JP2016201564A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2016201564A
JP2016201564A JP2016151105A JP2016151105A JP2016201564A JP 2016201564 A JP2016201564 A JP 2016201564A JP 2016151105 A JP2016151105 A JP 2016151105A JP 2016151105 A JP2016151105 A JP 2016151105A JP 2016201564 A JP2016201564 A JP 2016201564A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
semiconductor layer
layer
single crystal
crystal region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016151105A
Other languages
English (en)
Other versions
JP6251781B2 (ja
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
拓也 廣橋
Takuya Hirohashi
拓也 廣橋
高橋 正弘
Masahiro Takahashi
正弘 高橋
貴志 島津
Takashi Shimazu
貴志 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2016201564A publication Critical patent/JP2016201564A/ja
Application granted granted Critical
Publication of JP6251781B2 publication Critical patent/JP6251781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

【課題】基板の大面積化を可能とするとともに、結晶性の優れた酸化物半導体層を形成し
、所望の高い電界効果移動度を有するトランジスタを製造可能とし、大型の表示装置や高
性能の半導体装置等の実用化を図る。
【解決手段】基板上に第1の多元系酸化物半導体層を形成し、第1の多元系酸化物半導体
層上に一元系酸化物半導体層を形成し、500℃以上1000℃以下、好ましくは550
℃以上750℃以下の加熱処理を行って表面から内部に向かって結晶成長させ、第1の単
結晶領域を有する多元系酸化物半導体層、及び単結晶領域を有する一元系酸化物半導体層
を形成し、単結晶領域を有する一元系酸化物半導体層上に第2の単結晶領域を有する多元
系酸化物半導体層を積層する。
【選択図】図2

Description

トランジスタなどの半導体素子を少なくとも一つの素子として含む回路を有する半導体装
置及びその作製方法に関する。例えば、電源回路に搭載されるパワーデバイスや、メモリ
、サイリスタ、コンバータ、イメージセンサなどを含む半導体集積回路、液晶表示パネル
に代表される電気光学装置や発光素子を有する発光表示装置のいずれかを部品として搭載
した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、電気光学装置、半導体回路及び電子機器は全て半導体装置である。
液晶表示装置に代表されるように、ガラス基板等に形成されるトランジスタはアモルファ
スシリコン、多結晶シリコンなどによって構成されている。アモルファスシリコンを用い
たトランジスタは電界効果移動度が低いもののガラス基板の大面積化に対応することがで
きる。また、多結晶シリコンを用いたトランジスタの電界効果移動度は高いがガラス基板
の大面積化には適していないという欠点を有している。
シリコンを用いたトランジスタに対して、酸化物半導体を用いてトランジスタを作製し、
電子デバイスや光デバイスに応用する技術が注目されている。例えば酸化物半導体として
、酸化亜鉛、In−Ga−Zn−O系酸化物を用いてトランジスタを作製し、表示装置の
画素のスイッチング素子などに用いる技術が特許文献1及び特許文献2で開示されている
特開2007−123861号公報 特開2007−96055号公報
また、大型の表示装置が普及しつつある。家庭用のテレビにおいても表示画面の対角が4
0インチから50インチクラスのテレビも普及し始めている。
従来の酸化物半導体を用いたトランジスタの電界効果移動度は10〜20cm/Vsが
得られている。酸化物半導体を用いたトランジスタは、アモルファスシリコンのトランジ
スタの10倍以上の電界効果移動度が得られるため、大型の表示装置においても画素のス
イッチング素子としては十分な性能が得られる。
しかし、酸化物半導体を用いたトランジスタを半導体装置の駆動デバイス、例えば大型の
表示装置等の駆動回路の一つのスイッチング素子として用いるには限界があった。
本発明の一態様は、基板の大面積化を可能とするとともに、結晶性の優れた酸化物半導体
層を形成し、所望の高い電界効果移動度を有するトランジスタを製造可能とし、大型の表
示装置や高性能の半導体装置等の実用化を図ることを課題の一つとする。
本発明の一態様は、基板上に第1の多元系酸化物半導体層を形成し、第1の多元系酸化物
半導体層上に一元系酸化物半導体層を形成し、500℃以上1000℃以下、好ましくは
550℃以上750℃以下の加熱処理を行って表面から内部に向かって結晶成長させ、第
1の単結晶領域を有する多元系酸化物半導体層及び単結晶領域を有する一元系酸化物半導
体層を形成し、単結晶領域を有する一元系酸化物半導体層上に第2の単結晶領域を有する
多元系酸化物半導体層を積層することを特徴とする。なお、第1の単結晶領域を有する多
元系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域
を有する多元系酸化物半導体層の単結晶領域は、その表面に結晶方位の揃った平板状の単
結晶領域である。平板状の単結晶領域は、その表面に平行にa−b面を有し、第1の単結
晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び
第2の単結晶領域を有する多元系酸化物半導体層の表面に対して垂直方向にc軸配向をし
ている。また、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一
元系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層のc軸方向は
、深さ方向に一致する。
第1の多元系酸化物半導体層上に一元系酸化物半導体層を形成し、500℃以上1000
℃以下、好ましくは550℃以上750℃以下の加熱処理を行って表面から内部に向かっ
て結晶成長させ、単結晶領域を有する一元系酸化物半導体層を形成する。単結晶領域を有
する一元系酸化物半導体層の表面に形成される、結晶方位の揃った単結晶領域は、表面か
ら深さ方向に結晶成長するため、一元系酸化物半導体層の下地部材の影響を受けることな
く単結晶領域を形成することができる。また、当該単結晶領域を有する一元系酸化物半導
体層を種として、第1の多元系酸化物半導体層の表面よりエピタキシャル成長またはアキ
シャル成長させて、第1の多元系酸化物半導体層を結晶成長させるため、第1の多元系酸
化物半導体層の下地部材の影響を受けることなく単結晶領域を形成することができる。
第2の単結晶領域を有する多元系酸化物半導体層は、単結晶領域を有する一元系酸化物半
導体層上に第2の多元系酸化物半導体層を形成した後、100℃以上500℃以下、好ま
しくは150℃以上400℃以下の加熱処理を行って、単結晶領域を有する一元系酸化物
半導体層の表面より上方の第2の多元系酸化物半導体層の表面に向かって結晶成長をさせ
て、形成することができる。すなわち、単結晶領域を有する一元系酸化物半導体層は、第
2の多元系酸化物半導体層にとっては種結晶に相当する。
また、第2の単結晶領域を有する多元系酸化物半導体層は、単結晶領域を有する一元系酸
化物半導体層上に、200℃以上600℃以下、好ましくは200℃以上550℃以下に
加熱しながら堆積、代表的にはスパッタリング法を用いて堆積することで、単結晶領域を
有する一元系酸化物半導体層の表面よりエピタキシャル成長またはアキシャル成長させて
、第2の単結晶領域を有する多元系酸化物半導体層を形成することができる。すなわち、
単結晶領域を有する一元系酸化物半導体層は、第2の単結晶領域を有する多元系酸化物半
導体層にとっては種結晶に相当する。
第1の単結晶領域を有する多元系酸化物半導体層、及び第2の単結晶領域を有する多元系
酸化物半導体層は、単結晶領域を有する一元系酸化物半導体層を種結晶として結晶成長し
ているため、単結晶領域を有する一元系酸化物半導体層と実質的に同じ結晶方位を有する
この後、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸
化物半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層を島状にエッチング
し、第2の単結晶領域を有する多元系酸化物半導体層上に、ソース電極及びドレイン電極
を形成した後、ゲート絶縁層及びゲート電極を形成することで、トップゲート構造のトラ
ンジスタを作製することができる。
また、基板上にゲート電極及びゲート絶縁層を形成したのち、ゲート絶縁層上に第1の単
結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層及び
第2の単結晶領域を有する多元系酸化物半導体層を形成し、当該第1の単結晶領域を有す
る多元系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶
領域を有する多元系酸化物半導体層を島状にエッチングし、ソース電極及びドレイン電極
を形成することで、ボトムゲート構造のトランジスタを作製することができる。
また、本発明の一形態は、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域
を有する一元系酸化物半導体層及び第2の単結晶領域を有する多元系酸化物半導体層を有
する酸化物半導体積層体と、ゲート電極と、酸化物半導体積層体及びゲート電極の間に設
けられるゲート絶縁層と、酸化物半導体積層に電気的に接続する配線とを有する薄膜トラ
ンジスタを備える半導体装置である。
第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物半導
体層を形成するための加熱処理、及び第2の単結晶領域を有する多元系酸化物半導体層を
形成するための加熱処理は、水素及び水分をほとんど含まない雰囲気(窒素雰囲気、酸素
雰囲気、乾燥空気雰囲気など)で行うことが好ましい。この加熱処理により、一元系酸化
物半導体層及び多元系酸化物半導体層中から水素、水、水酸基または水素化物などを脱離
させる脱水化または脱水素化が行われ、第1の単結晶領域を有する多元系酸化物半導体層
、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化
物半導体層を高純度化することができる。また、当該加熱処理は、不活性雰囲気で昇温し
、途中で切り替え、酸素を含む雰囲気とする加熱処理を行うことも可能であり、酸素雰囲
気で加熱処理を行う場合は、酸化物半導体層を酸化するため、酸素欠陥を修復することが
できる。当該加熱処理を行った単結晶領域を有する酸化物半導体層は、TDS(Ther
mal Desorption Spectroscopy)で450℃まで測定を行っ
ても水に由来する2つのピークのうち、少なくとも300℃付近に現れる1つのピークは
検出されない。
第1の単結晶領域を有する多元系酸化物半導体層、及び第2の単結晶領域を有する多元系
酸化物半導体層がInを含む場合、平板状の単結晶領域においては、Inの電子雲が互い
に重なり合って連接することにより、電気伝導率σが上昇する。従って、トランジスタの
電界効果移動度を高めることができる。
高純度化された第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一
元系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層に含まれる水
素濃度は1×1018cm−3以下、1×1016cm−3以下、さらには実質的には0
とし、キャリア密度は1×1014cm−3未満、好ましくは1×1012cm−3未満
、さらに好ましくは測定限界以下の1.45×1010cm−3未満とすることができ、
バンドギャップは2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上で
ある。
なお、本発明の一形態のトランジスタは、絶縁ゲート電界効果トランジスタ(Insul
ated−Gate Field−Effect Transistor(IGFET)
)、薄膜トランジスタ(TFT)を含む。
下地となる基板の材料が、酸化物、窒化物、金属など、いずれの材料であっても、高い電
界効果移動度を有するトランジスタを作製し、大型の表示装置や高性能の半導体装置等を
実現する。
本発明の一態様である半導体装置を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 酸化物半導体層の結晶成長の過程を説明する図である。 酸化物半導体層の結晶成長の過程を説明する図である。 酸化物半導体層の結晶成長の過程を説明する図である。 酸化物半導体層の結晶構造を説明する図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様である半導体装置を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置の作製工程を説明する断面図である。 本発明の一態様を示す半導体装置を説明する断面図である。 本発明の一態様を示す半導体装置を説明する断面図である。 本発明の一態様を示す半導体装置を説明する等価回路図である。 本発明の一態様を示す半導体装置を説明する上面図及び断面図である。 本発明の一態様を示す半導体装置を説明する上面図及び断面図である。 本発明の一態様を示す半導体装置を説明する断面図である。 電子機器の一形態を説明する図である。 電子機器の一形態を説明する図である。
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明
に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々
に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構
成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共
通して用い、その繰り返しの説明は省略する。
なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明
瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない
また、本明細書にて用いる第1、第2、第3などの用語は、構成要素の混同を避けるため
に付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を「
第2の」または「第3の」などと適宜置き換えて説明することができる。
また、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の
中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただ
し、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差の
ことを、単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い
。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、
電圧を電位と読み替えてもよいこととする。
(実施の形態1)
図1は、半導体装置の構成の一形態であるトランジスタ150を示す断面図である。なお
、トランジスタ150は、キャリアが電子であるnチャネル型IGFET(Insula
ted Gate Field Effect Transistor)であるものとし
て説明するが、pチャネル型IGFETを作製することも可能である。本実施の形態では
、トランジスタ150として、トップゲート構造のトランジスタを用いて説明する。
図1に示すトランジスタ150は、基板100上に、第1の単結晶領域を有する多元系酸
化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105a、及び第2の
単結晶領域を有する多元系酸化物半導体層107aが積層して形成され(酸化物半導体積
層体)、その上にソース電極及びドレイン電極として機能する配線108a、108bが
形成される。また、第2の単結晶領域を有する多元系酸化物半導体層107a及び配線1
08a、108b上にゲート絶縁層112が形成され、ゲート絶縁層112上であって、
且つゲート絶縁層112を介して、第1の単結晶領域を有する多元系酸化物半導体層10
3a、単結晶領域を有する一元系酸化物半導体層105a、及び第2の単結晶領域を有す
る多元系酸化物半導体層107aと対向する領域にゲート電極114が形成される。また
、ゲート絶縁層112及びゲート電極114上に絶縁層116を有してもよい。
次に、単結晶領域を有する酸化物半導体積層体の作製方法及び当該酸化物半導体積層体を
用いて形成した薄膜トランジスタについて、図2乃至図7を用いて説明する。
基板100上に第1の多元系酸化物半導体層102を形成し、第1の多元系酸化物半導体
層102上に一元系酸化物半導体層104を形成する(図2(A)参照))。
基板100は、少なくとも、後の加熱処理に耐えうる程度の耐熱性を有していることが必
要となる。基板100としてガラス基板を用いる場合、歪み点が730℃以上のものを用
いることが好ましい。ガラス基板には、例えば、アルミノシリケートガラス、アルミノホ
ウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられる。なお、B
よりBaOを多く含むガラス基板を用いることが好ましい。
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いることができる。他にも、結晶化ガラスなどを用いることができる
。さらには、シリコンウェハ等の半導体基板の表面や金属材料よりなる導電性の基板の表
面に絶縁層を形成したものを用いることもできる。
後述するように、本実施の形態によれば、基板100の上に設けられる第1の多元系酸化
物半導体層102及び一元系酸化物半導体層104の結晶化は、下地となる基板の材質に
影響されないので、上記のように様々なものを基板100として用いることができる。
第1の多元系酸化物半導体層102及び一元系酸化物半導体層104をスパッタリング法
等により形成する。第1の多元系酸化物半導体層102は、加熱により、六方晶の非ウル
ツ鉱型結晶構造となる。六方晶の非ウルツ鉱型結晶構造はホモロガス構造とよばれること
もある。なお、非ウルツ鉱型結晶構造とは、ウルツ鉱型でない結晶構造である。
第1の多元系酸化物半導体層102としては、四元系金属酸化物であるIn−Sn−Ga
−Zn−O系や、三元系金属酸化物であるIn−Ga−Zn−O系、In−Sn−Zn−
O系、In−Al−Zn−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、S
n−Al−Zn−O系や、二元系金属酸化物であるIn−Zn−O系、Sn−Zn−O系
、Al−Zn−O系、Zn−Mg−O系、Sn−Mg−O系、In−Mg−O系などの酸
化物半導体層を用いることができる。ここでは多元系酸化物半導体とは複数の金属酸化物
で構成されるものをいい、n元系金属酸化物はn種類の金属酸化物で構成される。なお、
多元系酸化物半導体には、不純物として、主成分とする金属酸化物以外の元素が1%、好
ましくは0.1%入ってもよい。
また、第1の多元系酸化物半導体層102は、三元系金属酸化物であり、InMZn
(Y=0.5〜5)で表現される酸化物半導体材料を用いてもよい。ここで、Mは、
ガリウム(Ga)やアルミニウム(Al)やボロン(B)などの13族元素から選択され
る一または複数種類の元素を表す。なお、In、M、Zn、及びOの含有量は任意であり
、Mの含有量がゼロ(即ち、x=0)の場合を含む。一方、In及びZnの含有量はゼロ
ではない。すなわち、上述の表記には、In−Ga−Zn−O系酸化物半導体やIn−Z
n−O系酸化物半導体などが含まれる。
スパッタリング法は、スパッタリング用電源に高周波電源を用いるRFスパッタリング法
と、DCスパッタリング法があり、さらにパルス的にバイアスを与えるパルスDCスパッ
タリング法がある。RFスパッタリング法は主に絶縁層を形成する場合に用いられ、DC
スパッタリング法は主に金属層を形成する場合に用いられる。
第1の多元系酸化物半導体層102をスパッタリング法で形成するためのターゲットとし
ては、亜鉛を含む金属酸化物のターゲットを用いることができる。例えば、In、Ga、
及びZnを含む金属酸化物ターゲットの組成比は、In:Ga:Zn=1:x:y(xは
0以上、yは0.5以上5以下)とする。例えば、In:Ga:Zn=1:1:0.5[
atom比]の組成比を有するターゲット、In:Ga:Zn=1:1:1[atom比
]の組成比を有するターゲット、またはIn:Ga:Zn=1:1:2[atom比]の
組成比を有するターゲット、In:Ga:Zn=1:0.5:2[atom比]の組成比
を有するターゲットを用いることもできる。本実施の形態では、後に加熱処理を行い意図
的に結晶化させるため、結晶化が生じやすい金属酸化物ターゲットを用いることが好まし
い。
一元系酸化物半導体層104は、加熱により六方晶のウルツ鉱型結晶構造となりうる一元
系酸化物半導体で形成することが好ましく、代表例には酸化亜鉛がある。ここでは一元系
酸化物半導体とは一種類の金属酸化物で構成されるものをいう。なお、一元系酸化物半導
体には、不純物として、金属酸化物以外の元素が1%、好ましくは0.1%入ってもよい
。一元系酸化物半導体は、多元系酸化物半導体と比較して結晶化しやすく、また結晶性を
高めることができる。一元系酸化物半導体層104は、第1の多元系酸化物半導体層10
2、及びのちに形成する第2の多元系酸化物半導体層106を結晶成長させるための種と
して用いるため、結晶成長する厚さとすればよく、代表的には一原子層以上10nm以下
、好ましくは2nm以上5nm以下でよい。一元系酸化物半導体層104の厚さを薄くす
ることで成膜処理及び加熱処理におけるスループットを高めることができる。
一元系酸化物半導体層104は、希ガス(代表的にはアルゴン)雰囲気、酸素雰囲気、ま
たは希ガス(代表的にはアルゴン)及び酸素雰囲気においてスパッタリング法により形成
することができる。
また、第1の多元系酸化物半導体層102と同様に、金属酸化物ターゲット中の酸化物半
導体の相対密度は80%以上、好ましくは95%以上、さらに好ましくは99.9%以上
とするのが好ましい。
また、第1の多元系酸化物半導体層102と同様に、基板を加熱しながら一元系酸化物半
導体層104を形成することで、のちに行われる第1の加熱処理において、結晶成長を促
すことができる。
次に、第1の加熱処理を行う。第1の加熱処理の温度は、500℃以上1000℃以下、
好ましくは600℃以上850℃以下とする。また、加熱時間は1分以上24時間以下と
する。
第1の加熱処理においては、希ガス(代表的にはアルゴン)雰囲気、酸素雰囲気、窒素雰
囲気、乾燥空気雰囲気、または、希ガス(代表的にはアルゴン)及び酸素の混合雰囲気、
若しくは希ガス及び窒素の混合雰囲気とするのが好適である。
本実施の形態では、第1の加熱処理として、乾燥空気雰囲気で700℃、1時間の加熱処
理を行う。
なお、一元系酸化物半導体層104の温度を徐々に上昇させながら加熱した後、第1の多
元系酸化物半導体層102は一定温度で加熱してもよい。500℃以上からの温度上昇速
度を0.5℃/h以上3℃/h以下とすることで、徐々に一元系酸化物半導体層104が
結晶成長し、一元系酸化物半導体層105が形成されるため、より結晶性を高めることが
できる。
第1の加熱処理に用いる加熱処理装置は特に限られず、抵抗発熱体などの発熱体からの熱
伝導または熱輻射によって、被処理物を加熱する装置を備えていてもよい。例えば、加熱
処理装置として、電気炉や、GRTA(Gas Rapid Thermal Anne
al)装置、LRTA(Lamp Rapid Thermal Anneal)装置等
のRTA(Rapid Thermal Anneal)装置を用いることができる。L
RTA装置は、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボ
ンアークランプ、高圧ナトリウムランプ、高圧水銀ランプなどのランプから発する光(電
磁波)の輻射により、被処理物を加熱する装置である。GRTA装置は、高温のガスを用
いて加熱処理を行う装置である。
第1の加熱処理によって、図2(A)中の矢印で示すように一元系酸化物半導体層104
の表面から第1の多元系酸化物半導体層102に向けて結晶成長が始まる。一元系酸化物
半導体層104は結晶化されやすいため、一元系酸化物半導体層104全てが結晶化し、
単結晶領域を有する一元系酸化物半導体層105となる。なお、単結晶領域を有する一元
系酸化物半導体層105は、六方晶のウルツ鉱型結晶構造である(図2(B)参照)。
当該加熱処理により、一元系酸化物半導体層104の表面から結晶成長することで、単結
晶領域が形成される。単結晶領域は、表面から内部に向かって結晶成長し、一原子層以上
10nm以下、好ましくは2nm以上5nm以下の平均厚さを有する板状の結晶領域であ
る。また、単結晶領域は、その表面に平行にa−b面を有し、表面に対して垂直方向にc
軸配向をしている。本実施の形態では、第1の加熱処理によって一元系酸化物半導体層1
04のほぼ全てが結晶(CG(Co−growing)結晶ともよぶ。)となる。一元系
酸化物半導体層104の表面に比較的結晶方位の揃った単結晶領域は、表面から深さ方向
に結晶成長するため、下地部材の影響を受けることなく形成することができる。
引続き第1の加熱処理を行うことで、単結晶領域を有する一元系酸化物半導体層105を
種として、第1の多元系酸化物半導体層102の結晶成長が矢印のように基板100に向
かって進む。単結晶領域を有する一元系酸化物半導体層105は、表面に垂直な方向にc
軸が配向しているため、単結晶領域を有する一元系酸化物半導体層105を種とすること
で、単結晶領域を有する一元系酸化物半導体層105の結晶軸と略同一となるように、第
1の多元系酸化物半導体層102を結晶成長(エピタキシャル成長、またはアキシャル成
長ともいう。)させることができる。即ち、第1の多元系酸化物半導体層102をc軸配
向させながら結晶成長させることが可能である。この結果、c軸配向した第1の単結晶領
域を有する多元系酸化物半導体層103を形成することができる。第1の単結晶領域を有
する多元系酸化物半導体層103は、ウルツ鉱型結晶構造ではない六方晶である(図2(
C)参照)。
例えば、第1の単結晶領域を有する多元系酸化物半導体層としてIn−Ga−Zn−O系
の酸化物半導体材料を用いる場合、InGaO(ZnO) で表される結晶(InG
aZnO、InGaZn等)や、InGaZnOで表される結晶などを含
み得る。このような結晶は、六方晶構造であり、第1の加熱処理によって、そのc軸が、
一元系酸化物半導体層の表面と略垂直な方向をとるように配向する。
次に、図2(D)に示すように、単結晶領域を有する一元系酸化物半導体層105上に第
2の多元系酸化物半導体層106を形成する。第2の多元系酸化物半導体層106は、加
熱により、六方晶の非ウルツ鉱型結晶構造となる。第2の多元系酸化物半導体層106は
、一元系酸化物半導体層104と同様の作製方法を用いて形成することができる。第2の
多元系酸化物半導体層106の厚さは作製するデバイスによって最適な膜厚を実施者が決
定すればよい。例えば、第1の多元系酸化物半導体層102、一元系酸化物半導体層10
4、及び第2の多元系酸化物半導体層106の合計の厚さは10nm以上200nm以下
とする。
第2の多元系酸化物半導体層106は、第1の多元系酸化物半導体層102と同様の材料
及び形成方法を適宜用いることができる。
次に、第2の加熱処理を行う。第2の加熱処理の温度は、100℃以上500℃以下、好
ましくは150℃以上400℃以下とする。また、加熱時間は、1分以上100時間以下
とし、好ましくは5時間以上20時間以下とし、代表的には10時間とする。
第2の加熱処理において、雰囲気は第1の加熱処理と同様の雰囲気とすることができる。
また、加熱装置は第1の加熱処理と同様のものを適宜用いることができる。
第2の加熱処理を行うことで、図2(D)中に矢印で示すように単結晶領域を有する一元
系酸化物半導体層105から第2の多元系酸化物半導体層106の表面へ向けて結晶成長
が始まる。単結晶領域を有する一元系酸化物半導体層105は、表面に対して垂直方向に
c軸配向しているため、単結晶領域を有する一元系酸化物半導体層105を種とすること
で、第2の多元系酸化物半導体層106は、第1の多元系酸化物半導体層102と同様に
、単結晶領域を有する一元系酸化物半導体層105の結晶軸と略同一となるように、第2
の多元系酸化物半導体層106を結晶成長(エピタキシャル成長、またはアキシャル成長
ともいう。)させることができる。即ち、第2の多元系酸化物半導体層106をc軸配向
しながら結晶成長させることが可能である。以上の工程により、第2の単結晶領域を有す
る多元系酸化物半導体層107を形成することができる。第2の単結晶領域を有する多元
系酸化物半導体層107は、ウルツ鉱型結晶構造ではない六方晶である(図2(E)参照
)。
例えば、第2の単結晶領域を有する多元系酸化物半導体層としてIn−Ga−Zn−O系
の酸化物半導体材料を用いる場合、InGaO(ZnO)で表される結晶(InGa
ZnO、InGaZn等)や、InGaZnOで表される結晶などを含み
得る。このような結晶は、六方晶構造であり、第2の加熱処理によって、そのc軸が、第
2の多元系酸化物半導体層の表面と略垂直な方向をとるように配向する。
ここで、c軸が、第1の多元系酸化物半導体層102及び第2の多元系酸化物半導体層1
06の表面と略垂直な方向をとるように配向する結晶は、In、Ga、Znのいずれかを
含有し、a軸(a−axis)及びb軸(b−axis)に平行なレイヤーの積層構造と
して捉えることができる。具体的には、InGaZnO、InGaZnO、In
GaZnの結晶は、Inを含有するレイヤーと、Inを含有しないレイヤー(Ga
またはZnを含有するレイヤー)が、c軸方向に積層された構造を有する。
In−Ga−Zn−O系酸化物半導体では、Inを含有するレイヤーの、ab面内方向に
関する導電性は良好である。これは、In−Ga−Zn−O系酸化物半導体では電気伝導
が主としてInによって制御されること、及びInの5s軌道が、隣接するInの5s軌
道と重なりを有することにより、キャリアパスが形成されることによる。更に、本実施の
形態に示すトランジスタは、高度に結晶化している第1の単結晶領域を有する多元系酸化
物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域を有する
多元系酸化物半導体層を有するため、アモルファスあるいは微結晶、多結晶状態のものと
比較して、不純物や欠陥が少ない。以上のことから、第1の単結晶領域を有する多元系酸
化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域を有す
る多元系酸化物半導体層のキャリア移動度が向上し、トランジスタのオン電流及び電界効
果移動度を高めることができる。
なお、ここでは、単結晶領域を有する第1の多元系酸化物半導体層103、単結晶領域を
有する一元系酸化物半導体層105、及び第2の単結晶領域を有する多元系酸化物半導体
層107の界面を点線で示した。しかしながら、単結晶領域を有する一元系酸化物半導体
層105がZnOであり、第1の単結晶領域を有する多元系酸化物半導体層103及び第
2の単結晶領域を有する多元系酸化物半導体層107をIn−Ga−Zn−O系酸化物半
導体とすると、加熱処理の圧力及び温度により、ZnOまたはIn−Ga−Zn−O系酸
化物半導体中に含まれる亜鉛が拡散する。このことは、TDSの測定時に450℃まで測
定を行った際、InやGaは検出されないが、亜鉛が真空加熱条件下、特に300℃付近
でピーク検出されることから確認できている。なお、TDSの測定は真空中で行われ、亜
鉛は200℃付近から検出されていることが確認できている。このため、図3に示すよう
に、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物
半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層の境界が判別できなく、
同一の層109とみなせることもある。
以上の工程より、第1の単結晶領域を有する多元系酸化物半導体層103、単結晶領域を
有する一元系酸化物半導体層105、及び第2の単結晶領域を有する多元系酸化物半導体
層107を形成することができる。
ここで、第1の加熱処理により、単結晶領域を有する一元系酸化物半導体層104に板状
の結晶領域が形成される機構について、図4乃至図6を用いて説明する。
第1の加熱処理における原子の運動を古典分子動力学法によって検証した。古典分子動力
学法では原子に働く力は、原子間相互作用を特徴づける経験的ポテンシャルを定義するこ
とで評価することができる。ここでは、各原子に古典的力学法則を適用し、ニュートンの
運動方程式を数値的に解くことにより、各原子の運動(時間発展)を検証した。本計算に
おいては、経験的ポテンシャルとして、Born−Mayer−Hugginsポテンシ
ャルを用いた。
図4に示すように、非晶質酸化亜鉛(以下、a−ZnOと示す。)中に、幅が1nmの単
結晶酸化亜鉛(以下、c−ZnOと示す。)を結晶核160として等間隔に配置したモデ
ルを作成した。なお、a−ZnO及びc−ZnOの密度を5.5g/cmとした。また
、縦方向をc軸方向とした。
次に、図4のモデルにおいて、c−ZnOを固定し、3次元周期境界条件下で、700℃
、100psec間(時間刻み幅0.2fsec×50万ステップ)の古典分子動力学シ
ミュレーションを行った結果を図5及び図6に示す。
図5(A)、図5(B)、図5(C)はそれぞれ20psec、40psec、60ps
ec経過における原子配置の変化の様子を示す。図6(A)、図6(B)はそれぞれ80
psec、100psec経過における原子配置の変化の様子を示す。また、各図におい
て、結晶成長している距離及び方向を矢印の長さ及び向きで示す。
また、縦方向(c軸[0001])と、それと垂直な横方向の結晶成長速度を表1に示す
図5においては、縦方向(c軸方向)の矢印162、166、170よりも、横方向(c
軸方向に垂直方向)の矢印164a、164b、168a、168b、172a、172
bの長さが長いことから、横方向への結晶成長が優先的に行われており、図5(C)から
は、隣り合う結晶核の間において、結晶成長が終了していることが分かる。
図6においては、表面に形成された結晶領域を種として、矢印174、176に示すよう
に、縦方向(c軸方向)に結晶成長していることが分かる。
また、表1より、縦方向(c軸[0001])より、それと垂直な横方向の方が、結晶成
長速度が約4.9倍速いことがわかる。これらのことから、ZnOは、はじめに表面(a
―b面)と平行な方向に結晶成長が進む。このときa−b面において、横方向に結晶成長
が進行し、板状の単結晶領域となる。次に、表面(a―b面)にできた板状の単結晶領域
を種として、表面(a―b面)と垂直方向であるc軸方向に結晶成長が進む。このため、
ZnOはc軸配向しやすいと考えられる。このように、表面(a―b面)と平行な方向に
優先的に結晶成長した後、表面に垂直なc軸方向に結晶成長する(エピタキシャル成長、
またはアキシャル成長ともいう。)ことで、板状の単結晶領域が形成される。
次に、第1の単結晶領域を有する多元系酸化物半導体層103及び第2の単結晶領域を有
する多元系酸化物半導体層107の結晶軸が、単結晶領域を有する一元系酸化物半導体層
105の結晶軸と略同一となるように結晶成長する機構について、図7を用いて説明する
図7(A)は、一元系酸化物半導体層の代表例である六方晶構造の酸化亜鉛(ZnO)を
c軸方向からみたa−b面における単位格子構造を示し、図7(B)はc軸方向を縦方向
とする結晶構造を示す。
図7(C)は、第1の多元系酸化物半導体層及び第2の多元系酸化物半導体層の代表例で
あるInGaZnOをc軸方向からみたa−b面における構造を示す。
図7(A)及び図7(C)より、ZnO及びInGaZnOの格子定数がそれぞれほぼ
同様の値をしており、a−b面におけるZnO及びInGaZnOの整合性が高いとい
える。また、InGaZnO及びZnOは六方晶であり、且つZnOはc軸方向に平行
な結合を有するため、第1の多元系酸化物半導体層及び第2の多元系酸化物半導体層の代
表例であるInGaZnOはc軸方向に整合性高く結晶成長することができる。以上の
ことから、第1の単結晶領域を有する多元系酸化物半導体層103及び第2の単結晶領域
を有する多元系酸化物半導体層107の結晶軸はそれぞれ、単結晶領域を有する一元系酸
化物半導体層105の結晶軸と略同一となるように結晶成長する。
以上の工程により、下地となる基板の材質に影響されず、第1の単結晶領域を有する多元
系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域を
有する多元系酸化物半導体層の積層体を形成することができる。
次に、図2(E)に示す第2の単結晶領域を有する多元系酸化物半導体層107上にフォ
トリソグラフィ工程によりレジストマスクを形成した後、当該レジストマスクを用いて第
1の単結晶領域を有する多元系酸化物半導体層103、単結晶領域を有する一元系酸化物
半導体層105、及び第2の単結晶領域を有する多元系酸化物半導体層107をエッチン
グして、島状の第1の単結晶領域を有する多元系酸化物半導体層103a、単結晶領域を
有する一元系酸化物半導体層105a、及び第2の単結晶領域を有する多元系酸化物半導
体層107aを形成する。第1の単結晶領域を有する多元系酸化物半導体層103a、単
結晶領域を有する一元系酸化物半導体層105a、及び第2の単結晶領域を有する多元系
酸化物半導体層107aを酸化物半導体積層体110とも示す(図1参照。)。
次に、酸化物半導体積層体110に、導電層を形成した後、導電層を所定の形状にエッチ
ングして配線108a、108bを形成する。
配線108a、108bは、アルミニウム、クロム、銅、タンタル、チタン、モリブデン
、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上
述した金属元素を組み合わせた合金などを用いて形成することができる。また、マンガン
、マグネシウム、ジルコニウム、ベリリウムのいずれか一または複数から選択された金属
元素を用いてもよい。また、配線108a、108bは、単層構造でも、二層以上の積層
構造としてもよい。例えば、シリコンを含むアルミニウム層の単層構造、アルミニウム層
上にチタン層を積層する二層構造、窒化チタン層上にチタン層を積層する二層構造、窒化
チタン層上にタングステン層を積層する二層構造、窒化タンタル層上にタングステン層を
積層する二層構造、チタン層と、そのチタン層上にアルミニウム層を積層し、さらにその
上にチタン層を形成する三層構造などがある。また、アルミニウムに、チタン、タンタル
、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素を単数
、または複数組み合わせた合金層、もしくは窒化物層を用いてもよい。
また、配線108a、108bは、インジウム錫酸化物、酸化タングステンを含むインジ
ウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウ
ム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を
添加したインジウム錫酸化物などの透光性を有する導電性材料を適用することもできる。
また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
次に、酸化物半導体積層体110、及び配線108a、108b上にゲート絶縁層112
を形成する。
ゲート絶縁層112は、酸化シリコン層、窒化シリコン層、酸化窒化シリコン層、窒化酸
化シリコン層、または酸化アルミニウム層を単層でまたは積層して形成することができる
。ゲート絶縁層112は、酸化物半導体積層体110と接する部分が酸素を含むことが好
ましく、特に好ましくは酸化シリコン層により形成する。酸化シリコン層を用いることで
、酸化物半導体積層体110に酸素を供給することができ、特性を良好にすることができ
る。
また、ゲート絶縁層112として、ハフニウムシリケート(HfSiO)、窒素が添加
されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアル
ミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−
k材料を用いることでゲートリークを低減できる。さらには、high−k材料と、酸化
シリコン層、窒化シリコン層、酸化窒化シリコン層、窒化酸化シリコン層、または酸化ア
ルミニウム層のいずれか一以上との積層構造とすることができる。ゲート絶縁層112の
厚さは、50nm以上500nm以下とするとよい。ゲート絶縁層112の厚さを厚くす
ることで、ゲートリーク電流を低減することができる。
次に、ゲート絶縁層112上であって、酸化物半導体積層体110と重畳する領域にゲー
ト電極114を形成する。
ゲート電極114は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タン
グステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した
金属元素を組み合わせた合金などを用いて形成することができる。また、マンガン、マグ
ネシウム、ジルコニウム、ベリリウムのいずれか一または複数から選択された金属元素を
用いてもよい。また、ゲート電極114は、単層構造でも、二層以上の積層構造としても
よい。例えば、シリコンを含むアルミニウム層の単層構造、アルミニウム層上にチタン層
を積層する二層構造、窒化チタン層上にチタン層を積層する二層構造、窒化チタン層上に
タングステン層を積層する二層構造、窒化タンタル層上にタングステン層を積層する二層
構造、チタン層と、そのチタン層上にアルミニウム層を積層し、さらにその上にチタン層
を形成する三層構造などがある。また、アルミニウムに、チタン、タンタル、タングステ
ン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた元素を単数、または複数
組み合わせた合金層、もしくは窒化物層を用いてもよい。
また、ゲート電極114は、インジウム錫酸化物、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加し
たインジウム錫酸化物などの透光性を有する導電性材料を適用することもできる。また、
上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
この後、保護層として絶縁層116を形成してもよい。以上の工程により、単結晶領域を
有する酸化物半導体積層体をチャネル形成領域に有するトランジスタ150を作製するこ
とができる。これまで報告された金属酸化物はアモルファス状態のもの、あるいは、多結
晶状態のもの、あるいは、1400℃程度の高温での処理により単結晶を得るもののみで
あったが、上記に示したように、平板状の単結晶領域を有する一元系酸化物半導体層を形
成した後、当該単結晶領域を種として結晶成長させる方法により、大面積基板を用いて比
較的低温で単結晶領域を有する酸化物半導体をチャネル形成領域に有するトランジスタを
作製することができる。
(実施の形態2)
本実施の形態では、開示する発明の一態様に係る半導体装置の作製方法として、高純度化
された酸化物半導体積層体を有するトランジスタの作製方法について、図8乃至10を用
いて説明する。
基板100上に絶縁層101を形成する。次に、絶縁層101上に、実施の形態1と同様
に、第1の多元系酸化物半導体層102を形成し、第1の多元系酸化物半導体層102上
に一元系酸化物半導体層104を形成する(図8(A)参照)。
基板100は実施の形態1に示す基板100を適宜用いることができる。
絶縁層101は、基板100上に形成される層への不純物の混入を低減すると共に、基板
100上に形成する層の密着性を高めるために設ける。絶縁層101は、酸化シリコン層
、酸化窒化シリコン層など酸化物絶縁層、または窒化シリコン層、窒化酸化シリコン層、
窒化アルミニウム層、または窒化酸化アルミニウム層などの窒化物絶縁層で形成する。ま
た、絶縁層101は積層構造でもよく、例えば、基板100側から上記した窒化物絶縁層
のいずれか一つ以上と、上記した酸化物絶縁層のいずれか一つ以上との積層構造とするこ
とができる。絶縁層101の厚さは特に限定されないが、例えば、10nm以上500n
m以下とすることができる。なお、絶縁層101は必須の構成要素ではないから、絶縁層
101を設けない構成とすることも可能である。
絶縁層101は、スパッタリング法、CVD法、塗布法、印刷法などで形成することがで
きる。
なお、スパッタリング法で絶縁層101を形成する場合、処理室内に残留する水素、水、
水酸基または水素化物などを除去しつつ絶縁層101を形成することが好ましい。これは
、絶縁層101に水素、水、水酸基、水素化物などが含まれないようにするためである。
処理室内に残留する水素、水、水酸基、水素化物などを除去するためには、吸着型の真空
ポンプを用いることが好ましい。吸着型の真空ポンプとしては、例えば、クライオポンプ
、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、排気手
段としては、ターボポンプにコールドトラップを加えたものであってもよい。クライオポ
ンプを用いて排気した処理室では、水素、水、水酸基、水素化物などが排気されるため、
当該処理室で絶縁層101を形成すると、絶縁層101に含まれる不純物の濃度を低減で
きる。
また、絶縁層101を形成する際に用いるスパッタリングガスは、水素、水、水酸基、水
素化物などの不純物が数ppm程度、または数ppb程度まで除去された高純度ガスを用
いることが好ましい。
本実施の形態では、基板100を処理室へ搬送し、水素、水、水酸基、水素化物などが除
去された高純度酸素を含むスパッタリングガスを導入し、シリコンターゲットを用いて、
基板100に絶縁層101として、酸化シリコン層を形成する。なお、絶縁層101を形
成する際は、基板100は加熱されていてもよい。
また、第1の多元系酸化物半導体層102及び一元系酸化物半導体層104をスパッタリ
ング法で形成する場合、基板を加熱することで、第1の多元系酸化物半導体層102及び
一元系酸化物半導体層104に含まれる水素、水、水酸基、水素化物などの不純物を低減
することができると共に、のちに行われる第1の加熱処理において、結晶成長を促すこと
ができる。
また、金属酸化物ターゲット中の金属酸化物の相対密度は80%以上、好ましくは95%
以上、さらに好ましくは99.9%以上とするのが好ましい。相対密度の高いターゲット
を用いると、形成される第1の多元系酸化物半導体層102及び一元系酸化物半導体層1
04中の不純物濃度を低減することができ、電気特性または信頼性の高いトランジスタを
得ることができる。
また、第1の多元系酸化物半導体層102及び一元系酸化物半導体層104をそれぞれ形
成する前に、スパッタリング装置内壁や、ターゲット表面やターゲット材料中に残存して
いる水素、水、水酸基、水素化物等を除去するためにプリヒート処理を行うことが好まし
い。プリヒート処理としてはチャンバー内を減圧下で200℃〜600℃に加熱する方法
や、窒素や不活性ガスの導入と排気を繰り返す方法等がある。プリヒート処理を終えたら
、基板またはスパッタリング装置を冷却した後大気にふれることなく、第1の多元系酸化
物半導体層102及び一元系酸化物半導体層104を形成する。この場合のターゲット冷
却液は、水ではなく油脂等を用いるとよい。加熱せずに窒素や不活性ガスの導入と排気を
繰り返しても一定の効果が得られるが、加熱しながら行うとなおよい。
また、絶縁層101と同様に、第1の多元系酸化物半導体層102及び一元系酸化物半導
体層104をそれぞれ形成する前、または形成中、または形成後に、スパッタリング装置
内に残存している水素、水、水酸基、水素化物などを除去することが好ましい。スパッタ
リング装置内の残留水分を除去するためには、吸着型の真空ポンプを用いることが好まし
い。この結果、水素、水、水酸基、水素化物などが排気されるため、第1の多元系酸化物
半導体層102及び一元系酸化物半導体層104に含まれる不純物の濃度を低減できる。
次に、実施の形態1と同様に、第1の加熱処理を行う。第1の加熱処理の温度は、500
℃以上1000℃以下、好ましくは600℃以上850℃以下とする。また、加熱時間は
1分以上24時間以下とする。第1の加熱処理により、第1の単結晶領域を有する多元系
酸化物半導体層103及び単結晶領域を有する一元系酸化物半導体層105を形成するこ
とができる(図8(B)参照。)。
また、第1の加熱処理において、第1の多元系酸化物半導体層102及び一元系酸化物半
導体層104を結晶成長させると共に、酸化物半導体の主成分以外の不純物、代表的には
水素、水、水酸基、水素化物を除去することで、高純度化することができる。
第1の加熱処理においては、希ガス(代表的にはアルゴン)雰囲気、酸素雰囲気、窒素雰
囲気、乾燥空気雰囲気、または、希ガス(代表的にはアルゴン)及び酸素の混合雰囲気、
若しくは希ガス及び窒素の混合雰囲気とするのが好適である。具体的には、水素、水、水
酸基、水素化物などの不純物が、数ppm程度、または数ppb程度にまで除去された高
純度ガス雰囲気とすることが好適である。
本実施の形態では、第1の加熱処理として、乾燥空気雰囲気で700℃、1時間の加熱処
理を行う。
次に、実施の形態1と同様に、単結晶領域を有する一元系酸化物半導体層105上に第2
の多元系酸化物半導体層106を形成する。
次に、実施の形態1と同様に、第2の加熱処理を行う。第2の加熱処理により、第2の単
結晶領域を有する多元系酸化物半導体層107を形成することができる(図8(C)参照
。)。
また、第2の加熱処理において第2の多元系酸化物半導体層106を結晶成長させると共
に、酸化物半導体の主成分以外の不純物、代表的には水素、水、水酸基、水素化物を除去
することで、高純度化することができる。
なお、第1の加熱処理及び第2の加熱処理において、昇温時には炉の内部を窒素雰囲気と
し、冷却時には炉の内部を酸素雰囲気として雰囲気を切り替えてもよく、窒素雰囲気で脱
水または脱水素化が行われた後、雰囲気を切り替えて酸素雰囲気にすることで第1の多元
系酸化物半導体層102、一元系酸化物半導体層104、及び第2の多元酸化物半導体層
106内部に酸素を補給してi型とすることができる。
以上の工程より、第1の単結晶領域を有する多元系酸化物半導体層103、単結晶領域を
有する一元系酸化物半導体層105、及び第2の単結晶領域を有する多元系酸化物半導体
層107を形成することができる(図8(C)参照。)。
次に、第2の単結晶領域を有する多元系酸化物半導体層107上にフォトリソグラフィ工
程によりレジストマスクを形成した後、当該レジストマスクを用いて第1の単結晶領域を
有する多元系酸化物半導体層103、単結晶領域を有する一元系酸化物半導体層105、
及び第2の単結晶領域を有する多元系酸化物半導体層107をエッチングして、島状の第
1の単結晶領域を有する多元系酸化物半導体層103a、単結晶領域を有する一元系酸化
物半導体層105a、及び第2の単結晶領域を有する多元系酸化物半導体層107aを形
成する(図8(D)参照。)。また、レジストマスクをインクジェット法で形成してもよ
い。レジストマスクをインクジェット法で形成するとフォトマスクを使用しないため、製
造コストを低減できる。以下、第1の単結晶領域を有する多元系酸化物半導体層103a
、単結晶領域を有する一元系酸化物半導体層105a、及び第2の単結晶領域を有する多
元系酸化物半導体層107aを酸化物半導体積層体110とも示す。
上記エッチングに際しては、ウェットエッチング法あるいはドライエッチング法を用いる
ことができる。ウェットエッチングするエッチング液としては、燐酸と酢酸と硝酸を混ぜ
た溶液、アンモニア過水(31重量%過酸化水素水:28重量%アンモニア水:水=5:
2:2)などを用いることができる。また、ITO07N(関東化学社製)を用いてもよ
い。
また、ウェットエッチング後のエッチング液はエッチングされた材料とともに洗浄によっ
て除去される。その除去された材料を含むエッチング液の廃液を精製し、含まれる材料を
再利用してもよい。当該エッチング後の廃液に含まれるインジウムなどの材料を回収して
再利用することにより、資源を有効活用し低コスト化することができる。
ドライエッチングに用いるエッチングガスとしては、塩素を含むガス(塩素系ガス、例え
ば塩素(Cl)、三塩化硼素(BCl)、四塩化シリコン(SiCl)、四塩化炭
素(CCl)など)が好ましい。
また、フッ素を含むガス(フッ素系ガス、例えば四弗化炭素(CF)、六弗化硫黄(S
)、三弗化窒素(NF)、トリフルオロメタン(CHF)など)、臭化水素(H
Br)、酸素(O)、これらのガスにヘリウム(He)やアルゴン(Ar)などの希ガ
スを添加したガス、などを用いることができる。
ドライエッチング法としては、平行平板型RIE(Reactive Ion Etch
ing)法や、ICP(Inductively Coupled Plasma:誘導
結合型プラズマ)エッチング法を用いることができる。所望の加工形状にエッチングでき
るように、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加さ
れる電力量、基板側の電極温度など)を適宜調節する。
次に、絶縁層101、及び島状の酸化物半導体層上に、導電層108を形成する(図8(
E)参照)。導電層108は、後に配線108a、108bとなる。
導電層108は、実施の形態1に示す配線108a、108bに示す材料を適宜用いて形
成することができる。導電層108は、スパッタリング法、CVD法、または真空蒸着法
で形成する。本実施の形態では、導電層108として、スパッタリング法により形成した
膜厚50nmのチタン層、厚さ100nmのアルミニウム層、厚さ50nmのチタン層の
3層よりなる金属層を用いる。
次に、導電層108上にフォトリソグラフィ工程によりレジストマスク形成し、当該レジ
ストマスクを用いて導電層をエッチングして、ソース電極及びドレイン電極として機能す
る配線108a、108bを形成する(図9(A)参照。)。または、フォトリソグラフ
ィ工程を用いず、印刷法、インクジェット法で配線108a、108bを形成することで
、工程数を削減することができる。
エッチングに用いるレジストマスクを形成するためのレジストの露光には、紫外線、Kr
Fレーザ光、またはArFレーザ光を用いるのが好適である。特に、チャネル長(L)が
25nm未満の露光を行う場合には、数nm〜数10nmと極めて波長が短い超紫外線(
Extreme Ultraviolet)を用いてレジストを露光することが好適であ
る。超紫外線による露光は、解像度が高く焦点深度も大きい。従って、後に形成されるト
ランジスタのチャネル長(L)を10nm以上1000nm(1μm)以下とすることも
可能である。このような方法でチャネル長を小さくすることにより、トランジスタの動作
速度を向上させることもできる。また、上記酸化物半導体を用いたトランジスタはオフ電
流が極めて小さいため、微細化による消費電力の増大を抑制できる。
導電層108のエッチングの際には、酸化物半導体積層体110が除去されないように、
酸化物半導体積層体110及び導電層108の、材料及びエッチング条件を適宜調節する
。なお、材料及びエッチング条件によっては、当該工程において、酸化物半導体積層体1
10の一部がエッチングされ、溝部(凹部)を有することもある。
また、酸化物半導体積層体110の側面において、配線108a、108bと接する結晶
領域が非晶質状態となることもある。
なお、ここでの導電層108のエッチングは、ドライエッチングでもウェットエッチング
でもよく、両方を用いてもよい。所望の形状の配線108a、108bを形成するために
、材料に合わせてエッチング条件(エッチング液、エッチング時間、温度など)を適宜調
節する。
本実施の形態では、エッチャントとしてアンモニア過水(アンモニア、水、過酸化水素水
の混合液)を用いて、導電層108をエッチングして、配線108a、108bを形成す
る。
次に、図9(B)に示すように、絶縁層101、酸化物半導体積層体110、及び配線1
08a、108b上に、実施の形態1と同様に、ゲート絶縁層112を形成する。
不純物を除去することによりi型化または実質的にi型化された酸化物半導体層(水素濃
度が低減され高純度化された酸化物半導体層)は界面準位、界面電荷に対して極めて敏感
であるため、ゲート絶縁層112との界面は重要である。そのため高純度化された酸化物
半導体積層体110に接するゲート絶縁層112は、高品質化が要求される。
例えば、μ波(例えば、周波数2.45GHz)を用いた高密度プラズマCVDにより、
緻密で絶縁耐圧の高い高品質な絶縁層を形成できるので好ましい。水素濃度が低減され高
純度化された酸化物半導体層と高品質ゲート絶縁層とが密接することにより、界面準位を
低減して界面特性を良好なものとすることができるからである。また、高密度プラズマC
VDにより得られた絶縁層は、一定の厚さで形成できるため、段差被覆性に優れている。
また、高密度プラズマCVDにより得られる絶縁層は、厚さを精密に制御することができ
る。
もちろん、ゲート絶縁層として良質な絶縁層を形成できるものであれば、スパッタリング
法やプラズマCVD法など他の形成方法を適用することができる。スパッタリング法によ
り酸化シリコン層を形成する場合には、ターゲットとしてシリコンターゲットまたは石英
ターゲットを用い、スパッタリングガスとして酸素または、酸素及びアルゴンの混合ガス
を用いて行う。また、ゲート絶縁層の形成後の加熱処理によってゲート絶縁層の膜質、酸
化物半導体積層体110との界面特性が改質される絶縁層であっても良い。いずれにして
も、ゲート絶縁層としての膜質が良好であることは勿論のこと、酸化物半導体積層体11
0との界面準位密度を低減し、良好な界面を形成できるものであれば良い。
例えば、85℃、2×10V/cm、12時間のゲートバイアス・熱ストレス試験(B
T試験)においては、不純物が酸化物半導体積層体110に添加されていると、不純物と
酸化物半導体積層体110の主成分との結合が、強電界(B:バイアス)と高温(T:温
度)により切断され、生成されたダングリングボンドがしきい値電圧(Vth)のドリフ
トを誘発することとなる。
これに対して、酸化物半導体積層体110の不純物、特に水素、水、水酸基、水素化物な
どを極力除去し、上記のようにゲート絶縁層との界面特性を良好にすることにより、BT
試験に対しても安定なトランジスタを得ることを可能としている。
なお、酸化物半導体積層体110に接して設けられる絶縁層にハロゲン元素(例えば、フ
ッ素または塩素)を含ませ、または酸化物半導体積層体110を露出させた状態でハロゲ
ン元素を含むガス雰囲気中でのプラズマ処理によって酸化物半導体積層体110にハロゲ
ン元素を含ませ、酸化物半導体積層体110または該酸化物半導体積層体110に接して
設けられる絶縁層との界面に存在しうる、水素、水、水酸基、水素化物などの不純物を排
除してもよい。絶縁層にハロゲン元素を含ませる場合には、該絶縁層中におけるハロゲン
元素濃度は、5×1017cm−3〜1×1020cm−3程度とすればよい。
また、上記したように酸化物半導体積層体110中または酸化物半導体積層体110とこ
れに接する絶縁層との界面にハロゲン元素を含ませ、酸化物半導体積層体110と接して
設けられた絶縁層が酸化物絶縁層である場合には、酸化物絶縁層の酸化物半導体積層体1
10と接しない側を、窒化物絶縁層で覆うことが好ましい。すなわち、酸化物半導体積層
体110に接する酸化物絶縁層の上に接して窒化シリコン層などを設ければよい。このよ
うな構造とすることで、水素、水、水酸基、水素化物などの不純物が酸化物半導体積層体
110に侵入することを低減することができる。
また、ゲート絶縁層112を形成する前、スパッタリング装置内壁や、ターゲット表面や
ターゲット材料中に残存している水分または水素を除去するためにプリヒート処理を行う
ことが好ましい。プリヒート処理を終えたら、基板またはスパッタリング装置を冷却した
後大気にふれることなくゲート絶縁層112を形成する。
次に、ゲート絶縁層112上であって、酸化物半導体積層体110と重畳する領域にゲー
ト電極114を形成する(図9(C)参照。)。ゲート電極114は、ゲート絶縁層11
2上に導電層をスパッタリング法、CVD法、または真空蒸着法で形成し、当該導電層上
にフォトリソグラフィ工程によりレジストマスク形成し、当該レジストマスクを用いて導
電層をエッチングして、形成することができる。
次に、不活性ガス雰囲気、または酸素ガス雰囲気で第3の加熱処理(好ましくは200℃
以上450℃以下、例えば250℃以上350℃以下)を行ってもよい。当該加熱処理に
より、第1の加熱処理及び第2加熱処理で発生した酸素欠陥に酸素を供給することで、ド
ナーとなる酸素欠陥を更に低減し、化学量論比を満たす構成とすることが可能であり、酸
化物半導体積層体110をよりi型化または実質的にi型化にすることができる。なお、
当該第3の加熱処理は、ゲート電極114の形成の前に行ってもよい。または、のちに形
成する絶縁層116の形成後に行ってもよい。
この後、ゲート絶縁層112及びゲート電極114上に、絶縁層116を形成する(図9
(D)参照。)。絶縁層116には水素を含有させてもよい。絶縁層116は、スパッタ
リング法、CVD法などを用いて形成することができる。本実施の形態では、CVD法に
より得られる窒化物絶縁層の一つである窒化シリコン層を用いる。
第3の加熱処理は、窒素雰囲気下で、150℃以上450℃以下、好ましくは250℃以
上440℃以下で行うことが好ましい。また、第3の加熱処理は、窒素雰囲気下に限定さ
れず、酸素雰囲気、希ガス雰囲気、乾燥空気雰囲気で行えばよい。
以上の工程で、水素濃度が低減され高純度化され、且つ単結晶領域を有する酸化物半導体
積層体を有するトランジスタ150を形成することができる。
なお、エッチング条件次第では、図8(C)の後、第2の単結晶領域を有する多元系酸化
物半導体層107を島状にエッチングした後、単結晶領域を有する一元系酸化物半導体層
105が島状にエッチングされず、図10(A)に示すように、絶縁層101上全面に第
1の単結晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一元系酸化
物半導体層105が残存する場合がある。これは、第2の加熱処理と比べて第1の加熱処
理の温度が高い場合、第2の単結晶領域を有する多元系酸化物半導体層107より、第1
の単結晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一元系酸化物
半導体層105の結晶性が高まり、エッチング速度が遅くなるためである。
この後、図8(E)及び図9に示す工程により、図10(B)に示すような、絶縁層10
1上に第1の単結晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一
元系酸化物半導体層105が積層して形成され、単結晶領域を有する一元系酸化物半導体
層105上に島状の第2の単結晶領域を有する多元系酸化物半導体層107a、配線10
8a、108b、及びゲート絶縁層112が形成され、ゲート絶縁層112上にゲート電
極114が形成されるトランジスタ152となる。
従来の酸化物半導体は一般にn型であり、酸化物半導体を用いたトランジスタは、ゲート
電圧が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノーマリーオンとな
りやすい。電界効果移動度が高くともトランジスタがノーマリーオンであると、回路とし
て制御することが困難である。なお、酸化物半導体において水素はドナーに成り得るため
n型化する一つの要因であることが知られている。また、酸素欠陥もn型化する一つの要
因であることが知られている。
そこで酸化物半導体をi型とするため、n型不純物である水素、水、水酸基、水素化物な
どを第1の加熱処理及び第2の加熱処理において、酸化物半導体の結晶成長とともに酸化
物半導体から除去し、酸化物半導体の主成分以外の不純物が極力含まれないように高純度
化し、かつ、第3の加熱処理において酸素欠陥を除去することにより真性型とする。すな
わち、不純物を添加してi型化するのでなく、水素、水、水酸基、水素化物などの不純物
や酸素欠陥を極力除去したことにより、高純度化されたi型(真性半導体)またはそれに
近づけることを特徴としている。ことに本実施の形態で示した酸化物半導体は高度に結晶
化しているため、アモルファスあるいは微結晶、多結晶状態のものと比較して、不純物や
欠陥が少ないという特徴を有する。このように酸化物半導体を高純度化することにより、
トランジスタのしきい値電圧値をプラスとすることができ、所謂ノーマリーオフのスイッ
チング素子を実現できる。
このときの酸化物半導体の水素濃度は、1×1018cm−3以下、1×1016cm
以下、さらには実質的には0が好ましい。また、酸化物半導体のキャリア密度が1×1
14cm−3未満、1×1012cm−3未満、さらに好ましくは1.45×1010
cm−3未満である。即ち、酸化物半導体のキャリア密度は、限りなくゼロに近い。また
、バンドギャップは2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上
である。なお、酸化物半導体中の水素濃度は、二次イオン質量分析法(SIMS:Sec
ondary Ion Mass Spectroscopy)で得られたものである。
キャリア密度は、ホール効果測定により測定することができる。また、より低濃度のキャ
リア密度は、CV測定(Capacitance−Voltage−Measureme
nt)の測定結果により求めることができる。
また、一般的なシリコンウェハにおけるキャリア密度の最小値(1×1014/cm
度)と比較して、酸化物半導体は、十分に小さいキャリア密度の値(例えば、1×10
/cm未満、より好ましくは、1.45×1010/cm未満)をとる。また、チ
ャネル長3μm、チャネル幅1×10μmのトランジスタにおいて、ドレイン電圧が1
Vから10Vの範囲のいずれかの電圧の場合、室温においてオフ電流(ゲートソース間の
電圧を0V以下としたときのソースドレイン間に流れる電流)が、測定下限以下であり、
サブスレッショルドスイング値(S値)が0.1V/dec.(ゲート絶縁層膜厚100
nm)が得られる。このように、酸化物半導体を高純度化することで、オフ電流を1×1
−20A(10zA(ゼプトアンペア))から、1×10−19A(100zA)程度
にまで低減することも可能である。オフ電流は、直接再結合または間接再結合による正孔
と電子の生成−再結合によって流れるが、酸化物半導体はバンドギャップが広く、電子の
励起のために大きな熱エネルギーが必要であるため、直接再結合及び間接再結合が生じに
くい。このため、ゲート電極に負の電位が印加された状態(オフ状態)では、少数キャリ
アであるホールは実質的にゼロであるため、直接再結合及び間接再結合が生じにくく、電
流は限りなく低くなる。
なお、オフ電流とドレイン電圧との値が分かればオームの法則からトランジスタがオフ状
態のときの抵抗値(オフ抵抗R)を算出することができ、チャネル形成領域の断面積Aと
チャネル長Lが分かればρ=RA/Lの式(Rはオフ抵抗)からオフ抵抗率ρを算出する
こともできる。オフ抵抗率は1×10Ω・m以上(または1×1010Ω・m)が好ま
しい。ここで、断面積Aは、チャネル形成領域の膜厚をdとし、チャネル幅をWとすると
き、A=dWから算出することができる。
アモルファスシリコンを用いたトランジスタのオフ電流が10−12A程度であるのに対
し、酸化物半導体を用いたトランジスタのオフ電流は、遙かに低い。このように、i型化
または実質的にi型化された酸化物半導体を用いることで、極めて優れたオフ電流特性の
トランジスタ150を得ることができる。
さらには、酸化物半導体のキャリアを低減し、好ましくは無くすことで、トランジスタに
おいて酸化物半導体はキャリアを通過させる通路(パス)として機能させる。その結果、
酸化物半導体は高純度化したi型(真性)半導体であり、キャリアがない、または極めて
少なくせしめることにより、トランジスタのオフ状態ではオフ電流を極めて低くできると
いうのが本実施の形態の技術思想である。
また、酸化物半導体は通路(パス)として機能し、酸化物半導体自体がキャリアを有さな
い、または極めて少ないように高純度化したi型(真性)とすると、キャリアは電極のソ
ース、ドレインにより供給される。酸化物半導体の電子親和力χ及びフェルミレベル、理
想的には真性フェルミレベルと一致したフェルミレベルと、ソース、ドレインの電極の仕
事関数とを適宜選択することで、ソース電極及びドレイン電極からキャリアを注入させる
ことが可能となり、n型トランジスタ及びp型トランジスタを適宜作製することができる
このように、酸化物半導体の主成分以外の不純物、代表的には水素、水、水酸基、水素化
物などが極力含まれないように高純度化し、且つ単結晶領域を有せしめることにより、ト
ランジスタの動作を良好なものとすることができる。特に、オンオフ比を高めることがで
きる。また、BT試験前後におけるトランジスタのしきい値電圧の変化量を抑制すること
ができ、高い信頼性を実現することができる。また、電気特性の温度依存性を抑制するこ
とができる。また、これまで報告された金属酸化物はアモルファス状態のもの、あるいは
、多結晶状態のもの、あるいは、1400℃程度の高温での処理により単結晶を得るもの
のみであったが、上記に示したように、平板状の単結晶領域を有する一元系酸化物半導体
層を形成した後、当該単結晶領域を種として結晶成長させる方法により、大面積基板を用
いて比較的低温で単結晶領域を有する酸化物半導体層を作製することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2と比較して、酸化物半導体積層体11
0の異なる作製方法について、図11を用いて説明する。
実施の形態2と同様に、図11(A)に示すように、基板100上に絶縁層101を形成
する。次に、絶縁層101上に第1の多元系酸化物半導体層102を形成し、第1の多元
系酸化物半導体層102上に一元系酸化物半導体層104を形成する。
次に、実施の形態1と同様に、第1の加熱処理を行い、図11(B)に示すように、第1
の単結晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一元系酸化物
半導体層105を形成する。次に、単結晶領域を有する一元系酸化物半導体層105上に
第2の多元系酸化物半導体層106を形成する。
次に、第2の多元系酸化物半導体層106上にフォトリソグラフィ工程によりレジストマ
スクを形成した後、当該レジストマスクを用いて第1の単結晶領域を有する多元系酸化物
半導体層103、単結晶領域を有する一元系酸化物半導体層105、及び第2の多元系酸
化物半導体層106をエッチングして、島状の第1の単結晶領域を有する多元系酸化物半
導体層103a、単結晶領域を有する一元系酸化物半導体層105a、及び第2の多元系
酸化物半導体層106aを形成する。この後、レジストマスクを除去する(図11(C)
参照。)。
次に、第2の加熱処理により、単結晶領域を有する一元系酸化物半導体層105aを種と
して第2の多元系酸化物半導体層106aを結晶成長させて、第2の単結晶領域を有する
多元系酸化物半導体層107aを形成する。以上の工程により、第1の単結晶領域を有す
る多元系酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105a、
及び第2の単結晶領域を有する多元系酸化物半導体層107aで構成される酸化物半導体
積層体110を形成することができる。この後、図8(E)及び図9に示す工程により、
図1に示すようなトランジスタ150を形成することができる。
第2の単結晶領域を有する多元系酸化物半導体層は結晶性が高く、エッチング条件次第で
は、結晶化前の第2の多元系酸化物半導体層と比較してエッチング速度が遅い。このため
、第2の加熱処理を行う前に第2の多元系酸化物半導体層を島状にエッチングすることで
、エッチング時間を短縮することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態4)
本実施の形態では、実施の形態1乃至実施の形態3と比較して、酸化物半導体積層体11
0の異なる作製方法について、図12を用いて説明する。
実施の形態2と同様に、基板100上に絶縁層101を形成する。次に、絶縁層101上
に第1の多元系酸化物半導体層を形成し、第1の多元系酸化物半導体層上に一元系酸化物
半導体層を形成する。次に、実施の形態1と同様に、第1の加熱処理を行い、第1の単結
晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一元系酸化物半導体
層105を形成する(図12(A)参照)。
次に、単結晶領域を有する一元系酸化物半導体層105上にフォトリソグラフィ工程によ
りレジストマスクを形成した後、当該レジストマスクを用いて、第1の単結晶領域を有す
る多元系酸化物半導体層103及び単結晶領域を有する一元系酸化物半導体層105をエ
ッチングして、図12(B)に示すように、島状の第1の単結晶領域を有する多元系酸化
物半導体層103b及び単結晶領域を有する一元系酸化物半導体層105bを形成する。
この後、レジストマスクを除去する。
次に、単結晶領域を有する一元系酸化物半導体層105b及び絶縁層101上に第2の多
元系酸化物半導体層106を形成する。
次に、第2の多元系酸化物半導体層106上にフォトリソグラフィ工程によりレジストマ
スクを形成した後、当該レジストマスクを用いて、第1の単結晶領域を有する多元系酸化
物半導体層103b、単結晶領域を有する一元系酸化物半導体層105b、及び第2の多
元系酸化物半導体層106をエッチングして、島状の第1の単結晶領域を有する多元系酸
化物半導体層103a、島状の単結晶領域を有する一元系酸化物半導体層105a、及び
島状の第2の多元系酸化物半導体層106aを形成する。この後、レジストマスクを除去
する(図12(C)参照。)。
次に、第2の加熱処理により、単結晶領域を有する一元系酸化物半導体層105aを種と
して第2の多元系酸化物半導体層106aを結晶成長させて、第2の単結晶領域を有する
多元系酸化物半導体層107aを形成する。以上の工程により、第1の単結晶領域を有す
る多元系酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105a、
及び第2の単結晶領域を有する多元系酸化物半導体層107aで構成される酸化物半導体
積層体110を形成することができる(図12(D)参照。)。この後、図8(E)及び
図9に示す工程により、図1に示すようなトランジスタ150を形成することができる。
第2の単結晶領域を有する多元系酸化物半導体層は結晶性が高く、エッチング条件次第で
は、結晶化前の第2の多元系酸化物半導体層と比較してエッチング速度が遅い。このため
、第2の加熱処理を行う前に第2の多元系酸化物半導体層を島状にエッチングすることで
、エッチング時間を短縮することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態5)
本実施の形態では、第2の単結晶領域を有する多元系酸化物半導体層の作製方法が実施の
形態1と異なる形態について、図8及び図13を用いて説明する。
実施の形態2と同様に、図8(A)に示すように、基板100上に絶縁層101を形成す
る。次に、絶縁層101上に第1の多元系酸化物半導体層102を形成し、第1の多元系
酸化物半導体層102上に一元系酸化物半導体層104を形成する。
次に、実施の形態1と同様に、第1の加熱処理を行い、図13(A)に示すように、第1
の単結晶領域を有する多元系酸化物半導体層103及び単結晶領域を有する一元系酸化物
半導体層105を形成する。
次に、図13(B)に示すように、200℃以上600℃以下、好ましくは200℃以上
550℃以下で加熱しながら、スパッタリング法により、単結晶領域を有する一元系酸化
物半導体層105上に第2の単結晶領域を有する多元系酸化物半導体層107を形成する
。第2の単結晶領域を有する多元系酸化物半導体層107は、六方晶の非ウルツ鉱型結晶
構造となる。ここでは、加熱しながら第2の多元系酸化物半導体層を堆積するため、単結
晶領域を有する一元系酸化物半導体層105表面の単結晶領域を結晶成長の種として、単
結晶領域を有する一元系酸化物半導体層105と同じ結晶軸となるように、特にc軸方向
が同一となるように結晶成長(エピタキシャル成長、アキシャル成長ともいう。)するた
め、第2の単結晶領域を有する多元系酸化物半導体層107を形成することができる。こ
の結果、第2の加熱処理を行わずとも、c軸方向が単結晶領域を有する一元系酸化物半導
体層105と同一である結晶化した第2の単結晶領域を有する多元系酸化物半導体層10
7を形成することができる。
この後、実施の形態1の工程を経て、トランジスタ150を作製することができる。
本実施の形態では、加熱処理数を削減することが可能であるため、スループットを向上さ
せることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態6)
実施の形態1乃至実施の形態5においてはトップゲート構造のトランジスタの作製工程を
示したが、本実施の形態では、図14を用いて、ボトムゲート構造のトランジスタの作製
工程について説明する。
本実施の形態では基板100としてガラス基板を用い、事前に、基板100に対して65
0℃、6分の加熱処理を2回行う。トランジスタ形成前に基板の加熱を行うことにより、
基板の収縮による膜剥がれや、マスクの位置ずれを抑える。次に、絶縁表面を有する基板
100上に、導電層を形成した後、フォトマスクを用いてフォトリソグラフィ工程により
ゲート電極400を設ける。
また、基板100とゲート電極400の間に実施の形態2に示す絶縁層101を設けても
よい。絶縁層101は、基板100とゲート電極400との密着性を高めることができる
ゲート電極400としては、実施の形態1に示すゲート電極114に示す材料及び作製方
法を適宜用いることができる。なお、ゲート電極400は端部がテーパー形状であると、
のちに形成する絶縁層、半導体層、及び導電層の被覆率を高めることができるため好まし
い。
次に、ゲート電極400上にゲート絶縁層401を形成する。ゲート絶縁層401は、実
施の形態1に示すゲート絶縁層112に示す材料及び作製方法を適宜用いることができる
次に、ゲート絶縁層401上に、実施の形態1と同様に、第1の多元系酸化物半導体層を
形成し、第1の多元系酸化物半導体層上に一元系酸化物半導体層を形成した後、第1の加
熱処理を行って、第1の単結晶領域を有する多元系酸化物半導体層403及び単結晶領域
を有する一元系酸化物半導体層405を形成する(図14(A)参照。)。
次に、単結晶領域を有する一元系酸化物半導体層405上に、実施の形態1と同様に第2
の多元系酸化物半導体層を形成した後、第2の加熱処理を行って、第2の単結晶領域を有
する多元系酸化物半導体層407を形成する(図14(B)参照)。
次に、第2の単結晶領域を有する多元系酸化物半導体層407上に、フォトリソグラフィ
工程によりレジストマスクを形成した後、エッチングして、島状の第1の単結晶領域を有
する多元系酸化物半導体層403a、島状の単結晶領域を有する一元系酸化物半導体層4
05a、及び島状の第2の単結晶領域を有する多元系酸化物半導体層407aを形成する
次に、ゲート絶縁層401、島状の第1の単結晶領域を有する多元系酸化物半導体層40
3a、島状の単結晶領域を有する一元系酸化物半導体層405a、及び島状の第2の単結
晶領域を有する多元系酸化物半導体層407a上に、ソース電極及びドレイン電極として
機能する配線408a、408bを形成する。配線408a、408bは、実施の形態1
に示す配線108a、108bと同様に形成することができる。
次に、酸化物半導体層の一部に接する保護絶縁層となる酸化物絶縁層412を形成した後
、第3の加熱処理を行ってもよい(図14(C)参照。)。
本実施の形態では、酸化物絶縁層412として厚さ300nmの酸化シリコン層をスパッ
タリング法を用いて形成する。形成時の基板温度は、室温以上300℃以下とすればよく
、本実施の形態では100℃とする。酸化シリコン層のスパッタリング法は、希ガス(代
表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)と酸
素の混合雰囲気下において行うことができる。また、ターゲットとして酸化シリコンター
ゲットまたはシリコンターゲットを用いることができる。例えば、シリコンターゲットを
用いて、酸素、及び窒素雰囲気下でスパッタリング法により酸化シリコン層を形成するこ
とができる。結晶化させた島状の第1の単結晶領域を有する多元系酸化物半導体層403
a、結晶化させた島状の単結晶領域を有する一元系酸化物半導体層405a、及び結晶化
させた島状の第2の単結晶領域を有する多元系酸化物半導体層407aに接して形成する
酸化物絶縁層412は、10nm以上500nm以下の厚さとし、代表的には酸化シリコ
ン層、窒化酸化シリコン層、酸化アルミニウム層、または酸化窒化アルミニウム層などを
用いる。
また、第3の加熱処理の温度は、200℃以上450℃以下、望ましくは250℃以上3
50℃以下である。当該加熱処理により、第1の加熱処理及び第2加熱処理で発生した酸
素欠陥に酸素を供給することで、ドナーとなる酸素欠陥を更に低減し、化学量論比を満た
す構成とすることが可能であり、第1の単結晶領域を有する多元系酸化物半導体層403
a、単結晶領域を有する一元系酸化物半導体層405a、及び第2の単結晶領域を有する
多元系酸化物半導体層407aをよりi型化または実質的にi型化することができる。
次に、酸化物絶縁層412上に、絶縁層416を形成する。その後、第4の加熱処理を行
ってもよい(図14(D)参照。)。絶縁層416は、実施の形態2に示す絶縁層116
と同様に形成することができる。
第4の加熱処理は、窒素雰囲気下、150℃以上450℃以下、好ましくは250℃以上
440℃以下とする。また、第4の加熱処理は、窒素雰囲気下に限定されず、酸素雰囲気
、希ガス雰囲気、乾燥空気雰囲気で行えばよい。
以上により、単結晶領域を有する一元系酸化物半導体層405aの結晶領域から結晶成長
させた第1の単結晶領域を有する多元系酸化物半導体層403a及び第2の単結晶領域を
有する多元系酸化物半導体層407aを用いたトランジスタ450が完成する。
次に、絶縁層416上に層間絶縁層418を形成してもよい(図14(E)参照。)。層
間絶縁層418は、スパッタリング法やCVD法などを用いて得られる酸化シリコン層、
窒化酸化シリコン層、窒化シリコン層、酸化ハフニウム層、酸化アルミニウム層、酸化タ
ンタル層等の無機絶縁材料を含む材料を用いて形成する。また、層間絶縁層418の材料
として、アクリル、ポリイミド、エポキシ樹脂等の有機樹脂を用いることもできる。なお
、本実施の形態では、酸化物絶縁層412、絶縁層416と層間絶縁層418の積層構造
としているが、開示する発明の一態様はこれに限定されない。1層としても良いし、2層
としてもよいし、4層以上の積層構造としても良い。
また、本実施の形態に示すトランジスタは、図14(E)に示すように、ゲート電極40
0は、配線408a、408bと重なる領域を有することも特徴の一つである。配線40
8aの端部と、ゲート絶縁層401の段差、即ち断面図において、配線408aとゲート
絶縁層の平坦面からテーパー面となる変化点との間の領域(ここでは図14(E)中で示
したLOV領域)を有している。LOV領域は、ゲート電極の端部起因の段差部で生じる
酸化物半導体の結晶粒界に、キャリアが流れないようにするために重要である。
また、酸化物絶縁層412上にバックゲート電極を形成してもよい。その場合の作製工程
を図15(A)及び図15(B)に示す。図14(C)の状態を得た後、ゲート電極40
0に達するコンタクトホールを形成し、酸化物絶縁層412上にバックゲート電極414
を形成する(図15(A)参照。)。次に、バックゲート電極414及び酸化物絶縁層4
12上に、絶縁層416を形成し、第4の加熱処理を行ってもよい。以上の工程により、
図15(B)に示すトランジスタ451を得ることができる。バックゲート電極414を
、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物半
導体層、及び第2の単結晶領域を有する多元系酸化物半導体層で形成されるチャネル形成
領域と重なる位置に設けることによって、バックゲートがパッシベーション層として機能
し、外部からの水素がチャネル形成領域に侵入するのを阻止することが可能となるため、
BT試験(バイアス−熱ストレス試験)前後におけるトランジスタ451のしきい値電圧
の変化量を低減することができる。
また、バックゲート電極414は、電位がトランジスタ451のゲート電極400と異な
っていても良い。また、バックゲート電極414の電位がGND、0V、或いはフローテ
ィング状態であってもよい。この場合は、バックゲート電極414を形成する前に、ゲー
ト電極400に達するコンタクトホールを形成しないことで、ゲート電極400とバック
ゲート電極414の電位を異ならせることができる。
次に、絶縁層416上に平坦化のための層間絶縁層418を形成し、図15(B)に示す
断面構造を得ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態7)
本実施の形態では、チャネルストップ構造のトランジスタの構造を図16を用いて示す。
本実施の形態は、実施の形態6と一部異なるだけであるため、詳細な説明はここでは省略
することとする。
以下に工程を順に説明する。実施の形態6と同様に、基板100上にゲート電極400及
びゲート絶縁層402を形成する。次に、実施の形態6と同様に、ゲート絶縁層402上
に第1の多元系酸化物半導体層を形成し、第1の多元系酸化物半導体層上に一元系酸化物
半導体層を形成し、第1の加熱処理を行って第1の多元系酸化物半導体層及び一元系酸化
物半導体層を結晶化させ、第1の単結晶領域を有する多元系酸化物半導体層及び単結晶領
域を有する一元系酸化物半導体層を形成する。次に、実施の形態6と同様に、第2の多元
系酸化物半導体層を形成し、第2の加熱処理を行って第2の多元系酸化物半導体層を結晶
化させて、第2の単結晶領域を有する多元系酸化物半導体層を形成する。
次に、酸化物絶縁層を形成し、第3の加熱処理を行う。酸化物絶縁層は、実施の形態6に
示した酸化物絶縁層412と同じ材料を用いる。また、第3の加熱処理も実施の形態6に
示した第3の加熱処理と同じ条件とし、第1の単結晶領域を有する多元系酸化物半導体層
、単結晶領域を有する一元系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化
物半導体層に酸素を供給し、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領
域を有する一元系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層
中の酸素欠陥を低減する。
次に、フォトリソグラフィ工程により酸化物絶縁層上にレジストマスクを形成し、選択的
にエッチングを行って、島状の第1の単結晶領域を有する多元系酸化物半導体層403a
、島状の単結晶領域を有する一元系酸化物半導体層405a、及び島状の第2の単結晶領
域を有する多元系酸化物半導体層407aを形成する。同時に、酸化物絶縁層も島状にな
る。
次に、レジストマスクを除去し、フォトリソグラフィ工程によりレジストマスクを形成し
、選択的にエッチングを行って島状の酸化物絶縁層420を形成する。
次に、島状の酸化物絶縁層420、島状の第1の単結晶領域を有する多元系酸化物半導体
層403a、島状の単結晶領域を有する一元系酸化物半導体層405a、及び島状の第2
の単結晶領域を有する多元系酸化物半導体層407a上に、実施の形態1と同様に配線4
08a、408bを形成する。
次に、配線408a、408b及び島状の酸化物絶縁層420上に絶縁層416を形成す
る。その後、第4の加熱処理を行ってもよい。なお、第4の加熱処理も実施の形態6に示
した第4の加熱処理と同じ条件とすればよい。
以上により、第1の単結晶領域を有する多元系酸化物半導体層、単結晶領域を有する一元
系酸化物半導体層、及び第2の単結晶領域を有する多元系酸化物半導体層を有するチャネ
ルストップ型のトランジスタ452が完成する。
次に、絶縁層416上に平坦化のための層間絶縁層418を形成し、図16に示す断面構
造を得ることができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態8)
本実施の形態では、実施の形態6及び実施の形態7に適用可能な構造について、図17を
用いて説明する。
本実施の形態では、第1の単結晶領域を有する多元系酸化物半導体層403b、単結晶領
域を有する一元系酸化物半導体層405b、及び第2の単結晶領域を有する多元系酸化物
半導体層407bの面積が、ゲート電極400より小さく、且つ全てがゲート電極400
と重畳していることを特徴とする。このため、ゲート電極400が遮光性を有する金属元
素または合金で形成されることで、基板100側からの外光が、第1の単結晶領域を有す
る多元系酸化物半導体層403b、単結晶領域を有する一元系酸化物半導体層405b、
及び第2の単結晶領域を有する多元系酸化物半導体層407bに照射するのを低減するこ
とができる。また、第1の単結晶領域を有する多元系酸化物半導体層403b、単結晶領
域を有する一元系酸化物半導体層405b、及び第2の単結晶領域を有する多元系酸化物
半導体層407bは、端部を除くゲート電極400の平坦な部分にのみ重畳するため、平
坦な形状となる。この結果、表面に垂直なc軸方向が全て平行であるため、結晶粒界が形
成されにくく、結晶性の優れた実質的に単結晶構造となる。
以上により、実質的に単結晶構造である第1の多元系酸化物半導体層、一元系酸化物半導
体層、及び第2の多元系酸化物半導体層を有するトランジスタとなる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態9)
本実施の形態では、先の実施の形態において説明した半導体装置を半導体集積回路に用い
る場合の一形態として、別の半導体材料を用いた半導体装置との積層構造による半導体装
置について、図18を参照して説明する。
図18は、本実施の形態にかかる半導体装置の構成の一形態を示す断面図である。図18
に示される半導体装置は、下部に、酸化物半導体以外の材料(例えば、シリコン)を用い
たトランジスタ250を有し、上部に酸化物半導体を用いたトランジスタ150を有する
ものである。酸化物半導体を用いたトランジスタ150は、図1に示したトランジスタ1
50である。なお、トランジスタ250及びトランジスタ150は、いずれもn型トラン
ジスタとして説明するが、p型トランジスタを採用しても良い。特に、トランジスタ25
0は、p型とすることが容易である。
トランジスタ250は、半導体材料を含む基板200に設けられたチャネル形成領域21
6と、チャネル形成領域216を挟むように設けられた不純物領域214及び高濃度不純
物領域220(これらをあわせて単に不純物領域とも示す。)と、チャネル形成領域21
6上に設けられたゲート絶縁層208aと、ゲート絶縁層208a上に設けられたゲート
電極210aと、不純物領域214と電気的に接続するソース電極及びドレイン電極とし
て機能する配線230a、230bを有する(図18参照)。
ここで、ゲート電極210aの側面にはサイドウォール絶縁層218が設けられている。
また、基板200の主平面に垂直な方向から見てサイドウォール絶縁層218と重ならな
い領域には、高濃度不純物領域220を有し、高濃度不純物領域220と接する金属化合
物領域224を有する。また、基板200上にはトランジスタ250を囲むように素子分
離絶縁層206が設けられており、トランジスタ250を覆うように、層間絶縁層226
及び層間絶縁層228が設けられている。配線230a、230bは、層間絶縁層226
、層間絶縁層228、及び絶縁層234に形成された開口を通じて、金属化合物領域22
4と電気的に接続されている。つまり、配線230a、230bは、金属化合物領域22
4を介して高濃度不純物領域220及び不純物領域214と電気的に接続されている。
トランジスタ150は、絶縁層101上に設けられた、第1の単結晶領域を有する多元系
酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105a、及び第2
の単結晶領域を有する多元系酸化物半導体層107aと、第1の単結晶領域を有する多元
系酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105a及び第2
の単結晶領域を有する多元系酸化物半導体層107a上に設けられ、第1の単結晶領域を
有する多元系酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層105
a及び第2の単結晶領域を有する多元系酸化物半導体層107aと電気的に接続されてい
るソース電極及びドレイン電極として機能する配線108a、108bと、第1の単結晶
領域を有する多元系酸化物半導体層103a、単結晶領域を有する一元系酸化物半導体層
105a、第2の単結晶領域を有する多元系酸化物半導体層107a、配線108a、1
08bを覆うように設けられたゲート絶縁層112と、ゲート絶縁層112上の、第2の
単結晶領域を有する多元系酸化物半導体層107aと重畳する領域に設けられたゲート電
極114と、を有する。
また、トランジスタ150上には、絶縁層116及び層間絶縁層118が設けられている
。ここで、ゲート絶縁層112、絶縁層116、及び層間絶縁層118には、配線108
a、108bにまで達する開口が設けられており、当該開口を通じて、配線254d、配
線254eが、それぞれ、配線108a、108bに接して形成されている。また、配線
254d、配線254eと同様に、ゲート絶縁層112、絶縁層116、及び層間絶縁層
118に設けられた開口を通じて、配線236a、配線236b、配線236cに接する
配線254a、配線254b、配線254cが形成されている。
また、層間絶縁層118上には絶縁層256が設けられており、当該絶縁層256に埋め
込まれるように、配線258a、配線258b、配線258c、配線258dが設けられ
ている。ここで、配線258aは配線254aと接しており、配線258bは配線254
bと接しており、配線258cは配線254c及び配線254dと接しており、配線25
8dは配線254eと接している。
つまり、トランジスタ150の配線108aは、配線230c、配線236c、配線25
4c、配線258c、配線254dを介して、他の要素(酸化物半導体以外の材料を用い
たトランジスタなど)と電気的に接続されている。さらに、トランジスタ150の配線1
08bは、配線254e、配線258dを介して、他の要素に電気的に接続されている。
なお、接続に係る配線(配線230c、配線236c、配線254c、配線258c、配
線254d等)の構成は、上記に限定されず、適宜追加、省略等が可能である。
なお、各種配線(例えば、配線258a、配線258b、配線258c、配線258dな
ど)の一部には銅を含む材料を用いることが好ましい。これらの一部に銅を含む材料を用
いることで、導電性を向上させることができる。銅を含む電極や配線は、いわゆるダマシ
ンプロセスなどによって形成することが可能である。
以上、本実施の形態では、積層構造にかかる半導体装置の代表的な一形態について説明し
たが、開示する発明の一態様はこれに限定されない。例えば、トランジスタの構成、絶縁
層の数や配置、電極や配線の数や接続関係、などは適宜変更することが可能である。例え
ば、電極の接続関係の一例として、トランジスタ250のゲート電極210aと、トラン
ジスタ150の配線108aまたは配線108bとが電気的に接続される構成を採用する
こともできる。
このように、酸化物半導体以外の材料を用いたトランジスタと、酸化物半導体を用いたト
ランジスタとを一体に備える構成とすることで、酸化物半導体を用いたトランジスタとは
異なる電気特性が要求される半導体装置を実現することができる。
以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適
宜組み合わせて用いることができる。
(実施の形態10)
本実施の形態では、開示する発明の一態様に係る半導体装置の具体的な形態として、記憶
装置として機能する半導体装置の構成を説明する。なお、ここでは、第1の単結晶領域を
有する多元系酸化物半導体層、単結晶領域を有する一元系酸化物半導体層、及び第2の単
結晶領域を有する多元系酸化物半導体層(以下、酸化物半導体積層体と示す。)を用いた
トランジスタと、酸化物半導体積層体以外の材料(例えば、シリコン)を用いたトランジ
スタと、を含む半導体装置について説明する。
図19に示す半導体装置では、トランジスタ300のゲート電極と、トランジスタ302
のソース電極またはドレイン電極の一方とは、電気的に接続されている。また、第1の配
線(1st Line:ソース線とも示す。)とトランジスタ300のソース電極とは、
電気的に接続され、第2の配線(2nd Line:ビット線とも示す。)とトランジス
タ300のドレイン電極とは、電気的に接続されている。そして、第3の配線(3rd
Line:第1信号線とも示す。)とトランジスタ302のソース電極またはドレイン電
極の他方とは、電気的に接続され、第4の配線(4th Line:第2信号線とも示す
。)と、トランジスタ302のゲート電極とは、電気的に接続されている。ここで、トラ
ンジスタ300には酸化物半導体積層体以外の材料(例えば、シリコン)が用いられてお
り、トランジスタ302には酸化物半導体積層体が用いられている。なお、図19におい
ては、トランジスタ302をOS trと示す。
酸化物半導体以外の材料を用いたトランジスタ300は十分な高速動作が可能なため、こ
れを用いることにより、記憶内容の読み出しなどを高速に行うことが可能である。また、
酸化物半導体積層体を用いたトランジスタ302は、オフ電流が極めて小さいという特徴
を有している。このため、トランジスタ302をオフ状態とすることで、トランジスタ3
00のゲート電極の電位を極めて長時間にわたって保持することが可能である。
トランジスタ302のソース電極またはドレイン電極は、トランジスタ300のゲート電
極と電気的に接続されることにより、不揮発性メモリ素子として用いられるフローティン
グゲート型トランジスタのフローティングゲートと同等の作用を奏する。このため、本実
施の形態においては、トランジスタ302のソース電極またはドレイン電極とトランジス
タ300のゲート電極が電気的に接続される部位をフローティングゲート部FGと示す。
当該フローティングゲート部FGは絶縁物中に埋設された(所謂、浮遊状態)とみること
ができ、フローティングゲート部FGには、電荷が保持される。トランジスタ302はシ
リコン半導体で形成されるトランジスタ300と比較して、オフ電流が10万分の1以下
であるため、フローティングゲート部FGに蓄積される電荷の、トランジスタ302のリ
ークによる消失を無視することができる。
このような構成を採用することで、従来のフローティングゲート型トランジスタにおいて
指摘されている、電子をフローティングゲートに注入する際のトンネル電流によってゲー
ト絶縁層(トンネル絶縁層)が劣化するという問題を回避することができる。このため、
図19に示す半導体装置では、原理的に書き込み回数の制限を無視することができる。
なお、フローティングゲート部FGには容量素子を付加してもよい。フローティングゲー
ト部FGに容量素子を付加することで、電荷の保持が容易になり、また、各配線の電位変
動に起因するフローティングゲート部FGの電位変動を抑制することが容易になる。
図19に示す半導体装置では、トランジスタ300のゲート電極の電位が保持可能という
特徴を生かすことで、次のように、情報の書き込み、保持、読み出しが可能である。
はじめに、情報の書き込み及び保持について説明する。まず、第4の配線の電位を、トラ
ンジスタ302がオン状態となる電位として、トランジスタ302をオン状態とする。こ
れにより、第3の配線の電位が、トランジスタ300のゲート電極に与えられる(書き込
み)。その後、第4の配線の電位を、トランジスタ302がオフ状態となる電位として、
トランジスタ302をオフ状態とすることにより、トランジスタ300のゲート電極の電
位が保持される(保持)。
トランジスタ302のオフ電流は極めて小さいから、トランジスタ300のゲート電極の
電位は長時間にわたって保持される。例えば、トランジスタ300のゲート電極の電位が
トランジスタ300をオン状態とする電位であれば、トランジスタ300のオン状態が長
時間にわたって保持されることになる。また、トランジスタ300のゲート電極の電位が
トランジスタ300をオフ状態とする電位であれば、トランジスタ300のオフ状態が長
時間にわたって保持される。
次に、情報の読み出しについて説明する。上述のように、トランジスタ300のオン状態
またはオフ状態が保持された状態において、第1の配線に所定の電位(定電位)が与えら
れると、トランジスタ300のオン状態またはオフ状態に応じて、第2の配線の電位は異
なる値をとる。
このように、情報が保持された状態において、第1の配線の電位と第2の配線の電位とを
比較することで、情報を読み出すことができる。
次に、情報の書き換えについて説明する。情報の書き換えは、上記情報の書き込み及び保
持と同様に行われる。つまり、第4の配線の電位を、トランジスタ302がオン状態とな
る電位として、トランジスタ302をオン状態とする。これにより、第3の配線の電位(
新たな情報に係る電位)が、トランジスタ300のゲート電極に与えられる。その後、第
4の配線の電位を、トランジスタ302がオフ状態となる電位として、トランジスタ30
2をオフ状態とすることにより、新たな情報が保持された状態となる。
このように、開示する発明に係る半導体装置は、再度の情報の書き込みによって直接的に
情報を書き換えることが可能である。このためフラッシュメモリなどにおいて必要とされ
る消去動作が不要であり、消去動作に起因する動作速度の低下を抑制することができる。
つまり、半導体装置の高速動作が実現される。
また、本実施の形態に係る半導体装置は、トランジスタ302の低オフ電流特性により、
極めて長時間にわたり情報を保持することが可能である。つまり、DRAMなどで必要と
されるリフレッシュ動作が不要であり、消費電力を抑制することができる。また、実質的
な不揮発性の半導体装置として用いることが可能である。
また、トランジスタ302のスイッチング動作によって情報の書き込みなどを行うため、
高い電圧を必要とせず、素子の劣化の問題もない。さらに、トランジスタのオン、オフに
よって、情報の書き込みや消去が行われるため、高速な動作も容易に実現しうる。
また、酸化物半導体以外の材料を用いたトランジスタは十分な高速動作が可能なため、こ
れを用いることにより、記憶内容の読み出しを高速に行うことが可能である。
なお、上記説明は、電子をキャリアとするn型トランジスタ(nチャネル型トランジスタ
)を用いる場合についてのものであるが、n型トランジスタに代えて、正孔をキャリアと
するp型トランジスタを用いることができるのはいうまでもない。
本実施の形態にかかる半導体装置は、例えば先の実施の形態において説明したようなトラ
ンジスタの積層構造によって形成することができる。もちろん、トランジスタの積層構造
を上記実施の形態に示すトランジスタの構造に限定する必要はない。例えば、トランジス
タ300とトランジスタ302を同一面上に形成しても良い。また、本実施の形態にかか
る半導体装置は、トランジスタ302のオフ電流が小さいことを利用するものであるから
、トランジスタ300については特に限定する必要はない。例えば、本実施の形態では酸
化物半導体以外の材料を用いてトランジスタ300を形成しているが、酸化物半導体を用
いても構わない。
また、本実施の形態では、最小単位の半導体装置について説明したが、半導体装置の構成
はこれに限られるものではない。複数の半導体装置を適当に接続して、より高度な半導体
装置を構成することもできる。例えば、上記半導体装置を複数用いて、NAND型やNO
R型の記憶装置として機能する半導体装置を構成することが可能である。配線の構成も図
19に限定されず、適宜変更することができる。
本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適宜組み
合わせて用いることができる。
(実施の形態11)
本実施の形態では、表面に垂直な方向にc軸配向した酸化物半導体積層体を含むトランジ
スタを作製し、該トランジスタを画素部、さらには駆動回路に用いて表示機能を有する半
導体装置(表示装置ともいう)を作製する場合について説明する。また、駆動回路の一部
または全部を、画素部と同じ基板上に一体形成し、システムオンパネルを形成することが
できる。
本実施の形態では、本発明の一形態である半導体装置として液晶表示装置を示す。まず、
半導体装置の一形態に相当する液晶表示パネルの外観及び断面について、図20を用いて
説明する。図20(A)は、第1の基板4001上に形成された表面に垂直な方向にc軸
配向した酸化物半導体積層体を含むトランジスタ4010、4011、及び液晶素子40
13を、第2の基板4006との間にシール材4005によって封止した、パネルの上面
図であり、図20(B)は、図20(A)のM−Nにおける断面図に相当する。
第1の基板4001上に設けられた画素部4002と、信号線駆動回路4003と、走査
線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画素
部4002と、信号線駆動回路4003と、走査線駆動回路4004の上に第2の基板4
006が設けられている。よって画素部4002、信号線駆動回路4003、及び走査線
駆動回路4004は、第1の基板4001とシール材4005と第2の基板4006とに
よって、液晶層4008と共に封止されている。
また、第1の基板4001上に設けられた画素部4002と、信号線駆動回路4003と
、走査線駆動回路4004は、トランジスタを複数有しており、図20(B)では、画素
部4002に含まれるトランジスタ4010と、走査線駆動回路4004に含まれるトラ
ンジスタ4011とを例示している。トランジスタ4010、4011上には絶縁層40
14、4020、4021が設けられている。
トランジスタ4010、4011は、実施の形態6で示した表面に垂直な方向にc軸配向
した酸化物半導体積層体を含むトランジスタを適用することができる。本実施の形態にお
いて、トランジスタ4010、4011はnチャネル型トランジスタである。
絶縁層4021上において、駆動回路用のトランジスタ4011の表面に垂直な方向にc
軸配向した酸化物半導体積層体のチャネル形成領域と重なる位置に導電層4040が設け
られている。導電層4040を表面に垂直な方向にc軸配向した酸化物半導体積層体のチ
ャネル形成領域と重なる位置に設けることによって、効果の一つとして導電層4040が
パッシベーション層として機能し、外部からの水素がチャネル形成領域に侵入するのを阻
止することが可能となるため、BT試験前後におけるトランジスタ4011のしきい値電
圧の変化量を低減することができる。また、導電層4040は、電位がトランジスタ40
11のゲート電極と同じでもよいし、異なっていても良く、第2のゲート電極として機能
させることもできる。また、導電層4040の電位は、GND、0V、またはフローティ
ング状態であってもよい。
また、液晶素子4013が有する画素電極4030は、トランジスタ4010と電気的に
接続されている。そして液晶素子4013の対向電極4031は第2の基板4006上に
形成されている。画素電極4030と対向電極4031と液晶層4008とが重なってい
る部分が、液晶素子4013に相当する。なお、画素電極4030、対向電極4031に
はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁層4032
、4033を介して液晶層4008を挟持している。
液晶層4008は、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶
、強誘電性液晶、反強誘電性液晶等の液晶材料を用いる。これらの液晶材料は、条件によ
り、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方
相等を示す。
なお、第2の基板4006としては、ガラス、プラスチックを用いることができる。
また、絶縁層を選択的にエッチングすることで得られる柱状のスペーサ4035は、画素
電極4030と対向電極4031との間の距離(セルギャップ)を制御するために設けら
れている。なお球状のスペーサを用いていても良い。また、対向電極4031は、トラン
ジスタ4010と同一絶縁基板上に設けられる共通電位線と電気的に接続される。また、
共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極4031と
共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材4005に
含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に
用いると良い。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が1m
sec以下と短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小さ
い。
また、ブルー相を示す液晶を用いると、配向膜へのラビング処理も不要となるため、ラビ
ング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示
装置の不良や破損を軽減することができる。よって液晶表示装置の生産性を向上させるこ
とが可能となる。特に、酸化物半導体積層体を用いるトランジスタでは、静電気の影響に
よりトランジスタの電気的な特性が著しく変動して設計範囲を逸脱する恐れがある。よっ
て酸化物半導体積層体を用いるトランジスタを有する液晶表示装置にブルー相の液晶材料
を用いることはより効果的である。
なお、本実施の形態で示す液晶表示装置は透過型液晶表示装置であるが、反射型液晶表示
装置としても良いし、半透過型液晶表示装置としても良い。
また、本実施の形態で示す液晶表示装置では、基板の外側(視認側)に偏光板を設け、内
側に着色層、表示素子に用いる電極という順に設ける構造を示すが、偏光板は基板の内側
に設けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板
及び着色層の材料や作製工程条件によって適宜設定すればよい。また、必要に応じてブラ
ックマトリクスとして機能する遮光層を設けてもよい。
また、本実施の形態では、トランジスタの表面凹凸を低減するため、及びトランジスタの
信頼性を向上させるため、トランジスタを保護層や平坦化絶縁層として機能する絶縁層(
絶縁層4020、絶縁層4014、絶縁層4021)で覆う構成となっている。なお、保
護層は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物の侵入を防ぐための
ものであり、緻密な膜が好ましい。保護層は、スパッタリング法を用いて、酸化シリコン
層、窒化シリコン層、酸化窒化シリコン層、窒化酸化シリコン層、酸化アルミニウム層、
窒化アルミニウム層、酸化窒化アルミニウム層、又は窒化酸化アルミニウム層の単層、又
は積層で形成すればよい。
ここでは、保護層として絶縁層の積層を形成する。ここでは、一層目の絶縁層4020と
して、スパッタリング法を用いて酸化シリコン層を形成する。保護層として酸化シリコン
層を用いると、保護層と接する酸化物半導体層に酸素を添加し、酸素欠陥を低減すること
ができる。
また、保護層の二層目として絶縁層4014を形成する。ここでは、二層目の絶縁層40
14として、プラズマCVD法を用いて窒化物絶縁層の一つである窒化シリコン層を形成
し、その後熱処理を行う。また、保護層として窒化シリコン層を用いると、ナトリウム等
のイオンが半導体領域中に侵入して、トランジスタの電気特性を変化させることを抑制す
ることができる。
また、平坦化絶縁層として絶縁層4021を形成する。絶縁層4021としては、アクリ
ル等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low
−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)
等を用いることができる。なお、これらの材料で形成される絶縁層を複数積層させること
で、絶縁層4021を形成してもよい。
画素電極4030、対向電極4031は、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電性材料を用いることができ
る。
また同一基板上に形成された信号線駆動回路4003と、走査線駆動回路4004または
画素部4002に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極403
0と同じ導電層から形成され、端子電極4016は、トランジスタ4010、4011の
ソース電極及びドレイン電極と同じ導電層で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電層4019を介し
て電気的に接続されている。
また、必要であれば、カラーフィルタを各画素に対応して設ける。また、第1の基板40
01と第2の基板4006の外側には偏光板や拡散板を設ける。また、バックライトの光
源は冷陰極管やLEDにより構成されて液晶表示モジュールとなる。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro−cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
以上の工程により、液晶表示装置を作製することができる。図20は透過型の液晶表示装
置であるが、本発明は半透過型や反射型の液晶表示装置にも適用できる。
実施の形態6に示す表面に垂直な方向にc軸配向した酸化物半導体積層体を含むトランジ
スタは、高い電界効果移動度を有するため、本実施の形態のように、これを用いて液晶表
示装置を製造することで、優れた表示特性の液晶表示装置が実現される。さらに、本実施
の形態においては、静止画表示を行う際に、信号線や走査線に供給される信号の出力を停
止するように駆動回路部を動作させることにより、画素部だけでなく駆動回路部の消費電
力も抑制することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態12)
半導体装置の一形態に相当する発光表示パネル(発光パネルともいう)の外観及び断面に
ついて、図21を用いて説明する。図21(A)は、第1の基板上に形成された表面に垂
直な方向にc軸配向した酸化物半導体積層体を含むトランジスタ及びエレクトロルミネッ
センス素子(EL素子ともいう)などの発光素子を、第2の基板との間にシール材によっ
て封止した、パネルの平面図であり、図21(B)は、図21(A)のH−Iにおける断
面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルムやカバー材でパッケージング(封入)すること
が好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、トランジスタを複数有してお
り、図21(B)では、画素部4502に含まれるトランジスタ4510と、信号線駆動
回路4503aに含まれるトランジスタ4509とを例示している。
トランジスタ4509、4510は、実施の形態6で示した表面に垂直な方向にc軸配向
した酸化物半導体積層体を含む移動度の高いトランジスタを適用することができる。本実
施の形態において、トランジスタ4509、4510はnチャネル型トランジスタである
駆動回路用のトランジスタ4509の酸化物半導体積層体のチャネル形成領域と重なる位
置に導電層4540が絶縁層4544上に設けられている。また、導電層4540は、電
位がトランジスタ4509のゲート電極と同じでもよいし、異なっていても良く、第2の
ゲート電極として機能させることもできる。また、導電層4540の電位は、GND、0
V、またはフローティング状態であってもよい。
トランジスタ4509は、保護絶縁層としてチャネル形成領域を含む酸化物半導体積層体
に接して絶縁層4541が形成されている。絶縁層4541は実施の形態6で示した酸化
物絶縁層412と同様な材料及び方法で形成すればよい。また、絶縁層4541上に保護
絶縁層4514が形成されている。保護絶縁層4514は実施の形態6で示した絶縁層4
16と同様な材料及び方法で形成すればよい。ここでは、保護絶縁層4514として、P
CVD法により窒化シリコン層を形成する。
また、保護絶縁層4514上に、トランジスタの表面凹凸を低減する平坦化絶縁層として
機能する絶縁層4544を形成する。絶縁層4544としては、実施の形態11で示した
絶縁層4021と同様な材料及び方法で形成すればよい。ここでは、絶縁層4544とし
てアクリルを用いる。
また、発光素子4511が有する画素電極である第1の電極4517は、トランジスタ4
510のソース電極またはドレイン電極と電気的に接続されている。なお発光素子451
1の構成は、第1の電極4517、EL層4512、第2の電極4513の積層構造であ
るが、示した構成に限定されない。発光素子4511から取り出す光の方向などに合わせ
て、発光素子4511の構成は適宜変えることができる。
隔壁4520は、有機樹脂層、または無機絶縁層を用いて形成する。特に感光性の材料を
用い、第1の電極4517上に開口部を形成し、その開口部の側壁が連続した曲率を有す
る傾斜面となるようにすることが好ましい。
EL層4512は、単数の層で構成されていても、複数の層が積層されるように構成され
ていても良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極4
513及び隔壁4520上に保護層を形成してもよい。保護層としては、窒化シリコン層
、窒化酸化シリコン層、DLC層等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
接続端子電極4515が、発光素子4511が有する第1の電極4517と同じ導電層か
ら形成され、端子電極4516は、トランジスタ4509、4510が有するソース電極
及びドレイン電極と同じ導電層から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電層4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する第2の基板4506は透光性でなけ
ればならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたは
アクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、アクリル、エポキシ樹脂などを用いることがで
きる。例えば充填材として窒素を用いればよい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。
以上の工程により、発光表示装置(表示パネル)を作製することができる。
実施の形態6に示す表面に垂直な方向にc軸配向した酸化物半導体積層体を用いたトラン
ジスタは、高い電界効果移動度を有するため、本実施の形態のように、これを用いて発光
表示装置を製造することで、優れた表示特性の発光表示装置が実現される。さらに、本実
施の形態においては、静止画表示を行う際に、信号線や走査線に供給される信号の出力を
停止するように駆動回路部を動作させることにより、画素部だけでなく駆動回路部の消費
電力も抑制することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態13)
本実施の形態では、半導体装置の一形態として電子ペーパーを示す。
実施の形態6に示す方法により得られる表面に垂直な方向にc軸配向した酸化物半導体積
層体を含むトランジスタは、スイッチング素子と電気的に接続する素子を利用して電子イ
ンクを駆動させる電子ペーパーに用いてもよい。電子ペーパーは、電気泳動表示装置(電
気泳動ディスプレイ)もよばれており、紙と同じように読みやすく、他の表示装置に比べ
低消費電力化、薄型化、軽量化が可能という利点を有している。
電気泳動ディスプレイは、様々な形態が考えられ得るが、例えば、プラスの電荷を有する
第1の粒子と、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒また
は溶質に複数分散されたものであり、マイクロカプセルに電界を印加することによって、
マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみ
を表示する構成とすることができる。なお、第1の粒子または第2の粒子は染料を含み、
電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色
は異なるもの(無色を含む)とする。
このように、電気泳動ディスプレイは、誘電定数の高い物質が高い電界領域に移動する、
いわゆる誘電泳動的効果を利用したディスプレイである。
上記マイクロカプセルを溶媒中に分散させたものが電子インクとよばれるものであり、こ
の電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また
、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
また、アクティブマトリクス基板上に適宜、二つの電極の間に挟まれるように上記マイク
ロカプセルを複数配置すればアクティブマトリクス型の表示装置が完成し、マイクロカプ
セルに電界を印加すれば表示を行うことができる。例えば、実施の形態6の表面に垂直な
方向にc軸配向した酸化物半導体積層体を含むトランジスタによって得られるアクティブ
マトリクス基板を用いることができる。
なお、マイクロカプセル中の第1の粒子及び第2の粒子は、導電体材料、絶縁体材料、半
導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクト
ロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用
いて形成することができる。
図22には、半導体装置の一形態として、アクティブマトリクス型の電子ペーパーを示す
。半導体装置に用いられるトランジスタ581は、実施の形態6で示すトランジスタと同
様に作製でき、表面に垂直な方向にc軸配向した酸化物半導体積層体を含む移動度の高い
トランジスタである。また、絶縁層584は、窒化物絶縁層である。
図22の電子ペーパーは、ツイストボール表示方式を用いた表示装置の一形態である。ツ
イストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極で
ある第1の電極及び第2の電極の間に配置し、第1の電極及び第2の電極に電位差を生じ
させての球形粒子の向きを制御することにより、表示を行う方法である。
第1の基板580上に形成されたトランジスタ581はボトムゲート構造のトランジスタ
であり、半導体層と接する絶縁層583に覆われている。トランジスタ581のソース電
極又はドレイン電極は、第1の電極587と、絶縁層583、584、585に形成され
た開口において電気的に接続している。第1の電極587と第2の電極588との間には
、キャビティ594が存在する。キャビティ594内は、黒色領域590a及び白色領域
590bを有する球形粒子と、液体とで満たされている。また、キャビティ594の周囲
は樹脂等の充填材595で充填されている(図22参照。)。
また、第1の電極587が画素電極に相当し、第2の基板596に形成された第2の電極
588が共通電極に相当する。第2の電極588は、トランジスタ581と同一絶縁基板
上に設けられる共通電位線と電気的に接続される。共通接続部を用いて、一対の基板間に
配置される導電性粒子を介して第2の電極588と共通電位線とを電気的に接続すること
ができる。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜20
0μm程度のマイクロカプセルを用いる。第1の電極と第2の電極との間に設けられるマ
イクロカプセルは、第1の電極と第2の電極によって、電場が与えられると、白い微粒子
と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この原理を応
用した表示素子が電気泳動表示素子であり、一般的に電子ペーパーとよばれている。なお
、黒い微粒子の代わりにRGB(Rは赤、Gは緑、Bは青を表す)のいずれかを示す微粒
子を用いることでカラー表示することができる。
以上の工程により、電子ペーパーを作製することができる。
本実施の形態では、実施の形態6に示す表面に垂直な方向にc軸配向した酸化物半導体積
層体を含むトランジスタを用いて、いわゆる電子ペーパーを作製している。当該トランジ
スタは、高い電界効果移動度を有するため、これを用いて電子ペーパーを製造することで
、優れた表示特性の電子ペーパーが実現される。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態14)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用すること
ができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン
受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメ
ラなどのカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともい
う)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機な
どが挙げられる。
本実施の形態では、実施の形態11乃至実施の形態13のいずれか一で得られる表示装置
を搭載した電子機器の形態について図23及び図24を用いて説明する。
図23(A)は、少なくとも表示装置を一部品として実装して作製したノート型のパーソ
ナルコンピュータであり、本体3001、筐体3002、表示部3003、キーボード3
004などによって構成されている。なお、実施の形態11に示す液晶表示装置をノート
型のパーソナルコンピュータは有している。
図23(B)は、少なくとも表示装置を一部品として実装して作製した携帯情報端末(P
DA)であり、本体3021には表示部3023と、外部インターフェイス3025と、
操作ボタン3024等が設けられている。また操作用の付属品としてスタイラス3022
がある。なお、実施の形態12に示す発光表示装置を携帯情報端末は有している。
図23(C)は実施の形態13に示す電子ペーパーを一部品として実装して作製した電子
書籍である。図23(C)は、電子書籍の一形態を示している。例えば、電子書籍270
0は、筐体2701及び筐体2703の2つの筐体で構成されている。筐体2701及び
筐体2703は、軸部2711により一体とされており、該軸部2711を軸として開閉
動作を行うことができる。このような構成により、紙の書籍のような動作を行うことが可
能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705及び表示部2707は、続き画面を表示する構成としても
よいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすること
で、例えば右側の表示部(図23(C)では表示部2705)に文章を表示し、左側の表
示部(図23(C)では表示部2707)に画像を表示することができる。
また、図23(C)では、筐体2701に操作部などを備えた一形態を示している。例え
ば、筐体2701において、電源2721、操作キー2723、スピーカ2725などを
備えている。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同
一面にキーボードやポインティングデバイスなどを備える構成としてもよい。また、筐体
の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部な
どを備える構成としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持
たせた構成としてもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
図23(D)は、少なくとも表示装置を一部品として実装して作製した携帯電話であり、
筐体2800及び筐体2801の二つの筐体で構成されている。筐体2801には、表示
パネル2802、スピーカ2803、マイクロフォン2804、ポインティングデバイス
2806、カメラ用レンズ2807、外部接続端子2808などを備えている。また、筐
体2800には、携帯電話の充電を行う太陽電池セル2810、外部メモリスロット28
11などを備えている。また、アンテナは筐体2801内部に内蔵されている。
また、表示パネル2802はタッチパネルを備えており、図23(D)には映像表示され
ている複数の操作キー2805を点線で示している。なお、太陽電池セル2810で出力
される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
表示パネル2802は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル
2802と同一面上にカメラ用レンズ2807を備えているため、テレビ電話が可能であ
る。スピーカ2803及びマイクロフォン2804は音声通話に限らず、テレビ電話、録
音、再生などが可能である。さらに、筐体2800と筐体2801は、スライドし、図2
3(D)のように展開している状態から重なり合った状態とすることができ、携帯に適し
た小型化が可能である。
外部接続端子2808はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能
であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部
メモリスロット2811に記録媒体を挿入し、より大量のデータ保存及び移動に対応でき
る。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであっても
よい。
図23(E)は少なくとも表示装置を一部品として実装して作製したデジタルカメラであ
り、本体3051、表示部(A)3057、接眼部3053、操作スイッチ3054、表
示部(B)3055、バッテリー3056などによって構成されている。
図24は、テレビジョン装置の一形態を示している。テレビジョン装置9600は、筐体
9601に表示部9603が組み込まれている。表示部9603により、映像を表示する
ことが可能である。また、ここでは、スタンド9605により筐体9601を支持した構
成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
表示部9603には、画素のスイッチング素子として、実施の形態6に示すトランジスタ
を複数配置し、その表示部9603と同一絶縁基板上に形成する駆動回路として実施の形
態6に示す移動度の高いトランジスタを配置する。
本実施の形態は、実施の形態1乃至実施の形態13のいずれか一と自由に組み合わせるこ
とができる。

Claims (2)

  1. ゲート電極と、
    ゲート絶縁膜を介して前記ゲート電極と重なる領域を有する酸化物半導体積層体と、
    ソース電極と、
    ドレイン電極と、を有し、
    前記酸化物積層体は、第1の酸化物半導体層と、前記第1の酸化物半導体層上の第2の酸化物半導体層と、前記第2の酸化物半導体層上の第3の酸化物半導体層と、を有し、
    前記ソース電極は、前記第2の酸化物半導体層と接する領域を有し、
    前記ドレイン電極は、前記第2の酸化物半導体層と接する領域を有し、
    前記第1の酸化物半導体層及び前記第3の酸化物半導体層の各々は、In、Sn、Ga、Zn、Al、Mgから選ばれた少なくとも2種の金属元素を含む金属酸化物を有し、
    前記第2の酸化物半導体層は、Znを含むことを特徴とする半導体装置。
  2. 請求項1において、
    前記第3の酸化物半導体層と接する領域を有する絶縁層を有し、
    前記絶縁層は、酸化物絶縁層であることを特徴とする半導体装置。
JP2016151105A 2009-12-28 2016-08-01 半導体装置 Active JP6251781B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009296825 2009-12-28
JP2009296825 2009-12-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015052272A Division JP5982522B2 (ja) 2009-12-28 2015-03-16 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017226937A Division JP6596058B2 (ja) 2009-12-28 2017-11-27 半導体装置

Publications (2)

Publication Number Publication Date
JP2016201564A true JP2016201564A (ja) 2016-12-01
JP6251781B2 JP6251781B2 (ja) 2017-12-20

Family

ID=44186323

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2010280700A Active JP5715814B2 (ja) 2009-12-28 2010-12-16 半導体装置の作製方法
JP2015052272A Active JP5982522B2 (ja) 2009-12-28 2015-03-16 半導体装置
JP2016151105A Active JP6251781B2 (ja) 2009-12-28 2016-08-01 半導体装置
JP2017226937A Active JP6596058B2 (ja) 2009-12-28 2017-11-27 半導体装置
JP2019177368A Active JP6847177B2 (ja) 2009-12-28 2019-09-27 半導体装置
JP2021032519A Active JP7049498B2 (ja) 2009-12-28 2021-03-02 半導体装置
JP2022049856A Active JP7305834B2 (ja) 2009-12-28 2022-03-25 半導体装置
JP2023105752A Pending JP2023126275A (ja) 2009-12-28 2023-06-28 半導体装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010280700A Active JP5715814B2 (ja) 2009-12-28 2010-12-16 半導体装置の作製方法
JP2015052272A Active JP5982522B2 (ja) 2009-12-28 2015-03-16 半導体装置

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2017226937A Active JP6596058B2 (ja) 2009-12-28 2017-11-27 半導体装置
JP2019177368A Active JP6847177B2 (ja) 2009-12-28 2019-09-27 半導体装置
JP2021032519A Active JP7049498B2 (ja) 2009-12-28 2021-03-02 半導体装置
JP2022049856A Active JP7305834B2 (ja) 2009-12-28 2022-03-25 半導体装置
JP2023105752A Pending JP2023126275A (ja) 2009-12-28 2023-06-28 半導体装置

Country Status (6)

Country Link
US (5) US8530285B2 (ja)
JP (8) JP5715814B2 (ja)
KR (4) KR101436120B1 (ja)
CN (5) CN105023942B (ja)
TW (5) TWI631630B (ja)
WO (1) WO2011081009A1 (ja)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101266B2 (en) * 2009-10-12 2021-08-24 Monolithic 3D Inc. 3D device and devices with bonding
US11605630B2 (en) * 2009-10-12 2023-03-14 Monolithic 3D Inc. 3D integrated circuit device and structure with hybrid bonding
CN102687400B (zh) 2009-10-30 2016-08-24 株式会社半导体能源研究所 逻辑电路和半导体装置
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
KR101872678B1 (ko) 2009-12-28 2018-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 표시 장치 및 전자 기기
KR101805378B1 (ko) 2010-01-24 2017-12-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치와 이의 제조 방법
US8582348B2 (en) 2010-08-06 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
US8871565B2 (en) * 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101932576B1 (ko) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
TWI525818B (zh) 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
US9659600B2 (en) * 2014-07-10 2017-05-23 Sap Se Filter customization for search facilitation
JP5396415B2 (ja) 2011-02-23 2014-01-22 株式会社東芝 半導体装置
US8916868B2 (en) 2011-04-22 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8878288B2 (en) 2011-04-22 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8932913B2 (en) 2011-04-22 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8847233B2 (en) 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
KR20190039345A (ko) * 2011-06-17 2019-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그의 제조 방법
US8952377B2 (en) * 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6128775B2 (ja) * 2011-08-19 2017-05-17 株式会社半導体エネルギー研究所 半導体装置
JP5832399B2 (ja) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 発光装置
KR101976212B1 (ko) 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US8956929B2 (en) * 2011-11-30 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5981711B2 (ja) * 2011-12-16 2016-08-31 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
JP5917385B2 (ja) * 2011-12-27 2016-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6055596B2 (ja) * 2012-01-17 2016-12-27 旭化成エレクトロニクス株式会社 ホール素子
KR101942980B1 (ko) 2012-01-17 2019-01-29 삼성디스플레이 주식회사 반도체 디바이스 및 그 형성 방법
JP5693479B2 (ja) * 2012-01-27 2015-04-01 株式会社東芝 表示装置の製造方法
US9196741B2 (en) * 2012-02-03 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20230004930A (ko) 2012-04-13 2023-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
WO2013168687A1 (en) 2012-05-10 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013247143A (ja) * 2012-05-23 2013-12-09 Semiconductor Energy Lab Co Ltd 半導体装置
WO2013179922A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8872174B2 (en) * 2012-06-01 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102113160B1 (ko) 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102161077B1 (ko) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9190525B2 (en) 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
JP6134598B2 (ja) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
KR102243843B1 (ko) 2012-08-03 2021-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체 적층막 및 반도체 장치
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (ja) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
CN108305895B (zh) 2012-08-10 2021-08-03 株式会社半导体能源研究所 半导体装置及其制造方法
KR102171650B1 (ko) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI746200B (zh) 2012-09-24 2021-11-11 日商半導體能源研究所股份有限公司 半導體裝置
JP6074985B2 (ja) 2012-09-28 2017-02-08 ソニー株式会社 半導体装置、固体撮像装置、および半導体装置の製造方法
WO2014061762A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6283191B2 (ja) * 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 半導体装置
KR102102589B1 (ko) 2012-10-17 2020-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그램 가능한 논리 장치
KR102220279B1 (ko) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막을 포함하는 다층막 및 반도체 장치의 제작 방법
US9305941B2 (en) * 2012-11-02 2016-04-05 Apple Inc. Device and method for improving AMOLED driving
US9569992B2 (en) 2012-11-15 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for driving information processing device, program, and information processing device
JP6317059B2 (ja) * 2012-11-16 2018-04-25 株式会社半導体エネルギー研究所 半導体装置及び表示装置
JP6121149B2 (ja) * 2012-11-28 2017-04-26 富士フイルム株式会社 酸化物半導体素子、酸化物半導体素子の製造方法、表示装置及びイメージセンサ
KR102526635B1 (ko) * 2012-11-30 2023-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI624949B (zh) 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 半導體裝置
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
JP2014135478A (ja) 2012-12-03 2014-07-24 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP6113500B2 (ja) * 2012-12-27 2017-04-12 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
KR102370239B1 (ko) * 2012-12-28 2022-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6329762B2 (ja) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 半導体装置
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI618252B (zh) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 半導體裝置
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102238682B1 (ko) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
KR102153110B1 (ko) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막 및 반도체 장치
JP5864637B2 (ja) * 2013-03-19 2016-02-17 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP6300589B2 (ja) 2013-04-04 2018-03-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
KR102222344B1 (ko) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN105190902B (zh) 2013-05-09 2019-01-29 株式会社半导体能源研究所 半导体装置及其制造方法
DE102014208859B4 (de) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
KR102264971B1 (ko) * 2013-05-20 2021-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102282108B1 (ko) 2013-06-13 2021-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI520347B (zh) 2013-06-19 2016-02-01 中華映管股份有限公司 氧化物半導體薄膜電晶體及其製造方法
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9006736B2 (en) 2013-07-12 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015041388A (ja) * 2013-08-20 2015-03-02 株式会社半導体エネルギー研究所 記憶装置、及び半導体装置
US9716003B2 (en) * 2013-09-13 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP6104775B2 (ja) * 2013-09-24 2017-03-29 株式会社東芝 薄膜トランジスタ及びその製造方法
JP6386323B2 (ja) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 半導体装置
US9443758B2 (en) 2013-12-11 2016-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Connecting techniques for stacked CMOS devices
US9627413B2 (en) * 2013-12-12 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP6444714B2 (ja) 2013-12-20 2018-12-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102306200B1 (ko) * 2014-01-24 2021-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US20150287793A1 (en) * 2014-04-03 2015-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
WO2015159179A1 (en) * 2014-04-18 2015-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
CN103996717B (zh) 2014-05-07 2015-08-26 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板和显示装置
TWI672804B (zh) 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
US9705004B2 (en) * 2014-08-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI652362B (zh) 2014-10-28 2019-03-01 日商半導體能源研究所股份有限公司 氧化物及其製造方法
JP6647841B2 (ja) 2014-12-01 2020-02-14 株式会社半導体エネルギー研究所 酸化物の作製方法
JP6647846B2 (ja) 2014-12-08 2020-02-14 株式会社半導体エネルギー研究所 半導体装置
KR102334986B1 (ko) * 2014-12-09 2021-12-06 엘지디스플레이 주식회사 산화물 반도체층의 결정화 방법, 이를 적용한 반도체 장치 및 이의 제조 방법
US20160240563A1 (en) * 2015-02-13 2016-08-18 Electronics And Telecommunications Research Institute Semiconductor device and method of fabricating the same
KR102653836B1 (ko) * 2015-03-03 2024-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 또는 그를 포함하는 표시 장치
US10008167B2 (en) * 2015-03-03 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and program
US20160260392A1 (en) * 2015-03-03 2016-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and program
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102549926B1 (ko) 2015-05-04 2023-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 반도체 장치의 제작 방법, 및 전자기기
JP2016225614A (ja) 2015-05-26 2016-12-28 株式会社半導体エネルギー研究所 半導体装置
JP6039150B2 (ja) * 2015-08-18 2016-12-07 株式会社半導体エネルギー研究所 半導体装置の作製方法及び半導体装置
JP6887243B2 (ja) * 2015-12-11 2021-06-16 株式会社半導体エネルギー研究所 トランジスタ、半導体装置、電子機器及び半導ウエハ
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
WO2017115209A1 (ja) * 2015-12-28 2017-07-06 株式会社半導体エネルギー研究所 酸化物およびその作製方法
KR20180123028A (ko) 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
FR3049761B1 (fr) * 2016-03-31 2018-10-05 Soitec Procede de fabrication d'une structure pour former un circuit integre monolithique tridimensionnel
CN108886059A (zh) * 2016-04-04 2018-11-23 株式会社神户制钢所 薄膜晶体管
CN109075209B (zh) 2016-05-20 2022-05-27 株式会社半导体能源研究所 半导体装置或包括该半导体装置的显示装置
US10043659B2 (en) 2016-05-20 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device including the same
KR102330605B1 (ko) 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI602306B (zh) * 2016-07-05 2017-10-11 Innolux Corp 陣列基板結構與顯示裝置
TW201804613A (zh) * 2016-07-26 2018-02-01 聯華電子股份有限公司 氧化物半導體裝置
KR102589754B1 (ko) 2016-08-05 2023-10-18 삼성디스플레이 주식회사 트랜지스터 및 이를 포함하는 표시 장치
JP2018101740A (ja) 2016-12-21 2018-06-28 ソニーセミコンダクタソリューションズ株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
TWI623171B (zh) * 2016-12-23 2018-05-01 宏碁股份有限公司 觸控及充電元件與電子裝置
US10229591B2 (en) * 2017-08-02 2019-03-12 Kidong Co., Ltd. Traffic sign board easily identifiable during day and night
JP2019049595A (ja) * 2017-09-08 2019-03-28 株式会社Joled 表示装置
JP7275112B2 (ja) 2018-04-20 2023-05-17 株式会社半導体エネルギー研究所 半導体装置
CN109256429B (zh) * 2018-08-03 2021-01-26 Tcl华星光电技术有限公司 氧化物半导体薄膜晶体管及其制作方法
US10749036B2 (en) * 2018-08-03 2020-08-18 Shenzhen China Star Optoelectronics Technology Co., Ltd. Oxide semiconductor thin film transistor having spaced channel and barrier strips and manufacturing method thereof
KR102276296B1 (ko) * 2018-12-10 2021-07-13 한양대학교 산학협력단 단결정 반도체층 제조방법, 단결정 반도체층을 포함하는 구조체, 및 상기 구조체를 포함하는 반도체 소자
TWI681537B (zh) * 2019-05-30 2020-01-01 旺宏電子股份有限公司 半導體結構與連線結構的製作方法
JP2020198343A (ja) * 2019-05-31 2020-12-10 キオクシア株式会社 半導体装置及び半導体記憶装置
KR20210085942A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 표시장치
CN113838801A (zh) * 2020-06-24 2021-12-24 京东方科技集团股份有限公司 半导体基板的制造方法和半导体基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298062A (ja) * 2002-03-29 2003-10-17 Sharp Corp 薄膜トランジスタ及びその製造方法
JP2007096126A (ja) * 2005-09-29 2007-04-12 Sharp Corp トランジスタおよび電子デバイス
JP2008042088A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜デバイス及びその製造方法
US20080296568A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd Thin film transistors and methods of manufacturing the same
WO2009034953A1 (ja) * 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. 薄膜トランジスタ
JP2009170905A (ja) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 表示基板およびこれを含む表示装置

Family Cites Families (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH01249607A (ja) * 1988-03-30 1989-10-04 Furukawa Electric Co Ltd:The 酸化物超電導体膜の製造方法
JPH0242761A (ja) * 1988-04-20 1990-02-13 Matsushita Electric Ind Co Ltd アクティブマトリクス基板の製造方法
JPH0818915B2 (ja) * 1989-04-18 1996-02-28 住友大阪セメント株式会社 酸化物超伝導多結晶薄膜の作成法
US5474941A (en) * 1990-12-28 1995-12-12 Sharp Kabushiki Kaisha Method for producing an active matrix substrate
DE69125260T2 (de) * 1990-12-28 1997-10-02 Sharp Kk Ein Verfahren zum Herstellen eines Dünnfilm-Transistors und eines Aktive-Matrix-Substrates für Flüssig-Kristall-Anzeige-Anordnungen
KR950003939B1 (ko) * 1990-12-28 1995-04-21 샤프 가부시끼가이샤 액티브매트리스 기판의 제조 방법
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH1012889A (ja) 1996-06-18 1998-01-16 Semiconductor Energy Lab Co Ltd 半導体薄膜および半導体装置
JPH1140772A (ja) * 1997-07-22 1999-02-12 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2000026119A (ja) 1998-07-09 2000-01-25 Hoya Corp 透明導電性酸化物薄膜を有する物品及びその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP2002050704A (ja) * 2000-08-01 2002-02-15 Sony Corp メモリ素子およびその製造方法並びに集積回路
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
KR100405080B1 (ko) * 2001-05-11 2003-11-10 엘지.필립스 엘시디 주식회사 실리콘 결정화방법.
JP3694737B2 (ja) * 2001-07-27 2005-09-14 独立行政法人物質・材料研究機構 酸化亜鉛基ホモロガス化合物薄膜の製造法
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) * 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4298194B2 (ja) * 2001-11-05 2009-07-15 独立行政法人科学技術振興機構 自然超格子ホモロガス単結晶薄膜の製造方法。
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP4635410B2 (ja) 2002-07-02 2011-02-23 ソニー株式会社 半導体装置及びその製造方法
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN102856390B (zh) 2004-03-12 2015-11-25 独立行政法人科学技术振兴机构 包含薄膜晶体管的lcd或有机el显示器的转换组件
US7242039B2 (en) * 2004-03-12 2007-07-10 Hewlett-Packard Development Company, L.P. Semiconductor device
JP2005322845A (ja) * 2004-05-11 2005-11-17 Sekisui Chem Co Ltd 半導体デバイスと、その製造装置、および製造方法
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US7315466B2 (en) * 2004-08-04 2008-01-01 Samsung Electronics Co., Ltd. Semiconductor memory device and method for arranging and manufacturing the same
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
BRPI0517560B8 (pt) 2004-11-10 2018-12-11 Canon Kk transistor de efeito de campo
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5126730B2 (ja) * 2004-11-10 2013-01-23 キヤノン株式会社 電界効果型トランジスタの製造方法
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007041260A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 液晶表示素子
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4988179B2 (ja) 2005-09-22 2012-08-01 ローム株式会社 酸化亜鉛系化合物半導体素子
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) * 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2007115735A (ja) * 2005-10-18 2007-05-10 Toppan Printing Co Ltd トランジスタ
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101112655B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
JP4904789B2 (ja) * 2005-11-30 2012-03-28 凸版印刷株式会社 薄膜トランジスタ
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
KR101186297B1 (ko) * 2006-01-21 2012-09-27 아주대학교산학협력단 ZnO 필름 및 이를 이용한 TFT의 제조방법
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP5015473B2 (ja) 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタアレイ及びその製法
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5016831B2 (ja) * 2006-03-17 2012-09-05 キヤノン株式会社 酸化物半導体薄膜トランジスタを用いた発光素子及びこれを用いた画像表示装置
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP2007286150A (ja) 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd 電気光学装置、並びに、電流制御用tft基板及びその製造方法
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
WO2007142167A1 (en) 2006-06-02 2007-12-13 Kochi Industrial Promotion Center Semiconductor device including an oxide semiconductor thin film layer of zinc oxide and manufacturing method thereof
US20070287221A1 (en) * 2006-06-12 2007-12-13 Xerox Corporation Fabrication process for crystalline zinc oxide semiconductor layer
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP2008004666A (ja) * 2006-06-21 2008-01-10 Ftl:Kk 3次元半導体デバイスの製造方法
US7906415B2 (en) * 2006-07-28 2011-03-15 Xerox Corporation Device having zinc oxide semiconductor and indium/zinc electrode
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
US8129714B2 (en) 2007-02-16 2012-03-06 Idemitsu Kosan Co., Ltd. Semiconductor, semiconductor device, complementary transistor circuit device
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
JP2008310312A (ja) * 2007-05-17 2008-12-25 Fujifilm Corp 有機電界発光表示装置
TWI377533B (en) 2007-06-01 2012-11-21 Chimei Innolux Corp Liquid crystal display
US7935964B2 (en) 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
KR20090002841A (ko) 2007-07-04 2009-01-09 삼성전자주식회사 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 그 제조방법
AT504913B1 (de) * 2007-08-08 2008-09-15 Getzner Werkstoffe Holding Gmbh Winkelverbinder
US7965964B2 (en) 2007-08-22 2011-06-21 Kabushiki Kaisha Toshiba Developing roller, developing apparatus, and image forming apparatus
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5291928B2 (ja) * 2007-12-26 2013-09-18 株式会社日立製作所 酸化物半導体装置およびその製造方法
JP4555358B2 (ja) 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR100941850B1 (ko) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP5325446B2 (ja) 2008-04-16 2013-10-23 株式会社日立製作所 半導体装置及びその製造方法
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963026B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
JP2010056541A (ja) * 2008-07-31 2010-03-11 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP5345456B2 (ja) 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
US9082857B2 (en) * 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP2010087223A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd 薄膜トランジスタおよびアクティブマトリクスディスプレイ
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5484853B2 (ja) * 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI478356B (zh) 2008-10-31 2015-03-21 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI656645B (zh) * 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
TWI506795B (zh) 2008-11-28 2015-11-01 Semiconductor Energy Lab 半導體裝置和其製造方法
US8383470B2 (en) 2008-12-25 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor (TFT) having a protective layer and manufacturing method thereof
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI540647B (zh) 2008-12-26 2016-07-01 半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP5606682B2 (ja) 2009-01-29 2014-10-15 富士フイルム株式会社 薄膜トランジスタ、多結晶酸化物半導体薄膜の製造方法、及び薄膜トランジスタの製造方法
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5504008B2 (ja) 2009-03-06 2014-05-28 株式会社半導体エネルギー研究所 半導体装置
JP4571221B1 (ja) 2009-06-22 2010-10-27 富士フイルム株式会社 Igzo系酸化物材料及びigzo系酸化物材料の製造方法
JP4415062B1 (ja) 2009-06-22 2010-02-17 富士フイルム株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法
WO2011007677A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN105097946B (zh) 2009-07-31 2018-05-08 株式会社半导体能源研究所 半导体装置及其制造方法
JP5403464B2 (ja) 2009-08-14 2014-01-29 Nltテクノロジー株式会社 薄膜デバイス及びその製造方法
EP3540772A1 (en) 2009-09-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
KR20210048590A (ko) 2009-09-16 2021-05-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102321565B1 (ko) 2009-09-24 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR101877149B1 (ko) 2009-10-08 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체층, 반도체 장치 및 그 제조 방법
KR101820972B1 (ko) 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
KR101779349B1 (ko) 2009-10-14 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101763126B1 (ko) 2009-11-06 2017-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101803553B1 (ko) 2009-11-28 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2011065210A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR101825345B1 (ko) 2009-11-28 2018-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 적층 산화물 재료, 반도체 장치 및 반도체 장치의 제작 방법
KR101895080B1 (ko) 2009-11-28 2018-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
WO2011068033A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101833198B1 (ko) 2009-12-04 2018-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 이를 포함하는 전자 기기
KR102250803B1 (ko) 2009-12-04 2021-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101470303B1 (ko) 2009-12-08 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5497417B2 (ja) 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
KR101830195B1 (ko) 2009-12-18 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그것의 제작 방법
WO2011074409A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011077925A1 (en) 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
KR101597214B1 (ko) 2010-01-14 2016-02-25 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
TWI416737B (zh) 2010-12-30 2013-11-21 Au Optronics Corp 薄膜電晶體及其製造方法
JP2012160679A (ja) 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298062A (ja) * 2002-03-29 2003-10-17 Sharp Corp 薄膜トランジスタ及びその製造方法
JP2007096126A (ja) * 2005-09-29 2007-04-12 Sharp Corp トランジスタおよび電子デバイス
JP2008042088A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜デバイス及びその製造方法
US20080296568A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd Thin film transistors and methods of manufacturing the same
WO2009034953A1 (ja) * 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. 薄膜トランジスタ
JP2009170905A (ja) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 表示基板およびこれを含む表示装置

Also Published As

Publication number Publication date
KR20180037333A (ko) 2018-04-11
TW201250863A (en) 2012-12-16
CN109390215A (zh) 2019-02-26
CN105023942A (zh) 2015-11-04
CN102903758B (zh) 2015-06-03
JP6847177B2 (ja) 2021-03-24
JP7305834B2 (ja) 2023-07-10
JP2021103778A (ja) 2021-07-15
KR101883802B1 (ko) 2018-07-31
JP2023126275A (ja) 2023-09-07
JP2018037686A (ja) 2018-03-08
TW201732953A (zh) 2017-09-16
US8530285B2 (en) 2013-09-10
US8686425B2 (en) 2014-04-01
TWI595569B (zh) 2017-08-11
KR101921619B1 (ko) 2018-11-26
TWI540646B (zh) 2016-07-01
KR20180087461A (ko) 2018-08-01
US9054134B2 (en) 2015-06-09
US20150118790A1 (en) 2015-04-30
KR20120106873A (ko) 2012-09-26
TW201543580A (zh) 2015-11-16
TW201137993A (en) 2011-11-01
TWI505377B (zh) 2015-10-21
US20180145153A1 (en) 2018-05-24
CN102903758A (zh) 2013-01-30
JP2015133515A (ja) 2015-07-23
TW201628098A (zh) 2016-08-01
CN102668098B (zh) 2015-07-22
JP2022100318A (ja) 2022-07-05
US10141425B2 (en) 2018-11-27
CN104867984A (zh) 2015-08-26
JP5982522B2 (ja) 2016-08-31
KR101436120B1 (ko) 2014-09-01
JP2011155249A (ja) 2011-08-11
KR20130091785A (ko) 2013-08-19
US20120305913A1 (en) 2012-12-06
CN102668098A (zh) 2012-09-12
CN104867984B (zh) 2018-11-06
US20140193946A1 (en) 2014-07-10
JP6596058B2 (ja) 2019-10-23
CN105023942B (zh) 2018-11-02
TWI545659B (zh) 2016-08-11
CN109390215B (zh) 2023-08-15
TWI631630B (zh) 2018-08-01
WO2011081009A1 (en) 2011-07-07
JP7049498B2 (ja) 2022-04-06
JP2020014014A (ja) 2020-01-23
US9859401B2 (en) 2018-01-02
JP5715814B2 (ja) 2015-05-13
JP6251781B2 (ja) 2017-12-20
US20110156026A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP6596058B2 (ja) 半導体装置
JP5802009B2 (ja) 半導体装置の作製方法
JP6216420B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6251781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250