-23 Oppo广东移动通信有限公司 电子装置
CN108767136B (zh) 2018-06-05 2020-06-30 京东方科技集团股份有限公司 一种镜面显示屏和制备方法
WO2019242510A1 (zh) 2018-06-20 2019-12-26 京东方科技集团股份有限公司 显示基板及其驱动方法和显示装置
US11211587B2 (en) 2018-07-30 2021-12-28 Apple Inc. Organic light-emitting diode display with structured electrode
CN110767677A (zh) 2018-08-06 2020-02-07 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN110767674B (zh) 2018-08-06 2022-05-17 苏州清越光电科技股份有限公司 显示面板、显示屏及显示终端
CN110767672B (zh) 2018-08-06 2020-11-17 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
KR102598230B1 (ko) 2018-08-13 2023-11-03 삼성디스플레이 주식회사 표시 장치
JP6935374B2 (ja) 2018-08-31 2021-09-15 マイクロメトリックステクノロジーズプライベイトリミティッド アンダーディスプレイ型指紋認証用センサモジュールおよびアンダーディスプレイ型指紋認証装置
US10872939B2 (en) 2018-09-04 2020-12-22 Apple Inc. Viewing angle color shift control
US11177329B2 (en) 2018-09-04 2021-11-16 Apple Inc. Viewing angle color shift control
WO2020052232A1 (zh) 2018-09-14 2020-03-19 昆山国显光电有限公司 显示面板、显示屏和显示终端
CN110911440B (zh) 2018-09-14 2020-10-16 云谷(固安)科技有限公司 显示面板、显示屏和显示终端
CN109379454B (zh) 2018-09-17 2020-04-17 深圳奥比中光科技有限公司 电子设备
CN109461758B (zh) 2018-09-21 2021-07-16 华为技术有限公司 显示屏的制备方法、显示屏和终端
US10855892B2 (en) 2018-09-26 2020-12-01 Shenzhen GOODIX Technology Co., Ltd. Electronic apparatus, and light field imaging system and method with optical metasurface
KR20200036137A (ko) 2018-09-27 2020-04-07 삼성디스플레이 주식회사 표시 장치
KR20200039866A (ko) 2018-10-05 2020-04-17 삼성디스플레이 주식회사 표시 장치
GB201817037D0 (en) 2018-10-19 2018-12-05 Univ Warwick Selective depositon of metallic layers
CN109742132B (zh) 2019-02-28 2021-01-22 京东方科技集团股份有限公司 显示面板和显示装置
KR102625413B1 (ko) 2018-10-29 2024-01-17 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN110767682B (zh) 2018-10-31 2022-10-21 苏州清越光电科技股份有限公司 显示屏及显示终端
JP2022508040A (ja) 2018-11-23 2022-01-19 オーティーアイ ルミオニクス インコーポレーテッド 光透過領域を含むオプトエレクトロニクスデバイス
KR20200075996A (ko) 2018-12-18 2020-06-29 삼성디스플레이 주식회사 표시 장치
CN111369946A (zh) 2018-12-25 2020-07-03 华为终端有限公司 一种显示屏、移动终端及其控制方法
CN110767830A (zh) 2018-12-28 2020-02-07 云谷(固安)科技有限公司 透明oled基板、阵列基板、显示屏及显示装置
CN109448575B (zh) 2018-12-29 2020-12-29 上海天马微电子有限公司 一种透明显示面板和透明显示装置
KR20200082763A (ko) 2018-12-31 2020-07-08 엘지디스플레이 주식회사 투명 표시 장치
CN109817672B (zh) 2019-01-29 2020-12-29 京东方科技集团股份有限公司 有机电致发光显示基板及其制造方法、显示面板、装置
CN110767844B (zh) 2019-01-31 2022-06-03 云谷(固安)科技有限公司 阵列基板及其制造方法、显示屏及显示装置
CN110767708B (zh) 2019-01-31 2022-05-10 昆山国显光电有限公司 阵列基板、掩模板、显示面板和显示装置
CN110767709B (zh) 2019-02-02 2022-02-08 云谷(固安)科技有限公司 显示面板、显示屏及显示装置
CN109920931B (zh) 2019-03-04 2022-08-26 荣耀终端有限公司 显示终端、掩膜组件、蒸镀系统及其控制方法
CN110767713A (zh) 2019-03-08 2020-02-07 云谷(固安)科技有限公司 显示装置及其oled基板、oled透光基板
CN109830495B (zh) 2019-03-21 2021-10-08 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置及其成像方法
CN109817694B (zh) 2019-03-26 2021-09-07 京东方科技集团股份有限公司 有机发光显示面板及制作方法、显示装置
CN109979980A (zh) 2019-03-28 2019-07-05 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN109979979B (zh) 2019-03-28 2020-09-08 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN110767835B (zh) 2019-03-29 2021-01-26 昆山国显光电有限公司 透明显示面板、显示屏、显示装置及掩膜板
CN110048005B (zh) 2019-03-29 2020-06-16 武汉华星光电半导体显示技术有限公司 一种oled显示器件及其制备方法
CN109950293B (zh) 2019-04-10 2021-02-02 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110112182A (zh) 2019-04-10 2019-08-09 武汉华星光电半导体显示技术有限公司 Oled显示面板及制备方法
CN110767836B (zh) 2019-04-12 2020-08-25 昆山国显光电有限公司 半导体结构、显示面板及其制备方法和显示终端
KR20200129571A (ko) 2019-05-09 2020-11-18 삼성전자주식회사 센서를 포함하는 디스플레이 모듈을 포함하는 전자 장치 및 상기 디스플레이 모듈의 제조 방법
CN110767662B (zh) 2019-05-31 2020-10-27 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN110444125B (zh) 2019-06-25 2022-03-08 荣耀终端有限公司 显示屏、终端
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
CN210668382U (zh) 2019-06-27 2020-06-02 北京小米移动软件有限公司 显示面板、显示屏及电子设备
CN110144551B (zh) 2019-07-04 2022-05-10 京东方科技集团股份有限公司 一种蒸镀设备及蒸镀方法
CN110265474B (zh) 2019-07-22 2022-05-13 京东方科技集团股份有限公司 Oled显示基板及其制备方法和显示装置
CN110391348A (zh) 2019-07-23 2019-10-29 武汉华星光电半导体显示技术有限公司 一种显示面板和显示装置
CN110518034B (zh) 2019-07-24 2021-02-26 武汉华星光电半导体显示技术有限公司 Oled显示屏及其制作方法、oled显示装置
CN110416269B (zh) 2019-07-29 2022-02-18 云谷(固安)科技有限公司 一种显示面板和显示面板的制作方法
CN110429117A (zh) 2019-07-30 2019-11-08 武汉华星光电半导体显示技术有限公司 一种有机发光器件、显示装置及有机发光器件的制作方法
CN110473898B (zh) 2019-07-30 2021-10-08 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法
CN110473988B (zh) 2019-08-02 2020-11-10 武汉华星光电半导体显示技术有限公司 一种显示面板制程用掩模版及其应用
CN110491918A (zh) 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110459175A (zh) 2019-08-09 2019-11-15 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110570774A (zh) 2019-08-09 2019-12-13 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110491917A (zh) 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及电子设备
CN110492018A (zh) 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 一种显示装置
CN110783485B (zh) 2019-09-24 2021-06-18 昆山国显光电有限公司 透光显示面板、显示面板、制作方法、显示装置
CN110783484B (zh) 2019-09-24 2020-11-10 昆山国显光电有限公司 显示面板及其制作方法、显示装置
CN110634930B (zh) 2019-09-27 2022-02-25 京东方科技集团股份有限公司 显示面板和显示装置
CN110783486A (zh) 2019-10-10 2020-02-11 复旦大学 一种适用于屏下摄像头的显示面板
CN110727142B (zh) 2019-10-29 2023-04-28 Oppo广东移动通信有限公司 偏光片、显示屏以及电子设备
CN110767736A (zh) 2019-11-06 2020-02-07 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN110780375B (zh) 2019-11-15 2022-07-22 京东方科技集团股份有限公司 偏光片及其制备方法、显示面板、显示装置
CN110752249B (zh) 2019-11-20 2022-08-09 京东方科技集团股份有限公司 显示装置及其控制方法,显示面板
CN110718580A (zh) 2019-11-20 2020-01-21 Oppo广东移动通信有限公司 显示模组及电子设备
CN110828699B (zh) 2019-11-27 2022-03-08 昆山国显光电有限公司 显示面板及电子设备
CN110989861B (zh) 2019-11-27 2024-03-05 合肥维信诺科技有限公司 显示面板及其制造方法
CN110867527B (zh) 2019-11-27 2022-08-26 昆山国显光电有限公司 透光显示面板、显示面板、显示装置以及制作方法
CN111029381A (zh) 2019-12-09 2020-04-17 武汉华星光电半导体显示技术有限公司 有机发光显示面板及有机发光显示装置
CN111029382A (zh) 2019-12-13 2020-04-17 合肥维信诺科技有限公司 显示面板、多区域显示面板和显示装置
CN110923625A (zh) 2019-12-16 2020-03-27 京东方科技集团股份有限公司 掩膜模组、蒸镀系统及蒸镀方法及显示基板
CN111048564A (zh) 2019-12-18 2020-04-21 京东方科技集团股份有限公司 显示面板及显示装置
CN111020489A (zh) 2019-12-19 2020-04-17 武汉华星光电半导体显示技术有限公司 蒸镀装置、蒸镀方法以及显示装置
CN116363960A (zh) 2019-12-20 2023-06-30 京东方科技集团股份有限公司 显示面板和显示装置
CN111009619B (zh) 2019-12-24 2022-05-17 昆山国显光电有限公司 透光显示面板及其制作方法、显示面板
CN110956925A (zh) 2019-12-25 2020-04-03 北京集创北方科技股份有限公司 显示装置、电子设备和对显示面板进行老化补偿的方法
CN111142180A (zh) 2019-12-30 2020-05-12 Oppo广东移动通信有限公司 偏光片及其制作方法、显示屏组件和电子装置
CN111180490B (zh) 2019-12-31 2022-12-13 Oppo广东移动通信有限公司 显示屏及电子装置
CN111155055A (zh) 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组
CN111261641B (zh) 2020-01-22 2022-11-11 京东方科技集团股份有限公司 显示面板和显示装置
CN111524469A (zh) 2020-02-17 2020-08-11 京东方科技集团股份有限公司 显示装置及偏光片
CN111293235B (zh) 2020-02-17 2023-04-07 京东方科技集团股份有限公司 一种显示基板的制备方法、显示基板及显示装置
CN111293236B (zh) 2020-02-21 2022-07-12 京东方科技集团股份有限公司 Oled屏幕打孔方法
CN111292617B (zh) 2020-02-27 2021-06-29 昆山国显光电有限公司 一种显示面板及显示装置
CN111223908B (zh) 2020-02-29 2022-12-27 Oppo广东移动通信有限公司 屏下摄像显示模组以及电致发光显示屏
CN111341936B (zh) 2020-03-10 2021-11-12 昆山国显光电有限公司 一种显示面板及显示装置
CN111046599B (zh) 2020-03-17 2020-06-23 昆山国显光电有限公司 像素排布优化方法、装置、透光显示面板和显示面板
CN111403621A (zh) 2020-03-25 2020-07-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法、oled显示装置
CN111312795B (zh) 2020-04-02 2022-10-04 武汉华星光电半导体显示技术有限公司 显示装置、显示面板及其制作方法
CN111524460B (zh) 2020-04-26 2021-10-01 武汉华星光电半导体显示技术有限公司 显示面板、掩膜板和显示面板的制作方法
CN111584725A (zh) 2020-05-15 2020-08-25 武汉华星光电半导体显示技术有限公司 Oled的面板及其制造方法
CN111584748A (zh) 2020-05-20 2020-08-25 京东方科技集团股份有限公司 透明显示器件、仿真方法及制造方法
CN111755623B (zh) 2020-06-17 2022-07-12 武汉华星光电半导体显示技术有限公司 用于屏下摄像头的显示面板及其制造方法
CN111682120B (zh) 2020-06-22 2023-09-05 京东方科技集团股份有限公司 一种显示面板及其制备方法和显示装置
CN111668240B (zh) 2020-06-23 2022-10-04 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法、oled显示装置
CN111682055B (zh) 2020-06-24 2022-08-30 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板和显示装置
CN111755493B (zh) 2020-06-28 2022-08-23 武汉华星光电半导体显示技术有限公司 屏下摄像头的oled显示面板及其制备方法及显示装置
CN111739921B (zh) 2020-06-30 2024-03-05 联想(北京)有限公司 一种显示装置和电子设备
CN111640882B (zh) 2020-06-30 2022-09-16 湖北长江新型显示产业创新中心有限公司 一种显示面板及其制造方法、显示装置
CN111834547B (zh) 2020-07-08 2022-12-06 云谷(固安)科技有限公司 显示面板及其制备方法、显示装置及刮刀的制备方法
CN111799374B (zh) 2020-07-17 2023-04-25 京东方科技集团股份有限公司 显示面板、制备方法及其显示装置
CN111725288B (zh) 2020-07-17 2022-09-13 昆山国显光电有限公司 像素结构及显示面板
CN111863900A (zh) 2020-07-21 2020-10-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN111862875B (zh) 2020-07-27 2022-03-15 云谷(固安)科技有限公司 显示方法、显示面板、显示控制装置及存储介质
CN111739924A (zh) 2020-07-31 2020-10-02 京东方科技集团股份有限公司 显示面板和电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220656A (ja) 2000-11-22 2002-08-09 Sanyo Electric Co Ltd 蒸着用マスクおよびその製造方法
JP2011048962A (ja) 2009-08-26 2011-03-10 Canon Inc 有機el表示装置
US20120104422A1 (en) 2010-10-28 2012-05-03 Samsung Mobile Display Co., Ltd. Organic light emitting display device and method of manufacturing the same

Also Published As

Publication number Publication date
US11158802B2 (en) 2021-10-26
JP7016535B2 (ja) 2022-02-07
US20210280790A1 (en) 2021-09-09
CN111628101A (zh) 2020-09-04
US10270033B2 (en) 2019-04-23
KR20220150987A (ko) 2022-11-11
JP7464290B2 (ja) 2024-04-09
JP2022019924A (ja) 2022-01-27
JP2023153359A (ja) 2023-10-17
CA3002752A1 (en) 2017-05-04
US11335855B2 (en) 2022-05-17
US11088327B2 (en) 2021-08-10
JP2018533183A (ja) 2018-11-08
JP2022190123A (ja) 2022-12-22
US20210210687A1 (en) 2021-07-08
US20210210688A1 (en) 2021-07-08
CN108496260A (zh) 2018-09-04
US11785831B2 (en) 2023-10-10
US11706969B2 (en) 2023-07-18
WO2017072678A1 (en) 2017-05-04
US20230232700A1 (en) 2023-07-20
US20180226581A1 (en) 2018-08-09
KR20180075589A (ko) 2018-07-04
US20210273169A1 (en) 2021-09-02
US20220238806A1 (en) 2022-07-28
US20190181346A1 (en) 2019-06-13
US20220246853A1 (en) 2022-08-04
CN108496260B (zh) 2020-05-19
US11158803B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
JP7477203B2 (ja) パターン化されたコーティングを含む表面およびデバイス上のコーティングをパターン化する方法
US10700304B2 (en) Device including a conductive coating disposed over emissive regions and method therefor
US20230165124A1 (en) Method for patterning a coating on a surface and device including a patterned coating
TWI764676B (zh) 用於在表面上圖案化塗層之方法及包括經圖案化的塗層之裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7477203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150