WO2019242510A1 - 显示基板及其驱动方法和显示装置 - Google Patents

显示基板及其驱动方法和显示装置 Download PDF

Info

Publication number
WO2019242510A1
WO2019242510A1 PCT/CN2019/090404 CN2019090404W WO2019242510A1 WO 2019242510 A1 WO2019242510 A1 WO 2019242510A1 CN 2019090404 W CN2019090404 W CN 2019090404W WO 2019242510 A1 WO2019242510 A1 WO 2019242510A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
display
region
pixels
Prior art date
Application number
PCT/CN2019/090404
Other languages
English (en)
French (fr)
Inventor
王岩岩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810638716.2A external-priority patent/CN110619813B/zh
Priority claimed from CN201810639832.6A external-priority patent/CN110620129B/zh
Priority claimed from CN201810714668.0A external-priority patent/CN110660823A/zh
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980000805.7A priority Critical patent/CN110914891B/zh
Priority to US16/644,791 priority patent/US11263968B2/en
Publication of WO2019242510A1 publication Critical patent/WO2019242510A1/zh
Priority to US17/578,175 priority patent/US11600230B2/en
Priority to US18/158,254 priority patent/US20230162683A1/en
Priority to US18/100,427 priority patent/US20230162682A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • At least one embodiment of the present disclosure relates to a display substrate, a driving method thereof, and a display device.
  • At least one embodiment of the present disclosure relates to a display substrate, a driving method thereof, and a display device.
  • At least one embodiment of the present disclosure provides a display substrate including a first display sub-region, the first display sub-region including a plurality of first repeating regions, each of the plurality of first repeating regions including adjacent A first pixel unit and a second pixel unit, the first pixel unit including a first sub-pixel and a second sub-pixel, the second pixel unit including a second sub-pixel and a third sub-pixel; and a second display A sub-region, the second display sub-region includes a plurality of second repeating regions, each of the plurality of second repeating regions includes a third pixel unit and a first transparent pixel, and the third pixel unit includes a first sub-region A pixel, a second sub-pixel, and a third sub-pixel; the first transparent pixel is configured to make the pixel density of the second display sub-region smaller than the pixel density of the first display sub-region, and make the second display sub-region
  • the light transmittance of the display sub-region is greater than the light transmittance of the first
  • the area of the first transparent pixel is greater than or equal to the area of at least one of the first sub-pixel and the second sub-pixel of the first pixel unit, and the area of the first transparent pixel is greater than or equal to An area of at least one of the second sub-pixel and the third sub-pixel of the second pixel unit.
  • the area of the first transparent pixel is greater than or equal to the sum of the areas of a first subpixel, a second subpixel, and a third subpixel in the first display subregion.
  • the area of the first transparent pixel is greater than or equal to the area of at least one of a first subpixel, a second subpixel, and a third subpixel within the second display subregion.
  • the area of the first transparent pixel is greater than or equal to the sum of the areas of the first subpixel, the second subpixel, and the third subpixel in the third pixel unit.
  • a first transparent pixel is disposed between the third pixel units adjacent in the row direction to form a first transparent pixel column.
  • the area and shape of the first transparent pixel are the same as the area and shape of a second sub-pixel in the first display sub-region, respectively.
  • a first transparent pixel is provided between the third pixel units adjacent in the column direction to form a first transparent pixel row.
  • a plurality of first transparent pixels are provided on both sides in a row direction and both sides in a column direction of the third pixel unit.
  • a plurality of first transparent pixels are provided on both sides of a row direction and columns of at least one of the first subpixel, the second subpixel, and the third subpixel in the third pixel unit. In both directions.
  • the sub-pixels in the second display sub-region and some of the sub-pixels in the first display sub-region are located in the same column.
  • the sub-pixels in the second display sub-region and some of the sub-pixels in the first display sub-region are located in the same row.
  • the first transparent pixel includes a first transparent sub-pixel, a second transparent sub-pixel, and a third transparent sub-pixel.
  • the first transparent sub-pixel and the first sub-pixel in the first display sub-region have the same area and the same shape
  • the second transparent sub-pixel and one in the first display sub-region have the same area and the same shape
  • the third transparent sub-pixel and the third sub-pixel in the first display sub-region have the same area and the same shape.
  • the display substrate includes a plurality of first transparent pixels that form at least one of a plurality of transparent sub-pixel columns and a plurality of transparent sub-pixel rows.
  • the plurality of first transparent pixels form a plurality of transparent sub-pixel columns and a plurality of transparent sub-pixel rows, and the plurality of transparent sub-pixel columns and the plurality of transparent sub-pixel rows intersect.
  • a third pixel unit other than the edge position of the second display sub-region is surrounded by at least two first transparent sub-pixels, four second transparent sub-pixels, and two third transparent sub-pixels.
  • At least one of the first subpixel, the second subpixel, and the third subpixel in a third pixel unit other than the edge position of the second display subregion is at least one The first transparent sub-pixel, two second transparent sub-pixels, and one third transparent sub-pixel are surrounded.
  • a line connecting the centers of two adjacent sub-pixels in the row direction passes through the center of a transparent sub-pixel located between the two sub-pixels.
  • the transparent sub-pixel includes the first transparent sub-pixel, the second transparent sub-pixel, or the third transparent One of the sub-pixels.
  • a line connecting the centers of two sub-pixels adjacent in the column direction passes the center of a transparent sub-pixel located between the two sub-pixels.
  • the center of the third sub-pixel of the second pixel unit is at the midpoint of the line connecting the center of the second sub-pixel of the first pixel unit and the second sub-pixel of the second pixel unit with the first pixel.
  • the orthographic projection on the line between the centers of the first sub-pixels of the unit coincides with the mid-point of the line between the mid-point and the center of the first sub-pixel of the first pixel unit.
  • each first repeating region is adjacent to and surrounded by the six first repeating regions.
  • an area of at least one of the first sub-pixel and the third sub-pixel is larger than the second sub-pixel and the second pixel unit of the first pixel unit An area of at least one of the second sub-pixels.
  • the second sub-pixel and the first sub-pixel are arranged in a direction parallel to an extending direction of the third sub-pixel.
  • the second sub-pixel and the first sub-pixel of the third pixel unit are located between the first transparent pixel and the third sub-pixel.
  • the first subpixel, the second subpixel, and the third subpixel in the third pixel unit are sequentially arranged; or, the first subpixel, the second subpixel, and the third subpixel in the third pixel unit are sequentially arranged.
  • the line connecting the centers of the pixels forms a triangle.
  • the display substrate further includes a first power line and a second power line, the first power line is connected to the first pixel unit and the second pixel unit, and the second power line is connected to the third pixel
  • the units are connected, and the first power line and the second power line are insulated from each other.
  • the display substrate further includes a power supply voltage adjustment section configured to adjust a first voltage signal of the third pixel unit when a display grayscale is greater than a first grayscale, and the first voltage signal is Increase or decrease.
  • the display substrate further includes a transition display sub-region, which is located between the second display sub-region and the first display sub-region, and the transition display sub-region includes a plurality of third repeating regions, Each of the plurality of third regions includes a fourth pixel unit and a second transparent pixel.
  • the fourth pixel unit includes a first sub-pixel, a second sub-pixel, and a third sub-pixel. The area is smaller than the area of the first transparent pixel.
  • the light transmittance of the second display sub-region is smaller than the light transmittance of the transition display sub-region.
  • the distribution density of the second transparent pixel is smaller than the distribution density of the first transparent pixel.
  • the area of the second transparent pixel is greater than or equal to the area of at least one of the first subpixel, the second subpixel, and the third subpixel in the fourth pixel unit.
  • the display substrate includes a plurality of second transparent pixels, and the areas of the plurality of second transparent pixels are equal.
  • the third subpixel, the first subpixel, and the second subpixel are sequentially arranged, and the area of the second subpixel is smaller than that of the third subpixel. And an area of at least one of the first sub-pixels.
  • the second transparent pixel has the same area and shape as the second sub-pixel in the first display sub-region.
  • the first sub-pixels in the transition display sub-region and the first sub-pixels in the first display sub-region have the same area and the same shape; the first sub-pixels in the second display sub-region
  • the area of the sub-pixel is smaller than the area of the first sub-pixel in the first display sub-region.
  • the area of the second sub-pixel in the first display sub-region, the second sub-pixel in the second display sub-region, and the second sub-pixel in the transition display sub-region The same and the same shape; the third sub-pixel in the first display sub-region, the third sub-pixel in the second display sub-region, and the third sub-pixel in the transition display sub-region
  • the pixels have the same area and the same shape.
  • the display substrate includes a plurality of second transparent pixels, and the plurality of second transparent pixels includes a sequence including a direction from a position close to the first display sub-pixel to a position close to the second display sub-pixel. A first portion and a second portion, the first portion being larger than the area of the second portion.
  • the display substrate includes a plurality of second transparent pixels, and the plurality of second transparent pixels includes a sequence including a direction from a position close to the first display sub-pixel to a position close to the second display sub-pixel.
  • the first part, the second part, and the third part, the areas of the first part, the second part, and the third part are sequentially reduced.
  • the display substrate further includes a grayscale voltage adjustment section configured to adjust the first subpixel, the first subpixel, the third pixel unit when the display grayscale is less than or equal to the first grayscale, Grayscale voltages of at least one of the first subpixel, the second subpixel, and the third subpixel in the second subpixel, the third subpixel, and the fourth pixel unit.
  • a grayscale voltage adjustment section configured to adjust the first subpixel, the first subpixel, the third pixel unit when the display grayscale is less than or equal to the first grayscale, Grayscale voltages of at least one of the first subpixel, the second subpixel, and the third subpixel in the second subpixel, the third subpixel, and the fourth pixel unit.
  • the display substrate further includes a first power line and a second power line, wherein the first power line is connected to the first pixel unit and the second pixel unit, and the second power line is connected to the third pixel A unit is connected to the fourth pixel unit, and the first power line and the second power line are insulated from each other.
  • the sub-pixels in the transition display sub-region and some of the sub-pixels in the first display sub-region are located in the same row.
  • the sub-pixels in the transition display sub-region and some of the sub-pixels in the first display sub-region are located in the same column.
  • one of the first subpixel and the third subpixel is a blue subpixel, the other is a red subpixel, and the second subpixel is a green subpixel.
  • At least one embodiment of the present disclosure also provides a display device including any one of the above display substrates.
  • At least one embodiment of the present disclosure further provides a method for driving a display substrate, including: driving the first pixel unit and the second pixel unit in a sub-pixel rendering manner; and the first sub-unit in the third pixel unit.
  • the pixel, the second sub-pixel, and the third sub-pixel each display a sub-pixel with a large luminance of the same color corresponding to two adjacent pixels in an image to be displayed corresponding to the third pixel unit.
  • the method further includes adjusting a gray scale of at least one of the first subpixel, the second subpixel, and the third subpixel in the third pixel unit when the display grayscale is less than or equal to the first grayscale. Step voltage.
  • the method further includes adjusting a first voltage signal of the third pixel unit when the display gray level is greater than the first gray level, and the first voltage signal is turned up or down.
  • At least one embodiment of the present disclosure further provides a method for driving a display substrate, including: driving the first pixel unit and the second pixel unit in a sub-pixel rendering manner; and the first sub-unit in the third pixel unit.
  • the pixel, the second sub-pixel, and the third sub-pixel respectively display a sub-pixel with a large luminance of the same color corresponding to two adjacent pixels in the image to be displayed corresponding to the third pixel unit; the The first subpixel, the second subpixel, and the third subpixel in a fourth pixel unit respectively display corresponding ones of two adjacent pixels in an image to be displayed corresponding to the fourth pixel unit. Subpixels with the same brightness and high brightness.
  • FIG. 1A is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • 1B-1S are schematic diagrams of a display substrate provided by some embodiments of the present disclosure.
  • FIG. 2A is a schematic diagram of a display substrate provided by another embodiment of the present disclosure.
  • 2B-2L are partial schematic diagrams of a display substrate provided by some embodiments of the present disclosure.
  • 3A is a schematic diagram of a pixel circuit of a display substrate
  • 3B is a schematic plan view of a display substrate according to an embodiment of the present disclosure.
  • 3C is a timing signal diagram of a pixel unit in a display substrate provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • 5A is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • 5B is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of an image to be displayed in a method for driving a display substrate according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a driving method of different regions in a method for driving a display substrate according to an embodiment of the present disclosure
  • FIG. 9 is a demonstration diagram when a display substrate according to an embodiment of the present disclosure is scanned.
  • FIG. 10 is a schematic structural diagram of a high-precision metal mask provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of pixels corresponding to each sub-pixel in the initial image pixel data in the display method provided by the embodiment of the present disclosure.
  • FIG. 12A is one of the schematic diagrams of reference pixels corresponding to each sub-pixel in the initial image pixel data in the display method provided by the embodiment of the present disclosure.
  • FIG. 12B is a second schematic diagram of a reference pixel corresponding to each sub-pixel in the initial picture pixel data in the display method provided by the embodiment of the present disclosure
  • 12C is a third schematic diagram of a reference pixel corresponding to each sub-pixel in the initial image pixel data in the display method provided by the embodiment of the present disclosure.
  • FIG. 12D is a fourth schematic diagram of a reference pixel corresponding to each sub-pixel in the initial image pixel data in the display method provided by the embodiment of the present disclosure.
  • the pixel distribution density of the area where the camera is provided in the display substrate is reduced to achieve partial transparency.
  • FIG. 1A is a schematic diagram of a display substrate.
  • the display substrate includes a first display sub-region A1 and a second display sub-region A2.
  • a solution for setting a camera under the screen may be adopted, that is, the camera is arranged in the second display sub-region of the display substrate by reducing the pixel distribution density of the second display sub-region A2 and increasing the screen transmittance.
  • the pixel distribution density of the second display sub-region A2 is reduced, the brightness of the second display sub-region A2 will be lower than that of the surrounding area (the first display sub-region A1), so that the second display sub-region A2 is clearly visible at the boundary. dark zone.
  • the embodiment of the present disclosure shown in FIG. 1A is described by taking the second display sub-region A2 as a circular region and being located in the upper middle portion of the display substrate as an example, but is not limited thereto.
  • the second display sub-region A2 may adopt other shapes, and the position of the second display sub-region A2 may also be adjusted.
  • the display substrate may be adjusted to have another shape.
  • At least one embodiment of the present disclosure provides a display substrate, which can weaken the boundary between the second display sub-region A2 and the first display sub-region A1 and / or increase the light transmittance of the screen.
  • the pixel distribution density in the first display sub-region A1 is greater than the pixel distribution density in the second display sub-region A2.
  • the display area includes a first display sub-region with a large pixel distribution density (that is, high resolution) and a second display sub-region with a small pixel distribution density (that is, low resolution).
  • the pixel distribution density in the second display sub-region is small, so components such as cameras, sensors, and earphones can be set in the second display sub-region, that is, the display substrate is improved by reducing the local pixel distribution density to increase the screen transmittance. Screen ratio.
  • the pixel distribution density refers to the number of pixels uniformly arranged in a unit area. If the number of pixels set in a unit area is large, the pixel distribution density is large and the resolution is high. Conversely, if the number of pixels set in a unit area is small, the pixel distribution density is small and the resolution is low.
  • the specific calculation formula for the pixel distribution density is:
  • represents the pixel distribution density
  • x represents the number of display pixels in the row direction
  • y represents the number of display pixels in the column direction
  • S represents the screen area
  • the second display sub-region may be one or more.
  • the first display sub-region may be a continuous region, or the first display sub-region may also be a discontinuous region. This may be designed and determined according to an actual application environment, and is not limited herein.
  • the pixel distribution density in the second display sub-region is determined according to the elements to be set in the second display sub-region and display requirements, which is not limited herein. For example, taking a camera in the second display sub-region as an example, when the pixel distribution density is too large, a good display effect can be ensured, but the imaging clarity is affected, and when the pixel distribution density is too small, a high camera definition can be ensured, but Affects display. For example, with the current resolution capability of the display substrate, the pixel distribution density of the second display sub-region is generally not less than 1/4 of the pixel distribution density of the first display sub-region.
  • the pixel distribution density of the second display sub-region is 1/2, 1/3, or 1/4 of the pixel distribution density of the first display sub-region.
  • the ratio of the pixel distribution density of the second display sub-region to the pixel distribution density of the first display sub-region can be set smaller.
  • the area of the second display sub-region A2 can be made smaller than the area of the first display sub-region A1.
  • the area of the second display sub-region may be designed according to the components provided in the second display sub-region, which is not limited herein.
  • a pixel unit is provided in a general display area, and a plurality of sub-pixels are provided in the pixel unit.
  • a pixel refers to a combination of sub-pixels capable of independently displaying one pixel.
  • a pixel refers to a pixel unit. .
  • FIG. 1B to FIG. 1S are schematic partial structural diagrams of a display substrate provided by an embodiment of the present disclosure.
  • the first display sub-region A1 includes a plurality of first pixel units 10 and second pixel units 20 disposed adjacently.
  • the first pixel unit 10 includes a first sub-pixel 1 and a second sub-pixel 2
  • the second pixel unit 20 includes a third sub-pixel 3 and a second sub-pixel 2.
  • the number of pixels in the first display sub-region A1 is equal to the sum of the number of the first pixel units 10 and the number of the second pixel units 20. That is, the pixel arrangement in the first display sub-region A1 is a Pantile arrangement.
  • the pixel unit can achieve a resolution higher than the physical resolution by borrowing sub-pixels in adjacent pixel units.
  • the second display sub-region A2 includes a plurality of third pixel units 30.
  • the third pixel unit 30 includes a first sub-pixel 1, a second sub-pixel 2, and a third sub-pixel 3.
  • the number of pixels in the second display sub-region A2 during display is equal to the number of the third pixel units 30. That is, the physical resolution of the pixels in the second display sub-region A2 is its display resolution.
  • this embodiment only provides an arrangement manner of the third pixel units 30 in the second display sub-region, and the distribution density of the third pixel units 30 in the second display sub-region A2 is not limited herein.
  • the pixel unit may be a combination of sub-pixels displaying one pixel, for example, it may be a combination of two, three, four, or more sub-pixels among red, green, and blue sub-pixels. .
  • the pixel unit may be a basic repeating unit or a combination of pixels, for example, a combination of a red subpixel, a green subpixel, and a blue subpixel.
  • the adjacent first element and the second element mean that the first element and the second element are not provided between the first element and the second element.
  • the first element and the second element are the same element, no other element is disposed between the two identical elements.
  • another element different from the first element and the second element may be disposed between the adjacent first element and the second element.
  • the first subpixel, the second subpixel, and the third subpixel are generally one of a red subpixel, a green subpixel, and a blue subpixel, respectively.
  • the second sub-pixel is a green sub-pixel
  • the first sub-pixel is one of the red or blue sub-pixels
  • the third sub-pixel is one of the blue or red sub-pixels. another.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in the third pixel unit 30 are sequentially arranged.
  • the plurality of third pixel units 30 include a first type of third pixel unit and a second type of third pixel unit.
  • the first sub-pixel 1, the second type Sub-pixels 2 and third sub-pixels 3 are arranged in order from left to right, and first sub-pixel 1, second sub-pixel 2 and third sub-pixel 3 in third pixel unit of the second type are arranged in order from right to left. cloth.
  • FIG. 1B FIG. 1D, FIG. 1F, FIG. 1L, and FIG.
  • the second display sub-region A2 includes a third pixel unit of the first type; among the even-numbered rows of sub-pixels, the second The display sub-region A2 includes a third pixel unit of the second type.
  • a plurality of third pixel units of the first type and a plurality of third pixel units of the second type are alternately arranged.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 may be located in the same row. .
  • the sub-pixels in the second display sub-region A2 correspond to the sub-pixels in the first display sub-region A1 in the row direction, and are not set in wrong rows or columns.
  • it is equivalent to removing a part of the sub-pixels in the second display sub-region from the sub-pixel mask that is regularly arranged in the entire display region, and the production process is relatively easy to implement.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 are located in the same column.
  • This is equivalent to the sub-pixels in the second display sub-region A2 corresponding to the sub-pixels in the first display sub-region A1 in the column direction, and are not set in wrong rows or columns.
  • it is equivalent to removing a part of the sub-pixels in the second display sub-region from the sub-pixel mask that is regularly arranged in the entire display region, and the production process is relatively easy to implement. For example, as shown in FIG.
  • the second display sub-region A2 is equivalent to removing half of the second sub-pixel 2 compared with the first display sub-region A1, so that the resolution is 1/2 of the first display sub-region A1.
  • the second display sub-region A2 is equivalent to removing 3/4 of the second sub-pixel 2 and removing half of the first sub-pixel 1 and half of the third sub-pixel 3, thereby distinguishing The rate is 1/4 of the first display sub-region A1.
  • the removed sub-pixel mentioned above is replaced with a transparent sub-pixel or a first transparent pixel.
  • a light emitting area of a first sub-pixel 1 in the second display sub-region A2 is substantially equal to that in the first display sub-region A1.
  • the light-emitting area of a third sub-pixel 3 in the second display sub-region A2 is substantially equal to the light-emitting area of a third sub-pixel 3 in the first display sub-region A1.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is substantially equal to the light-emitting area of a second sub-pixel 2 in the first display sub-region A1.
  • a light emitting area of a first sub-pixel 1 in the second display sub-region A2 is larger than that of the first sub-pixel 1.
  • the light-emitting area of a first sub-pixel 1 in a display sub-region A1; the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is larger than that of a second sub-pixel 2 in the first display sub-region A1
  • Light-emitting area; the light-emitting area of a third sub-pixel 3 in the second display sub-region A2 is larger than the light-emitting area of a third sub-pixel 3 in the first display sub-region A1. That is, by increasing the light emitting area of the sub-pixels in the second display sub-region A2, the brightness difference between the second display sub-region A2 and the first display sub-region A1 is reduced, thereby reducing the Border dark.
  • a plurality of third pixel units 30 are arranged in a matrix in the second display sub-region A2.
  • a plurality of third pixel units 30 are arranged in a checkerboard manner in the second display sub-region A2. That is, the plurality of third pixel units 30 are arranged alternately in the row direction and are arranged alternately in the column direction.
  • the third pixel units 30 are arranged on the odd-numbered rows on the odd-numbered rows, and the third pixel units 30 are arranged on the even-numbered rows on the even-numbered rows, so that the third pixel units 30 are arranged in the row direction. And are evenly distributed along the column direction, thereby ensuring uniform brightness in the second display sub-region A2.
  • the third pixel units 30 are arranged on the even-numbered columns, and on the even-numbered rows, the third pixel units 30 are arranged on the odd-numbered columns, so that any two third pixel units are spaced apart.
  • a certain distance and a separation distance may be, for example, the length of the at least one third pixel unit in the row direction in the row direction, and the length of the at least one third pixel unit in the column direction in the column direction, which are not limited in the embodiments of the present disclosure.
  • the first sub-pixel 1 and the third sub-pixel 3 In the same setting, the second sub-pixel 2 is located adjacent to the row where the first sub-pixel 1 and the third sub-pixel 3 are located, so that the second sub-pixel 2 and the first sub-pixel 1 are set in a wrong row.
  • the first sub-pixel 1 and the third sub-pixel 3 in the same third pixel unit 30 are located in the first row, and the second sub-pixel 2 is located in the second row. In this way, the center line of the first subpixel, the second subpixel, and the third subpixel in the same third pixel unit 30 can form a triangle. In this way, horizontal and dark streaks can be avoided in the second display sub-region.
  • the center of the sub-pixel refers to the center of the light-emitting area of the sub-pixel.
  • a sub-pixel generally includes a laminated structure composed of an anode layer, a light-emitting layer, and a cathode layer.
  • the light-emitting area corresponding to the laminated structure during display is the light-emitting area of the sub-pixel.
  • the area occupied by the light emitting area can be used as the light emitting area.
  • the light emitting area may be, for example, an area occupied by an opening area defined by the pixel defining layer, which is not limited herein.
  • the center of the second sub-pixel 2 is at the center of the first sub-pixel 1 and the third
  • the orthographic projection on the line L1 between the centers of the sub-pixels 3 is located between the center of the first sub-pixel 1 and the center of the third sub-pixel 3.
  • the orthographic projection of the center of the second sub-pixel 2 on the line L1 between the center of the first sub-pixel 1 and the center of the third sub-pixel 3 is located at the intersection of the connection L1 and the straight line L2.
  • the distance between the center of the second sub-pixel 2 and the center of the first sub-pixel 1 and the distance between the center of the second sub-pixel 2 and the center of the third sub-pixel 3 may not be exactly the same.
  • the third pixel unit 30 In the display substrate provided in the embodiment of the present disclosure, as shown in FIG. 1B to FIG. 1D, FIG. 1F to FIG. 1I, and FIG. 1K to FIG. 1M, in the second display sub-region A2, the third pixel unit 30 The first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are arranged in a row. Alternatively, it can also be set in the same column, which is not limited here.
  • the third pixel is in the second display sub-region A2.
  • the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are sequentially arranged in a row. Alternatively, it can be set in the same column in sequence, which is not limited here.
  • the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are arranged next to each other in a row, or may be arranged next to each other in the same column, which is not limited herein.
  • two third pixel units adjacent to each other in the row direction in the second display sub-region A2 The arrangement order of the sub-pixels within 30 in the row direction is the same, and the arrangement order of the sub-pixels in the two third pixel units 30 adjacent in the column direction along the row direction is opposite. Therefore, it is ensured that in the second display sub-region A2, the first sub-pixels 1 and the third sub-pixels 3 are alternately arranged in the column direction to avoid color shift in the column direction. For example, as shown in FIG.
  • the first subpixel 1, the second subpixel 2, and the third subpixel in the two adjacent third pixel units 30 are adjacent. 3 are arranged in order from left to right.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in the third pixel unit 30 in the odd-numbered rows are all from left to right.
  • the third sub-pixel 3, the second sub-pixel 2, and the first sub-pixel 1 in the third pixel unit 30 in the even-numbered rows are sequentially arranged from left to right. For example, as shown in FIG.
  • the arrangement order of the sub-pixels in each third pixel unit can be made. the same.
  • a plurality of first pixel type third pixel units 30 and a plurality of first pixel types 30 are arranged alternately.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in the first type of the third pixel unit 30 are sequentially arranged from left to right, and the second type of the third
  • the third sub-pixel 3, the second sub-pixel 2, and the first sub-pixel 1 in the pixel unit 30 are sequentially arranged from left to right.
  • the third pixel unit shown in FIG. 1I can adjust the arrangement of each sub-pixel to obtain a display substrate with another structure.
  • the arrangement order of the sub-pixels in each third pixel unit 30 in the same column is the same.
  • the arrangement order of the sub-pixels in the third pixel unit 30 in two adjacent columns is opposite.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in each third pixel unit 30 in the odd-numbered columns are sequentially arranged from left to right.
  • the third sub-pixel 3, the second sub-pixel 2, and the first sub-pixel 1 in each third pixel unit 30 in the even-numbered columns are sequentially arranged from left to right.
  • the first sub-pixel 1 in the second display sub-region A2, the first sub-pixel 1, the second sub-pixel 2,
  • the shape of the third sub-pixel 3 is substantially the same.
  • the light-emitting area of a second sub-pixel is less than or approximately equal to the light-emitting area of a first sub-pixel and the light-emitting area of a second sub-pixel The area is smaller than or substantially equal to the light emitting area of a third sub-pixel.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is approximately equal to the light-emitting area of a first sub-pixel 1
  • the light-emitting area of a second sub-pixel 2 is approximately equal to The light-emitting area of one third sub-pixel 3.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is smaller than the light-emitting area of a first sub-pixel 1, and the light-emitting area of a second sub-pixel 2 is smaller than a third sub-pixel.
  • the relationship between the light-emitting area of a second sub-pixel, the light-emitting area of a first sub-pixel, and the light-emitting area of a third sub-pixel in the second display sub-region can be designed and determined according to the actual application environment, which is not limited here. .
  • the light-emitting area of a first sub-pixel 1 in the second display sub-region A2 is substantially equal to that of a third sub-pixel 3. Glowing area.
  • the first pixel unit 10 and the second pixel unit 20 in the first display sub-region A1 may be arranged in any Pantile arrangement manner. It is not limited here.
  • the first pixel units 10 and the second pixel units 20 are alternately arranged along the column direction.
  • One pixel unit 10 and the second pixel unit 20 are alternately arranged in a row direction.
  • the second sub-pixel 2 and the first sub-pixel 1 in the first pixel unit 10 Arranged in a row; the second sub-pixel 2 and the third sub-pixel 3 in the second pixel unit 20 are arranged in a row.
  • the second sub-pixel 2 in the first pixel unit 10 and the second sub-pixel 2 in the second pixel unit 20 are not directly adjacent to each other. .
  • a third sub-pixel 2 in the first pixel unit 10 and a second sub-pixel in the second pixel unit 20 are separated by a third Sub-pixel 3.
  • the foregoing implementation manners may also have other implementation manners, and details are not described herein.
  • the light-emitting area of one first sub-pixel 1 and the light-emitting area of one second sub-pixel 2 And the light emitting area of one third sub-pixel 3 may be substantially the same.
  • the second sub-pixel 2 and the first sub-pixel 1 in the first pixel unit 10 are arranged in a row.
  • the first pixel unit 10 and the second pixel unit 20 adjacent to each other in the column direction are a pixel group 100.
  • the third sub-pixels 3 are arranged in a row, and the second sub-pixel 2 in the first pixel unit 10 and the second sub-pixel 2 in the second pixel unit 20 are located in the same column.
  • two second sub-pixels 2 are arranged adjacent to each other in the column direction in the same pixel group 100, and two second sub-pixels The pixels 2 are symmetrical with respect to the row direction, even if the two second sub-pixels 2 in the same pixel group 100 are mirror-imaged.
  • the light-emitting area of two second sub-pixels 2 is smaller than the light-emitting area of one first sub-pixel 1, and the two second The light-emitting area of the sub-pixel 2 is smaller than that of one third sub-pixel 3, because the light-emitting efficiency of the green sub-pixel is higher than the light-emitting efficiency of the other color sub-pixels.
  • the arrangement order of the sub-pixels in each first pixel unit 10 is the same, and each second The arrangement order of the sub-pixels in the pixel unit 20 is the same.
  • the first sub-pixel 1 and the second sub-pixel 2 in each first pixel unit 10 are sequentially arranged from left to right.
  • the third sub-pixel 3 and the second sub-pixel 2 in each second pixel unit 20 are sequentially arranged from left to right.
  • the third sub-pixel 3 and the second sub-pixel 2 in each second pixel unit 20 are sequentially arranged from left to right.
  • the first sub-pixel 1 and the second sub-pixel 2 in each first pixel unit 10 are sequentially arranged from the upper left to the lower right direction.
  • the light-emitting area of a second sub-pixel in the first display sub-region, is not larger than the light-emitting area of a first sub-pixel, and the light-emitting area of a second sub-pixel is not greater than Larger than a third sub-pixel.
  • the light-emitting area of a second sub-pixel 2 in the first display sub-region A1, is approximately equal to the light-emitting area of a first sub-pixel 1, and the light-emitting area of a second sub-pixel 2 is approximately It is equal to the light-emitting area of a third sub-pixel 3.
  • the light-emitting area of a second sub-pixel 2 is smaller than the light-emitting area of a first sub-pixel 1, and the light-emitting area of a second sub-pixel 2 is smaller than a third The light-emitting area of the sub-pixel 3.
  • the number of the first sub-pixel 1 is the same as the number of the third sub-pixel 3, and the number of the second sub-pixel 2 is double that of the first sub-pixel 1, so the The light emitting area of the second sub-pixel 2 is made small.
  • the light-emitting area of a first sub-pixel 1 in the first display sub-region A1 is substantially equal to that of a third sub-pixel 3. Glowing area.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the first display subregion, and may be a regular shape or an unshaped shape. Regular shape. In specific implementation, the general regular shape is relatively easy to achieve from a process perspective.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the second display subregion, and may be a regular shape or an unshaped shape. Regular shape. In specific implementation, the general regular shape is relatively easy to achieve from a process perspective.
  • the shapes of the first sub-pixel 1 and the third sub-pixel 3 are the same, and two second pixels
  • the combined shape of the sub-pixels 2 is consistent with the shape of the first sub-pixel 1 or the third sub-pixel 3.
  • the shape of the first sub-pixel is at least one of a rectangle and a hexagon.
  • the shape of the first sub-pixel 1 is rectangular.
  • the shape of the first sub-pixel 1 is a hexagon.
  • the shape of the first sub-pixel may also be a rounded shape or an oval shape, which is not limited herein.
  • the shapes of the first sub-pixel 1 and the third sub-pixel 3 in the first display sub-region A1 are both hexagons.
  • the shape of the two second sub-pixels 2 combined is a hexagon.
  • the shape of at least one of the first and third sub-pixels in the second display sub-region and the first sub-pixel in the first display sub-region is roughly the same.
  • the shape of the first sub-pixel 1 in the second display sub-region A2 is substantially the same as the shape of the first sub-pixel 1 in the first display sub-region A1.
  • the shape of the third sub-pixel 3 in the second display sub-region A2 is substantially the same as the shape of the first sub-pixel 1 in the first display sub-region A1.
  • the shape of the first sub-pixel 1 and the third sub-pixel 3 in the second display sub-region A2 are approximately the same as those of the first sub-pixel 1 in the first display sub-region A1. Consistent.
  • the shape of one of the first and second sub-pixels in the first display sub-region and the second sub-pixel in the second display sub-region is roughly the same.
  • the shape of the first sub-pixel 1 in the first display sub-region A1 is substantially the same as the shape of the second sub-pixel 2 in the second display sub-region A2.
  • the shape of the second sub-pixel 2 in the first display sub-region A1 is substantially the same as the shape of the second sub-pixel 2 in the second display sub-region A2.
  • each of the first sub-pixel 1, each of the second sub-pixel 2, and each of the third sub-pixel 3 in the same sub-region is substantially the same.
  • the shapes of the three sub-pixels are substantially the same.
  • the light emitting area of the pixels may be different.
  • the light-emitting area of the second sub-pixel 2 is smaller than that of the first sub-pixel 1, and the light-emitting area of the second sub-pixel 2 is smaller than that of the third sub-pixel 3. .
  • the light emitting area of the blue sub-pixel is larger than the light emitting area of the red sub-pixel is larger than the light-emitting area of the green sub-pixel, or the light-emitting area of the blue sub-pixel is larger than that of the green sub-pixel is greater than red
  • the implementation of the light-emitting area of the sub-pixel is set, which is not limited herein.
  • the shape of the sub-pixel refers to the shape of the light-emitting area of the sub-pixel, and the sub-pixel includes at least one of the first sub-pixel, the second sub-pixel, and the third sub-pixel. .
  • the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 1G to FIG. 1L, in the first display sub-region A1, when the second sub-pixel 2 is a green sub-pixel, two second sub-pixels
  • the light-emitting area of pixel 2 is smaller than that of one first sub-pixel 1
  • the light-emitting area of two second sub-pixels 2 is smaller than that of one third sub-pixel 3.
  • the green sub-pixel has a higher light-emitting efficiency than other color sub-pixels. Pixel luminous efficiency.
  • the second display sub-region A2 when the second sub-pixel 2 is a green sub-pixel, the The light-emitting area is smaller than the light-emitting area of the first sub-pixel 1, and the light-emitting area of the second sub-pixel 2 is smaller than the light-emitting area of the third sub-pixel 3.
  • sub-pixels of the same color in the row direction are arranged at equal intervals, and sub-pixels of the same color in the column direction are arranged at equal intervals.
  • sub-pixels of the same color in adjacent rows are arranged in an offset manner, and two adjacent pixels of the same color in the same row are in the same row.
  • the center of the sub-pixel is equal to the center of the sub-pixel of the same color adjacent to it in the adjacent row.
  • the first first sub-pixel 1 in the second row is the first first sub-pixel 1 and the second first sub-pixel 1 in the first row. On the center of the line.
  • sub-pixels of the same color in adjacent columns are arranged in an offset manner, and two adjacent pixels of the same color in the same column are the same.
  • the center of the sub-pixel is equal to the center of the sub-pixel of the same color adjacent to it in the adjacent column.
  • the first first sub-pixel 1 in the first column is the first first sub-pixel 1 and the second first sub-pixel 1 in the second column. On the center of the line.
  • the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are disposed in the second display sub-region A2.
  • the first sub-pixels 1 are uniformly distributed in the second display sub-region A2
  • the second sub-pixels 2 are uniformly distributed in the second display sub-region A2
  • the third sub-pixels 3 are uniformly distributed in the second display sub-region A2.
  • the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are uniformly distributed along the row direction.
  • the second display sub-region A2 includes a plurality of third pixel units 30 arranged in a matrix
  • the third pixel unit 30 includes: First sub-pixel 1, second sub-pixel 2 and third sub-pixel 3.
  • the first sub-pixel 1 and the third sub-pixel 3 are arranged next to each other in a row, and the second sub-pixel 2 is located in an adjacent row where the first sub-pixel 1 and the third sub-pixel 3 are located.
  • three sub-pixels in the third pixel unit 30 are arranged in a triangle. Take the first row and the third pixel unit 30 as an example.
  • the first subpixel 1 and the third subpixel 3 in the third pixel unit 30 are located in the first row of the subpixel row, and the second subpixel 2 is located in the subpixel row. In the second line.
  • the centers of the sub-pixels are uniform distributed.
  • the centers of the first sub-pixels 1 in the second display sub-region A2 are uniformly distributed.
  • the centers of the second sub-pixels 2 in the second display sub-region A2 are uniformly distributed.
  • the centers of the third sub-pixels 3 in the second display sub-region A2 are evenly distributed.
  • the sub-pixels are arranged along the row direction. Arranged at equal intervals and arranged at equal intervals in the column direction.
  • the first sub-pixels 1 in the second display sub-region A2 are arranged at equal intervals in the row direction and at equal intervals in the column direction.
  • the second sub-pixels 2 in the second display sub-region A2 are arranged at equal intervals in the row direction and at equal intervals in the column direction.
  • the third sub-pixels 3 in the second display sub-region A2 are arranged at equal intervals in the row direction and at equal intervals in the column direction.
  • the sub-pixels are adjacent to each other.
  • the rows are misaligned, and the centers of two adjacent sub-pixels in the same row are respectively equal to the center of the same nearest-neighbor sub-pixel in the adjacent row.
  • the first sub-pixels 1 in the second display sub-region A2 are misaligned in adjacent rows, and the centers of two adjacent first sub-pixels 1 in the same row are respectively opposite to the phase.
  • the distances between the centers of the first nearest sub-pixels 1 of the same nearest neighbor are equal. The rest of the same reason, will not repeat them here.
  • the sub-pixels are adjacent to each other.
  • the columns are arranged in an offset manner, and the centers of two adjacent sub-pixels in the same column are respectively equal to the center of the same nearest-neighbor sub-pixel in the adjacent column.
  • the first sub-pixels 1 in the second display sub-region A2 are misaligned in adjacent columns, and the centers of two adjacent first sub-pixels 1 in the same column are respectively opposite to the phase.
  • the distances between the centers of the first nearest sub-pixels 1 in the adjacent column are equal. The rest of the same reason, will not repeat them here.
  • the sub-pixel arrangement of the third pixel unit 30 in the same column in the second display sub-region A2 is shown in FIG. the same.
  • the arrangement manner of the third pixel units 30 in each column is the same to ensure the uniformity of the display.
  • the arrangement of the sub-pixels of two adjacent third pixel units 30 in the same column may also be reversed.
  • the first row of the third pixel unit 30 uses the third subpixel 3, the first subpixel 1, and the second subpixel.
  • the order of 2 constitutes a triangle.
  • the third pixel unit 30 in the second row constitutes a triangle in the order of the first subpixel 1, the third subpixel 3, and the second subpixel 2.
  • the second sub-pixel 2 and the first sub-image 1 are equal to the distance between the centers of the second subpixel 2 and the third subpixel 3. That is, in the third pixel unit 30, the center of the second sub-pixel 2, the center of the first sub-image 1 and the center of the third sub-pixel 3 constitute an isosceles triangle. Thus, it is ensured that the pixel emission center of the third pixel unit 30 is at the center of the isosceles triangle.
  • the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 1N to FIG. 1S, for the two third pixel units 30 adjacent to each other in the row direction in the second display sub-region A2, one third pixel The first sub-pixel 1 and the third sub-pixel 3 in the unit 30 and the second sub-pixel 2 in the other third pixel unit 30 are located in the same row.
  • the number of pixels in the second display sub-region A2 is equal to the number of the third pixel units 30 during display. That is, the physical resolution of the pixels in the second display sub-region A2 is its display resolution.
  • the second display sub-region A2 three sub-pixels of the third pixel unit 30 are arranged in a triangle, and one of the two third pixel units 30 adjacent to each other in the row direction is an inverted triangle and one is placed in a forward direction.
  • some triangles in the second display sub-region A2 may have a large number of sub-pixels on some rows and a small number of sub-pixels on some rows.
  • each sub-pixel in the second display sub-region A2 is uniformly arranged in a checkerboard manner.
  • the center of the second sub-pixel 2 is at the first sub-pixel 1
  • the orthographic projection on the line between the center of and the center of the third sub-pixel 3 is located between the center of the first sub-pixel 1 and the center of the third sub-pixel 3.
  • the orthographic projection of the center of the second sub-pixel 2 on the line L1 between the center of the first sub-pixel 1 and the center of the third sub-pixel 3 is located at the intersection of the connection L1 and the straight line L2.
  • the distance between the center of the second sub-pixel and the center of the first sub-pixel and the distance between the center of the second sub-pixel and the center of the third sub-pixel may not be exactly the same.
  • the process Limitations of conditions or other factors, such as the placement of wiring or vias may also have some deviations, so the shape, position, and relative positional relationship of each sub-pixel as long as they generally meet the above conditions are all within the scope of the present disclosure.
  • sub-pixels of the same color are not adjacent. That is, among the two third pixel units 30 adjacent in the row direction, the first subpixel 1 in one third pixel unit 30 and the first subpixel 1 in the other third pixel unit 30 are not adjacent. In this way, in the second display sub-region A2, a color shift phenomenon due to the same color of two adjacent sub-pixels is avoided.
  • subpixels of the same color may be adjacent to each other in the third pixel units 30 adjacent in the row direction. That is, among the two third pixel units 30 adjacent in the row direction, the third sub-pixel 3 in one third pixel unit 30 and the third sub-pixel 3 in the other third pixel unit 30 are adjacent.
  • the second display sub-region A2 in the second display sub-region A2, one first sub-pixel 1, one second sub-pixel 2 and one third sub-pixel
  • the light emitting areas of the pixels 3 are substantially the same. This makes the light emission uniform.
  • the light-emitting areas of the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 may also be different, which is not limited here. .
  • one first sub-pixel 1, one second sub-pixel 2 and one third sub-pixel is substantially the same. This can reduce the difficulty of process preparation.
  • the first pixel units 10 and the second pixel units 20 are alternately arranged in the column direction in the first display sub-region A1.
  • One pixel unit 10 and the second pixel unit 20 are alternately arranged in a row direction.
  • the second sub-pixel 2 and the first sub-pixel 1 in the first pixel unit 10 Arranged in a row; the second sub-pixel 2 and the third sub-pixel 3 in the second pixel unit 20 are arranged in a row. And, for the first pixel unit 10 and the second pixel unit 20 adjacent in the row direction, the second sub-pixel 2 in the first pixel unit 10 and the second sub-pixel 2 in the second pixel unit 20 are not adjacent.
  • a third sub-pixel 2 in the first pixel unit 10 and a second sub-pixel in the second pixel unit 20 are separated by a third Sub-pixel 3.
  • the foregoing implementation manners may also have other implementation manners, and details are not described herein.
  • the light-emitting area of one first sub-pixel 1 and the light-emitting area of one second sub-pixel 2 may be substantially the same.
  • the second sub-pixel 2 is located in the same column as the second sub-pixel 2 in each of the second pixel units 20.
  • the second sub-pixel 2 in each first pixel unit 10 and the second sub-pixel 2 in each second pixel unit 20 are located in the same column.
  • the shape of a first sub-pixel 1, the shape of a second sub-pixel 2 and The shape of the third sub-pixel 3 may be substantially the same.
  • the shape of the first sub-pixel 1 in the first display sub-region A1 may be rectangular.
  • the shape of the second sub-pixel 2 in the first display sub-region A1 may also be rectangular.
  • the shape of the third sub-pixel 3 in the first display sub-region A1 may also be rectangular.
  • the second sub-pixel 2 and the first sub-pixel 1 in the first pixel unit 10 Arranged in a row the second sub-pixel 2 and the third sub-pixel 3 in the second pixel unit 20 are staggered and staggered.
  • the two second sub-pixels 2 are not adjacent.
  • the first pixel unit 10 and the second pixel unit 20 adjacent to each other in the column direction are a pixel group 100.
  • the second sub-pixel 2 in the first pixel unit 10 and the first pixel unit 20 in the second pixel unit 20 are located in the same column. That is, two adjacent rows of pixel units are staggered by half a column in the column direction.
  • two second sub-pixels 2 are arranged adjacent to each other in the column direction in the same pixel group 100, and two second sub-pixels are arranged in the column direction.
  • the pixels 2 are symmetrical with respect to the row direction, even if the two second sub-pixels 2 in the same pixel group 100 are mirror-imaged.
  • the light-emitting area of two second sub-pixels 2 is smaller than the light-emitting area of one first sub-pixel 1, and the two second The light-emitting area of the sub-pixel 2 is smaller than that of one third sub-pixel 3, because the light-emitting efficiency of the green sub-pixel is higher than the light-emitting efficiency of the other color sub-pixels.
  • two second sub-pixels 2 adjacent to each other in the column direction in the first display sub-region A1 are a second Sub-pixel group 200; the distance between two second sub-pixel groups 200 adjacent in the column direction in the first display sub-region A1 is equal to the two second sub-pixels adjacent in the column direction in the second display sub-region A2 The distance between 2.
  • the shapes of the first sub-pixel 1 and the third sub-pixel 3 are the same and are aligned along the column direction.
  • the shape of the combination of two adjacent second sub-pixels 2 is consistent with the shape of the first sub-pixel 1.
  • the shapes of the first sub-pixel 1 and the third sub-pixel 3 are hexagonal.
  • the shape of the second sub-pixel 2 is a pentagon. In this way, the shape in which two second sub-pixels 2 adjacent to each other in the column direction are combined can be formed into a hexagon.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the first display subregion, and may be a regular shape or an unshaped shape.
  • Regular shape is relatively easy to achieve from a process perspective.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the second display subregion, and may be a regular shape or an unshaped shape.
  • Regular shape is relatively easy to achieve from a process perspective.
  • a distance between two first sub-pixels adjacent to each other in the column direction in the first display sub-region is not greater than adjacent in the column direction in the second display sub-region.
  • An interval between two third sub-pixels adjacent in the column direction in the first display sub-region is not greater than an interval between two third sub-pixels adjacent in the column direction in the second display sub-region.
  • the interval between two first sub-pixels 1 adjacent to each other in the column direction in the first display sub-region A1 is substantially equal to that in the second display sub-region A2.
  • the interval between two third sub-pixels 3 adjacent in the column direction in the first display sub-region A1 is substantially equal to the interval between two third sub-pixels 3 adjacent in the column direction in the second display sub-region A2. .
  • the interval between two first sub-pixels 1 adjacent in the column direction in the first display sub-region A1 is smaller than the two first sub-pixels adjacent in the column direction in the second display sub-region A2.
  • the interval between two third sub-pixels 3 adjacent in the column direction in the first display sub-region A1 is smaller than the interval between two third sub-pixels 3 adjacent in the column direction in the second display sub-region A2.
  • the light-emitting area of a second sub-pixel in the second display sub-region is not less than the light-emitting area of a second sub-pixel in the first display sub-region.
  • the light-emitting area of a first sub-pixel in the display sub-region is substantially equal to the light-emitting area of a first sub-pixel in the first display sub-region, and the light-emitting area of a third sub-pixel in the second display sub-region is approximately equal to the first Displays the light-emitting area of a third sub-pixel within the sub-region. For example, as shown in FIG. 1N and FIG.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is substantially equal to the light-emitting area of a second sub-pixel 2 in the first display sub-region A1.
  • the light-emitting area of a first sub-pixel 1 in the area A2 is substantially equal to the light-emitting area of a first sub-pixel 1 in the first display sub-area A1 and the light-emitting area of a third sub-pixel 3 in the second display sub-area A2 It is approximately equal to the light-emitting area of one third sub-pixel 3 in the first display sub-region A1.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is larger than the light-emitting area of a second sub-pixel 2 in the first display sub-region A1, and the second display sub-region
  • the light-emitting area of a first sub-pixel 1 in A2 is substantially equal to the light-emitting area of a first sub-pixel 1 in the first display sub-region A1, and the light-emitting area of a third sub-pixel 3 in the second display sub-region A2 is approximately It is equal to the light-emitting area of one third sub-pixel 3 in the first display sub-region A1.
  • the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel in the first display sub-region A1 The shape of 1 is substantially the same, and the shape of the third sub-pixel 3 in the second display sub-region A2 is substantially the same as the shape of the third sub-pixel 3 in the first display sub-region A1. This can reduce the difficulty of process preparation.
  • the light-emitting area of a first sub-pixel 1 in the first display sub-region A1 is substantially equal to that of a third sub-pixel 3. Glowing area.
  • the light-emitting area of a second sub-pixel in the first display sub-region, is not larger than the light-emitting area of a first sub-pixel, and the light-emitting area of a second sub-pixel is not greater than Larger than a third sub-pixel.
  • the light-emitting area of a second sub-pixel 2 in the first display sub-region A1, is approximately equal to the light-emitting area of a first sub-pixel 1, and the light-emitting area of a second sub-pixel 2 is approximately It is equal to the light-emitting area of a third sub-pixel 3.
  • the light-emitting area of a second sub-pixel 2 is smaller than that of a first sub-pixel 1
  • the light-emitting area of a second sub-pixel 2 is smaller than that of a third The light-emitting area of the sub-pixel 3.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 may be located in the same row. . That is, it corresponds to the sub-pixels in the second display sub-region A2 corresponding to the sub-pixels in the first display sub-region A1 in the row direction, and is not set in a wrong row, thereby ensuring that the sub-pixels in the second display sub-line region A2 and the first The sub-pixels in the display sub-region A1 remain consistent in the row direction, which is beneficial to the wiring of the display substrate.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 may be located in the same column. . That is, it corresponds to the sub-pixels in the second display sub-region A2 corresponding to the sub-pixels in the first display sub-region A1 in the column direction.
  • the sub-pixels in a display sub-region A1 are kept consistent in the column direction, which is beneficial to the wiring of the display substrate.
  • the first sub-pixel in the second display sub-region and the first sub-pixel in the first display sub-region are located in at least one of the same column and the same row.
  • the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel 1 in the first display sub-region A1 are located in the same column. Therefore, it is ensured that the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel 1 in the first display sub-region A1 are consistent in the column direction.
  • the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel 1 in the first display sub-region A1 are located in the same row. Therefore, it is ensured that the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel 1 in the first display sub-region A1 are consistent in the row direction.
  • the first sub-pixel 1 in the second display sub-region A2 and the first sub-pixel 1 in the first display sub-region A1 may also be located in the same row, and the first sub-pixel 1 in the second display sub-region A2 may be located. It is located in the same column as the first sub-pixel 1 in the first display sub-region A1.
  • the second sub-pixel in the second display sub-region and the second sub-pixel in the first display sub-region are located in at least one of the same column and the same row.
  • the second sub-pixel 2 in the second display sub-region A2 and the second sub-pixel 2 in the first display sub-region A1 are located in the same row.
  • the second sub-pixel 2 in the second display sub-region A2 and the second sub-pixel 2 in the first display sub-region A1 are located in the same column.
  • the second sub-pixel 2 in the second display sub-region A2 and the second sub-pixel 2 in the first display sub-region A1 are consistent in the column direction.
  • the second sub-pixel 2 is the light-emitting pixel center of the pixel unit in the display substrate, it can be ensured that the light-emitting pixel center in the second display sub-region and the light-emitting pixel center in the first display sub-region are on the row side. Be consistent up.
  • the second sub-pixel in the second display sub-region and the second sub-pixel in the first display sub-region can also be located in the same column, and the second sub-pixel in the second display sub-region and the first display sub-region The second sub-pixel within is located in the same row.
  • the third sub-pixel in the second display sub-region and the third sub-pixel in the first display sub-region are located in at least one of the same column and the same row.
  • the third sub-pixel 3 in the second display sub-region A2 and the third sub-pixel 3 in the first display sub-region A1 are located in the same column. Therefore, it is ensured that the third sub-pixel 3 in the second display sub-region A2 and the third sub-pixel 3 in the first display sub-region A1 are consistent in the column direction.
  • the third sub-pixel 3 in the second display sub-region A2 and the third sub-pixel 3 in the first display sub-region A1 are located in the same row. Therefore, it is ensured that the third sub-pixel 3 in the second display sub-region A2 and the third sub-pixel 3 in the first display sub-region A1 are consistent in the row direction.
  • the third sub-pixel in the second display sub-region and the third sub-pixel in the first display sub-region may also be located in the same column, and the third sub-pixel in the second display sub-region and the first display sub-region The third sub-pixel is located in the same row.
  • a distance between two first sub-pixels 1 adjacent to each other in the column direction in the first display sub-region A1 is equal to The distance between two first sub-pixels 1 adjacent to each other in the column direction in the second display sub-region A2;
  • the interval between two third sub-pixels 3 adjacent in the column direction in the first display sub-region A1 is equal to the interval between two third sub-pixels 3 adjacent in the column direction in the second display sub-region A2;
  • two second sub-pixels 2 adjacent in the column direction are used as a second sub-pixel group 200; in the first display sub-region A1, two second sub-pixels adjacent in the column direction are used.
  • the interval between the groups 200 is equal to the distance between two second sub-pixels 2 adjacent in the column direction in the second display sub-region A2.
  • the distribution density of the first sub-pixels 1 in the row direction in the second display sub-region A2 is approximately the first display sub-region A1.
  • the distribution density of the inner first sub-pixel 1 in the row direction is 1/2, and of course, it can also be other ratios, such as 1/3, 1/4, etc., which is not limited herein.
  • the distribution density of the third sub-pixel 3 in the second display sub-region A2 in the row direction is about 1/2 of the distribution density of the third sub-pixel 3 in the first display sub-region A1 in the row direction.
  • other ratios may also be used. , Such as 1/3, 1/4, etc., are not limited here.
  • the distribution density of the second sub-pixel 2 in the second display sub-region A2 in the row direction is about 1/4 of the distribution density of the second sub-pixel 2 in the first display sub-region A1 in the row direction.
  • ratios may also be used. , Such as 1/6, 1/9, etc., are not limited here.
  • the row direction here refers to description in units of one row of sub-pixels.
  • the density ratios provided in the embodiments of the present disclosure are all approximate ratio ranges, for example, the density ratio may not be an integer.
  • the light-emitting area of the second sub-pixel 2 in the first display sub-region A1 is smaller than the light-emitting area of the first sub-pixel 1
  • the light-emitting area of the second sub-pixel 2 is smaller than that of the third sub-pixel 3. This is because in the first display sub-region A1, the number of the first sub-pixel 1 is the same as the number of the third sub-pixel 3, and the number of the second sub-pixel 2 is double that of the first sub-pixel 1, so the The light emitting area of the second sub-pixel 2 is made small.
  • the same shape means that the shapes of the light-emitting regions of the sub-pixels are similar, but the areas may be the same or different.
  • the light-emitting area of a sub-pixel can be set according to the light-emitting efficiency of the sub-pixel, which is not limited herein.
  • the shape of the sub-pixel refers to the shape of the light-emitting area of the sub-pixel.
  • the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 1P to FIG. 1S, in the first display sub-region A1, when the second sub-pixel 2 is a green sub-pixel, two second sub-pixels 2
  • the light-emitting area of is smaller than the light-emitting area of one first sub-pixel 1, and the light-emitting area of two second sub-pixels 2 is smaller than that of one third sub-pixel 3. This is because the luminous efficiency of the green sub-pixel is higher than that of other color sub-pixels. Luminous efficiency.
  • the second display sub-region A2 can transmit light so that the camera located under the display screen Such elements can receive ambient light.
  • the transparent region in the second display sub-region A2 in FIGS. 1B to 1S will be described below.
  • the transparent area is not vapor-deposited with a film layer such as a light-emitting functional layer to improve the transmittance of ambient light.
  • the transparent area located in the second display sub-area A2 is referred to as a first transparent pixel. P1.
  • the first transparent pixel P1 is configured to make the pixel density of the second display sub-region A2 smaller than the pixel density of the first display sub-region A1, and make The light transmittance of the second display sub-region A2 is greater than the light transmittance of the first display sub-region A1.
  • light transmittance refers to transmittance to ambient light.
  • the second display sub-region A2 is transparent to ambient light
  • the first display sub-region A1 is transparent to ambient light.
  • the first display sub-region A1 includes a plurality of first repeating regions A01, and each first repeating region A01 includes a first display unit 10 and a first Two display units 20.
  • the plurality of first repeating regions A01 are arranged in an array. That is, except for the edge position, each of the first repeating regions A01 is adjacent to the eight first repeating regions A01 and is surrounded by the eight first repeating regions A01.
  • each first repeating region A01 is adjacent to and surrounded by the six first repeating regions A01.
  • the arrangement of the first pixel unit 10 and the second pixel unit 10 may be different in different first repeating regions A01.
  • the first sub-pixel 1 and the second sub-pixel 2 and the second sub-pixel 2 in the first pixel unit 10 may be different.
  • the arrangement of the third sub-pixel 3 and the second sub-pixel 2 in the pixel unit 10 may be different.
  • the second display sub-region A2 includes a plurality of second repeating regions A02, and each second repeating region A02 includes a first transparent pixel P1.
  • the first transparent pixel P1 can transmit ambient light. That is, ambient light can pass through the first transparent pixels P1 of the display substrate so as to be able to irradiate elements such as a camera under the display screen.
  • the plurality of second repeating regions A02 are arranged in an array. For example, as shown in FIG.
  • the plurality of second repeating regions A02 include a second repeating region A02 of a first type and a second repeating region A02 of a second type.
  • the second repeating region A02 of the first type includes a third pixel unit of the first type
  • the second repeating region A02 of the second type includes a third pixel unit of the first type.
  • the arrangement of the third pixel units may be different in different second repeating regions A02.
  • the first transparent pixel P1 includes at least one of a first transparent sub-pixel P01, a second transparent sub-pixel P02, and a third transparent sub-pixel P03.
  • one first transparent pixel P1 is provided between the third pixel units adjacent in the row direction, so that a first transparent pixel column can be formed.
  • the first transparent pixel P1 includes a second transparent sub-pixel P02, that is, a first transparent sub-pixel P01 is provided between the third pixel units adjacent in the row direction, so that a first transparent sub-pixel column can be formed.
  • the first transparent pixel P1 includes only the second transparent sub-pixel P02.
  • the area of the first transparent pixel P1 is equal to the area of the second transparent sub-pixel P02.
  • the first transparent pixel P1 includes one first transparent sub-pixel P01, two second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • the area of the first transparent pixel P1 is larger than the area of at least one of the first transparent sub-pixel P01, the second transparent sub-pixel P02, and the third transparent sub-pixel P03.
  • the first transparent pixel P1 includes one first transparent sub-pixel P01, two second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • the area of the first transparent pixel P1 is larger than the area of at least one of the first transparent sub-pixel P01, the second transparent sub-pixel P02, and the third transparent sub-pixel P03.
  • the area of the first transparent pixel P1 is equal to the sum of the areas of one first transparent sub-pixel P01, two second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • a first transparent pixel P1 is provided between third pixel units adjacent in the column direction to form a first transparent pixel.
  • Pixel rows For example, the first transparent pixel row includes a first transparent sub-pixel P01, a second transparent sub-pixel P02, and a third transparent sub-pixel P03.
  • a first transparent pixel P1 is provided between the third pixel units of the first type adjacent in the row direction, and a third pixel unit of the second type adjacent to the row direction is provided between the third pixel units There is a first transparent pixel P1.
  • the area and shape of the first transparent pixel P1 may be the same as the area and shape of the second sub-pixel 2 in the second pixel unit 20 in the first display sub-region A1.
  • the area and shape of the first transparent sub-pixel P01 may be the same as the area and shape of the second sub-pixel 2 in the second pixel unit 20 in the first display sub-region A1. That is, replacing the second sub-pixel 2 in the second pixel unit 20 in the first display sub-region A1 with the first transparent pixel P1 may constitute a structure of the second display sub-region A2.
  • the second display sub-region A2 includes a plurality of transparent sub-pixel columns.
  • each transparent sub-pixel column includes a plurality of second transparent sub-pixels P02.
  • each transparent sub-pixel column includes only a plurality of second transparent sub-pixels P02, and does not include the first transparent sub-pixel P01 and the third transparent sub-pixel P03.
  • the second display sub-region A2 includes a plurality of first transparent pixel rows.
  • each first transparent pixel row includes a plurality of first transparent sub-pixels P01, a plurality of second A transparent sub-pixel P02 and a plurality of third transparent sub-pixels P03.
  • FIG. 1C For example, as shown in FIG. 1C, FIG. 1D, and FIG. 1G to FIG. 1H, a plurality of transparent sub-pixel columns and a plurality of transparent sub-pixel rows are intersected.
  • the transparent sub-pixel row may refer to the second display sub-region A2.
  • the row is composed of transparent sub-pixels, excluding sub-pixels that can emit light, that is, excluding the first sub-pixel 1, and the second Sub-pixel 2 and third sub-pixel 3.
  • the column of transparent sub-pixels may refer to the second display sub-region A2.
  • the columns are all composed of transparent sub-pixels, excluding sub-pixels that can emit light, that is, excluding the first sub-pixel 1, the second sub-pixel 2 and the third Sub-pixel 3.
  • the transparent sub-pixel includes at least one of a first transparent sub-pixel P01, a second transparent sub-pixel P02, and a third transparent sub-pixel P03.
  • the first transparent pixel P1 is indicated by a dotted frame in FIG. 1B, FIG. 1D to FIG. 1G, but the structure of the first transparent pixel P1 is not limited to that shown in the figure.
  • the dashed frame representing the first transparent pixel in FIGS. 1B and 1D to 1G may be removed.
  • a row of the first transparent pixels P1 in FIG. 1B is regarded as a first transparent pixel.
  • the transparent sub-pixels / first transparent pixels are indicated by their numbers.
  • the display substrate shown in FIG. 1C has an increased light transmission area.
  • the first transparent pixel P1 includes one first transparent sub-pixel P01, three second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • a first transparent sub-pixel P01 and a first sub-pixel 1 in the first display sub-pixel A1 have the same area and shape
  • a second transparent sub-pixel P02 and the first A second sub-pixel 2 in the display sub-pixel A1 has the same area and shape
  • a third transparent sub-pixel P03 has the same area and shape as a third sub-pixel 3 in the first display sub-pixel A1.
  • a first sub-pixel 1 in the second display sub-pixel A2 and a first sub-pixel 1 in the first display sub-pixel A1 have the same area and shape
  • the second display A second sub-pixel 2 in sub-pixel A2 has the same area and shape as a second sub-pixel 2 in first display sub-pixel A1
  • a third sub-pixel 3 in second display sub-pixel A2 is the same as the first
  • One third sub-pixel 3 in the display sub-pixel A1 has the same area and shape.
  • a first sub-pixel 1 in the second display sub-pixel A2 and a first sub-pixel 1 in the first display sub-pixel A1 have the same area and shape; the second display sub-pixel A2 A second sub-pixel 2 in the same shape as a second sub-pixel 2 in the first display sub-pixel A1, but an area of a second sub-pixel 2 in the second display sub-pixel A2 is larger than that of the first display sub-pixel
  • the area of a second sub-pixel 2 in the pixel A1; a third sub-pixel 3 in the second display sub-pixel A2 and the third sub-pixel 3 in the first display sub-pixel A1 have the same area and shape.
  • a first transparent sub-pixel P01 and a first sub-pixel 1 in the second display sub-pixel A2 have the same area and shape
  • a second transparent sub-pixel P02 and a second A second sub-pixel 2 in the display sub-pixel A2 has the same area and shape
  • a third transparent sub-pixel P03 has the same area and shape as a third sub-pixel 3 in the second display sub-pixel A2.
  • a first transparent sub-pixel P01 has the same area and shape as a first sub-pixel 1 in the second display sub-pixel A2, and a third transparent sub-pixel P03 and the second display sub-pixel A third sub-pixel 3 in A2 has the same area and shape, and the area of a second transparent sub-pixel P02 is smaller than that of a second sub-pixel 2 in the second display sub-pixel A2.
  • the area of a first transparent sub-pixel P01 is greater than or equal to the area of a first sub-pixel 1 within the first display sub-pixel A1 and the area of a second transparent sub-pixel P02 is greater than Or the area of one second sub-pixel 2 of the first display sub-pixel A1, and the area of one third transparent sub-pixel P03 is greater than or equal to the area of one third sub-pixel 3 within the second display sub-pixel A2.
  • the plurality of first transparent pixels P1 form a plurality of transparent sub-pixel rows and form a plurality of transparent sub-pixel columns.
  • multiple transparent sub-pixel rows intersect multiple transparent pixel rows.
  • a plurality of transparent sub-pixel rows are perpendicular to a plurality of transparent pixel rows.
  • the light transmittance of the second display sub-region A2 of the display substrate shown in FIG. 1C is greater than the light transmittance of the second display sub-region A2 of the display substrate shown in FIG. 1B.
  • the third pixel units 30 except the edge position of the second display sub-region A2 are all surrounded by the first transparent pixel P1, for example, all are surrounded by the first The transparent sub-pixel P01, the second transparent sub-pixel P02, and the third transparent sub-pixel P03 are surrounded by further, for example, at least two first transparent sub-pixels P01, four second transparent sub-pixels P02, and two third transparent sub-pixels P03 is around.
  • the third pixel unit 30 except for the edge position of the second display sub-region A2 is at least 2 first transparent sub-pixels P01, 4 second The transparent sub-pixel P02 and two third transparent sub-pixels P03 are surrounded.
  • the third pixel unit 30 except for the edge position of the second display sub-region A2 is divided into two first transparent sub-pixels P01, eight second transparent sub-pixels P02, and Two third transparent sub-pixels P03 surround.
  • FIG. 1H the third pixel unit 30 except for the edge position of the second display sub-region A2 is at least 2 first transparent sub-pixels P01, 4 second The transparent sub-pixel P02 and two third transparent sub-pixels P03 are surrounded.
  • the third pixel unit 30 except for the edge position of the second display sub-region A2 is divided into two first transparent sub-pixels P01, eight second transparent sub-pixels P02, and Two third transparent sub-pixels P03 surround.
  • FIG. 1H the third pixel unit 30 except for the edge position of the second display sub
  • the third pixel unit 30 except for the edge position of the second display sub-region A2 is divided into two first transparent sub-pixels P01, five second transparent sub-pixels P02, and two third transparent sub-pixels. Pixel P03 is surrounded.
  • the third pixel unit 30 except for the edge position of the second display sub-region A2 is divided into two first transparent sub-pixels P01, eight second transparent sub-pixels P02, and two third transparent sub-pixels. Pixel P03 is surrounded.
  • Each is surrounded by at least one first transparent sub-pixel P01, two second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • a line connecting the centers of two sub-pixels adjacent in the column direction passes the center of a transparent sub-pixel located between the two sub-pixels.
  • a line connecting the centers of two sub-pixels adjacent in the row direction passes the center of a transparent sub-pixel located between the two sub-pixels.
  • the two adjacent sub-pixels include at least one of two adjacent first sub-pixels 1, two adjacent second sub-pixels 2, and two adjacent third sub-pixels 3.
  • the transparent sub-pixel includes one of the first transparent sub-pixel P01, the second transparent sub-pixel P02, or the third transparent sub-pixel P03.
  • the area of the first transparent pixel P1 is greater than or equal to the area of at least one of the first subpixel 1, the second subpixel 2, and the third subpixel 3 of the third pixel unit 30.
  • the area of the first transparent pixel P1 is greater than or equal to the sum of the areas of the first subpixel 1, the second subpixel 2, and the third subpixel 3 of the third pixel unit 30.
  • the area of the first transparent pixel P1 is greater than or equal to one first sub-pixel 1, one second sub-pixel 2, and one third sub-pixel 3 in the first display sub-region A1.
  • One of the area is greater than or equal to one first sub-pixel 1, one second sub-pixel 2, and one third sub-pixel 3 in the first display sub-region A1.
  • the area of the first transparent pixel P1 is greater than or equal to that of one first sub-pixel 1, one second sub-pixel 2, and one third sub-pixel 3 in the first display sub-region A1. Sum of area.
  • the area of the first transparent pixel P1 is greater than or equal to that of one first sub-pixel 1, one second sub-pixel 2, and one third sub-pixel 3 in the second display sub-region A2. Area of at least one.
  • the area of the first transparent pixel P1 is greater than or equal to that of one first subpixel 1, one second subpixel 2, and one third subpixel 3 in the second display subregion A2. Sum of area.
  • the areas of the plurality of first transparent pixels P1 in the second display sub-region A2 may be equal to or different from each other.
  • FIG. 2A is a schematic diagram of a first display subregion, a second display subregion, and a transition display subregion of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2B to FIG. 2L are schematic diagrams of the pixel arrangement of the first display subregion, the second display subregion, and the transition display subregion, and the arrangement of the first transparent pixels and the second transparent pixels of the display substrate according to the embodiment of the present disclosure.
  • the display substrate provided by the embodiment of the present disclosure includes a display area of the display substrate including a first display sub-area A1 and a second display sub-area A2 and a first display sub-area A1.
  • the light transmittance of the second display sub-region A2 is smaller than the light transmittance of the transition display sub-region A3. Therefore, the transition display sub-region A3 can play a transition of the light transmittance from the first display sub-region A1 to the second display sub-region A2.
  • light transmittance refers to transmittance to ambient light.
  • the pixel distribution density in the first display sub-region A1 is greater than the pixel distribution density in the second display sub-region A2; the pixel distribution density in the transition display sub-region A3 is smaller than the pixel distribution density in the first display sub-region A1, and The pixel distribution density in the transition display sub-region A3 is greater than the pixel distribution density in the second display sub-region A2.
  • the display area includes a first display sub-region with a large pixel distribution density (that is, high resolution) and a second display sub-region with a small pixel distribution density (that is, low resolution).
  • the pixel distribution density in the second display sub-region is small, so components such as cameras, sensors, and earphones can be set in the second display sub-region, that is, the display substrate is improved by reducing the local pixel distribution density to increase the screen transmittance. Screen ratio.
  • a transition display sub-region having a pixel distribution density (resolution) between the pixel distribution density of the two display sub-regions is set between the first display sub-region and the second display sub-region, so that the brightness of the first display sub-region can pass through. Transitioning from the display sub-region to the second display sub-region, thereby avoiding the problem of dark lines appearing at the boundary of the second display sub-region near the first display sub-region.
  • the embodiment of the present disclosure sets a transition display sub-region between the first display sub-region and the second display sub-region, and uses the transition display sub-region to reduce the difference in border brightness of the second display sub-region, thereby reducing the dark lines.
  • the display substrate includes a first display sub-region A1 and a second display sub-region A2.
  • first display sub-region A1 and the second display sub-region A2 refer to the positional relationship between the first display sub-region A1 and the second display sub-region A2 in FIG. 1A, but it is not limited thereto.
  • the first display sub-region A1 and the second display sub-region A2 can be located at any position on the screen and can be designed into any shape according to requirements.
  • the display substrate in order to avoid the boundary dividing line problem of the display substrate, the display substrate further includes a transition display sub-region A3.
  • the transition display sub-region A3 is located between the first display sub-region A1 and the second display sub-region A2, but is not limited thereto.
  • the display substrate includes a first display sub-region A1, a second display sub-region A2, and a transition display sub-region A3.
  • the second display sub-region A2 and the transition display sub-region A3 are described as examples of circular areas, but are not limited thereto.
  • the second display sub-region A2 and the transition display sub-region A3 may also be regions of other shapes. For example, it may be a rectangular area.
  • the transition display sub-region A3 includes a fourth pixel unit 40, and the fourth pixel unit 40 includes a first sub-pixel 1, a second sub-pixel 2, and a third sub-pixel 3.
  • the transition display sub-region A3 includes a plurality of third repeating regions A03, and each third repeating region A03 includes an area of the fourth pixel unit 40 and the second transparent pixel P2, and the second transparent pixel P2 It is smaller than the area of the first transparent pixel P1.
  • the plurality of third repeating regions A03 may be arranged in an array or formed as at least one row and / or at least one column of pixels.
  • the distribution density of the second transparent pixel P2 is smaller than the distribution density of the first transparent pixel P1.
  • the distribution density of the first transparent pixel P1 may refer to the ratio of the area of the first transparent pixel P1 to the area of the second display sub-region A2, and the distribution density of the second transparent pixel P2 may refer to the second transparent pixel.
  • the second transparent pixel P2 includes a second transparent sub-pixel.
  • the second transparent pixel P2 and the second sub-pixel in the first display sub-region A1 have the same area and shape.
  • the third sub-pixel 3, the first sub-pixel 1, and the second sub-pixel 2 in the fourth pixel unit 40 are sequentially arranged, and the area of the second sub-pixel 2 is smaller than that of the third sub-pixel. 3 and the area of at least one of the first sub-pixels 1.
  • the area surrounded by the dotted frame in the third repeating region A03 of the transition display sub-region A3 in FIG. 2B is a second transparent pixel P2, and the dotted frame in the second repeating region A02 of the second display sub-region A2 in FIG. 2B
  • the enclosed area is a first transparent pixel P1.
  • the area of the second transparent pixel P2 is greater than or equal to the area of at least one of the first subpixel 1, the second subpixel 2, and the third subpixel 3 in the fourth pixel unit 40. .
  • the area of the second transparent pixel P2 is greater than or equal to the sum of the areas of the first subpixel 1, the second subpixel 2, and the third subpixel 3 in the fourth pixel unit 40.
  • the area of the second transparent pixel P2 is equal to the area of the second sub-pixel 2 in the fourth pixel unit 40.
  • the first display sub-region can make the first The brightness of the display sub-region transitions to the second display sub-region via the transition display sub-region, thereby avoiding the problem of dark lines appearing near the boundary of the second display sub-region near the first display sub-region.
  • the first display sub-region A1 is a normal display sub-region and does not include a region that transmits ambient light.
  • the second display sub-region A2 and the transition display sub-region A3 are regions that can both display and transmit ambient light.
  • the first display sub-region A1 includes a first pixel unit 10 and a second pixel unit 20, and the first pixel unit 10 includes a first sub-pixel 1 and a second sub-pixel 2, and a second pixel unit. 20 includes a second sub-pixel 2 and a third sub-pixel 3.
  • the center of the third sub-pixel 3 of the second pixel unit 20 is connected to the center of the second sub-pixel 2 of the first pixel unit 10 and the center of the second sub-pixel 2 of the second pixel unit 20
  • first pixel unit 10 and the second pixel unit 20 shown in FIGS. 2B and 2C may also refer to the first pixel unit 10 and the second pixel unit in the first display sub-region A1 having a similar structure in other embodiments.
  • description of 20 for example, reference may be made to the related descriptions in FIG. 1G to FIG. 1M and FIG. 1P to FIG. 1S, and details are not described herein again.
  • the first pixel unit 10 and the second pixel unit 20 are arranged through the first display sub-region A1, and the third pixel unit 30 is arranged in the second display sub-region A2 to reduce the second display sub-region A2.
  • the number of sub-pixels of the third pixel unit 30, thereby reducing the pixel distribution density of the second display sub-region A2, increasing the transmittance of the second display sub-region A2, and avoiding the The second problem is that the transmittance of the sub-region A2 is low.
  • the pixel arrangement of the first display sub-region A1 and the second display sub-region A2 provided by the embodiment of the present disclosure can make the first display sub-region A1 adopt sub-pixel rendering (SPR) / sub-pixel borrowing
  • the second display sub-region A2 is driven in a conventional manner.
  • the conventional driving method is a non-borrowing sub-pixel method, including real RGB, but is not limited thereto.
  • the display panel provided by the embodiments of the present disclosure avoids the problem of low transmittance of the second display sub-region A2 caused by the use of the under-screen camera solution.
  • the first display sub-region A1 may be driven by sub-pixel rendering, and if the second display sub-region A2 is also driven by SPR, the pixel density of the second display sub-region A2 is low, and the color It is more serious. Therefore, in the embodiment of the present disclosure, the second display sub-region A2 may use a conventional driving method, and the second sub-pixel 2 and the third sub-pixel in the third pixel unit 30 may be designed accordingly. 3 and the arrangement of the first sub-pixel 1.
  • the SPR method can be implemented by algorithms.
  • the SPR method can use a virtual pixel to borrow adjacent sub-pixels to form pixels for display.
  • the first pixel unit 10 in the first display sub-region A1 is a first virtual pixel
  • the second pixel unit 20 is a second virtual pixel.
  • the first virtual pixel and the second virtual pixel may be sub-pixels of two primary colors of different colors. Therefore, a sub-pixel of another primary color adjacent to the first virtual pixel may be borrowed, and the second virtual pixel may be borrowed. Adjacent sub-pixels of another primary color respectively form pixels that can constitute three primary colors for color display.
  • first direction D1 and a second direction D2 show a first direction D1 and a second direction D2.
  • first direction D1 is perpendicular to the second direction D2
  • first direction D1 may be a horizontal direction
  • the second direction D2 may be a vertical direction.
  • the third sub-pixel 3 in the second pixel unit 20 extends along the second direction D2
  • the first sub-pixel 1 in the first pixel unit 10 extends along the second direction D2.
  • the first sub-pixel 1 and the second sub-pixel 2 in the third pixel unit 30 are parallel to the third sub-pixel 3.
  • the extension direction of the second sub-pixel 2 and the first sub-pixel 1 is arranged between the first transparent pixel P1 and the third sub-pixel 3.
  • the position of the third sub-pixel 3 may be maintained, and the positions of the first transparent pixel P1, the second sub-pixel 2 and the first sub-pixel 1 may be swapped, that is, the first transparent pixel P1 is located in the vertical direction.
  • the middle of the first subpixel 1 and the second subpixel 2 and the third subpixel 3 arranged.
  • an area of at least one of a third sub-pixel 3 and a first sub-pixel 1 is larger than a first The area of the two sub-pixels 2.
  • the area of each of the third sub-pixel 3 and the first sub-pixel 1 is larger than that of the second sub-pixel 2 in the first display unit 10 and the second sub-pixel in the second display unit 20
  • the area of each of the pixels 2.
  • the areas of the second sub-pixel 2 in the first display unit 10 and the second sub-pixel 2 in the second display unit 20 are equal.
  • the area of the first transparent pixel P1 is equal to the area of at least one of the first sub-pixel 1 in the first pixel unit 10 and the third sub-pixel 3 in the second pixel unit 20.
  • This method can be beneficial to obtain a relatively large transmittance of the second display sub-region A2.
  • the embodiment shown in FIG. 2B is described by taking the area of the first transparent pixel P1 equal to the area of the first sub-pixel 1 as an example.
  • the area of the second transparent pixel P2 is equal to the area of the first pixel unit 10 or the second sub-pixel 2 in the second pixel unit 20. Therefore, the area of the second transparent pixel P2 can be made smaller than that of the first transparent pixel P1, so that the brightness transition between the first display sub-region A1 and the second display sub-region A2 is more natural.
  • the second sub-pixel 2 in the first display sub-region A1, the second sub-pixel 2 in the second display sub-region A2, and the transition display sub-region The second sub-pixels 2 in A3 have the same area and the same shape.
  • the first sub-pixel 1 in the first display sub-region A1 and the first sub-pixel 1 in the transition display sub-region A3 have the same area and the same shape ;
  • the area of the first sub-pixel 1 in the second display sub-region A2 is smaller than the area of the first sub-pixel 1 in the first display sub-region A1; the first sub-pixel 1 and the first display in the second display sub-region A2
  • the second sub-pixels 2 in the sub-region A1 have the same area and the same shape.
  • the third sub-pixels 3 in A3 have the same area and the same shape.
  • the area of the first transparent pixel P1 is larger than the area of at least one of the first subpixel 1 and the second subpixel 2 in the third pixel unit 30. Therefore, the first transparent pixel P1 can be made to have a relatively large light transmitting area.
  • the second sub-pixel 2 and the first sub-pixel 1 are located between the first transparent pixel P1 and the third sub-pixel 3 between.
  • the first sub-pixel 1 in the first display sub-region A1, the first sub-pixel 1 in the second display sub-region A2, and the transition display sub-region is a sub-pixel of the same color, the second sub-pixel 2 in the first display sub-region A1, the second sub-pixel 2 in the second display sub-region A2, and the transition display sub-region A3.
  • the second sub-pixel 2 is a sub-pixel of the same color, the third sub-pixel 3 in the first display sub-region A1, the third sub-pixel 3 in the second display sub-region A2, and the third sub-pixel in the transition display sub-region A3.
  • Pixel 3 is a sub-pixel of the same color.
  • the first sub-pixel 1 is a red sub-pixel
  • the second sub-pixel 2 is green.
  • the third sub-pixel 3 is a blue sub-pixel.
  • the first sub-pixel 1 is a blue sub-pixel
  • the second sub-pixel 2 is a green sub-pixel.
  • Pixel, the third sub-pixel 3 is a red sub-pixel.
  • the first sub-pixel 1 is a red sub-pixel
  • the second sub-pixel 2 is a green sub-pixel
  • the third sub-pixel 3 is blue.
  • the pixels of the second display sub-region A2 are arranged to retain the number of blue sub-pixels, reduce the number of green sub-pixels, and reduce the red sub-pixels. This arrangement can increase the transmittance of the display substrate while changing the arrangement of RGBG to real RGB, reducing the risk of color misregistration.
  • the transition between the first display sub-region A1 and the second display sub-region A2 is more natural.
  • the size and position of the original blue sub-pixel is retained in the second display sub-region A2, and the position of the red sub-pixel is steamed to the original green sub-pixel, and one of the green sub-pixels
  • the color of the pixel is changed to red, while reducing the density of the pixel and increasing the transmittance.
  • the size and position of the RGBG arrangement is still used in the transition display sub-region A3, but the number of green sub-pixels is reduced to one, which actually becomes real RGB, and gradually transitions to the first display sub-region A1, which can effectively weaken the second
  • the boundary between the display sub-region A2 and the first display sub-region 01 avoids the problem of the boundary dividing line of the display substrate.
  • the number of rows of the second display sub-region A2 and the transition display sub-region A3 may be determined according to specific circumstances.
  • the arrangement of the first transparent pixels P1 is uniform
  • the arrangement of the second transparent pixels P2 is uniform.
  • the transition between the second display sub-region A2, the transition display sub-region A3, and the first display sub-region A1 is performed in a manner of gradually increasing the pixel area, which is beneficial to eliminate the boundary dividing line, thereby making the first display
  • the transition between the sub-region A1 and the second display sub-region A2 is more natural, and the problem of the boundary dividing line between the second display sub-region A2 and the first display sub-region A1 caused by the use of the under-screen camera solution is avoided.
  • the display substrate provided by the embodiment of the present disclosure obeys the quantitative measurement of the human visual system and does not appear obvious boundaries. It has a significant effect on improving the uniformity of the visual effect of the pure color map, grayscale map, and natural map, and has a low cost.
  • the base substrate 101 and the light shielding member LSC in the display substrate are shown in FIG. 2C.
  • the light shielding member LSC shown in FIG. 2C is for more clearly describing the first transparent pixel P1 and the second transparent pixel P2, and the rest of the structure can be referred to FIG. 2B.
  • the first pixel unit 10 and the second pixel unit 20 adjacent to each other in the column direction are a pixel group 100.
  • the first display sub-region A1 does not include a transparent region.
  • the first display sub-region A1 does not include a transparent region includes: the pixel group 100 does not include a transparent region, and adjacent pixel groups 100 do not include a transparent region.
  • the area is the light emitting area.
  • the remaining areas are The non-light-emitting region, for example, the remaining non-light-emitting region may be provided with a light-shielding member such as a black matrix.
  • the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 2D to FIG. 2G, at least part of the edges of the second display sub-region A2 coincide with at least part of the edges of the display region, and The rest is surrounded by the transition display sub-region A3.
  • the first display sub-region A1 is located on a side of the transition display sub-region A3 away from the second display sub-region A2.
  • the second display sub-region A2 and the transition display sub-region A3 can be set at the edges of the display region.
  • the display area is substantially rectangular. For example, if the top corners of the display area are all right angles, the display area is rectangular.
  • the top corner of the display area may be an arc-shaped corner, and the shape of the display area is substantially rectangular.
  • the shape of the second display sub-region A2 may be set to a regular shape.
  • the second display sub-region A2 may be set to a rectangle.
  • the top corner of the rectangle may also be an arc-shaped corner.
  • the second display sub-region A2 may be set as a trapezoid.
  • the top angle of the trapezoid may be an arc-shaped corner, or the second display sub-region A2 may be set to be circular.
  • the shape of the second display sub-region A2 may be set to an irregular shape.
  • the second display sub-region A2 may be set in a drop shape.
  • the shape of the second display sub-region may be designed according to the shape of the elements provided in the second display sub-region, which is not limited herein.
  • the first display sub-region A1, the transition display sub-region A3, and the second display sub-region A2 may be arranged in a row direction.
  • the second display sub-region A2, the transition display sub-region A3, and the first display sub-region A1 may be arranged in order from top to bottom.
  • a sensor such as a face recognition sensor (for example, an infrared sensor) can also be set in the area where the second display sub-area A2 is located.
  • the first display sub-region A1, the transition display sub-region A3, and the second display sub-region A2 may be arranged in a column direction.
  • the second display sub-region A2, the transition display sub-region A3, and the first display sub-region A1 may be arranged in order from left to right.
  • a sensor such as a face recognition sensor (for example, an infrared sensor) can also be set in the area where the second display sub-area A2 is located.
  • the transition display sub-region A3 may be set to a concave shape.
  • the transition display sub-region A3 is disposed to surround the second display sub-region A2, and the first display sub-region A1 is disposed to surround the transition display sub-region A2.
  • the second display sub-region A2 and the transition display sub-region A3 can be set inside the display region.
  • the shape of the second display sub-region A2 may be set to a circle or an ellipse, and then the shape of the transition display sub-region A3 may be set to a ring shape.
  • the shape of the second display sub-region may be designed according to the shape of the elements provided in the second display sub-region, which is not limited herein.
  • the first display sub-region A1, the transition display sub-region A3, and the second display sub-region A2 form a continuous display region, and the shape of the display region is approximately Is rectangular.
  • apex angle of the rectangle in the embodiment of the present disclosure may be a right angle, or may be a curved angle, which is not limited herein.
  • the relative positional relationship and shape of the first display subregion and the second display subregion are not specifically limited, and may be set according to the screen design of the display substrate.
  • the second display sub-region A2 may be set at the upper middle position of the first display sub-region A1, or the second display sub-region A2 is set in the middle of the first display sub-region A1, or, The second display sub-region A2 is set at the upper left corner of the first display sub-region A1, which is not limited herein.
  • the area of the transition display sub-region A3 may be smaller than that of the second display sub-region A2, and the area of the second display sub-region A2 is smaller than the first display.
  • the area of the second display sub-region may be designed according to the components provided in the second display sub-region, which is not limited herein.
  • the pixel distribution density in the second display sub-region is determined according to the elements to be set in the second display sub-region, which is not limited herein. For example, taking a camera in the second display sub-region as an example, when the pixel distribution density is too large, a good display effect can be ensured, but the imaging clarity is affected. When the pixel distribution density is too small, high imaging clarity can be ensured, but the display effect is affected. For example, with the current resolution capability of the display panel, the pixel distribution density of the second display sub-region is generally not lower than the pixel distribution density of the first display sub-region by 1/4.
  • the pixel distribution density of the second display sub-region is 1/2, 1/3, or 1/4 of the pixel distribution density of the first display sub-region.
  • the ratio of the pixel distribution density of the second display sub-region to the pixel distribution density of the first display sub-region can be set smaller, which is not specifically limited here.
  • a pixel unit is provided in a general display area, and a plurality of sub-pixels are provided in the pixel unit.
  • a pixel refers to a combination of sub-pixels capable of independently displaying one pixel.
  • a pixel refers to a pixel unit.
  • the first display sub-region A1 includes a plurality of adjacently disposed first pixel units. 10 ⁇ ⁇ pixel ⁇ 20 ⁇ 10 and the second pixel unit 20.
  • the first pixel unit 10 includes a first sub-pixel 1 and a second sub-pixel 2
  • the second pixel unit 20 includes a third sub-pixel 3 and a second sub-pixel 2.
  • the number of pixels in the first display sub-region A1 is equal to the sum of the number of the first pixel units 10 and the number of the second pixel units 20. That is, the pixel arrangement in the first display sub-region A1 is a Pantile arrangement.
  • the pixel unit can achieve a resolution higher than the physical resolution by borrowing sub-pixels in adjacent pixel units.
  • the second display sub-region A2 includes a plurality of third pixel units 30.
  • the third pixel unit 30 includes a first sub-pixel 1, a second sub-pixel 2, and a third sub-pixel 3 disposed adjacently.
  • the number of pixels in the second display sub-region A2 during display is equal to the number of the third pixel units 30. That is, the physical resolution of the pixels in the second display sub-region A2 is its display resolution.
  • the transition display sub-region A3 includes a plurality of fourth pixel units 40.
  • the fourth pixel unit 40 includes a first sub-pixel 1, a second sub-pixel 2, and a third sub-pixel 3 that are disposed adjacently.
  • the number of pixels in the transition display sub-region A3 during display is equal to the number of the fourth pixel units 40. That is, the physical resolution of the pixels in the transition display sub-region A3 is its display resolution.
  • the first subpixel, the second subpixel, and the third subpixel are generally one of a red subpixel, a green subpixel, and a blue subpixel, respectively.
  • the second subpixel is a green subpixel
  • one of the first subpixel and the third subpixel is a red subpixel
  • one of the first subpixel and the third subpixel is The other is a blue sub-pixel.
  • the arrangement of the sub-pixels in the sub-region mainly refers to the interior of the display sub-region. Some sub-pixels may be arranged differently from other regions at the edges of the display region, which is not limited here.
  • the arrangement structure of the third pixel unit and the arrangement structure of the fourth pixel unit may be the same or different, which is not limited herein.
  • the arrangement structure of the third pixel unit and the fourth pixel unit is the same. On the one hand, it facilitates the process patterning, and on the other hand, it facilitates the overall layout of the display substrate.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 may be located at the same Row.
  • the sub-pixels corresponding to the sub-pixels in the second display sub-region A2 and the first display sub-region A1 are corresponding in the row direction, and are not set in the wrong rows or columns.
  • it is equivalent to removing a part of the sub-pixels in the second display sub-region A2 from the sub-pixel mask that was originally arranged regularly in the entire display area, and the production process is relatively easy to implement.
  • the sub-pixels in the second display sub-region A2 and some of the sub-pixels in the first display sub-region A1 may be located Same column.
  • the sub-pixels corresponding to the sub-pixels in the second display sub-region A2 and the first display sub-region A1 are corresponding in the column direction, and are not set in wrong rows or columns.
  • it is equivalent to removing a part of the sub-pixels in the second display sub-region A2 from the sub-pixel mask that was originally arranged regularly in the entire display area, and the production process is relatively easy to implement.
  • the sub-pixels in the transition display sub-region A3 and some of the sub-pixels in the first display sub-region A1 may be located in the same row. .
  • the sub-pixels in the transition display sub-region A3 correspond to the sub-pixels in the first display sub-region A1 in the row direction, and are not arranged in wrong rows or columns.
  • it is equivalent to remove a part of the sub-pixels in the transition display sub-region A3 from the sub-pixel mask that was originally regularly arranged in the entire display area, and the production process is relatively easy to implement.
  • the sub-pixels in the transition display sub-region A3 and some of the sub-pixels in the first display sub-region A1 may be located at the same location.
  • Column. This is equivalent to that the sub-pixels in the transition display sub-region A3 correspond to the sub-pixels in the first display sub-region A1 in the column direction, and are not arranged in wrong rows or columns. In this way, during production, it is equivalent to remove a part of the sub-pixels in the transition display sub-region A3 from the sub-pixel mask that was originally regularly arranged in the entire display area, and the production process is relatively easy to implement.
  • this is equivalent to the sub-pixels in the second display sub-region A2 and the transition display sub-region A3 corresponding to the sub-pixels in the first display sub-region A1 in the row direction or the column direction. Or staggered settings.
  • it is equivalent to removing part of the sub-pixels in the second display sub-region A2 from the sub-pixel mask that is regularly arranged in the entire display area, and removing part of the sub-pixels in the transition display sub-region A3.
  • Relatively easy to implement For example, as shown in FIG.
  • the transition display sub-region A2 is equivalent to removing half of the second sub-pixel 2 compared to the first display sub-region A1, so that the resolution is 1/2 of the first display sub-region A1.
  • the second display sub-region A2 is equivalent to removing 3/4 of the second sub-pixel 2, removing half of the first sub-pixel 1 and half of the third sub-pixel 3, so that the resolution is the first display sub-region. 1/4 of area A1.
  • the width of the transition display sub-region may be specifically designed according to the display effect and the screen size of the display substrate.
  • the preset width may include a width of at least one fourth pixel unit along the first direction.
  • the first direction may be one of a row direction and a column direction.
  • the preset width may include a width of at least one fourth pixel unit in a row direction.
  • the preset width is generally not too wide.
  • the width of a fourth pixel unit in the row direction can achieve the effect that the present disclosure can achieve.
  • the preset width may also be set wider.
  • the preset width may be the width of multiple fourth pixel units in the row direction, which is not limited herein. It should be noted that the preset width may include a width of at least the fourth pixel unit in the row direction, and a gap between the fourth pixel units.
  • the preset width may also include a width of at least one fourth pixel unit in a column direction.
  • the preset width is generally not too wide.
  • the width of a fourth pixel unit in the column direction can achieve the effect that the present disclosure can achieve.
  • the preset width may also be set wider.
  • the preset width may be the width of a plurality of fourth pixel units in the column direction, which is not limited herein. It should be noted that the preset width may include a width of at least one fourth pixel unit in a column direction, and a gap between the fourth pixel units.
  • the preset width may include at least one of a preset width in a row direction and a preset width in a column direction.
  • the preset width in the row direction may be the width of the fourth pixel unit in the row direction
  • the preset width in the column direction may be the width of the fourth pixel unit in the column direction.
  • the preset width of the transition display sub-region A3 in the row direction is a width of the fourth pixel unit 40 in the row direction
  • the preset width of the transition display sub-region A3 in the column direction is a fourth The width of the pixel unit 40 in the column direction.
  • the preset width of the transition display sub-region A3 in the column direction is the width of one fourth pixel unit 40 in the column direction.
  • the pixel distribution density of the second display sub-region is generally not too small.
  • the pixel distribution density of the second display sub-region may be set to 1/4 of the pixel distribution density of the first display sub-region. Therefore, the pixel distribution density of the transition display sub-region can be set to 1/2 of the pixel distribution density of the first display sub-region.
  • the pixel distribution density of the transition display sub-region may gradually decrease along the direction in which the first display sub-region points to the second display sub-region.
  • the light-emitting area of the sub-pixels in the transition display sub-region is consistent with the light-emitting area of the sub-pixels in the first display sub-region. That is, in the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 2D to FIG. 2K, the light-emitting area of one first sub-pixel 1 in the transition display sub-region A3 is substantially equal to one of the first display sub-region A1. Light emitting area of the sub-pixel 1. The light-emitting area of a second sub-pixel 2 in the transition display sub-region A3 is substantially equal to the light-emitting area of a second sub-pixel 2 in the first display sub-region A1.
  • the light-emitting area of a third sub-pixel 3 in the transition display sub-region A3 is substantially equal to the light-emitting area of a third sub-pixel 3 in the first display sub-region A1.
  • the relationship between the light-emitting areas of each sub-pixel only needs to meet the above conditions, which are all part of this The scope of protection of the invention.
  • the embodiments of the present disclosure provide In the display substrate, the light emitting area of the same seed pixel in the fourth pixel unit 40 closer to the first display sub-region A1 is larger. In this way, by adjusting the light emitting area of the sub-pixels, the brightness of the transition display sub-region is gradually reduced along the direction in which the first display sub-region is directed toward the second display sub-region.
  • the preset width includes the width of three fourth pixel units, and the first sub-pixel 1 is taken as an example.
  • the fourth row of the fourth pixel units 40 in the third row is closest to the first display sub-region A1.
  • the light-emitting area of one sub-pixel 1 is the largest.
  • the fourth pixel unit 40 in the second row is far from the first display sub-region A1, and the light emitting area of the first sub-pixel 1 thereof is smaller than the light emitting area of the sub-pixels in the first row and fourth pixel unit 40.
  • the fourth pixel unit 40 in the first row is farthest from the first display sub-region A1, and the light-emitting area of the first sub-pixel 1 thereof is the smallest.
  • the second sub-pixel 2 and the third sub-pixel 3 are sequentially deduced by analogy, and details are not described herein.
  • the arrangement order of the sub-pixels in two fourth pixel units 40 adjacent in the column direction is opposite.
  • the fourth pixel units 40 in the first row and the third row respectively use the first subpixel, the second subpixel, and the third subpixel in order from left to right.
  • the fourth pixel unit 40 in the second row uses the third sub-pixel, the second sub-pixel, and the first sub-pixel in order from left to right.
  • the arrangement order of the sub-pixels in the two fourth pixel units 40 adjacent in the row direction in the transition display sub-region A3 is the same.
  • the fourth pixel units 40 in the first column and the second column respectively use the first subpixel, the second subpixel, and the third subpixel in order from left to right.
  • the arrangement order of the sub-pixels in each of the fourth pixel units 40 in each row may be the same.
  • the fourth pixel units 40 in the first to sixth columns respectively use the first subpixel, the second subpixel, and the third subpixel in order from left to right.
  • the arrangement structure of the first subpixel, the second subpixel, and the third subpixel in the fourth pixel unit may be adjacent to the first subpixel disposed in the first display area.
  • the arrangement structure of the pixels, the second sub-pixels, and the third sub-pixels is the same, which facilitates process composition.
  • the arrangement structure of the first subpixel, the second subpixel, and the third subpixel in the third pixel unit may be disposed adjacent to the first display area.
  • the arrangement structure of the first subpixel, the second subpixel, and the third subpixel is the same.
  • the first sub-pixel 1, the second sub-pixel 2 in the fourth pixel unit 40, and The third sub-pixel 3 is set in a row.
  • the same column may be arranged next to each other in sequence, which is not limited herein.
  • the light emission area of one first sub-pixel in the second display sub-region may be greater than or substantially equal to the light emission of one first sub-pixel in the first display sub-region. area.
  • the light-emitting area of a second sub-pixel in the second display sub-region is greater than or substantially equal to the light-emitting area of a second sub-pixel in the first display sub-region.
  • the light-emitting area of a third sub-pixel in the second display sub-region is greater than or substantially equal to the light-emitting area of a third sub-pixel in the first display sub-region.
  • the brightness of the second display sub-region will be lower than the brightness of the first display sub-region during display, so that At the junction of the display sub-region and the second display sub-region, there will be obvious dark lines visible to the human eye.
  • the display substrate provided in the embodiment of the present disclosure, as shown in FIG.
  • the light emitting area of one first sub-pixel 1 in the second display sub-region A2 may be larger than the first The light-emitting area of a first sub-pixel 1 in the display sub-region A1; the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is larger than that of a second sub-pixel 2 in the first display sub-region A1 Area; the light-emitting area of a third sub-pixel 3 in the second display sub-region A2 is larger than the light-emitting area of a third sub-pixel 3 in the first display sub-region A1. That is, by increasing the light emitting area of the sub-pixels in the second display sub-region A2, the brightness difference between the second display sub-region A2 and the first display sub-region A1 is reduced, thereby reducing the Border dark.
  • the light emitting area of one first sub-pixel 1 in the second display sub-region A2 may be substantially equal to the first display sub-region A1.
  • the light-emitting area of a first sub-pixel 1 in the first display sub-region; the light-emitting area of a third sub-pixel 3 in the second display sub-region A2 is substantially equal to the light-emitting area of a third sub-pixel 3 in the first display sub-region A1.
  • the light-emitting area of a second sub-pixel 2 in the second display sub-region A2 is substantially equal to the light-emitting area of a second sub-pixel 2 in the first display sub-region A1.
  • the specific implementation manners between the above light-emitting areas can be designed and determined according to the actual application environment, which is not limited herein.
  • a plurality of third pixel units 30 may be arranged in a matrix in the second display sub-region A2.
  • a plurality of third pixel units 30 may be arranged in a checkerboard manner in the second display sub-region A2. That is, the plurality of third pixel units 30 are arranged alternately in the row direction and are arranged alternately in the column direction. For example, as shown in FIG. 2H, on the odd-numbered rows, the third pixel unit 30 is disposed at the position of the even-numbered column, and on the even-numbered row, the third pixel unit 30 is disposed at the position of the odd-numbered column, so that the third pixel unit 30 is arranged in the row direction.
  • the third pixel units 30 are arranged in the positions of the odd-numbered columns, and on the even-numbered rows, the third pixel units 30 are arranged in the positions of the even-numbered columns, so that any two third pixel units are spaced apart.
  • a certain distance and a separation distance may be, for example, the length of the at least one third pixel unit in the row direction in the row direction, and the length of the at least one third pixel unit in the column direction in the column direction, which are not limited in the embodiments of the present disclosure.
  • the first sub-pixel 1 and the third sub-pixel 3 are arranged in parallel
  • the second sub-pixel 2 is located adjacent to the row where the first sub-pixel 1 and the third sub-pixel 3 are located, that is, the second sub-pixel 2 and the first sub-pixel 1 are arranged in staggered rows.
  • the first sub-pixel 1 and the third sub-pixel 3 in the same third pixel unit 30 are located in the first row, and the second sub-pixel 2 is located in the second row.
  • the center line of the first subpixel, the second subpixel, and the third subpixel in the same third pixel unit 30 can form a triangle. In this way, it is possible to prevent horizontal dark and light stripes from appearing in the second display sub-region A2.
  • the center of the sub-pixel refers to the center of the light-emitting area of the sub-pixel.
  • a sub-pixel generally includes a laminated structure composed of an anode layer, a light-emitting layer, and a cathode layer, and a light-emitting area corresponding to the laminated structure during display is a light-emitting area of the sub-pixel.
  • the area occupied by the light emitting area can be used as the light emitting area.
  • the light emitting area may be, for example, an area occupied by an opening area defined by the pixel defining layer, which is not limited herein.
  • the center of the second sub-pixel 2 is at the center of the first sub-pixel 1 and the third sub-pixel 3
  • the orthographic projection on the line L1 between the centers of is located between the center of the first subpixel 1 and the center of the third subpixel 3, for example, the center of the second subpixel 2 is between the center of the first subpixel 1 and the
  • the orthographic projection on the line L1 between the centers of the three sub-pixels 3 is located at the intersection of the connection L1 and the straight line L2.
  • the distance between the center of the second sub-pixel 2 and the center of the first sub-pixel 1 and the distance between the center of the second sub-pixel 2 and the center of the third sub-pixel 3 may not be exactly the same.
  • the shape, position, and relative position of each sub-pixel need only meet the above conditions, and all belong to this disclosure. protected range.
  • the first sub-pixel 1 in the third pixel unit 30 , The second sub-pixel 2 and the third sub-pixel 3 are set together.
  • it can also be set in the same column, which is not limited here.
  • the first sub-pixel 1, the second sub-pixel 2 and the first The three sub-pixels 3 are arranged in sequence.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 are sequentially arranged in a row from left to right. Alternatively, it can be set in the same column in sequence, which is not limited here.
  • the first sub-pixel 1, the second sub-pixel 2 and the third sub-pixel 3 are arranged adjacent to each other in order.
  • the same column may be arranged next to each other in sequence, which is not limited herein.
  • two third pixel units adjacent to each other in the row direction in the second display sub-region A2 The arrangement order of the sub-pixels within 30 in the row direction is the same, and the arrangement order of the sub-pixels in the two third pixel units 30 adjacent in the column direction along the row direction is opposite. Therefore, it is ensured that in the second display sub-region A2, the first sub-pixels 1 and the third sub-pixels 3 are alternately arranged in the column direction to avoid color shift in the column direction.
  • the arrangement order of the sub-pixels in the two third pixel units 30 adjacent to each other in the row direction in the same row direction may refer to the first sub-pixels 1 in the two third pixel units 30.
  • the second sub-pixel 2 and the third sub-pixel 3 are all arranged in the same order.
  • FIG. 2E taking the first row and the third pixel unit 30 as an example, along the row direction, the first subpixel 1, the second subpixel 2, and the third subpixel in the two adjacent third pixel units 30 are adjacent.
  • 3 are arranged in order from left to right.
  • FIG. 2F taking the first row and the third pixel unit 30 as an example, along the row direction, the first subpixel 1, the third subpixel 3, and the second subpixel in the two adjacent third pixel units 30 are adjacent. 2 are arranged in an inverted triangle.
  • the arrangement order of the sub-pixels in each of the third pixel units 30 in the second display sub-region A2 may be the same.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in each third pixel unit 30 are sequentially arranged from left to right.
  • the arrangement order of the sub-pixels in each third pixel unit 30 in the same column is the same, and The arrangement order of the sub-pixels in the third pixel unit 30 in two adjacent columns is opposite.
  • the third sub-pixel 3, the second sub-pixel 2, and the first sub-pixel 1 in each of the third pixel units 30 in the first and third columns are sequentially arranged from left to right.
  • the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in each of the third pixel units 30 in the second and fourth columns are sequentially arranged from left to right.
  • the arrangement order of the sub-pixels in each first pixel unit 10 is the same, and each second The arrangement order of the sub-pixels in the pixel unit 20 is the same.
  • the first sub-pixel 1 and the second sub-pixel 2 in each first pixel unit 10 are sequentially arranged from left to right.
  • the third sub-pixel 3 and the second sub-pixel 2 in each second pixel unit 20 are sequentially arranged from left to right.
  • the first sub-pixel 1 and the second sub-pixel 2 in each first pixel unit 10 are sequentially arranged from left to right.
  • the third sub-pixel 3 and the second sub-pixel 2 in each second pixel unit 20 are sequentially arranged from the upper left to the lower right direction.
  • the first pixel unit 10 and the second pixel unit 20 in the first display sub-region A1 may be arranged in any Pantile arrangement manner. It is not limited here.
  • the first pixel units 10 and the second pixel units 20 are alternately arranged along the column direction.
  • the first pixel units 10 and the second pixel units 20 are alternately arranged along the row direction.
  • the second sub-pixel 2 in the first pixel unit 10 and the first sub-pixel 1 are arranged in a row; within the second pixel unit 20 The second sub-pixel 2 and the third sub-pixel 3 are arranged in a row. And, for the first pixel unit 10 and the second pixel unit 20 adjacent in the row direction, the second sub-pixel 2 in the first pixel unit 10 and the second sub-pixel 2 in the second pixel unit 20 are not directly adjacent to each other. .
  • the first sub-pixel 1 and the second sub-pixel 2 in the first pixel unit 10 are sequentially arranged from left to right, and the second pixel unit
  • the third sub-pixel 3 and the second sub-pixel 2 in 20 are arranged in order from left to right.
  • the light-emitting area of one first sub-pixel 1 and the light-emitting area of one second sub-pixel 2 are substantially the same.
  • the first pixel unit 10 and the second pixel unit 20 adjacent to each other in the column direction are a pixel group 100.
  • the second sub-pixel 2 and the second pixel unit 20 are located in the first pixel unit 10.
  • the second sub-pixel 2 is located in the same column. That is, two adjacent rows of pixel units are staggered by half a column in the column direction.
  • the light emission area of one second sub-pixel 2 in the first display sub-region A1 is smaller than that of one first sub-pixel 1.
  • Area, the light-emitting area of a second sub-pixel 2 is smaller than the light-emitting area of a third sub-pixel 3. This is because in the first display sub-region A1, the number of the first sub-pixel 1 is the same as the number of the third sub-pixel 3, and the number of the second sub-pixel 2 is twice that of the first sub-pixel 1, so the The light emitting area of the second sub-pixel 2 is made small.
  • two second sub-pixels 2 can be symmetrically arranged with respect to the row direction. Even two second sub-pixels 2 in the same pixel group 100 are mirror-imaged.
  • the first display sub-region A1 when the second sub-pixel 2 is a green sub-pixel, the light-emitting area of two second sub-pixels 2 is smaller than the light-emitting area of one first sub-pixel 1, and the two second The light-emitting area of the sub-pixel 2 is smaller than that of one third sub-pixel 3, because the light-emitting efficiency of the green sub-pixel is higher than the light-emitting efficiency of the other color sub-pixels.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the first display subregion, and may be a regular shape or an unshaped shape.
  • Regular shape For example, general regular shapes are easier to implement from a process perspective.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the transition display subregion, and may be a regular shape or an irregular shape. shape.
  • general regular shapes are easier to implement from a process perspective.
  • the shape of the first subpixel, the second subpixel, and the third subpixel is not limited in the second display subregion, and may be a regular shape or an unshaped shape.
  • Regular shape For example, general regular shapes are easier to implement from a process perspective.
  • the shape of one of the first sub-pixel 1 and the third sub-pixel 3 is substantially the same.
  • the shapes of the first sub-pixels 1 and the third sub-pixels 3 in the first display sub-region A1 can be made substantially the same.
  • the shapes of the first sub-pixels 1 in the first display sub-region A1 may be made substantially uniform.
  • the shapes of the third sub-pixels 3 in the first display sub-region A1 may be made substantially the same.
  • the shapes of the first sub-pixels 1 in the transition display sub-region A3 may be made substantially the same.
  • the shapes of the third sub-pixels 3 in the transition display sub-region A3 may be made substantially the same.
  • the shapes of the first sub-pixels 1 and the third sub-pixels 3 in the transition display sub-region A3 may be made substantially the same.
  • the shapes of the first sub-pixels 1 and the third sub-pixels 3 in the second display sub-region A2 may be made substantially the same.
  • the shapes of the first sub-pixels 1 in the second display sub-region A2 may be made substantially the same.
  • the shapes of the third sub-pixels 3 in the second display sub-region A2 may be made substantially the same.
  • each first sub-pixel 1 in the transition display sub-region A3 and the shape of each first sub-pixel 1 in the first display sub-region A1 may be made substantially the same.
  • the shape of each third sub-pixel 3 in the transition display sub-region A3 may be substantially the same as the shape of each third sub-pixel 3 in the first display sub-region A1.
  • the shapes of the first sub-pixels 1 and the third sub-pixels 3 in the transition display sub-region A3 may be approximately the same as the shapes of the first sub-pixels 1 and the third sub-pixels 3 in the first display sub-region A1. Consistent. The rest of the same reason, will not repeat them here.
  • the shape of the second sub-pixel 2 in at least one of the second display sub-region A2 and the transition display sub-region A3 It is substantially the same as the shape in the first display sub-region A1.
  • the shape of the second sub-pixel 2 in the second display sub-region A2 may be made substantially the same as the shape of the second sub-pixel 2 in the first display sub-region A1.
  • the shape of the second sub-pixel 2 in the transition display sub-region A3 may be substantially the same as the shape of the second sub-pixel 2 in the first display sub-region A1.
  • the shapes of the second sub-pixels 2 in the second display sub-region A2 and the transitional display sub-region A3 may be substantially the same as the shapes of the second sub-pixels 2 in the first display sub-region A1.
  • At least one of the first display sub-region A1, the transition display sub-region A3, and the second display sub-region A2 may also be made.
  • the shapes of the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 are substantially the same.
  • the shapes of each of the first sub-pixel 1, each of the second sub-pixel 2, and each of the third sub-pixel 3 may be made substantially uniform.
  • the shapes of the first sub-pixels 1, the second sub-pixels 2, and the third sub-pixels 3 in the second display sub-region A2 may be made substantially the same.
  • the shapes of the first sub-pixels 1, the second sub-pixels 2, and the third sub-pixels 3 in the transition display sub-region A3 may be made substantially the same.
  • the shapes of the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3 in the first display sub-region A1, the transition display sub-region A3, and the second display sub-region A2 may be made substantially the same. .
  • each of the first sub-pixel 1, each of the second sub-pixel 2, and each of the third sub-pixel 3 in the same sub-region is substantially the same.
  • the shapes of the three sub-pixels are substantially the same.
  • the light emitting area of the pixels may be different.
  • the light-emitting area of the second sub-pixel 2 is smaller than the light-emitting area of the first sub-pixel 1, and the light-emitting area of the second sub-pixel 2 is smaller than the third sub-pixel 3. Glowing area.
  • the light emitting area of the blue sub-pixel is larger than the light emitting area of the red sub-pixel is larger than the light-emitting area of the green sub-pixel, or the light-emitting area of the blue sub-pixel is larger than that of the green sub-pixel is greater than red
  • the implementation of the light-emitting area of the sub-pixel is set, which is not limited herein.
  • the shape of the first sub-pixel may be at least one of a rectangle and a hexagon.
  • the shape of the first sub-pixel 1 in each display sub-region is rectangular.
  • the shape of the first sub-pixel 1 in each display sub-region may be a hexagon.
  • the shape of the first sub-pixel 1 in the first display sub-region A1 and the transition display sub-region A3 is a hexagon, and the shape of the first sub-pixel 1 in the second display sub-region A2 is rectangle.
  • the shape of the first sub-pixel may also be a rounded shape or an oval shape, which is not limited herein.
  • the shapes of the first sub-pixel 1 and the third sub-pixel 3 are all six sides.
  • the shape of the two second sub-pixels 2 is a hexagon.
  • the shape of the sub-pixel may refer to the shape of the light-emitting area of the sub-pixel.
  • the shape of the sub-pixel can be designed and determined according to the actual application environment, which is not limited here.
  • the second display sub-region A2 when the second sub-pixel 2 is a green sub-pixel, the The light-emitting area is smaller than the light-emitting area of the first sub-pixel 1, and the light-emitting area of the second sub-pixel 2 is smaller than the light-emitting area of the third sub-pixel 3.
  • the shape of the first sub-pixel 1 in the transition display sub-region A3 and the first sub-pixel 1 in the first display sub-region A1 is consistent with the shape of the second sub-pixel 2 in the first display sub-region A1, and the shape of the third sub-pixel 3 in the transition display sub-region A3 is the same as the first The shape of the third sub-pixel 3 in the display sub-region A1 is the same.
  • the second sub-pixel 2 when the second sub-pixel 2 is a green sub-pixel, the second sub-pixel 2 emits light.
  • the area is smaller than the light-emitting area of the first sub-pixel 1, and the light-emitting area of the second sub-pixel 2 is smaller than the light-emitting area of the third sub-pixel 3.
  • the first transparent pixel P1 in the second display sub-region A2 in FIG. 2D and FIG. 2E may refer to the related description in FIG. 1C and FIG. 1D
  • P1 may refer to the related description in FIG. 1E
  • the first transparent pixel P1 in the second display sub-region A2 in FIG. 2G may refer to the related description in FIG. 1F, which is not repeated here.
  • a total of four first transparent pixels P1 are provided on each side of each third pixel unit 30 except for the edge position in the row direction and the column direction.
  • a plurality of first transparent pixels P1 are arranged in a checkerboard manner.
  • each first transparent pixel P1 includes one first transparent sub-pixel P01, two second transparent sub-pixels P02, and one third transparent sub-pixel P03.
  • each first transparent pixel P1 includes one first transparent sub-pixel P01, one second transparent sub-pixel P02, and one third transparent sub-pixel P03.
  • the first transparent sub-pixel P01 and the first sub-pixel 1 in the first display sub-region A1 have the same area and shape
  • the second transparent sub-pixel P02 and the first The second sub-pixel 2 in a display sub-region A1 has the same area and shape
  • the third transparent sub-pixel P03 and the third sub-pixel 3 in the first display sub-region A1 have the same area and shape.
  • the first transparent sub-pixel P01 and the first sub-pixel 1 in the first display sub-region A1 have the same area and shape; the third transparent sub-pixel P03 and the The third sub-pixel 3 has the same area and shape; the area of the second transparent sub-pixel P02 is larger than the area of the second sub-pixel 2 in the first display sub-region.
  • the area of the first transparent sub-pixel P01 is larger than the area of the first sub-pixel 1 in the first display sub-region A1
  • the area of the second transparent sub-pixel P02 is larger than that in the first display sub-region A1.
  • the area of the second sub-pixel 2 and the area of the third transparent sub-pixel P03 are larger than the area of the third sub-pixel 3 in the first display sub-region A1.
  • the first transparent pixel P1 and the second transparent pixel P2 in FIGS. 2D to 2L are described below.
  • the third repeating region A03 includes a fourth pixel unit 30 and a second transparent pixel P2.
  • the areas of the plurality of second transparent pixels P2 are equal, but not limited thereto.
  • the area of the second transparent pixel P2 is smaller than the area of the first transparent pixel P1.
  • the distribution density of the second transparent pixel P2 is smaller than the distribution density of the first transparent pixel P1.
  • the areas of the plurality of second transparent pixels P2 may be unequal.
  • the plurality of second transparent pixels P2 include a first portion P21, a second portion P22, and a third portion P23 which are sequentially arranged in a direction from a position near the first display sub-pixel A1 to a position near the second display sub-pixel A2.
  • the areas of the first portion P21, the second portion P22, and the third portion P23 decrease in order.
  • the area of each of the first portion P21, the second portion P22, and the third portion P23 is larger than the area of the second transparent sub-pixel P02 located within the second display sub-pixel A2.
  • the plurality of second transparent pixels P2 may further include two sequentially arranged in a direction from a position close to the first display sub-pixel A1 to a position close to the second display sub-pixel A2.
  • the area of each of the first portion P21 and the second portion P22 is larger than the area of the second transparent sub-pixel P02 located within the second display sub-pixel A2.
  • the plurality of first transparent pixels P1 are disposed at the third pixel. Both sides in the row direction and both sides in the column direction of the unit 30. Thereby, light transmission can be made uniform.
  • this arrangement also enables the plurality of third pixel units 30 to be disposed on both sides in the row direction and on both sides in the column direction of each first transparent pixel P1, so that the light emission can be uniform, that is, the display is uniform. .
  • the four first transparent pixels P1 are respectively disposed on both sides in the row direction and on both sides in the column direction of the third pixel unit 30.
  • four third pixel units 30 are provided on both sides in the row direction and on both sides in the column direction of each first transparent pixel P1.
  • the plurality of first transparent pixels P1 are disposed in the first sub-pixel 1, the second sub-pixel 2 and the third in the third pixel unit 30. Both sides in the row direction and both sides in the column direction of at least one of the sub-pixels 3 make the light transmission uniform and the display uniform. Therefore, the first transparent pixels P1 are uniformly distributed at the four positions of the top, bottom, left, and right of the third pixel unit 30.
  • FIG. 1F to FIG. 10 For example, as shown in FIG. 1F to FIG. 10, FIG. 2D to FIG. 2G, FIG. 2H to FIG. 2J, and FIG. Column. Therefore, in the manufacturing process of the display substrate, a mask can be shared to the greatest extent, thereby saving costs.
  • the shape of the sub-pixel in the second display sub-pixel A2 is different from that of the first display sub-pixel A1, the sub-pixel in the second display sub-pixel A2 and the sub-pixel in the first display sub-pixel A1
  • the pixels can be made with different masks.
  • the sub-pixels in the second display sub-region and some of the sub-pixels in the first display sub-region are located in the same row. Therefore, in the manufacturing process of the display substrate, a mask can be shared to the greatest extent, thereby saving costs.
  • a mask can be shared to the greatest extent, thereby saving costs.
  • the shape of the sub-pixel in the second display sub-pixel A2 is different from that of the first display sub-pixel A1, the sub-pixel in the second display sub-pixel A2 and the sub-pixel in the first display sub-pixel A1
  • the pixels can be made with different masks.
  • the sub-pixels in the transition display sub-region A3 and some of the sub-pixels in the first display sub-region A1 are located in the same row. Therefore, in the manufacturing process of the display substrate, a mask can be shared to the greatest extent, thereby saving costs.
  • the sub-pixels in the transition display sub-region A3 and some of the sub-pixels in the first display sub-region A1 are located in the same column. Therefore, in the manufacturing process of the display substrate, a mask can be shared to the greatest extent, thereby saving costs.
  • the sub-pixels in the first display sub-region A1 include at least one of the first sub-pixel 1, the second sub-pixel 2, and the third sub-pixel 3; the sub-pixels in the second display sub-pixel A2 include the first sub-pixel 1 At least one of the second subpixel 2 and the third subpixel 3; the subpixels in the transition display subregion A3 include at least one of the first subpixel 1, the second subpixel 2, and the third subpixel 3.
  • the common mask plate is formed by using the same mask plate. Compared with the mask plate used when the second display sub-pixel A2 and the transition display sub-region A3 are not provided, the mask plate does not need to be adjusted, or only a small amount is required. Adjustments can be made, for example, to form the desired mask by blocking the open area. For example, the opening area at the position corresponding to the first transparent pixel P1 in the second display sub-region A2 of the mask may be blocked, or the position corresponding to the second transparent pixel P2 in the transition display sub-region A3 of the mask may be blocked. The opening area is blocked, but is not limited to this.
  • the light-emitting layers of the first display sub-region A1, the second display sub-pixel A2, and the third sub-pixel 3 in the transition display sub-region A3 may be formed by using the same mask, and the mask may be provided without the second display.
  • the sub-pixel A2 is the same as the mask when the sub-region A3 is transitioned, so that the manufacturing process can be simplified.
  • the first sub-pixel 1 of the first display sub-region A1, the first transparent pixel P1 of the second display sub-pixel A2, and the first sub-pixel 1 in the transition display sub-region A3 may be formed using the same mask.
  • the mask can cover the opening area in the second display sub-pixel A2 on the basis of the mask used when the second display sub-pixel A2 and the transition display sub-region A3 are not provided, so as to cover the second display sub-pixel.
  • A2 forms a first transparent pixel P1.
  • the light-emitting layers of the first display sub-region A1, the second display sub-pixel A2, and the second sub-pixel 2 in the transition display sub-region A3 may be formed using the same mask, and the mask may be provided without a second display.
  • the opening region at the position corresponding to the first sub-pixel 1 in the second display sub-pixel A2 is blocked, and the transition display sub-region A3 is blocked.
  • the opening area at the position corresponding to the second transparent pixel P2 is blocked, and only a small amount of adjustment is needed on the basis of a normal mask to obtain a usable mask.
  • the first sub-pixel 1 in the second display sub-pixel A2 may be made by using a separate mask, but is not limited thereto.
  • the mask for making the light-emitting layer of the first sub-pixel may be adjusted so that the first sub-pixel 1 in the first display sub-region A1, the second display sub-pixel A2, and the transition display sub-region A3 It can be formed using the same mask.
  • the display substrates provided in other embodiments may be fabricated in a similar manner, and are not repeated here.
  • FIG. 3A is a schematic diagram of a pixel circuit of a display substrate.
  • the display substrate is an OLED display substrate.
  • the embodiment of the present disclosure uses the pixel circuit shown in FIG. 3A as an example, but is not limited thereto, and the display substrate may also be other suitable pixel circuits.
  • the first power signal line 13 is configured to provide a constant first voltage signal ELVDD to the pixel circuit structure 10
  • the second power signal line 14 is configured to provide a constant second voltage signal to the pixel circuit structure 10.
  • ELVSS and the first voltage signal ELVDD is greater than the second voltage signal ELVSS.
  • the light emission control signal line 15 is configured to provide the pixel circuit structure 10 with a light emission control signal EM.
  • the initialization signal line 16 and the reset control signal line 17 are respectively configured to provide an initialization signal Vint and a reset control signal Reset to the pixel circuit structure 10, wherein the initialization signal Vint is a constant voltage signal, and its size may be, for example, between the first voltage signal Between ELVDD and the second voltage signal ELVSS, but is not limited thereto, for example, the initialization signal Vint may be less than or equal to the second voltage signal ELVSS.
  • the pixel circuit structure 10 includes a driving transistor T1, a data writing transistor T2, a threshold compensation transistor T3, a first light emission control transistor T4, a second light emission control transistor T5, a first reset transistor T6, and a second reset The transistor T7 and the storage capacitor Cst.
  • the driving transistor T1 is electrically connected to the light emitting element 20 and outputs a driving current to control the light emitting element 20 to emit light under the control of the scanning signal Scan, the data signal Data, the first voltage signal ELVDD, and the second voltage signal ELVSS.
  • FIG. 3B is a schematic plan view of a display substrate according to an embodiment of the present disclosure. Please refer to FIG. 3A and FIG. 3B together.
  • the display substrate 100 includes a plurality of pixel units 101 arranged in a matrix.
  • Each pixel unit 101 includes a pixel circuit structure 10, a light emitting element 20, a gate line 11, a data line 12, and a voltage signal. line.
  • the light-emitting element 20 is an organic light-emitting element OLED, and the light-emitting element 20 emits red light, green light, blue light, or white light under the driving of the corresponding pixel circuit structure 10.
  • the voltage signal line may include one or a plurality of voltage signal lines. For example, as shown in FIG.
  • the voltage signal line includes at least one of a first power signal line 13, a second power signal line 14, a light emission control signal line 15, an initialization signal line 16, a reset control signal line 17, and the like.
  • the second electrode (which may be a common electrode of the OLED, such as a cathode) of the light emitting element 20 is electrically connected to the second power signal line 14.
  • the display substrate 100 provided by the embodiment of the present disclosure further includes a data driver 102, a scan driver 103, and a controller 104.
  • the data driver 102 is configured to provide a data signal Data to the pixel unit 101 according to an instruction of the controller 104;
  • the scan driver 103 is configured to provide the pixel unit 101 with a light emission control signal EM, a scan signal Scan, and a reset control signal according to an instruction of the controller 104 Reset, etc.
  • the scan driver 103 is a GOA (Gate On Array) structure mounted on the display substrate, or a driver chip (IC) structure that is bonded to the display substrate.
  • GOA Gate On Array
  • the display substrate 100 further includes a power source (not shown in the figure) to provide the above-mentioned voltage signal, which may be a voltage source or a current source as required.
  • the power source is configured to pass through the first power signal line 13 and the second power signal, respectively.
  • the line 14 and the initialization signal line 16 provide the pixel unit 101 with a first power supply voltage ELVDD, a second power supply voltage ELVSS, an initialization signal Vint, and the like.
  • FIG. 3C is a timing signal diagram of a pixel unit in a display substrate provided by an embodiment of the present disclosure. The driving method of one pixel unit in the display substrate provided by the embodiment of the present disclosure will be described below with reference to FIG. 3C.
  • the driving method of the pixel unit includes a reset stage t1, a data writing and threshold compensation stage t2, and a light emitting stage t3.
  • the lighting control signal EM is set to the off voltage
  • the reset control signal Reset is set to the on voltage
  • the scan signal Scan is set to the off voltage.
  • the light emission control signal EM is set to the off voltage
  • the reset control signal Reset is set to the off voltage
  • the scan signal Scan is set to the on voltage.
  • the light-emitting control signal EM is set to the on-voltage
  • the reset control signal Reset is set to the off-voltage
  • the scan signal Scan is set to the off-voltage.
  • the turn-on voltage in the embodiment of the present disclosure refers to a voltage that can turn on the first pole and the second stage of the corresponding transistor
  • the turn-off voltage refers to a voltage that can turn off the first pole and the second stage of the corresponding transistor.
  • the turn-on voltage is a low voltage (for example, 0V) and the turn-off voltage is a high voltage (for example, 5V);
  • the transistor is an N-type transistor, the turn-on voltage is a high voltage (for example, 5V), and it is turned off.
  • the voltage is a low voltage (for example, 0V).
  • the driving waveforms shown in FIG. 3C are all described by taking a P-type transistor as an example, that is, the turn-on voltage is a low voltage (for example, 0V), and the turn-off voltage is a high voltage (for example, 5V).
  • the light emission control signal EM is an off voltage
  • the reset control signal Reset is an on voltage
  • the scan signal Scan is an off voltage.
  • the first reset transistor T6 and the second reset transistor T7 are in an on state
  • the data writing transistor T2, the threshold compensation transistor T3, the first light emission control transistor T4, and the second light emission control transistor T5 are in an off state.
  • the first reset transistor T6 transmits an initialization signal (initialization voltage) Vint to the gate of the driving transistor T1 and is stored by the storage capacitor Cst, resets the driving transistor T1 and erases data stored at the previous (previous frame) light emission, and the second The reset transistor T7 transmits an initialization signal Vint to the first electrode of the light emitting element 20 to reset the light emitting element 20.
  • the light emission control signal EM is an off voltage
  • the reset control signal Reset is an off voltage
  • the scan signal Scan is an on voltage.
  • the data writing transistor T2 and the threshold compensation transistor T3 are in an on state
  • the first light emission control transistor T4, the second light emission control transistor T5, the first reset transistor T6, and the second reset transistor T7 are in an off state.
  • the data writing transistor T2 transmits the data voltage Vdata to the first pole of the driving transistor T1, that is, the data writing transistor T2 receives the scanning signal Scan and the data signal Data and sends the scanning signal Scan to the first pole of the driving transistor T1 according to the scanning signal Scan. Write data signal Data.
  • the threshold compensation transistor T3 is turned on to connect the driving transistor T1 into a diode structure, so that the gate of the driving transistor T1 can be charged.
  • the gate voltage of the driving transistor T1 is Vdata + Vth, where Vdata is the data voltage and Vth is the threshold voltage of the driving transistor T1, that is, the threshold compensation transistor T3 receives the scanning signal Scan and applies the scanning signal Scan to the driving transistor.
  • the gate voltage of T1 performs threshold voltage compensation. At this stage, the voltage difference across the storage capacitor Cst is ELVDD-Vdata-Vth.
  • the light-emission control signal EM is the on-voltage
  • the reset control signal Reset is the off-voltage
  • the scan signal Scan is the off-voltage.
  • the first light emission control transistor T4 and the second light emission control transistor T5 are in an on state
  • the data writing transistor T2, the threshold compensation transistor T3, the first reset transistor T6, and the second reset transistor T7 are in an off state.
  • the first voltage signal ELVDD is transmitted to the first pole of the driving transistor T1 through the first light-emitting control transistor T4, the gate voltage of the driving transistor T1 is maintained at Vdata + Vth, and the light-emitting current I passes through the first light-emitting controlling transistor T4, the driving transistor T1, and
  • the second light emission control transistor T5 flows into the light emitting element 20, and the light emitting element 20 emits light. That is, the first light emission control transistor T4 and the second light emission control transistor T5 receive the light emission control signal EM, and control the light emitting element 20 to emit light in accordance with the light emission control signal EM.
  • the light-emitting current I satisfies the following saturation current formula:
  • ⁇ n is the channel mobility of the drive transistor
  • Cox is the channel capacitance per unit area of the drive transistor T1
  • W and L are the channel width and channel length of the drive transistor T1
  • Vgs is the gate and source of the drive transistor T1 The voltage difference between the electrodes (that is, the first electrode of the driving transistor T1 in this embodiment).
  • the light-emitting element can be adjusted by adjusting at least one of the data voltage Vdata and the first voltage signal ELVDD. 20 to adjust the brightness of the light-emitting element 20.
  • the pixel circuit shown in FIG. 3A is taken as an example, but is not limited thereto.
  • the display substrate may also adopt other suitable pixel circuits.
  • the light emitting current I may be related to one of the data voltage Vdata and the first voltage signal ELVDD.
  • FIG. 4 is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • the display substrate further includes a grayscale voltage adjustment section 201 configured to adjust the second sub-pixel in the third pixel unit 30 when the display grayscale is less than or equal to the first grayscale. 2.
  • the gray-scale voltage adjustment unit 201 may adjust the gray-scale voltage input to any of the third pixel unit 30 and the fourth pixel unit 40, and adjust the first gray-scale voltage to the second gray-scale voltage to improve the Sub-pixel brightness.
  • any sub-pixel in the third pixel unit 30 includes any of the second sub-pixel 2, third third-pixel 3, and first sub-pixel 1, and any sub-pixel in the fourth pixel unit 40 includes second sub-pixel 2.
  • the first grayscale voltage is smaller than the second grayscale voltage, that is, the brightness of the second display sub-region A2 is increased by increasing the grayscale voltage.
  • the grayscale voltage may be a data voltage Vdata shown in FIG. 3A.
  • the gray-scale voltage adjustment section 201 is configured to adjust the gray-scale voltage of the third pixel unit 30 when the display gray-scale is less than or equal to the first gray-scale to increase the second display sub-region. A2 brightness.
  • FIG. 5A is a schematic diagram of a display substrate according to another embodiment of the present disclosure.
  • the display substrate further includes a first power line 301 and a second power line 302.
  • the first power line 301 is connected to the first pixel unit and the second pixel unit 20, and the second power line 302 is connected to the third pixel unit.
  • 30 and the fourth pixel unit 40 are connected, and the first power supply line 301 and the second power supply line 302 are insulated from each other.
  • different first voltage signals may be applied to different regions, for example, different ELVDDs may be applied to different regions, thereby increasing the brightness of at least one of the second display sub-region A2 and the transition display sub-region A3.
  • the first power line 301 is a first power signal line 13 (as shown in FIG. 3A) connected to the sub-pixels of the first display sub-region R01
  • the second power line 302 is connected to the second display sub-region A2 and / or The first power signal line 13 (shown in FIG. 3A) connected to the sub-pixels of the transition display sub-region A3.
  • the first power line 301 and the second power line 302 may be controlled by different circuits, respectively.
  • the first power supply line 301 and the second power supply line 302 are not limited to those shown in FIG. 5A, and other methods may also be adopted, as long as the first power supply line 301 and the second power supply line 302 are insulated from each other and different signals can be applied respectively.
  • the maximum brightness of the first display sub-region R01 can reach 700 nits
  • the maximum brightness of the second display sub-region A2 is generally 400-500 nits.
  • ELVDD By adjusting ELVDD, for example, increasing ELVDD to increase the maximum brightness of the second display sub-region A2 to 500-600 nits, thereby reducing the difference in brightness between the second display sub-region A2 and the first display sub-region R01. Improve display uniformity.
  • the second power line 302 is connected to the third pixel unit 30 to adjust the brightness of the second display sub-region A2.
  • the display brightness of the second display sub-region A2 is smaller than the display brightness of the first display sub-region R01, and the brightness of the second display sub-region A2 can be adjusted according to the actual measurement value.
  • the coefficient is 350, but is not limited thereto, and the coefficient k can be adjusted according to the actual standard brightness.
  • the brightness L of the first display sub-region R01 is a times the brightness A of the second display sub-region A2.
  • a ⁇ L 350 ⁇ (GrA / 255) 2.2
  • GrA is the second display sub-region.
  • the adjusted gray scale of A2 adjusts the gray scale of the second display sub-region A2 to GrA, so that the second display sub-region A2 and the first display sub-region R01 have the same brightness; similarly, the first display sub-region R01
  • GrB is the adjusted gray scale of the transition display sub-region A3.
  • the level is adjusted to GrB, so that the transition display sub-region A3 and the first display sub-region R01 have the same brightness.
  • This algorithm can be integrated into an integrated circuit (Integrated Circuit, IC), and the coefficient a and the coefficient b are set in advance, and the grayscale conversion is automatically performed during display.
  • the gray scale of the second display sub-region A2 is adjusted to a maximum of 255, and for a high gray scale image, the brightness adjustment capability is limited.
  • the second display sub-region A2 can be set to the same gray level
  • the transition display sub-region A3 can be set to the same gray level
  • the first display sub-region R01 can be set to the same gray level.
  • the sub-pixels of each area can display different gray levels.
  • ELVDD Emitter-to-Dielectric
  • the first display sub-region R01 and the second display sub-region A2 different ELVDDs (for example, ELVDD1 and ELVDD2 respectively) are used for control.
  • ELVDD1 and ELVDD2 respectively
  • the ratio is to increase the ELVDD of the second display sub-region A2, so that when the two regions are at the same gray level, the pixel brightness controlled by ELVDD2 is greater, so that the brightness of the second display sub-region A2 and the first display sub-region R01 are the same.
  • the gray level voltage adjustment module When a low gray level is displayed, the gray level voltage adjustment module is started to compensate, and when a high gray level is started, the power supply voltage adjustment module is started.
  • the first gray level is used as a dividing line. The division of high and low gray levels may depend on actual experiments. The embodiment of the present disclosure does not limit the value of the first gray level.
  • FIG. 5B is a schematic diagram of a display substrate according to another embodiment of the present disclosure. As shown in FIG. 5B, the display substrate further includes a power supply voltage adjustment section 202 configured to adjust a first voltage signal (power supply voltage) of the second power supply line 302.
  • a power supply voltage adjustment section 202 configured to adjust a first voltage signal (power supply voltage) of the second power supply line 302.
  • a display device is provided in at least one embodiment of the present disclosure, and includes any one of the above display substrates.
  • the display device may include an OLED display device or a liquid crystal display device.
  • FIG. 6 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • the display device includes a display substrate DP.
  • the display substrate DP has a light-emitting side S0.
  • the orthographic projection of the camera 111 on the display substrate DP falls into the second display sub-region A2, and the camera 111 is located on the display substrate DP.
  • a method for driving a display substrate is also provided in at least one embodiment of the present disclosure, including:
  • the first subpixel, the second subpixel, and the third subpixel disposed adjacently in the third pixel unit 30 respectively display corresponding ones of the same color in two adjacent pixels in the image to be displayed corresponding to the third pixel unit. Bright subpixels.
  • FIG. 7 is a schematic diagram of an image to be displayed in a method for driving a display substrate according to an embodiment of the present disclosure.
  • the third pixel unit 30 corresponds to two adjacent pixels PX1 and PX2 in the image to be displayed.
  • the pixel PX1 includes three sub-pixels of different colors.
  • the pixel PX2 includes three sub-pixels of different colors.
  • the first subpixel, second subpixel, and third subpixel adjacent to each other respectively display subpixels of the same color in pixels PX1 and PX2 in the image to be displayed, and the subpixels of the same color have a high brightness, thereby further improving the second subpixel.
  • the brightness of the sub-region A2 is displayed.
  • the driving method further includes: adjusting the first sub-pixel in the third pixel unit 30 when the display gray level is less than or equal to the first gray level. 1.
  • the gray-scale voltage can be adjusted according to the formula of the light-emitting current.
  • the driving method further includes: adjusting the first sub-pixel 1 in the third pixel unit 30 when the display gray level is greater than the first gray level;
  • the first voltage signals of the second sub-pixel 2 and the third sub-pixel 3 increase the brightness of the second display sub-region A2.
  • Vdata is less than ELVDD
  • the brightness of the second display sub-region A2 can be increased by increasing the first voltage signal (ELVDD), but it is not limited thereto.
  • the adjustment method of the first voltage signal can be obtained according to the formula of the light emitting current.
  • the display substrate includes a transition display sub-region
  • a driving method of the display substrate includes: driving the first pixel unit 10 and the second pixel unit 20 in a sub-pixel rendering manner; and the third pixel unit 30
  • the first subpixel, the second subpixel, and the third subpixel that are adjacent to each other respectively display subpixels of the same color that have a high luminance among two adjacent pixels in the image to be displayed corresponding to the third pixel unit 30.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel in the fourth pixel unit 40 respectively display a large brightness of the same color corresponding to two adjacent pixels in the image to be displayed corresponding to the fourth pixel unit.
  • Subpixel Refer to FIG. 7 for two adjacent pixels in the image to be displayed.
  • the algorithm corresponding to the coordinate pixels of the second display sub-region A2 and the transition display sub-region A3 may be modified in the algorithm, for example,
  • the transition display sub-region may refer to the related description in the display substrate, and details are not described herein again.
  • FIG. 8 is a schematic diagram of a driving method of different regions in a method for driving a display substrate according to an embodiment of the present disclosure.
  • the second display sub-region A2 and the transition display sub-region A3 are driven by a conventional driving method, which does not require SPR algorithm rendering, but the number of pixels displayed is half of the original.
  • the last line and the first display sub-region R01 still use the SPR algorithm.
  • the brightness adjustment coefficient of the second display sub-region and the transition display sub-region, and the high-gray-level brightness adjustment VDD change function can be determined through a sample screen experiment.
  • the above parameters are written into the algorithm, packaged into IP, and integrated into the IC.
  • the same batch of screens can directly use the above-mentioned IC to generate compensation pictures for display, thereby improving the uniformity of the visual effect of the transparent area display, and the algorithm uses the existing pixel arrangement size, and the process is easy to implement.
  • the gray-scale voltage adjustment module and the power supply voltage control module can be packaged into IP and the modified SPR algorithm can be integrated into the IC to perform real-time compensation display on the partially transparent screen display image.
  • the display substrate in the embodiment of the present application may further include one or more processors and one or more memories.
  • the processor can process data signals and may include various computing structures, such as a complex instruction set computer (CISC) structure, a structured reduced instruction set computer (RISC) structure, or a structure that implements a combination of multiple instruction sets.
  • the memory may store instructions and / or data executed by the processor. These instructions and / or data may include code for implementing some or all functions of one or more devices described in the embodiments of the present application.
  • the memory includes dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, optical memory, or other memories well known to those skilled in the art.
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • flash memory optical memory, or other memories well known to those skilled in the art.
  • the grayscale voltage adjustment section and / or the power supply voltage adjustment section include code and programs stored in a memory; the processor may execute the code and program to implement the grayscale voltage adjustment section as described above. And / or some or all of the functions of the power supply voltage adjustment section.
  • the gray-scale voltage adjusting section and / or the power supply voltage adjusting section may be special hardware devices for implementing some or all of the gray-scale voltage adjusting section and / or the power supply voltage adjusting section as described above.
  • the gray-scale voltage adjustment section and / or the power supply voltage adjustment section may be a circuit board or a combination of a plurality of circuit boards, for implementing the functions described above.
  • the one or more circuit boards may include: (1) one or more processors; (2) one or more non-transitory computer-readable devices connected to the processors Memory; and (3) processor-executable firmware stored in the memory.
  • the display substrate provided by the embodiment of the present disclosure generally performs progressive scanning in units of rows in the first display sub-region during display. For example, as shown in FIG. 9, when the first display sub-region A1 and the second display sub-region A2 are adjacent to each other in the row direction, the gate driving circuits GOA1 to GOA5 output signals row by row, but for the second display sub-region A2, only the GOA1, GOA3 and GOA5 output signals.
  • an embodiment of the present disclosure further provides a driving method for driving any of the display substrates in FIGS. 1B to 1M, including:
  • each sub-pixel in the first display sub-region determines the target gray-scale value of the sub-pixel according to the initial gray-scale value of the sub-pixel corresponding to the sub-pixel in the original image data; for the second display sub-region, The target gray of each sub-pixel is determined according to the light emitting area of the sub-pixel, the pixel distribution density of the second display sub-region, and the initial gray-scale value of the sub-pixel corresponding to the sub-pixel in the original image data.
  • Order value For each sub-pixel in the first display sub-region, determine the target gray-scale value of the sub-pixel according to the initial gray-scale value of the sub-pixel corresponding to the sub-pixel in the original image data;
  • Each sub-pixel in the display substrate is driven to perform display according to its target grayscale value.
  • the target gray-scale value of a general sub-pixel is its initial gray-scale value.
  • the number of physical pixels in the first display area is less than the number of pixels in the image data, there is a borrow relationship between sub-pixels during display. Therefore, a sub-pixel may correspond to two or more pixels in the image data.
  • the target grayscale value of a pixel needs to be converted according to the initial grayscale value of its corresponding subpixel in the original image data.
  • the target gray-scale value of the sub-pixel is its initial gray-scale value.
  • the resolution of the second display sub-region is low, if the display is directly based on the initial grayscale value, there will be a large difference in brightness between the second display sub-region and the first display sub-region.
  • the border between the second display subregion and the first display subregion may have obvious dark lines.
  • the driver provided in the embodiment of the present disclosure adjusts the gray scale of the sub-pixels in the second display sub-region according to the light-emitting area of the sub-pixels and the pixel distribution density of the second display sub-region. For example, the larger the light-emitting area of the sub-pixel, the higher the overall brightness of the second display sub-region, and the larger the number of sub-pixels distributed in the second display sub-region, the higher the overall brightness of the second display sub-region.
  • a physical pixel generally includes at least three RGB sub-pixels.
  • a first sub-pixel will be included in the image data during display.
  • a third sub-pixel will correspond to two pixels in the image data, and the second sub-pixel is not borrowed, so a second sub-pixel generally corresponds to one pixel in the image data.
  • determining a target grayscale value of the sub-pixel may specifically include:
  • the first subpixel is according to the formula: Determine the corresponding target X-grayscale value; wherein, Gamma substrate denotes a display gamma value, x 1 and x 2, respectively two first sub-pixels corresponding to the first sub-image data in the original grayscale values of pixels in the initial ;
  • the target grayscale value Y of the second subpixel is equal to the initial grayscale value y of a second subpixel corresponding to the second subpixel in the original image data;
  • the third sub-pixel is according to the formula: Determine the grayscale value corresponding to the Z target; wherein, z 1 and z 2 are the initial values of the two gray level of the third sub-pixels corresponding to the third sub-pixel in the original image data.
  • the brightness of the second display sub-region may be appropriately adjusted. Brightness is directly proportional to the light emitting area and pixel distribution density.
  • determining a target grayscale value of the sub-pixel may specifically include:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • n takes any integer from 1 to N
  • N is the number of subpixels corresponding to the subpixel in the original image data
  • Gamma represents the gamma value of the display substrate
  • s represents the light emitting area of the subpixel in the first display area and The ratio of the light emitting area of the sub-pixel in the second display sub-region
  • represents the ratio of the pixel distribution density in the first display sub-region to the pixel distribution density in the second display sub-region
  • k is the error adjustment coefficient
  • xn is the sub-pixel in the The initial grayscale value of the corresponding n-th subpixel in the original image data.
  • the error adjustment coefficient k can be adjusted according to the actual display effect of the display substrate, which is not limited herein.
  • X k * s * ⁇ * x i , where x i represents the initial gray-scale value of any one of the four sub-pixels.
  • x 1 and x 2 represent the initial grayscale values of any two of the 4 sub-pixels.
  • x 1 , x 2 and x 3 represent the initial grayscale values of any three of the four sub-pixels.
  • x 1 , x 2 , x 3 and x 4 represent the initial grayscale values of the 4 sub-pixels.
  • an embodiment of the present disclosure further provides a display device, including any one of the above display substrates provided by the embodiments of the present disclosure.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device provided in the embodiment of the present disclosure further includes a driver for driving the display substrate.
  • the driver of the display substrate may be, for example, an IC (Integrated Circuit) or an external CPU (Central Processing unit (central processing unit), microprocessor, etc.
  • the drive is specifically used for:
  • a target gray-scale value of the sub-pixel is determined according to an initial gray-scale value of the corresponding sub-pixel in the original image data
  • Each sub-pixel in the display substrate is driven to perform display according to its target gray level value.
  • the driver may determine the target grayscale value of each sub-pixel in the first display sub-region by the following method, specifically:
  • the target grayscale value Y of the second subpixel is equal to the initial grayscale value y of a second subpixel corresponding to the second subpixel in the original image data;
  • the brightness of the second display sub-region may be appropriately adjusted. Brightness is directly proportional to the light emitting area and pixel distribution density.
  • the driver may determine the target grayscale value of each sub-pixel in the second display sub-region by the following method, specifically:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • n takes any integer from 1 to N
  • N is the number of subpixels corresponding to the subpixel in the original image data
  • Gamma represents the gamma value of the display substrate
  • s represents the light emitting area of the subpixel in the first display area and The ratio of the light emitting area of the sub-pixel in the second display sub-region
  • represents the ratio of the pixel distribution density in the first display sub-region to the pixel distribution density in the second display sub-region
  • k is the error adjustment coefficient
  • xn is the sub-pixel in the The initial grayscale value of the corresponding n-th subpixel in the original image data.
  • the error adjustment coefficient k can be adjusted according to the actual display effect of the display substrate, which is not limited herein.
  • the driver integrates the algorithms of the target grayscale values of the sub-pixels in each sub-region into the IC. During display, the driver determines a target grayscale value corresponding to each sub-pixel according to the received image data, and drives the display substrate to perform display according to the target grayscale value.
  • the display substrate performs display according to the target gray level value
  • the specific Demura algorithm can refer to the prior art, and will not be described in detail here.
  • the embodiment of the present disclosure further provides a high-precision metal mask for making any one of the above display substrates provided by the embodiments of the present disclosure.
  • the high-precision metal mask includes: a plurality of opening areas, and the opening areas and The shape and position of the first subpixel, the second subpixel, or the third subpixel correspond.
  • the sub-pixel generally includes an anode layer, a light-emitting layer, and a cathode layer.
  • the light-emitting layer is generally evaporated by using the above-mentioned high-precision metal mask.
  • the shapes of the opening region 01 and the light-emitting layer of the first sub-pixel 1 in the display substrate Corresponds to location.
  • the area of the opening region 01 is generally larger than the area of the corresponding light emitting layer.
  • the principles of the high-precision metal mask used to form the second sub-pixel and the high-precision metal mask used to form the third sub-pixel are similar to those of the first sub-pixel, and details are not described herein.
  • An embodiment of the present disclosure further provides a display method for any display panel in FIG. 1N to FIG. 1S, including:
  • pixels in the first display sub-region display according to the grayscale value of the corresponding pixel in the original image data; for pixels in the second display sub-region, according to the pixel distribution density and The ratio of the pixel distribution density of the second display sub-region determines the number N of pixels corresponding to a pixel in the original image data; and one of the N pixels corresponding to the original image data according to the position of the pixel or The grayscale values of multiple pixels are displayed.
  • an average gray level of multiple pixels among the N pixels corresponding to the position of the pixel in the original image data according to the position of the pixel The value is displayed.
  • the grayscale value X1 (x1 +) corresponding to the first sub-pixel during display x2 + x3 + x4) / 4, where x1 ⁇ x4 respectively represent the grayscale values of the first sub-pixel of the four pixels corresponding to the pixels in the second display sub-region in the original image data;
  • the grayscale value Y1 (y1 + y2 + y3 + y4) / 4 corresponding to the second sub-pixel during display, where y1 to y4 respectively represent the pixels in the second display sub-region and their corresponding four in the original image data
  • the grayscale value of the pixel with the highest brightness among the N pixels corresponding to the original image data Display it.
  • a pixel in the second display sub-region a pixel whose brightness value is the middle value among the N pixels corresponding to the original image data according to the position of the pixel Grayscale values are displayed.
  • the corresponding N pixels in the original image data according to the position of the pixel and the pixels in the second display sub-region The relative positional relationship between the pixels and N pixels of the original image data is displayed.
  • k1 to k4 are weight coefficients, which are determined by the distance between the position of the pixel in the second display area and each of the corresponding four pixels in the original image data. The larger the distance, the smaller the weight coefficient.
  • a grayscale value of one of the N pixels corresponding to the position of the pixel in the original image data Display it.
  • the display principle complies with the quantitative measurement of the human visual system, no flicker occurs, no integrated circuit (Integrated Circuit) needs to be redesigned, and the cost is low.
  • n is an integer greater than 1;
  • Each pixel in the second display area corresponds to n * n pixels arranged in a matrix in the original image data.
  • n 2 that is, when the pixel distribution density of the first display sub-region is twice the pixel distribution density of the second display sub-region.
  • n can also take other values, which is not limited here.
  • each pixel in the second display area corresponds to 2 rows and 2 columns of pixels arranged in a matrix in the original image data.
  • a dashed box The 4 pixels are pixels corresponding to one pixel in the second display area.
  • each pixel in the second display area selects a pixel at the same position among the corresponding n * n pixels in the original image data as a reference pixel.
  • Each pixel in the two display areas is displayed according to the grayscale value of its corresponding reference pixel.
  • each pixel in the second display area can be selected as the pixel at the position of the first row and the first column of the corresponding 2 * 2 pixels in the original image data.
  • Reference pixel for each pixel in the second display area, the pixel at the position of the first row and the second column among the 2 * 2 pixels corresponding to the original image data may be selected as the reference pixel.
  • the pixel at the position of the second row and the first column among the 2 * 2 pixels corresponding to the original image data may be selected as the reference pixel.
  • the pixel at the position of the second row and the second column in the 2 * 2 pixels corresponding to the original image data can be selected as the reference pixel.
  • each pixel in the second display area is displayed according to the grayscale value of its corresponding reference pixel, specifically: the first sub-pixel is displayed according to the corresponding reference pixel.
  • the grayscale value of the first subpixel is displayed
  • the second subpixel is displayed according to the grayscale value of the second subpixel in the corresponding reference pixel
  • the third subpixel is displayed according to the grayscale value of the third subpixel in the corresponding reference pixel. Display it.
  • the ratio of the pixel distribution density of the first display subregion to the pixel distribution density of the second display subregion may not be an integer.
  • Each pixel in the second display area corresponds to n * n pixels arranged in a matrix in the original image data; or each pixel in the second display area corresponds to n * (n + 1) arranged in a matrix in the original image data ) Pixels; or, each pixel in the second display area corresponds to (n + 1) * (n + 1) pixels arranged in a matrix in the original image data.
  • pixels in the first display sub-region are displayed according to the grayscale values of the corresponding pixels in the original image data.
  • an algorithm for obtaining a grayscale value of each pixel according to the original image data may be integrated in an IC, an external central processing unit (CPU), or a microprocessor. Medium, of course, it can also be a separately set driver, which is connected to each pixel, which is not limited here.
  • image processing modules such as SPR are also required. Image processing on the display after processing by Demura algorithm.
  • An embodiment of the present disclosure further provides a driving method for driving any one of the display substrates in FIGS. 2B to 2L, including:
  • the target gray-scale value of the sub-pixel is determined according to the initial gray-scale value of the corresponding sub-pixel in the original image data.
  • the target gray of each sub-pixel is determined according to the light emitting area of the sub-pixel, the pixel distribution density of the second display sub-region, and the initial gray-scale value of the sub-pixel corresponding to the sub-pixel in the original image data. Order value
  • Each sub-pixel in the display substrate is driven to perform display according to its target gray level value.
  • the target gray-scale value of a general sub-pixel is its initial gray-scale value.
  • the number of physical pixels in the first display area is less than the number of pixels in the image data, there is a borrow relationship between sub-pixels during display. Therefore, a sub-pixel may correspond to two or more pixels in the image data.
  • the target grayscale value of a pixel needs to be converted according to the initial grayscale value of its corresponding subpixel in the original image data.
  • the target gray-scale value of the sub-pixel is its initial gray-scale value.
  • the resolution of the second display sub-region is low, if the display is directly based on the initial grayscale value, there will be a large difference in brightness between the second display sub-region and the first display sub-region.
  • the border between the second display subregion and the first display subregion may have obvious dark lines.
  • the driving method provided in the embodiment of the present disclosure may adjust the gray scale of the sub-pixels in the second display sub-region according to the light-emitting area of the sub-pixels and the pixel distribution density of the second display sub-region. For example, the larger the light-emitting area of the sub-pixel, the higher the overall brightness of the second display sub-region, and the larger the number of sub-pixels distributed in the second display sub-region, the higher the overall brightness of the second display sub-region.
  • one physical pixel corresponds to one pixel in the image data during display. Since the pixel distribution density is between the second display sub-region and the first display sub-region, the theoretical brightness is between the between a display sub-region and a second display sub-region, during display, according to the pixel distribution density, the brightness of the sub-pixels can be set to the average value of the corresponding sub-pixel brightness in the image data.
  • a physical pixel generally includes at least three RGB sub-pixels.
  • determining a target grayscale value of the sub-pixel may specifically include:
  • the first subpixel is according to the formula: Determine the corresponding target X-grayscale value; wherein, Gamma substrate denotes a display gamma value, x 1 and x 2, respectively two first sub-pixels corresponding to the first sub-image data in the original grayscale values of pixels in the initial ;
  • the target grayscale value Y of the second subpixel is equal to the initial grayscale value y of a second subpixel corresponding to the second subpixel in the original image data;
  • the third sub-pixel is according to the formula: Determine the grayscale value corresponding to the Z target; wherein, z 1 and z 2 are the initial values of the two gray level of the third sub-pixels corresponding to the third sub-pixel in the original image data.
  • determining a target grayscale value of the sub-pixel may specifically include:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • n takes any integer from 1 to N
  • N is the number of subpixels corresponding to the subpixel in the original image data
  • Gamma represents the gamma value of the display substrate
  • s represents the light emitting area of the subpixel in the first display area and The ratio of the light emitting area of the sub-pixel in the second display sub-region
  • represents the ratio of the pixel distribution density in the first display sub-region to the pixel distribution density in the second display sub-region
  • k is the error adjustment coefficient
  • xn is the sub-pixel in the The initial grayscale value of the corresponding n-th subpixel in the original image data.
  • the error adjustment coefficient k can be adjusted according to the actual display effect of the display substrate, which is not limited herein.
  • X k * s * ⁇ * x i , where x i represents the initial gray-scale value of any one of the four sub-pixels.
  • x 1 and x 2 represent the initial grayscale values of any two of the 4 sub-pixels.
  • x 1 , x 2 and x 3 represent the initial grayscale values of any three of the four sub-pixels.
  • x 1 , x 2 , x 3 and x 4 represent the initial grayscale values of the 4 sub-pixels.
  • determining a target gray level value of the sub-pixel may specifically include:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • N is the number of sub-pixels corresponding to the sub-pixels in the original image data
  • Gamma is the gamma value of the display substrate
  • s is the light-emitting area of the sub-pixels in the first display area and the sub-pixels are in the second display sub-area.
  • Ratio of light emitting area ⁇ represents the ratio of the pixel distribution density in the first display subregion to the pixel distribution density in the second display subregion
  • k is the error adjustment coefficient
  • x1 to xN are the corresponding values of the subpixels in the original image data
  • the target gray-level value of the sub-pixel may be determined according to the initial gray-level values of its corresponding N sub-pixels.
  • determining a target grayscale value of the sub-pixel may specifically include:
  • the first subpixel is according to the formula: Determine the corresponding target X-grayscale value; wherein, Gamma substrate denotes a display gamma value, x 1 and x 2, respectively two first sub-pixels corresponding to the first sub-image data in the original grayscale values of pixels in the initial ;
  • the third sub-pixel is according to the formula: Determine the grayscale value corresponding to the Z target; wherein, z 1 and z 2 respectively corresponding to the third sub-pixels in the original image data in the initial two third subpixel gray level values;
  • s represents the ratio of the light emitting area of the sub-pixel in the first display area to the light emitting area of the sub-pixel in the second display sub-area
  • represents the pixel distribution density in the first display sub-area and the pixels in the second display sub-area.
  • the ratio of the distribution density, k is the error adjustment coefficient.
  • the algorithm of the target grayscale value corresponding to the subpixel in the transition display subregion is based on the algorithm of the target grayscale value corresponding to the subpixel in the first display subregion, based on the light emitting area and the subpixel in the first display region.
  • the ratio of the light-emitting area in the second display sub-region, and the ratio of the pixel distribution density in the first display sub-region to the pixel distribution density in the second display sub-region are adjusted.
  • a display device provided by an embodiment of the present disclosure includes any one of the display substrates provided by the embodiments of the present disclosure.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device provided in the embodiment of the present disclosure further includes a driver configured to drive the display substrate.
  • the driver of the display substrate may be, for example, an IC, or an externally connected CPU, microprocessor, and the like.
  • the drive can be configured as:
  • the target gray-scale value of the sub-pixel is determined according to the initial gray-scale value of the corresponding sub-pixel in the original image data; for each sub-pixel in the transition display sub-region, The target grayscale value of the subpixel is determined according to the pixel distribution density of the transition display subregion and the initial grayscale value of the subpixel corresponding to the corresponding region of the subpixel in the original image data; The sub-pixel determines the target gray-scale value of the sub-pixel according to the light-emitting area of the sub-pixel, the pixel distribution density of the second display sub-region, and the initial gray-scale value of the sub-pixel corresponding to the corresponding region of the sub-pixel in the original image data. ;
  • Each sub-pixel in the display substrate is driven to perform display according to its target gray level value.
  • the driver may determine the target grayscale value of each sub-pixel in the first display sub-region by the following method, specifically:
  • the target grayscale value Y of the second subpixel is equal to the initial grayscale value y of a second subpixel corresponding to the second subpixel in the original image data;
  • the brightness of the second display sub-region may be appropriately adjusted. Brightness is directly proportional to the light emitting area and pixel distribution density. Therefore, optionally, in the display device provided by the embodiment of the present disclosure, the driver may determine the target grayscale value of each sub-pixel in the second display sub-region by the following method, specifically:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • n takes any integer from 1 to N
  • N is the number of subpixels corresponding to the subpixel in the original image data
  • Gamma represents the gamma value of the display substrate
  • s represents the light emitting area of the subpixel in the first display area and The ratio of the light emitting area of the sub-pixel in the second display sub-region
  • represents the ratio of the pixel distribution density in the first display sub-region to the pixel distribution density in the second display sub-region
  • k is the error adjustment coefficient
  • xn is the sub-pixel in the The initial grayscale value of the corresponding n-th subpixel in the original image data.
  • the error adjustment coefficient k can be adjusted according to the actual display effect of the display substrate, which is not limited herein.
  • the driver may determine the target grayscale value of each sub-pixel in the transition display sub-region by the following method, specifically:
  • the sub-pixels are based on the formula: Determine its corresponding target gray level value X;
  • N is the number of sub-pixels corresponding to the sub-pixels in the original image data
  • Gamma is the gamma value of the display substrate
  • s is the light-emitting area of the sub-pixels in the first display region and the sub-pixels are in the second display sub-region.
  • Ratio of light emitting area ⁇ represents the ratio of the pixel distribution density in the first display subregion to the pixel distribution density in the second display subregion
  • k is the error adjustment coefficient
  • x1 to xN are the corresponding values of the subpixels in the original image data
  • the driver may determine the target grayscale value of each sub-pixel in the transition display sub-region by the following method, specifically:
  • the first subpixel is according to the formula: Determine the corresponding target X-grayscale value; wherein, Gamma substrate denotes a display gamma value, x 1 and x 2, respectively two first sub-pixels corresponding to the first sub-image data in the original grayscale values of pixels in the initial ;
  • the third sub-pixel is according to the formula: Determine the grayscale value corresponding to the Z target; wherein, z 1 and z 2 respectively corresponding to the third sub-pixels in the original image data in the initial two third subpixel gray level values;
  • s represents the ratio of the light emitting area of the sub-pixel in the first display area to the light emitting area of the sub-pixel in the second display sub-area
  • represents the pixel distribution density in the first display sub-area and the pixels in the second display sub-area.
  • the ratio of the distribution density, k is the error adjustment coefficient.
  • the driver integrates the algorithms of the target grayscale values of the sub-pixels in each sub-region into the IC. During display, the driver determines a target grayscale value corresponding to each sub-pixel according to the received image data, and drives the display substrate to perform display according to the target grayscale value.
  • the display substrate performs display according to the target gray level value
  • the specific Demura algorithm can refer to related technologies, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板(100,DP)及其驱动方法和显示装置。显示基板(100,DP)包括:第一显示子区域(A1),第一显示子区域(A1)包括多个第一重复区域(A01),多个第一重复区域(A01)的每个包括相邻设置的第一像素单元(10)和第二像素单元(20),第一像素单元(10)包括第一子像素(1)和第二子像素(2),第二像素单元(20)包括第二子像素(2)和第三子像素(3);以及第二显示子区域(A2),第二显示子区域(A2)包括多个第二重复区域(A02),多个第二重复区域(A02)的每个包括第三像素单元(30)和第一透明像素(P1),第三像素单元(30)包括第一子像素(1)、第二子像素(2)和第三子像素(3);第一透明像素(P1)被配置为使第二显示子区域(A2)的像素密度小于第一显示子区域(A1)的像素密度,以及使第二显示子区域(A2)的透光率大于第一显示子区域(A1)的透光率。

Description

显示基板及其驱动方法和显示装置
相关申请的交叉引用
本专利申请要求以下三个专利申请的优先权:要求于2018年06月20日递交的中国专利申请第201810638716.2号的优先权,要求于2018年6月20日递交的中国专利申请第201810639832.6号的优先权,以及要求于2018年6月29日递交的中国专利申请第201810714668.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种显示基板及其驱动方法和显示装置。
背景技术
随着手机等显示电子产品的发展,显示屏的屏占比的提升成为一种产品趋势,前置摄像头等手机必备的功能元件必定成为制约屏占比提升的一大因素。
发明内容
本公开的至少一实施例涉及一种显示基板及其驱动方法和显示装置。
本公开的至少一实施例提供一种显示基板,包括:第一显示子区域,所述第一显示子区域包括多个第一重复区域,所述多个第一重复区域的每个包括相邻设置的第一像素单元和第二像素单元,所述第一像素单元包括第一子像素和第二子像素,所述第二像素单元包括第二子像素和第三子像素;以及第二显示子区域,所述第二显示子区域包括多个第二重复区域,所述多个第二重复区域的每个包括第三像素单元和第一透明像素,所述第三像素单元包括第一子像素、第二子像素和第三子像素;所述第一透明像素被配置为使所述第二显示子区域的像素密度小于所述第一显示子区域的像素密度,以及使所述第二显示子区域的透光率大于所述第一显示子区域的透光率。
例如,所述第一透明像素的面积大于或等于所述第一像素单元的所述第一子像素和所述第二子像素至少之一的面积,所述第一透明像素的面积大于或等于所述第二像素单元的所述第二子像素和所述第三子像素至少之一的 面积。
例如,所述第一透明像素的面积大于或等于所述第一显示子区域内的一个第一子像素、一个第二子像素和一个第三子像素的面积之和。
例如,所述第一透明像素的面积大于或等于所述第二显示子区域内的一个第一子像素、一个第二子像素和一个第三子像素至少之一的面积。
例如,所述第一透明像素的面积大于或等于所述第三像素单元中的第一子像素、第二子像素和第三子像素的面积之和。
例如,在行方向上相邻的第三像素单元之间设有一个第一透明像素,以形成第一透明像素列。
例如,所述第一透明像素的面积和形状分别与所述第一显示子区域内的一个第二子像素的面积和形状相同。
例如,在列方向上相邻的第三像素单元之间设有一个第一透明像素,以形成第一透明像素行。
例如,多个第一透明像素设置在所述第三像素单元的行方向上的两侧以及列方向上的两侧。
例如,多个第一透明像素设置在所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素中至少之一的行方向上的两侧以及列方向上的两侧。
例如,所述第二显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一列。
例如,所述第二显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一行。
例如,所述第一透明像素包括第一透明子像素、第二透明子像素和第三透明子像素。
例如,所述第一透明子像素和所述第一显示子区域内的第一子像素具有相同的面积和相同的形状,所述第二透明子像素和所述第一显示子区域内的一个第二子像素具有相同的面积和相同的形状,所述第三透明子像素和所述第一显示子区域内的第三子像素具有相同的面积和相同的形状。
例如,显示基板包括多个第一透明像素,所述多个第一透明像素形成多个透明子像素列和多个透明子像素行至少之一。
例如,所述多个第一透明像素形成多个透明子像素列和多个透明子像素 行,所述多个透明子像素列和所述多个透明子像素行交叉。
例如,除了所述第二显示子区域的边缘位置之外的第三像素单元至少被两个第一透明子像素、四个第二透明子像素以及两个第三透明子像素围绕。
例如,除了所述第二显示子区域的边缘位置之外的第三像素单元中的所述第一子像素、所述第二子像素、所述第三子像素中的至少之一至少被一个第一透明子像素、两个第二透明子像素以及一个第三透明子像素围绕。
例如,在行方向上相邻的两个子像素的中心的连线通过位于该两个子像素之间的透明子像素的中心所述相邻的两个子像素包括两个相邻的第一子像素、两个相邻的第二子像素、两个相邻的第三子像素中至少之一;所述透明子像素包括所述第一透明子像素、所述第二透明子像素或所述第三透明子像素之一。
例如,在列方向上相邻的两个子像素的中心的连线通过位于该两个子像素之间的透明子像素的中心。
例如,所述第二像素单元的第三子像素的中心在所述第一像素单元的第二子像素和第二像素单元的第二子像素的中心连线的中点与所述第一像素单元的第一子像素的中心之间的连线上的正投影,与该中点和所述第一像素单元的所述第一子像素的中心的连线的中点重合。
例如,所述第一显示子区域内,每个第一重复区域与六个第一重复区域相邻,并被该六个第一重复区域环绕。
例如,所述第一重复区域中,所述第一子像素和所述第三子像素的至少之一的面积大于所述第一像素单元的所述第二子像素和所述第二像素单元的所述第二子像素的至少之一的面积。
例如,在所述第三像素单元中,所述第二子像素和所述第一子像素沿着与所述第三子像素的延伸方向平行的方向排列。
例如,在所述第二重复区域中,所述第三像素单元的所述第二子像素和所述第一子像素位于所述第一透明像素和所述第三子像素之间。
例如,所述第三像素单元中的第一子像素、第二子像素和第三子像素依次排列;或者,所述第三像素单元中的第一子像素、第二子像素和第三子像素的中心的连线形成三角形。
例如,显示基板还包括第一电源线和第二电源线,所述第一电源线与所述第一像素单元和所述第二像素单元相连,所述第二电源线与所述第三像素 单元相连,所述第一电源线与所述第二电源线彼此绝缘。
例如,显示基板还包括电源电压调节部,所述电源电压调节部被配置为调节显示灰阶大于第一灰阶时的所述第三像素单元的第一电压信号,所述第一电压信号被调高或者调低。
例如,显示基板还包括过渡显示子区域,所述过渡显示子区域位于所述第二显示子区域和所述第一显示子区域之间,所述过渡显示子区域包括多个第三重复区域,所述多个第三区域的每个包括第四像素单元和第二透明像素,所述第四像素单元包括第一子像素、第二子像素和第三子像素,所述第二透明像素的面积小于所述第一透明像素的面积。
例如,所述第二显示子区域的透光率小于所述过渡显示子区域的透光率。
例如,所述第二透明像素的分布密度小于所述第一透明像素的分布密度。
例如,所述第二透明像素的面积大于或等于所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的面积。
例如,显示基板包括多个第二透明像素,所述多个第二透明像素的面积相等。
例如,在所述第四像素单元中,所述第三子像素、所述第一子像素和所述第二子像素依次排列,并且所述第二子像素的面积小于所述第三子像素和所述第一子像素至少之一的面积。
例如,所述第二透明像素与所述第一显示子区域内的所述第二子像素的面积和形状相同。
例如,所述过渡显示子区域内的所述第一子像素和所述第一显示子区域内的所述第一子像素的面积相同且形状相同;所述第二显示子区域内的第一子像素的面积小于所述第一显示子区域内的所述第一子像素的面积。
例如,所述第一显示子区域内的所述第二子像素、所述第二显示子区域内的所述第二子像素、所述过渡显示子区域内的所述第二子像素的面积相同且形状相同;所述第一显示子区域内的所述第三子像素、所述第二显示子区域内的所述第三子像素、所述过渡显示子区域内的所述第三子像素的面积相同且形状相同。
例如,显示基板包括多个第二透明像素,多个第二透明像素包括包括从 靠近所述第一显示子像素的位置处指向靠近所述第二显示子像素的位置处的方向上依次排布的第一部分和第二部分,所述第一部分大于所述第二部分的面积。
例如,显示基板包括多个第二透明像素,多个第二透明像素包括包括从靠近所述第一显示子像素的位置处指向靠近所述第二显示子像素的位置处的方向上依次排布的第一部分、第二部分和第三部分,所述第一部分、所述第二部分和所述第三部分的面积依次减小。
例如,显示基板还包括灰阶电压调节部,所述灰阶电压调节部被配置为调节显示灰阶小于或等于第一灰阶时的所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素以及所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的灰阶电压。
例如,显示基板还包括第一电源线和第二电源线,其中,所述第一电源线与所述第一像素单元和第二像素单元相连,所述第二电源线与所述第三像素单元和所述第四像素单元相连,所述第一电源线与所述第二电源线彼此绝缘。
例如,所述过渡显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一行。
例如,所述过渡显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一列。
例如,所述第一子像素为和所述第三子像素之一为蓝色子像素,另一个为红色子像素,所述第二子像素为绿色子像素。
本公开至少一实施例还提供一种显示装置,包括上述任一显示基板。
本公开至少一实施例还提供一种显示基板的驱动方法,包括:采用子像素渲染的方式驱动所述第一像素单元和第二像素单元;所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第三像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。
例如,该方法还包括调节显示灰阶小于或等于第一灰阶时的第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的灰阶电压。
例如,该方法还包括调节显示灰阶大于第一灰阶时的第三像素单元的第 一电压信号,所述第一电压信号被调高或者调低。
本公开至少一实施例还提供一种显示基板的驱动方法,包括:采用子像素渲染的方式驱动所述第一像素单元和第二像素单元;所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第三像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素;所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第四像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一实施例提供的显示基板的示意图;
图1B-图1S为本公开一些实施例提供的一种显示基板的示意图;
图2A为本公开另一实施例提供的显示基板的示意图;
图2B-图2L为本公开一些实施例提供的一种显示基板的局部示意图;
图3A为一种显示基板的像素电路的示意图;
图3B为本公开实施例提供的一种显示基板的平面结构示意图;
图3C为本公开实施例提供的显示基板中一个像素单元的时序信号图;
图4为本公开一个实施例提供的一种显示基板的示意图;
图5A为本公开另一个实施例提供的一种显示基板的示意图;
图5B为本公开另一个实施例提供的一种显示基板的示意图;
图6为本公开一个实施例提供的一种显示装置的示意图;
图7为本公开一实施例提供的一种显示基板的驱动方法中待显示图像的示意图;
图8为本公开一实施例提供的一种显示基板的驱动方法中不同区域的驱动方式的示意图;
图9为本公开实施例提供的显示基板进行扫描时的演示图;
图10为本公开实施例提供的高精度金属掩模板的结构示意图;
图11为本公开实施例提供的显示方法中,第二显示区域内各子像素在 初始图像素数据中对应的像素的示意图;
图12A为本公开实施例提供的显示方法中,第二显示区域内各子像素在初始图像素数据中对应的参考像素的示意图之一;
图12B为本公开实施例提供的显示方法中,第二显示区域内各子像素在初始图像素数据中对应的参考像素的示意图之二;
图12C为本公开实施例提供的显示方法中,第二显示区域内各子像素在初始图像素数据中对应的参考像素的示意图之三;以及
图12D为本公开实施例提供的显示方法中,第二显示区域内各子像素在初始图像素数据中对应的参考像素的示意图之四。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
全屏显示技术中,采用屏下摄像头方案时,为了提高显示屏/显示基板的设置有摄像头的区域的透光率,采用降低显示基板的设置摄像头的区域的像素分布密度来实现局部透明。
图1A为一种显示基板的示意图。如图1A所示,显示基板包括第一显示子区域A1和第二显示子区域A2。针对提升屏占比的问题,可采用屏下设置摄像头的方案,即,采用降低第二显示子区域A2的像素分布密度增加屏 幕透光率的方式将摄像头设置在显示基板的第二显示子区域A2的下方。但由于第二显示子区域A2的像素分布密度下降,第二显示子区域A2的亮度将比周围区域(第一显示子区域A1)的亮度低,导致第二显示子区域A2为边界明显可见的暗区。
图1A所示的本公开的实施例以第二显示子区域A2为圆形区域,并位于显示基板的中上部为例进行说明,但不限于此。例如,在其他的实施例中,第二显示子区域A2可以采用其他形状,也可以调整第二显示子区域A2的位置。例如,在其他的实施例中,还可以调整显示基板为其他的形状。
本公开至少一实施例提供一种显示基板,可以减弱第二显示子区域A2和第一显示子区域A1之间的边界,和/或,增加屏幕的透光率。
例如,本公开实施例中,第一显示子区域A1内的像素分布密度大于第二显示子区域A2内的像素分布密度。
本公开实施例提供的显示基板,通过使显示区域包括像素分布密度大(即分辨率高)的第一显示子区域和像素分布密度小(即分辨率低)的第二显示子区域,由于第二显示子区域内的像素分布密度较小,因此可以将摄像头、传感器、听筒等元件设置在第二显示子区域内,即采用降低局部像素分布密度来增加屏幕透光率的方式来提高显示基板的屏占比。
需要说明的是,像素分布密度指的可以是在单位面积中均匀设置的像素的个数。单位面积中设置的像素个数多,则像素分布密度大,分辨率高。反之,单位面积中设置的像素个数少,则像素分布密度小,分辨率低。
例如,本公开实施例中,像素分布密度具体计算公式:
Figure PCTCN2019090404-appb-000001
例如,上述计算公式中,ρ表示像素分布密度,x表示行方向上的显示像素数量,y表示列方向上的显示像素数量,S表示屏幕面积。
例如,在本公开实施例提供的显示基板中,第二显示子区域可以为一个或多个。并且,第一显示子区域可以为连续的区域,或者第一显示子区域也可以为不连续的区域,这可以根据实际应用环境来设计确定,在此不作限定。
例如,在本公开实施例提供的显示基板中,第二显示子区域内的像素分布密度根据要设置在第二显示子区域内的元件以及显示需求决定,在此不作限定。例如以在第二显示子区域内设置摄像头为例,当像素分布密度太大时能够保证好的显示效果,但是影响摄像清晰度,当像素分布密度太小时,能 够保证高的摄像清晰度,但是影响显示。例如,以目前显示基板能够达到的分辨率的能力,一般第二显示子区域的像素分布密度不低于第一显示子区域的像素分布密度的1/4。例如,第二显示子区域的像素分布密度为第一显示子区域的像素分布密度的1/2、1/3或1/4。当然,当显示基板的分辨率可以做到更高时,第二显示子区域的像素分布密度与第一显示子区域的像素分布密度比值可以设置的更小。
在本公开实施例提供的显示基板中,如图1A所示,可以使第二显示子区域A2的面积小于第一显示子区域A1的面积。当然,在实际应用中,第二显示子区域的面积可以根据第二显示子区域内设置的元件进行设计,在此不作限定。
一般显示区内设置有像素单元,像素单元中设置有多个子像素,本公开实施例中的像素指的可以是能独立显示一个像素点的子像素组合,例如一个像素指的可以是一个像素单元。
图1B至图1S为本公开的实施例提供的显示基板的局部结构示意图。
可选地,在本公开实施例提供的显示基板中,如图1B至图1M所示,第一显示子区域A1内包括多个相邻设置的第一像素单元10和第二像素单元20。第一像素单元10包括第一子像素1和第二子像素2,第二像素单元20包括第三子像素3和第二子像素2。显示时第一显示子区域A1内的像素数量等于第一像素单元10的数量和第二像素单元20的数量之和。即第一显示子区域A1内像素排列为Pantile排列,在显示时像素单元通过借用相邻像素单元中的子像素可以实现高于物理分辨率的分辨率。
第二显示子区域A2内包括多个第三像素单元30,第三像素单元30包括第一子像素1、第二子像素2和第三子像素3。显示时第二显示子区域A2内的像素数量等于第三像素单元30的数量。即第二显示子区域A2内像素的物理分辨率即为其显示分辨率。另外,该实施例仅给出第二显示子区域内第三像素单元30的一种排布方式,在此不限定第二显示子区域A2内第三像素单元30的分布密度。
需要说明的是,像素单元可以是显示一个像素点的子像素组合,例如可以是红色子像素、绿色子像素以及蓝色子像素中的两个、三个、四个或更多个子像素的组合。或者,像素单元也可以是基本重复单元或像素组合,例如是红色子像素、绿色子像素以及蓝色子像素的组合。
例如,在本公开实施例提供的显示基板中,相邻的第一元件和第二元件是指该第一元件和该第二元件之间没有设置第一元件和第二元件。当第一元件和第二元件为同一元件时,该两个相同的元件之间不设置其他的该元件。例如,该相邻的第一元件和第二元件之间可设置不同于第一元件和第二元件的其他元件。
例如,第一子像素、第二子像素和第三子像素一般分别为红色子像素、绿色子像素和蓝色子像素中的一种。可选地,在本公开实施例提供的显示基板中,第二子像素为绿色子像素,第一子像素为红色或蓝色子像素之一,第三子像素为蓝色或红色子像素之另一。
例如,如图1B所示,第三像素单元30中的第一子像素1、第二子像素2和第三子像素3依次排布。如图1B所示,多个第三像素单元30包括第一类型的第三像素单元和第二类型的第三像素单元,第一类型的第三像素单元中的第一子像素1、第二子像素2和第三子像素3从左到右依次排布,第二类型的第三像素单元中的第一子像素1、第二子像素2和第三子像素3从右到左依次排布。例如,如图1B、图1D、图1F、图1L、图1M所示,奇数行子像素中,第二显示子区域A2包括第一类型的第三像素单元;偶数行子像素中,第二显示子区域A2包括第二类型的第三像素单元。例如,如图1B、图1D、图1F、图1L、图1M所示,在列方向上,多个第一类型的第三像素单元和多个第二类型的第三像素单元交替排列。
可选地,在本公开实施例提供的显示基板中,如图1B至图1E所示,第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素可以位于同一行。这样相当于第二显示子区域A2内子像素与第一显示子区域A1内的子像素在行方向上是对应的,不是错行设置或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中第二显示子区域内的部分子像素去掉,制作工艺相对容易实现。可选地,在本公开实施例提供的显示基板中,如图1F至图1M所示,第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素位于同一列。这样相当于第二显示子区域A2内子像素与第一显示子区域A1内的子像素在列方向上是对应的,不是错行设置或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中第二显示子区域内的部分子像素去掉,制作工艺相对容易实现。例如图1B所示,第二显示子区域A2相比第一显示子区域A1相 当于去掉一半的第二子像素2,从而分辨率为第一显示子区域A1的1/2。例如图1C所示,第二显示子区域A2相比第一显示子区域A1相当于去掉3/4的第二子像素2,去掉一半第一子像素1和一半第三子像素3,从而分辨率为第一显示子区域A1的1/4。例如,本公开的实施例中,上述提及的去掉的子像素被替换为了透明子像素或第一透明像素。
可选地,在本公开实施例提供的显示基板中,如图1B至图1H所示,第二显示子区域A2内的一个第一子像素1的发光面积大致等于第一显示子区域A1内的一个第一子像素1的发光面积。第二显示子区域A2内的一个第三子像素3的发光面积大致等于第一显示子区域A1内的一个第三子像素3的发光面积。如图1B至图1G所示,第二显示子区域A2内的一个第二子像素2的发光面积大致等于第一显示子区域A1内的一个第二子像素2的发光面积。
在具体实施时,由于第二显示子区域的像素分布密度小于第一显示子区域的像素分布密度,因此在显示时,第二显示子区域的亮度会比第一显示子区域的亮度低,从而在第一显示子区域和第二显示子区域的交界处会存在人眼可见的明显暗纹。可选地,为了改善该暗纹现象,在本公开实施例提供的显示基板中,如图1I至图1M所示,第二显示子区域A2内的一个第一子像素1的发光面积大于第一显示子区域A1内的一个第一子像素1的发光面积;第二显示子区域A2内的一个第二子像素2的发光面积大于第一显示子区域A1内的一个第二子像素2的发光面积;第二显示子区域A2内的一个第三子像素3的发光面积大于第一显示子区域A1内的一个第三子像素3的发光面积。即通过增大第二显示子区域A2内子像素的发光面积来降低第二显示子区域A2与第一显示子区域A1的亮度差异,从而减轻第二显示子区域A2与第一显示子区域A1的边界暗纹。
可选地,在本公开实施例提供的显示基板中,如图1B至图1E、图1G至图1J所示,第二显示子区域A2内,多个第三像素单元30呈矩阵排列。
可选地,在本公开实施例提供的显示基板中,如图1F、图1K至图1M所示,第二显示子区域A2内,多个第三像素单元30呈棋盘格方式排列。即多个第三像素单元30在行方向上隔列进行设置,在列方向隔行进行设置。例如图1F所示,在奇数行上,第三像素单元30设置在奇数列的位置,在偶数行上,第三像素单元30设置在偶数列的位置,从而使第三像素单元30沿 行方向和沿列方向都均匀分布,从而保证第二显示子区域A2内亮度均匀。也可以例如是在奇数行上,第三像素单元30设置在偶数列的位置,在偶数行上,第三像素单元30设置在奇数列的位置,使得任意两个第三像素单元之间均间隔一定距离,间隔距离例如在行方向上可以是至少一个第三像素单元在行方向的长度,在列方向可以是至少一个第三像素单元在列方向的长度,这些本公开实施例不做限定。
可选地,在本公开实施例提供的显示基板中,如图1E与图1J所示,第二显示子区域A2内的第三像素单元30中,第一子像素1和第三子像素3同行设置,第二子像素2位于第一子像素1和第三子像素3所在行的相邻行,这样使第二子像素2和第一子像素1错行设置。例如同一第三像素单元30中的第一子像素1和第三子像素3位于第一行中,第二子像素2位于第二行中。这样可以使同一第三像素单元30中的第一子像素、第二子像素和第三子像素的中心连线构成一个三角形。这样可以避免第二显示子区域内出现横向的暗亮条纹。
需要说明的是,在本公开实施例提供的显示面板中,子像素的中心是指子像素的发光区域的中心。以OLED显示面板为例,子像素一般包括由阳极层、发光层和阴极层构成的层叠结构。显示时该层叠结构对应的发光区域为该子像素的发光区域。这样可以使发光区域所占用的面积作为发光面积。当然,发光面积例如也可以为由像素界定层限定的开口区所占用的面积,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图1E和图1J所示,同一第三像素单元30中,第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线L1上的正投影,位于第一子像素1的中心与第三子像素3的中心之间。例如第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线L1上的正投影位于连接L1和直线L2的交点上。这样可以使第三像素单元30中的第二子像素2的中心与第一子像素1的中心之间的距离等于第二子像素2的中心与第三子像素3的中心之间的距离,以使这三个子像素呈等腰三角形排列,可以避免第二显示子区域A2内出现纵向的暗亮条纹。
在具体实施时,第二子像素2的中心与第一子像素1的中心之间的距离以及第二子像素2的中心与第三子像素3的中心之间的距离可能并不能完全 相同,在实际工艺中,由于工艺条件的限制或其他因素例如布线或过孔的设置,也可能会有一些偏差,因此各子像素的形状、位置及相对位置关系只要大致满足上述条件即可,均属于本公开的保护范围。
可选地,在本公开实施例提供的显示基板中,如图1B至图1D、图1F至图1I、图1K至图1M所示,第二显示子区域A2内,第三像素单元30中的第一子像素1、第二子像素2和第三子像素3同行设置。或者,也可以同列设置,在此不作限定。
当然,在具体实施时,在本公开实施例提供的显示基板中,如图1B至图1D、图1F至图1I、图1K至图1M所示,第二显示子区域A2内,第三像素单元30中,第一子像素1、第二子像素2和第三子像素3同行依次设置。或者,也可以同列依次设置,在此不作限定。进一步地,当然,在具体实施时,在本公开实施例提供的显示基板中,如图1B至图1D、图1F至图1I、图1K至图1M所示,第二显示子区域A2内,第三像素单元30中,第一子像素1、第二子像素2和第三子像素3同行依次相邻设置,或者,也可以同列依次相邻设置,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图1B、图1D至图1F、图1L所示,第二显示子区域A2内,沿行方向相邻的两个第三像素单元30内的子像素沿行方向的排列顺序相同,沿列方向相邻的两个第三像素单元30内的子像素沿行方向的排列顺序相反。从而保证第二显示子区域A2内,在列方向上第一子像素1和第三子像素3交替排列,避免列方向发生色偏。例如图1B所示,以第一行第三像素单元30为例,沿行方向上,相邻的两个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。以第一列第三像素单元30为例,沿列方向上,奇数行中的第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。偶数行中的第三像素单元30内的第三子像素3、第二子像素2、第一子像素1均由左向右依次排列。例如图1E所示,以第一行第三像素单元30为例,沿行方向上,相邻的两个第三像素单元30内的第一子像素1、第三子像素3、第二子像素2均呈倒三角形排列。以第一列第三像素单元30为例,沿列方向上,奇数行中的第三像素单元30内的第一子像素1、第三子像素3、第二子像素2均呈倒三角形排列。偶数行中的第三像素单元30内的第三子像素3、第一子像素1、第二子像素2均呈倒三角形排列。
在具体实施时,本公开实施例提供的显示基板中,如图1C、图1G至图1K所示,第二显示子区域A2内,可以使每个第三像素单元内的子像素的排列顺序相同。
例如,本公开一实施例提供的显示基板中,如图1B、图1D、图1F、图1L所示,在同一列中,多个第一类型的第三像素单元30和多个第一类型的第三像素单元30交替排列,第一类型的第三像素单元30内的第一子像素1、第二子像素2、第三子像素3由左向右依次排列,第二类型的第三像素单元30内的第三子像素3、第二子像素2、第一子像素1由左向右依次排列。
例如,图1I所示的中第三像素单元可以调整各子像素的排列以得到其他结构的显示基板。例如,在具体实施时,本公开实施例提供的显示基板中,如图1M所示,第二显示子区域A2内,同一列中每个第三像素单元30内的子像素的排列顺序相同,并且相邻两列中第三像素单元30内的子像素的排列顺序相反。例如,奇数列中每个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。偶数列中每个第三像素单元30内的第三子像素3、第二子像素2、第一子像素1均由左向右依次排列。
在具体实施时,本公开实施例提供的显示基板中,如图1B至图1F以及图1H至图1M所示,第二显示子区域A2内,第一子像素1、第二子像素2、第三子像素3的形状大致一致。
在具体实施时,本公开实施例提供的显示基板中,第二显示子区域内,一个第二子像素的发光面积小于或大致等于一个第一子像素的发光面积,一个第二子像素的发光面积小于或大致等于一个第三子像素的发光面积。例如,如图1B至图1F所示,第二显示子区域A2内一个第二子像素2的发光面积大致等于一个第一子像素1的发光面积,一个第二子像素2的发光面积大致等于一个第三子像素3的发光面积。如图1G至图1M所示,第二显示子区域A2内一个第二子像素2的发光面积小于一个第一子像素1的发光面积,一个第二子像素2的发光面积小于一个第三子像素3的发光面积。当然,第二显示子区域内的一个第二子像素的发光面积、一个第一子像素的发光面积以及一个第三子像素的发光面积的关系可以根据实际应用环境来设计确定,在此不作限定。
在具体实施时,本公开实施例提供的显示基板中,如图1B至图1M所示,第二显示子区域A2内,一个第一子像素1的发光面积大致等于一个第 三子像素3的发光面积。
可选地,本公开实施例提供的显示基板中,如图1B至图1M所示,第一显示子区域A1内第一像素单元10和第二像素单元20可以排列为任意一种Pantile排列方式,在此不作限定。
可选地,本公开实施例提供的显示基板中,如图1B至图1M所示,在第一显示子区域A2内,第一像素单元10和第二像素单元20沿列方向交替排列,第一像素单元10和第二像素单元20沿行方向交替排列。
可选地,在本公开实施例提供的显示基板中,如图1B至图1F所示,在第一显示子区域A1内,第一像素单元10内第二子像素2与第一子像素1同行排列;第二像素单元20内第二子像素2与第三子像素3同行排列。并且,针对沿行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第二子像素2与第二像素单元20中的第二子像素2不直接相邻。例如,针对行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第二子像素2与第二像素单元20中的第二子像素之间间隔着第三子像素3。当然,上述实施方式还可以有其他实施方式,在此不作赘述。
进一步地,在本公开实施例提供的显示基板中,如图1B至图1F所示,第一显示子区域A2内,一个第一子像素1的发光面积、一个第二子像素2的发光面积以及一个第三子像素3的发光面积可以大致相同。
可选地,在本公开实施例提供的显示基板中,如图1G至图1M所示,在第一显示子区域A1内,第一像素单元10内第二子像素2与第一子像素1错行排列且错列排列;第二像素单元20内第二子像素2与第三子像素3同行排列。并且,以沿列方向相邻的第一像素单元10和第二像素单元20为一像素组100,在同一像素组100内,第一像素单元10内第二子像素2与第二像素单元20内的第三子像素3同行排列,且第一像素单元10内第二子像素2与第二像素单元20内的第二子像素2位于同一列。
进一步地,在本公开实施例提供的显示基板中,如图1G至图1L所示,同一像素组100内,两个第二子像素2沿列方向上相邻设置,且两个第二子像素2关于行方向对称,即使同一像素组100内的两个第二子像素2镜像设置。进一步地,在第一显示子区域A1内,当第二子像素2为绿色子像素时,两个第二子像素2的发光面积小于一个第一子像素1的发光面积,且两个第二子像素2的发光面积小于一个第三子像素3的面积,这是因为绿色子像素 的发光效率高于其它颜色子像素的发光效率。
可选地,本公开实施例提供的显示基板中,如图1B至图1M所示,第一显示子区域内,每个第一像素单元10内的子像素的排列顺序相同,每个第二像素单元20内的子像素的排列顺序相同。例如,如图1B至图1F所示,每个第一像素单元10内第一子像素1、第二子像素2均由左向右依次排列。每个第二像素单元20内第三子像素3、第二子像素2均由左向右依次排列。如图1G至图1M所示,每个第二像素单元20内第三子像素3、第二子像素2均由左向右依次排列。每个第一像素单元10内第一子像素1、第二子像素2均由左上向右下方向依次排列。
可选地,在本公开实施例提供的显示基板中,第一显示子区域内,一个第二子像素的发光面积不大于一个第一子像素的发光面积,一个第二子像素的发光面积不大于一个第三子像素的发光面积。例如,如图1B至图1F所示,第一显示子区域A1内,一个第二子像素2的发光面积大致等于一个第一子像素1的发光面积,一个第二子像素2的发光面积大致等于一个第三子像素3的发光面积。如图1G至图1M所示,第一显示子区域A1内,一个第二子像素2的发光面积小于一个第一子像素1的发光面积,一个第二子像素2的发光面积小于一个第三子像素3的发光面积。这是由于在第一显示子区域A1内,第一子像素1的数量与第三子像素3的数量相同,而第二子像素2的数量为第一子像素1的一倍,因此可以将第二子像素2的发光面积做小。
可选地,在本公开实施例提供的显示基板中,如图1B至图1M所示,第一显示子区域A1内,一个第一子像素1的发光面积大致等于一个第三子像素3的发光面积。
例如,在本公开实施例提供的显示基板中,第一显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。在具体实施时,一般规则的形状从工艺角度考虑比较容易实现。
例如,在本公开实施例提供的显示基板中,第二显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。在具体实施时,一般规则的形状从工艺角度考虑比较容易实现。
可选地,在本公开实施例提供的显示基板中,如图1G至图1L所示, 同一像素组100内,第一子像素1和第三子像素3的形状一致,且两个第二子像素2组合的形状与第一子像素1或者第三子像素3的形状一致。
可选地,在本公开实施例提供的显示基板中,第一子像素的形状为矩形和六边形中的至少一种。例如,如图1B至图1F所示,第一显示子区域A1和第二显示子区域A2内,第一子像素1的形状均为矩形。如图1G至图1L所示,第一显示子区域A1和第二显示子区域A2内,第一子像素1的形状均为六边形。当然,第一子像素的形状也可以为圆角图形,或者为椭圆形等,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图1G至图1L所示,第一显示子区域A1内,第一子像素1和第三子像素3的形状均为六边形,两个第二子像素2组合在一起的形状为一个六边形。
可选地,在本公开实施例提供的显示基板中,第二显示子区域内的第一子像素与第三子像素中的至少一种子像素的形状与第一显示子区域中的第一子像素的形状大致一致。例如,如图1B至图1M所示,第二显示子区域A2内的第一子像素1的形状与第一显示子区域A1中的第一子像素1的形状大致一致。如图1B至图1M所示,第二显示子区域A2内的第三子像素3的形状与第一显示子区域A1中的第一子像素1的形状大致一致。如图1B至图1M所示,第二显示子区域A2内的第一子像素1的形状和第三子像素3的形状分别与第一显示子区域A1中的第一子像素1的形状大致一致。
可选地,在本公开实施例提供的显示基板中,第一显示子区域中的第一子像素和第二子像素中的一种子像素的形状与第二显示子区域内的第二子像素的形状大致一致。例如,如图1B至图1F以及图1H至图1M所示,第一显示子区域A1中的第一子像素1的形状与第二显示子区域A2内的第二子像素2的形状大致一致。如图1G所示,第一显示子区域A1中的第二子像素2的形状与第二显示子区域A2内的第二子像素2的形状大致一致。
需要说明的是,以同一个子区域中各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致为例,这三种子像素的形状大致一致,当然这三种子像素的发光面积可以不同。例如图1J所示,第二显示子区域A2中,第二子像素2的发光面积小于第一子像素1的发光面积,且第二子像素2的发光面积小于第三子像素3的发光面积。并且,在实际应用中,例如也可以根据蓝色子像素的发光面积大于红色子像素的发光面积大于绿色子像素的 发光面积,或者蓝色子像素的发光面积大于绿色子像素的发光面积大于红色子像素的发光面积的实施方式进行设置,在此不作限定。
需要说明的是,在本公开实施例提供的显示基板中,子像素的形状是指子像素的发光区域的形状,子像素包括第一子像素、第二子像素和第三子像素至少之一。
可选地,在本公开实施例提供的显示基板中,如图1G至图1L所示,在第一显示子区域A1内,当第二子像素2为绿色子像素时,两个第二子像素2的发光面积小于一个第一子像素1的面积,且两个第二子像素2的发光面积小于一个第三子像素3的面积,这是因为绿色子像素的发光效率高于其它颜色子像素的发光效率。
可选地,在本公开实施例提供的显示基板中,如图1G至图1L所示,第二显示子区域A2内,当第二子像素2为绿色子像素时,第二子像素2的发光面积小于第一子像素1的发光面积,第二子像素2的发光面积小于第三子像素3的发光面积。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,沿行方向上相同颜色的子像素等间距排列,沿列方向上相同颜色的子像素等间距排列。
可选地,在本公开实施例提供的显示基板中,如图1N至图1Q、图1S所示,相邻行中相同颜色的子像素呈错位排列,且同行中相邻两个颜色相同的子像素的中心距离相邻行中与其相邻的同颜色的子像素的中心的距离相等。以图1P为例,在第二显示子区域A2内,第2行的第1个第一子像素1是位于第1行的第1个第一子像素1和第2个第一子像素1的中心连线上。
可选地,在本公开实施例提供的显示基板中,如图1N至图1Q、图1S所示,相邻列中相同颜色的子像素呈错位排列,且同列中相邻两个颜色相同的子像素的中心距离相邻列中与其相邻的同颜色的子像素的中心的距离相等。以图1P为例,在第二显示子区域A2内,第1列的第1个第一子像素1是位于第2列的第1个第一子像素1和第2个第一子像素1的中心连线上。
需要说明的是,由于工艺条件的限制或其他因素例如布线或过孔的设置,也可能会有一些偏差,因此各子像素的位置及相对位置关系只要大致满足上述条件即可,均属于本公开的保护范围。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第 二显示子区域A2内设置有第一子像素1、第二子像素2和第三子像素3。第一子像素1在第二显示子区域A2内均匀分布,第二子像素2在第二显示子区域A2内均匀分布,第三子像素3在第二显示子区域A2内均匀分布。
可选地,在本公开实施例提供的显示基板中,如图1O至图1S所示,沿行方向,第一子像素1、第二子像素2和第三子像素3均匀分布。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第二显示子区域A2内包括矩阵排列的多个第三像素单元30,第三像素单元30包括:第一子像素1、第二子像素2以及第三子像素3。同一第三像素单元30中,第一子像素1和第三子像素3同行且相邻设置,第二子像素2位于第一子像素1和第三子像素3所在行的相邻行。这样可以使第二显示子区域A2内,第三像素单元30中三个子像素呈三角形排列。以第一行第三像素单元30为例,该第三像素单元30中的第一子像素1和第三子像素3位于子像素行中的第一行,第二子像素2位于子像素行中的第二行。
可选地,在本公开实施例提供的显示基板中,针对第二显示子区域内的第一子像素、第二子像素以及第三子像素中的同一种颜色子像素,子像素的中心均匀分布。例如,如图1N至图1S所示,第二显示子区域A2内的第一子像素1的中心均匀分布。第二显示子区域A2内的第二子像素2的中心均匀分布。第二显示子区域A2内的第三子像素3的中心均匀分布。
可选地,在本公开实施例提供的显示基板中,针对第二显示子区域内的第一子像素、第二子像素以及第三子像素中的同一种颜色子像素,子像素沿行方向上等间距排列且沿列方向上等间距排列。例如,如图1N至图1S所示,第二显示子区域A2内的第一子像素1沿行方向上等间距排列且沿列方向上等间距排列。第二显示子区域A2内的第二子像素2沿行方向上等间距排列且沿列方向上等间距排列。第二显示子区域A2内的第三子像素3沿行方向上等间距排列且沿列方向上等间距排列。
可选地,在本公开实施例提供的显示基板中,针对第二显示子区域内的第一子像素、第二子像素以及第三子像素中的同一种颜色子像素,子像素在相邻行中呈错位排列,且同行中相邻两个子像素的中心分别与相邻行中同一个最近邻的子像素的中心的距离相等。例如,如图1N至图1S所示,第二显示子区域A2内的第一子像素1在相邻行中呈错位排列,且同行中相邻两个第一子像素1的中心分别与相邻行中同一个最近邻的第一子像素1的中心的 距离相等。其余同理,在此不作赘述。
可选地,在本公开实施例提供的显示基板中,针对第二显示子区域内的第一子像素、第二子像素以及第三子像素中的同一种颜色子像素,子像素在相邻列中呈错位排列,且同列中相邻两个子像素的中心分别与相邻列中同一个最近邻的子像素的中心的距离相等。例如,如图1N至图1S所示,第二显示子区域A2内的第一子像素1在相邻列中呈错位排列,且同列中相邻两个第一子像素1的中心分别与相邻列中同一个最近邻的第一子像素1的中心的距离相等。其余同理,在此不作赘述。
可选地,在本公开实施例提供的显示基板中,如图1N与图1O以及图1Q至图1S所示,第二显示子区域A2内,同一列第三像素单元30的子像素排列方式相同。以使列方向上,每一列第三像素单元30的排列方式相同,保证显示的均匀性。
可选地,在本公开实施例提供的显示基板中,如图1P所示,第二显示子区域A2内,同一列中相邻的两个第三像素单元30的子像素排列方式也可以相反。以同一列中的第一行第三像素单元30和第二行第三像素单元30为例,第一行第三像素单元30以第三子像素3、第一子像素1以及第二子像素2的顺序构成三角形。第二行第三像素单元30以第一子像素1、第三子像素3以及第二子像素2的顺序构成三角形。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第二显示子区域A2内,第三像素单元30中,第二子像素2与第一子像1的中心之间的距离等于第二子像素2与第三子像素3的中心之间的距离。即第三像素单元30中,第二子像素2的中心,第一子像1的中心和第三子像素3的中心构成等腰三角形。从而保证第三像素单元30的像素发光中心在等腰三角形的中心。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,针对第二显示子区域A2内沿行方向相邻的两个第三像素单元30,一个第三像素单元30中的第一子像素1和第三子像素3以及另一个第三像素单元30中的第二子像素2位于同一行。这样在显示时,第二显示子区域A2内的像素数量等于第三像素单元30的数量。即第二显示子区域A2内像素的物理分辨率为其显示分辨率。并且,在第二显示子区域A2内,第三像素单元30中三个子像素呈三角形排列,且沿行方向相邻的两个第三像素单元30一个为倒 置放的三角形,一个为正向放置的三角形,从而避免第二显示子区域A2内,有的行上子像素数量多,有的行上子像素数量少,避免产生显示不均匀。
可选地,在本公开实施例提供的显示基板中,如图1O至图1S所示,第二显示子区域A2中的每个子像素均匀排列,以呈棋盘格方式排列。
可选地,在本公开实施例提供的显示基板中,如图1P所示,第二显示子区域A2内的同一第三像素单元30中,第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线上的正投影,位于第一子像素1的中心与第三子像素3的中心之间。例如第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线L1上的正投影位于连接L1和直线L2的交点上。这样可以使第三像素单元30中的第二子像素2的中心与第一子像素1的中心之间的距离等于第二子像素2的中心与第三子像素3的中心之间的距离,以使这三个子像素呈等腰三角形排列,可以避免第二显示子区域A2内出现纵向的暗亮条纹。
例如,第二子像素的中心与第一子像素的中心之间的距离和第二子像素的中心与第三子像素的中心之间的距离可能并不能完全相同,在实际工艺中,由于工艺条件的限制或其他因素例如布线或过孔的设置,也可能会有一些偏差,因此各子像素的形状、位置及相对位置关系只要大致满足上述条件即可,均属于本公开的保护范围。
可选地,在本公开实施例提供的显示基板中,如图1N至图1Q、图1S所示,沿行方向相邻的第三像素单元30中,相同颜色的子像素不相邻。即沿行方向相邻的两个第三像素单元30中,一个第三像素单元30中的第一子像素1和另一个第三像素单元30中的第一子像素1不相邻。这样避免在第二显示子区域A2内,由于相邻两列子像素的颜色一样而发生色偏现象。当然,如图1R所示,也可以使沿行方向相邻的第三像素单元30中,相同颜色的子像素相邻。即沿行方向相邻的两个第三像素单元30中,一个第三像素单元30中的第三子像素3和另一个第三像素单元30中的第三子像素3相邻。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第二显示子区域A2内,一个第一子像素1、一个第二子像素2以及一个第三子像素3的发光面积大致相同。这样可以使发光均匀。当然,由于不同子像素的发光效率不相同,在第二显示子区域A2内,第一子像素1、第二子像素2和第三子像素3的发光面积也可以不相同,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第二显示子区域A2内,一个第一子像素1、一个第二子像素2以及一个第三子像素3的形状大致一致。这样可以降低工艺制备难度。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,在第一显示子区域A1内第一像素单元10和第二像素单元20沿列方向交替排列,第一像素单元10和第二像素单元20沿行方向交替排列。
可选地,在本公开实施例提供的显示基板中,如图1N与图1O所示,在第一显示子区域A1内,第一像素单元10内第二子像素2与第一子像素1同行排列;第二像素单元20内第二子像素2与第三子像素3同行排列。并且,针对沿行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第二子像素2与第二像素单元20中的第二子像素2不相邻。例如,针对行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第二子像素2与第二像素单元20中的第二子像素之间间隔着第三子像素3。当然,上述实施方式还可以有其他实施方式,在此不作赘述。
可选地,在本公开实施例提供的显示基板中,如图1N与图1O所示,第一显示子区域A1内,一个第一子像素1的发光面积、一个第二子像素2的发光面积以及一个第三子像素3的发光面积可以大致相同。
进一步地,在本公开实施例提供的显示基板中,如图1N与图1O所示,针对同一列中的各第一像素单元10和各第二像素单元20,各第一像素单元10中的第二子像素2与各第二像素单元20中的第二子像素2位于同一列。例如,以第一列为例,各第一像素单元10中的第二子像素2与各第二像素单元20中的第二子像素2位于同一列。
进一步地,在本公开实施例提供的显示基板中,如图1N与图1O所示,第一显示子区域A1内,一个第一子像素1的形状、一个第二子像素2的形状以及一个第三子像素3的形状可以大致相同。可选地,第一显示子区域A1内,第一子像素1的形状可以为矩形。可选地,第一显示子区域A1内,第二子像素2的形状也可以为矩形。可选地,第一显示子区域A1内,第三子像素3的形状也可以为矩形。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,在第一显示子区域A1内,第一像素单元10内第二子像素2与第一子像素1同行排列,第二像素单元20内第二子像素2与第三子像素3错行排列且错 列排列。并且沿行方向相邻的第一像素单元10和第二像素单元20中,两个第二子像素2不相邻。以沿列方向相邻的第一像素单元10和第二像素单元20为一像素组100,同一像素组100内,第一像素单元10内第二子像素2与第二像素单元20内的第二子像素2位于同一列。即相邻两行像素单元在列方向上错开半列。
进一步地,在本公开实施例提供的显示基板中,如图1P至图1S所示,同一像素组100内,两个第二子像素2沿列方向上相邻设置,且两个第二子像素2关于行方向对称,即使同一像素组100内的两个第二子像素2镜像设置。进一步地,在第一显示子区域A1内,当第二子像素2为绿色子像素时,两个第二子像素2的发光面积小于一个第一子像素1的发光面积,且两个第二子像素2的发光面积小于一个第三子像素3的面积,这是因为绿色子像素的发光效率高于其它颜色子像素的发光效率。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,第一显示子区域A1内,以沿列方向相邻的两个第二子像素2为一第二子像素组200;第一显示子区域A1内沿列方向相邻的两个第二子像素组200之间的间距等于第二显示子区域A2内沿列方向相邻的两个第二子像素2之间的距离。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,同一像素组100内,第一子像素1和第三子像素3的形状一致,且沿列方向相邻的两个第二子像素2组合的形状与第一子像素1的形状一致。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,第一显示子区域A1内,第一子像素1和第三子像素3的形状均为六边形,第二子像素2的形状为五边形。这样可以使沿列方向相邻的两个第二子像素2组合在一起的形状形成为一个六边形。
例如,在本公开实施例提供的显示基板中,第一显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。一般规则的形状从工艺角度考虑比较容易实现。
例如,在本公开实施例提供的显示基板中,第二显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。一般规则的形状从工艺角度考虑比较容易实现。
可选地,在本公开实施例提供的显示基板中,第一显示子区域内沿列方 向相邻的两个第一子像素之间的间距不大于第二显示子区域内沿列方向相邻的两个第一子像素之间的距离。第一显示子区域内沿列方向相邻的两个第三子像素之间的间距不大于第二显示子区域内沿列方向相邻的两个第三子像素之间的间距。例如,如图1N和图1O以及图1Q至图1S所示,第一显示子区域A1内沿列方向相邻的两个第一子像素1之间的间距大致等于第二显示子区域A2内沿列方向相邻的两个第一子像素1之间的距离。第一显示子区域A1内沿列方向相邻的两个第三子像素3之间的间距大致等于第二显示子区域A2内沿列方向相邻的两个第三子像素3之间的间距。如图1P所示,第一显示子区域A1内沿列方向相邻的两个第一子像素1之间的间距小于第二显示子区域A2内沿列方向相邻的两个第一子像素1之间的距离。第一显示子区域A1内沿列方向相邻的两个第三子像素3之间的间距小于第二显示子区域A2内沿列方向相邻的两个第三子像素3之间的间距。
可选地,在本公开实施例提供的显示基板中,第二显示子区域内的一个第二子像素的发光面积不小于第一显示子区域内的一个第二子像素的发光面积,第二显示子区域内的一个第一子像素的发光面积大致等于第一显示子区域内的一个第一子像素的发光面积,第二显示子区域内的一个第三子像素的发光面积大致等于第一显示子区域内的一个第三子像素的发光面积。例如图1N和图1O所示,第二显示子区域A2内的一个第二子像素2的发光面积大致等于第一显示子区域A1内的一个第二子像素2的发光面积,第二显示子区域A2内的一个第一子像素1的发光面积大致等于第一显示子区域A1内的一个第一子像素1的发光面积,第二显示子区域A2内的一个第三子像素3的发光面积大致等于第一显示子区域A1内的一个第三子像素3的发光面积。如图1P至图1S所示,第二显示子区域A2内的一个第二子像素2的发光面积大于第一显示子区域A1内的一个第二子像素2的发光面积,第二显示子区域A2内的一个第一子像素1的发光面积大致等于第一显示子区域A1内的一个第一子像素1的发光面积,第二显示子区域A2内的一个第三子像素3的发光面积大致等于第一显示子区域A1内的一个第三子像素3的发光面积。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1的形状大致相同,第二显示子区域A2内的第三子像素3与第一显示子区域 A1内的第三子像素3的形状大致相同。这样可以降低工艺制备难度。
可选地,在本公开实施例提供的显示基板中,如图1N至图1S所示,第一显示子区域A1内,一个第一子像素1的发光面积大致等于一个第三子像素3的发光面积。
可选地,在本公开实施例提供的显示基板中,第一显示子区域内,一个第二子像素的发光面积不大于一个第一子像素的发光面积,一个第二子像素的发光面积不大于一个第三子像素的发光面积。例如,如图1N与图1O所示,第一显示子区域A1内,一个第二子像素2的发光面积大致等于一个第一子像素1的发光面积,一个第二子像素2的发光面积大致等于一个第三子像素3的发光面积。如图1P至图1S所示,第一显示子区域A1内,一个第二子像素2的发光面积小于一个第一子像素1的发光面积,一个第二子像素2的发光面积小于一个第三子像素3的发光面积。
可选地,在本公开实施例提供的显示基板中,如图1N和图1O所示,第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素可以位于同一行。即相当于第二显示子区域A2内子像素与第一显示子区域A1内的子像素在行方向上是对应的,不是错行设置,从而保证第二显示子线区域A2内的子像素和第一显示子区域A1内的子像素,在行方向上保持一致,有利于显示基板的布线。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素可以位于同一列。即相当于第二显示子区域A2内子像素与第一显示子区域A1内的子像素在列方向上是对应的,不是错列设置,从而保证第二显示子线区域A2内的子像素和第一显示子区域A1内的子像素,在列方向上保持一致,有利于显示基板的布线。
可选地,在本公开实施例提供的显示基板中,第二显示子区域内的第一子像素与第一显示子区域内的第一子像素位于同一列和同一行中的至少一种。例如,如图1R与图1S所示,第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1位于同一列。从而保证第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1在列方向上保持一致。如图1N与图1O所示,第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1位于同一行。从而保证第二显示子 区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1在行方向上保持一致。当然,也可以使第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1位于同一行,以及第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第一子像素1位于同一列。
可选地,在本公开实施例提供的显示基板中,第二显示子区域内的第二子像素与第一显示子区域内的第二子像素位于同一列和同一行中的至少一种。例如,如图1N与图1O所示,第二显示子区域A2内的第二子像素2与第一显示子区域A1内的第二子像素2位于同一行。如图1P至图1S所示,第二显示子区域A2内的第二子像素2与第一显示子区域A1内的第二子像素2位于同一列。从而保证第二显示子区域A2内的第二子像素2与第一显示子区域A1内的第二子像素2在列方向上保持一致。并且,但由于在该显示基板中,第二子像素2为像素单元的发光像素中心,因此,可以保证第二显示子区域内的发光像素中心与第一显示子区域内的发光像素中心在行方向上保持一致。当然,也可以使第二显示子区域内的第二子像素与第一显示子区域内的第二子像素位于同一列,以及第二显示子区域内的第二子像素与第一显示子区域内的第二子像素位于同一行。
可选地,在本公开实施例提供的显示基板中,第二显示子区域内的第三子像素与第一显示子区域内的第三子像素位于同一列和同一行中的至少一种。例如,如图1R和图1S所示,第二显示子区域A2内的第三子像素3与第一显示子区域A1内的第三子像素3位于同一列。从而保证第二显示子区域A2内的第三子像素3与第一显示子区域A1内的第三子像素3在列方向上保持一致。如图1N和图1O所示,第二显示子区域A2内的第三子像素3与第一显示子区域A1内的第三子像素3位于同一行。从而保证第二显示子区域A2内的第三子像素3与第一显示子区域A1内的第三子像素3在行方向上保持一致。当然,也可以使第二显示子区域内的第三子像素与第一显示子区域内的第三子像素位于同一列,以及第二显示子区域内的第三子像素与第一显示子区域内的第三子像素位于同一行。
可选地,在本公开实施例提供的显示基板中,如图1Q至图1S所示,第一显示子区域A1内沿列方向相邻的两个第一子像素1之间的间距等于第二显示子区域A2内沿列方向相邻的两个第一子像素1之间的距离;
第一显示子区域A1内沿列方向相邻的两个第三子像素3之间的间距等 于第二显示子区域A2内沿列方向相邻的两个第三子像素3之间的间距;
第一显示子区域A1内,以沿列方向相邻的两个第二子像素2为一第二子像素组200;第一显示子区域A1内沿列方向相邻的两个第二子像素组200之间的间距等于第二显示子区域A2内沿列方向相邻的两个第二子像素2之间的距离。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,第二显示子区域A2内第一子像素1在行方向上的分布密度大约是第一显示子区域A1内第一子像素1在行方向上的分布密度的1/2,当然,也可以为其它比值,例如1/3、1/4等,在此不作限定。
第二显示子区域A2内第三子像素3在行方向上的分布密度大约是第一显示子区域A1内第三子像素3在行方向上的分布密度的1/2,当然,也可以为其它比值,例如1/3、1/4等,在此不作限定。
第二显示子区域A2内第二子像素2在行方向上的分布密度大约是第一显示子区域A1内第二子像素2在行方向上的分布密度的1/4,当然,也可以为其它比值,例如1/6、1/9等,在此不作限定。
需要说明的是,这里的行方向是指以一行子像素为单位进行说明的。另外,在本公开实施例提供的密度比值,均为大致的比值范围,例如,密度比值可能不是整数。
可选地,在本公开实施例提供的显示基板中,如图1P至图1S所示,第一显示子区域A1内,第二子像素2的发光面积小于第一子像素1的发光面积,第二子像素2的发光面积小于第三子像素3的发光面积。这是由于在第一显示子区域A1内,第一子像素1的数量与第三子像素3的数量相同,而第二子像素2的数量为第一子像素1的一倍,因此可以将第二子像素2的发光面积做小。
需要说明的是,形状一致是指子像素的发光区域的形状相似,但是面积可以相同,也可以不相同。子像素的发光面积可以根据子像素的发光效率进行设置,在此不作限定。
需要说明的是,在本公开实施例提供的显示面板中,子像素的形状是指子像素的发光区域的形状。
例如,在本公开实施例提供的显示基板中,如图1P至图1S所示,在第一显示子区域A1内,当第二子像素2为绿色子像素时,两个第二子像素2 的发光面积小于一个第一子像素1的发光面积,且两个第二子像素2的发光面积小于一个第三子像素3的面积,这是因为绿色子像素的发光效率高于其它颜色子像素的发光效率。
本公开的实施例中,因第二显示子区域A2的像素分布密度比第一显示子区域A1的像素分布密度小,第二显示子区域A2可透过光,以使得位于显示屏下的摄像头等元件可以接收环境光。以下将对图1B至图1S中的第二显示子区域A2内的透明区域进行描述。例如,在制作过程中,透明区域不蒸镀发光功能层等膜层,以提高环境光的透过率,为了描述方便,将位于第二显示子区域A2内的透明区域称作第一透明像素P1。
例如,如图1B至图1S所示,在本公开的实施例中,第一透明像素P1被配置为使第二显示子区域A2的像素密度小于第一显示子区域A1的像素密度,以及使第二显示子区域A2的透光率大于第一显示子区域A1的透光率。例如,透光率是指对于环境光的透光率。例如,第二显示子区域A2的可透过环境光,而第一显示子区域A1透过环境光。
例如,本公开的实施例中,如图1B至图1S所示,第一显示子区域A1包括多个第一重复区域A01,每个第一重复区域A01包括一个第一显示单元10和一个第二显示单元20。
例如,如图1B至图1F、图1N、图1O所示,多个第一重复区域A01呈阵列排布。即,除了边缘位置外,每个第一重复区域A01与八个第一重复区域A01相邻,并被八个第一重复区域A01环绕。
例如,如图1G至图1M、图1P至图1S、除了边缘位置外,每个第一重复区域A01与六个第一重复区域A01相邻,并被该六个第一重复区域A01环绕。
例如,在不同的第一重复区域A01内,第一像素单元10和第二像素单元10的排列方式可不同,第一像素单元10中的第一子像素1和第二子像素2和第二像素单元10中的第三子像素3和第二子像素2的排列方式可不同。
例如,本公开的实施例中,如图1B至图1S所示,第二显示子区域A2包括多个第二重复区域A02,每个第二重复区域A02包括第一透明像素P1。第一透明像素P1可透过环境光。即,环境光可透过显示基板的第一透明像素P1以可照射到显示屏下方的摄像头等元件。例如,如图1B至图1S所示,多个第二重复区域A02呈阵列排布。例如,如图1B所示,多个第二重复区 域A02包括第一类型的第二重复区域A02和第二类型的第二重复区域A02。例如,第一类型的第二重复区域A02包括第一类型的第三像素单元,第二类型的第二重复区域A02第一类型的第三像素单元。例如,在不同的第二重复区域A02内,第三像素单元的排列方式可以不同。
例如,如图如图1B至图1S所示,第一透明像素P1包括第一透明子像素P01、第二透明子像素P02和第三透明子像素P03至少之一。
例如,如图1B至图1D所示,在行方向上相邻的第三像素单元之间设有一个第一透明像素P1,从而可形成第一透明像素列。进一步例如,第一透明像素P1包括第二透明子像素P02,即,在行方向上相邻的第三像素单元之间设有一个第一透明子像素P01,从而可形成第一透明子像素列。
例如,如图1B所示,第一透明像素P1仅包括第二透明子像素P02。第一透明像素P1的面积等于第二透明子像素P02的面积。
如图1C至图1G所示,第一透明像素P1包括一个第一透明子像素P01、两个第二透明子像素P02和一个第三透明子像素P03。第一透明像素P1的面积大于第一透明子像素P01、第二透明子像素P02和第三透明子像素P03至少之一的面积。
例如,如图1C至图1G所示,第一透明像素P1包括一个第一透明子像素P01、两个第二透明子像素P02和一个第三透明子像素P03。第一透明像素P1的面积大于第一透明子像素P01、第二透明子像素P02和第三透明子像素P03至少之一的面积。
例如,如图1C至图1G所示,第一透明像素P1的面积等于一个第一透明子像素P01、两个第二透明子像素P02和一个第三透明子像素P03的面积之和。
例如,如图1C、图1D、图1G至图1I、图1K至图1M所示,在列方向上相邻的第三像素单元之间设有一个第一透明像素P1,以形成第一透明像素行。例如,第一透明像素行中包括第一透明子像素P01、第二透明子像素P02和第三透明子像素P03。
例如,如图1B所示,在行方向上相邻的第一类型的第三像素单元之间设有一个第一透明像素P1,在行方向上相邻的第二类型的第三像素单元之间设有一个第一透明像素P1。例如,第一透明像素P1的面积和形状可以与第一显示子区域A1内的第二像素单元20中的第二子像素2的面积和形状相 同。或者,例如,第一透明子像素P01的面积和形状可以与第一显示子区域A1内的第二像素单元20中的第二子像素2的面积和形状相同。即,将第一显示子区域A1内的第二像素单元20中的第二子像素2替换为第一透明像素P1可构成第二显示子区域A2的结构。
例如,如图1B至图1M所示,第二显示子区域A2内包括多个透明子像素列,例如,每个透明子像素列包括多个第二透明子像素P02。例如,每个透明子像素列仅包括多个第二透明子像素P02,而不包括第一透明子像素P01和第三透明子像素P03。
例如,如图1G至图1I所示,第二显示子区域A2内包括多个第一透明像素行,例如,每个第一透明像素行包括多个第一透明子像素P01、多个第二透明子像素P02和多个第三透明子像素P03。
例如,如图1C、图1D、图1G至图1H所示,多个透明子像素列和多个透明子像素行交叉设置。
例如,本公开的实施例中,透明子像素行可指在第二显示子区域A2该行均由透明子像素构成,不包括可出光的子像素,即不包括第一子像素1、第二子像素2和第三子像素3。相应地,透明子像素列可指在第二显示子区域A2该列均由透明子像素构成,不包括可出光的子像素,即不包括第一子像素1、第二子像素2和第三子像素3。透明子像素包括第一透明子像素P01、第二透明子像素P02和第三透明子像素P03至少之一。
需要说明的是,为了便于理解,在图1B、图1D至图1G中用虚线框表示出了第一透明像素P1,但第一透明像素P1的结构并不限于图中所示。例如,也可以将图1B、图1D至图1G中的表示第一透明像素的虚线框去掉。例如,图1B中的一列第一透明像素P1看作一个第一透明像素。其他未用虚线框示出第一透明像素或透明子像素的,用其标号表示出了透明子像素/第一透明像素。
图1C所示的显示基板与图1B所示的显示基板相比,透光区域增加,如图1B和图1C所示,在第二显示子区域A2内,奇数行子像素之间的子像素被替换为了第一透明像素P1。例如,如图1C所示,第一透明像素P1包括一个第一透明子像素P01、三个第二透明子像素P02和一个第三透明子像素P03。
例如,如图1C至图1G所示,一个第一透明子像素P01与第一显示子 像素A1内的一个第一子像素1具有相同的面积和形状,一个第二透明子像素P02与第一显示子像素A1内的一个第二子像素2具有相同的面积和形状,一个第三透明子像素P03与第一显示子像素A1内的一个第三子像素3具有相同的面积和形状。例如,如图1C至图1G所示,第二显示子像素A2内的一个第一子像素1与第一显示子像素A1内的一个第一子像素1具有相同的面积和形状,第二显示子像素A2内的一个第二子像素2与第一显示子像素A1内的一个第二子像素2具有相同的面积和形状,第二显示子像素A2内的一个第三子像素3与第一显示子像素A1内的一个第三子像素3具有相同的面积和形状。
例如,如图1H所示,第二显示子像素A2内的一个第一子像素1与第一显示子像素A1内的一个第一子像素1具有相同的面积和形状;第二显示子像素A2内的一个第二子像素2与第一显示子像素A1内的一个第二子像素2具有相同的形状,但第二显示子像素A2内的一个第二子像素2的面积大于第一显示子像素A1内的一个第二子像素2的面积;第二显示子像素A2内的一个第三子像素3与第一显示子像素A1内的一个第三子像素3具有相同的面积和形状。
例如,如图1B至图1G所示,一个第一透明子像素P01与第二显示子像素A2内的一个第一子像素1具有相同的面积和形状,一个第二透明子像素P02与第二显示子像素A2内的一个第二子像素2具有相同的面积和形状,一个第三透明子像素P03与第二显示子像素A2内的一个第三子像素3具有相同的面积和形状。
例如,如图1H所示,一个第一透明子像素P01与第二显示子像素A2内的一个第一子像素1具有相同的面积和形状,一个第三透明子像素P03与第二显示子像素A2内的一个第三子像素3具有相同的面积和形状,一个第二透明子像素P02的面积小于第二显示子像素A2内的一个第二子像素2的面积。
例如,如图1B至图1O所示,一个第一透明子像素P01的面积大于或等于第一显示子像素A1内的一个第一子像素1的面积,一个第二透明子像素P02的面积大于或等于第一显示子像素A1一个第二子像素2的面积,一个第三透明子像素P03的面积大于或等于第二显示子像素A2内的一个第三子像素3的面积。
例如,如图1C、图1D至图1H所示,多个第一透明像素P1形成多个透明子像素行并且形成多个透明子像素列。例如,多个透明子像素行与多个透明像子素列交叉。进一步例如,多个透明子像素行与多个透明像子素列垂直。图1C所示的显示基板的第二显示子区域A2的透光率比图1B所示的显示基板的第二显示子区域A2的透光率大。
例如,如图1C、图1D、图1F至图1H所示,除了第二显示子区域A2的边缘位置之外的第三像素单元30均被第一透明像素P1围绕,例如,均被第一透明子像素P01、第二透明子像素P02以及第三透明子像素P03围绕,进一步例如,至少被两个第一透明子像素P01、四个第二透明子像素P02以及两个第三透明子像素P03围绕。例如,如图1C、图1D和图1F、以及图1H所示,除了第二显示子区域A2的边缘位置外的第三像素单元30至少被2个第一透明子像素P01、4个第二透明子像素P02以及2个第三透明子像素P03围绕。例如,如图1C、图1D和图1F所示,除了第二显示子区域A2的边缘位置外的第三像素单元30被2个第一透明子像素P01、8个第二透明子像素P02以及2个第三透明子像素P03围绕。例如,如图1G所示,除了第二显示子区域A2的边缘位置外的第三像素单元30被2个第一透明子像素P01、5个第二透明子像素P02以及2个第三透明子像素P03围绕。例如,如图1H所示,除了第二显示子区域A2的边缘位置外的第三像素单元30被2个第一透明子像素P01、8个第二透明子像素P02以及2个第三透明子像素P03围绕。
例如,如图1E所示,除了第二显示子区域A2的边缘位置之外的第三像素单元30中的第一子像素1、第二子像素2、第三子像素3中的至少之一均至少被一个第一透明子像素P01、两个第二透明子像素P02以及一个第三透明子像素P03围绕。
例如,如图1O至图1S所示,在第二显示子区域A2内,在列方向上相邻的两个子像素的中心的连线通过位于该两个子像素之间的透明子像素的中心。
例如,如图1N至图1S所示,在行方向上相邻的两个子像素的中心的连线通过位于该两个子像素之间的透明子像素的中心。相邻的两个子像素包括两个相邻的第一子像素1、两个相邻的第二子像素2、两个相邻的第三子像素3中至少之一。透明子像素包括第一透明子像素P01、第二透明子像素P02 或第三透明子像素P03之一。
例如,如图1B至图1S所示,第一透明像素P1的面积大于或等于第三像素单元30的第一子像素1、第二子像素2和第三子像素3至少之一的面积。
例如,如图1C至图1M所示,第一透明像素P1的面积大于或等于第三像素单元30的第一子像素1、第二子像素2和第三子像素3的面积之和。
例如,如图1C至图1H所示,第一透明像素P1的面积大于或等于第一显示子区域A1内的一个第一子像素1、一个第二子像素2和一个第三子像素3至少之一的面积。
例如,如图1C至图1I所示,第一透明像素P1的面积大于或等于第一显示子区域A1内的一个第一子像素1、一个第二子像素2和一个第三子像素3的面积之和。
例如,如图1C至图1S所示,第一透明像素P1的面积大于或等于第二显示子区域A2内的一个第一子像素1、一个第二子像素2和一个第三子像素3的至少之一的面积。
例如,如图1I至图1M所示,第一透明像素P1的面积大于或等于第二显示子区域A2内的一个第一子像素1、一个第二子像素2和一个第三子像素3的面积之和。
例如,如图1B至图1S所示,在本公开的实施例中,第二显示子区域A2内的多个第一透明像素P1的面积可相等,也可不等。
图2A为本公开一实施例提供的显示基板的第一显示子区域、第二显示子区域和过渡显示子区域的示意图。图2B至图2L为本公开实施例提供的显示基板的第一显示子区域、第二显示子区域和过渡显示子区域的像素排布和第一透明像素和第二透明像素的排布示意图。
本公开实施例提供的显示基板,如图2A之图2L所示,显示基板的显示区域除了包括第一显示子区域A1,第二显示子区域A2之外,还包括位于第一显示子区域A1与第二显示子区域A2之间且具有预设宽度的过渡显示子区域A3。例如,第二显示子区域A2的透光率小于过渡显示子区域A3的透光率。从而,过渡显示子区域A3可起到透光率从第一显示子区域A1至第二显示子区域A2的过渡。例如,透光率是指对于环境光的透光率。
例如,第一显示子区域A1内的像素分布密度大于第二显示子区域A2内的像素分布密度;过渡显示子区域A3内的像素分布密度小于第一显示子 区域A1内的像素分布密度,且过渡显示子区域A3内的像素分布密度大于第二显示子区域A2内的像素分布密度。
本公开实施例提供的显示基板,通过使显示区域包括像素分布密度大(即分辨率高)的第一显示子区域和像素分布密度小(即分辨率低)的第二显示子区域,由于第二显示子区域内的像素分布密度较小,因此可以将摄像头、传感器、听筒等元件设置在第二显示子区域内,即采用降低局部像素分布密度来增加屏幕透光率的方式来提高显示基板的屏占比。并且在第一显示子区域与第二显示子区域之间设置像素分布密度(分辨率)介于这两者的像素分布密度之间的过渡显示子区域,可以使第一显示子区域的亮度经过渡显示子区域过渡到第二显示子区域,从而避免第二显示子区域靠近第一显示子区域的边界出现暗纹的问题。
在具体实施时,若不设置过渡显示子区域,由于第二显示子区域的像素分布密度小于第一显示子区域的像素分布密度,因此在显示时,第二显示子区域的亮度会与第一显示子区域的亮度差异较明显,从而在第一显示子区域和第二显示子区域的交界处会存在人眼可见的明显暗纹。为了减缓暗纹,本公开实施例在第一显示子区域与第二显示子区域之间设置过渡显示子区域,利用过渡显示子区域来降低第二显示子区域的边界亮度差异,从而减缓暗纹。
例如,如图2A至图2L所示,该显示基板包括:第一显示子区域A1和第二显示子区域A2。第一显示子区域A1和第二显示子区域A2的位置关系可参照图1A中第一显示子区域A1和第二显示子区域A2的位置关系,但不限于此。第一显示子区域A1和第二显示子区域A2根据需求可位于屏幕任意位置、可设计为任意形状。
如图2A至图2L所示,在本公开的一个实施例中,为了避免显示基板的边界分割线问题,显示基板还包括过渡显示子区域A3。例如,过渡显示子区域A3位于第一显示子区域A1和第二显示子区域A2之间,但不限于此。
如图2A所示,显示基板包括第一显示子区域A1、第二显示子区域A2和过渡显示子区域A3。图2A中以第二显示子区域A2和过渡显示子区域A3为圆形区域为例进行说明,但不限于此,第二显示子区域A2和过渡显示子区域A3还可以为其他形状的区域,例如可以为矩形区域。
如图2B至图2L所示,过渡显示子区域A3包括第四像素单元40,第四 像素单元40包括第一子像素1、第二子像素2、第三子像素3。
如图2B至图2L所示,过渡显示子区域A3包括多个第三重复区域A03,每个第三重复区域A03包括第四像素单元40和第二透明像素P2,第二透明像素P2的面积小于第一透明像素P1的面积。
例如,如图2B至图2L所示,多个第三重复区域A03可呈阵列排布,或者形成为至少一行和/或至少一列像素。
例如,如图2B至图2L所示,第二透明像素P2的分布密度小于第一透明像素P1的分布密度。本公开的实施例中,第一透明像素P1的分布密度可指第一透明像素P1的面积与第二显示子区域A2的面积之比,第二透明像素P2的分布密度可指第二透明像素P2的面积与过渡显示子区域A3的面积之比。
例如,如图2B至图2L所示,第二透明像素P2包括第二透明子像素。
例如,如图2B至图2K所示,第二透明像素P2和第一显示子区域A1内的第二子像素具有相同的面积和形状。
例如,如图2B和图2C所示,第四像素单元40中的第三子像素3、第一子像素1和第二子像素2依次排列,第二子像素2的面积小于第三子像素3和第一子像素1至少之一的面积。图2B中位于过渡显示子区域A3的第三重复区域A03内的虚线框所围绕的区域为一个第二透明像素P2,图2B中位于第二显示子区域A2的第二重复区域A02的虚线框所围绕的区域为一个第一透明像素P1。
例如,如图2B至图2L所示,第二透明像素P2的面积大于或等于第四像素单元40中的第一子像素1、第二子像素2和第三子像素3至少之一的面积。
例如,如图2B至图2K所示,第二透明像素P2的面积大于或等于第四像素单元40中的第一子像素1、第二子像素2和第三子像素3的面积之和。
例如,如图2B至图2K所示,第二透明像素P2的面积等于第四像素单元40中的第二子像素2的面积。
本公开的实施例,通过在第一显示子区域与第二显示子区域之间设置像素分布密度(分辨率)介于这两者的像素分布密度之间的过渡显示子区域,可以使第一显示子区域的亮度经过渡显示子区域过渡到第二显示子区域,从而避免第二显示子区域靠近第一显示子区域的边界出现暗纹的问题。
例如,本公开的实施例中,第一显示子区域A1为正常的显示子区域,不包括透过环境光的区域。第二显示子区域A2和过渡显示子区域A3为既能显示又可透过环境光的区域。
如图2B和图2C所示,第一显示子区域A1包括第一像素单元10和第二像素单元20,第一像素单元10包括第一子像素1和第二子像素2,第二像素单元20包括第二子像素2和第三子像素3。例如,在一个实施例中,第二像素单元20的第三子像素3的中心,在第一像素单元10的第二子像素2和第二像素单元20的第二子像素2的中心连线的中点C02与第一像素单元10的第一子像素1的中心C1之间的连线上的正投影,位于该中点和第一像素单元10的第一子像素1的中心之间,进一步例如,该正投影与C1和C02连线的中心处重合。
例如,图2B和图2C所示的第一像素单元10和第二像素单元20也可参照其他实施例中具有类似结构的第一显示子区域A1中的第一像素单元10和第二像素单元20的描述,例如,可参照图1G至图1M、图1P至图1S中的相关描述,在此不再赘述。
本公开的实施例中,通过第一显示子区域A1布置第一像素单元10和第二像素单元20,以及在第二显示子区域A2布置第三像素单元30,减小第二显示子区域A2的第三像素单元30的子像素个数,从而减小第二显示子区域A2的像素分布密度,增大第二显示子区域A2的透过率,避免因采用屏下摄像头方案而导致的第二显示子区域A2的透过率低的问题。另外,本公开的实施例提供的第一显示子区域A1和第二显示子区域A2的像素布置方式,可以使得第一显示子区域A1采用子像素渲染(Sub Pixel Rendering,SPR)/子像素借用的方式驱动,而第二显示子区域A2采用常规的方式驱动。例如,常规的驱动方式为非借用子像素的方式,包括真实(real)RGB,但不限于此。本公开的实施例提供的显示面板,避免采用屏下摄像头方案而导致的第二显示子区域A2的透过率低的问题。
本公开的实施例中,第一显示子区域A1可采用子像素渲染的方式驱动,而若第二显示子区域A2也采用SPR方式驱动,因第二显示子区域A2的像素分布密度低,色偏会比较严重,从而,本公开的实施例中,第二显示子区域A2可采用常规的驱动方式,并可据此来设计第三像素单元30中的第二子像素2、第三子像素3和第一子像素1的排列。SPR方式可通过算法实现。 SPR方式可通过虚拟像素借用相邻的子像素来形成像素进行显示。
例如,图2B和图2C中,第一显示子区域A1内的第一像素单元10为第一虚拟像素,第二像素单元20为第二虚拟像素。第一虚拟像素和第二虚拟像素可分别为两种不同颜色的原色的子像素,从而,可借用与该第一虚拟像素相邻的另一原色的子像素,可借用与该第二虚拟像素相邻的另一原色的子像素,分别形成可构成三原色的像素以进行彩色显示。
图2B和图2C中示出了第一方向D1和第二方向D2,例如,第一方向D1垂直于第二方向D2,第一方向D1可为水平方向,第二方向D2可为竖直方向。如图2B所示,第二像素单元20中的第三子像素3沿着第二方向D2延伸,第一像素单元10中的第一子像素1沿着第二方向D2延伸。如图2B所示,在本公开的一个实施例中,第二显示子区域A2内,第三像素单元30中的第一子像素1和第二子像素2沿着平行于第三子像素3的延伸方向的方向排列,第二子像素2和第一子像素1位于第一透明像素P1和第三子像素3之间。在其他的实施例中,可保持第三子像素3的位置不变,调换第一透明像素P1与第二子像素2和第一子像素1的位置,即,第一透明像素P1位于竖向排列的第一子像素1和第二子像素2以及第三子像素3的中间。
如图2B和图2C所示,在本公开的一个实施例中,例如,第一显示子区域A1内,一个第三子像素3和一个第一子像素1的至少之一的面积大于一个第二子像素2的面积。例如,第一显示子区域A1内,第三子像素3和第一子像素1的每一个的面积大于第一显示单元10中的第二子像素2和第二显示单元20中的第二子像素2的每一个的面积。例如,第一显示单元10中的第二子像素2和第二显示单元20中的第二子像素2的面积相等。
例如,如图2B和图2C所示,第一透明像素P1的面积等于第一像素单元10中的第一子像素1和第二像素单元20中的第三子像素3至少之一的面积。该种方式可以利于获得相对较大的第二显示子区域A2的透过率。图2B所示的实施例以第一透明像素P1的面积等于第一子像素1的面积为例进行说明。
例如,如图2B和图2C所示,第二透明像素P2的面积等于第一像素单元10或第二像素单元20中的第二子像素2的面积。从而,可以使得第二透明像素P2的面积小于第一透明像素P1的面积,使得在第一显示子区域A1和第二显示子区域A2之间的亮度过渡更自然。
如图2B和图2C所示,在本公开的一个实施例中,第一显示子区域A1内的第二子像素2、第二显示子区域A2内的第二子像素2、过渡显示子区域A3内的第二子像素2的面积相同且形状相同。
如图2B和图2C所示,在本公开的一个实施例中,第一显示子区域A1内的第一子像素1和过渡显示子区域A3内的第一子像素1的面积相同且形状相同;第二显示子区域A2内的第一子像素1的面积小于第一显示子区域A1内的第一子像素1的面积;第二显示子区域A2内的第一子像素1与第一显示子区域A1内的第二子像素2面积相同且形状相同。
如图2B和图2C所示,在本公开的一个实施例中,第一显示子区域A1内的第三子像素3、第二显示子区域A2内的第三子像素3、过渡显示子区域A3内的第三子像素3的面积相同且形状相同。
如图2B和图2C所示,在本公开的一个实施例中,第一透明像素P1的面积大于第三像素单元30内的第一子像素1和第二子像素2至少之一的面积,从而,可使得第一透明像素P1具有相对较大的透光面积。
如图2B和图2C所示,在本公开的一个实施例中,在第二重复区域A02中,第二子像素2和第一子像素1位于第一透明像素P1和第三子像素3之间。
如图2B和图2C所示,在本公开的一个实施例中,第一显示子区域A1内的第一子像素1、第二显示子区域A2内的第一子像素1、过渡显示子区域A3内的第一子像素1为相同颜色的子像素,第一显示子区域A1内的第二子像素2、第二显示子区域A2内的第二子像素2、过渡显示子区域A3内的第二子像素2为相同颜色的子像素,第一显示子区域A1内的第三子像素3、第二显示子区域A2内的第三子像素3、过渡显示子区域A3内的第三子像素3为相同颜色的子像素。例如,在本公开的一个实施例中,在第一显示子区域A1、第二显示子区域A2以及过渡显示子区域A3内,第一子像素1为红色子像素,第二子像素2为绿色子像素,第三子像素3为蓝色子像素。例如,在其他的实施例中,在第一显示子区域A1、第二显示子区域A2以及过渡显示子区域A3内,第一子像素1为蓝色子像素,第二子像素2为绿色子像素,第三子像素3为红色子像素。
当在第一显示子区域A1、第二显示子区域A2以及过渡显示子区域A3内,第一子像素1为红色子像素,第二子像素2为绿色子像素,第三子像素 3为蓝色子像素时,与第一显示子区域A1的像素排列相比,第二显示子区域A2的像素排列为保留蓝色子像素个数,减少绿色子像素的个数,同时减小红色子像素的面积;这种排列可以在增大显示基板的透过率的同时,将RGBG的排列改为real RGB,减少色偏的风险。并且由于蓝色子像素的位置不变,在第一显示子区域A1和第二显示子区域A2之间的过渡上更加自然。与第一显示子区域A1相比,在第二显示子区域A2保留原来蓝色子像素的尺寸和位置,将红色子像素的位置上蒸渡为原来的绿色子像素,并将其中一个绿色子像素的颜色改为红色,同时减小了像素的密度,增加了透过率。在过渡显示子区域A3仍然采用RGBG的排列的尺寸和位置,但将绿色子像素个数减少为一个,实际变成了real RGB,逐渐过渡到第一显示子区域A1,可以有效的减弱第二显示子区域A2和第一显示子区域01的边界,避免显示基板的边界分割线问题。第二显示子区域A2和过渡显示子区域A3的行数可由具体情况而定。本公开的该实施例提供的显示基板中,如图2B和图2C所示,第一透明像素P1的排布均匀,第二透明像素P2的排布均匀。
本公开的实施例中,第二显示子区域A2、过渡显示子区域A3与第一显示子区域A1之间采用像素面积逐渐增大的方式过渡,有利于消除边界分割线,从而使得第一显示子区域A1和第二显示子区域A2之间的过渡更加自然,避免采用屏下摄像头方案而导致的第二显示子区域A2和第一显示子区域A1的边界分割线问题。
本公开的实施例提供的显示基板,遵守人眼视觉系统定量,不会出现明显边界,对纯色图、灰阶图、自然图局部透明显示视效均匀性的提升有明显作用,成本低。
图2C中示出了显示基板中的衬底基板101和遮光部件LSC。图2C中示出的遮光部件LSC是为了更清楚地描述第一透明像素P1和第二透明像素P2,其余结构描述可参照图2B。
如图2B和图2C所示,本公开的实施例中,以沿列方向相邻的第一像素单元10和第二像素单元20为一像素组100。第一显示子区域A1不包括透明区域。第一显示子区域A1不包括透明区域包括:像素组100不包括透明区域,以及相邻像素组100之间不包括透明区域。图2B所示的像素组100中,第一像素单元10的第一子像素1和第二子像素2所在的区域、第二像素单元20的第二子像素2和第三子像素3所在的区域为出光区域。像素组 100中,除了第一像素单元10的第一子像素1和第二子像素2、以及第二像素单元20的第二子像素2和第三子像素3占据的区域外,其余区域为不出光区域,例如,其余的不出光区域可设置有黑矩阵等遮光部件。
以下对图2D至图2L中的显示基板中的像素排布进行描述。
例如,在本公开实施例提供的显示基板中,如图2D至图2G所示,第二显示子区域A2的至少部分边与显示区域的至少部分边重合,并且,第二显示子区域A2的其余部分被过渡显示子区域A3包围。以及第一显示子区域A1位于过渡显示子区域A3远离第二显示子区域A2的一侧。这样可以将第二显示子区域A2和过渡显示子区域A3设置在显示区域边缘。可选地,显示区域大致为矩形,例如,显示区域的顶角均为直角,则显示区域为矩形。或者,显示区域顶角可以为弧形的角,则显示区域的形状大致为矩形。进一步地,例如,可以使第二显示子区域A2的形状设置为规则的形状,例如如图2D至图2G所示,可以使第二显示子区域A2设置为矩形。该矩形的顶角也可以为弧形的角。在其他的实施例中,可以使第二显示子区域A2设置为梯形。该梯形的顶角也可以为弧形的角,或者,可以使第二显示子区域A2设置为圆形。当然也可以第二显示子区域A2的形状设置为不规则的形状。例如,可以使第二显示子区域A2设置为水滴形。当然,在实际应用中,第二显示子区域的形状可以根据第二显示子区域内设置的元件的形状进行设计,在此不作限定。
例如,在本公开实施例提供的显示基板中,可以使第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2沿行方向排列。例如,可以使第二显示子区域A2、过渡显示子区域A3以及第一显示子区域A1按照从上到下的顺序依次排列。这样还可以在第二显示子区域A2所处的区域中设置传感器,例如进行人脸识别的传感器(例如红外传感器等)。
例如,在本公开实施例提供的显示基板中,可以使第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2沿列方向排列。例如,可以使第二显示子区域A2、过渡显示子区域A3以及第一显示子区域A1按照从左到右的顺序依次排列。这样还可以在第二显示子区域A2所处的区域中设置传感器,例如进行人脸识别的传感器(例如红外传感器等)。
例如,在本公开实施例提供的显示基板中,可以使过渡显示子区域A3设置为凹字型。例如,在本公开实施例提供的显示基板中,如图2C所示, 过渡显示子区域A3包围第二显示子区域A2设置,第一显示子区域A1包围过渡显示子区域A2设置。这样可以将第二显示子区域A2和过渡显示子区域A3设置在显示区域的内部。可选地,可以使第二显示子区域A2的形状设置为圆形或椭圆形,则过渡显示子区域A3的形状可以设置为环形。当然,在实际应用中,第二显示子区域的形状可以根据第二显示子区域内设置的元件的形状进行设计,在此不作限定。
例如,在本公开实施例提供的显示基板中,在一些实施例中,第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2形成连续的显示区域,且显示区域的形状大致为矩形。
需要说明的是,本公开实施例中的矩形的顶角可以为直角,或者也可以为弧形的角,在此不作限定。
例如,在本公开实施例提供的显示基板中,对第一显示子区域和第二显示子区域的相对位置关系以及形状不作具体限定,可以根据显示基板的屏幕设计进行设置。以手机为例,可以将第二显示子区域A2设置在第一显示子区域A1的中间靠上位置处,或者,将第二显示子区域A2设置在第一显示子区域A1的中间,或者,将第二显示子区域A2设置在第一显示子区域A1的左上角处,在此不作限定。
例如,在本公开实施例提供的显示基板中,如图2C所示,可以使过渡显示子区域A3的面积小于第二显示子区域A2的面积,第二显示子区域A2的面积小于第一显示子区域A1的面积。当然,在实际应用中,第二显示子区域的面积可以根据第二显示子区域内设置的元件进行设计,在此不作限定。
例如,在本公开实施例提供的显示基板中,第二显示子区域内的像素分布密度根据要设置在第二显示子区域内的元件决定,在此不作限定。例如以在第二显示子区域内设置摄像头为例,当像素分布密度太大时能够保证好的显示效果,但是影响摄像清晰度。当像素分布密度太小时,能够保证高的摄像清晰度,但是影响显示效果。例如,以目前显示面板能够达到的分辨率的能力,一般第二显示子区域的像素分布密度不低于第一显示子区域的像素分布密度1/4。例如,第二显示子区域的像素分布密度为第一显示子区域的像素分布密度的1/2、1/3或1/4。当然,当显示面板的分辨率可以做到更高时,第二显示子区域的像素分布密度与第一显示子区域的像素分布密度比值可 以设置的更小,具体在此不作限定。
一般显示区内设置有像素单元,像素单元中设置有多个子像素,本公开实施例中的像素指的可以是能独立显示一个像素点的子像素组合,例如一个像素指的可以是一个像素单元。可选地,在本公开实施例提供的显示基板中,如图2A、图2B、图2D至图2L所示所示,第一显示子区域A1内包括多个相邻设置的第一像素单元10和第二像素单元20。例如,第一像素单元10包括第一子像素1和第二子像素2,第二像素单元20包括第三子像素3和第二子像素2。显示时第一显示子区域A1内的像素数量等于第一像素单元10的数量和第二像素单元20的数量之和。即第一显示子区域A1内像素排列为Pantile排列,在显示时像素单元通过借用相邻像素单元中的子像素可以实现高于物理分辨率的分辨率。
第二显示子区域A2内包括多个第三像素单元30,第三像素单元30包括相邻设置的第一子像素1、第二子像素2和第三子像素3。显示时第二显示子区域A2内的像素数量等于第三像素单元30的数量。即第二显示子区域A2内像素的物理分辨率即为其显示分辨率。
过渡显示子区域A3内包括多个第四像素单元40,第四像素单元40包括相邻设置的第一子像素1、第二子像素2、第三子像素3。显示时过渡显示子区域A3内的像素数量等于第四像素单元40的数量。即过渡显示子区域A3内像素的物理分辨率即为其显示分辨率。
例如,第一子像素、第二子像素和第三子像素一般分别为红色子像素、绿色子像素和蓝色子像素中的一种。可选地,在本公开实施例提供的显示基板中,第二子像素为绿色子像素,第一子像素和第三子像素之一为红色子像素,第一子像素和第三子像素之另一为蓝色子像素。
需要说明的是,在本公开实施例提供的显示面板中,由于显示子区域边缘的空间局限性,第一显示子区域内子像素的排布、第二显示子区域内子像素的排布以及过渡显示子区域内子像素的排布主要是指显示子区域内部的,在显示区域边缘可能会有些子像素的排布与其他区域不同,在此不作限定。
例如,在本公开实施例提供的显示基板中,第三像素单元的排列结构与第四像素单元的排列结构可以相同,也可以不相同,在此不作限定。
可选地,在本公开实施例提供的显示基板中,第三像素单元和第四像素单元的排列结构相同。一方面便于工艺构图,另一方面也利于显示基板的整 体布图。
可选地,在本公开实施例提供的显示基板中,如图2D至图2G所示,可以使第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素位于同一行。这样相当于第二显示子区域A2和第一显示子区域A1内的子像素的子像素在行方向上是对应的,不是错行设或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中,第二显示子区域A2内的部分子像素去掉,制作工艺相对容易实现。
可选地,在本公开实施例提供的显示基板中,如图2D至图2K所示,也可以使第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素位于同一列。这样相当于第二显示子区域A2和第一显示子区域A1内的子像素的子像素在列方向上是对应的,不是错行设或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中,第二显示子区域A2内的部分子像素去掉,制作工艺相对容易实现。
可选地,在本公开实施例提供的显示基板中,如图2D至图2G所示,可以使过渡显示子区域A3内的子像素与第一显示子区域A1内的部分子像素位于同一行。这样相当于过渡显示子区域A3内的子像素与第一显示子区域A1内的子像素在行方向上是对应的,不是错行设或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中,过渡显示子区域A3内的部分子像素去掉,制作工艺相对容易实现。
可选地,在本公开实施例提供的显示基板中,如图2D至图2K所示,也可以使过渡显示子区域A3内的子像素与第一显示子区域A1内的部分子像素位于同一列。这样相当于过渡显示子区域A3内的子像素与第一显示子区域A1内的子像素在列方向上是对应的,不是错行设或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中,过渡显示子区域A3内的部分子像素去掉,制作工艺相对容易实现。
可选地,这样相当于第二显示子区域A2和过渡显示子区域A3内的子像素与第一显示子区域A1内的子像素在行方向或在列方向上是对应的,不是错行设或错列设置。这样在制作时,相当于将原本在整个显示区域内规则排列的子像素掩膜中,第二显示子区域A2内的部分子像素去掉,过渡显示子区域A3内的部分子像素去掉,制作工艺相对容易实现。例如图2D所示,过渡显示子区域A2相比第一显示子区域A1相当于去掉一半的第二子像素 2,从而分辨率为第一显示子区域A1的1/2。第二显示子区域A2相比第一显示子区域A1相当于去掉3/4的第二子像素2,去掉一半第一子像素1和一半第三子像素3,从而分辨率为第一显示子区域A1的1/4。
例如,过渡显示子区域的宽度,即预设宽度具体可以根据显示效果以及显示基板的屏幕尺寸进行设计。可选地,预设宽度可以包括至少一个第四像素单元沿第一方向的宽度。其中,第一方向可以为行方向和列方向中的一个。例如,预设宽度可以包括至少一个第四像素单元在沿行方向上的宽度。例如,由于过渡显示子区域的设置会牺牲显示基板的分辨率,因此,预设宽度一般不能太宽。一般一个第四像素单元在沿行方向上的宽度即可实现本公开所能达到的效果。当然,当显示基板的屏幕尺寸较大时,预设宽度也可以设置的宽一点,例如,预设宽度可以为多个第四像素单元在沿行方向上的宽度,在此不作限定。需要说明的是,预设宽度可以包括至少第四像素单元在沿行方向上的宽度,以及第四像素单元之间的间隙。
例如,预设宽度也可以包括至少一个第四像素单元在沿列方向上的宽度。进一步地,预设宽度一般不能太宽。一般一个第四像素单元在沿列方向上的宽度即可实现本公开所能达到的效果。当然,当显示基板的屏幕尺寸较大时,预设宽度也可以设置的宽一点,例如,预设宽度可以为多个第四像素单元在沿列方向上的宽度,在此不作限定。需要说明的是,预设宽度可以包括至少一个第四像素单元在沿列方向上的宽度,以及第四像素单元之间的间隙。
需要说明的是,在本公开实施例提供的显示基板中,预设宽度可以包括沿行方向的预设宽度和沿列方向的预设宽度中的至少一个。其中,沿行方向上的预设宽度可以为第四像素单元沿行方向的宽度,沿列方向上的预设宽度可以为第四像素单元沿列方向的宽度。例如2至图2G所示,过渡显示子区域A3沿行方向的预设宽度为一个第四像素单元40沿行方向的宽度,过渡显示子区域A3沿列方向上的预设宽度为一个第四像素单元40沿列方向的宽度。如图2H所示,过渡显示子区域A3沿列方向上的预设宽度为一个第四像素单元40沿列方向的宽度。
例如,为了保证第二显示子区域能够正常显示,一般第二显示子区域的像素分布密度也不能太小。可选地,第二显示子区域的像素分布密度可以设置为第一显示子区域的像素分布密度的1/4。从而过渡显示子区域的像素分 布密度可以设置为第一显示子区域的像素分布密度的1/2。
当然,例如,当第二显示子区域与第一显示子区域的像素分布密度相差较多时,过渡显示子区域的像素分布密度可以沿第一显示子区域指向第二显示子区域的方向逐渐降低。
例如,从制作工艺的角度考虑,过渡显示子区域内子像素的发光面积与第一显示子区域内子像素的发光面积一致。即在本公开实施例提供的显示基板中,如图2D至图2K所示,过渡显示子区域A3内的一个第一子像素1的发光面积大致等于第一显示子区域A1内的一个第一子像素1的发光面积。过渡显示子区域A3内的一个第二子像素2的发光面积大致等于第一显示子区域A1内的一个第二子像素2的发光面积。过渡显示子区域A3内的一个第三子像素3的发光面积大致等于第一显示子区域A1内的一个第三子像素3的发光面积。在实际工艺中,由于工艺条件的限制或其他因素例如布线或过孔的设置,也可能会有一些偏差,因此各子像素的发光面积之间的关系只要大致满足上述条件即可,均属于本发明的保护范围。
例如,从改善第二显示子区域边界暗纹的角度考虑,在本发明实施例中,如图11所示,当预设宽度包括多个第四像素单元的宽度时,在本公开实施例提供的显示基板中,距离第一显示子区域A1越近的第四像素单元40中的同种子像素的发光面积越大。这样可以通过调整子像素的发光面积,使过渡显示子区域的亮度沿第一显示子区域指向第二显示子区域的方向逐渐降低。如图11所示,以预设宽度包括3个第四像素单元的宽度,以及第一子像素1为例进行说明,第三行第四像素单元40距离第一显示子区域A1最近,其第一子像素1的发光面积最大。第二行第四像素单元40距离第一显示子区域A1较远,其第一子像素1的发光面积相对于第一行第四像素单元40中的子像素的发光面积小。第一行第四像素单元40距离第一显示子区域A1最远,其第一子像素1的发光面积最小。并且,第二子像素2和第三子像素3依次类推,在此不作赘述。
例如,在本公开实施例提供的显示基板中,如图11所示,过渡显示子区域A3内,沿列方向相邻的两个第四像素单元40内的子像素的排列顺序相反。例如,以第一列为例,第一行和第三行中的第四像素单元40分别采用第一子像素、第二子像素以及第三子像素按照从左向右的顺序依次排列。第二行中的第四像素单元40采用第三子像素、第二子像素以及第一子像素按 照从左向右的顺序依次排列。
例如,在本公开实施例提供的显示基板中,如图11所示,过渡显示子区域A3内,沿行方向相邻的两个第四像素单元40内的子像素的排列顺序相同。例如,以第一行为例,第一列和第二列中的第四像素单元40分别采用第一子像素、第二子像素以及第三子像素按照从左向右的顺序依次排列。进一步地,可以使每一行中各第四像素单元40内的子像素的排列顺序相同。例如,以第一行为例,第一列至第六列中的第四像素单元40分别采用第一子像素、第二子像素以及第三子像素按照从左向右的顺序依次排列。
例如,在本公开实施例提供的显示基板中,第四像素单元中第一子像素、第二子像素和第三子像素的排列结构可以与第一显示区域内,相邻设置的第一子像素、第二子像素和第三子像素的排列结构相同,这样便于工艺构图。同理,例如,在本公开实施例提供的显示基板中,第三像素单元中第一子像素、第二子像素和第三子像素的排列结构也可以与第一显示区域内,相邻设置的第一子像素、第二子像素和第三子像素的排列结构相同。
可选地,在本公开实施例提供的显示基板中,如图2D至图2L所示,过渡显示子区域A3内,第四像素单元40中的第一子像素1、第二子像素2和第三子像素3同行设置。或者,也可以同列依次相邻设置,在此不作限定。
可选地,在本公开实施例提供的显示基板中,可以使第二显示子区域内的一个第一子像素的发光面积大于或大致等于第一显示子区域内的一个第一子像素的发光面积。第二显示子区域内的一个第二子像素的发光面积大于或大致等于第一显示子区域内的一个第二子像素的发光面积。第二显示子区域内的一个第三子像素的发光面积大于或大致等于第一显示子区域内的一个第三子像素的发光面积。
例如,由于第二显示子区域的像素分布密度小于第一显示子区域的像素分布密度,因此在显示时,第二显示子区域的亮度会比第一显示子区域的亮度低,从而在第一显示子区域和第二显示子区域的交界处会存在人眼可见的明显暗纹。可选地,为了改善该暗纹现象,在本公开实施例提供的显示基板中,如图2K所示,可以使第二显示子区域A2内的一个第一子像素1的发光面积大于第一显示子区域A1内的一个第一子像素1的发光面积;第二显示子区域A2内的一个第二子像素2的发光面积大于第一显示子区域A1内的一个第二子像素2的发光面积;第二显示子区域A2内的一个第三子像素 3的发光面积大于第一显示子区域A1内的一个第三子像素3的发光面积。即通过增大第二显示子区域A2内子像素的发光面积来降低第二显示子区域A2与第一显示子区域A1的亮度差异,从而减轻第二显示子区域A2与第一显示子区域A1的边界暗纹。
当然,在本公开实施例提供的显示基板中,如图2D至图2J所示,也可以使第二显示子区域A2内的一个第一子像素1的发光面积大致等于第一显示子区域A1内的一个第一子像素1的发光面积;第二显示子区域A2内的一个第三子像素3的发光面积大致等于第一显示子区域A1内的一个第三子像素3的发光面积。如图2D至图2G所示,第二显示子区域A2内的一个第二子像素2的发光面积大致等于第一显示子区域A1内的一个第二子像素2的发光面积。当然,上述发光面积之间的具体实施方式可以根据实际应用环境来设计确定,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2E与图2F所示,第二显示子区域A2内,可以使多个第三像素单元30呈矩阵排列。
可选地,在本公开实施例提供的显示基板中,如图2D、图2G至图2L所示,第二显示子区域A2内,可以使多个第三像素单元30呈棋盘格方式排列。即多个第三像素单元30在行方向上隔列进行设置,在列方向隔行进行设置。例如图2H所示,在奇数行上,第三像素单元30设置在偶数列的位置,在偶数行上,第三像素单元30设置在奇数列的位置,从而使第三像素单元30沿行方向和沿列方向分别均匀分布,从而保证第二显示子区域A2内亮度均匀。并且,这样还可以提高像素间隙的透过率,便于屏幕下方摄像头拍照,同时有利于传感器感受外界环境信号。也可以例如是在奇数行上,第三像素单元30设置在奇数列的位置,在偶数行上,第三像素单元30设置在偶数列的位置,使得任意两个第三像素单元之间均间隔一定距离,间隔距离例如在行方向上可以是至少一个第三像素单元在行方向的长度,在列方向可以是至少一个第三像素单元在列方向的长度,这些本公开实施例不做限定。
可选地,在本公开实施例提供的显示基板中,如图2F所示,第二显示子区域A2内的第三像素单元30中,第一子像素1和第三子像素3同行设置,第二子像素2位于第一子像素1和第三子像素3所在行的相邻行,即第二子像素2和第一子像素1错行设置。例如同一第三像素单元30中的第一子像素1和第三子像素3位于第一行中,第二子像素2位于第二行中。这样可以 使同一第三像素单元30中的第一子像素、第二子像素和第三子像素的中心连线构成一个三角形。这样可以避免第二显示子区域A2内出现横向的暗亮条纹。
需要说明的是,在本公开实施例提供的显示面板中,子像素的中心是指子像素的发光区域的中心。以OLED显示面板为例,子像素一般包括由阳极层、发光层和阴极层构成的层叠结构,其中,显示时该层叠结构对应的发光区域为该子像素的发光区域。这样可以使发光区域所占用的面积作为发光面积。当然,发光面积例如也可以为由像素界定层限定的开口区所占用的面积,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2F所示,同一第三像素单元30中,第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线L1上的正投影,位于第一子像素1的中心与第三子像素3的中心之间,例如第二子像素2的中心在第一子像素1的中心与第三子像素3的中心之间的连线L1上的正投影位于连接L1和直线L2的交点上。这样可以使第三像素单元30中的第二子像素2的中心与第一子像素1的中心之间的距离等于第二子像素2的中心与第三子像素3的中心之间的距离,以使这三个子像素呈等腰三角形排列,可以避免第二显示子区域A2内出现纵向的暗亮条纹。
例如,第二子像素2的中心与第一子像素1的中心之间的距离与第二子像素2的中心与第三子像素3的中心之间的距离可能并不能完全相同,在实际工艺中,由于工艺条件的限制或其他因素例如布线或过孔的设置,也可能会有一些偏差,因此各子像素的形状、位置及相对位置关系只要大致满足上述条件即可,均属于本公开的保护范围。
可选地,在本公开实施例提供的显示基板中,如图2D、图2E、图2G至图11所示,第二显示子区域A2内,第三像素单元30中的第一子像素1、第二子像素2和第三子像素3同行设置。或者,也可以同列设置,在此不作限定。
当然,例如,在本公开实施例提供的显示基板中,如图2D、图2E、图2G至图2L所示,第三像素单元30中,第一子像素1、第二子像素2和第三子像素3同行依次设置。例如,第三像素单元30中的按照第一子像素1、第二子像素2和第三子像素3从左向右的顺序同行依次设置。或者,也可以 同列依次设置,在此不作限定。进一步地,如图2D、图2E、图2G至图11所示,第三像素单元30中,第一子像素1、第二子像素2和第三子像素3同行依次相邻设置。或者,也可以同列依次相邻设置,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2E至图2G、图2I至图2L所示,第二显示子区域A2内,沿行方向相邻的两个第三像素单元30内的子像素沿行方向的排列顺序相同,沿列方向相邻的两个第三像素单元30内的子像素沿行方向的排列顺序相反。从而保证第二显示子区域A2内,在列方向上第一子像素1和第三子像素3交替排列,避免列方向发生色偏。需要说明的是,沿行方向相邻的两个第三像素单元30内的子像素沿行方向的排列顺序相同指的可以是,这两个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均采用相同的顺序进行排列。例如图2E所示,以第一行第三像素单元30为例,沿行方向上,相邻的两个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。例如图2F所示,以第一行第三像素单元30为例,沿行方向上,相邻的两个第三像素单元30内的第一子像素1、第三子像素3、第二子像素2均呈倒三角形排列。
例如,本公开实施例提供的显示基板中,如图2H所示,也可以使第二显示子区域A2内,每个第三像素单元30内的子像素的排列顺序相同。例如图2H所示,每个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。
例如,本公开实施例提供的显示基板中,如图2D与图2K所示,第二显示子区域A2内,同一列中每个第三像素单元30内的子像素的排列顺序相同,且相邻两列中第三像素单元30内的子像素的排列顺序相反。例如图2D所示,第一列和第三列中的每个第三像素单元30内的第三子像素3、第二子像素2、第一子像素1均由左向右依次排列。第二列和第四列中的每个第三像素单元30内的第一子像素1、第二子像素2、第三子像素3均由左向右依次排列。
可选地,本公开实施例提供的显示基板中,如图2D至图11所示,第一显示子区域内,每个第一像素单元10内的子像素的排列顺序相同,每个第二像素单元20内的子像素的排列顺序相同。例如,如图2D至图2G所示,每个第一像素单元10内第一子像素1、第二子像素2均由左向右依次排列。 每个第二像素单元20内第三子像素3、第二子像素2均由左向右依次排列。如图2H至图11所示,每个第一像素单元10内第一子像素1、第二子像素2均由左向右依次排列。每个第二像素单元20内第三子像素3、第二子像素2均由左上向右下方向依次排列。
可选地,本公开实施例提供的显示基板中,如图2D至图2L所示,第一显示子区域A1内第一像素单元10和第二像素单元20可以排列为任意一种Pantile排列方式,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2D至图,10所示,在第一显示子区域A1内,第一像素单元10和第二像素单元20沿列方向交替排列,并且第一像素单元10和第二像素单元20沿行方向交替排列。
可选地,在本公开实施例提供的显示基板中,如图2D至图2G所示,第一像素单元10内第二子像素2与第一子像素1同行排列;第二像素单元20内第二子像素2与第三子像素3同行排列。并且,针对沿行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第二子像素2与第二像素单元20中的第二子像素2不直接相邻。例如,针对沿行方向上相邻的第一像素单元10和第二像素单元20,第一像素单元10中的第一子像素1和第二子像素2由左向右依次排列,第二像素单元20中的第三子像素3和第二子像素2由左向右依次排列。
可选地,在本公开实施例提供的显示基板中,如图2D至图2G所示,第一显示子区域A1内,一个第一子像素1的发光面积、一个第二子像素2的发光面积以及一个第三子像素3的发光面积大致相同。
可选地,在本公开实施例提供的显示基板中,如图2H至图2L所示,在第一显示子区域A1内,第一像素单元10内第二子像素2与第一子像素1同行排列;第二像素单元20内第二子像素2与第三子像素3错行且错列排列,且沿行方向相邻的第一像素单元10和第二像素单元20中,两个第二子像素2不相邻。并且,以沿列方向相邻的第一像素单元10和第二像素单元20为一像素组100,同一像素组100内,第一像素单元10内第二子像素2与第二像素单元20内的第二子像素2位于同一列。即相邻两行像素单元在列方向上错开半列。
可选地,在本公开实施例提供的显示基板中,如图2H至图2L所示,第一显示子区域A1内,一个第二子像素2的发光面积小于一个第一子像素 1的发光面积,一个第二子像素2的发光面积小于一个第三子像素3的发光面积。这是由于在第一显示子区域A1内,第一子像素1的数量与第三子像素3的数量相同,而第二子像素2的数量为第一子像素1的两倍,因此可以将第二子像素2的发光面积做小。进一步地,同一像素组100内,可以使两个第二子像素2关于行方向对称设置。即使同一像素组100内的两个第二子像素2镜像设置。进一步地,在第一显示子区域A1内,当第二子像素2为绿色子像素时,两个第二子像素2的发光面积小于一个第一子像素1的发光面积,且两个第二子像素2的发光面积小于一个第三子像素3的面积,这是因为绿色子像素的发光效率高于其它颜色子像素的发光效率。
例如,在本公开实施例提供的显示基板中,第一显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。例如,一般规则的形状从工艺角度考虑比较容易实现。
例如,在本公开实施例提供的显示基板中,过渡显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。例如,一般规则的形状从工艺角度考虑比较容易实现。
例如,在本公开实施例提供的显示基板中,第二显示子区域内,对第一子像素、第二子像素以及第三子像素的形状不作限定,可以是规则的形状,也可以是不规则的形状。例如,一般规则的形状从工艺角度考虑比较容易实现。
可选地,在本公开实施例提供的显示基板中,如图2D至图2J以及图11所示,第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2中至少一个子区域内,第一子像素1和第三子像素3中的一种子像素的形状大致一致。例如,可以使第一显示子区域A1中的各第一子像素1和各第三子像素3的形状大致一致。也可以使第一显示子区域A1中的各第一子像素1的形状大致一致。也可以使第一显示子区域A1中的各第三子像素3的形状大致一致。也可以使过渡显示子区域A3中的各第一子像素1的形状大致一致。也可以使过渡显示子区域A3中的各第三子像素3的形状大致一致。也可以使过渡显示子区域A3中的各第一子像素1和各第三子像素3的形状大致一致。也可以使第二显示子区域A2中的各第一子像素1和各第三子像 素3的形状大致一致。也可以使第二显示子区域A2中的各第一子像素1的形状大致一致。也可以使第二显示子区域A2中的各第三子像素3的形状大致一致。也可以使过渡显示子区域A3内的各第一子像素1的形状与第一显示子区域A1中的各第一子像素1的形状大致一致。也可以使过渡显示子区域A3内的各第三子像素3的形状与第一显示子区域A1中的各第三子像素3的形状大致一致。也可以使过渡显示子区域A3内的个第一子像素1和各第三子像素3的形状与第一显示子区域A1中的各第一子像素1和各第三子像素3的形状大致一致。其余同理,在此不作赘述。
可选地,在本公开实施例提供的显示基板中,如图2D至图2I所示,第二显示子区域A2和过渡显示子区域A3中至少一个子区域内的第二子像素2的形状与第一显示子区域A1内的形状大致一致。例如,可以使第二显示子区域A2中的第二子像素2的形状与第一显示子区域A1内的第二子像素2的形状大致一致。也可以使过渡显示子区域A3中的第二子像素2的形状与第一显示子区域A1内的第二子像素2的形状大致一致。也可以使第二显示子区域A2与过渡显示子区域A3中的第二子像素2的形状均与第一显示子区域A1内的第二子像素2的形状大致一致。
可选地,在本公开实施例提供的显示基板中,如图2D至图2G所示,也可以使第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2中的至少一个子区域内,第一子像素1、第二子像素2、第三子像素3的形状大致一致。例如,可以使第一显示子区域A1中,各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致。或者,也可以使第二显示子区域A2中,各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致。或者,也可以使过渡显示子区域A3中,各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致。或者,也可以使第一显示子区域A1、过渡显示子区域A3以及第二显示子区域A2中,各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致。
需要说明的是,以同一个子区域中各第一子像素1、各第二子像素2、各第三子像素3的形状大致一致为例,这三种子像素的形状大致一致,当时这三种子像素的发光面积可以不同。例如图2J与图11所示,第二显示子区域A2中,第二子像素2的发光面积小于第一子像素1的发光面积,且第二子像素2的发光面积小于第三子像素3的发光面积。并且,在实际应用中, 例如也可以根据蓝色子像素的发光面积大于红色子像素的发光面积大于绿色子像素的发光面积,或者蓝色子像素的发光面积大于绿色子像素的发光面积大于红色子像素的发光面积的实施方式进行设置,在此不作限定。
当然,不同显示子区域中的子像素的形状也可以不一致,在此不作限定。
可选地,在本公开实施例提供的显示基板中,可以使第一子像素的形状为矩形和六边形中的至少一种。例如,如图2D至图2G所示,各显示子区域中的第一子像素1的形状为矩形。或者,如图2H至图2J以及图11所示,各显示子区域中的第一子像素1的形状也可以为六边形。或者,如图2K所示,第一显示子区域A1和过渡显示子区域A3中的第一子像素1的形状为六边形,第二显示子区域A2中的第一子像素1的形状为矩形。当然,第一子像素的形状也可以为圆角图形,或者为椭圆形等,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2H至图2L所示,在第一显示子区域A1内,第一子像素1和第三子像素3的形状均为六边形,两个第二子像素2组合在一起的形状为一个六边形。
需要说明的是,在本公开实施例提供的显示面板中,子像素的形状可以是指子像素的发光区域的形状。当然,子像素的形状可以根据实际应用环境来设计确定,在此不作限定。
可选地,在本公开实施例提供的显示基板中,如图2H至图2J所示,第二显示子区域A2内,当第二子像素2为绿色子像素时,第二子像素2的发光面积小于第一子像素1的发光面积,第二子像素2的发光面积小于第三子像素3的发光面积。
可选地,在本公开实施例提供的显示基板中,如图2H至图2L所示,过渡显示子区域A3内第一子像素1的形状与第一显示子区域A1内第一子像素1的形状一致,过渡显示子区域A3内第二子像素2的形状与第一显示子区域A1内第二子像素2的形状一致,过渡显示子区域A3内第三子像素3的形状与第一显示子区域A1内第三子像素3的形状一致。
可选地,在本公开实施例提供的显示基板中,如图2H至图2L所示,过渡显示子区域A3内,当第二子像素2为绿色子像素时,第二子像素2的发光面积小于第一子像素1的发光面积,第二子像素2的发光面积小于第三子像素3的发光面积。
例如,图2D和图2E中的第二显示子区域A2中的第一透明像素P1可 以参照图1C和图1D中的相关描述,图2F中的第二显示子区域A2中的第一透明像素P1可以参照图1E中的相关描述,图2G中的第二显示子区域A2中的第一透明像素P1可以参照图1F中的相关描述,在此不再赘述。
例如,如图2H至图2L所示,第二显示子区域A2内,除了边缘位置外的每个第三像素单元30在行方向上和列方向上的两侧共设置四个第一透明像素P1。例如,如图2H至图2L所示,第二显示子区域A2内,多个第一透明像素P1呈棋盘格方式排列。
例如,如图2H至图2I所示,每个第一透明像素P1包括一个第一透明子像素P01、两个第二透明子像素P02和一个第三透明子像素P03。
例如,如图2J至图2L所示,每个第一透明像素P1包括一个第一透明子像素P01、一个第二透明子像素P02和一个第三透明子像素P03。
例如,如图2H至图2I、以及图2L所示,第一透明子像素P01和第一显示子区域A1内的第一子像素1具有相同的面积和形状,第二透明子像素P02和第一显示子区域A1内的第二子像素2具有相同的面积和形状,第三透明子像素P03和第一显示子区域A1内的第三子像素3具有相同的面积和形状。
例如,如图2J所示,第一透明子像素P01和第一显示子区域A1内的第一子像素1具有相同的面积和形状;第三透明子像素P03和第一显示子区域A1内的第三子像素3具有相同的面积和形状;第二透明子像素P02的面积大于第一显示子区域内的第二子像素2的面积。
例如,如图2K所示,第一透明子像素P01的面积大于第一显示子区域A1内的第一子像素1的面积,第二透明子像素P02的面积大于第一显示子区域A1内的第二子像素2的面积,第三透明子像素P03的面积大于第一显示子区域A1内的第三子像素3的面积。
以下对图2D至图2L中的第一透明像素P1和第二透明像素P2进行描述。
例如,如图2D至图2L所示,第三重复区域A03包括第四像素单元30和第二透明像素P2。例如,如图2D至图2L所示,在过渡显示子区域A3内,多个第二透明像素P2的面积相等,但不限于此。
例如,如图2D至图2L所示,第二透明像素P2的面积小于第一透明像素P1的面积。例如,第二透明像素P2的分布密度小于第一透明像素P1的 分布密度。
例如,如图2L所示,多个第二透明像素P2的面积可以不相等。多个第二透明像素P2包括从靠近第一显示子像素A1的位置处指向靠近第二显示子像素A2的位置处的方向上依次排布的第一部分P21、第二部分P22和第三部分P23,第一部分P21、第二部分P22和第三部分P23的面积依次减小。第一部分P21、第二部分P22和第三部分P23中的每个的面积大于位于第二显示子像素A2内的第二透明子像素P02的面积。当然,在其他的实施例中,多个第二透明像素P2还可以包括从靠近第一显示子像素A1的位置处指向靠近第二显示子像素A2的位置处的方向上依次排布的两个部分:第一部分P21和第二部分P22,第一部分P21和第二部分P22的面积依次减小。第一部分P21和第二部分P22中的每个的面积大于位于第二显示子像素A2内的第二透明子像素P02的面积。
例如,如图1C、图1D、图1F至图1I、图1K至图1M、图2B、图2D、图2E、图2G至图2L所示,多个第一透明像素P1设置在第三像素单元30的行方向上的两侧以及列方向上的两侧。从而,可使得透光均匀。另一方面,该种设置方式也使得多个第三像素单元30设置在每个第一透明像素P1的行方向上的两侧以及列方向上的两侧,从而,可使得发光均匀,即显示均匀。例如,四个第一透明像素P1分别设置在第三像素单元30的行方向上的两侧以及列方向上的两侧。例如,四个第三像素单元30设置在每个第一透明像素P1的行方向上的两侧以及列方向上的两侧。
例如,如图1E、图1O、图2F、图1P至图1S所示,多个第一透明像素P1设置在第三像素单元30中的第一子像素1、第二子像素2和第三子像素3中至少之一的行方向上的两侧以及列方向上的两侧,以使得透光均匀以及显示均匀。从而,第三像素单元30的上下左右四个位置上均匀分布有第一透明像素P1。
例如,如图1F至图1O、图2D至图2G、图2H至图2J、图2L所示,第二显示子区域A2内的子像素与第一显示子区域A1内的部分子像素位于同一列。从而,在显示基板的制作工艺中,能够最大化的共用掩膜板(mask),节约成本。当然,在第二显示子像素A2中的子像素与第一显示子像素A1中的子像素的形状有差异时,第二显示子像素A2中的子像素与第一显示子像素A1中的子像素可采用不同的掩膜板制作。
例如,如图1B至图1E、图1M至图1O、图2D至图2G所示,第二显示子区域内的子像素与第一显示子区域内的部分子像素位于同一行。从而,在显示基板的制作工艺中,能够最大化的共用掩膜板(mask),节约成本。当然,在第二显示子像素A2中的子像素与第一显示子像素A1中的子像素的形状有差异时,第二显示子像素A2中的子像素与第一显示子像素A1中的子像素可采用不同的掩膜板制作。
例如,如图2D至图2G、图2H至图2J、图2L所示,过渡显示子区域A3内的子像素与第一显示子区域A1内的部分子像素位于同一行。从而,在显示基板的制作工艺中,能够最大化的共用掩膜板(mask),节约成本。
例如,如图2D至图2G所示,过渡显示子区域A3内的子像素与第一显示子区域A1内的部分子像素位于同一列。从而,在显示基板的制作工艺中,能够最大化的共用掩膜板(mask),节约成本。
例如,第一显示子区域A1内的子像素包括第一子像素1、第二子像素2、第三子像素3至少之一;第二显示子像素A2中的子像素包括第一子像素1、第二子像素2、第三子像素3至少之一;过渡显示子区域A3内的子像素包括第一子像素1、第二子像素2、第三子像素3至少之一。
例如,共用掩膜板包括采用同一掩膜板形成,与不设置第二显示子像素A2和过渡显示子区域A3时采用的掩膜板相比,掩膜板不需要做调整,或者仅需少量调整,例如,可通过遮挡开口区域的方式形成所需的掩膜板。例如,可将掩膜板的第二显示子区域A2的对应第一透明像素P1的位置处的开口区域遮挡、或者将掩膜板的过渡显示子区域A3内的对应第二透明像素P2的位置处的开口区域遮挡以形成所需的掩膜板,但不限于此。
以形成图2B所示的显示基板为例。例如,第一显示子区域A1、第二显示子像素A2和过渡显示子区域A3中的第三子像素3的发光层可采用同一掩膜板形成,该掩膜板可与不设置第二显示子像素A2和过渡显示子区域A3时的掩膜板相同,从而,可简化制作工艺。第一显示子区域A1的第一子像素1、第二显示子像素A2的第一透明像素P1和过渡显示子区域A3中的第一子像素1可采用同一掩膜板形成,此情况下,该掩膜板可在不设置第二显示子像素A2和过渡显示子区域A3时采用的掩膜板的基础上,将第二显示子像素A2中的开口区域遮挡,以在第二显示子像素A2形成第一透明像素P1。例如,第一显示子区域A1、第二显示子像素A2和过渡显示子区域A3 中的第二子像素2的发光层可采用同一掩膜板形成,该掩膜板可在不设置第二显示子像素A2和过渡显示子区域A3时采用的掩膜板的基础上,将第二显示子像素A2中的对应第一子像素1的位置处的开口区域遮挡,并将过渡显示子区域A3中的对应第二透明像素P2的位置处的开口区域遮挡,在通常的掩膜板的基础上仅需少量调整即可获得可用的掩膜板。例如,第二显示子像素A2中的第一子像素1可采用单独的掩膜板制作,但不限于此。例如,在一些实施例中,可调整制作第一子像素的发光层的掩膜板,使得第一显示子区域A1、第二显示子像素A2和过渡显示子区域A3中的第一子像素1可采用同一掩膜板形成。
其他实施例提供的显示基板可采用类似方式制作,在此不再赘述。
图3A为一种显示基板的像素电路的示意图。该显示基板为OLED显示基板。本公开的实施例中以图3A所示的像素电路为例,但不限于此,显示基板还可为其他适合的像素电路。
如图3A所示,第一电源信号线13被配置为向像素电路结构10提供恒定的第一电压信号ELVDD,第二电源信号线14被配置为向像素电路结构10提供恒定的第二电压信号ELVSS,并且第一电压信号ELVDD大于第二电压信号ELVSS。发光控制信号线15被配置为向像素电路结构10提供发光控制信号EM。初始化信号线16和复位控制信号线17分别被配置为向像素电路结构10提供初始化信号Vint和复位控制信号Reset,其中,初始化信号Vint为恒定的电压信号,其大小例如可以介于第一电压信号ELVDD和第二电压信号ELVSS之间,但不限于此,例如,初始化信号Vint可小于或等于第二电压信号ELVSS。
如图3A所示,该像素电路结构10包括驱动晶体管T1、数据写入晶体管T2、阈值补偿晶体管T3、第一发光控制晶体管T4、第二发光控制晶体管T5、第一复位晶体管T6、第二复位晶体管T7以及存储电容Cst。驱动晶体管T1与发光元件20电连接,并在扫描信号Scan、数据信号Data、第一电压信号ELVDD、第二电压信号ELVSS等信号的控制下输出驱动电流以驱动发光元件20发光。
图3B为本公开实施例提供的一种显示基板的平面结构示意图。请一并参阅图3A和图3B,显示基板100包括呈矩阵排布的多个像素单元101,每个像素单元101包括像素电路结构10、发光元件20以及栅线11、数据线12 及电压信号线。发光元件20为有机发光元件OLED,发光元件20在其对应的像素电路结构10的驱动下发出红光、绿光、蓝光,或者白光等。该电压信号线可以是一条也可以包括多条。例如,如图3A所示,该电压信号线包括第一电源信号线13、第二电源信号线14、发光控制信号线15、初始化信号线16和复位控制信号线17等中的至少之一。发光元件20的第二电极(可为OLED的公共电极,例如阴极)与第二电源信号线14电连接。
例如,如图3B所示,本公开实施例提供的显示基板100还包括:数据驱动器102、扫描驱动器103和控制器104。数据驱动器102被配置为根据控制器104的指令向像素单元101提供数据信号Data;扫描驱动器103被配置为根据控制器104的指令向像素单元101提供发光控制信号EM、扫描信号Scan以及复位控制信号Reset等。例如,扫描驱动器103为安装于该显示基板上的GOA(Gate On Array)结构,或者为与该显示基板进行绑定(Bonding)的驱动芯片(IC)结构。例如,还可以采用不同的驱动器分别提供发光控制信号EM和扫描信号Scan。例如,显示基板100还包括电源(图中未示出)以提供上述电压信号,根据需要可以为电压源或电流源,所述电源被配置为分别通过第一电源信号线13、第二电源信号线14、以及初始化信号线16向像素单元101提供第一电源电压ELVDD、第二电源电压ELVSS、以及初始化信号Vint等。
图3C为本公开实施例提供的显示基板中一个像素单元的时序信号图。以下将结合图3C对本公开实施例提供的显示基板中一个像素单元的驱动方法进行说明。
如图3C所示,在一帧显示时间段内,像素单元的驱动方法包括复位阶段t1、数据写入及阈值补偿阶段t2和发光阶段t3。
在复位阶段t1,设置发光控制信号EM为关闭电压,设置复位控制信号Reset为开启电压,设置扫描信号Scan为关闭电压。
在数据写入及阈值补偿阶段t2,设置发光控制信号EM为关闭电压,设置复位控制信号Reset为关闭电压,设置扫描信号Scan为开启电压。
在发光阶段t3,设置发光控制信号EM为开启电压,设置复位控制信号Reset为关闭电压,设置扫描信号Scan为关闭电压。
例如,本公开实施例中的开启电压是指能使相应晶体管第一极和第二级导通的电压,关闭电压是指能使相应晶体管的第一极和第二级断开的电压。 当晶体管为P型晶体管时,开启电压为低电压(例如,0V),关闭电压为高电压(例如,5V);当晶体管为N型晶体管时,开启电压为高电压(例如,5V),关闭电压为低电压(例如,0V)。图3C所示的驱动波形均以P型晶体管为例进行说明,即开启电压为低电压(例如,0V),关闭电压为高电压(例如,5V)。
请一并参阅图3A和图3C,在复位阶段t1,发光控制信号EM为关闭电压,复位控制信号Reset为开启电压,扫描信号Scan为关闭电压。此时,第一复位晶体管T6和第二复位晶体管T7处于导通状态,而数据写入晶体管T2、阈值补偿晶体管T3、第一发光控制晶体管T4和第二发光控制晶体管T5处于关闭状态。第一复位晶体管T6将初始化信号(初始化电压)Vint传输到驱动晶体管T1的栅极并被存储电容Cst存储,将驱动晶体管T1复位并消除上一次(上一帧)发光时存储的数据,第二复位晶体管T7将初始化信号Vint传输到发光元件20的第一电极,以将发光元件20复位。
在数据写入及阈值补偿阶段t2,发光控制信号EM为关闭电压,复位控制信号Reset为关闭电压,扫描信号Scan为开启电压。此时,数据写入晶体管T2和阈值补偿晶体管T3处于导通状态,而第一发光控制晶体管T4、第二发光控制晶体管T5、第一复位晶体管T6和第二复位晶体管T7处于关闭状态。此时,数据写入晶体管T2将数据电压Vdata传输到驱动晶体管T1的第一极,即,数据写入晶体管T2接收扫描信号Scan和数据信号Data并根据扫描信号Scan向驱动晶体管T1的第一极写入数据信号Data。阈值补偿晶体管T3导通将驱动晶体管T1连接成二极管结构,由此可对于驱动晶体管T1的栅极进行充电。充电完成之后,驱动晶体管T1的栅极电压为Vdata+Vth,其中,Vdata为数据电压,Vth为驱动晶体管T1的阈值电压,即,阈值补偿晶体管T3接收扫描信号Scan并根据扫描信号Scan对驱动晶体管T1的栅极电压进行阈值电压补偿。在此阶段,存储电容Cst两端的电压差为ELVDD-Vdata-Vth。
在发光阶段t3,发光控制信号EM为开启电压,复位控制信号Reset为关闭电压,扫描信号Scan为关闭电压。第一发光控制晶体管T4和第二发光控制晶体管T5处于导通状态,而数据写入晶体管T2、阈值补偿晶体管T3、第一复位晶体管T6和第二复位晶体管T7处于关闭状态。第一电压信号ELVDD通过第一发光控制晶体管T4传输到驱动晶体管T1的第一极,驱动 晶体管T1的栅极电压保持为Vdata+Vth,发光电流I通过第一发光控制晶体管T4、驱动晶体管T1和第二发光控制晶体管T5流入发光元件20,发光元件20发光。即,第一发光控制晶体管T4和第二发光控制晶体管T5接收发光控制信号EM,并根据发光控制信号EM控制有发光元件20发光。发光电流I满足如下饱和电流公式:
K(Vgs-Vth) 2=K(Vdata+Vth-ELVDD-Vth) 2=K(Vdata-ELVDD) 2
其中,
Figure PCTCN2019090404-appb-000002
μ n为驱动晶体管的沟道迁移率,Cox为驱动晶体管T1单位面积的沟道电容,W和L分别为驱动晶体管T1的沟道宽度和沟道长度,Vgs为驱动晶体管T1的栅极与源极(也即本实施例中驱动晶体管T1的第一极)之间的电压差。
从发光电流I=K(Vdata-ELVDD) 2可知,发光电流I与数据电压Vdata和第一电压信号ELVDD有关,从而,可通过调节数据电压Vdata和第一电压信号ELVDD至少之一来调节发光元件20的发光电流,以调节发光元件20的亮度。
本公开的实施例中以图3A所示的像素电路为例,但不限于此,显示基板还可采用其他适合的像素电路。在其他的实施例中,当显示基板采用其他像素电路时,发光电流I还可与数据电压Vdata和第一电压信号ELVDD之一有关。例如,发光电流I=K(Vdata) 2或者发光电流I=K(ELVDD) 2
图4为本公开一个实施例提供的一种显示基板的示意图。如图4所示,显示基板还包括灰阶电压调节部201,灰阶电压调节部201被配置为调节显示灰阶小于或等于第一灰阶时的第三像素单元30中的第二子像素2、第三子像素3和第一子像素1和第四像素单元40中的第二子像素2、第三子像素3和第一子像素1至少之一的灰阶电压以提高第二显示子区域A2的亮度。例如,灰阶电压调节部201可以调节输入到第三像素单元30和第四像素单元40中任一子像素的灰阶电压,将第一灰阶电压调整到第二灰阶电压,以提高该子像素的亮度。例如,第三像素单元30中任一子像素包括第二子像素2、第三子像素3和第一子像素1中任一个,第四像素单元40中任一子像素包括第二子像素2、第三子像素3和第一子像素1中任一个。例如,第一灰阶电压小于第二灰阶电压,即采用提高灰阶电压的方式来实现第二显示子区域A2的亮度的提高。例如,灰阶电压可为图3A中所示的数据电压Vdata。
当显示基板不设置过渡显示子区域A3时,灰阶电压调节部201被配置 为调节显示灰阶小于或等于第一灰阶时的第三像素单元30的灰阶电压以提高第二显示子区域A2的亮度。
图5A为本公开另一个实施例提供的一种显示基板的示意图。如图5A所示,显示基板还包括第一电源线301和第二电源线302,第一电源线301与第一像素单元和第二像素单元20相连,第二电源线302与第三像素单元30和第四像素单元40相连,第一电源线301与第二电源线302彼此绝缘。采用该种方式,可向不同区域施加不同的第一电压信号,例如,向不同区域施加不同的ELVDD,进而提高第二显示子区域A2和过渡显示子区域A3至少之一的亮度。例如,第一电源线301为与第一显示子区域R01的子像素相连的第一电源信号线13(如图3A所示),第二电源线302为与第二显示子区域A2和/或过渡显示子区域A3的子像素相连的第一电源信号线13(如图3A所示)。
本公开的实施例中,第一电源线301和第二电源线302可分别通过不同的电路控制。第一电源线301和第二电源线302不限于图5A所示,还可以采用其他的方式,只要第一电源线301与第二电源线302彼此绝缘,可被分别施加不同信号即可。
例如,第一显示子区域R01的最大亮度可达700nit,第二显示子区域A2的最大亮度一般为400-500nit。通过调整ELVDD的方式,例如,提升ELVDD,使第二显示子区域A2的最大亮度提高至500-600nit,从而实现减小第二显示子区域A2和第一显示子区域R01之间的亮度差异,提高显示均匀性。
当不设置过渡显示子区域A3时,第二电源线302与第三像素单元30相连,以调节第二显示子区域A2的亮度。
当显示图像时,第二显示子区域A2的显示亮度比第一显示子区域R01的显示亮度小,可以根据实际测量值进行第二显示子区域A2的亮度调整。在低灰阶时采用灰阶调整的方案:假设第二显示子区域A2的亮度为A,过渡显示子区域A3的亮度为B,第一显示子区域R01的亮度为L,根据亮度公式L=k×(Gr/255) 2.2,k为系数,Gr为灰阶。例如,系数为350,但不限于此,系数k可根据实际标准亮度进行调整。通过测量而得第一显示子区域R01的亮度L为第二显示子区域A2的亮度A的a倍,通过公式:a×L=350×(GrA/255) 2.2,GrA为第二显示子区域A2的调整后的灰阶,将第二 显示子区域A2的灰阶调整为GrA,使第二显示子区域A2和第一显示子区域R01具有相同的亮度;同理,第一显示子区域R01的亮度为过渡显示子区域A3的亮度的b倍,即b×L=350×(GrB/255) 2.2,GrB为过渡显示子区域A3的调整后的灰阶,将过渡显示子区域A3的灰阶调整为GrB,使过渡显示子区域A3和第一显示子区域R01具有相同的亮度。可以将该算法集成在集成电路(Integrated Circuit,IC)中,预先设定好系数a和系数b,在显示时自动进行灰阶的转换。此种方法对于第二显示子区域A2的灰阶最高调整到255,对于高灰阶图像,则亮度调整能力有限。在进行上述测算时,可将第二显示子区域A2设定为同一灰阶,将过渡显示子区域A3设定为同一灰阶,并将第一显示子区域R01设定为同一灰阶,以利于计算。在实际显示时,每个区域的子像素可显示不同的灰阶。
对于高灰阶图像,可以采用调整ELVDD的方案。在第一显示子区域R01和第二显示子区域A2采用不同的ELVDD(例如,分别为ELVDD1和ELVDD2)进行控制,通过获取第一显示子区域R01的亮度和第二显示子区域A2的亮度的比值,提高第二显示子区域A2的ELVDD,使两个区域在亮相同灰阶时,ELVDD2控制的像素亮度更大,实现第二显示子区域A2和第一显示子区域R01的亮度一致。可以将上述的两种方法作为两个模块集成在IC中,当显示低灰阶时启动灰阶电压调节模块进行补偿,高灰阶时启动电源电压调节模块。本公开的实施例中,以第一灰阶为分界线,高低灰阶的划分可依靠实际实验而定,本公开的实施例对第一灰阶的数值不做限定。
图5B为本公开另一个实施例提供的一种显示基板的示意图。如图5B所示,显示基板还包括电源电压调节部202,电源电压调节部202被配置为调节第二电源线302的第一电压信号(电源电压)。
本公开至少一实施例中还提供一种显示装置,包括上述任一显示基板。
本公开的实施例中,显示装置可包括OLED显示装置或液晶显示装置等。
图6为本公开一个实施例提供的一种显示装置的示意图。如图6所示,该显示装置包括显示基板DP,显示基板DP具有一个出光侧S0,摄像头111在显示基板DP上的正投影落入第二显示子区域A2,且摄像头111位于显示基板DP的与出光侧S0相反的一侧。
本公开至少一实施例中还提供一种显示基板的驱动方法,包括:
采用子像素渲染的方式驱动第一像素单元10和第二像素单元20;
第三像素单元30中的相邻设置的第一子像素、第二子像素和第三子像素分别显示与第三像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。
图7为本公开一实施例提供的一种显示基板的驱动方法中待显示图像的示意图。例如,第三像素单元30对应待显示图像中的两个相邻像素PX1和PX2,像素PX1包括三个不同颜色的子像素,像素PX2包括三个不同颜色的子像素,第三像素单元30中的相邻设置的第一子像素、第二子像素和第三子像素分别显示待显示图像中的像素PX1和像素PX2中对应的相同颜色的亮度大的子像素,从而,可进一步提高第二显示子区域A2的亮度。
在本公开的一个实施例中,为了进一步提高第二显示子区域A2的亮度,驱动方法还包括:调节显示灰阶小于或等于第一灰阶时的第三像素单元30中的第一子像素1、第二子像素2和第三子像素3中至少之一的灰阶电压以提高第二显示子区域A2的亮度。例如,Vdata小于ELVDD,可通过减小灰阶电压(Vdata)来提高第二显示子区域A2的亮度,但不限于此。灰阶电压的调节方式可根据发光电流的公式而得。
在本公开的一个实施例中,为了进一步提高第二显示子区域A2的亮度,驱动方法还包括:调节显示灰阶大于第一灰阶时的第三像素单元30中的第一子像素1、第二子像素2和第三子像素3的第一电压信号以提高第二显示子区域A2的亮度。例如,Vdata小于ELVDD,可通过提高第一电压信号(ELVDD)来提高第二显示子区域A2的亮度,但不限于此。第一电压信号的调节方式可根据发光电流的公式而得。
在本公开的一个实施例中,显示基板包括过渡显示子区域,该显示基板的驱动方法包括:采用子像素渲染的方式驱动第一像素单元10和第二像素单元20;第三像素单元30中的相邻设置的第一子像素、第二子像素和第三子像素分别显示与第三像素单元30对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素;以及第四像素单元40中的第一子像素、第二子像素和第三子像素分别显示与第四像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。待显示图像中的两个相邻像素可参照图7所示。
例如,在确定第三像素单元30显示的像素和第四像素单元40显示的像 素时,可在算法中修改第二显示子区域A2和过渡显示子区域A3的坐标像素对应的算法即可,例如,不同颜色的子像素显示的相邻像素中亮度大的子像素可根据如下公式:R(i,j)’=max(R(i,j),(i,j-1)),G(i,j)’=max(G(i,j),(i,j-1)),B(i,j)’=max(B(i,j),(i,j-1))来确定,i表示行,j表示列。
本公开的一个实施例提供的驱动方法中,过渡显示子区域可参照显示基板中的相关描述,在此不再赘述。
图8为本公开一实施例提供的一种显示基板的驱动方法中不同区域的驱动方式的示意图。如图8所示,第二显示子区域A2和过渡显示子区域A3采用的常规驱动方式进行驱动,不需要SPR算法渲染,但显示的像素点个数为原来的一半,过渡显示子区域A3的最后一行和第一显示子区域R01仍采用SPR算法。
例如,可通过样本屏实验确定上述第二显示子区域和过渡显示子区域的亮度调整系数、高灰阶亮度调整VDD变化函数,将上述参数写入到算法中打包成IP集成到IC中,对于同一批次屏,可直接利用上述IC生成补偿图片进行显示,从而提高透明区域显示视效均匀性,且该算法是利用已有的像素排列尺寸,工艺容易实现。
例如,可将灰阶电压调节模块和电源电压控制模块打包成IP和修改后的SPR算法集成到IC中对局部透明屏显示图像进行实时补偿显示。
本申请实施例的显示基板还可以包括一个或多个处理器以及一个或多个存储器。处理器可以处理数据信号,可以包括各种计算结构,例如复杂指令集计算机(CISC)结构、结构精简指令集计算机(RISC)结构或者一种实行多种指令集组合的结构。存储器可以保存处理器执行的指令和/或数据。这些指令和/或数据可以包括代码,用于实现本申请实施例描述的一个或多个装置的一些功能或全部功能。例如,存储器包括动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存(flash memory)、光存储器(optical memory),或其他的本领域技术人员熟知的存储器。
在本申请的一些实施例中,灰阶电压调节部和/或电源电压调节部包括存储在存储器中的代码和程序;处理器可以执行该代码和程序以实现如上所述的灰阶电压调节部和/或电源电压调节部的一些功能或全部功能。
在本申请的一些实施例中,灰阶电压调节部和/或电源电压调节部可以是特殊硬件器件,用来实现如上所述的灰阶电压调节部和/或电源电压调节部的 一些或全部功能。例如,灰阶电压调节部和/或电源电压调节部可以是一个电路板或多个电路板的组合,用于实现如上所述的功能。在本申请实施例中,该一个电路板或多个电路板的组合可以包括:(1)一个或多个处理器;(2)与处理器相连接的一个或多个非暂时的计算机可读的存储器;以及(3)处理器可执行的存储在存储器中的固件。
在具体实施时,本公开实施例提供的显示基板在显示时一般以第一显示子区域内的行为单位进行逐行扫描。例如图9所示,当第一显示子区域A1和第二显示子区域A2沿行方向相邻时,栅极驱动电路GOA1~GOA5逐行输出信号,但是对于第二显示子区域A2,仅需要GOA1、GOA3和GOA5输出信号。
基于同一发明构思,本公开实施例还提供了驱动图1B至图1M中任一显示基板的驱动方法,包括:
S1301、接收原始图像数据;
S1302、对于第一显示子区域内的各子像素,根据该子像素在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;对于第二显示子区域内的各子像素,根据子像素的发光面积、第二显示子区域的像素分布密度,以及该子像素所在区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;
S1303、驱动显示基板内的各子像素根据其目标灰阶值进行显示。
例如,对于第一显示子区域内的子像素,当第一显示子区域内一个物理像素对应图像数据中的一个像素时,一般子像素的目标灰阶值为其初始灰阶值。而当第一显示区域内物理像素少于图像数据中的像素数量时,在显示时就存在子像素的借用关系,因此一个子像素可能对应图像数据中的两个或者更多的像素,因此子像素的目标灰阶值就需要根据其在原始图像数据中对应的子像素的初始灰阶值进行换算。
对于第二显示子区域内的各子像素,由于分辨率低,显示时一个物理像素就对应图像数据中的一个像素,一般情况下子像素的目标灰阶值为其初始灰阶值。但是这样会存在一个问题,由于第二显示子区域的分辨率低,若直接按照初始灰阶值进行显示,第二显示子区域和第一显示子区域内的亮度会存在较大的差异,因此第二显示子区域和第一显示子区域的边界会存在明显的暗纹。为了解决该问题,因此本公开实施例提供的驱动器,根据子像素的 发光面积、第二显示子区域的像素分布密度,对第二显示子区域内子像素的灰阶进行调整。例如,子像素的发光面积越大,第二显示子区域的整体亮度越高,以及第二显示子区域内分布的子像素数量越多,第二显示子区域的整体亮度也会越高。
需要说明的是,一个物理像素一般至少包括RGB三个子像素。
在具体实施时,当第一显示子区域内,像素排列为Pantile排列时,由于第一子像素和第三子像素都会被借用,因此,在显示时一般一个第一子像素会在图像数据中对应两个像素,一个第三子像素会在图像数据中对应两个像素,第二子像素没被借用,因此一个第二子像素一般对应图像数据中的一个像素。
因此,可选地,在本公开实施例提供的驱动方法中,对于第一显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
第一子像素根据公式:
Figure PCTCN2019090404-appb-000003
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第二子像素的目标灰阶值Y等于第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
第三子像素根据公式:
Figure PCTCN2019090404-appb-000004
确定其对应的目标灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值。
在具体实施时,为了改善第二显示子区域与第一显示子区域的边界暗纹,可以对第二显示子区域的亮度进行适当的调整。亮度与发光面积和像素分布密度均成正比。
因此,可选地,在本公开实施例提供的驱动方法中,对于第二显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
子像素根据公式:
Figure PCTCN2019090404-appb-000005
确定其对应的目标灰阶值X;
其中,n取1~N的任意整数,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,xn为子像素在原始图像数据中对应的第n个子像素的初始灰阶值。
在具体实施时,误差调节系数k可以根据显示基板的实际显示效果进行调整,在此不作限定。
在具体实施时,假设第二显示子区域内,单位面积内有m个第三像素单元,对应区域的图像数据中有j个像素,那么一个第三像素单元对应图像数据中的j/m个像素,即N=j/m。在确定子像素的目标灰阶时,该子像素的目标灰阶值可以根据其对应的N个子像素中的任意一个或多个子像素来确定。例如N=4,那么一个子像素可以根据其对应的图像素中的4个子像素中的任意一个或多个子像素的初始灰阶值进行确定。例如根据其中一个子像素的初始灰阶值进行确定,那么X=k*s*ρ*x i,其中x i表示4个子像素中的任意一个子像素的初始灰阶值。例如根据其中两个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000006
其中x 1和x 2表示4个子像素中的任意两个子像素的初始灰阶值。例如根据其中三个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000007
其中x 1、x 2和x 3表示4个子像素中的任意三个子像素的初始灰阶值。例如根据四个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000008
其中x 1、 x 2、x 3和x 4表示4个子像素的初始灰阶值。
基于同一发明构思,本公开实施例还提供了显示装置,包括本公开实施例提供的上述任一显示基板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述显示基板的实施例,重复之处不再赘述。
可选地,在本公开实施例提供的显示装置中,还包括用于驱动该显示基板的驱动器,所述显示基板的驱动器例如可以为IC(Integrated Circui,集成电路),或者外接的CPU(Central Processing Unit,中央处理器)、微处理器等。其中,驱动器具体用于:
接收原始图像数据;
对于第一显示子区域内的各子像素,根据其在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;
对于第二显示子区域内的各子像素,根据子像素的发光面积、第二显示子区域的像素分布密度,以及该子像素所在区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;
驱动显示基板内的各子像素根据其目标灰阶值进行显示。
可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对第一显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
对于第一显示区域内的第一子像素,根据公式:
Figure PCTCN2019090404-appb-000009
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,Gamma一般为2.2,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第二子像素的目标灰阶值Y等于第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
对于第一显示区域内的第三子像素,根据公式:
Figure PCTCN2019090404-appb-000010
确定其对应的目标灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值。
在具体实施时,为了改善第二显示子区域与第一显示子区域的边界暗纹,可以对第二显示子区域的亮度进行适当的调整。亮度与发光面积和像素分布密度均成正比。
因此,可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对第二显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
子像素根据公式:
Figure PCTCN2019090404-appb-000011
确定其对应的目标灰阶值X;
其中,n取1~N的任意整数,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,xn为子像素在原始图像数据中对应的第n个子像素的初始灰阶值。
在具体实施时,误差调节系数k可以根据显示基板的实际显示效果进行调整,在此不作限定。
例如,本公开实施例提供的驱动方法可以参见上述显示装置中驱动器的实施,在此不作赘述。
在具体实施时,在本公开实施例提供的显示装置中,驱动器将各子区域内子像素的目标灰阶值的算法均集成在IC中。在显示时,驱动器根据接收的图像数据确定出各子像素对应的目标灰阶值,驱动显示基板根据目标灰阶值进行显示。
进一步地,显示基板根据目标灰阶值进行显示之前,为了提高亮度均匀性,一般还需要进行Demura算法处理。具体Demura算法可参考现有技术,在此不作详述。
基于同一发明构思,本公开实施例还提供了高精度金属掩模板,用于制作本公开实施例提供的上述任一显示基板,该高精度金属掩模板包括:多个开口区域,所开口区域与第一子像素,第二子像素或第三子像素的形状和位置对应。
在具体实施时,子像素一般包括阳极层、发光层和阴极层,发光层一般 采用上述高精度金属掩模板进行蒸镀。以图1L所示的显示基板为例,其中用于形成第一子像素的高精度金属掩模板中,如图10所示,开口区域01与显示基板中第一子像素1的发光层的形状和位置对应。并且,由于工艺限制,开口区域01的面积一般会大于对应的发光层的面积。用于形成第二子像素的高精度金属掩模板以及用于形成第三子像素的高精度金属掩模板的原理与第一子像素相似,在此不作赘述。
本公开实施例还提供了图1N至图1S中任一显示面板的显示方法,包括:
S901、接收原始图像数据;
S902、对于第一显示子区域内的像素,根据其在原始图像数据中对应的像素的灰阶值进行显示;对于第二显示子区域内的像素,根据第一显示子区域的像素分布密度和第二显示子区域的像素分布密度的比值,确定一个像素在原始图像数据中对应的像素的数量N;并根据该像素所在的位置在原始图像数据中对应的N个像素中的其中一个像素或者多个像素的灰阶值进行显示。
在具体实施时,根据前述像素分布密度公式,当第一显示子区域的像素分布密度和第二显示子区域的像素分布密度的比值为n时,第二显示子区域内一个像素,在原始图像数据中对应4个像素,即N=n*n。
可选地,在本公开实施例提供的显示方法中,对于第二显示子区域内的像素,根据该像素所在的位置在原始图像数据中对应的N个像素中的多个像素的平均灰阶值进行显示。例如N=4,即第二显示子区域内的各像素,在原始图像数据中分别对应4个像素。那么对于第二显示子区域内的每一个像素,可以根据其在原始图像数据中对应的4个像素中的k个像素的平均灰阶值进行显示,k=2、3或4。以k=4为例,假设第二显示子区域内的像素包括第一子像素,第二子像素和第三子像素,那么在显示时第一子像素对应的灰阶值X1=(x1+x2+x3+x4)/4,其中,x1~x4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第一子像素的灰阶值;同理在显示时第二子像素对应的灰阶值Y1=(y1+y2+y3+y4)/4,其中,y1~y4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第二子像素的灰阶值;在显示时第三子像素对应的灰阶值Z1=(z1+z2+z3+z4)/4,其中,z1~z4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第三子像素的灰阶值。
可选地,在本公开实施例提供的显示面板中,对于第二显示子区域内的像素,根据该像素所在的位置在原始图像数据中对应的N个像素中亮度最高的像素的灰阶值进行显示。
可选地,在本公开实施例提供的显示面板中,对于第二显示子区域内的像素,根据该像素所在的位置在原始图像数据中对应的N个像素中亮度值为中间值的像素的灰阶值进行显示。
可选地,在本公开实施例提供的显示面板中,对于第二显示子区域内的像素,根据该像素所在的位置在原始图像数据中对应的N个像素以及第二显示子区域内的该像素与原始图像数据N个像素的相对位置关系进行显示。
同样以N=4为例,即第二显示子区域内的各像素,在原始图像数据中分别对应4个像素,假设第二显示子区域内的像素包括第一子像素,第二子像素和第三子像素,那么在显示时第一子像素对应的灰阶值X1=(k1*x1+k2*x2+k3*x3+k4*x4)/4,其中,x1~x4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第一子像素的灰阶值;同理在显示时第二子像素对应的灰阶值Y1=(k1*y1+k2*y2+k3*y3+k4*y4)/4,其中,y1~y4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第二子像素的灰阶值;在显示时第三子像素对应的灰阶值Z1=(k1*z1+k2*z2+k3*z3+k4*z4)/4,其中,z1~z4分别代表第二显示子区域内的像素其在原始图像数据中对应的4个像素中的各第三子像素的灰阶值。其中,k1~k4为权重系数,由第二显示区域内该像素所在的位置与原始图像数据中对应的4个像素中各像素的距离决定,距离越大,权重系数越小。
可选地,在本公开实施例提供的显示面板中,对于第二显示子区域内的像素,根据该像素所在的位置在原始图像数据中对应的N个像素中的其中一个像素的灰阶值进行显示。显示原理遵守人眼视觉系统定量,不会出现闪烁,无需重新设计集成电路(Integrated Circuit,IC),成本低。
可选地,在本公开实施例提供的显示方法中,当第一显示子区域的像素分布密度与第二显示子区域的像素分布密度比值为n时,n为大于1的整数;
第二显示区域内各像素在原始图像数据中分别对应呈矩阵排列的n*n个像素。
在具体实施时,一般取n=2,即当第一显示子区域的像素分布密度是第二显示子区域的像素分布密度的2倍。当然,根据实际应用,n也可以取其 它值,在此不作限定。
例如,以n=2为例,如图11所示,第二显示区域内各像素在原始图像数据中分别对应呈矩阵排列的2行乘以2列个像素,图11中,一个虚线框内的4个像素为第二显示区域内一个像素对应的像素。
可选地,在本公开实施例提供的显示方法中,第二显示区域内各像素,分别选择其在原始图像数据中对应的n*n个像素中相同位置处的一个像素作为参考像素,第二显示区域内各像素分别根据其对应的参考像素的灰阶值进行显示。
同样以n=2为例,如图12A所示,第二显示区域内各像素,分别可以选择其在原始图像数据中对应的2*2个像素中第一行第一列位置处的像素作为参考像素。或者,如图12B所示,第二显示区域内各像素,分别可以选择其在原始图像数据中对应的2*2个像素中第一行第二列位置处位置的像素作为参考像素。或者,如图12C所示,第二显示区域内各像素,分别可以选择其在原始图像数据中对应的2*2个像素中第二行第一列位置处位置的像素作为参考像素。如图12D所示,第二显示区域内各像素,分别可以选择其在原始图像数据中对应的2*2个像素中第二行第二列位置处位置的像素作为参考像素。
在具体实施时,在本公开实施例提供的显示方法中,第二显示区域内各像素分别根据其对应的参考像素的灰阶值进行显示,具体为:第一子像素根据对应的参考像素中第一子像素的灰阶值进行显示,第二子像素根据对应的参考像素中第二子像素的灰阶值进行显示,第三子像素根据对应的参考像素中第三子像素的灰阶值进行显示。
在具体实施时,由于第一显示子区域的像素分布密度与第二显示子区域的像素分布密度的比值有可能不是整数,例如当第一显示子区域的像素分布密度与第二显示子区域的像素分布密度比值为m,其中m=n+s,n为大于或等于1的整数,s为0至1之间的小数。第二显示区域内各像素在原始图像数据中分别对应呈矩阵排列的n*n个像素;或者,第二显示区域内各像素在原始图像数据中分别对应呈矩阵排列的n*(n+1)个像素;或者,第二显示区域内各像素在原始图像数据中分别对应呈矩阵排列的(n+1)*(n+1)个像素。具体实施原理与上述m=n的情况相同,在此不作赘述。
本公开实施例提供的显示方法中,对于第一显示子区域内的像素,根据 其在原始图像数据中对应的像素的灰阶值进行显示,具体实施可以参照相关技术,在此不作详述。
在具体实施时,在本公开实施例提供的显示方法中,根据原始图像数据获得各像素的灰阶值的算法可以集成在IC、外接的中央处理器(Central Processing Unit,CPU)或者微处理器中等,当然也可以是单独设置的驱动器,该驱动器与每个像素连接,在此不作限定。
在具体实施时,在本公开实施例提供的显示方法中,显示基板上的像素在根据其在原始图像数据中对应的像素进行显示时,为了优化显示效果,一般还需要经过SPR等图像处理模块的处理、Demura算法处理后才在显示屏上成像。
本公开实施例还提供了驱动图2B至图2L中任一种显示基板的驱动方法,包括:
S1001、接收原始图像数据;
S1002、对于第一显示子区域内的各子像素,根据其在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;对于过渡显示子区域内的各子像素,根据过渡显示子区域的像素分布密度,以及该子像素所在区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;对于第二显示子区域内的各子像素,根据子像素的发光面积、第二显示子区域的像素分布密度,以及该子像素所在区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;
S1003、驱动显示基板内的各子像素根据其目标灰阶值进行显示。
例如,对于第一显示子区域内的子像素,当第一显示子区域内一个物理像素对应图像数据中的一个像素时,一般子像素的目标灰阶值为其初始灰阶值。而当第一显示区域内物理像素少于图像数据中的像素数量时,在显示时就存在子像素的借用关系,因此一个子像素可能对应图像数据中的两个或者更多的像素,因此子像素的目标灰阶值就需要根据其在原始图像数据中对应的子像素的初始灰阶值进行换算。
对于第二显示子区域内的子像素,由于分辨率低,显示时一个物理像素就对应图像数据中的一个像素,一般情况下子像素的目标灰阶值为其初始灰阶值。但是这样会存在一个问题,由于第二显示子区域的分辨率低,若直接按照初始灰阶值进行显示,第二显示子区域和第一显示子区域内的亮度会存 在较大的差异,因此第二显示子区域和第一显示子区域的边界会存在明显的暗纹。为了解决该问题,因此本公开实施例提供的驱动方法,可以根据子像素的发光面积、第二显示子区域的像素分布密度,对第二显示子区域内子像素的灰阶进行调整。例如,子像素的发光面积越大,第二显示子区域的整体亮度越高,以及第二显示子区域内分布的子像素数量越多,第二显示子区域的整体亮度也会越高。
对于过渡显示子区域内的子像素,显示时一个物理像素就对应图像数据中的一个像素,由于像素分布密度介于第二显示子区域和第一显示子区域之间,理论上亮度介于第一显示子区域与第二显示子区域之间,在显示时,可以根据其像素分布密度,子像素的亮度设置为图像数据中对应的子像素亮度的平均值。
需要说明的是,一个物理像素一般至少包括RGB三个子像素。
在具体实施时,当第一显示子区域内,像素排列为Pantile排列时,由于第一子像素和第三子像素都会被借用,因此,在显示时一般一个第一子像素会在图像数据中对应两个像素,一个第三子像素会在图像数据中对应两个像素,第二子像素没被借用,因此一个第二子像素一般对应图像数据中的一个像素。因此,可选地,在本公开实施例提供的驱动方法中,对于第一显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
第一子像素根据公式:
Figure PCTCN2019090404-appb-000012
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第二子像素的目标灰阶值Y等于第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
第三子像素根据公式:
Figure PCTCN2019090404-appb-000013
确定其对应的目标灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值。
在具体实施时,为了改善第二显示子区域与第一显示子区域的边界暗 纹,可以对第二显示子区域的亮度进行适当的调整。亮度与发光面积和像素分布密度均成正比。因此,可选地,在本公开实施例提供的驱动方法中,对于第二显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
子像素根据公式:
Figure PCTCN2019090404-appb-000014
确定其对应的目标灰阶值X;
其中,n取1~N的任意整数,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,xn为子像素在原始图像数据中对应的第n个子像素的初始灰阶值。
在具体实施时,误差调节系数k可以根据显示基板的实际显示效果进行调整,在此不作限定。
在具体实施时,假设第二显示子区域内,单位面积内有m个第三像素单元,对应区域的图像数据中有j个像素,那么一个第三像素单元对应图像数据中的j/m个像素,即N=j/m。在确定子像素的目标灰阶时,该子像素的目标灰阶值可以根据其对应的N个子像素中的任意一个或多个子像素来确定。例如N=4,那么一个子像素可以根据其对应的像素中的4个子像素中的任意一个或多个子像素的初始灰阶值进行确定。例如根据其中一个子像素的初始灰阶值进行确定,那么X=k*s*ρ*x i,其中x i表示4个子像素中的任意一个子像素的初始灰阶值。例如根据其中两个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000015
其中x 1和x 2表示4个子像素中的任意两个子像素的初始灰阶值。例如根据其中三个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000016
其中x 1、x 2和x 3表示4 个子像素中的任意三个子像素的初始灰阶值。例如根据四个子像素的初始灰阶值进行确定,那么
Figure PCTCN2019090404-appb-000017
其中x 1、x 2、x 3和x 4表示4个子像素的初始灰阶值。
可选地,在本公开实施例提供的驱动方法中,对于过渡显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
子像素根据公式:
Figure PCTCN2019090404-appb-000018
确定其对应的目标灰阶值X;
其中,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,x1~xN分别为子像素在原始图像数据中对应的N个子像素的初始灰阶值。
在具体实施时,假设过渡显示子区域内,单位面积内有m个第三像素单元,对应区域的图像数据中有j个像素,那么一个第四像素单元对应图像数据中的j/m个像素,即N=j/m。在确定子像素的目标灰阶时,该子像素的目标灰阶值可以根据其对应的N个子像素的初始灰阶值进行确定。
或者,可选地,在本公开实施例提供的驱动方法中,对于过渡显示子区域内的各子像素,确定该子像素的目标灰阶值,具体可以包括:
第一子像素根据公式:
Figure PCTCN2019090404-appb-000019
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第一子像素根据公式:Y=k*s*ρ*y确定其对应的目标灰阶值Y;y表示第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
第三子像素根据公式:
Figure PCTCN2019090404-appb-000020
确定其对应的目标 灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值;
其中,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数。
即过渡显示子区域内,子像素对应的目标灰阶值的算法,是在第一显示子区域内子像素对应的目标灰阶值算法的基础上,根据第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值、第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,进行调整的。
基于同一发明构思,本公开实施例还提供的显示装置,包括本公开实施例提供的上述任一显示基板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述显示基板的实施例,重复之处不再赘述。
可选地,在本公开实施例提供的显示装置中,还包括被配置为驱动该显示基板的驱动器,显示基板的驱动器例如可以为IC,或者外接的CPU、微处理器等。其中,驱动器可以被配置为:
接收原始图像数据;
对于第一显示子区域内的各子像素,根据其在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;对于过渡显示子区域内的各子像素,根据过渡显示子区域的像素分布密度,以及该子像素对应区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;对于第二显示子区域内的各子像素,根据子像素的发光面积、第二显示子区域的像素分布密度,以及该子像素对应区域在原始图像数据中对应的子像素的初始灰阶值,确定该子像素的目标灰阶值;
驱动显示基板内的各子像素根据其目标灰阶值进行显示。
可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对第一显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
对于第一显示区域内的第一子像素,根据公式:
Figure PCTCN2019090404-appb-000021
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,Gamma 一般为2.2,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第二子像素的目标灰阶值Y等于第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
对于第一显示区域内的第三子像素,根据公式:
Figure PCTCN2019090404-appb-000022
确定其对应的目标灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值。
在具体实施时,为了改善第二显示子区域与第一显示子区域的边界暗纹,可以对第二显示子区域的亮度进行适当的调整。亮度与发光面积和像素分布密度均成正比。因此,可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对第二显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
子像素根据公式:
Figure PCTCN2019090404-appb-000023
确定其对应的目标灰阶值X;
其中,n取1~N的任意整数,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,xn为子像素在原始图像数据中对应的第n个子像素的初始灰阶值。
在具体实施时,误差调节系数k可以根据显示基板的实际显示效果进行调整,在此不作限定。
可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对过渡显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
子像素根据公式:
Figure PCTCN2019090404-appb-000024
确定其对应的目标灰阶值X;
其中,N为子像素在原始图像数据中对应的子像素的数量,Gamma表示显示基板的伽马值,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数,x1~xN分别为子像素在原始图像数据中对应的N个子像素的初始灰阶值。
或者,可选地,在本公开实施例提供的显示装置中,驱动器可以通过如下方法对过渡显示子区域内的各子像素,确定该子像素的目标灰阶值,具体为:
第一子像素根据公式:
Figure PCTCN2019090404-appb-000025
确定其对应的目标灰阶值X;其中,Gamma表示显示基板的伽马值,x 1和x 2分别为第一子像素在原始图像数据中对应的两个第一子像素的初始灰阶值;
第一子像素根据公式:Y=k*s*ρ*y确定其对应的目标灰阶值Y;y表示第二子像素在原始图像数据中对应的一个第二子像素的初始灰阶值y;
第三子像素根据公式:
Figure PCTCN2019090404-appb-000026
确定其对应的目标灰阶值Z;其中,z 1和z 2分别为第三子像素在原始图像数据中对应的两个第三子像素的初始灰阶值;
其中,s表示子像素在第一显示区内的发光面积与子像素在第二显示子区域内的发光面积比值,ρ表示第一显示子区域内的像素分布密度与第二显示子区域内像素分布密度的比值,k为误差调节系数。
例如,本公开实施例提供的驱动器的驱动方法可以参见上述显示装置中驱动方法的实施,在此不作赘述。
在具体实施时,在本公开实施例提供的显示装置中,驱动器将各子区域内子像素的目标灰阶值的算法均集成在IC中。在显示时,驱动器根据接收的图像数据确定出各子像素对应的目标灰阶值,驱动显示基板根据目标灰阶值进行显示。
进一步地,显示基板根据目标灰阶值进行显示之前,为了提高亮度均匀性,一般还需要进行Demura算法处理。具体Demura算法可参考相关技术, 在此不作详述。
需要说明的是,为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种显示基板,包括:
    第一显示子区域,所述第一显示子区域包括多个第一重复区域,所述多个第一重复区域的每个包括相邻设置的第一像素单元和第二像素单元,所述第一像素单元包括第一子像素和第二子像素,所述第二像素单元包括第二子像素和第三子像素;以及
    第二显示子区域,所述第二显示子区域包括多个第二重复区域,所述多个第二重复区域的每个包括第三像素单元和第一透明像素,所述第三像素单元包括第一子像素、第二子像素和第三子像素;
    所述第一透明像素被配置为使所述第二显示子区域的像素密度小于所述第一显示子区域的像素密度,以及使所述第二显示子区域的透光率大于所述第一显示子区域的透光率。
  2. 根据权利要求1所述的显示基板,其中,所述第一透明像素的面积大于或等于所述第一像素单元的所述第一子像素和所述第二子像素至少之一的面积,所述第一透明像素的面积大于或等于所述第二像素单元的所述第二子像素和所述第三子像素至少之一的面积。
  3. 根据权利要求1所述的显示基板,其中,所述第一透明像素的面积大于或等于所述第一显示子区域内的一个第一子像素、一个第二子像素和一个第三子像素的面积之和。
  4. 根据权利要求1-3任一项所述的显示基板,其中,所述第一透明像素的面积大于或等于所述第二显示子区域内的一个第一子像素、一个第二子像素和一个第三子像素至少之一的面积。
  5. 根据权利要求4所述的显示基板,其中,所述第一透明像素的面积大于或等于所述第三像素单元中的第一子像素、第二子像素和第三子像素的面积之和。
  6. 根据权利要求1-5任一项所述的显示基板,其中,在行方向上相邻的第三像素单元之间设有一个第一透明像素,以形成第一透明像素列。
  7. 根据权利要求1-6任一项所述的显示基板,其中,所述第一透明像素的面积和形状分别与所述第一显示子区域内的一个第二子像素的面积和形状相同。
  8. 根据权利要求1-5任一项所述的显示基板,其中,在列方向上相邻 的第三像素单元之间设有一个第一透明像素,以形成第一透明像素行。
  9. 根据权利要求1-8任一项所述的显示基板,其中,多个第一透明像素设置在所述第三像素单元的行方向上的两侧以及列方向上的两侧。
  10. 根据权利要求1-8任一项所述的显示基板,其中,多个第一透明像素设置在所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素中至少之一的行方向上的两侧以及列方向上的两侧。
  11. 根据权利要求1-10任一项所述的显示基板,其中,所述第二显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一列。
  12. 根据权利要求1-11任一项所述的显示基板,其中,所述第二显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一行。
  13. 根据权利要求1-12任一项所述的显示基板,其中,所述第二像素单元的第三子像素的中心在所述第一像素单元的第二子像素和第二像素单元的第二子像素的中心连线的中点与所述第一像素单元的第一子像素的中心之间的连线上的正投影,与该中点和所述第一像素单元的所述第一子像素的中心的连线的中点重合。
  14. 根据权利要求13所述的显示基板,其中,所述第一显示子区域内,每个第一重复区域与六个第一重复区域相邻,并被该六个第一重复区域环绕。
  15. 根据权利要求1-14任一项所述的显示基板,其中,所述第一重复区域中,所述第一子像素和所述第三子像素的至少之一的面积大于所述第一像素单元的所述第二子像素和所述第二像素单元的所述第二子像素的至少之一的面积。
  16. 根据权利要求1-15任一项所述的显示基板,其中,在所述第三像素单元中,所述第二子像素和所述第一子像素沿着与所述第三子像素的延伸方向平行的方向排列。
  17. 根据权利要求16所述的显示基板,其中,在所述第二重复区域中,所述第三像素单元的所述第二子像素和所述第一子像素位于所述第一透明像素和所述第三子像素之间。
  18. 根据权利要求1-15任一项所述的显示基板,其中,所述第三像素单元中的第一子像素、第二子像素和第三子像素依次排列;或者,所述第三像素单元中的第一子像素、第二子像素和第三子像素的中心的连线形成三角 形。
  19. 根据权利要求1-18任一项所述的显示基板,还包括第一电源线和第二电源线,其中,所述第一电源线与所述第一像素单元和所述第二像素单元相连,所述第二电源线与所述第三像素单元相连,所述第一电源线与所述第二电源线彼此绝缘。
  20. 根据权利要求1-19任一项所述的显示基板,还包括电源电压调节部,其中,所述电源电压调节部被配置为调节显示灰阶大于第一灰阶时的所述第三像素单元的第一电压信号,所述第一电压信号被调高或者调低。
  21. 根据权利要求1-18任一项所述的显示基板,还包括过渡显示子区域,其中,所述过渡显示子区域位于所述第二显示子区域和所述第一显示子区域之间,所述过渡显示子区域包括多个第三重复区域,所述多个第三区域的每个包括第四像素单元和第二透明像素,所述第四像素单元包括第一子像素、第二子像素和第三子像素,所述第二透明像素的面积小于所述第一透明像素的面积。
  22. 根据权利要求21所述的显示基板,其中,所述第二显示子区域的透光率小于所述过渡显示子区域的透光率。
  23. 根据权利要求21或22所述的显示基板,其中,所述第二透明像素的分布密度小于所述第一透明像素的分布密度。
  24. 根据权利要求21-23任一项所述的显示基板,其中,所述第二透明像素的面积大于或等于所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的面积。
  25. 根据权利要求21-24任一项所述的显示基板,包括多个第二透明像素,其中,所述多个第二透明像素的面积相等。
  26. 根据权利要求21-25任一项所述的显示基板,其中,在所述第四像素单元中,所述第三子像素、所述第一子像素和所述第二子像素依次排列,并且所述第二子像素的面积小于所述第三子像素和所述第一子像素至少之一的面积。
  27. 根据权利要求21-26任一项所述的显示基板,其中,所述第二透明像素与所述第一显示子区域内的所述第二子像素的面积和形状相同。
  28. 根据权利要求21-27任一项所述的显示基板,其中,所述过渡显示子区域内的所述第一子像素和所述第一显示子区域内的所述第一子像素的 面积相同且形状相同;所述第二显示子区域内的第一子像素的面积小于所述第一显示子区域内的所述第一子像素的面积。
  29. 根据权利要求28所述的显示基板,其中,所述第一显示子区域内的所述第二子像素、所述第二显示子区域内的所述第二子像素、所述过渡显示子区域内的所述第二子像素的面积相同且形状相同;
    所述第一显示子区域内的所述第三子像素、所述第二显示子区域内的所述第三子像素、所述过渡显示子区域内的所述第三子像素的面积相同且形状相同。
  30. 根据权利要求21-29任一项所述的显示基板,其中,包括多个第二透明像素,多个第二透明像素包括包括从靠近所述第一显示子像素的位置处指向靠近所述第二显示子像素的位置处的方向上依次排布的第一部分和第二部分,所述第一部分大于所述第二部分的面积。
  31. 根据权利要求21-29任一项所述的显示基板,其中,包括多个第二透明像素,多个第二透明像素包括包括从靠近所述第一显示子像素的位置处指向靠近所述第二显示子像素的位置处的方向上依次排布的第一部分、第二部分和第三部分,所述第一部分、所述第二部分和所述第三部分的面积依次减小。
  32. 根据权利要求21-31任一项所述的显示基板,还包括灰阶电压调节部,其中,所述灰阶电压调节部被配置为调节显示灰阶小于或等于第一灰阶时的所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素以及所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的灰阶电压。
  33. 根据权利要求21-32任一项所述的显示基板,还包括第一电源线和第二电源线,其中,所述第一电源线与所述第一像素单元和第二像素单元相连,所述第二电源线与所述第三像素单元和所述第四像素单元相连,所述第一电源线与所述第二电源线彼此绝缘。
  34. 根据权利要求21-33任一项所述的显示基板,其中,所述过渡显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一行。
  35. 根据权利要求21-34任一项所述的显示基板,其中,所述过渡显示子区域内的子像素与所述第一显示子区域内的部分子像素位于同一列。
  36. 根据权利要求21-35任一项所述的显示基板,其中,所述第一子像 素为和所述第三子像素之一为蓝色子像素,另一个为红色子像素,所述第二子像素为绿色子像素。
  37. 一种显示装置,包括权利要求1-36任一项所述的显示基板。
  38. 权利要求1-18任一项所述的显示基板的驱动方法,包括:
    采用子像素渲染的方式驱动所述第一像素单元和第二像素单元;
    所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第三像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。
  39. 根据权利要求38所述的方法,还包括调节显示灰阶小于或等于第一灰阶时的第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素至少之一的灰阶电压。
  40. 根据权利要求38或39所述的方法,还包括调节显示灰阶大于第一灰阶时的第三像素单元的第一电压信号,所述第一电压信号被调高或者调低。
  41. 权利要求21-36任一项所述的显示基板的驱动方法,包括:
    采用子像素渲染的方式驱动所述第一像素单元和第二像素单元;
    所述第三像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第三像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素;
    所述第四像素单元中的所述第一子像素、所述第二子像素和所述第三子像素分别显示与所述第四像素单元对应的待显示图像中的两个相邻像素中对应的相同颜色的亮度大的子像素。
PCT/CN2019/090404 2018-06-20 2019-06-06 显示基板及其驱动方法和显示装置 WO2019242510A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980000805.7A CN110914891B (zh) 2018-06-20 2019-06-06 显示基板及其驱动方法和显示装置
US16/644,791 US11263968B2 (en) 2018-06-20 2019-06-06 Display substrate and driving method thereof, and display device
US17/578,175 US11600230B2 (en) 2018-06-20 2022-01-18 Display substrate and driving method thereof, and display device
US18/158,254 US20230162683A1 (en) 2018-06-20 2023-01-23 Display Substrate and Driving Method Thereof, and Display Device
US18/100,427 US20230162682A1 (en) 2018-06-20 2023-01-23 Display Substrate and Driving Method Thereof, and Display Device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810638716.2A CN110619813B (zh) 2018-06-20 2018-06-20 显示基板、其驱动方法、显示装置及高精度金属掩模版
CN201810639832.6A CN110620129B (zh) 2018-06-20 2018-06-20 显示基板、其驱动方法、显示装置及高精度金属掩模板
CN201810638716.2 2018-06-20
CN201810639832.6 2018-06-20
CN201810714668.0 2018-06-29
CN201810714668.0A CN110660823A (zh) 2018-06-29 2018-06-29 显示基板、其显示方法、显示装置及高精度金属掩模板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/644,791 A-371-Of-International US11263968B2 (en) 2018-06-20 2019-06-06 Display substrate and driving method thereof, and display device
US17/578,175 Continuation US11600230B2 (en) 2018-06-20 2022-01-18 Display substrate and driving method thereof, and display device

Publications (1)

Publication Number Publication Date
WO2019242510A1 true WO2019242510A1 (zh) 2019-12-26

Family

ID=68982638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090404 WO2019242510A1 (zh) 2018-06-20 2019-06-06 显示基板及其驱动方法和显示装置

Country Status (3)

Country Link
US (4) US11263968B2 (zh)
CN (1) CN110914891B (zh)
WO (1) WO2019242510A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146362A (zh) * 2019-12-31 2020-05-12 武汉天马微电子有限公司 一种显示面板及显示装置
CN111785761A (zh) * 2020-07-20 2020-10-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN112216217A (zh) * 2020-10-15 2021-01-12 厦门天马微电子有限公司 显示面板和显示装置
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
WO2021055547A3 (en) * 2019-09-17 2021-06-24 Google Llc Suppressing scattering of light transmitted through oled displays
CN113077749A (zh) * 2021-04-14 2021-07-06 云谷(固安)科技有限公司 显示屏及电子设备
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
CN113284460A (zh) * 2020-01-31 2021-08-20 乐金显示有限公司 显示装置
CN113994419A (zh) * 2020-05-27 2022-01-28 京东方科技集团股份有限公司 显示面板及显示装置
US20220115454A1 (en) * 2020-04-30 2022-04-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel and display device
EP4020585A1 (en) * 2020-12-28 2022-06-29 Dai Nippon Printing Co., Ltd. Organic device, group of masks, mask, and manufacturing method for organic device
EP4020584A1 (en) * 2020-12-28 2022-06-29 Dai Nippon Printing Co., Ltd. Organic device, group of masks, mask, and manufacturing method for organic device
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11670644B2 (en) 2020-02-27 2023-06-06 Samsung Display Co., Ltd. Display device including two kinds of pixel arrangements
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
EP4102493A4 (en) * 2020-02-06 2024-04-10 Samsung Display Co Ltd DISPLAY DEVICE AND ITS OPERATING METHOD
US12004383B2 (en) 2020-06-25 2024-06-04 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215591A1 (en) 2018-05-07 2019-11-14 Oti Lumionics Inc. Method for providing an auxiliary electrode and device including an auxiliary electrode
KR20200080428A (ko) 2018-12-26 2020-07-07 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
US11030938B2 (en) * 2018-12-28 2021-06-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN109637452B (zh) * 2019-01-24 2020-07-07 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN114122102A (zh) 2019-01-28 2022-03-01 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR102617392B1 (ko) * 2019-02-20 2023-12-27 삼성디스플레이 주식회사 열화 보상 장치 및 이를 포함하는 표시 장치
CN110047876B (zh) * 2019-03-21 2020-12-08 武汉华星光电半导体显示技术有限公司 柔性显示面板及显示装置
EP3952268A4 (en) * 2019-03-28 2022-05-18 Ningbo Sunny Opotech Co., Ltd. UNDER-SCREEN CAMERA ARRANGEMENT AND RELATED TERMINAL DEVICE
KR20200144193A (ko) * 2019-06-17 2020-12-29 삼성디스플레이 주식회사 표시 장치
US11217211B2 (en) * 2019-07-24 2022-01-04 Apple Inc. Multiple resolution section display panel systems and methods
CN210120136U (zh) * 2019-07-31 2020-02-28 昆山国显光电有限公司 显示面板
CN110503911A (zh) * 2019-08-09 2019-11-26 武汉华星光电半导体显示技术有限公司 显示面板及电子设备
KR20210024339A (ko) * 2019-08-22 2021-03-05 삼성디스플레이 주식회사 표시 장치
CN110504289B (zh) 2019-08-27 2022-08-16 武汉天马微电子有限公司 一种显示面板和显示装置
CN110783484B (zh) * 2019-09-24 2020-11-10 昆山国显光电有限公司 显示面板及其制作方法、显示装置
CN111834395A (zh) * 2019-09-30 2020-10-27 昆山国显光电有限公司 透明显示面板、显示装置及其显示面板
CN110783385B (zh) * 2019-10-21 2020-11-03 昆山国显光电有限公司 显示面板及显示装置
CN110783390B (zh) * 2019-10-31 2023-02-24 武汉天马微电子有限公司 一种显示面板及显示装置
KR20210059091A (ko) * 2019-11-13 2021-05-25 삼성디스플레이 주식회사 표시 장치
KR20210060186A (ko) * 2019-11-18 2021-05-26 삼성전자주식회사 디스플레이 및 카메라 장치를 포함하는 전자 장치
CN110867476B (zh) * 2019-11-27 2022-10-04 武汉天马微电子有限公司 一种显示面板及显示装置
KR20210074447A (ko) * 2019-12-11 2021-06-22 삼성디스플레이 주식회사 표시 장치
CN111129085A (zh) * 2019-12-12 2020-05-08 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
KR20210099243A (ko) * 2020-02-03 2021-08-12 삼성디스플레이 주식회사 표시장치
CN111341936B (zh) * 2020-03-10 2021-11-12 昆山国显光电有限公司 一种显示面板及显示装置
KR20210116734A (ko) * 2020-03-12 2021-09-28 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
CN111427180A (zh) 2020-04-02 2020-07-17 武汉华星光电半导体显示技术有限公司 显示面板
KR20210128554A (ko) * 2020-04-16 2021-10-27 삼성디스플레이 주식회사 표시 패널 및 표시 장치
CN111599282B (zh) * 2020-04-17 2021-12-14 昆山国显光电有限公司 一种显示面板及显示装置
KR20210130906A (ko) * 2020-04-22 2021-11-02 삼성디스플레이 주식회사 표시 장치
KR20210130903A (ko) * 2020-04-22 2021-11-02 삼성디스플레이 주식회사 표시 장치 및 전자 기기
KR20210130902A (ko) 2020-04-22 2021-11-02 삼성디스플레이 주식회사 디스플레이 장치
CN111463357B (zh) * 2020-04-23 2022-09-09 视涯科技股份有限公司 一种显示面板、显示装置及制备方法
CN111415972B (zh) * 2020-04-28 2022-10-04 武汉华星光电半导体显示技术有限公司 一种oled显示面板
CN111508416B (zh) * 2020-04-30 2021-09-03 武汉华星光电半导体显示技术有限公司 显示器及其驱动方法
CN111402751A (zh) * 2020-05-09 2020-07-10 广州视源电子科技股份有限公司 一种led灯珠及led显示屏
KR20210137856A (ko) 2020-05-11 2021-11-18 삼성전자주식회사 디스플레이 및 카메라를 포함하는 전자 장치
US11437408B2 (en) * 2020-05-15 2022-09-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device and electronic apparatus
KR20210146499A (ko) * 2020-05-26 2021-12-06 삼성디스플레이 주식회사 표시 장치
KR20210150903A (ko) * 2020-06-04 2021-12-13 삼성전자주식회사 디스플레이를 포함하는 전자 장치
JP2023106645A (ja) * 2020-06-15 2023-08-02 ソニーセミコンダクタソリューションズ株式会社 画像表示装置及び電子機器
CN114822412B (zh) * 2020-06-29 2024-03-15 京东方科技集团股份有限公司 显示基板及显示装置
CN111696461B (zh) * 2020-06-30 2022-05-27 武汉天马微电子有限公司 一种显示面板和显示装置
KR20220006673A (ko) * 2020-07-08 2022-01-18 삼성디스플레이 주식회사 표시패널 및 이를 포함하는 표시장치
CN115132817A (zh) 2020-07-28 2022-09-30 武汉天马微电子有限公司 一种显示面板及显示装置
CN111968528A (zh) * 2020-07-29 2020-11-20 合肥维信诺科技有限公司 显示面板及显示装置
CN111833798A (zh) * 2020-07-30 2020-10-27 Oppo广东移动通信有限公司 一种显示屏、电子设备、拍摄控制方法及存储介质
KR20220021961A (ko) * 2020-08-13 2022-02-23 삼성전자주식회사 전자 장치 및 전자 장치의 동작 방법
CN114078365A (zh) * 2020-08-18 2022-02-22 群创光电股份有限公司 显示装置及其驱动方法
KR20220022725A (ko) * 2020-08-19 2022-02-28 삼성전자주식회사 모듈러 디스플레이 장치 및 그 제어 방법
KR20220027576A (ko) * 2020-08-27 2022-03-08 엘지디스플레이 주식회사 표시 패널과 이를 포함하는 표시 장치
CN112037704B (zh) * 2020-09-01 2023-01-24 Oppo广东移动通信有限公司 显示面板及电子设备
US11620933B2 (en) * 2020-10-13 2023-04-04 Synaptics Incorporated IR-drop compensation for a display panel including areas of different pixel layouts
CN112366216A (zh) * 2020-10-20 2021-02-12 Oppo广东移动通信有限公司 显示装置和电子设备
CN114416009A (zh) * 2020-10-28 2022-04-29 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备
KR20220060048A (ko) * 2020-11-02 2022-05-11 삼성디스플레이 주식회사 표시 장치
KR20220065953A (ko) * 2020-11-13 2022-05-23 삼성디스플레이 주식회사 표시장치
US11688338B2 (en) * 2020-11-13 2023-06-27 Chengdu Boe Optoelectronics Technology Co., Ltd. Display device, luminance compensation circuit thereof and luminance compensation method
KR20220069200A (ko) * 2020-11-19 2022-05-27 삼성디스플레이 주식회사 표시 장치
CN112365841B (zh) * 2020-11-27 2024-04-30 京东方科技集团股份有限公司 显示基板、高精度金属掩模板、显示装置及显示驱动方法
CN114566522A (zh) 2020-11-27 2022-05-31 京东方科技集团股份有限公司 显示基板以及显示装置
CN114550652B (zh) 2020-11-27 2023-10-27 京东方科技集团股份有限公司 显示基板以及显示装置
CN114566520A (zh) 2020-11-27 2022-05-31 京东方科技集团股份有限公司 显示基板以及显示装置
KR20230116914A (ko) 2020-12-07 2023-08-04 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 및 하부 금속 코팅을 사용한 전도성 증착 층의 패턴화
KR20220096221A (ko) * 2020-12-30 2022-07-07 엘지디스플레이 주식회사 표시패널 및 표시장치
CN112835218A (zh) * 2020-12-31 2021-05-25 惠科股份有限公司 一种电路板组件及显示装置
JP2024038528A (ja) * 2021-01-12 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 画像表示装置及び電子機器
CN112838115A (zh) * 2021-01-25 2021-05-25 维沃移动通信有限公司 显示模组和电子设备
KR20220128549A (ko) * 2021-03-12 2022-09-21 삼성디스플레이 주식회사 데이터 드라이버 및 데이터 드라이버를 포함하는 표시 장치
US11545059B2 (en) * 2021-03-22 2023-01-03 Himax Technologies Limited Display device and method to blur borderline in CUD device
CN113161404B (zh) * 2021-04-23 2023-04-18 武汉天马微电子有限公司 一种显示面板和显示装置
CN113257177B (zh) * 2021-05-13 2022-09-16 北京集创北方科技股份有限公司 亮度控制方法、装置及电子设备
CN115524880A (zh) 2021-06-24 2022-12-27 群创光电股份有限公司 显示装置
US11710439B2 (en) * 2021-09-27 2023-07-25 Synaptics Incorporated Subpixel rendering for display panels including multiple display regions with different pixel layouts
US11721253B2 (en) * 2021-10-19 2023-08-08 Synaptics Incorporated Demura processing for a display panel having multiple regions with different pixel densities
KR20230074365A (ko) * 2021-11-19 2023-05-30 삼성디스플레이 주식회사 표시 장치
CN114120877B (zh) * 2021-11-30 2023-06-02 Tcl华星光电技术有限公司 显示器的驱动方法及显示器
US20230200172A1 (en) * 2021-12-20 2023-06-22 Google Llc Triad sub-pixel arrangements for under display sensors
KR20230103703A (ko) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 휘도차 보정 방법 및 이를 이용한 발광표시장치
CN117396037A (zh) * 2022-02-14 2024-01-12 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
JP2023181785A (ja) * 2022-06-13 2023-12-25 レノボ・シンガポール・プライベート・リミテッド 表示パネル、表示装置、および、情報処理装置
CN115294927B (zh) * 2022-09-28 2022-12-27 长春希达电子技术有限公司 一种基于像素复用的颜色补偿方法、存储介质和系统
CN117133201B (zh) * 2023-10-19 2024-02-02 长春希达电子技术有限公司 一种排布结构、虚拟像素复用方式及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039011A1 (en) * 2007-02-02 2010-02-18 Canon Kabushiki Kaisha Display apparatus and production method thereof
CN106530994A (zh) * 2016-12-30 2017-03-22 上海天马有机发光显示技术有限公司 一种消除显示图形彩边的方法及显示装置
CN106921767A (zh) * 2017-03-07 2017-07-04 捷开通讯(深圳)有限公司 一种高屏占比的移动终端
CN207264695U (zh) * 2017-09-30 2018-04-20 云谷(固安)科技有限公司 终端及显示屏
CN207338380U (zh) * 2017-07-21 2018-05-08 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
CN208507679U (zh) * 2018-06-29 2019-02-15 京东方科技集团股份有限公司 显示基板、显示装置及高精度金属掩模板

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366988B2 (ja) 2003-05-01 2009-11-18 セイコーエプソン株式会社 有機el装置および電子機器
US7495638B2 (en) 2003-05-13 2009-02-24 Research Triangle Institute Visual display with increased field of view
JP4538649B2 (ja) * 2003-08-28 2010-09-08 奇美電子股▲ふん▼有限公司 輝度ムラを解消した有機elディスプレイとその製造方法
TWI258721B (en) 2004-08-10 2006-07-21 Ind Tech Res Inst Full-color organic electroluminescence device
TWI386744B (zh) 2004-12-14 2013-02-21 Samsung Display Co Ltd 薄膜電晶體面板以及使用該薄膜電晶體面板之液晶顯示器
TWI249970B (en) 2005-01-12 2006-02-21 Delta Optoelectronics Inc Method for driving pixel of active display and system thereof
WO2006095635A1 (ja) * 2005-03-07 2006-09-14 Sharp Kabushiki Kaisha 表示装置
KR20070067962A (ko) 2005-12-26 2007-06-29 삼성전자주식회사 유기 전계 발광 표시 장치와 그의 제조 방법
KR101217554B1 (ko) 2006-05-09 2013-01-02 삼성전자주식회사 이음매가 없는 폴더형 디스플레이 장치
TW200822058A (en) * 2006-11-09 2008-05-16 Wintek Corp Image processing device and method thereof and image display device
US8698859B2 (en) 2010-10-19 2014-04-15 Blackberry Limited Display screen having regions of differing pixel density
CN103123927B (zh) 2013-01-24 2015-05-06 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
EP2975658A4 (en) 2013-03-15 2016-05-18 Panasonic Ip Man Co Ltd LIGHT-EMITTING MODULE
KR102013380B1 (ko) * 2013-03-20 2019-08-23 엘지디스플레이 주식회사 무안경 방식의 입체영상 표시장치
KR102081287B1 (ko) 2013-06-07 2020-02-26 삼성디스플레이 주식회사 가요성 표시 장치 및 그 제조방법
KR102124043B1 (ko) 2013-07-25 2020-06-18 삼성디스플레이 주식회사 화소 배열 구조 및 이를 채용하는 표시 장치
TWI522701B (zh) 2013-08-28 2016-02-21 群創光電股份有限公司 顯示面板及顯示裝置
TWI603305B (zh) * 2013-09-27 2017-10-21 鴻海精密工業股份有限公司 顯示裝置、拼接式顯示器及顯示面板
CN103886809B (zh) 2014-02-21 2016-03-23 北京京东方光电科技有限公司 显示方法和显示装置
TWI539593B (zh) 2014-06-25 2016-06-21 友達光電股份有限公司 可撓式顯示面板
CN104269411B (zh) 2014-09-11 2018-07-27 京东方科技集团股份有限公司 显示面板、有机发光二极管显示器和显示装置
TWI541572B (zh) 2014-10-27 2016-07-11 群創光電股份有限公司 顯示面板
CN112002242B (zh) 2014-11-28 2023-04-25 株式会社半导体能源研究所 图像处理装置、显示系统以及电子设备
JP6654280B2 (ja) 2015-01-14 2020-02-26 天馬微電子有限公司 画素アレイ及び電気光学装置並びに電気機器並びに画素アレイの駆動方法
WO2016116833A1 (ja) 2015-01-22 2016-07-28 株式会社半導体エネルギー研究所 表示装置及び電子機器
CN104615395B (zh) 2015-01-23 2018-06-05 青岛海信电器股份有限公司 一种图像显示方法、装置及多畴显示设备
CN104658499B (zh) 2015-02-13 2017-11-07 青岛海信电器股份有限公司 一种图像显示方法、装置及多畴液晶显示设备
CN106033656A (zh) 2015-03-11 2016-10-19 群创光电股份有限公司 显示装置
CN104795016B (zh) 2015-04-22 2016-06-01 京东方科技集团股份有限公司 像素排列结构、阵列基板、显示装置及显示控制方法
US10140909B2 (en) * 2015-09-14 2018-11-27 Japan Display Inc. Display device
CN106935615B (zh) 2015-12-30 2019-07-02 昆山工研院新型平板显示技术中心有限公司 显示屏体制备方法、显示屏体和电子显示设备
CN205355055U (zh) 2016-02-18 2016-06-29 京东方科技集团股份有限公司 一种像素排列结构、显示面板及显示装置
JP6148377B2 (ja) 2016-06-27 2017-06-14 株式会社三共 遊技機
US10586495B2 (en) 2016-07-22 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10229960B2 (en) 2016-08-02 2019-03-12 Universal Display Corporation OLED displays with variable display regions
CN106324875B (zh) 2016-10-24 2019-04-30 京东方科技集团股份有限公司 一种确定过驱动电压的方法、装置及显示设备
CN206194742U (zh) 2016-12-02 2017-05-24 京东方科技集团股份有限公司 一种像素排列结构、显示装置及掩膜板
KR102566717B1 (ko) * 2016-12-12 2023-08-14 삼성전자 주식회사 생체 센서를 구비한 전자 장치
CN107146573B (zh) 2017-06-26 2020-05-01 上海天马有机发光显示技术有限公司 显示面板、其显示方法及显示装置
CN107103893B (zh) 2017-06-30 2019-09-27 上海天马有机发光显示技术有限公司 一种改善圆形显示屏边缘显示效果的方法
US10497307B2 (en) * 2017-08-17 2019-12-03 Wuhan China Star Optoelectronics Technology Co., Ltd. Driving method for AMOLED display and system thereof
JP7146778B2 (ja) 2017-09-05 2022-10-04 株式会社半導体エネルギー研究所 表示システム
CN107577078B (zh) 2017-09-19 2021-11-12 厦门天马微电子有限公司 一种显示面板及显示装置
WO2019062213A1 (zh) 2017-09-30 2019-04-04 云谷(固安)科技有限公司 电子终端及显示屏
CN207517341U (zh) 2017-09-30 2018-06-19 昆山国显光电有限公司 显示装置
WO2019062221A1 (zh) * 2017-09-30 2019-04-04 云谷(固安)科技有限公司 显示屏及显示装置
WO2019062236A1 (zh) * 2017-09-30 2019-04-04 昆山国显光电有限公司 显示屏、显示屏驱动方法及其显示装置
CN107819018B (zh) 2017-10-31 2020-11-10 武汉天马微电子有限公司 一种电致发光显示面板及显示装置
CN113707070B (zh) 2017-10-31 2023-12-08 武汉天马微电子有限公司 一种显示面板及显示装置
CN107819020A (zh) 2017-11-03 2018-03-20 武汉天马微电子有限公司 一种有机发光显示面板及显示装置
CN107948354B (zh) 2017-11-22 2020-09-08 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN107945767A (zh) 2017-11-22 2018-04-20 广东欧珀移动通信有限公司 显示屏组件及电子设备
CN107919087B (zh) 2018-01-03 2020-11-06 上海天马有机发光显示技术有限公司 一种显示面板及其驱动方法、显示装置
KR102413113B1 (ko) * 2018-01-08 2022-06-27 삼성전자주식회사 디스플레이에 형성된 개구를 통해 입사된 빛을 이용하여, 이미지 데이터를 생성하기 위한 센서를 포함하는 전자 장치
CN110137208A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 一种像素排布结构、高精度金属掩模板及显示装置
CN108520888B (zh) 2018-04-02 2022-02-22 云谷(固安)科技有限公司 显示屏及其显示装置
US11073712B2 (en) * 2018-04-10 2021-07-27 Apple Inc. Electronic device display for through-display imaging
US20190333434A1 (en) * 2018-04-29 2019-10-31 Mikro Mesa Technology Co., Ltd. High fill rate display
CN108810201B (zh) * 2018-06-04 2020-07-17 Oppo广东移动通信有限公司 电子装置及利用电子装置拍摄照片的方法
CN110619813B (zh) 2018-06-20 2021-05-14 京东方科技集团股份有限公司 显示基板、其驱动方法、显示装置及高精度金属掩模版
US10985231B2 (en) 2018-08-10 2021-04-20 Au Optronics Corporation Display device
CN110767694B (zh) 2018-12-28 2020-12-29 云谷(固安)科技有限公司 阵列基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039011A1 (en) * 2007-02-02 2010-02-18 Canon Kabushiki Kaisha Display apparatus and production method thereof
CN106530994A (zh) * 2016-12-30 2017-03-22 上海天马有机发光显示技术有限公司 一种消除显示图形彩边的方法及显示装置
CN106921767A (zh) * 2017-03-07 2017-07-04 捷开通讯(深圳)有限公司 一种高屏占比的移动终端
CN207338380U (zh) * 2017-07-21 2018-05-08 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
CN207264695U (zh) * 2017-09-30 2018-04-20 云谷(固安)科技有限公司 终端及显示屏
CN208507679U (zh) * 2018-06-29 2019-02-15 京东方科技集团股份有限公司 显示基板、显示装置及高精度金属掩模板

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11158803B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11785831B2 (en) 2015-10-26 2023-10-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11706969B2 (en) 2015-10-26 2023-07-18 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11088327B2 (en) 2015-10-26 2021-08-10 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11335855B2 (en) 2015-10-26 2022-05-17 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11158802B2 (en) 2015-10-26 2021-10-26 Oti Lumionics Inc. Method for patterning a coating on a surface and device including a patterned coating
US11581487B2 (en) 2017-04-26 2023-02-14 Oti Lumionics Inc. Patterned conductive coating for surface of an opto-electronic device
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11730048B2 (en) 2017-05-17 2023-08-15 OTI Lumionic Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11730012B2 (en) 2019-03-07 2023-08-15 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11700747B2 (en) 2019-06-26 2023-07-11 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
US11744101B2 (en) 2019-08-09 2023-08-29 Oti Lumionics Inc. Opto-electronic device including an auxiliary electrode and a partition
WO2021055547A3 (en) * 2019-09-17 2021-06-24 Google Llc Suppressing scattering of light transmitted through oled displays
CN111146362B (zh) * 2019-12-31 2022-12-23 武汉天马微电子有限公司 一种显示面板及显示装置
US11367851B2 (en) 2019-12-31 2022-06-21 WuHan Tianma Micro-electronics Co., Ltd Display panel and display device
CN111146362A (zh) * 2019-12-31 2020-05-12 武汉天马微电子有限公司 一种显示面板及显示装置
CN113284460A (zh) * 2020-01-31 2021-08-20 乐金显示有限公司 显示装置
JP7118518B2 (ja) 2020-01-31 2022-08-16 エルジー ディスプレイ カンパニー リミテッド ディスプレイ装置
US11804168B2 (en) 2020-01-31 2023-10-31 Lg Display Co., Ltd. Display device including an optical module superposed on a display area
JP2021124728A (ja) * 2020-01-31 2021-08-30 エルジー ディスプレイ カンパニー リミテッド ディスプレイ装置
EP3859725A3 (en) * 2020-01-31 2021-11-17 LG Display Co., Ltd. Display device
EP4102493A4 (en) * 2020-02-06 2024-04-10 Samsung Display Co Ltd DISPLAY DEVICE AND ITS OPERATING METHOD
US11670644B2 (en) 2020-02-27 2023-06-06 Samsung Display Co., Ltd. Display device including two kinds of pixel arrangements
US20220115454A1 (en) * 2020-04-30 2022-04-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel and display device
US11985853B2 (en) * 2020-04-30 2024-05-14 Chengdu Boe Optoelectronics Technology Co., Ltd. Display panel and display device
CN113994419A (zh) * 2020-05-27 2022-01-28 京东方科技集团股份有限公司 显示面板及显示装置
US12004383B2 (en) 2020-06-25 2024-06-04 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
CN111785761B (zh) * 2020-07-20 2022-07-19 武汉天马微电子有限公司 一种显示面板及显示装置
CN111785761A (zh) * 2020-07-20 2020-10-16 武汉天马微电子有限公司 一种显示面板及显示装置
CN112216217A (zh) * 2020-10-15 2021-01-12 厦门天马微电子有限公司 显示面板和显示装置
CN112216217B (zh) * 2020-10-15 2022-10-04 厦门天马微电子有限公司 显示面板和显示装置
EP4020584A1 (en) * 2020-12-28 2022-06-29 Dai Nippon Printing Co., Ltd. Organic device, group of masks, mask, and manufacturing method for organic device
EP4020585A1 (en) * 2020-12-28 2022-06-29 Dai Nippon Printing Co., Ltd. Organic device, group of masks, mask, and manufacturing method for organic device
CN113077749A (zh) * 2021-04-14 2021-07-06 云谷(固安)科技有限公司 显示屏及电子设备

Also Published As

Publication number Publication date
US20230162682A1 (en) 2023-05-25
US20220139323A1 (en) 2022-05-05
CN110914891A (zh) 2020-03-24
US11263968B2 (en) 2022-03-01
US20230162683A1 (en) 2023-05-25
CN110914891B (zh) 2021-11-26
US20210065625A1 (en) 2021-03-04
US11600230B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2019242510A1 (zh) 显示基板及其驱动方法和显示装置
US11004905B2 (en) Display panel and display device
JP2023106480A (ja) 表示基板、その駆動方法、表示装置及び高精度メタルマスク
WO2019242351A1 (zh) 显示基板、其驱动方法、显示装置及高精度金属掩模版
CN109036257B (zh) 一种显示面板及其驱动方法和显示装置
TWI623094B (zh) 顯示單元及電子裝置
US9041625B2 (en) Subpixel arrangement structure for a display device and display device
EP3284105B1 (en) Organic light-emitting diode array substrate, method of manufacturing the same, and related display apparatus
US9935155B2 (en) Pixel structure, display panel, and display apparatus
US9638951B2 (en) Color filter substrate, array substrate, liquid crystal panel and liquid crystal display device
WO2020073918A1 (zh) 显示面板及显示方法
KR20210027628A (ko) 표시 장치 및 표시 장치의 구동 방법
WO2019200890A1 (zh) 显示面板及其驱动方法、显示装置
US20160027374A1 (en) Array substrate, its driving method, and display device
US11711958B2 (en) Display panel and display device
WO2022001516A1 (zh) 显示面板以及显示装置
CN212230037U (zh) 一种显示面板及显示装置
CN109785783B (zh) 显示面板
JP2016126337A (ja) 表示装置およびその駆動方法
KR102331850B1 (ko) 픽셀 배열 구조체, 픽셀 배열 구조체의 디스플레이 방법 및 제조 방법, 및 디스플레이 기판
US11900849B2 (en) Display device
KR20150029362A (ko) 유기전계발광 표시장치
CN117975890A (zh) 显示面板、显示面板的驱动方法以及显示装置
KR20220069908A (ko) 휴대용 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19823426

Country of ref document: EP

Kind code of ref document: A1