JP2018170152A - Oled表示装置の製造方法、マスク及びマスクの設計方法 - Google Patents

Oled表示装置の製造方法、マスク及びマスクの設計方法 Download PDF

Info

Publication number
JP2018170152A
JP2018170152A JP2017066366A JP2017066366A JP2018170152A JP 2018170152 A JP2018170152 A JP 2018170152A JP 2017066366 A JP2017066366 A JP 2017066366A JP 2017066366 A JP2017066366 A JP 2017066366A JP 2018170152 A JP2018170152 A JP 2018170152A
Authority
JP
Japan
Prior art keywords
opening
mask
light emitting
organic light
linear source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017066366A
Other languages
English (en)
Other versions
JP2018170152A5 (ja
Inventor
松枝 洋二郎
Yojiro Matsueda
洋二郎 松枝
高取 憲一
Kenichi Takatori
憲一 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianma Japan Ltd
Original Assignee
Tianma Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianma Japan Ltd filed Critical Tianma Japan Ltd
Priority to JP2017066366A priority Critical patent/JP2018170152A/ja
Priority to CN201810158926.1A priority patent/CN108695361B/zh
Priority to US15/937,899 priority patent/US10263185B2/en
Publication of JP2018170152A publication Critical patent/JP2018170152A/ja
Publication of JP2018170152A5 publication Critical patent/JP2018170152A5/ja
Priority to JP2021176444A priority patent/JP7232882B2/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】リニアソースを使用したOLED表示装置の製造において使用される適切なマスクを提供する。
【解決手段】複数のノズルを含むリニアソースを第1方向に移動しながら、基板上の電極面に、マスクを介して、有機発光材料を蒸着することを含み、マスクは、リニアソースへの対向面に形成された複数の穴を含み、複数の穴の各穴は、第1開口と、第1開口とリニアソースとの間に位置し、第1開口より大きい第2開口とを含み、第1開口から電極面までの距離D1、第1方向における有機発光材料の最大入射角θM、第1開口のエッジから第1方向における隣接副画素電極までの距離SX、第1開口のエッジと第2開口のエッジとを結ぶ直線と第1方向との間で決まるテーパアングルθT、として、θT<90−θM、SX>D1tanθMが満たされている、OLED表示装置の製造方法。
【選択図】図5

Description

本開示は、OLED表示装置の製造方法、マスク及びマスクの設計方法に関する。
OLED(Organic Light−Emitting Diode)素子は電流駆動型の自発光素子であるため、バックライトが不要となる上に、低消費電力、高視野角、高コントラスト比が得られるなどのメリットがあり、フラットパネルディスプレイの開発において期待されている。
OLED表示装置の二つの方式が存在する。一つは、白色のOLED素子を基準に、R(Red)、G(Green)、B(Blue)の3色をカラーフィルタにより作り出すカラーフィルタ方式である。他の一つは、RGB3色の有機発光材料を個別に塗り分ける塗り分け方式である。カラーフィルタ方式は、カラーフィルタが光を吸収するために光利用率が落ち、消費電力が上がる欠点がある。一方、塗り分け方式では、高い色純度により広色域化が簡単で、カラーフィルタが無いために光利用率が高くなることから、塗り分け方式は、広く利用されている。
塗り分け方式は、各色の有機発光材料を個別に塗り分けるために、薄板状のメタルマスク(FMM:Fine Metal Maskと呼ばれる。)が用いられる。有機発光材料が、メタルマスクに形成された開口を通して成膜(蒸着)される。メタルマスクは構造上変形しやすく、特に、OLED表示装置の高精細化及び大画面化に伴って薄くかつ大きくなることによって更に変形しやすくなってきており、高精度に有機発光材料を塗り分けることが困難であるという問題が生じている。
特許文献1は、輝度不良及び混色発生などの問題を解決するため、有機電子発光素子用メタルマスクの実際不均一度を含む適切なマスク設計の方法を開示する。
特開2004−30975号公報
特許文献1のOLED表示装置の製造は、固定された蒸着源から有機発光材料を基板に蒸着させる。OLED表示装置の製造における蒸着方法として、固定された蒸着源ではなく、一方向に複数のノズルが配列されたリニア蒸着源(単にリニアソースとも記す)を使用する方法が知られている。
OLED表示装置の製造システムは、リニアソースを一軸方向において往復しながら、有機発光材料を基板に蒸着させる。リニアソースを使用した蒸着は、固定蒸着源を使用した蒸着と全く異なることから、リニアソースによる蒸着に適切なマスク設計及び当該マスクを使用した蒸着技術が望まれる。
本実施の形態の一態様は、OLED表示装置の製造方法であって、複数のノズルを含むリニアソースを第1方向に移動しながら、基板上の電極面に、マスクを介して、有機発光材料を蒸着することを含む。前記マスクは、前記リニアソースへの対向面に形成された複数の穴を含む。前記複数の穴の各穴は、第1開口と、前記第1開口と前記リニアソースとの間に位置し、前記第1開口より大きい第2開口とを含む。前記マスクにおいて、前記第1開口から前記電極面までの距離D1、前記第1方向における前記有機発光材料の最大入射角θM、前記第1開口のエッジから前記第1方向における隣接副画素電極までの距離SX、前記第1開口のエッジと前記第2開口のエッジとを結ぶ直線と前記第1方向との間で決まるテーパアングルθTとして、θT<90−θM、S1>D1tanθMが満たされている。
本実施の形態の一態様によれば、リニアソースを使用したOLED表示装置の製造において使用される適切なマスクを提供できる。
OLED表示装置10の構成例を模式的に示す。 OLED表示装置10の断面構造の一部を模式的に示す。 有機発光層の蒸着に使用されるメタルマスクモジュール及びリニアソースの構成例を模式的に示す。 リニアソースの構成例を模式的に示す。 メタルマスクの構成例を模式的に示す。 マスクパターン部の一部の断面図を示す。 マスクパターン部の法線方向において見た、三つの開口の関係を示す。 異なる位置における同一のリニアソースを示し、さらに、異なる位置のリニアソースにおいて、二つのノズルをそれぞれ示す。 異なる位置における同一のリニアソースを示し、さらに、異なる位置のリニアソースにおいて、二つのノズルをそれぞれ示す。 リニアソース、マスクパターン部、及びマザー基板の関係を模式的に示す。 リニアソース、マスクパターン部、及びマザー基板の関係を模式的に示す。 開口ピッチの規定偏差ΔTpを説明するための図を示す。 開口サイズの規定偏差ΔTpを説明するための図を示す。 アライメントの規定偏差ΔTpを説明するための図を示す。
以下、添付図面を参照して本発明の実施形態を説明する。本実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。各図において共通の構成については同一の参照符号が付されている。
[表示装置の構成]
図1及び図2を参照して、本実施形態に係る、表示装置10の全体構成を説明する。なお、説明をわかりやすくするため、図示した物の寸法、形状については、誇張して記載している場合もある。
図1は、本実施形態に係る、OLED(Organic Light−Emitting Diode)表示装置10の構成例を模式的に示す。OLED表示装置10は、発光素子が形成されるTFT(Thin Film Transistor)基板100と、OLED素子を封止する封止基板200と、TFT基板100と封止基板200とを接合する接合部(ガラスフリットシール部)300を含んで構成されている。TFT基板100と封止基板200との間には、例えば、乾燥空気が封入されており、接合部300により封止されている。
TFT基板100の表示領域125の外側のカソード電極形成領域114の周囲に、走査ドライバ131、エミッションドライバ132、ドライバIC134が配置されている。これらは、FPC(Flexible Printed Circuit)135を介して外部の機器と接続される。
走査ドライバ131はTFT基板100の走査線を駆動する。エミッションドライバ132は、エミッション制御線を駆動して、各副画素の発光期間を制御する。ドライバIC134は、例えば、異方性導電フィルム(ACF:Anisotropic Conductive Film)を用いて実装される。
ドライバIC134は、走査ドライバ131及びエミッションドライバ132に電源及びタイミング信号(制御信号)を与え、さらに、データ線に映像データに対応するデータ電圧を与える。すなわち、ドライバIC134は、表示制御機能を有する。
次に、OLED表示装置10の詳細構造について説明する。図2は、OLED表示装置10の断面構造の一部を模式的に示す。OLED表示装置10は、TFT基板100と、TFT基板100に対向する封止基板(透明基板)200とを含む。図2は、TFT基板100における一部の構成のみを模式的に示す。また、以下の説明において、上下は、図面における上下を示す。
図2に示すように、OLED表示装置10は、絶縁基板151と、絶縁基板151と対向する封止構造部とを含む。ここで、封止構造部の一例は、可撓性又は不撓性の封止基板200である。封止構造部は、例えば、薄膜封止(TFE:Thin Film Encapsulation)構造であってもよい。絶縁基板151は、図1の絶縁基板111とみなすことができる。
OLED表示装置10は、絶縁基板151と封止構造部との間に配置された、複数の下部電極(例えば、アノード電極162)と、1つの上部電極(例えば、カソード電極166)と、複数の有機発光層165とを含む。なお、カソード電極166は、有機発光層165からの光を封止構造部に向けて透過させる透明電極である。
1つのカソード電極166と1つのアノード電極162との間に、1つの有機発光層165(有機発光膜165とも記す)が配置されている。複数のアノード電極162は、同一面上(例えば、平坦化膜161の上)に配置され、1つのアノード電極162の上に1つの有機発光層165が配置されている。
OLED表示装置10は、封止構造部に向かって立ち上がる複数のスペーサ(Post Spacer:PS)164と、それぞれが複数のスイッチを含む複数の回路とを有する。複数の回路の各々は、絶縁基板151とアノード電極162との間に形成され、複数のアノード電極162の各々に供給する電流を制御する。
図2は、トップエミッション型の画素構造の例を示す。トップエミッション型の画素構造は、光が出射する側(図面上側)に、複数の画素に共通のカソード電極166が配置される。カソード電極166は、表示領域125の全面を完全に覆う形状を有する。本実施形態のOLED表示装置の製造方法は、ボトムエミッション型の画素構造を有するOLED表示装置にも適用できる。ボトムエミッション型の画素構造は、透明アノード電極と反射カソード電極を有し、TFT基板100を介して外部に光を出射する。
以下、OLED表示装置10についてより詳しく説明する。TFT基板100は、表示領域内に配列された副画素(画素)、及び、表示領域の周囲の配線領域に形成された配線を含む。配線は、画素回路と、配線領域に配置された制御回路(131、132、134)とを接続する。
副画素は、赤、緑、又は青のいずれかの色を表示する。赤、緑、及び青の副画素により一つの画素(主画素)が構成される。副画素は、OLED素子及び複数のトランジスタを含む画素回路を、含んで構成されている。OLED素子は、下部電極であるアノード電極、有機発光層、及び上部電極であるカソード電極を含んで構成される。すなわち、複数のOLED素子は、1つのカソード電極166と、複数のアノード電極162と、複数の有機発光層165により形成されている。
絶縁基板151は、例えばガラス又は樹脂で形成されており、不撓性又は可撓性基板である。なお、以下の説明において、絶縁基板151に近い側を下側、遠い側を上側と記す。ゲート絶縁膜156を介して、ゲート電極157が形成されている。ゲート電極157の層上に層間絶縁膜158が形成されている。
表示領域125内において、層間絶縁膜158上にソース電極159、ドレイン電極160が形成されている。ソース電極159、ドレイン電極160は、例えば、高融点金属又はその合金で形成される。ソース電極159、ドレイン電極160は、層間絶縁膜158のコンタクトホールに形成されたコンタクト部168、169によって、チャネル部155に接続されている。
ソース電極159、ドレイン電極160の上に、絶縁性の平坦化膜161が形成される。絶縁性の平坦化膜161の上に、アノード電極162が形成されている。アノード電極162は、平坦化膜161のコンタクトホールに形成されたコンタクト部によってドレイン電極160に接続されている。画素回路(TFT)は、アノード電極162の下側に形成されている。
アノード電極162の上に、OLED素子を分離する絶縁性の画素定義層(Pixel Defining Layer:PDL)163が形成されている。OLED素子は、積層された、アノード電極162、有機発光層165、及びカソード電極166(の部分)で構成される。OLED素子は、画素定義層163の開口167に形成されている。
絶縁性のスペーサ164は、2つのアノード電極162の間における、画素定義層163の面上に形成されている。スペーサ164の頂面は画素定義層163の上面よりも高い(封止基板200に近い)位置にあり、封止基板200が変形した場合に、封止基板200を支持して、OLED素子と封止基板200との間隔を維持する。
アノード電極162の上に、有機発光層165が形成されている。有機発光層165は、画素定義層163の開口167及びその周囲において、画素定義層163に付着している。有機発光層165の上にカソード電極166が形成されている。カソード電極166は、透明電極である。カソード電極166は、有機発光層165からの可視光の全て又は一部を透過させる。
画素定義層163の開口167に形成された、アノード電極162、有機発光層165及びカソード電極166の積層膜が、OLED素子を構成する。カソード電極166は、分離して形成されているアノード電極162及び有機発光層165(OLED素子)に共通である。なお、カソード電極166の上には、不図示のキャップ層が形成されてもよい。
封止基板200は、透明な絶縁基板であって、例えばガラス基板である。封止基板200の光出射面(前面)に、λ/4位相差板201と偏光板202とが配置され、外部から入射した光の反射を抑制する。
[製造方法]
OLED表示装置10の製造方法の一例を説明する。後述するように、本開示は、有機発光層165の蒸着に特徴を有する。本実施形態の有機発光層165の蒸着が適用できれば、他のステップは任意である。以下の説明において、同一工程で(同時に)形成される要素は、同一層の要素である。
OLED表示装置10の製造は、まず、絶縁基板151上に、CVD(Chemical Vapor Deposition)等によって例えばシリコン窒化物を堆積して、第1絶縁膜152を形成する。次に、公知の低温ポリシリコンTFT製造技術を用いて、チャネル部155を含む層(ポリシシリコン層)を形成する。例えば、CVD法によってアモルファスシリコンを堆積し、ELA(Excimer Laser Annealing)により結晶化してポリシリコン層を形成できる。ポリシリコン層は、表示領域125内において要素間の接続にも利用される。
次に、チャネル部155を含むポリシリコン層上に、CVD法等によって、例えばシリコン酸化膜を付着してゲート絶縁膜156を形成する。更に、スパッタ法等により金属材料を堆積し、パターニングを行って、ゲート電極157を含む金属層を形成する。
金属層は、ゲート電極157の他、例えば、保持容量電極、走査線、エミッション制御線、電力供給線を含む。金属層として、例えばMo、W、Nb、MoW、MoNb、Al、Nd、Ti、Cu、Cu合金、Al合金、Ag、Ag合金からなる群より選択される一つの物質で単一層を形成する、又は、配線抵抗を減少させるために低抵抗物質であるMo、Cu、AlまたはAgの2層構造またはそれ以上の多重膜構造からなる群より選択される一つの積層を形成してもよい。
次に、ゲート電極157の形成前に高濃度不純物をドーピングしておいたチャネル部155に、ゲート電極157をマスクとして追加不純物ドーピングを施して低濃度不純物層を形成することにより、TFTにLDD(Lightly Doped Drain)構造を形成する。次に、CVD法等によって、例えばシリコン酸化膜等を堆積して層間絶縁膜158を形成する。
層間絶縁膜158及びゲート絶縁膜156、に異方性エッチングを行い、コンタクトホールを開口する。ソース電極159、ドレイン電極160とチャネル部155とを接続するコンタクト部168、169のためのコンタクトホールが、層間絶縁膜158及びゲート絶縁膜156に形成される。
次に、スパッタ法等によって、例えば、Ti/Al/Ti等のアルミ合金を堆積し、パターニングを行って、金属層を形成する。金属層は、ソース電極159、ドレイン電極160及びコンタクト部168、169を含む。この他、データ線や電力供給線等も形成される。
次に、感光性の有機材料を堆積し、平坦化膜161を形成する。TFTのソース電極159、ドレイン電極160に接続するためのコンタクトホールを開口する。コンタクトホールを形成した平坦化膜161上に、アノード電極162を形成する。アノード電極162は、ITO、IZO、ZnO、In等の透明膜、Ag、Mg、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr又はこれらの化合物金属の反射膜、前記した透明膜の3層を含む。なお、アノード電極162の3層構成は、一例であり2層でもよい。アノード電極162は、コンタクト部を介して、ドレイン電極160と接続される。
次に、スピンコート法等によって、例えば感光性の有機樹脂膜を堆積し、パターニングを行って画素定義層163を形成する。パターニングにより画素定義層163には孔が形成され、各副画素のアノード電極162が形成された孔の底で露出する。画素定義層163の孔の側面は順テーパである。画素定義層163により、各副画素の発光領域が分離される。さらに、スピンコート法等によって、例えば感光性の有機樹脂膜を堆積し、パターニングを行って、画素定義層163上にスペーサ164を形成する。
次に、画素定義層163を形成した絶縁基板151に対して有機発光材料を付着して有機発光層165を成膜する。RGBの色毎に、有機発光材料を成膜して、アノード電極162上に、有機発光層165を形成する。有機発光層165の成膜は、メタルマスク(MM)を使用する。
異なる色の副画素パターンそれぞれにメタルマスクが用意される。TFT基板100の表面にメタルマスクを位置合わせして配置し、メタルマスクをTFT基板100に固定する。メタルマスクの開口を介して、TFT基板100の副画素に対応する位置に有機発光材料を蒸着させる。メタルマスク及びメタルマスクを使用した蒸着の詳細は後述する。
有機発光層165は、下層側から、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層によって構成される。有機発光層165は、電子輸送層/発光層/正孔輸送層、電子輸送層/発光層/正孔輸送層/正孔注入層、電子注入層/電子輸送層/発光層/正孔輸送層、又は発光層単独の、いずれの構造を有してもよい。電子ブロッキング層のような他の層を追加されてもよい。発光層の材料は副画素の色毎に異なり、必要に応じて正孔注入層や正孔輸送層等の膜厚も色毎に制御する。
次に、画素定義層163、スペーサ164及び有機発光層165(画素定義層163の開口における)が露出した、TFT基板100に対して、カソード電極166のための金属材料を付着する。金属材料は、画素定義層163、スペーサ164及び有機発光層165上に付着する。一つの副画素の有機発光層165上に付着した金属材料部は、当該副画素のカソード電極166として機能する。
透明カソード電極166の層は、例えば、Li、Ca、LiF/Ca、LiF/Al、Al、Mg又はこれらの合金を蒸着して、形成する。カソード電極166の膜厚は、光取り出し効率を向上させ良好な視野角依存性を確保するため最適化される。カソード電極166の抵抗が高く発光輝度の均一性が損なわれる場合には、さらに、ITO、IZO、ZnOまたはIn2O3などの透明電極形成用の材料で補助電極層を追加する。カソード電極166の形成後、光取り出し効率向上のため、ガラスより屈折率の高い絶縁膜を堆積させキャップ層を形成してもよい。
以上により、RGBの各副画素に対応するOLED素子が形成され、アノード電極162と有機発光層165とが接触した部分(画素定義層163の開口内)が各々、R発光領域、G発光領域、B発光領域となる。
次に、TFT基板100の外周にガラスフリットを塗設し、その上に封止基板200を載置し、ガラスフリット部をレーザ光により加熱し、溶融させTFT基板100と封止基板200を密封する。その後、封止基板200の光出射側にλ/4位相差板201、偏光板202を形成し、OLED表示装置10が完成する。
以下において、有機発光層の蒸着の詳細を説明する。OLED表示装置10の製造システムは、メタルマスクを用いて有機発光材料を選択的に蒸着させる。製造システムは、発光領域よりやや大きめの開口部を有するメタルマスクを、順次、TFT基板100にアライメントしてセットし、選択的に各色の有機発光材料を蒸着させる。実際に電流が流れるのは画素定義層163の開口部のみであり、この部分が発光領域となる。
図3Aは、有機発光層の蒸着に使用されるメタルマスクモジュール500及びリニアソース400の構成例を模式的に示す。メタルマスクモジュール500は、複数のOLED表示装置のパネル部を含むマザー基板に対する、有機発光材料の蒸着に使用される。各OLED表示装置のパネルは、マザー基板から切り出される。
メタルマスクモジュール500は、フレーム501及び複数の短冊状のメタルマスク503を含む。例えば、フレーム501は矩形であって、中央開口を囲む四辺の部分で構成される。フレーム501は、メタルマスク503を引張された状態で、高精度に支持できるように、十分な剛性と小さい熱変形を有するように構成される。熱による変形を低減するため、フレーム501は、例えば、インバー合金で形成される。フレーム501の形状及び材料は、設計により変化し得る。
図3Aにおいて、複数のメタルマスク503それぞれは、長手方向(X軸方向)に引張された状態においてフレーム501に固定されている。各メタルマスク503は、四隅の固定点505において、フレーム501に固定されている。各メタルマスク503は、フレーム501に固定される時、長手方向(X軸方向)に引張されながら、固定される。引張により、メタルマスク503の変形を抑制する。メタルマスク503は、例えば、ニッケル、ニッケル合金、ニッケル−コバルト合金で形成される。メタルマスク503の材料は設計により変化し得る。
複数のメタルマスク503、図3Aにおいて四つのメタルマスク503が、引張方向(X軸方向)と垂直な方向(Y軸方向)に、配列されている。なお、メタルマスク503の数は1以上の任意である。
各メタルマスク503は、複数のマスクパターン部532を有する。図3Aの例において、各メタルマスク503は、長手方向(X軸方向)に配列された三つのマスクパターン部532を有する。一つのマスクパターン部532は、一つのOLED表示装置10のアクティブエリアにおける、一つの種類の副画素パターンに対応する。なお、一つのメタルマスク503におけるマスクパターン部532の数は、1以上の任意である。
リニアソース400は、長手方向(X軸方向)に一列に配列された複数のノズル401を有する。リニアソース400は、ノズル401の配列方向と垂直な方向(Y軸方向)においてメタルマスクモジュール500上を往復し、有機発光材料をマザー基板上に蒸着させる。
リニアソース400の移動方向(Y軸方向)は、メタルマスク503の引張方向(X軸方向)と垂直である。メタルマスク503のアライメントは、引張方向(X軸方向)において誤差が大きく、それに垂直な方向(Y軸方向)においてより高精度である。したがって、リニアソースは引張方向に垂直な方向(Y軸方向)において移動する。各メタルマスク503の全マスクパターン部532は、X軸方向において、両端のノズル401の間に位置する。リニアソース400のY軸方向における移動により、全てのマスクパターン部532を介して、マザー基板に有機発光材料が蒸着される。
図3Bは、リニアソース400の構成例を模式的に示す。図3BにおけるX軸方向及びY軸方向は、図3Aと同様である。リニアソース400は、複数のノズル401、本体部403、及び二つの壁405を含んで構成されている。図3Bにおいては、一つのノズルのみが符号403で指示され、一つの壁のみが符号405で指示されている。
本体部403は、内部に有機発光材料を収容する空間を有する。リニアソース400は加熱され、本体部403に収容されている有機発光材料が気化し、複数のノズル401の噴出口から、メタルマスクモジュール500に向かって噴出する。
複数のノズル401が、本体部403の面上、長手方向(X軸方向)において一列に配列されている。複数のノズル401は、所定の間隔で配列されている。ノズル401の配列ピッチは一定又は変化してもよい。
リニアソース400が移動しながらの蒸着時、複数のノズル401(の噴出口)及びそれらが配列されている面は、メタルマスクモジュール500に対向する。複数のノズル401は、メタルマスクモジュール500に向かって突出している。各ノズル401(の噴出口)は、メタルマスク503の法線方向に対して、リニアソース400の移動方向(Y軸方向)において、所定の角度を向いている。
少なくとも一部のノズル401は、リニアソース400の移動方向(Y軸方向)において、互いに異なる角度を有する。一部のノズル401は、一方のY軸方向に傾き、一部のノズル401は他方のY軸方向に傾いていてもよい。図3Aの例において、一部のノズル401は、紙面上側に傾き、一部のノズル401は紙面下側に傾いていてもよい。
一部のノズル401の向きは、メタルマスク503の法線方向と一致してもよい。二つのY軸方向の一方に傾くノズル401が存在しなくてもよい。全ノズル401の向きは、X軸方向において、メタルマスク503の法線方向と一致してもよいし、複数のノズル401が、X軸方向において、異なる向きを有してもよい。
二つの壁405は、配列された複数のノズル401をリニアソース400の移動方向(Y軸方向)において挟むように、配置されている。各壁405は、本体部403からメタルマスクモジュール500に向かって立ち上がり、X軸方向において延在している。図3Bの例において、二つの壁405は平行であり、それらの高さは一致している。二つの壁405の形状及びサイズは、設計に依存して変化し得る。ノズル401の向き及び壁405の高さは、有機発光材料が均等圧力において、面内において均等に蒸着されるように設計される。
各ノズル401の向き及び壁405の高さにより、各ノズル401から噴出した有機発光材料のメタルマスク503及びマザー基板への入射角度が規定される。各壁405は、Y軸方向における、有機発光材料の噴出角度の上限値、つまり、メタルマスク503及びマザー基板への入射角度の上限値を規定する。有機発光材料の入射角度の詳細は後述する。
図3Cは、メタルマスク503の構成例を模式的に示す。図3CにおけるX軸方向及びY軸方向は、図3Aと同様である。メタルマスク503は、略長方形の外形を有し、長手方向(X軸方向)に引張されてフレーム501に固定される。メタルマスク503は、基材本体部531と、長手方向(X軸方向)に配列された複数のマスクパターン部532を含む。図3Cの例において、三つのマスクパターン部532が形成されている。
マスクパターン部532は、開口パターンであって、一つのOLED表示装置10のアクティブエリアに対応する。マスクパターン部532は、このアクティブエリアにおけるR、G又はBの副画素パターンに対応する。マスクパターン部532は、画素配列に対応して配列された開口と、開口の間の遮蔽部とで構成されている。各開口が各副画素に対応し、開口を通過した有機発光材料が、対応する副画素のアノード電極162上に付着される。
メタルマスク503は、さらに、複数のダミーパターン部533及び複数のハーフエッチ部534を含む。図3Cにおいては、六つのダミーパターン部の内の二つのみが、例として、符号533で指示されている。ダミーパターン部533の三つペアが、それぞれ、Y軸方向においてマスクパターン部532を挟むように形成されている。
図3Cにおいて、四つのハーフエッチ部うちの二つのみが、例として、符号534で指示されている。ハーフエッチ部534は、X軸方向においてマスクパターン部532を挟むように形成されている。二つのハーフエッチ部534が一方側、他の二つのハーフエッチ部534が他方側に形成されている。ダミーパターン部533及びハーフエッチ部534は、メタルマスク503が引張に対して均一に伸長するように形成される。ダミーパターン部533及びハーフエッチ部534の有無、数、位置及び形状は設計に依存して任意である。
領域537は、マスクパターン部532の一部の拡大図を示す。副画素配列に対応して、第1開口541(以下、開口541とも記す)が規則的配置で形成されている。開口541から、副画素のアノード電極162が露出している。有機発光材料は、開口541を通過して、アノード電極162に付着する。以下に説明するように、本実施例においては、リニアソース400の移動方向(Y軸方向)における開口541のサイズ及びピッチが重要である。
本例において、リニアソース移動方向(Y軸方向)における、開口541の長さを開口幅HWと記す。リニアソース移動方向(Y軸方向)において隣接する開口541間の遮蔽部をブリッジと記す。リニアソース移動方向(Y軸方向)における、ブリッジの長さをブリッジ幅BWと記す。ブリッジ幅BWは、リニアソース移動方向(Y軸方向)において隣接する開口541の、最近エッジ端の距離である。本例の一つのマスクパターン部532において、開口541の開口幅HWは同一であり、ブリッジのブリッジ幅BWは共通である。
なお、本開示のメタルマスク503は、ストライプ配列、モザイク配列、ペンタル配列等、様々な画素配列に適用することができる。開口541の形状は、設計により決定され、矩形でもよく、矩形以外の形状でもよい。
図4Aは、マスクパターン部532の一部の断面図を示す。図4Aにおいて、マスクパターン部532の上側にマザー基板(図示しない)が配置され、マスクパターン部532の下側をリニアソース400が通過する。図3Cを参照して説明したように、マスクパターン部532は、副画素配列に応じて配置された複数の開口541を有する。以下において、開口541を基準開口とも記す。後述するように、本実施例において、基準開口541は、副画素の有機発光材料の蒸着領域を画定する。
各基準開口541は、リニアソース側穴(空間)545及びマザー基板側穴(空間)546(第2穴546とも記す)の境界である。リニアソース側穴545は、マスクパターン部532のリニアソース側面538から、例えば、ウェットエッチングにより形成される。リニアソース側穴545は、リニアソース側、つまり、基準開口541の反対側に第2開口543を有する。以下において、第2開口543をリニアソース側開口543とも記す。リニアソース側開口543は、リニアソース側面538と一致する。リニアソース側面538は、リニアソース400と対向する面である。
マザー基板側穴546は、マスクパターン部532のマザー基板側面539から、例えば、ウェットエッチングにより形成される。マザー基板側面539は、蒸着対象であるマザー基板と対向する面である。マザー基板側穴546は、マザー基板側、つまり、基準開口541の反対側に第3開口547を有する。以下において、第3開口547をマザー基板側開口547とも記す。マザー基板側開口547は、マザー基板側面539と一致する。
リニアソース側穴545及びマザー基板側穴546それぞれの壁面は、凹傾斜面である。リニアソース側穴545の、リニアソース移動方向(Y軸方向)における幅は、リニアソース側開口543から基準開口541に向かって減少する。マザー基板側穴546の、リニアソース移動方向(Y軸方向)における幅は、マザー基板側開口547から基準開口541に向かって減少する。
リニアソース側穴545及びマザー基板側穴546を、マスクパターン部532の両面からそれぞれ形成することによって、所望サイズの基準開口541を高精度に作成することができる。
図3Cを参照して説明したように、リニアソース移動方向(Y軸方向)において、基準開口541の開口幅HWが定義される。また、基準開口541の隣接エッジ間において、ブリッジ幅BWが定義される。
図4Bは、マスクパターン部532の法線方向において見た、三つの開口541、543及び574の関係を示す。基準開口541は、リニアソース側開口543及びマザー基板側開口547よりも小さく、それらに含まれている。本例においては、リニアソース側開口543が最も大きいが、マザー基板側開口547が最も大きくてもよい。マザー基板側開口547は省略され、基準開口541がマザー基板側面539と同一面上(マザー基板側開口547の位置)に形成されていてもよい。
図5、図6は、移動するリニアソース400、マスクパターン部532、及びマザー基板の関係を模式的に示す第1、第2の図である。図5、図6は、リニアソース400の長手方向(X軸方向)に垂直な、Y軸方向を含む断面を示す。図5と後記する図7とにおいて、アノード電極162、アノード電極162に隣接するアノード電極162R1、162L1は、同一色の副画素に含まれるアノード電極であると想定する。
図6と後記する図8とにおいて、アノード電極162と、アノード電極162に隣接するアノード電極162R2、162L2とは、異なる色の副画素のアノード電極であると想定する。図6、図8の場合、例えば、アノード電極162が青色の副画素に含まれるアノード電極の場合、アノード電極162R2、162L2は赤色の副画素に含まれるアノード電極である。
他にも、例えば、アノード電極162が青色の副画素に含まれるアノード電極の場合、アノード電極162R2、162L2はそれぞれ赤色、緑色の副画素に含まれるアノード電極である。以下、図5、図6を主に参照しながら、本実施の形態のマスクについて詳細に説明する。
マスクパターン部532(マスク503)は、マザー基板に接触している。なお、マザー基板は、アノード電極、アノード電極を絶縁する画素定義層を含む。より具体的には、マザー基板側面539は、スペーサ164の頂面に接触している。画素定義層163の開口から、アノード電極162の表面が露出している。アノード電極162の表面及びアノード電極162の周囲の画素定義層163が、基準開口541から露出している。アノード電極162の表面及びアノード電極162の周囲の画素定義層163に、第1色の有機発光材料、すなわちアノード電極162を含む副画素の有機発光材料は付着する。
図6において、アノード電極162R2、162L2を含む副画素の色は、アノード電極162を含む副画素の色と異なるので、アノード電極162R2、162L2の表面が露出せず、アノード電極162を含む副画素の有機発光材料が付着しないようにする。
図5、図6は、異なる位置における同一のリニアソース400を示し、さらに、異なる位置のリニアソース400において、ノズル401A及び401Bをそれぞれ示す。図5、図6において、左を向くY軸方向をYA方向、右を向くY軸方向をYB方向と記す。リニアソース400の各ノズル401は、リニアソース移動方向(Y軸方向)における、所定の傾斜角度を有する。
ノズル401Aは、リニアソース400において、YA方向に最も大きな傾斜角度を有する。ノズル401Aから噴出した有機発光材料は、所定の発散角度においてマスクパターン部532及びマザー基板に向かって飛行していく。ノズル401Aから噴出した有機発光材料のマザー基板への入射角度は、YA方向においてθ1Mであり、YB方向においてθ2である。マザー基板への入射角度は、マザー基板の蒸着面(主面)の法線と、有機発光材料の入射方向との角度である。本例において、マスクパターン部532への入射角度は、マザー基板への入射角度と一致する。
入射角θ1Mは、リニアソース400の、YA方向における最大入射角度である。本例において、入射角θ1Mは、壁405により規定されている。壁405が存在しない構成において、入射角θ1Mは、ノズル401Aの傾斜角により規定される。リニアソース400は、入射角θ1Mで有機発光材料を噴出する複数のノズルを含み得る。
ノズル401Bは、リニアソース400において、YB方向に最も大きな傾斜角度を有する。ノズル401Bから噴出した有機発光材料は、所定の発散角度においてマスクパターン部532及びマザー基板に向かって飛行していく。ノズル401Bから噴出した有機発光材料のマザー基板への入射角度は、YA方向においてθ1であり、YB方向においてθ2Mである。
入射角θ2Mは、リニアソース400の、YB方向における最大入射角度である。本例において、入射角θ2Mは、壁405により規定されている。壁405が存在しない構成において、入射角θ2Mは、ノズル401Bの傾斜角により規定される。リニアソース400は、入射角θ2Mで有機発光材料を噴出する複数のノズルを含み得る。
マスクパターン部532において、ステップハイトSHが定義される。ステップハイトSHは、基準開口541とマザー基板側開口547との間の法線方向における距離であり、マザー基板側穴546の深さに相当する。
マスクパターン部532において、テーパアングルθT及びステップアングルθSが定義される。図5、図6は、符号により指示されているリニアソース側穴545及びマザー基板側穴546と異なる位置において、テーパアングルθT及びステップアングルθSを示す。同様の角度が、図5が示すリニアソース側穴545及びマザー基板側穴546において定義される。
テーパアングルθTは、リニアソース側穴545のテーパアングルを示す。テーパアングルθTは、リニアソース側開口543のエッジと基準開口541のエッジとを結ぶ線と、Y軸方向との間の角度(鋭角)である。
ステップアングルθSは、マザー基板側穴546のテーパアングルを示す。ステップアングルθSは、マザー基板側開口547のエッジと基準開口541のエッジとを結ぶ線と、Y軸方向との間の角度(鋭角)である。
マスクパターン部532とアノード電極162との間において、アノードデプスADが定義されている。アノードデプスADは、アノード電極162の表面(蒸着面)と、マスクパターン部532のマザー基板側面539と、の間の法線方向における距離である。アノード電極162の表面と基準開口541との間の法線方向における距離(D1)は、アノードデプスADとステップハイトSHとの和である。
図5の例において、リニアソース側穴545及びマザー基板側穴546は左右対称である。したがって、リニアソース側穴545の左右のテーパアングルθTの値は同一である。また、マザー基板側穴546の左右のステップアングルθSの値は同一である。また、アノード電極162、マザー基板側開口547、基準開口541及びリニアソース側開口543の中心位置は、一つのマザー基板法線上に位置する。基準開口541に露出するアノード電極162及び画素定義層163の形状は、左右対称である。
有機発光材料の入射角と、マスクパターン部532の形状とから、マザー基板において有機発光材料が付着する領域についての距離S1L、S1R及び距離S2L、S2Rが決定される。距離S1L、S2Lは、図5における、基準開口541の左側の距離である。距離S1R、S2Rは、図5における、基準開口541の右側の距離である。
距離S1L、S1Rは、基準開口541のエッジと、アノード電極162上で均一に有機材料が付着される領域のエッジとの間のY軸方向における距離である。距離S2L、S2Rは、基準開口541のエッジと、基準開口541を通過した有機発光材料が付着し得る領域のエッジとの間のY軸方向における距離である。距離S2L、S2Rは、有機発光材料が付着し得る領域は、アノード電極162の蒸着面を基準として決定される。
左側の距離S1Lは、右側に傾いているノズル401Bから噴出した有機発光材料により決まる。距離S1Lが示す位置よりも右側において、移動しているノズル401Bから噴出した全ての角度の有機発光材料が、アノード電極162に付着する。後述するように、本例において、有機発光材料の付着領域は、基準開口541により決定される。ノズル401Bから入射する有機発光材料が基準開口541の左側エッジで全て遮蔽される直前の有機発光材料付着位置が、距離S1Lを規定する。
具体的には、距離S1Lは次の数式(1)で表わされる。
S1L=(SH+AD)×tan(θ2M) (1)
右側の距離S1Rは、左側に傾いているノズル401Aから噴出した有機発光材料により決まる。距離S1Rが示す位置よりも左側において、移動しているノズル401Aから入射する全ての角度の有機発光材料が、アノード電極162に付着する。ノズル401Aから噴出した有機発光材料が基準開口541の右側エッジで全て遮蔽される直前の有機発光材料付着位置が、距離S1Rを規定する。
具体的には、距離S1Rは次の数式(2)で表わされる。
S1R=(SH+AD)×tan(θ1M) (2)
左側の距離S2Lは、左側に傾いているノズル401Aから噴出した有機発光材料により決まる。距離S2Lが示す位置が、ノズル401Aから基準開口541を通過した有機発光材料が付着する領域のエッジである。ノズル401Aから角度θ1Mにおいて入射した有機発光材料が、基準開口541の左側エッジで遮蔽される直前の有機発光材料付着位置が、距離S2Lを規定する。
具体的には、距離S2Lは次の数式(3)で表わされる。
S2L=(SH+AD)×tan(θ1M) (3)
右側の距離S2Rは、右側に傾いているノズル401Bから噴出した有機発光材料により決まる。距離S2Rが示す位置が、ノズル401Bから基準開口541を通過した有機発光材料が付着する領域のエッジである。ノズル401Bから角度θ2Mにおいて入射した有機発光材料が、基準開口541の右側エッジで遮蔽される直前の有機発光材料付着位置が、距離S2Rを規定する。
具体的には、距離S2Lは次の数式(4)で表わされる。
S2R=(SH+AD)×tan(θ2M) (4)
上記数式(1)から(4)が示すように、S1L=S2R、及び、S2L=S1Rが成立する。YA方向の最大入射角度θ1MとYB方向の最大入射角度θ2Mとが同一である場合、S1L=S1R=S2R=S2Rが成立する。
以下において、メタルマスク503(マスクパターン部532)の上記数値が満たすべき条件を説明する。有機発光材料の蒸着は、高精度な蒸着位置制御が要求される。そのため、マザー基板への有機発光材料の蒸着領域は、マスクパターン部532のリニアソース側開口543及びマザー基板側開口547に影響されず、基準開口541によって制御されることが重要である。基準開口541を高精度に作成することで、有機発光材料の蒸着領域を高精度に制御することができる。
有機発光材料の蒸着領域を基準開口541によってのみ制御するため、テーパアングルθT及びステップアングルθSは、有機発光材料の最大入射角θ1M及びθ2Mと所定の関係を満たすことが必要である。
具体的には、テーパアングルθTは以下の数式(5)、(6)を満たすことが必要である。
θT<90−θ1M (5)
θT<90−θ2M (6)
数式(5)、(6)が満たされることにより、距離S1L、S2L、S1R、及びS2Rを、テーパアングルθTから独立の値とすることができる。ここで、数式(5)、(6)は、数式(7)と同義である。
θT<90−max(θ1M、θ2M) (7)
max(θ1M、θ2M)は、θ1M、θ2Mのうちの大きい値である。
数式(7)が満たされる場合、移動するリニアソース400からの有機発光材料は、まず、リニアソース側開口543を通過した後、基準開口541を通過することなく、遮蔽部(ブリッジ)により遮蔽される。その後、リニアソース400がさらに移動すると、有機発光材料は、基準開口541を通過するようになる。この現象は、YA方向の移動及びYB方向の移動において同様である。
数式(7)が満たされない場合、特に、距離S1L又は距離S1Rが、リニアソース側開口543により規定される。数式(7)が満たされることで、アノード電極162上の均一蒸着領域を基準開口541により高精度に規定できる。
ステップアングルθSは以下の数式(8)、(9)を満たすことが必要である。
θS<90−θ1M (8)
θS<90−θ2M (9)
数式(8)、(9)が満たされることにより、距離S1L、S2L、S1R、及びS2Rを、ステップアングルθSから独立の値とすることができる。ここで、数式(8)、(9)は、数式(10)と同義である。
θS<90−max(θ1M、θ2M) (10)
数式(10)が満たされる場合、基準開口541を通過した全ての有機発光材料は、マザー基板側開口547を通過する。有機発光材料が、マザー基板側開口547のエッジによって遮蔽されることはない。
数式(10)が満たされない場合、特に、距離S2L又は距離S2Rが、マザー基板側開口547により規定される。数式(10)が満たされることで、蒸着領域エッジを基準開口541により高精度に規定できる。
OLED表示装置の設計は、製造されたOLED表示装置において、距離S1L、S2L、S1R、及びS2Rが、規定範囲内に含まれることを要求する。具体的には、距離S1L、S2L、S1R、及びS2Rそれぞれの許容最大値S1LM、S2LM、S1RM、及び、S2RMが定義される。
例えば、S1LM、S1RMは、基準開口541のエッジからアノード電極162の露出面のエッジまでの、Y軸方向における距離である。S2LM、S2RMは、基準開口541のエッジから、アノード電極162に隣接する隣接副画素電極(例えば、アノード電極162L2、162R2)の露出面のエッジまでの、Y軸方向における距離である。
許容最大値S1Mにより、各副画素の必要な発光特性を実現する。許容最大値S2Mにより、特定の副画素の有機発光材料が、隣接する副画素に侵入し、カラーミックスが発生することを防ぐ。
以上の観点から、以下の数式(11)から(14)が成立することが要求される。
S1LM>S1L=(SH+AD)×tan(θ2M) (11)
S1RM>S1R=(SH+AD)×tan(θ1M) (12)
S2LM>S2L=(SH+AD)×tan(θ1M) (13)
S2RM>S2R=(SH+AD)×tan(θ2M) (14)
max(S1LM、S1RM)をS1Mとし、max(S2LM、S2RM)をS2Mとし、さらに、max(θ1M、θ2M)をθMとする。数式(11)及び数式(12)は、下記数式(15)で表わされ、数式(13)及び数式(14)は、下記数式(16)で表わされる。
S1M(SY)>(SH+AD)×tan(θM) (15)
S2M(SX)>(SH+AD)×tan(θM) (16)
式(16)を満たすことにより、例えば図6において、アノード電極162を含む第1の副画素の第1色の有機発光材料が、第1の副画素に隣接する第2の副画素に含まれる隣接アノード電極(例えば、アノード電極162L2)に蒸着することを防ぐことができる。その結果、カラーミックスの発生を抑制できる。なお、第2の副画素は、第2色の副画素であり、この隣接アノード電極には、第1色の有機発光材料が蒸着されずに、第2色の有機発光材料が蒸着されることが好ましい。
OLED表示装置10の製造工程の一つである有機発光材料の蒸着ステップは、数式(5)及び(6)を満たす条件において実行される。さらに、蒸着ステップは、数式(11)から(14)、又は数式(15)及び(16)を満たす条件において実行される。アノード電極162上の有機発光膜の均一性への要求が低い場合に、設計によっては、数式(11)及び(12)(数式15)は、製造条件に含まれていなくてもよい。
同様に、メタルマスク503は、数式(5)及び(6)を満たす構造を有する(ように製造される)。さらに、メタルマスク503は、数式(11)から(14)、又は数式(15)及び(16)を満たす構造を有する(ように製造される)。メタルマスク503に対して、S1LM、S1RM、S2LM、S2RM、AD、θ1M、及びθ2Mは所与の値である。
メタルマスク503のステップアングルθSは、数式(5)及び(6)を満たし、ステップハイトSHは、数式(15)及び(16)を満たす。また、メタルマスク503がこれらの条件を満たすように、メタルマスク503は製造される。上述のように、設計によっては、数式(15)の条件が省略されてもよい。
図7、図8は、リニアソース400、マスクパターン部532、及びマザー基板の関係を模式的に示す。図7、図8は、リニアソース400の移動方向(Y軸方向)に垂直な、X軸方向を含む、断面を示し、それぞれ図5、図6に対応している。
テーパアングルθT及びステップアングルθSは、図5に示すY軸方向における値とは異なっていても同一でもよい。距離S1L、S1R、S2L、S2Rについても同様である。X軸方向については、テーパアングルθTが小さければ小さい程遮断される有機発光材料が少なくなる。ただし、ノズル401からの噴出する方向は、角度垂直方向を中心とする所定の分布角度を有するため、必要以上にテーパアングルθTを小さくする必要はない。
図7、図8に示すように、複数のノズル401がX軸方向に配列されている。一つの副画素に対する有機発光材の蒸着の観点から、ノズル401の配置領域は、テーパアングルによって、複数のセクションに分割される。
具体的には、ノズル配置領域は、一つの均一蒸着範囲601、二つの一部蒸着範囲603、及び二つの蒸着不可範囲605に分割される。均一蒸着範囲601は、二つの一部蒸着範囲603に挟まれ、均一蒸着範囲601は、二つの一部蒸着範囲603は、二つの蒸着不可範囲605に挟まれている。
均一蒸着範囲601のノズル401から噴出する全ての有機発光材料は、基板上で均一蒸着が要求される領域に付着する。一部蒸着範囲603のノズル401から噴出する一部のみの有機発光材料が、基板上で均一蒸着が要求される領域に付着する。蒸着不可範囲605のノズル401から噴出する有機発光材料は、基板上で均一蒸着が要求される領域に付着しない。
以下において、製造における誤差を考慮した設計及び製造方法について説明する。例えば、メタルマスク503の製造、メタルマスクモジュール500の組み立て、及び、メタルマスクモジュール500とマザー基板との位置合わせを、それぞれ、常に誤差なく行うことは困難である。
そのため、メタルマスク503の設計及びそのメタルマスク503を使用した蒸着工程において、OLED表示装置10の製造のための工程マージンが予め定義される。工程マージンを考慮して設計及び製造することによって、より確実に、マザー基板上の所望の領域にメタルマスク503を介して有機発光材料を蒸着することができる。
メタルマスク503において、考慮すべきばらつきは、開口ピッチばらつき、開口サイズばらつき、及びアライメントばらつきである。これら全てを含むトータルばらつきを考慮してメタルマスク503及びOLED表示装置10の製造システムを設計することで、より確実に、マザー基板上の所望の領域にメタルマスク503を介して有機発光材料を蒸着することができる。
メタルマスク503の設計において、開口ピッチの規定偏差ΔTp、開口サイズの規定偏差ΔCd及びアライメントの規定偏差ΔAeが予め決められている。メタルマスク設計は、これらの偏差のトータル偏差を含む所定条件を満たすように、メタルマスク503を設計する。
図9Aは、開口ピッチの規定偏差ΔTpを説明するための図を示す。開口ピッチの規定偏差ΔTpは、メタルマスクモジュール500における開口ピッチの設計値に対する、実際の値の偏差(の設計値)を示す。X軸方向における開口ピッチの規定偏差ΔTpxとY軸方向における開口ピッチの規定偏差ΔTpyが存在する。本実施形態は、特に、Y軸方向における開口ピッチの規定偏差ΔTpyを考慮して、マスク設計を行う。
図9Bは、開口サイズの規定偏差ΔTpを説明するための図を示す。開口サイズの規定偏差ΔTpは、メタルマスクモジュール500における開口サイズの設計値に対する、実際の値の偏差(の設計値)を示す。X軸方向における開口サイズの規定偏差ΔCdxとY軸方向における開口サイズの規定偏差ΔCdyが存在する。本実施形態は、特に、Y軸方向における開口サイズの規定偏差ΔCdyを考慮して、マスク設計を行う。
図9Cは、アライメントの規定偏差ΔTpを説明するための図を示す。アライメントの規定偏差ΔTpは、マスクパターン部532のマザー基板に対する位置決めにおける、設計値に対する、実際の値の偏差(の設計値)を示す。X軸方向におけるアライメントの規定偏差ΔAexとY軸方向におけるアライメントの規定偏差ΔAeyが存在する。本実施形態は、特に、Y軸方向におけるアライメントの規定偏差ΔAeyを考慮して、マスク設計を行う。
メタルマスク設計は、数式(7)及び(10)に加え、以下の数式17から20、又は、数式21及び22を満たすように、メタルマスク503を設計する。
S1LM>S1L=(SH+AD)×tan(θ2M)
+(ΔTp+ΔCd+ΔAe1/2 (17)
S1RM>S1R=(SH+AD)×tan(θ1M)
+(ΔTp+ΔCd+ΔAe1/2 (18)
S2LM>S2L=(SH+AD)×tan(θ1M)
+(ΔTp+ΔCd+ΔAe1/2 (19)
S2RM>S2R=(SH+AD)×tan(θ2M)
+(ΔTp+ΔCd+ΔAe1/2 (20)
S1M>(SH+AD)×tan(θM)
+(ΔTp+ΔCd+ΔAe1/2 (21)
S2M>(SH+AD)×tan(θM)
+(ΔTp+ΔCd+ΔAe1/2 (22)
ここで、ステップハイトSH以外の数値は、メタルマスク設計において所与の値である。OLED表示装置10の製造は、上記条件に従って設計されたメタルマスク503を使用して、有機発光材料をマザー基板に蒸着させる。
以上、本発明の実施形態を説明したが、本発明が上記の実施形態に限定されるものではない。当業者であれば、上記の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能である。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。
OLED10 表示装置、100 TFT基板、111 絶縁基板、114 カソード電極形成領域、125 表示領域、131 走査ドライバ、132 エミッションドライバ、151 絶縁基板、152 第1絶縁膜、155 チャネル部、156 ゲート絶縁膜、157 ゲート電極、158 層間絶縁膜、159 ソース電極、160 ドレイン電極、161 平坦化膜、162 アノード電極、163 画素定義層、164 スペーサ、165 有機発光層、166 カソード電極、168 コンタクト部、200 封止基板、201 位相差板、202 偏光板、400 リニアソース、401 ノズル、403 本体部、405 壁、503 メタルマスク、532 マスクパターン部、538 リニアソース側面、539 マザー基板側面、541 基準開口、543 リニアソース側開口、546 マザー基板側穴、545 リニアソース側穴、547 マザー基板側開口、HW 基準開口の開口幅、θT テーパアングル、θS ステップアングル

Claims (13)

  1. OLED表示装置の製造方法であって、
    複数のノズルを含むリニアソースを第1方向に移動しながら、基板上の電極面に、マスクを介して、有機発光材料を蒸着することを含み、
    前記マスクは、前記リニアソースへの対向面に形成された複数の穴を含み、
    前記複数の穴の各穴は、第1開口と、前記第1開口と前記リニアソースとの間に位置し、前記第1開口より大きい第2開口とを含み、
    前記第1開口から前記電極面までの距離D1
    前記第1方向における前記有機発光材料の最大入射角θM
    前記第1開口のエッジから前記第1方向における隣接副画素電極までの距離SX
    前記第1開口のエッジと前記第2開口のエッジとを結ぶ直線と前記第1方向との間で決まるテーパアングルθT
    として、
    θT<90−θM
    SX>D1tanθM
    が満たされている、製造方法。
  2. 請求項1に記載の製造方法であって、
    前記マスクは、前記リニアソースへの前記対向面の反対面に、前記複数の穴それぞれと重なる複数の第2穴を含み、
    前記複数の第2穴のそれぞれは、前記第1開口と前記基板との間に位置し、前記第1開口より大きい第3開口を含み、
    前記第1開口のエッジと前記第3開口のエッジとを結ぶ直線と前記第1方向との間で決まるステップアングルθSは、
    θS<90−θM
    を満たす、製造方法。
  3. 請求項1又は2に記載の製造方法であって、
    前記第1開口のエッジから前記第1開口から露出する電極面までの距離SYは、
    SY>D1tanθM
    を満たす、製造方法。
  4. 請求項1、2又は3に記載の製造方法であって、
    開口ピッチの規定偏差ΔTp
    開口サイズの規定偏差ΔCd
    アライメントの規定偏差ΔAe
    が定義されており、
    SX>D1×tan(θM)+(ΔTp+ΔCd+ΔAe1/2
    を満たす、製造方法。
  5. 請求項4に記載の製造方法であって、
    SY>D1×tan(θM)+(ΔTp+ΔCd+ΔAe1/2
    を満たす、製造方法。
  6. 請求項1に記載の製造方法であって、
    前記有機発光材料は、第1色の有機発光材料であって、
    前記隣接副画素電極には、第2色の有機発光材料が蒸着される、製造方法。
  7. 複数のノズルを含み第1方向に移動するリニアソースと基板上の電極面との間に配置され、前記電極面に対する有機発光材料の蒸着において使用されるマスクであって、
    前記リニアソースへの対向面に形成された複数の穴を含み、
    前記複数の穴の各穴は、第1開口と、前記第1開口と前記リニアソースとの間に位置し、前記第1開口より大きい第2開口とを含み、
    前記第1開口から前記電極面までの距離D1
    前記第1方向における前記有機発光材料の最大入射角θM
    前記第1開口のエッジから前記第1方向における隣接副画素電極までの距離SX
    前記第1開口のエッジと前記第2開口のエッジとを結ぶ直線と前記第1方向との間で決まるテーパアングルθT
    として、
    θT<90−θM
    SX>D1tanθM
    を満たす、マスク。
  8. 請求項7に記載のマスクであって、
    前記リニアソースへの前記対向面の反対面に、前記複数の穴それぞれと重なる複数の第2穴を含み、
    前記複数の第2穴のそれぞれは、前記第1開口と前記基板との間に位置し、前記第1開口より大きい第3開口を含み、
    前記第1開口のエッジと前記第3開口のエッジとを結ぶ直線と前記第1方向との間で決まるステップアングルθSは、
    θS<90−θM
    を満たす、マスク。
  9. 請求項7又は8に記載のマスクであって、
    前記第1開口のエッジから前記第1開口から露出する面までの距離SYは、
    SY>D1tanθM
    を満たす、マスク。
  10. 請求項7、8又は9に記載のマスクであって、
    開口ピッチの規定偏差ΔTp
    開口サイズの規定偏差ΔCd
    アライメントの規定偏差ΔAe
    が定義されており、
    SX>D1×tan(θM)+(ΔTp+ΔCd+ΔAe1/2
    を満たす、マスク。
  11. 請求項10に記載のマスクであって、
    SY>D1×tan(θM)+(ΔTp+ΔCd+ΔAe1/2
    を満たす、マスク。
  12. 複数のノズルを含み第1方向に移動するリニアソースと基板上の電極面との間に配置され、前記電極面に対する有機発光材料の蒸着において使用されるマスクの設計方法であって、
    前記マスクは、前記リニアソースへの対向面に形成された複数の穴を含み、
    前記複数の穴の各穴は、第1開口と、前記第1開口と前記リニアソースとの間に位置し、前記第1開口より大きい第2開口とを含み、
    前記設計方法は、
    前記第1方向における前記有機発光材料の最大入射角θM
    前記第1開口のエッジから隣接副画素への、前記第1方向における距離S1
    の値を予め定義し、
    前記第1開口から前記電極面までの距離D1と、
    前記第1開口のエッジと前記第2開口のエッジとを結ぶ直線と前記第1方向との間で決まるテーパアングルθTと、前記第1開口から前記電極面までの距離D1とを、
    θT<90−θM
    SX>D1tanθM
    が満たされるように決定する、設計方法。
  13. 請求項12に記載の設計方法であって、
    前記第1開口のエッジから前記第1開口から露出する電極面までの規定距離SYの値を予め定義し、
    前記第1開口から前記電極面までの距離D1を、
    SY>D1tanθM
    が満たされるように決定する、設計方法。
JP2017066366A 2017-03-29 2017-03-29 Oled表示装置の製造方法、マスク及びマスクの設計方法 Pending JP2018170152A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017066366A JP2018170152A (ja) 2017-03-29 2017-03-29 Oled表示装置の製造方法、マスク及びマスクの設計方法
CN201810158926.1A CN108695361B (zh) 2017-03-29 2018-02-26 Oled显示装置的制造方法、掩模及掩模的设计方法
US15/937,899 US10263185B2 (en) 2017-03-29 2018-03-28 Method of manufacturing OLED display device, mask, and method of designing mask
JP2021176444A JP7232882B2 (ja) 2017-03-29 2021-10-28 Oled表示装置の製造方法、マスク及びマスクの設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066366A JP2018170152A (ja) 2017-03-29 2017-03-29 Oled表示装置の製造方法、マスク及びマスクの設計方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021176444A Division JP7232882B2 (ja) 2017-03-29 2021-10-28 Oled表示装置の製造方法、マスク及びマスクの設計方法

Publications (2)

Publication Number Publication Date
JP2018170152A true JP2018170152A (ja) 2018-11-01
JP2018170152A5 JP2018170152A5 (ja) 2020-04-16

Family

ID=63670768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066366A Pending JP2018170152A (ja) 2017-03-29 2017-03-29 Oled表示装置の製造方法、マスク及びマスクの設計方法

Country Status (3)

Country Link
US (1) US10263185B2 (ja)
JP (1) JP2018170152A (ja)
CN (1) CN108695361B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199401A1 (ja) * 2020-04-02 2021-10-07 シャープ株式会社 蒸着マスク、表示パネル、及び表示パネルの製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108496260B (zh) 2015-10-26 2020-05-19 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
CN108735915B (zh) * 2017-04-14 2021-02-09 上海视涯技术有限公司 用于oled蒸镀的荫罩及其制作方法、oled面板的制作方法
KR102563713B1 (ko) 2017-04-26 2023-08-07 오티아이 루미오닉스 인크. 표면의 코팅을 패턴화하는 방법 및 패턴화된 코팅을 포함하는 장치
US11043636B2 (en) 2017-05-17 2021-06-22 Oti Lumionics Inc. Method for selectively depositing a conductive coating over a patterning coating and device including a conductive coating
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
US11655536B2 (en) * 2018-03-20 2023-05-23 Sharp Kabushiki Kaisha Film forming mask and method of manufacturing display device using same
WO2019215591A1 (en) 2018-05-07 2019-11-14 Oti Lumionics Inc. Method for providing an auxiliary electrode and device including an auxiliary electrode
US11613801B2 (en) 2018-05-14 2023-03-28 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Masks and display devices
WO2019218606A1 (zh) * 2018-05-14 2019-11-21 昆山国显光电有限公司 掩膜板、显示器件、显示面板及显示终端
US11773477B2 (en) * 2018-12-25 2023-10-03 Dai Nippon Printing Co., Ltd. Deposition mask
JP6900961B2 (ja) * 2019-02-28 2021-07-14 セイコーエプソン株式会社 画像表示装置および虚像表示装置
WO2020178804A1 (en) 2019-03-07 2020-09-10 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN110137238A (zh) * 2019-06-21 2019-08-16 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
KR20220046551A (ko) 2019-06-26 2022-04-14 오티아이 루미오닉스 인크. 광 회절 특성을 갖는 광 투과 영역을 포함하는 광전자 디바이스
US11832473B2 (en) 2019-06-26 2023-11-28 Oti Lumionics Inc. Optoelectronic device including light transmissive regions, with light diffraction characteristics
KR20220045202A (ko) 2019-08-09 2022-04-12 오티아이 루미오닉스 인크. 보조 전극 및 파티션을 포함하는 광전자 디바이스
CN110943109A (zh) * 2019-11-22 2020-03-31 武汉华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法
CN110931639A (zh) * 2019-11-26 2020-03-27 武汉华星光电半导体显示技术有限公司 可提高像素分辨率的像素排列显示设备与蒸镀方法
JP2021175824A (ja) * 2020-03-13 2021-11-04 大日本印刷株式会社 有機デバイスの製造装置の蒸着室の評価方法、評価方法で用いられる標準マスク装置及び標準基板、標準マスク装置の製造方法、評価方法で評価された蒸着室を備える有機デバイスの製造装置、評価方法で評価された蒸着室において形成された蒸着層を備える有機デバイス、並びに有機デバイスの製造装置の蒸着室のメンテナンス方法
CN114556566B (zh) * 2020-09-18 2023-12-12 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
US11985841B2 (en) 2020-12-07 2024-05-14 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating
CN113380701B (zh) * 2021-05-28 2023-03-21 惠科股份有限公司 薄膜晶体管的制作方法和掩膜版
TWI777604B (zh) * 2021-06-08 2022-09-11 友達光電股份有限公司 畫素陣列及其製作方法,金屬光罩及其製作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030975A (ja) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd 有機電子発光素子用メタルマスク及びこれを利用した有機電子発光素子の製造方法
JP2004185832A (ja) * 2002-11-29 2004-07-02 Samsung Nec Mobile Display Co Ltd 蒸着マスク、これを利用した有機el素子の製造方法及び有機el素子
JP2004335460A (ja) * 2003-05-06 2004-11-25 Lg Electron Inc 有機電界発光素子製作用シャドーマスク
JP2013147739A (ja) * 2012-01-19 2013-08-01 Samsung Display Co Ltd 蒸着用マスク及びこれを含む蒸着設備
CN105655382A (zh) * 2016-04-08 2016-06-08 京东方科技集团股份有限公司 显示基板制作方法、显示基板和显示装置
US20160333457A1 (en) * 2015-05-13 2016-11-17 Boe Technology Group Co., Ltd. Mask plate, method for fabricating the same, display panel and display device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3765314B2 (ja) * 2004-03-31 2006-04-12 セイコーエプソン株式会社 マスク、マスクの製造方法、電気光学装置の製造方法および電子機器
WO2011148750A1 (ja) * 2010-05-28 2011-12-01 シャープ株式会社 蒸着マスク及びこれを用いた有機el素子の製造方法と製造装置
KR101146996B1 (ko) * 2010-07-12 2012-05-23 삼성모바일디스플레이주식회사 유기 발광 표시 장치의 제조 방법
US9076989B2 (en) * 2010-12-27 2015-07-07 Sharp Kabushiki Kaisha Method for forming deposition film, and method for producing display device
KR101942471B1 (ko) * 2012-06-15 2019-01-28 삼성디스플레이 주식회사 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조방법
KR102103247B1 (ko) * 2012-12-21 2020-04-23 삼성디스플레이 주식회사 증착 장치
JP5856584B2 (ja) * 2013-06-11 2016-02-10 シャープ株式会社 制限板ユニットおよび蒸着ユニット並びに蒸着装置
US9142779B2 (en) * 2013-08-06 2015-09-22 University Of Rochester Patterning of OLED materials
JP6241903B2 (ja) * 2014-03-11 2017-12-06 株式会社Joled 蒸着装置及び蒸着装置を用いた蒸着方法、及びデバイスの製造方法
KR102322012B1 (ko) * 2014-10-20 2021-11-05 삼성디스플레이 주식회사 표시 장치의 제조 장치 및 표시 장치의 제조 방법
KR102391346B1 (ko) * 2015-08-04 2022-04-28 삼성디스플레이 주식회사 유기 발광 표시 장치, 유기층 증착 장치 및 이를 이용한 유기 발광 표시 장치의 제조방법
KR102399569B1 (ko) * 2015-10-28 2022-05-19 삼성디스플레이 주식회사 마스크 어셈블리, 표시 장치의 제조 장치 및 표시 장치의 제조 방법
TWI721170B (zh) * 2016-05-24 2021-03-11 美商伊麥傑公司 蔽蔭遮罩沉積系統及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030975A (ja) * 2002-06-21 2004-01-29 Samsung Nec Mobile Display Co Ltd 有機電子発光素子用メタルマスク及びこれを利用した有機電子発光素子の製造方法
JP2004185832A (ja) * 2002-11-29 2004-07-02 Samsung Nec Mobile Display Co Ltd 蒸着マスク、これを利用した有機el素子の製造方法及び有機el素子
JP2004335460A (ja) * 2003-05-06 2004-11-25 Lg Electron Inc 有機電界発光素子製作用シャドーマスク
JP2013147739A (ja) * 2012-01-19 2013-08-01 Samsung Display Co Ltd 蒸着用マスク及びこれを含む蒸着設備
US20160333457A1 (en) * 2015-05-13 2016-11-17 Boe Technology Group Co., Ltd. Mask plate, method for fabricating the same, display panel and display device
CN105655382A (zh) * 2016-04-08 2016-06-08 京东方科技集团股份有限公司 显示基板制作方法、显示基板和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199401A1 (ja) * 2020-04-02 2021-10-07 シャープ株式会社 蒸着マスク、表示パネル、及び表示パネルの製造方法

Also Published As

Publication number Publication date
CN108695361B (zh) 2023-06-20
US20180287064A1 (en) 2018-10-04
CN108695361A (zh) 2018-10-23
US10263185B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN108695361B (zh) Oled显示装置的制造方法、掩模及掩模的设计方法
US10886492B2 (en) Array substrate and display panel comprising fracture opening for blocking carrier transportation between adjacent sub-pixels
US10671200B2 (en) Display device and method of manufacturing the same
CN109216413B (zh) Oled显示设备及其制造方法
US10862076B2 (en) OLED display device, mask, and method of manufacturing OLED display device
JP7011149B2 (ja) 表示装置及びその製造方法
US10665815B2 (en) Naturally discontinuous display mother-substrate and method of manufacturing the same, display substrate and display apparatus
US11239282B2 (en) Pixel structure and fabrication method thereof, display substrate and display apparatus
US11362157B2 (en) Display panel, display device and manufacturing method of the display panel
US20120156812A1 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
US10840469B2 (en) OLED display device and manufacturing method thereof
KR20090049515A (ko) 유기 발광 표시 장치 및 그 제조 방법
JP2019020677A (ja) Oled表示装置、その回路、及びその製造方法
JP7232882B2 (ja) Oled表示装置の製造方法、マスク及びマスクの設計方法
TW202002276A (zh) 顯示裝置及其製造方法
US20220077276A1 (en) Electronic device, display apparatus, display substrate and manufacturing method therefor
WO2019037324A1 (zh) Oled显示面板及其制作方法
CN111293152A (zh) 显示用基板及其制备方法、电致发光显示装置
US20220115452A1 (en) Display Substrate, Display Panel, Display Device and Manufacturing Method of Display Panel
US11158681B2 (en) OLED display device and method of manufacturing OLED display device
CN113053967A (zh) 显示面板及其制备方法、显示装置
JP2013080661A (ja) 表示装置及びその製造方法
US20220059629A1 (en) Display device
CN115298722B (zh) 蒸镀掩模、显示面板及显示面板的制造方法
US11398529B2 (en) Display panel and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629