BR112019010912A2 - sistema de calibração e controle de atuador de extremidade - Google Patents
sistema de calibração e controle de atuador de extremidade Download PDFInfo
- Publication number
- BR112019010912A2 BR112019010912A2 BR112019010912A BR112019010912A BR112019010912A2 BR 112019010912 A2 BR112019010912 A2 BR 112019010912A2 BR 112019010912 A BR112019010912 A BR 112019010912A BR 112019010912 A BR112019010912 A BR 112019010912A BR 112019010912 A2 BR112019010912 A2 BR 112019010912A2
- Authority
- BR
- Brazil
- Prior art keywords
- end actuator
- clamping arm
- ultrasonic blade
- tube
- ultrasonic
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/2909—Handles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/295—Forceps for use in minimally invasive surgery combined with cutting implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320016—Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00026—Conductivity or impedance, e.g. of tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00039—Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
- A61B2017/00128—Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00725—Calibration or performance testing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00973—Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
- A61B2017/00977—Surgical instruments, devices or methods, e.g. tourniquets pedal-operated the depression depth determining the power rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B2017/2808—Clamp, e.g. towel clamp
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/2909—Handles
- A61B2017/2925—Pistol grips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320074—Working tips with special features, e.g. extending parts blade
- A61B2017/320077—Working tips with special features, e.g. extending parts blade double edge blade, e.g. reciprocating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320094—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320095—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00595—Cauterization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00607—Coagulation and cutting with the same instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Ophthalmology & Optometry (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Surgical Instruments (AREA)
Abstract
a invenção refere-se a métodos e aparelhos para o controle e a calibração de efetor de extremidade que são descritos. o método pode incluir a detecção de um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, o primeiro tubo acionando o movimento de um braço de aperto do efetor de extremidade. o método pode ainda incluir a determinação de uma posição de braço de aperto do efetor de extremidade em relação a uma lâmina ultrassônica do efetor de extremidade com base no sinal. o método também pode incluir o ajuste de uma saída de potência para a lâmina ultrassônica do efetor de extremidade com base na posição do braço de aperto.
Description
Relatório Descritivo da Patente de Invenção para SISTEMA DE CALIBRAÇÃO E CONTROLE DE ATUADOR DE EXTREMIDADE”.
CAMPO DA TÉCNICA [001] O campo da técnica pode se referir genericamente ao controle de instrumentos cirúrgicos e, em particular, ao controle e calibração dos atuadores de extremidade dos instrumentos cirúrgicos. ANTECEDENTES DA INVENÇÃO [002] Vários aspectos são direcionados a instrumentos cirúrgicos, e ao controle e calibração dos atuadores de extremidade dos instrumentos cirúrgicos.
[003] Por exemplo, dispositivos cirúrgicos ultrassônicos estão encontrando aplicações cada vez mais difundidas em procedimentos cirúrgicos em virtude de suas características exclusivas de desempenho. Dependendo de configurações e parâmetros operacionais específicos do dispositivo, os dispositivos cirúrgicos ultrassônicos podem oferecer, de maneira substancialmente simultânea, transecção de tecidos e homeostase por coagulação, desejavelmente minimizando o trauma do paciente. Um dispositivo cirúrgico ultrassônico pode compreender uma empunhadura contendo um transdutor ultrassônico, e um instrumento acoplado ao transdutor ultrassônico que possui um atuador de extremidade montado distalmente (por exemplo, uma lâmina ultrassônica e um braço de aperto, onde o braço de aperto pode incluir uma almofada de tecido antiaderente) para cortar e selar o tecido. Em alguns casos, o instrumento pode estar permanentemente fixado à peça de mão. Em outros casos, o instrumento pode ser separável da peça de mão, como no caso de um instrumento descartável ou um instrumento que é intercambiável entre diferentes peças de mão. O atuador de extremidade transmite energia ultrassônica aos tecidos colocados em
Petição 870190062513, de 04/07/2019, pág. 4/162
2/114 contato com o mesmo, para realizar a ação de corte e cauterização. Os dispositivos cirúrgicos ultrassônicos dessa natureza podem ser configurados para uso em procedimentos cirúrgicos abertos, laparoscópicos ou endoscópicos, inclusive procedimentos roboticamente assistidos.
[004] A energia ultrassônica corta e coagula tecidos com o uso de temperaturas mais baixas que aquelas utilizadas em procedimentos eletrocirúrgicos. Vibrando em altas frequências (por exemplo, 55.500 vezes por segundo), a lâmina ultrassônica desnatura a proteína presente nos tecidos para formar um coágulo pegajoso. A pressão exercida sobre os tecidos pela superfície da lâmina ultrassônica achata os vasos sanguíneos e possibilita que o coágulo forme um selo hemostático. Um cirurgião pode controlar a velocidade de corte e coagulação por meio da força aplicada aos tecidos pelo atuador de extremidade, do tempo durante o qual a força é aplicada e do nível de excursão selecionado para o atuador de extremidade.
SUMÁRIO DA INVENÇÃO [005] Em um aspecto, um método para controlar um atuador de extremidade pode incluir detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O método pode incluir, também, determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal. O método pode, também, incluir adicionalmente ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[006] Um ou mais dentre os recursos a seguir podem estar incluídos. O primeiro tubo pode ser um tubo interno e o segundo tubo pode ser um tubo externo, sendo que o tubo interno é móvel em relação
Petição 870190062513, de 04/07/2019, pág. 5/162
3/114 ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno. O método pode incluir, também, detectar o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo. O método pode incluir, também, mover um ímã posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O método pode incluir adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall. Além disso, o método pode incluir ajustar dinamicamente a saída de energia à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Além disso, o método pode incluir ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com o uso de um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[007] Em uma ou mais implementações, o método pode incluir determinar um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal. O método pode incluir adicionalmente ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto. O método pode incluir adicionalmente, em resposta à determinação de que o tipo de tecido entre o braço de aperto e a lâmina ultrassônica é um vaso sanguíneo pequeno, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para um vaso sanguíneo maior. Além disso, o método pode incluir, em resposta à determinação de que o tipo de tecido entre o braço de aperto e a lâmina ultrassônica é um vaso sanguíneo grande, reduzir a saída de
Petição 870190062513, de 04/07/2019, pág. 6/162
4/114 energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para um vaso sanguíneo menor.
[008] Em um aspecto, um aparelho para controlar um atuador de extremidade pode incluir um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O aparelho pode incluir, também, um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal. O aparelho pode incluir adicionalmente um transdutor configurado para ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
[009] Um ou mais dentre os recursos a seguir podem estar incluídos. O primeiro tubo pode ser um tubo interno e o segundo tubo pode ser um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno. O aparelho pode incluir adicionalmente um ímã posicionado sobre o primeiro tubo sendo que o sensor é um sensor de efeito Hall utilizado para detectar o sinal com base em uma posição do ímã. O ímã pode ser posicionado no primeiro tubo que se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O transdutor pode ser um transdutor ultrassônico configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall. O aparelho pode incluir também um controlador proporcional integral configurado para ajustar dinamicamente a saída de energia à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
Petição 870190062513, de 04/07/2019, pág. 7/162
5/114 [0010] Em um aspecto, um método para calibrar um aparelho para controlar um atuador de extremidade pode incluir detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade. O método pode incluir também detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica. O método pode incluir adicionalmente detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade. O método pode incluir adicionalmente determinar uma curva de melhor ajuste para representar a intensidade de sinal como função do deslocamento do sensor com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido. Além disso, o método pode incluir criar uma tabela de consulta com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, e nas posições completamente abertas, intermediárias e completamente fechadas.
[0011] Os detalhes de uma ou mais implementações são demonstrados nos desenhos em anexo e na descrição abaixo. Outros recursos e vantagens serão evidentes a partir da descrição, dos desenhos e das reivindicações.
BREVE DESCRIÇÃO DOS DESENHOS [0012] A Figura 1 é uma vista em elevação de um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente descrição;
[0013] a Figura 2 é uma vista em perspectiva de um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente
Petição 870190062513, de 04/07/2019, pág. 8/162
6/114 descrição;
[0014] a Figura 3 ilustra um atuador de extremidade exemplificador instrumentos cirúrgicos, de acordo com um aspecto da presente descrição;
[0015] a Figura 4 ilustra um atuador de extremidade exemplificador de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0016] a Figura 5 é uma vista explodida de um aspecto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0017] a Figura 6 ilustra um diagrama lógico de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0018] a Figura 7 ilustra uma vista estrutural de uma arquitetura de gerador, de acordo com um aspecto da presente descrição;
[0019] as Figuras 8A a 8C ilustram vistas funcionais de uma arquitetura de gerador, de acordo com um aspecto da presente descrição;
[0020] a Figura 9 ilustra um controlador para monitorar dispositivos de entrada e controlar dispositivos de saída, de acordo com um aspecto da presente descrição;
[0021] as Figuras 10A e 10B ilustram aspectos estruturais e funcionais de um aspecto do gerador, de acordo com um aspecto da presente descrição;
[0022] a Figura 11 ilustra um atuador de extremidade exemplificador e eixo de acionamento de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0023] a Figura 12 ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha perpendicular à face do sensor Hall;
Petição 870190062513, de 04/07/2019, pág. 9/162
7/114 [0024] a Figura 13A ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha paralela à face do sensor de efeito Hall;
[0025] a Figura 13B ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha paralela à face do sensor de efeito Hall;
[0026] a Figura 14A é uma tabela de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0027] a Figura 14B é um gráfico de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0028] a Figura 15A é uma vista de topo de um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico e uma posição de atuador de extremidade de garras abertas correspondente, de acordo com um aspecto da presente descrição;
[0029] a Figura 15B é uma vista de topo de um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico e uma posição de atuador de extremidade de garras fechadas correspondente, de acordo com um aspecto da presente descrição;
[0030] a Figura 16 ilustra uma vista em planta de um sistema que compreende um sensor de efeito Hall e uma configuração de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 10/162
8/114 [0031] a Figura 17A ilustra uma vista de um sensor de efeito Hall e configurações de ímã no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0032] a Figura 17B ilustra uma vista de um sensor de efeito Hall e configurações de ímã no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0033] a Figura 18 ilustra um sensor de efeito Hall e a configuração de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0034] a Figura 19A ilustra um sensor de efeito Hall e a configuração de ímã, de acordo com um aspecto da presente descrição;
[0035] a Figura 19B ilustra um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0036] a Figura 20 é um gráfico de uma curva representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função do tempo (s) ao longo do eixo geométrico x, de acordo com um aspecto da presente descrição;
[0037] a Figura 21 ilustra um gráfico de uma primeira curva representando a razão de deslocamento (RD) ao longo do eixo geométrico y esquerdo, com base na tensão de saída do sensor de efeito Hall, como função do tempo (s) ao longo do eixo geométrico x, de acordo com um aspecto da presente descrição;
[0038] a Figura 22 ilustra gráficos que mostram o controle integral proporcional de saída de energia para uma lâmina ultrassônica, de acordo com um aspecto da presente descrição;
[0039] a Figura 23 ilustra vários vasos que foram vedados com o uso das técnicas e recursos aqui descritos, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 11/162
9/114 [0040] a Figura 24 ilustra um gráfico de uma curva de melhor ajuste da tensão de saída do sensor de efeito Hall como função da distância para várias posições do braço de aperto conforme o braço de aperto se move entre posições completamente fechadas para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0041] as Figuras 25 a 28 ilustram um atuador de extremidade sendo calibrado em quatro configurações diferentes, de acordo com vários aspectos da presente descrição, usando pinos de calibre para duas das configurações a fim de registrar uma resposta do sensor de efeito Hall correspondente a várias posições do braço de aperto para registrar quatro pontos de dados (1 a 4) de modo a criar uma curva de melhor ajuste durante a produção, onde:
[0042] a Figura 25 ilustra um atuador de extremidade em uma configuração completamente aberta para registrar um primeiro ponto de dados (1), de acordo com um aspecto da presente descrição;
[0043] a Figura 26 ilustra um atuador de extremidade em uma segunda configuração intermediária que segura um primeiro pino de calibre de um diâmetro conhecido para registrar um segundo ponto de dados (2), de acordo com um aspecto da presente descrição;
[0044] a Figura 27 ilustra um atuador de extremidade em uma terceira configuração intermediária que segura um segundo pino de calibre de um diâmetro conhecido para registrar um terceiro ponto de dados (3), de acordo com um aspecto da presente descrição; e [0045] a Figura 28 ilustra um atuador de extremidade em uma configuração completamente fechada para registrar um quarto ponto de dados (4), de acordo com um aspecto da presente descrição;
[0046] as Figuras 29A a D ilustram um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente descrição, e gráficos mostrando o nível de energia de saída exemplificador em um
Petição 870190062513, de 04/07/2019, pág. 12/162
10/114 modo de hemostasia para vasos pequenos e grandes, onde:
[0047] a Figura 29A é um diagrama esquemático de um instrumento cirúrgico configurado para vedar vasos pequenos e grandes, de acordo com um aspecto da presente descrição;
[0048] a Figura 29B é um diagrama de uma faixa exemplificadora de um vaso pequeno e um vaso grande e a posição relativa de um braço de aperto do atuador de extremidade, de acordo com um aspecto da presente descrição;
[0049] a Figura 29C é um gráfico que representa um processo para vedar pequenos vasos mediante a aplicação de vários níveis de energia ultrassônica durante períodos de tempo diferentes, de acordo com um aspecto da presente descrição; e [0050] a Figura 29D é um gráfico que representa um processo para vedar vasos grandes mediante a aplicação de vários níveis de energia ultrassônica durante períodos de tempo diferentes, de acordo com um aspecto da presente descrição;
[0051] a Figura 30 é um diagrama lógico que ilustra um processo exemplificador para determinar se o modo de hemostasia deve ser utilizado, de acordo com um aspecto da presente descrição;
[0052] a Figura 31 é um diagrama lógico que ilustra um processo exemplificador para controle do atuador de extremidade, de acordo com um aspecto da presente descrição;
[0053] a Figura 32 é um diagrama lógico que ilustra um processo exemplificador para calibrar um aparelho para controlar um atuador de extremidade, de acordo com um aspecto da presente descrição;
[0054] a Figura 33 é um diagrama lógico de um processo para rastrear o desgaste da porção de emplastro de tecido do braço de aperto e compensar o desvio resultante do sensor de efeito Hall e determinar o coeficiente de atrito do tecido, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 13/162
11/114 [0055] a Figura 34 ilustra um sistema de sensor de efeito Hall que pode ser empregado com o processo da Figura 33, de acordo com um aspecto da presente descrição; e [0056] a Figura 35 ilustra um aspecto de um conversor analógico/digital (ADC, conversor A-D) de contador tipo rampa que pode ser empregado com o sistema de sensor de efeito Hall da Figura 34, de acordo com um aspecto da presente descrição.
DESCRIÇÃO [0057] Vários aspectos aqui descritos se referem a instrumentos cirúrgicos compreendendo conjuntos de garras articuláveis situadas em posição distai. Os conjuntos de garras podem ser utilizados em vez de ou em adição à articulação de eixo de acionamento. Por exemplo, os conjuntos de garras podem ser usados para prender tecidos e movê-los em direção a uma lâmina ultrassônica, eletrodos de radiofrequência ou outro componente para tratamento dos tecidos.
[0058] Em um aspecto, um instrumento cirúrgico pode compreender um atuador de extremidade com uma lâmina ultrassônica estendendose distalmente a partir do mesmo. O conjunto de garras pode ser articulável e pode revolver em torno de pelo menos dois eixos geométricos. Um primeiro eixo geométrico ou eixo de pivô de pulso, pode ser substancialmente perpendicular a um eixo geométrico longitudinal do eixo de acionamento do instrumento. O conjunto de garras pode girar em tomo do eixo de pivô de pulso a partir de uma primeira posição na qual o conjunto de garras é substancialmente paralelo à lâmina ultrassônica para uma segunda posição na qual o conjunto de garras não é substancialmente paralelo à lâmina ultrassônica. Além disso, o conjunto de garras pode compreender um primeiro e um segundo membro de garra que são giratórios ao redor de um segundo eixo geométrico ou eixo de pivô da garra. O eixo de pivô da garra pode ser substancialmente perpendicular ao eixo de pivô de
Petição 870190062513, de 04/07/2019, pág. 14/162
12/114 pulso. Em alguns aspectos, o próprio eixo de pivô de garra pode girar à medida que o conjunto de garras gira em tomo do eixo de pivô de pulso. O primeiro e o segundo membros de garra podem ser articuláveis um em relação ao outro em torno do eixo de pivô de garra de modo que o primeiro e o segundo membro de garra possam abrir e fechar. Adicionalmente, em alguns aspectos, o primeiro e o segundo membro de garra também são articuláveis ao redor do eixo de pivô da garra, de modo que a direção do primeiro e do segundo membro de garra possa mudar.
[0059] Agora será feita referência, em detalhes, a vários aspectos, inclusive aspectos que mostram implementações exemplificadoras de instrumentos cirúrgicos manuais e robóticos com atuadores de extremidade que compreendem elementos ultrassônicos e/ou eletrocirúrgicos. Sempre que possível, números de referência similares ou semelhantes podem ser usados nas figuras, e podem indicar funcionalidades similares ou semelhantes. As Figuras representam aspectos exemplificadores dos instrumentos cirúrgicos e/ou métodos de uso apresentados, apenas para propósitos ilustrativos. O versado na técnica reconhecerá prontamente, a partir da descrição a seguir, que aspectos exemplificadores alternativos das estruturas e dos métodos aqui ilustrados podem ser utilizados sem que se afaste dos princípios aqui descritos.
[0060] A Figura 1 é uma vista do lado direito de um aspecto de um instrumento cirúrgico ultrassônico 10. No aspecto ilustrado, o instrumento cirúrgico ultrassônico 10 pode ser utilizado em vários procedimentos cirúrgicos, inclusive procedimentos cirúrgicos endoscópicos ou abertos tradicionais. Em um aspecto exemplificador, o instrumento cirúrgico ultrassônico 10 compreende um conjunto de cabo 12, um conjunto de eixo de acionamento alongado 14 e um transdutor ultrassônico 16. O conjunto de punho 12 compreende um conjunto de
Petição 870190062513, de 04/07/2019, pág. 15/162
13/114 gatilho 24, um conjunto de rotação distai 13 e um conjunto de chave 28. O conjunto de eixo de acionamento alongado 14 compreende um conjunto de atuador de extremidade 26, o qual compreende elementos para dissecar tecidos ou mutuamente agarrar, cortar e coagular vasos sanguíneos e/ou tecidos, e elementos atuadores para acionar o conjunto de atuador de extremidade 26. O conjunto de cabo 12 é adaptado para receber o transdutor ultrassônico 16 na extremidade proximal. O transdutor ultrassônico 16 está mecanicamente engatado ao conjunto de eixo de acionamento alongado 14 e a porções do conjunto de atuador de extremidade 26. O transdutor ultrassônico 16 está eletricamente acoplado a um gerador 20, por meio de um cabo 22. Embora a maioria dos desenhos represente um conjunto com múltiplos atuadores de extremidade 26, para uso em conjunto com procedimentos cirúrgicos laparoscópicos, o instrumento cirúrgico ultrassônico 10 pode ser utilizado em procedimentos cirúrgicos abertos mais tradicionais e em outros aspectos, pode ser configurado para uso em procedimentos endoscópicos. Para os propósitos da presente invenção, o instrumento cirúrgico ultrassônico 10 é descrito em termos de um instrumento endoscópico; entretanto, contempla-se que uma versão aberta e/ou laparoscópica do instrumento cirúrgico ultrassônico 10 também pode incluir recursos e componentes operacionais iguais ou similares, conforme descrito aqui.
[0061] Em vários aspectos, o gerador 20 compreende vários elementos funcionais, como módulos e/ou blocos. Diferentes elementos ou módulos funcionais podem ser configurados para acionar diferentes tipos de dispositivos cirúrgicos. Por exemplo, um módulo gerador ultrassônico 21 pode acionar um dispositivo ultrassônico, como o instrumento cirúrgico ultrassônico 10. Em alguns aspectos exemplificadores, o gerador 20 compreende, também, um módulo gerador para eletrocirurgia/de RF 23 para acionar um dispositivo
Petição 870190062513, de 04/07/2019, pág. 16/162
14/114 eletrocirúrgico (ou um aspecto eletrocirúrgico do instrumento cirúrgico ultrassônico 10). No aspecto exemplificador ilustrado na Figura 1, o gerador 20 inclui um sistema de controle 25 integrado ao gerador 20, e uma chave de pedal 29 conectada ao gerador por meio de um cabo 27. O gerador 20 pode compreender, também, um mecanismo de disparo para acionar um instrumento cirúrgico, como o instrumento 10. O mecanismo de disparo pode incluir uma chave de alimentação (não mostrada), bem como uma chave de pedal 29. Quando ativado pela chave de pedal 29, o gerador 20 pode fornecer energia para acionar o conjunto acústico do instrumento cirúrgico 10, e para acionar o atuador de extremidade 18 em um nível de curso predeterminado. O gerador 20 aciona ou excita o conjunto acústico em qualquer frequência de ressonância adequada do conjunto acústico, e/ou deriva a energia eletromagnética ou de RF terapêutica/subterapêutica. Em um aspecto, o módulo gerador eletrocirúrgico/de RF 23 pode ser implementado como uma unidade de eletrocirurgia (ESU) capaz de fornecer energia suficiente para executar eletrocirurgia bipolar com o uso de energia de radiofrequência (RF). Em um aspecto, a ESU pode ser um equipamento ERBE ICC 350 bipolar, disponível junto à ERBE USA, Inc. de Marietta, GA, EUA. Em aplicações de eletrocirurgia bipolar, conforme anteriormente discutido, pode ser usado um instrumento cirúrgico com um eletrodo ativo e um eletrodo de retorno, em que o eletrodo ativo e o eletrodo de retorno podem ser posicionados contra, ou adjacentes a, o tecido a ser tratado, de modo que a corrente possa fluir do eletrodo ativo para o eletrodo de retomo através do tecido. Consequentemente, o gerador do módulo eletrocirúrgico/RF 23 pode ser configurado para propósitos terapêuticos mediante a aplicação, ao tecido T, de energia elétrica suficiente para tratar o tecido (por exemplo, cauterização). Por exemplo, em alguns aspectos, o eletrodo ativo e/ou de retorno pode estar posicionado sobre o conjunto de garras aqui descrito.
Petição 870190062513, de 04/07/2019, pág. 17/162
15/114 [0062] Em um aspecto, o módulo eletrocirúrgico/gerador de RF 23 pode ser configurado para fornecer um sinal de RF subterapêutico para implementar um módulo de medição da impedância do tecido. Em um aspecto, o módulo de gerador eletrocirúrgico/de RF 23 compreende um gerador de radiofrequência bipolar. Em um aspecto, o módulo de gerador eletrocirúrgico/de RF 23 pode estar configurado para monitorar a impedância elétrica Z do tecido T, e para controlar as características do tempo e nível de energia com base no tecido T, por meio de um eletrodo de retorno disposto sobre um membro de pinça do conjunto de atuador de extremidade 26. Consequentemente, o módulo de gerador eletrocirúrgico/de RF 23 pode ser configurado para propósitos subterapêuticos, para medir a impedância ou outras características elétricas do tecido T. Técnicas e configurações de circuito para medir a impedância ou outras características elétricas do tecido T são discutidas em mais detalhes na publicação de patente US n° 201 1/0015631, cedida à mesma requerente, intitulada Electrosurgical Generator for Ultrasonic Surgical Instrument, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[0063] Um módulo gerador ultrassônico 21 adequado pode ser configurado para operar funcionalmente de modo similar ao equipamento GEN300, disponível junto à Ethicon Endo-Surgery, Inc. de Cincinnati, Ohio, EUA, conforme apresentado em uma ou mais dentre as seguintes patentes US, todas as quais estão aqui incorporadas, a título de referência: Patente US n°6.480.796 (Meth od for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); Patente US n° 6.537.291 (Method for Detecting a Loose Blade in a Hand Piece Connected to an Ultrasonic Surgical System); patente US n°6.662.127 (Method for Detecting Presence of a Blade in an Ultrasonic System), patente US n° 6.977.495 (Detection Circuitry for Su rgical Handpiece System), patente US n° 7.077.853 (Method for Calcul ating Transducer
Petição 870190062513, de 04/07/2019, pág. 18/162
16/114
Capacitance to Determine Transducer Temperature); patente US n° 7.179.271 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); e patente US n° 7.273.483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).
[0064] Será reconhecido que, em vários aspectos, o gerador 20 pode ser configurado para funcionar em vários modos. Em um modo, o gerador 20 pode ser configurado de modo que o módulo gerador ultrassônico 21 e o módulo gerador eletrocirúrgico/de RF 23 possam ser independentemente operados.
[0065] Por exemplo, o módulo gerador ultrassônico 21 pode ser ativado para aplicar energia ultrassônica ao conjunto de atuador de extremidade 26 e, subsequentemente, energia de RF terapêutica ou subterapêutica pode ser aplicada ao conjunto de atuador de extremidade 26 pelo módulo gerador eletrocirúrgico/de RF 23. Conforme anteriormente discutido, o sub-terapêutico energia eletrocirúrgica/de RF pode ser aplicada ao tecido pinçado entre elementos de mandíbula do conjunto de atuador de extremidade 26 para medir impedância do tecido, de modo a controlar a ativação, ou modificar a ativação, do módulo gerador ultrassônico 21. A retroinformação quanto à impedância do tecido proveniente da aplicação de energia subterapêutica pode, também, ser usada para ativar um nível terapêutico do módulo gerador eletrocirúrgico/de RF 23 para cauterizar o tecido (por exemplo, vaso sanguíneo) pinçado entre elementos de pinça do conjunto de atuador de extremidade 26.
[0066] Em um outro aspecto, o módulo gerador ultrassônico 21 e o módulo eletrocirúrgico/gerador de RF 23 podem ser ativados simultaneamente. Em um exemplo, o módulo gerador ultrassônico 21 é simultaneamente ativado com um nível de energia de RF subterapêutico para medir a impedância do tecido enquanto, simultaneamente, a
Petição 870190062513, de 04/07/2019, pág. 19/162
17/114 lâmina ultrassônica do conjunto de atuador de extremidade 26 corta e coagula o tecido (ou vaso sanguíneo) pinçado entre os elementos de pinça do conjunto de atuador de extremidade 26. Essa retroinformaçâo pode ser usada, por exemplo, para modificar a saída de acionamento do módulo gerador ultrassônico 21. Em um outro exemplo, o módulo gerador ultrassônico 21 pode ser acionado simultaneamente ao módulo gerador eletrocirúrgico/de RF 23 de modo que a porção de lâmina ultrassônica do conjunto de atuador de extremidade 26 seja usada para cortar o tecido danificado, enquanto a energia eletrocirúrgica/de RF é aplicada a porções de eletrodo do conjunto de pinça do atuador de extremidade 26 para cauterizar o tecido (ou vaso sanguíneo).
[0067] Quando o gerador 20 é ativado por meio do mecanismo de disparo, a energia elétrica é continuamente aplicada pelo gerador 20 a uma pilha ou conjunto de transdutores do conjunto acústico. Em um outro aspecto, a energia elétrica é intermitentemente aplicada (por exemplo, pulsada) pelo gerador 20. Uma malha de captura de fase no sistema de controle do gerador 20 pode monitorar a retroinformaçâo proveniente do conjunto acústico. A malha de captura de fase ajusta a frequência da energia elétrica enviada pelo gerador 20 para que corresponda à frequência de ressonância do modo de vibração longitudinal selecionado do conjunto acústico. Além disso, um segundo circuito de retroinformaçâo no sistema de controle 25 mantém a corrente elétrica fornecida ao conjunto acústico em um nível constante previamente selecionado, de modo a se obter um curso substancialmente constante no atuador de extremidade 18 do conjunto acústico. Em ainda um outro aspecto, um terceiro circuito de retroinformaçâo no sistema de controle 25 monitora a impedância entre os eletrodos situados no conjunto de atuador de extremidade 26. Embora as Figuras de 1 a 5 mostrem um instrumento cirúrgico ultrassônico de funcionamento manual, será reconhecido que os
Petição 870190062513, de 04/07/2019, pág. 20/162
18/114 instrumentos cirúrgicos ultrassônicos podem, também, ser utilizados em aplicações robóticas, por exemplo, conforme aqui descrito, bem como em combinações de aplicações manuais e robóticas.
[0068] No modo de operação ultrassônico, o sinal elétrico fornecido ao conjunto acústico pode fazer com que a extremidade distal do atuador de extremidade 18 vibre longitudinalmente na faixa de, por exemplo, aproximadamente 20 kHz a 250 kHz. De acordo com vários aspectos, a lâmina ultrassônica 22 pode vibrar na faixa de cerca de 54 kHz a 56 kHz, por exemplo a cerca de 55,5 kHz. Em outros aspectos, a lâmina ultrassônica 22 pode vibrar em outras frequências incluindo, por exemplo, cerca de 31 kHz ou cerca de 80 kHz. A excursão das vibrações na lâmina ultrassônica pode ser controlada, por exemplo, mediante o controle da amplitude do sinal elétrico aplicado ao conjunto transdutor do conjunto acústico pelo gerador 20. Conforme observado acima, o mecanismo de ativação do gerador 20 permite que um usuário ative o gerador 20 de modo que a energia elétrica possa ser fornecida de maneira contínua ou intermitente ao conjunto acústico. O gerador 20 tem, também, uma linha de transmissão de energia elétrica para inserção em uma unidade eletrocirúrgica ou em uma tomada eléctrica convencional. Contempla-se que o gerador 20 pode, também, ser alimentado por uma fonte de corrente contínua (CG), como uma batería. O gerador 20 pode compreender qualquer gerador adequado, como o modelo n°GEN04 e/ou o modelo n°GEN11, disponíveis junto à Ethicon Endo-Surgery, Inc.
[0069] A Figura 2 é uma vista em perspectiva esquerda de um aspecto exemplificador do instrumento cirúrgico ultrassônico 10, mostrando o conjunto de cabo 12, o conjunto de rotação distai 13 e o conjunto de eixo de acionamento alongado 14. A Figura 3 mostra o conjunto de atuador de extremidade 26. No aspecto ilustrado, o conjunto de eixo de acionamento alongado 14 compreende uma extremidade
Petição 870190062513, de 04/07/2019, pág. 21/162
19/114 distal 52 dimensionada para engatar-se mecanicamente ao conjunto de atuador de extremidade 26, e uma extremidade proximal 50 que se engata mecanicamente ao conjunto de cabo 12 e ao conjunto de rotação distai 13. A extremidade proximal 50 do conjunto de eixo de acionamento alongado 14 é recebida no interior do conjunto de punho 12 e do conjunto de rotação distai 13. Mais detalhes relacionados às conexões entre o conjunto de eixo de acionamento endoscópico alongado 14, o conjunto de cabo 12 e o conjunto de rotação distai 13 são fornecidos na descrição da Figura 5. No aspecto ilustrado, o conjunto de gatilho 24 compreende um gatilho 32 que funciona em conjunto com um cabo fixo 34. O cabo fixo 34 e o gatilho 32 são ergonomicamente formados e adaptados para oferecer uma interface confortável ao usuário. O cabo fixo 34 está integralmente associado ao conjunto de cabo 12. O gatilho 32 é capaz de se mover de forma articulada em relação ao cabo fixo 34, conforme explicado abaixo com mais detalhes em relação ao funcionamento do instrumento cirúrgico ultrassônico 10. O gatilho 32 é capaz de se mover de forma articulada na direção 33a, em direção ao cabo fixo 34, quando o usuário aplica uma força de aperto contra o gatilho 32. Um elemento de mola 98 (Figura 5) faz com que o gatilho 32 se mova de forma articulada na direção 33b, quando o usuário cessa a força de aperto contra o gatilho 32.
[0070] Em um aspecto exemplificador, o gatilho 32 compreende um gancho de gatilho alongado 36, o qual define uma abertura 38 entre o gancho de gatilho alongado 36 e o gatilho 32. A abertura 38 é adequadamente dimensionada para receber, através da mesma, um ou mais dedos do usuário. O gatilho 32 pode, também, compreender uma porção resiliente 32a moldada sobre o substrato do gatilho 32. A porção resiliente sobremoldada 32a é formada para proporcionar uma superfície de contato mais confortável para controle do gatilho 32 na
Petição 870190062513, de 04/07/2019, pág. 22/162
20/114 direção para fora 33b. Em um aspecto exemplificador, a porção resiliente sobremoldada 32a pode estar disposta sobre uma porção do gancho de gatilho alongado 36. A superfície proximal do gancho de gatilho alongado 32 permanece não revestida ou revestida com um substrato não resiliente, para possibilitar que o usuário deslize facilmente seus dedos para dentro e para fora da abertura 38. Em outro aspecto, a geometria do gatilho forma uma laçada totalmente fechada, a qual define uma abertura adequadamente dimensionada para receber, através da mesma, um ou mais dedos do usuário. O gatilho com laçada totalmente fechada pode, também, compreender uma porção resiliente moldada sobre o substrato do gatilho.
[0071] Em um aspecto exemplificador, o cabo fixo 34 compreende uma superfície de contato proximal 40 e uma âncora de preensão ou superfície côncava 42. A superfície côncava 42 repousa sobre a membrana da mão onde o polegar e o dedo indicador se unem. A superfície de contato proximal 40 tem um contorno de empunhadura de pistola que recebe a palma da mão em uma empunhadura de pistola normal, sem anéis ou aberturas. A curva de perfil da superfície de contato proximal 40 pode ser contornada para acomodar ou receber a palma da mão. Uma cauda de estabilização 44 está situada em direção a uma porção mais proximal do conjunto de punho 12. A cauda de estabilização 44 pode ficar em contato com a parte mais superior da porção de membrana da mão, situada entre o polegar e o dedo indicador, para estabilizar o conjunto de punho 12 e tomá-lo mais controlável.
[0072] Em um aspecto exemplificador, o conjunto de chave 28 pode compreender uma chave biestável 30. A chave biestável 30 pode ser implementada sob a forma de um componente único com um pivô central 304, situado no interior do conjunto de punho 12, para eliminar a possibilidade de ativação simultânea. Em um aspecto exemplificador,
Petição 870190062513, de 04/07/2019, pág. 23/162
21/114 a chave biestável 30 compreende um primeiro botão saliente 30a e um segundo botão saliente 30b para selecionar o ajuste de potência do transdutor ultrassônico 16 entre um nível de energia mínimo (por exemplo, MÍN) e um nível de energia máximo (por exemplo, MÁX). Em um outro aspecto, a chave biestável pode pi votar entre um ajuste convencional e um ajuste especial. A configuração especial pode possibilitar que um ou mais programas especiais, processos ou algoritmos, e aqui descritos, sejam implementados pelo dispositivo. O comutador 30 roda em torno do pivô central à medida que o primeiro botão saliente 30a e o segundo botão saliente 30b são acionados. Um ou mais botões salientes 30a, 30b são acoplados a um ou mais braços que se movem através de um pequeno arco e fazem os contatos elétricos fechar ou abrir um circuito elétrico para energizar ou desenergizar eletricamente o transdutor ultrassônico 16 de acordo com a ativação do primeiro ou do segundo botão de projeção 30a, 30b. A chave biestável 30 é acoplada ao gerador 20 para controlar a ativação do transdutor ultrassônico 16. A chave biestável 30 compreende uma ou mais chaves de configuração de energia elétrica para ativar o transdutor ultrassônico 16 de modo a definir uma ou mais configurações de energia para o transdutor ultrassônico 16. As forças necessárias para ativar a chave biestável 30 são dirigidas substancialmente em direção ao ponto côncavo 42, evitando, assim, qualquer tendência do instrumento a girar na mão, quando a chave biestável 30 está ativada. [0073] Em um aspecto exemplificador, o primeiro e o segundo botão saliente, 30a e 30b, estão situados sobre a extremidade distal do conjunto de cabo 12, de modo que os mesmos possam ser facilmente acessados pelo usuário para ativar a energia com um reposicionamento mínimo, ou substancialmente nulo, da empunhadura, o que é adequado para manter o controle e manter a atenção focalizada no sítio cirúrgico (por exemplo, um monitor em um procedimento laparoscópico) durante
Petição 870190062513, de 04/07/2019, pág. 24/162
22/114 a ativação da chave biestável 30. Os botões salientes, 30a e 30b, podem ser configurados de modo a dar a volta na lateral do conjunto de punho 12 até um certo ponto, para serem mais facilmente acessíveis a comprimentos de dedo variáveis, e para permitir uma maior liberdade de acesso para ativação em posições desconfortáveis ou para dedos mais curtos. No aspecto ilustrado, o primeiro botão saliente 30a compreende uma pluralidade de elementos táteis 30c, por exemplo, protuberâncias ou saliências texturizadas no aspecto ilustrado, para possibilitar que o usuário diferencie o primeiro botão saliente 30a do segundo botão saliente 30b. Será entendido pelos versados na técnica que várias características ergonômicas podem ser incorporadas ao conjunto de punho 12. Tais recursos ergonômicos são descritos no pedido de patente US n°2009/0105750, intitulado Έ rgonomic Surgical Instruments, aqui incorporado em sua totalidade, a título de referência. [0074] Em um aspecto exemplificador, a chave biestável 30 pode ser operada pela mão do usuário. O usuário pode facilmente acessar o primeiro e o segundo botões salientes, 30a e 30b, a qualquer ponto, enquanto também evita a ativação inadvertida ou não intencional a qualquer tempo. A chave biestável 30 pode ser prontamente operada com um dedo para controlar o fornecimento de energia ao conjunto ultrassônico 16 e/ou o conjunto ultrassônico 16. Por exemplo, o dedo indicador pode ser usado para ativar a primeira porção de contato 30a, para ligar o conjunto ultrassônico 16 em um nível de potência máximo (MAX). O dedo indicador pode ser usado para ativar a segunda porção de contato 30b, para ligar o conjunto ultrassônico 16 em um a nível de potência mínimo (MIN). Em outro aspecto, a chave biestável pode alternar o instrumento 10 entre um ajuste convencional e um ajuste especial. O ajuste especial pode permitir que um ou mais programas especiais sejam implementados pelo instrumento 10. A chave biestável 30 pode ser operada sem que o usuário precise olhar para o primeiro
Petição 870190062513, de 04/07/2019, pág. 25/162
23/114 ou o segundo botão saliente, 30a ou 30b. Por exemplo, o primeiro botão saliente 30a ou o segundo botão saliente 30b pode compreender uma textura ou saliências para diferenciar tatilmente entre o primeiro e o segundo botões salientes, 30a e 30b, sem olhar.
[0075] Em um aspecto exemplificador, o conjunto de rotação distai 13 gira sem limitação em qualquer direção em torno de um eixo geométrico longitudinal T. O conjunto de rotação distai 13 é mecanicamente acoplado ao conjunto de eixo de acionamento alongado
14. O conjunto de rotação distai 13 está situado sobre uma extremidade distal do conjunto de punho 12. O conjunto de rotação distai 13 compreende um cubo cilíndrico 46 e um botão rotativo 48 formado sobre o cubo 46. O cubo 46 se engata mecanicamente ao conjunto de eixo de acionamento alongado 14. O botão rotativo 48 pode compreender recursos poliméricos estriados e pode ser manipulado por um dedo (por exemplo, um dedo indicador) para girar o conjunto de eixo de acionamento alongado 14. O cubo 46 pode compreender um material moldado sobre a estrutura principal para formar o botão rotativo 48. O botão rotativo 48 pode ser sobremoldado no cubo 46. O cubo 46 compreende uma porção de tampão 46a que fica exposta na extremidade distal. A porção de tampão 46a do cubo 46 pode entrar em contato com a superfície de um trocarte durante procedimentos laparoscópicos. O cubo 46 pode ser formado por um plástico rígido durável, como policarbonato, para aliviar qualquer atrito que possa ocorrer entre a porção de tampão 46a e o trocarte. O botão rotativo 48 pode compreender canelados ou estrias formados por nervuras elevadas 48a e porções côncavas 48b situadas entre as nervuras 48a, para proporcionar uma preensão rotacional mais precisa. Em um aspecto exemplificador, o botão rotativo 48 pode compreender uma pluralidade de estrias (por exemplo, três ou mais estrias). Em outros aspectos, pode-se usar qualquer número adequado de estrias. O botão
Petição 870190062513, de 04/07/2019, pág. 26/162
24/114 rotativo 48 pode ser formado a partir de um material polimérico mais macio, sobremoldado no material de plástico rígido. Por exemplo, o botão rotativo 48 pode ser formado a partir de materiais poliméricos maleáveis, resilientes e flexíveis, inclusive ligas de TPE Versaflex®, disponíveis junto à GLS Corporation, por exemplo. Esse material sobremoldado mais macio pode proporcionar uma melhor preensão e um controle mais preciso do movimento do botão rotativo 48. Deve-se compreender que quaisquer materiais que ofereçam resistência adequada a esterilização, sejam biocompatíveis e proporcionem resistência friccional adequada a luvas cirúrgicas, podem ser utilizados para formar o botão rotativo 48.
[0076] Em um aspecto exemplificador, o conjunto de cabo 12 é formado a partir de duas (2) porções de carcaça, ou invólucros, compreendendo uma primeira porção 12a e uma segunda porção 12b. Da perspectiva de um usuário observando o conjunto de punho 12 a partir da extremidade distai e em direção à extremidade proximal, a primeira porção 12a é considerada a porção direita, e a segunda porção 12b é considerada a porção esquerda. Cada uma dentre a primeira e a segunda porções, 12a e 12b, inclui uma pluralidade de interfaces 69 (Figura 5) dimensionadas para alinhar e engatar mecanicamente umas às outras, de modo a formar o conjunto de punho 12 e conter os componentes funcionais internos do mesmo. O punho fixo 34, que está integralmente associado ao conjunto de punho 12, toma forma mediante a montagem da primeira e da segunda porções 12a e 12b do conjunto de punho 12. Uma pluralidade de interfaces adicionais (não mostrada) pode estar disposta em vários pontos em torno da periferia da primeira e da segunda porções, 12a e 12b, do conjunto de punho 12, para propósitos de soldagem ultrassônica, por exemplo, pontos de direção/deflexão de energia. A primeira e a segunda porções, 12a e 12b (bem como os outros componentes descritos a seguir) podem ser
Petição 870190062513, de 04/07/2019, pág. 27/162
25/114 montadas uma à outra de qualquer maneira conhecida na técnica. Por exemplo, pinos de alinhamento, interfaces de encaixe por pressão, interfaces de lingueta e sulco, abas travantes e portas adesivas podem todos ser usados, por si sós ou em combinação, para propósitos de montagem.
[0077] Em um aspecto exemplificador, o conjunto de eixo de acionamento alongado 14 compreende uma extremidade proximal 50 adaptada para se engatar mecanicamente ao conjunto de cabo 12 e ao conjunto de rotação distai 13; e uma extremidade distai 52 adaptada para engatar mecanicamente o conjunto de atuador de extremidade 26. O conjunto de eixo de acionamento alongado 14 compreende uma bainha tubular externa 56 e um membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56. A extremidade proximal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao gatilho 32 do conjunto de cabo 12 para se mover na direção 60A ou 60B em resposta ao acionamento e/ou à liberação do gatilho 32. O gatilho 32 móvel de maneira pivotante pode gerar movimento reciprocante ao longo do eixo geométrico longitudinal ST. Tal movimento pode ser utilizado, por exemplo, para acionar as garras ou o mecanismo de pinçamento do conjunto de atuador de extremidade 26. Uma série de articulações converte a rotação pivotante do gatilho 32 em movimento axial de um balancim acoplado a um mecanismo de acionamento, que controla a abertura e fechamento das mandíbulas do mecanismo de pinçamento do conjunto de atuador de extremidade 26. A extremidade distal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao conjunto de atuador de extremidade 26. No aspecto ilustrado, a extremidade distal do membro de acionamento tubular alternativo tubular 58 é engatado mecanicamente a um conjunto de braço de aperto 64, que pode rodar em tomo de um ponto de pivô 70 (Figura 4) para abrir e fechar o conjunto de braço de aperto 64 em
Petição 870190062513, de 04/07/2019, pág. 28/162
26/114 resposta à atuação e/ou liberação do gatilho 32, Por exemplo, no aspecto ilustrado, o conjunto de braço de aperto 64 é capaz de moverse na direção 62A, de uma posição aberta para uma posição fechada, ao redor de um ponto de pivô 70, quando o gatilho 32 é apertado na direção 33a. O conjunto de braço de aperto 64 é capaz de mover-se na direção 62B, de uma posição fechada para uma posição aberta, ao redor do ponto de pivô 70, quando o gatilho 32 é liberado ou empurrado para fora na direção 33b.
[0078] Em um aspecto exemplificador, o conjunto de atuador de extremidade 26 está conectado à extremidade distai 52 do conjunto de eixo de acionamento alongado 14 e inclui um conjunto de braço de aperto 64 e uma lâmina ultrassônica 66. As garras do mecanismo de pinçamento do conjunto de atuador de extremidade 26 são formadas pelo conjunto de braço de aperto 64 e pela lâmina ultrassônica 66. A lâmina ultrassônica 66 é atuável por ultrassom, e está acusticamente acoplada ao transdutor ultrassônico 16. O gatilho 32 no conjunto de punho 12 está, por fim, conectado a um conjunto de acionamento, com o qual coopera mecanicamente para obter o movimento do conjunto de braço de pinça 64. Apertar o gatilho 32 na direção 33a move o conjunto de braço de aperto 64 na direção 62A de uma posição aberta, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em uma relação espaçada um em relação ao outro, para uma posição pinçada ou fechada, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 cooperam para prender o tecido entre os mesmos. O conjunto de braço de aperto 64 pode compreender um bloco de pinça 69 para prender o tecido entre a lâmina ultrassônica 66 e o braço de aperto 64. A liberação do gatilho 32 na direção 33b move o conjunto de braço de aperto 64 na direção 62B, de uma relação fechada para uma posição aberta, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em uma relação espaçada um
Petição 870190062513, de 04/07/2019, pág. 29/162
27/114 em relação ao outro.
[0079] A porção proximal do conjunto de punho 12 compreende uma abertura proximal 68 para receber uma extremidade distal do conjunto ultrassônico 16. O conjunto ultrassônico 16 é inserido na abertura proximal 68, e é mecanicamente engatado ao conjunto de eixo de acionamento alongado 14.
[0080] Em um aspecto exemplificador, a porção de gancho de gatilho alongado 36 do gatilho 32 oferece uma alavanca de gatilho mais longa, com um curso de extensão e rotação mais curto. A alavanca mais longa do gancho de gatilho alongado 36 permite que o usuário empregue múltiplos dedos dentro da abertura 38, para operar o gancho de gatilho alongado 36 e fazer com que o gatilho 32 revolva na direção 33b para abrir as garras do conjunto de atuador de extremidade 26. Por exemplo, o usuário pode inserir três dedos (por exemplo, os dedos médio, anular e mínimo) na abertura 38. O uso de múltiplos dedos permite que o cirurgião exerça maiores forças de entrada no gatilho 32 e no gancho de gatilho alongado 326 para ativar o conjunto de atuador de extremidade 26. O curso de extensão e rotação mais curto cria uma preensão mais confortável quando se está fechando ou apertando o gatilho 32 na direção 33a, ou quando se está abrindo o gatilho 32 no movimento de abertura para fora, na direção 33b, diminuindo a necessidade de estender os dedos mais para fora. Isso diminui substancialmente a fadiga e o esforço da mão, associados ao movimento de abertura para fora do gatilho 32 na direção 33b. O movimento de abertura para fora do gatilho pode ser auxiliado por molas, pelo elemento de mola 98 (Figura 5), para ajudar a aliviar a fadiga. A força da mola de abertura é suficiente para auxiliar na facilidade de abertura, mas não é forte o bastante para afetar adversamente a retrainformação tátil da tensão do tecido durante a propagação da dissecção.
Petição 870190062513, de 04/07/2019, pág. 30/162
28/114 [0081] Por exemplo, durante um procedimento cirúrgico, o dedo indicador pode ser usado para controlar a rotação do conjunto de eixo de acionamento alongado 14, de modo a posicionar as mandíbulas do conjunto de atuador de extremidade 26 em uma orientação adequada. O dedo médio e/ou os outros dedos menores podem ser usados para apertar o gatilho 32 e prender o tecido entre as mandíbulas. Uma vez que a mandíbulas estejam situadas na posição desejada e tenham pinçado o tecido, o dedo indicador pode ser usado para ativar a chave biestável 30 de modo a ajustar o nível de energia do transdutor ultrassônico 16 para tratar o tecido. Uma vez que o tecido tenha sido tratado, o usuário pode liberar o gatilho 32, empurrando para fora na direção distai contra o gancho de gatilho alongado 36, com o dedo médio e/ou os dedos menores, para abrir as mandíbulas do conjunto de atuador de extremidade 26. Esse procedimento básico pode ser realizado sem que o usuário precise ajustar sua preensão no conjunto de punho 12.
[0082] As Figuras de 3 a 4 ilustram a conexão do conjunto de eixo de acionamento alongado 14 em relação ao conjunto de atuador de extremidade 26. Conforme anteriormente descrito, no aspecto ilustrado, o conjunto de atuador de extremidade 26 compreende um conjunto de braço de aperto 64 e uma lâmina ultrassônica 66 para formar as garras do mecanismo de pinçamento. A lâmina ultrassônica 66 pode ser uma lâmina ultrassônica atuável por ultrassom, acusticamente acoplada ao transdutor ultrassônico 16. O gatilho 32 está mecanicamente conectado a um conjunto de acionamento. Juntos, o gatilho 32 e o conjunto de acionamento cooperam mecanicamente para mover o conjunto de braço de aperto 64 para uma posição aberta na direção 62A, em que o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em relação espaçada um em relação ao outro, e para uma posição pinçada ou fechada na direção 62B, em que o conjunto de braço
Petição 870190062513, de 04/07/2019, pág. 31/162
29/114 de aperto 64 e a lâmina ultrassônica 66 cooperam para prender o tecido entre os mesmos. O conjunto de braço de aperto 64 pode compreender um bloco de pinça 69 para prender o tecido entre a lâmina ultrassônica 66 e o braço de aperto 64. A extremidade distal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao conjunto de atuador de extremidade 26. No aspecto ilustrado, a extremidade distai do membro de acionamento tubular alternativo tubular 58 é engatado mecanicamente ao conjunto de braço de aperto 64, que pode rodar em torno do ponto de pivô 70 para abrir e fechar o conjunto de braço de aperto 64 em resposta à atuação e/ou liberação do gatilho 32. Por exemplo, no aspecto ilustrado, o conjunto de braço de aperto 64 é capaz de mover-se de uma posição aberta para uma posição fechada na direção 62B, em redor de um ponto de pivô 70, quando o gatilho 32 é apertado na direção 33a. O conjunto de braço de aperto 64 é capaz de mover-se de uma posição fechada para uma posição aberta na direção 62A, em redor do ponto de pivô 70, quando o gatilho 32 é liberado ou empurrado para fora na direção 33b.
[0083] Conforme anteriormente discutido, o conjunto de braço de aperto 64 pode compreender eletrodos eletricamente acoplados ao módulo gerador eletrocirúrgico/de RF 23 para receber energia terapêutica e/ou subterapêutica, em que a energia eletrocirúrgica/de RF pode ser aplicada aos eletrodos, seja simultaneamente ou não simultaneamente, com a energia ultrassônica sendo aplicada à lâmina ultrassônica 66. Essas ativações de energia podem ser aplicadas em quaisquer combinações adequadas para se obter um efeito desejado sobre o tecido, em cooperação com um algoritmo ou outra lógica de controle.
[0084] A Figura 5 é uma vista explodida do instrumento cirúrgico ultrassônico 10 mostrado na Figura 2. No aspecto ilustrado, a vista explodida mostra os elementos internos do conjunto de cabo 12, o
Petição 870190062513, de 04/07/2019, pág. 32/162
30/114 conjunto de cabo 12, o conjunto de rotação distal 13, o conjunto de chave 28, e o conjunto de eixo de acionamento alongado 14. No aspecto ilustrado, a primeira e a segunda porções, 12a e 12b, se encaixam para formar o conjunto de cabo 12. Cada uma dentre a primeira e a segunda porções, 12a e 12b, compreende uma pluralidade de interfaces 69, dimensionadas para se alinhar e engatar mecanicamente uma à outra para formar o conjunto de punho 12 e conter os componentes funcionais internos do instrumento cirúrgico ultrassônico 10. O botão rotativo 48 é mecanicamente engatado à bainha tubular externa 56, de modo que possa ser girado na direção circular 54 até 360°. A bainha tubular externa 56 está situada sobre o membro atuador tubular reciprocante 58, que é mecanicamente engatado e retido no interior do conjunto de cabo 12 por meio de uma pluralidade de elementos de acoplamento 72. Os elementos de acoplamento 72 podem compreender um anel de vedação tipo anel de vedação 0 72a, uma tampa do colarinho do tubo 72b, uma arruela distai 72c, uma arruela proximal 72d e um colarinho do tubo rosqueado 72e. O membro atuador tubular reciprocante 58 está situado dentro de uma forquilha reciprocante 84, que é retida entre a primeira e a segunda porções 12a, 12b do conjunto de cabo 12. O balancim 84 faz parte de um conjunto de balancim reciprocante 88. Uma série de articulações converte a rotação pivotante do gancho de gatilho alongado 32 no movimento axial do balancim reciprocante 84, que controla a abertura e o fechamento das mandíbulas do mecanismo de pinçamento do conjunto de atuador de extremidade 26 na extremidade distal do instrumento cirúrgico ultrassônico 10. Em um aspecto exemplificador, um design com quatro elos oferece vantagem mecânica em uma extensão de rotação relativamente curta, por exemplo.
[0085] Em um aspecto exemplificador, um guia de onda de transmissão ultrassônica 78 está disposto dentro do membro atuador tubular reciprocante 58. A extremidade distai 52 do guia de ondas de
Petição 870190062513, de 04/07/2019, pág. 33/162
31/114 transmissão ultrassônica 78 está acusticamente acoplada (por exemplo, direta ou indiretamente mecanicamente acoplada) à lâmina ultrassônica 66, e a extremidade proximal 50 do guia de ondas de transmissão ultrassônica 78 é recebida no interior do conjunto de cabo 12. A extremidade proximal 50 do guia de ondas de transmissão ultrassônica 78 é adaptada para acoplar-se acusticamente à extremidade distal do transdutor ultrassônico 16. O guia de ondas de transmissão ultrassônica 78 é isolado dos outros elementos do conjunto de eixo de acionamento alongado 14 por meio de uma bainha protetora 80 e uma pluralidade de elementos isolantes 82, como anéis de silicone. A bainha tubular externa 56, o membro atuador tubular reciprocante 58 e o guia de ondas de transmissão ultrassônica 78 são mecanicamente engatados por um pino 74. O conjunto de chave 28 compreende a chave biestável 30 e elementos elétricos 86a,b para energizar eletricamente o transdutor ultrassônico 16, de acordo com a ativação do primeiro ou do segundo botões salientes, 30a ou 30b.
[0086] Em um aspecto exemplificador, a bainha tubular externa 56 isola o usuário ou o paciente das vibrações ultrassônicas do guia de ondas de transmissão ultrassônica 78. A bainha tubular externa 56 geralmente inclui um cubo 76. A bainha tubular externa 56 é rosqueada sobre a extremidade distal do conjunto de punho 12. O guia de ondas de transmissão ultrassônica 78 se estende através da abertura da bainha tubular externa 56, e os elementos isolantes 82 isolam o guia de ondas de transmissão ultrassônica 24 da bainha tubular externa 56. A bainha tubular externa 56 pode ser fixada ao guia de ondas 78 com o pino 74. O orifício para receber o pino 74 no guia de ondas 78 pode ocorrer nominalmente em um nó de deslocamento. O guia de ondas 78 pode ser rosqueado ou encaixado no interior do conjunto de punho 12 do manipulo por meio de um parafuso prisioneiro. As porções planas no cubo 76 podem permitir que o conjunto seja submetido a torque até um
Petição 870190062513, de 04/07/2019, pág. 34/162
32/114 nível necessário. Em um aspecto exemplificador, a porção de cubo 76 da bainha tubular externa 56 é, de preferência, construída em plástico, e a porção alongada tubular da bainha tubular externa 56 é fabricada em aço inoxidável. Alternativamente, o guia de ondas de transmissão ultrassônica 78 pode compreender material polimérico circundando o mesmo, para isolamento contra contato externo.
[0087] Em um aspecto exemplificador, a extremidade distal do guia de ondas de transmissão ultrassônica 78 pode estar acoplada à extremidade proximal da lâmina ultrassônica 66 por uma conexão rosqueada interna, de preferência em um antinó ou próximo ao mesmo. Contempla~se que a lâmina ultrassônica 66 possa ser fixada ao guia de ondas de transmissão ultrassônica 78 por quaisquer meios adequados, como uma junta soldada ou similar. Embora a lâmina ultrassônica 66 possa ser removível do guia de ondas de transmissão ultrassônica 78, contempla~se também que o atuador de extremidade com elemento único (por exemplo, a lâmina ultrassônica 66) e o guia de ondas de transmissão ultrassônica 78 podem ser formados como uma peça unitária única.
[0088] Em um aspecto exemplificador, o gatilho 32 é acoplado a um mecanismo de ligação para transladar o movimento giratório do gatilho 32 nas direções 33a e 33b para o movimento linear do membro atuador tubular reciprocante 58 nas direções correspondentes 60a e 60b (Figura 2). O gatilho 32 compreende um primeiro conjunto de flanges 98 com aberturas formadas em seu interior para receber um primeiro pino de balancim 94a. O primeiro pino de balancim 94a está, também, posicionado através de um conjunto de aberturas formadas na extremidade distal do balancim 84. O gatilho 32 compreende, também, um segundo conjunto de flanges 96 para receber uma primeira extremidade de um elo 92. Um pino do gatilho 90 é recebido nas aberturas formadas no elo 92 e no segundo conjunto de flanges 96. O
Petição 870190062513, de 04/07/2019, pág. 35/162
33/114 pino do gatilho 90 é recebido nas aberturas formadas no elo 92 e no segundo conjunto de flanges 96, e está adaptado para ser acoplado às primeira e segunda porções, 12a e 12b, do conjunto de punho 12, para formar um ponto de pivô para o gatilho 32. Uma segunda extremidade do elo 92 é recebida em uma fenda formada em uma extremidade proximal do balancim 84, e é retida em seu interior por um segundo pino de balancim 94b. Conforme o gatilho 32 é girado em tomo de um ponto de pivô de forma articulada pelo pino do gatilho 90 formado, a forquilha traslada horizontalmente ao longo de um eixo geométrico longitudinal T em uma direção indicada pelas setas 60a,b.
[0089] A Figura 6 ilustra um diagrama de um aspecto de um dispositivo cirúrgico de retrainformação de força 100 que pode incluir ou implementar muitos dos recursos aqui descritos. Por exemplo, em um aspecto, o dispositivo cirúrgico 100 pode ser similar ou representativo do instrumento cirúrgico 10. O dispositivo cirúrgico 100 pode incluir um gerador 102. O dispositivo cirúrgico 100 pode incluir também um atuador de extremidade ultrassônico 106, que pode ser ativado quando um médico opera um gatilho 110. Quando o gatilho 110 é atuado, um sensor de força 112 pode gerar um sinal que indica a quantidade de força que é aplicada ao gatilho 110. Além de, ou em vez de, um sensor de força 112, o dispositivo cirúrgico 100 pode incluir um sensor de posição 113, que pode gerar um sinal indicando a posição do gatilho 110 (por exemplo, quão longe o gatilho foi pressionado ou de outro modo atuado). Em um aspecto, o sensor de posição 113 pode ser um sensor posicionado com a bainha tubular externa 56 descrita acima ou membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56 descrita acima. Em um aspecto, o sensor pode ser um sensor de efeito Hall ou qualquer transdutor adequado que varia sua tensão de saída em resposta a um campo magnético. O sensor de efeito Hall pode ser utilizado para aplicações de chaveamento por
Petição 870190062513, de 04/07/2019, pág. 36/162
34/114 proximidade, posicionamento, detecção de velocidade e detecção de corrente. Em um aspecto, o sensor de efeito Hall funciona como um transdutor analógico, retomando diretamente uma tensão. Com um campo magnético conhecido, sua distância da placa de Hall pode ser determinada.
[0090] Um circuito de controle 108 pode receber os sinais dos sensores 112 e/ou 113.0 circuito de controle 108 pode incluir quaisquer componentes de circuito analógico ou digital adequados. O circuito de controle 108 pode também se comunicar com o gerador 102 e/ou com o transdutor 104 para modular a energia fornecida ao atuador de extremidade 106 e/ou o nível do gerador ou a amplitude da lâmina ultrassônica do atuador de extremidade 106 com base na força aplicada ao gatilho 110 e/ou na posição do gatilho 110 e/ou na posição da bainha tubular externa 56 descrita acima em relação ao membro de atuação tubular reciprocante 58 situado no interior da bainha tubular externa 56 descrita acima (por exemplo, conforme medido por uma combinação de sensor de efeito Hall e ímã). Por exemplo, quanto mais força é aplicada ao gatilho 110, mais energia e/ou uma maior amplitude de lâmina ultrassônica pode ser fornecida ao atuador de extremidade 106. De acordo com vários aspectos, o sensor de força 112 pode ser substituído por uma chave de múltiplas posições.
[0091] De acordo com vários aspectos, o atuador de extremidade 106 pode incluir um mecanismo de aperto ou de travamento, por exemplo, como aquele descrito acima em conexão com as Figuras 1 a
5. Quando o gatilho 110 é inicialmente acionado, o mecanismo de travamento pode fechar, prender o tecido entre um braço de aperto e o atuador de extremidade 106. Conforme a força aplicada ao gatilho aumenta (por exemplo, conforme detectado pelo sensor de força 112), o circuito de controle 608 pode aumentar a energia fornecida ao atuador de extremidade 106 pelo transdutor 104 e/ou o nível de gerador ou a
Petição 870190062513, de 04/07/2019, pág. 37/162
35/114 amplitude de lâmina ultrassônica gerada no atuador de extremidade 106. Em um aspecto, a posição do gatilho, conforme detectada pelo sensor de posição 113 ou a posição da garra ou do braço de garra, conforme detectada pelo sensor de posição 113 (por exemplo, com um sensor de efeito Hall), podem ser utilizadas pelo circuito de controle 108 para definir a energia e/ou a amplitude do atuador de extremidade 106. Por exemplo, conforme o gatilho é movimentado adicionalmente em direção a uma posição completamente atuada, ou a garra ou o braço de garra se move adicionalmente em direção à lâmina ultrassônica (ou atuador de extremidade 106), a energia e/ou amplitude do atuador de extremidade 106 podem ser aumentadas.
[0092] De acordo com vários aspectos, o dispositivo cirúrgico 100 pode incluir também um ou mais dispositivos de retroinformação para indicar a quantidade de energia fornecida ao atuador de extremidade 106. Por exemplo, um alto-falante 114 pode emitir um sinal indicativo da energia do atuador de extremidade. De acordo com vários aspectos, o alto-falante 114 pode emitir uma série de sons de pulso, onde a frequência dos sons indica a energia. Além de, ou em vez do alto-falante 114,o dispositivo pode incluir uma tela visual 116. A tela visual 116 pode indicar o atuador de extremidade de acordo com qualquer método adequado. Por exemplo, a tela visual 116 pode incluir uma série de diodos emissores de luz (LEDs), em que a energia do atuador de extremidade é indicada pelo número de LEDs iluminados. O alto-falante 114 e/ou a tela visual 116 podem ser acionados peto circuito de controle 108. De acordo com vários aspectos, o dispositivo 100 pode incluir um dispositivo de catraca (não mostrado) conectado ao gatilho 110. O dispositivo de catraca pode gerar um sinal audível quanto mais força é aplicada ao gatilho 110, fornecendo uma indicação indireta de energia do atuador de extremidade. O dispositivo 100 pode incluir outros recursos que podem aumentar a segurança. Por exemplo, o circuito de
Petição 870190062513, de 04/07/2019, pág. 38/162
36/114 controle 108 pode ser configurado para impedir que a energia seja fornecida ao atuador de extremidade 106 além do limiar predeterminado. Além disso, o circuito de controle 108 pode implementar um atraso entre o tempo em que uma alteração na energia do atuador de extremidade é indicada (por exemplo, pelo alto-falante 114 ou tela 116) e o tempo em que a alteração na energia do atuador de extremidade é fornecida. Dessa forma, um médico pode ter ampla ciência de que o nível de energia ultrassônica que deve ser fornecida ao atuador de extremidade 106 está prestes a mudar.
[0093] A Figura 7 é um diagrama simplificado de um aspecto do gerador 102 que pode fornecer sintonia sem indutor, entre outros benefícios. As Figuras 8A a 8C ilustram uma arquitetura do gerador 102 da Figura 7, de acordo com um aspecto da presente descrição. A Figura 9 ilustra um controlador 196 para monitorar dispositivos de entrada e controlar dispositivos de saída de acordo com um aspecto da presente descrição. Com referência agora às Figuras 7 a 9, o gerador 102 pode compreender um estágio isolado do paciente 152 em comunicação com um estágio não isolado 154 por meio de um transformador de potência 156. Um enrolamento secundário 158 do transformador de potência 156 está contido na plataforma isolada 152 e pode compreender uma configuração com derivação (por exemplo, uma configuração com derivação central ou com derivação não central) para definir as saídas de sinal de acionamento 160a, 160b e 160c, de modo a fornecer sinais de acionamento a diferentes dispositivos cirúrgicos, como um dispositivo cirúrgico 100, um instrumento cirúrgico ultrassônico 10 ou um dispositivo eletrocirúrgico 106. Em particular, as saídas de sinal de acionamento 160a e 160c podem fornecer um sinal de acionamento (por exemplo, um sinal de acionamento a 420 V RMS) a um instrumento ultrassônico 10, e as saídas de sinal de acionamento 160b e 160c podem fornecer um sinal de acionamento (por exemplo, um sinal de
Petição 870190062513, de 04/07/2019, pág. 39/162
37/114 acionamento a 100 V RMS) a um dispositivo eletrocirúrgico 106, com a saída 160b correspondendo à derivação central do transformador de potência 156. O estágio não isolado 154 pode compreender um amplificador de potência 162 que tem uma saída conectada a um enrolamento primário 164 do transformador de potência 156. Em certos aspectos, o amplificador de potência 162 pode compreender um amplificador do tipo push-pull, por exemplo. A plataforma não isolada 154 pode conter, ainda, um dispositivo lógico programável 166 para fornecer uma saída digital a um conversor de digital para analógico (DAC) 168 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência 162. Em certos aspectos, o dispositivo lógico programável 166 pode compreender um arranjo de portas programável em campo (FRGA), por exemplo. O dispositivo lógico programável 166, pelo fato de controlar a entrada do amplificador de potência 162 através do DAC 168 pode, portanto, controlar qualquer dentre um certo número de parâmetros (por exemplo, frequência, formato de onda, amplitude do formato de onda) de sinais de acionamento aparecendo nas saídas de sinal de acionamento 160a, 160b e 160c. Em certos aspectos e conforme discutido abaixo, o dispositivo lógico programável 166, em conjunto com um processador (por exemplo, o processador 174 discutido abaixo), pode implementar um certo número de algoritmos de controle baseados em processamento de sinal digital (DSP) e/ou outros algoritmos de controle para parâmetros de controle dos sinais de acionamento fornecidos pelo gerador 102.
[0094] A potência pode ser fornecida a um trilho de alimentação do amplificador de potência 162 por um regulador de modo de chave 170. Em certos aspectos, o regulador de modo de chave 170 pode compreender um regulador ajustável de antagônico, por exemplo. A plataforma não isolada 154 pode conter, ainda, um processador 174
Petição 870190062513, de 04/07/2019, pág. 40/162
38/114 que, em um aspecto pode compreender um processador DSP como um ADSP-21469 SHARC DSP Analog Devices, disponível junto à Analog Devices, de Norwood, Mass., EUA, por exemplo. Em certos aspectos, o processador 174 pode controlar a operação do conversor de potência de modo de chave 170 responsive a dados de retroinformação da tensão recebidos do amplificador de potência 162 pelo processador 174 por meio de um conversor analógico-para-digital (ADC) 176. Em um aspecto, por exemplo, o processador 174 pode receber como entrada, através do ADC 176, o envelope de formato de onda de um sinal (por exemplo, um sinal de RF) sendo amplificado pelo amplificador de potência 162. O processador 174 pode então controlar o regulador de modo de chave 170 (por exemplo, através de uma saída modulada de largura de pulso (PWM, de pulse-width modulated) de modo que a tensão de trilho provida ao amplificador de potência 162 siga o envelope forma de onda do sinal amplificado. Modulando-se dinamicamente a tensão do trilho do amplificador de potência 162 com base no envelope de forma de onda, a eficiência do amplificador de potência 162 pode ser significativamente aprimorada em relação a esquemas de amplificador com tensão de trilho fixa.
[0095] Em certos aspectos e conforme discutido em detalhes adicionais em conexão com as Figuras 10A e 10B, o dispositivo lógico programável 166, em conjunto com o processador 174, pode implementar um esquema de controle com sintetizador digital direto (DDS) para controlar o formato de onda, a frequência e/ou a amplitude do fornecimento de sinais de acionamento pelo gerador 102. Em um aspecto, por exemplo, o dispositivo lógico programável 166 pode implementar um algoritmo de controle de DDS 268 mediante a recuperação de amostras de formato de onda armazenado em uma tabela de pesquisa (LUT) atualizada dinamicamente, como uma RAM LUT que pode ser integrada em um FPGA. Esse algoritmo de controle
Petição 870190062513, de 04/07/2019, pág. 41/162
39/114 é particularmente útil para aplicações ultrassônicas nas quais um transdutor ultrassônico pode ser acionado por uma corrente senoidal limpa em sua frequência ressonante. Como outras frequências podem excitar ressonâncias parasíticas, minimizar ou reduzir a distorção total da corrente da ramificação de movimento pode correspondentemente minimizar ou reduzir os efeitos indesejáveis da ressonância. Como o formato de onda de uma saída de sinal de acionamento pelo gerador 102 sofre o impacto de várias fontes de distorção presentes no circuito de acionamento de saída (por exemplo, o transformador de potência 156, o amplificador de potência 162), dados de retroinformação sobre tensão e corrente com base no sinal de acionamento podem ser fornecidos a um algoritmo, como um algoritmo para controle de erros implementado pelo processador 174, que compensa a distorção mediante a adequada pré-distorção ou modificação das amostras de formato de onda armazenadas na LUT de maneira dinâmica e contínua (por exemplo, em tempo real). Em um aspecto, a quantidade ou o grau de pré-distorção aplicada às amostras da LUT pode ser baseada no erro entre uma corrente da ramificação de movimento computadorizada e um forma de onda de corrente desejado, sendo que o erro é determinado em uma base de amostra por amostra. Dessa maneira, as amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento, podem resultar em um sinal de acionamento da ramificação de movimento tendo o formato de onda desejado (por exemplo, senoidal) para acionar de maneira ótima o transdutor ultrassônico. Em tais aspectos, as amostras de forma de onda de LUT não irão, portanto, representar a forma de onda desejada do sinal de acionamento, mas sim a forma de onda que é necessária para produzir, por fim, a forma de onda desejado do sinal de acionamento da ramificação de movimento, quando são levados em conta os efeitos de distorção.
Petição 870190062513, de 04/07/2019, pág. 42/162
40/114 [0096] O estágio não isolado 154 pode compreender adicionalmente um ADC 178 e um ADC 180 acoplados à saída do transformador de potência 156 por meio dos respectivos transformadores de isolamento, 182 e 184, para respectivamente amostrar a tensão e a corrente de sinais de acionamento emitidos pelo gerador 102. Em certos aspectos, os ADCs 178 e 180 podem ser configurados para amostragem em altas velocidades (por exemplo, 80 Msps) para possibilitar a sobreamostragem dos sinais de acionamento. Em um aspecto, por exemplo, a velocidade de amostragem dos ADCs 178 e 180 pode possibilitar uma sobreamostragem de aproximadamente 200x (dependendo da frequência de acionamento) dos sinais de acionamento. Em certos aspectos, as operações de amostragem dos ADCs 178 e 180 podem ser realizadas por um único ADC recebendo sinais de entrada de tensão e corrente por meio de um multiplexador bidirecional. O uso de amostragem em alta velocidade nos aspectos do gerador 102 pode possibilitar, entre outras coisas, cálculo da corrente complexa que flui através da ramificação de movimento (que pode ser utilizada em certos aspectos para implementar o controle de formato de onda baseado em DDS descrito acima), filtragem digital acurada dos sinais amostrados, e cálculo do consumo real de energia com um alto grau de precisão. A saída dos dados de retroinformação sobre tensão e corrente pelos ADCs 178 e 180 pode ser recebida e processada (por exemplo, buffering do tipo FIFO, multiplexação) peto dispositivo lógico programável 166 e armazenada em memória de dados para subsequente recuperação, por exemplo, pelo processador 174. Conforme observado acima, os dados de retroinformação sobre tensão e corrente podem ser usados como entrada para um algoritmo para prédistorção ou modificação de amostras de formato de onda na LUT, de maneira dinâmica e contínua. Em certos aspectos, isso pode requerer que cada par de dados de retroinformação sobre tensão e corrente
Petição 870190062513, de 04/07/2019, pág. 43/162
41/114 armazenado seja indexado com base em, ou de outro modo associado a, uma correspondente amostra da LUT que foi fornecida pelo dispositivo lógico programável 166 quando o par de dados de retroinformação sobre tensão e corrente foi capturado, A sincronização das amostras da LUT com os dados de retroinformação sobre tensão e corrente dessa maneira contribui para a correta temporização e estabilidade do algoritmo pré-distorção.
[0097] Em certos aspectos, os dados de retroinformação sobre tensão e corrente podem ser utilizados para controlar a frequência e/ou a amplitude (por exemplo, amplitude de corrente) dos sinais de acionamento. Em um aspecto, por exemplo, os dados de retroinformação sobre tensão e corrente podem ser utilizados para determinar a fase da impedância. A frequência do sinal de acionamento pode, então, ser controlada para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, O'), minimizando ou reduzi ndo assim os efeitos da distorção ultrassônica e, correspondentemente, acentuando a acurácia da medição de fase da impedância, A determinação da impedância de fase e um sinal de controle da frequência podem ser implementados no processador 174, por exemplo, com o sinal de controle da frequência sendo fornecido como entrada a um algoritmo de controle de DDS implementado pelo dispositivo lógico programável 166. [0098] Em outro aspecto, por exemplo, os dados de retroinformação da corrente podem ser monitorados de modo a manter a amplitude de corrente do sinal de acionamento em um ponto de ajuste da amplitude de corrente. O ponto de ajuste da amplitude de corrente pode ser especificado diretamente ou determinado indiretamente com base nos pontos de ajuste especificados para amplitude de tensão e potência. Em certos aspectos, o controle da amplitude de corrente pode ser implementado pelo algoritmo de controle, como, por exemplo, um
Petição 870190062513, de 04/07/2019, pág. 44/162
42/114 algoritmo de controle proporcional-integral-derivado (PID) ou algoritmo de controle proporcional-integral (Pl), no processador 174. As variáveis controladas pelo algoritmo de controle para controlar adequadamente a amplitude de corrente do sinal de acionamento podem incluir, por exemplo, a alteração de escala das amostras de formato de onda da LUT armazenada no dispositivo lógico programável 166 e/ou a tensão de saída em escala total do DAC 168 (que fornece a entrada ao amplificador de potência 162) por meio de um a DAC 186.
[0099] A plataforma não isolada 154 pode conter, ainda, um processador 190 para proporcionar, entre outras coisas, a funcionalidade da interface de usuário (UI). Em um aspecto, o processador 190 pode compreender um processador Atmel SAM9263 com um núcleo ARM 926EJ-S, disponível junto à Atmel Corporation, de San Jose, Califórnia, EUA, por exemplo. Exemplos de funcionalidade de UI suportados pelo processador 190 podem incluir retroinformação audível e visual do usuário, comunicação com dispositivos periféricos (por exemplo, através de uma interface de barramento serial universal (USB)), comunicação com a chave de pedal 120, comunicação com um dispositivo de entrada de dados 145 (por exemplo, uma tela sensível ao toque) e comunicação com um dispositivo de saída 146 (por exemplo, um alto-falante). O processador 190 pode comunicar-se com o processador 174 e o dispositivo lógico programável (por exemplo, via barramentos de interface serial para periféricos (SPI)). Embora o processador 190 possa primariamente suportar funcionalidade de UI, o mesmo pode também coordenar-se com o processador 174 para implementar mitigação de riscos em certos aspectos. Por exemplo, o processador 190 pode ser programado para monitorar vários aspectos das entradas pelo usuário e/ou outras entradas (por exemplo, entradas pela tela sensível ao toque, entradas de chave de pedal 120, entradas do sensor de temperatura) e pode desabilitar a saída de acionamento
Petição 870190062513, de 04/07/2019, pág. 45/162
43/114 do gerador 102 quando uma condição de erro é detectada.
[00100] Em certos aspectos, tanto o processador 174 como o processador 190 podem determinar e monitorar o estado operacional do gerador 102. Para o processador 174, o estado operacional do gerador 102 pode determinar, por exemplo, quais processos de controle e/ou diagnóstico são implementados pelo processador 174. Para o processador 190, o estado operacional do gerador 102 pode determinar, por exemplo, quais elementos de uma interface de usuário (por exemplo, telas de monitor, sons) são apresentados a um usuário. Os processadores 174 e 190 podem manter independentemente o estado operacional atual do gerador 102, bem como reconhecer e avaliar possíveis transições para fora do estado operacional atual. O processador 174 pode funcionar como o mestre nessa relação, e pode determinar quando devem ocorrer as transições entre estados operacionais. O processador 190 pode estar ciente das transições válidas entre estados operacionais, e pode confirmar se uma determinada transição é adequada. Por exemplo, quando o processador 174 instrui o processador 190 a transicionar para um estado específico, o processador 190 pode verificar que a transição solicitada é válida. Caso uma transição solicitada entre estados seja determinada como inválida pelo processador 190, o processador 190 pode fazer com que o gerador 102 entre em um modo de falha.
[00101] A plataforma não isolada 154 pode conter, ainda, um controlador 196 para monitoramento de dispositivos de entrada 145 (por exemplo, um sensor de toque capacitivo usado para ligar e desligar o gerador 102, uma tela capacitiva sensível ao toque). Em certos aspectos, o controlador 196 pode compreender ao menos um processador e/ou outro dispositivo controlador em comunicação com o processador 190. Em um aspecto, por exemplo, o controlador 196 pode compreender um processador (por exemplo, um controlador Mega168
Petição 870190062513, de 04/07/2019, pág. 46/162
44/114 de 8 bits disponível junto à Atmel) configurado para monitorar as entradas fornecidas pelo usuário através de um ou mais sensores de toque capacitivos. Em um aspecto, o controlador 196 pode compreender um controlador de tela sensível ao toque (por exemplo, um controlador de tela sensível ao toque QT5480 disponível junto à Atmei) para controlar e gerenciar a captura de dados de toque a partir de uma tela capacitiva sensível ao toque.
[00102] Em certos aspectos, quando o gerador 102 está em um estado desligado, o controlador 196 pode continuar a receber energia operacional (por exemplo, através de uma linha de uma fonte de alimentação do gerador 102, como a fonte de alimentação 211 discutida abaixo). Dessa maneira, o controlador 196 pode continuar a monitorar um dispositivo de entrada 145 (por exemplo, um sensor de toque capacitivo situado sobre um painel frontal do gerador 102) para ligar e desligar o gerador 102. Quando o gerador 102 está no estado desligado, o controlador 196 pode despertar a fonte de alimentação (por exemplo, possibilitar o funcionamento de um ou mais conversores de tensão CC/CC 213 da fonte de alimentação 211), se for detectada a ativação do dispositivo de entrada liga/desliga 145 por um usuário. O controlador 196 pode, portanto, iniciar uma sequência para fazer a transição do gerador 102 para um estado ligado. Por outro lado, o controlador 196 pode iniciar uma sequência para fazer a transição do gerador 102 para o estado desligado se for detectada a ativação do dispositivo de entrada liga/desliga 145, quando o gerador 102 estiver no estado ligado. Em certos aspectos, por exemplo, o controlador 196 pode relatar a ativação do dispositivo de entrada liga/desliga 145 ao processador 190 que, por sua vez, implementa a sequência de processo necessária para transicionar o gerador 102 ao estado desligado. Nesses aspectos, o controlador 196 pode não ter qualquer capacidade independente para causar a remoção da potência do gerador 102, após
Petição 870190062513, de 04/07/2019, pág. 47/162
45/114 seu estado ligado ter sido estabelecido.
[00103] Em certos aspectos, o controlador 196 pode fazer com que o gerador 102 ofereça retroinformação audível ou outra retroinformação sensorial para alertar o usuário de que foi iniciada uma sequência de ligar ou desligar. Esse tipo de alerta pode ser fornecido no início de uma sequência de ligar ou desligar, e antes do início de outros processos associados à sequência.
[00104] Em certos aspectos, a plataforma isolada 152 pode compreender um circuito de interface de instrumento 198 para, por exemplo, oferecer uma interface de comunicação entre um circuito de controle de um dispositivo cirúrgico (por exemplo, um circuito de controle que compreende chaves de cabo) e componentes da plataforma não isolada 154, como o dispositivo lógico programável 166, o processador 174 e/ou o processador 190. O circuito de interface de instrumento 198 pode trocar informações com componentes do estágio não isolado 154 por meio de um link de comunicação que mantém um grau adequado de isolamento elétrico entre os estágios 152 e 154 como, por exemplo, um link de comunicação baseado em infravermelho (IR, de infrared). A potência pode ser fornecida ao circuito de interface do instrumento 198 com o uso de, por exemplo, um regulador de tensão de baixa queda alimentado por um transformador de isolamento acionado a partir do estágio não isolado 154.
[00105] Em um aspecto, o circuito de interface de instrumento 198 pode compreender um dispositivo lógico programável 200 (por exemplo, um FRGA) em comunicação com um circuito condicionador de sinal 202. O circuito condicionador de sinal 202 pode ser configurado para receber um sinal periódico do dispositivo lógico programável 200 (por exemplo, uma onda quadrada de 2 kHz) para gerar um sinal de interrogação que tem uma frequência idêntica. O sinal de interrogação pode ser gerado, por exemplo, usando-se uma fonte de corrente bipolar alimentada por
Petição 870190062513, de 04/07/2019, pág. 48/162
46/114 um amplificador diferencial. O sinal de interrogação pode ser comunicado a um circuito de controle do dispositivo cirúrgico (por exemplo, mediante o uso de um par condutor em um fio que conecta o gerador 102 ao dispositivo cirúrgico) e monitorado para determinar um estado ou configuração do circuito de controle. O circuito de controle pode compreender inúmeras chaves, resistores e/ou diodos para modificar uma ou mais características (por exemplo, amplitude, retificação) do sinal de interrogação de modo que um estado ou configuração do circuito de controle seja discernível, de modo inequívoco, com base nessa uma ou mais características. Em um aspecto, por exemplo, o circuito condicionador de sinal 202 pode compreender um ADO para geração de amostras de um sinal de tensão aparecendo entre entradas do circuito de controle, resultando da passagem do sinal de interrogação através do mesmo. O dispositivo lógico programável 200 (ou um componente da plataforma não isolada 154) pode, então, determinar o estado ou a configuração do circuito de controle com base nas amostras de ADO.
[00106] Em um aspecto, o circuito de interface de instrumento 198 podem compreender uma primeira interface de circuito de dados 204 para possibilitar a troca de informações entre o dispositivo lógico programável 200 (ou outro elemento do circuito de interface de instrumento 198) e um primeiro circuito de dados disposto em, ou de outro modo associado a, um dispositivo cirúrgico. Em certos aspectos, um primeiro circuito de dados 206 pode estar disposto em um fio integralmente fixado a uma empunhadura do dispositivo cirúrgico, ou em um adaptador para fazer a interface entre um tipo ou modelo específico de dispositivo cirúrgico e o gerador 102. Em certos aspectos, o primeiro circuito de dados pode compreender um dispositivo de armazenamento não volátil, como um dispositivo de memória só de leitura programável eletricamente apagável (EEPROM). Em certos
Petição 870190062513, de 04/07/2019, pág. 49/162
47/114 aspectos e novamente com referência à Figura 7, a primeira interface de circuito de dados 204 pode ser implementada separadamente do dispositivo lógico programável 200 e compreende um conjunto de circuitos adequado (por exemplo, dispositivos lógicos distintos, um processador) para possibilitar a comunicação entre o dispositivo lógico programável 200 e o primeiro circuito de dados. Em outros aspectos, a primeira interface de circuito de dados 204 pode ser integral ao dispositivo lógico programável 200.
[00107] Em certos aspectos, o primeiro circuito de dados 206 pode armazenar informações relacionadas ao dispositivo cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número serial, um número de operações nas quais o dispositivo cirúrgico foi usado, e/ou quaisquer outros tipos de informações. Essas informações podem ser lidas pelo circuito de interface do instrumento 198 (por exemplo, peto dispositivo lógico programável 200), transferidas para um componente da plataforma não isolada 154 (por exemplo, para o dispositivo lógico programável 166, processador 174 e/ou processador 190) para apresentação a um usuário por meio de um dispositivo de saída 146 e/ou para controlar uma função ou operação do gerador 102. Adicionalmente, qualquer tipo de informação pode ser comunicado para o primeiro circuito de dados 206 para armazenamento no mesmo através da primeira interface do circuito de dados 204 (por exemplo, usando~se o dispositivo lógico programável 200). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o dispositivo cirúrgico foi usado e/ou a datas e/ou horários de seu uso.
[00108] Um instrumento cirúrgico pode ser removível de uma empunhadura para promover a intermutabilidade e/ou a descartabilidade do instrumento. Nesses casos, geradores conhecidos
Petição 870190062513, de 04/07/2019, pág. 50/162
48/114 podem ser limitados em sua capacidade para reconhecer configurações de instrumento específicas sendo usadas, bem como para otimizar os processos de controle e diagnóstico conforme necessário. A adição de circuitos de dados legíveis a instrumentos de dispositivo cirúrgico para resolver essa questão é problemática de um ponto de vista de compatibilidade, porém. Por exemplo, projetar um dispositivo cirúrgico para que permaneça compatível com versões anteriores de geradores desprovidos da indispensável funcionalidade de leitura de dados pode ser pouco prático devido, por exemplo, a esquemas de sinalização diferentes, complexidade do design e custo. Aspectos de instrumentos podem usar circuitos de dados que podem ser implementados em instrumentos cirúrgicos existentes, economicamente e com mínimas alterações de design para preservar a compatibilidade dos dispositivos cirúrgicos com as plataformas de gerador atuais.
[00109] Adicionalmente, aspectos do gerador 102 podem possibilitar comunicação com circuitos de dados baseados em instrumento. Por exemplo, o gerador 102 pode ser configurado para comunicar-se com um segundo circuito de dados contido em um instrumento de um dispositivo cirúrgico. O circuito de interface de instrumento 198 pode compreender uma segunda interface de circuito de dados 210 para possibilitar essa comunicação. Em um aspecto, a segunda interface de circuito de dados 210 pode compreender uma interface digital triestado, embora também possam ser utilizadas outras interfaces. Em certos aspectos, o segundo circuito de dados pode ser geralmente qualquer circuito para transmissão e/ou recepção de dados. Em um aspecto, por exemplo, o segundo circuito de dados pode armazenar informações relacionadas ao instrumento cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número de série, um número de operações nas quais o instrumento cirúrgico foi usado, e/ou quaisquer outros tipos de
Petição 870190062513, de 04/07/2019, pág. 51/162
49/114 informações. Adicional ou alternativamente, qualquer tipo de informação pode ser comunicado ao segundo circuito de dados para armazenamento no mesmo através da segunda interface de circuito de dados 210 (por exemplo, usando-se o dispositivo lógico programável 200). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o instrumento cirúrgico foi usado e/ou a datas e/ou horários de seu uso. Em certos aspectos, o segundo circuito de dados pode transmitir dados capturados por um ou mais sensores (por exemplo, um sensor de temperatura baseado em instrumento). Em certos aspectos, o segundo circuito de dados pode receber dados do gerador 102 e fornecer uma indicação ao usuário (por exemplo, uma indicação por LED ou outra indicação visível) com base nos dados recebidos.
[00110] Em certos aspectos, o segundo circuito de dados e a segunda interface de circuito de dados 210 podem ser configurados de modo que a comunicação entre o dispositivo lógico programável 200 e o segundo circuito de dados possa ser obtida sem a necessidade de proporcionar condutores adicionais para esse propósito (por exemplo, condutores dedicados de um fio conectando um cabo ao gerador 102). Em um aspecto, por exemplo, as informações podem ser comunicadas de e para o segundo circuito de dados com o uso de um esquema de comunicação por barramento 1-wire, implementado na fiação existente, como um dos condutores utilizados transmitindo sinais de interrogação a partir do circuito condicionador de sinal 202 para um circuito de controle em um cabo. Dessa maneira, são minimizadas ou reduzidas as alterações ou modificações ao design do dispositivo cirúrgico que possam, de outro modo, ser necessárias. Além disso, devido ao fato de que diferentes tipos de comunicações podem ser implementados em um canal físico comum (com ou sem separação de banda de frequência), a presença de um segundo circuito de dados pode ser invisível a
Petição 870190062513, de 04/07/2019, pág. 52/162
50/114 geradores que não têm a indispensável funcionalidade de leitura de dados, o que, portanto, permite a retrocompatibilidade do instrumento de dispositivo cirúrgico. Em certos aspectos, a plataforma isolada 152 pode compreender ao menos um capacitor de bloqueio 296-1 conectado à saída do sinal de acionamento 160b, para impedir a passagem de corrente contínua para um paciente. Um único capacitor de bloqueio pode ser necessário para estar de acordo com os regulamentos e padrões médicos, por exemplo. Embora falhas em designs com um só capacitor sejam relativamente incomuns, esse tipo de falha pode, ainda assim, ter consequências negativas. Em um aspecto, um segundo capacitor de bloqueio 296-2 pode ser colocado em série com o capacitor de bloqueio 296-1, com o vazamento de corrente de um ponto entre os capacitares de bloqueio 296-1 e 296-2 sendo monitorado, por exemplo, por um ADC 298 para amostragem de uma tensão induzida por vazamento de corrente. As amostras podem ser recebidas pelo dispositivo lógico programável 200, por exemplo. Com base nas alterações da corrente de dispersão (conforme indicado pelas amostras de tensão no aspecto da Figura 7), o gerador 102 pode determinar quando ao menos um dentre os capacitares de bloqueio 2961 e 296-2 tiver apresentado falha. Consequentemente, o aspecto da Figura 7 pode proporcionar um benefício em relação a designs com somente um capacitor, tendo um único ponto de falha.
[00111] Em certos aspectos, a plataforma não isolada 154 pode compreender uma fonte de alimentação 211 para saída de energia em CC com tensão e corrente adequadas. A fonte de alimentação pode compreender, por exemplo, uma fonte de alimentação de 400 W para fornecer uma tensão do sistema de 48 VDC. Afonte de alimentação 211 pode compreender adicionalmente um ou mais conversores de tensão CC/CC 213 para receber a saída da fonte de alimentação para gerar saídas de CC nas tensões e correntes exigidas pelos vários
Petição 870190062513, de 04/07/2019, pág. 53/162
51/114 componentes do gerador 102. Conforme discutido acima em relação ao controlador 196, um ou mais dentre os conversores de tensão CC/CC 213 podem receber uma entrada do controlador 196 quando a ativação do dispositivo de entrada Hga/desliga 145 por um usuário é detectada pelo controlador 196, para possibilitar o funcionamento ou o despertar dos conversores de tensão CC/CC 213.
[00112] As Figuras 10A e 10B ilustram certos aspectos funcionais e estruturais de um aspecto do gerador 102. A retroi nformação indicando saída de corrente e tensão do enrolamento secundário 158 do transformador de potência 156 é recebida pelos ADCs 178 e 180, respectivamente. Conforme mostrado, os ADCs 178 e 180 podem ser implementados sob a forma de um ADC de 2 canais e podem tomar amostras dos sinais de retrainformação a uma alta velocidade (por exemplo, 80 Msps) para possibilitar a sobreamostragem (por exemplo, aproximadamente 200x de sobreamostragem) dos sinais de acionamento. Os sinais de retrainformação de corrente e tensão podem ser adequadamente condicionados no domínio analógico (por exemplo, amplificado, filtrado) antes do processamento pelos ADCs 178 e 180. As amostras de retroinformação de corrente e tensão dos ADCs 178 e 180 podem ser individualmente registradas (buffered) e subsequentemente multiplexadas ou intercaladas em um único fluxo de dados no interior do bloco 212 do dispositivo lógico programável 166. No aspecto das Figuras 10A e 10B, o dispositivo lógico programável 166 compreende um FRGA.
[00113] As amostras de retroinformação de corrente e tensão multiplexadas podem ser recebidas por uma porta paralela de captura de dados (PDAP) implementada no interior do bloco 214 do processador 174. O PDAP pode compreender uma unidade de empacotamento para implementar quaisquer dentre as inúmeras metodologias para correlação das amostras de retroinformação multiplexadas com um
Petição 870190062513, de 04/07/2019, pág. 54/162
52/114 endereço de memória. Em um aspecto, por exemplo, as amostras de retroinformação correspondentes a uma saída de amostra de LUT específica pelo dispositivo lógico programável 166 podem ser armazenadas em um ou mais endereços de memória que estão correlacionados ou indexados ao endereço da LUT na amostra de LUT. Em outro aspecto, as amostras de retroinformação correspondentes a uma amostra de LUT específica pelo dispositivo lógico programável 166 podem ser armazenadas, juntamente com o endereço de LUT da amostra de LUT, em uma localização de memória em comum. De qualquer modo, as amostras de retroinformação podem ser armazenadas de modo que o endereço de uma amostra de LUT a partir da qual se originou um conjunto específico de amostras de retroinformação possa ser subsequentemente determinado. Conforme discutido acima, a sincronização dos endereços das amostras de LUT e das amostras de retroinformação dessa maneira contribui para a correta temporização e estabilidade do algoritmo pré-distorção. Um controlador de acesso direto à memória (DMA) implementado no bloco 216 do processador 174 pode armazenar as amostras de retroinformação (e quaisquer LUT dados de endereço da amostra, onde aplicável) em uma localização de memória designada 218 do processador 174 (por exemplo, RAM interna).
[00114] O bloco 220 do processador 174 pode implementar um algoritmo de pré-distorção para pré-distorcer ou modificar as amostras de LUT armazenadas no dispositivo lógico programável 166 de maneira dinâmica e contínua. Conforme discutido acima, a pré-distorção das amostras de LUT pode compensar por várias fontes de distorção presentes no circuito de acionamento de saída do gerador 102. As amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento resultarão, portanto, em um sinal de acionamento tendo o formato de onda desejado (por exemplo, senoidal)
Petição 870190062513, de 04/07/2019, pág. 55/162
53/114 para acionar de maneira ótima o transdutor ultrassônico.
[00115] No bloco 222 do algoritmo de pré-distorção, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. A corrente da ramificação de movimento pode ser determinada com o uso da Lei de Corrente de Kirchoff com base, por exemplo, nas amostras de retroinformação de corrente e tensão armazenadas na localização de memória 218, um valor da capacitância estática do transdutor ultrassônico Co (medida ou conhecida a priori) e um valor conhecido da frequência de acionamento. Pode ser determinada uma amostra de corrente da ramificação de movimento para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT.
[00116] No bloco 224 do algoritmo de pré-distorção, cada amostra de corrente da ramificação de movimento determinada no bloco 222 é comparada a uma amostra de um formato de onda da corrente desejado para determinar uma diferença, ou erro de amplitude da amostra, entre as amostras comparadas. Para essa determinação, a amostra com o formato de onda da corrente desejado pode ser fornecida, por exemplo, de uma LUT 226 de formatos de onda contendo amostras de amplitude para um ciclo de um formato de onda da corrente desejado. A amostra específica do formato de onda da corrente da LUT 226 utilizada para a comparação pode ser determinada pelo endereço da amostra da LUT associado à amostra de corrente da ramificação de movimento utilizada na comparação. Conforme necessário, a entrada da corrente da ramificação de movimento no bloco 224 pode ser sincronizada com a entrada de seu endereço da amostra da LUT associado no bloco 224. As amostras da LUT armazenadas no dispositivo lógico programável 166 e as amostras da LUT armazenadas na LUT de formatos de onda 226 podem, portanto, ser iguais em termos de número. Em certos aspectos, o formato de onda da corrente desejado, representado pelas
Petição 870190062513, de 04/07/2019, pág. 56/162
54/114 amostras de LUT armazenadas na LUT de formatos de onda 226 pode ser uma onda senoidal fundamental. Outros formatos de onda podem ser desejáveis. Por exemplo, contempla-se que podería ser utilizada uma onda senoidal fundamental para acionar o movimento longitudinal principal de um transdutor ultrassônico, sobreposta a um ou mais outros sinais de acionamento em outras frequências, como uma ultrassônica de terceira ordem para acionar ao menos duas ressonâncias mecânicas de modo a obter vibrações benéficas em modo transversal ou outros modos.
[00117] Cada valor do erro de amplitude da amostra determinado no bloco 224 pode ser transmitido para a LUT do dispositivo lógico programável 166 (mostrado no bloco 228 na Figura 10A) juntamente com uma indicação de seu endereço de LUT associado. Com base no valor da amostra de erro de amplitude e seu endereço associado (e, opcionalmente, os valores da amostra de erro de amplitude para o mesmo endereço de LUT anteriormente recebido), a LUT 228 (ou outro bloco de controle do dispositivo lógico programável 166) pode prédistorcer ou modificar o valor da amostra de LUT armazenada no endereço de LUT, de modo que a amostra de erro de amplitude seja reduzida ou minimizada. Deve-se compreender que essa pré-distorção ou modificação de cada amostra de LUT de um modo iterative ao longo da faixa de endereços de LUT fará com que o formato de onda da corrente de saída do gerador se iguale ou se adapte ao formato de onda da corrente desejado, representado pelas amostras da LUT 226 de formatos de onda.
[00118] As medições de amplitude de corrente e tensão, as medições de potência e as medições de impedância podem ser determinadas no bloco 230 do processador 174, com base nas amostras de retroinformaçâo de corrente e tensão armazenadas na localização de memória 218. Antes da determinação dessas
Petição 870190062513, de 04/07/2019, pág. 57/162
55/114 quantidades, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro 232 adequado para remover o ruído resultante, por exemplo, do processo de captura de dados e dos componentes ultrassônicos induzidos. As amostras filtradas de tensão e corrente podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador. Em certos aspectos, o filtro 232 pode ser um filtro de resposta ao impulso finita (FIR) aplicado no domínio da frequência. Esses aspectos podem usar a transformada rápida de Fourier (FFT) dos sinais de saída de corrente e tensão do sinal de acionamento. Em certos aspectos, o espectro de frequência resultante pode ser utilizado para proporcionar funcionalidades adicionais ao gerador. Em um aspecto, por exemplo, a razão entre o componente ultrassônico de segunda e/ou terceira ordem em relação ao componente de frequência fundamental pode ser utilizado como indicador de diagnóstico. No bloco 234, um cálculo de valor quadrático médio (RMS) pode ser aplicado a um tamanho de amostra das amostras de retroinformação da corrente representando um número integral de ciclos do sinal de acionamento, para gerar uma medição Irms representando a corrente de saída do sinal de acionamento.
[00119] No bloco 236, um cálculo de valor quadrático médio (RMS) pode ser aplicada a um tamanho de amostra das amostras de retroinformação da tensão representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Vrms representando a tensão de saída do sinal de acionamento. No bloco 238, as amostras de retroinformação de corrente e tensão podem ser multiplicadas ponto por ponto, e um cálculo de média é aplicado às amostras representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Pr da real energia de saída
Petição 870190062513, de 04/07/2019, pág. 58/162
56/114 do gerador.
[00120] No bloco 240, a medição Pa da energia de saída aparente do gerador pode ser determinada como o produto Vrmsfrms.
[00121] No bloco 242, a medição Zm da magnitude da impedância de carga pode ser determinada como o quociente Vrms/lrms.
[00122] Em certos aspectos, as quantidades !rms, Vrms, Pr, Pa e Zm determinadas nos blocos 234, 236, 238, 240 e 242, podem ser utilizadas pelo gerador 102 para implementar quaisquer dentre um número de processos de controle e/ou diagnóstico. Em certos aspectos, qualquer dessas quantidades pode ser comunicada a um usuário por meio, por exemplo, de um dispositivo de saída 146 Integral ao gerador 102, ou um dispositivo de saída 146 conectado ao gerador 102 através de uma interface de comunicação adequada (por exemplo, uma interface USB). Os vários processos de diagnóstico podem incluir, sem limitação, integridade do cabo, integridade do instrumento, integridade da fixação instrumento, sobrecarga do instrumento, proximidade de sobrecarga do instrumento, falha no travamento da frequência, excesso de tensão, excesso de corrente, excesso de potência, falha no sensor de tensão, falha no sensor de corrente, falha na indicação por áudio, falha na indicação visual, curto-circuito, falha no fornecimento de potência e falha no capacitor de bloqueio, por exemplo.
[00123] O bloco 244 do processador 174 pode implementar um algoritmo de controle de fases para determinação e controle da fase da impedância de uma carga elétrica (por exemplo, o transdutor ultrassônico) conduzida pelo gerador 102. Conforme discutido acima, ao controlar a frequência do sinal de acionamento para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, O'), os efeitos de distorção ultrassônica podem ser minimizados ou reduzidos, sendo aumentada a exatidão na medição de fase.
Petição 870190062513, de 04/07/2019, pág. 59/162
57/114 [00124] O algoritmo de controle de fases recebe como entrada as amostras de retroinformação de corrente e tensão armazenadas na localização de memória 218. Antes de seu uso no algoritmo de controle de fases, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro adequado 246 (que pode ser idêntico ao filtro 232) para remover o ruído resultante do processo de captura de dados e dos componentes ultrassônicos induzidos, por exemplo. As amostras filtradas de tensão e corrente podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador.
[00125] No bloco 248 do algoritmo de controle de fases, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. Essa determinação pode ser idêntica àquela descrita acima em conexão com o bloco 222 do algoritmo de prédistorção. Assim, a saída do bloco 248 pode ser, para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT, uma amostra de corrente da ramificação de movimento.
[00126] No bloco 250 do algoritmo de controle de fases, a fase da impedância é determinada com base na entrada sincronizada de amostras da corrente da ramificação de movimento determinada no bloco 248 e correspondente a amostras de retroinformação da tensão. Em certos aspectos, a fase da impedância é determinada como a média entre a fase da impedância medida na borda de subida dos formatos de onda e a fase da impedância medida na borda de descida dos formatos de onda.
[00127] No bloco 252 do algoritmo de controle de fases, o valor da fase da impedância determinado no bloco 222 é comparado ao ponto de ajuste da fase 254 para determinar uma diferença, ou erro de fase, entre os valores comparados.
Petição 870190062513, de 04/07/2019, pág. 60/162
58/114 [00128] No bloco 256 do algoritmo de controle de fases, com base em um valor do erro de fase determinado no bloco 252 e na magnitude de impedância determinada no bloco 242, é determinada uma saída de frequência para controlar a frequência do sinal de acionamento. O valor da saída de frequência pode ser continuamente ajustado pelo bloco 256 e transferido para um bloco de controle DDS 268 (discutido abaixo) de modo a manter a fase da impedância determinada no bloco 250 do ponto de ajuste da fase (por exemplo, erro de fase zero). Em certos aspectos, a fase da impedância pode ser regulada para um ponto de ajuste de fase de 0o. Dessa maneira, qualquer disto rção ultrassônica estará centralizada em redor da crista do formato de onda da tensão, acentuando a acurácia da determinação da impedância de fase.
[00129] O bloco 258 do processador 174 pode implementar um algoritmo para modulação da amplitude de corrente do sinal de acionamento, de modo a controlar a corrente, a tensão e a potência do sinal de acionamento, de acordo com pontos de ajuste especificados pelo usuário, ou de acordo com requisitos especificados por outros processos ou algoritmos implementados pelo gerador 102. O controle dessas quantidades pode ser realizado, por exemplo, mediante o dimensionamento das amostras de LUT na LUT 228, e/ou mediante o ajuste da tensão de saída em escala total do DAC 168 (que fornece a entrada ao amplificador de potência 162) por meio de um DAC 186. O bloco 260 (que pode ser implementado como um controlador PID em certos aspectos) pode receber como entrada amostras de retroinformação da corrente (que podem ser adequadamente dimensionadas e filtradas) a partir da localização de memória 218. As amostras de retroinformação da corrente podem ser comparadas ao valor de demanda por corrente Id determinado pela variável controlada (por exemplo, corrente, tensão ou potência) para determinar se o sinal de acionamento está fornecendo a corrente necessária. Em aspectos
Petição 870190062513, de 04/07/2019, pág. 61/162
59/114 nos quais a corrente do sinal de acionamento é a variável de controle, a demanda por corrente Id pode ser especificada diretamente por um ponto de ajuste da corrente 262A (Isp). Por exemplo, um valor RMS dos dados de retroinformação da corrente (determinado como no bloco 234) pode ser comparado ao ponto de ajuste da corrente RMS Isp especificado pelo usuário para determinar a ação adequada para o controlador. Se por exemplo os dados de retroinformação da corrente indicam um valor de RMS menor que o ponto de ajuste da corrente Isp, dimensionamento da LUT e/ou tensão de saída em escala total do DAC 168 pode ser ajustada pelo bloco 260, de modo que seja aumentada a corrente do sinal de acionamento. Por outro lado, o bloco 260 pode ajustar um dimensionamento da LUT e/ou a tensão de saída em escala total do DAC 168 para diminuir a corrente do sinal de acionamento quando os dados de retroinformação da corrente indicam um valor RMS maior que o ponto de ajuste da corrente Isp.
[00130] Em aspectos nos quais a tensão do sinal de acionamento é a variável de controle, o Id de demanda de corrente pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um valor de referência de tensão desejado 262B (Vsp) dada a magnitude de impedância de carga Zm medida no bloco 242 (por exemplo, Id = Vsp/Zm). Da mesma forma, em aspectos em que a potência do sinal do inversor é a variável de controle, o Id da demanda atual pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um ponto de ajuste de potência desejado 262C (Psp) dada a tensão Vrms medida nos blocos 236 (por exemplo, Id ~ Psp/Vrms).
[00131] O bloco 268 pode implementar um algoritmo de controle DDS para controlar o sinal de acionamento mediante a recuperação de amostras da LUT armazenadas na LUT 228. Em certos aspectos, o algoritmo de controle DDS é um algoritmo de oscilador numericamente
Petição 870190062513, de 04/07/2019, pág. 62/162
60/114 controlado (NCO, de numerically-controlled oscillator) para gerar amostras de um formato de onda a uma taxa de temporização fixa com o uso de uma técnica de saltar pontos (localizações na memória). O algoritmo NCO pode implementar um acumulador de fase, ou conversor de frequência para fase, que funciona como um apontador de endereço para recuperação de amostras de LUT da LUT 228. Em um aspecto, o acumulador de fase pode ser um acumulador de fase com tamanho do passo D, módulo N, onde D é um número inteiro positivo representando um valor de controle da frequência, e N é o número de amostras de LUT na LUT 228. Um valor de controle da frequência D~1, por exemplo, pode fazer com que o acumulador de fase aponte sequencialmente para cada endereço da LUT 228, resultando em uma saída de formato de onda que replica o formato de onda armazenado na LUT 228. Quando D>1, o acumulador de fase pode saltar endereços na LUT 228, resultando em uma saída de formato de onda que tem uma frequência mais alta. Consequentemente, a frequência do formato de onda gerado pelo algoritmo de controle DDS pode, portanto, ser controlado variando-se adequadamente o valor de controle da frequência. Em certos aspectos, o valor de controle da frequência pode ser determinado com base na saída do algoritmo de controle de fases implementado no bloco 244. A saída do bloco 268 pode fornecer a entrada de (DAC) 168 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência 162.
[00132] O bloco 270 do processador 174 pode implementar um algoritmo de controle do conversor de modo da chave para modular dinamicamente a Tensão do trilho do amplificador de potência 162 com base no envelope de forma de onda do sinal sendo amplificado, melhorando assim a eficiência do amplificador de potência 162. Em certos aspectos, as características do envelope de formato de onda podem ser determinadas mediante o monitoramento de um ou mais
Petição 870190062513, de 04/07/2019, pág. 63/162
61/114 sinais contidos no amplificador de potência 162. Em um aspecto, por exemplo, as características do envelope de formato de onda podem ser determinadas por monitoramento da mínima de uma tensão de drenagem (por exemplo, uma tensão de drenagem MOSFETj que é modulada de acordo com o envelope do sinal amplificado. Um sinal de tensão da mínima pode ser gerado, por exemplo, por um detector de mínima da tensão acoplado à tensão de drenagem. O sinal de tensão mínima pode ser amostrado pelo ADC 176, com as amostras de tensão mínima de saída sendo recebidas no bloco 272 do algoritmo de controle do conversor de modo de chaveamento. Com base nos valores das amostras de tensão mínima, o bloco 274 pode controlar uma saída de sinal PWM por um gerador de PWM 276 que, por sua vez, controla a tensão do trilho fornecida ao amplificador de potência 162 pelo regulador de modo de chaveamento 170. Em certos aspectos, contanto que os valores das amostras de tensão da mínima sejam menores que uma entrada-alvo para a mínima 278 no bloco 262, a tensão no trilho pode ser modulada de acordo com o envelope de formato de onda, conforme caracterizado pelas amostras de tensão da mínima. Quando as amostras de tensão da mínima indicam baixos níveis de potência do envelope, por exemplo, o bloco 274 pode causar uma baixa tensão no trilho a ser fornecida ao amplificador de potência 162, com a tensão total do trilho sendo fornecida somente quando as amostras de tensão da mínima indicam níveis máximos de potência do envelope. Quando as amostras de tensão da mínima caem abaixo do alvo para a mínima 278, o bloco 274 pode fazer com que a tensão do trilho seja mantida em um valor mínimo adequado para garantir o funcionamento adequado do amplificador de potência 162.
[00133] Em um aspecto, um método e/ou aparelho pode fornecer funcionalidade para detectar uma posição de braço de aperto em relação a uma lâmina ultrassônica de um atuador de extremidade, e um
Petição 870190062513, de 04/07/2019, pág. 64/162
62/114 gerador como o gerador 102 e um controlador, como um circuito de controle 108 e/ou controlador 196 pode ser utilizado para ajustar uma saída de energia à lâmina ultrassônica com base na posição de braço de aperto. Agora com referência à Figura 32, um processo 3200 para controlar um atuador de extremidade é mostrado. O processo 3200 pode ser executado ao menos em parte por um processador que pode estar em comunicação com ou pode ser parte de um ou mais dentre o gerador 102, o circuito de controle 108 e/ou o controlador 196. Agora com referência à Figura 32, um processo 3300 para calibrar um controlador para um atuador de extremidade é mostrado. O processo 3200 pode ser executado ao menos em parte por um processador que pode estar em comunicação com ou pode ser parte de um ou mais dentre o gerador 102, o circuito de controle 108 e/ou o controlador 196. [00134] Agora com referência à Figura 11, um atuador de extremidade exemplificador 300 e do eixo de acionamento 302 são mostrados. O braço de aperto 304 pode ter uma posição (por exemplo, representada pelo ângulo, seta ou um deslocamento) em relação à lâmina ultrassônica 306, que pode ser medida com o uso de um ou mais sensores como sensor de efeito Hall. A detecção da posição do braço de aperto em relação à lâmina ultrassônica pode fornecer informações relevantes sobre o dispositivo, permitindo novos recursos, como a capacidade de detectar a espessura, a quantidade ou os tipos de tecidos presos dentro das garras. Em um aspecto, o processo 3200 da Figura 32 pode determinar 3220 um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base em um sinal (de, por exemplo, um sensor de efeito Hall). Adicionalmente, com o uso de um processador e/ou memória, um ou mais algoritmos (por exemplo, para vedar um vaso sem transecção) pode ser escolhido com base na espessura, quantidade ou o tipo de tecido determinado a ser preso dentro das garras.
Petição 870190062513, de 04/07/2019, pág. 65/162
63/114 [00135] A lâmina ultrassônica 306 pode fornecer um efeito de tecido através de vibração mecânica aos tecidos e/ou vasos sanguíneos. O braço de aperto 304 pode girar ao redor do ponto 314, que pode representar uma conexão entre o braço de aperto e um tubo externo 310. Um tubo interno 308 pode se mover para frente e para trás e pode acionar o fechamento do braço de aperto 304 na lâmina ultrassônica 306. Em vários aspectos, pode ser desejável medir o ângulo entre o braço de aperto 304 e a lâmina ultrassônica 306.
[00136] Em um aspecto, a posição do braço de aperto 304 em relação à lâmina ultrassônica 306 (por exemplo, durante a ativação) pode ser aproximada através de um acoplamento com o tubo interno 308. O tubo interno 308 pode ser ligado ao braço de aperto 304 e pode ser similar ao membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56. O tubo externo 310, que pode ser similar à bainha tubular externa 56, e/ou lâmina ultrassônica 306, pode ser utilizado para determinar uma posição e/ou ângulo do braço de aperto 304 em relação à lâmina ultrassônica 306. O tubo externo 310 pode ser estático e, em um aspecto, pode ser ligado ao braço de aperto 304. Como resultado, com o uso das técnicas e recursos aqui descritos, o movimento (por exemplo, representado com a seta bidirecional 312) do tubo interno 308 em relação ao tubo externo 310 pode ser medido e utilizado para aproximar a posição do braço de aperto.
[00137] Com referência brevemente à Figura 32, o processo 3200 pode detectar 3202 um sinal (por exemplo, em um sensor de efeito Hall) em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O primeiro tubo pode ser, por exemplo, similar ao membro atuador tubular reciprocante 58 e o segundo tubo pode ser, por exemplo, similar à bainha tubular externa 56. Em outras palavras, conforme descrito na Figura 32, o primeiro tubo
Petição 870190062513, de 04/07/2019, pág. 66/162
64/114 pode ser um tubo interno e o segundo tubo é um tubo externo. O tubo interno pode ser móvel 3208 em relação ao tubo externo. O tubo externo pode ser estático em relação ao tubo interno. O processo 3200 pode detectar 3210 o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00138] O uso de sensores de efeito Hall será aqui descrito em relação a vários aspectos da presente descrição, entretanto, outros tipos de sensores podem ser utilizados para medir o movimento 312. Por exemplo, transformadores de diferencial de variação linear (LVDT), transformador diferencial de variação giratório, transdutores piezelétricos, potenciômetros, sensores fotoelétricos podem ser utilizados para medir o movimento 312. Além disso, os sensores de efeito Hall e equivalentes adequados podem ser utilizados para medir a posição de dois corpos um em relação ao outro através do uso de uma pequena placa eletrônica e ímãs.
[00139] Agora com referência à Figura 12, é mostrada uma representação de um sensor de efeito Hall exemplificador. Um ímã 402 pode ter polos norte e sul que se movem em uma linha perpendicular à face do sensor de efeito Hall 404, que pode estar em uma posição fixa. Agora com referência à Figura 13A, é mostrada outra representação de um sensor de efeito Hall exemplificador. Um ímã 408 pode ter polos norte e sul se movendo em uma linha paralela à face do sensor de efeito Hall 410, que pode estar em uma posição fixa. Agora com referência à Figura 13B, é mostrada outra representação de um sensor de efeito Hall exemplificador. Um ímã 414 pode ter polos norte e sul se movendo em uma linha (418) paralela à face do sensor de efeito Hall 416, que pode estar em uma posição fixa. O ímã pode ter diâmetro D e o ímã e o sensor de efeito Hall 416 podem ter uma lacuna de ar eficaz total (TEAG) 420. Essa configuração pode possibilitar uma medição muito sensível do movimento em distâncias pequenas com a combinação de sensor de
Petição 870190062513, de 04/07/2019, pág. 67/162
65/114 ímã adequada.
[00140] O sensor de efeito Hall pode incluir um pequeno circuito integrado eletrônico que pode detectar campos magnéticos e alterar sua saída elétrica com base na proximidade relativa do ímã ou na resistência dos campos magnéticos ao sensor de efeito Hall. À medida que o ímã se move ao longo da face do sensor de efeito Hall (por exemplo, marcado de X) e se aproxima de estar diretamente na frente da face, um sinal de saída do sensor de efeito Hall pode mudar e ser utilizado para determinar uma posição do ímã em relação ao sensor de efeito Hall. Em um aspecto, o ímã pode não causar muita alteração no sinal de saída do sensor de efeito Hall. Por exemplo, com o uso de um ímã e um sensor de efeito Hall que tem características particulares, o ímã estando a mais de 1,5 polegada ou outras distâncias a partir do sensor de efeito Hall podem produzir muito pouco em termos do sinal de saída, mas conforme o ímã se move cada vez mais perto do sensor de efeito Hall, a saída elétrica muda mais rapidamente, de modo que uma alteração de sinal muito perceptível ocorra em resposta aos pequenos movimentos do ímã à medida que é movido para mais perto de uma posição crítica. A resposta elétrica do sensor de efeito Hall em várias posições do ímã pode ser utilizada para criar uma melhor curva de ajuste. Por exemplo, a saída de tensão do sensor de efeito Hall como função do deslocamento do ímã pode ser determinada.
[00141] A Figura 14A é uma tabela 1400 de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com a presente descrição. A distância relativa (mm) é mencionada na primeira coluna 1402. A distância absoluta (mm) é listada na segunda coluna 1404 e a distância absoluta em cm (polegadas) é enumerada na terceira coluna 1406. A tensão de saída do sensor de efeito Hall é mencionada na quarta coluna
Petição 870190062513, de 04/07/2019, pág. 68/162
66/114
1410 e a posição do braço de aperto é mencionada na quinta coluna, onde a célula mais alta indica o braço de aperto na posição completamente fechada e a célula mais baixa indica o braço de aperto na posição completamente aberta.
[00142] Agora com referência às Figuras 14A e 14B, uma tabela 1400 e um gráfico 1450 da tensão de saída de um sensor de efeito Hall (eixo geométrico y) como função do deslocamento (eixo geométrico x) e dados relacionados são mostrados. Neste exemplo, a sensibilidade de uma combinação de sensor de efeito Hall/ímã protótipo é mostrada como um movimento linear relativamente pequeno (por exemplo, 0,100%) que pode resultar em uma alteração de sinal de 1,5 volts. Essa alteração de sinal pode ser lida por um gerador (por exemplo, gerador 102) e utilizada para fazer determinações sobre o deslocamento da lâmina ultrassônica, ou fornecer retroinformação auditiva, tátil e/ou outra retroinformação para um usuário (por exemplo, através de alto-falante 114 e/ou tela visual 116). Uma curva de melhor ajuste 1452 pode ser determinada a partir dos pontos de dados plotados 145a-h (por exemplo, um ou mais dentre deslocamento relativo, deslocamento absoluto, saída de tensão e posição) e pode resultar uma equação polinomial para tensão de saída do sensor de efeito Hall (eixo geométrico y) como função do deslocamento (eixo geométrico x) do ímã. A curva de melhor ajuste pode ser de 2a, 3a, 4a... enésima ordem. Os pontos de dados 1454a-h e/ou a curva de melhor ajuste 1452 podem ser utilizados para criar uma tabela de pesquisa armazenada em uma memória e/ou a equação resultante pode ser executada em um processador para determinar, por exemplo, um deslocamento para o ímã (e uma posição de braço de aperto correspondente) dada uma tensão de saída específica do sensor de efeito Hall. Dessa forma, voltando brevemente para Figura 32, o processo 3200 pode determinar 3204 uma posição de braço de aperto do atuador de extremidade em
Petição 870190062513, de 04/07/2019, pág. 69/162
67/114 relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal (a partir de, por exemplo, saída de tensão do sensor de efeito Hall).
[00143] Voltando-se agora para a Figura 15A, é mostrada uma vista de topo de um sensor de efeito Hall 510 e configurações de ímã 508 em um instrumento cirúrgico e uma posição de atuador de extremidade de garras abertas 500 correspondente, de acordo com um aspecto da presente descrição, e a Figura 15B é uma vista de topo das configurações do sensor de efeito Hall 510 e do ímã 508 em um instrumento cirúrgico e a posição do atuador de extremidade de garras fechadas 500 correspondente, de acordo com um aspecto da presente descrição. Em um aspecto, conforme mostrado nas Figuras 15A e 15B, a saída de tensão do sensor de efeito Hall 50 é 1,6 VCC quando as garras do atuador de extremidade 500 estão abertas e 3,1 VCC quando as garras do atuador de extremidade 500 estão fechadas.
[00144] Agora com referência às Figuras 15A e 15B, um aspecto de uma combinação de sensor de efeito Hall 510 e ímã 508 é mostrado como implementado em um dispositivo cirúrgico como um ou mais daqueles discutidos na presente invenção. As Figuras 15A e 15B mostram duas imagens de vistas de cima para baixo do exemplo. Um colar rosqueado interno 502 pode ser fixado a um ímã 508. Como um acionador do dispositivo cirúrgico é fechado, um braço de aperto 504 do atuador de extremidade 500 entra em contato próximo com uma lâmina ultrassônica 504, o ímã 508 se move mais proximalmente conforme mostrado nas vistas de cima para baixo. Conforme o imã 508 se move (em uma direção indicada pela seta 506), o potencial de tensão do sensor de efeito Hall 510 altera. O ímã 508 posicionado no primeiro tubo em relação ao sensor de efeito Hall 510 pode se mover conforme o primeiro tubo aciona o movimento do braço de aperto 503 do atuador de extremidade 500.
Petição 870190062513, de 04/07/2019, pág. 70/162
68/114 [00145] Deve-se notar que embora vários aspectos discutidos na presente invenção sejam descritos para incluir um tubo externo que é estático e um tubo interno que aciona o movimento do braço de aperto, outras configurações são possíveis e estão dentro do escopo da presente descrição. Por exemplo, em vários aspectos, um tubo externo pode acionar o movimento do braço de aperto e o tubo interno pode ser estático. Adicionalmente, embora vários aspectos discutidos na presente invenção sejam descritos para incluir um sensor de efeito Hall 510 e/ou circuito integrado (por exemplo, chip) que é estático e um ímã 508 que se move conforme o braço de aperto 500 se move, outras configurações são possíveis e estão dentro do escopo da presente descrição. Por exemplo, em vários aspectos, o sensor de efeito Hall 510 pode se mover conforme o braço de aperto 503 se move e o ímã pode ser estático. Muitas combinações são possíveis, incluindo um tubo externo fixo e um interior móvel, um ímã móvel 508 e um sensor de efeito de Hall estacionário 510 ou outro circuito de detecção, um sensor de efeito Hall 510 ou outro circuito de detecção e um ímã estacionário 508, um tubo externo móvel e um tubo interno fixo, um ímã fixo em um dos tubos interno e externo e/ou um ímã móvel em um dos tubos interno e externo. O sensor de efeito Hall 510 ou outro circuito pode ser montado na parte móvel (por exemplo, tubo interno ou externo) ou montado na parte estacionária (por exemplo, tubo interno ou externo), desde que sejam consideradas conexões elétricas flexíveis e ser alcançado.
[00146] Conforme mostrado na Figura 15A, o colar rosqueado interno 502 com o ímã fixo 508 está posicionado mais para a esquerda do que na Figura 15B, e o atuador de extremidade correspondente 500 tem uma garra aberta, por exemplo, braço de aperto aberto 503. Quando o usuário puxa o gatilho e fecha o atuador de extremidade 500, múltiplas molas e o colar rosqueado interno 502 se movem (na direção
Petição 870190062513, de 04/07/2019, pág. 71/162
69/114 indicada pela seta 506), o braço de aperto 503 é acionado fechado ou é conduzido ao enxerto de tecido capturado entre o braço de aperto 503 e a lâmina ultrassônica 504. São mostrados um sensor de efeito Hall 510 e um ímã 508, que pode ser cilíndrico, se movendo sobre o sensor de efeito Hall 510, conforme o braço de aperto 503 se fecha em direção à lâmina ultrassônica 504.
[00147] Agora com referência à Figura 16, é mostrada uma vista em planta de um sistema 600 que compreende um sensor de efeito Hall 602 e uma disposição de ímã 606. O sensor de efeito Hall 602 inclui uma placa de circuito 604 e um circuito integrado 606. O ímã 608 se move para frente e para trás ao longo da linha 610, conforme o braço de aperto é fechado e aberto. Conforme o imã 608 se move em direção ao centro do circuito integrado de efeito Hall 606, a sensibilidade do sensor de efeito Hall 602 se altera e o sinal de saída aumenta. Um suporte 612 para o ímã 608 pode ser acoplado ao tubo interno que aciona o braço de aperto. Em um aspecto, conforme o tubo interno é puxado em direção ao cabo do instrumento cirúrgico (por exemplo, pelo gatilho), a garra se fecha (por exemplo, o braço de aperto se fecha). O ímã 608 está conectado a uma perna estendida do colar interno rosqueado do tubo externo.
[00148] As Figuras 17A e 17B ilustram vistas diferentes do sistema 600 que compreende um sensor de efeito Hall 602 e configurações de ímã 608 no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição. Com referência às Figuras 17A e 17B, o sensor de efeito Hall 602 é mostrado posicionado dentro de um instrumento cirúrgico. O sensor de efeito Hall 602 é posicionado no colar interno rosqueado 620 do tubo externo 622. Uma fenda 624 é definida em um botão de rotação do tubo externo 622 para possibilitar que o ímã 608 se desloque. O ímã 608 está posicionado no interior do suporte 612, que é móvel de maneira deslizante dentro da fenda 624. Por exemplo,
Petição 870190062513, de 04/07/2019, pág. 72/162
70/114 o sensor de efeito Hall 602 conforme descrito na presente invenção pode ser estático e é fixado a um botão de rotação, de modo que ele possa girar ao redor da linha central da lâmina ultrassônica. Um pino 626 pode ser posicionado dentro de uma abertura 628 através do botão de rotação e do sensor de efeito Hall 602 e através de uma porção de lâmina ultrassônica central. Como resultado, a lâmina ultrassônica não se mova axialmente, mas o tubo interno é capaz de se mover axialmente à direita e à esquerda do pino 626. Uma conexão rosqueada 630 é feita de náilon ou qualquer outro material adequado com fluxo magnético mínimo.
[00149] A Figura 18 ilustra um sensor de efeito Hall 602 e a configuração do ímã 608 no contexto de um instrumento cirúrgico de acordo com a presente descrição. Agora com referência à Figura 18, um eixo de acionamento de um instrumento cirúrgico é mostrado e o ímã 608 é posicionado dentro do suporte 612. Um movimento do ímã 632 é acoplado ao tubo interno 634. O ímã 608 pode ser acoplado com encaixes por pressão a um colar rosqueado 638 do tubo interno 634. O sensor de efeito Hall 602 conforme descrito na presente invenção é estático e é fixado a um botão de rotação, de modo que ele possa girar em tomo da linha central da lâmina ultrassônica.
[00150] A Figura 19A ilustra um sensor de efeito Hall 602 e uma configuração de ímã 608, de acordo com um aspecto da presente descrição. A Figura 19B é uma vista detalhada do sensor de efeito Hall 602 e da configuração do ímã 608 no contexto de um instrumento cirúrgico, de acordo com a presente descrição. Agora com referência às Figuras 19A E 19B, em um aspecto, o sensor de efeito Hall 602 e a configuração do ímã 608 estão localizados sobre um eixo de acionamento de um instrumento cirúrgico. Em um aspecto, as faces dos polos do ímã 608 e o sensor de efeito Hall 602 se movem em linha um em relação ao outro. Nas Figuras 17A, 17B, 19A e 19B, o sensor de
Petição 870190062513, de 04/07/2019, pág. 73/162
71/114 efeito Hall 602 é estacionário, enquanto o imã 608 se move em conexão com o braço de aperto. Em um aspecto, o colar rosqueado interno é configurado para transportar o ímã 608 e pode ser diretamente conectado ao tubo interno. Desse modo, o sensor de efeito Hall 602 pode ser posicionado em uma maneira diferente sobre o botão de rotação, de modo que as faces do ímã 608 e o sensor de efeito Hall 602 se unam de forma perpendicular conforme mostrado pela seta 640 em movimento.
[00151] Em um aspecto, um algoritmo ou processo ultrassônico pode ser utilizado para possibilitar que um dispositivo cirúrgico vede o tecido sem transecção. A implementação desse algoritmo ou processo pode exigir a medição da posição do braço de aperto em relação à lâmina ultrassônica de um atuador de extremidade. Um método pode ser utilizado para detectar a posição do braço de aperto em relação à lâmina ultrassônica, conforme descrito aqui, e que o posicionamento pode ser consistentemente calibrado durante a fabricação, conforme será descrito abaixo, de modo que as estimativas de espessura do tecido possam ser feitas. Por exemplo, um algoritmo ou processo que é alimentado com informações sobre a quantidade de tecido pode reagir à medida que a quantidade muda. Isso pode possibilitar que o dispositivo cirúrgico trate o tecido sem transeccionar completamente um vaso.
[00152] Voltando agora brevemente para a Figura 32, uma vez que a posição de braço de aperto em relação à lâmina ultrassônica é conhecida, o modo como a lâmina ultrassônica vibra pode ser ajustado para obter diferentes efeitos de tecido. Nesse modo, o processo 3200 pode ajustar 3206 uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto. Por exemplo, o processo 3200 pode ajustar 3214 a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um
Petição 870190062513, de 04/07/2019, pág. 74/162
72/114 transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
[00153] Tipicamente, atuadores de extremidade podem ser utilizados para coagular e cortes vasos ao mesmo tempo. Contudo, utilizando as técnicas e características aqui descritas, pode ser utilizado um atuador de extremidade para selar uma carótida ou vaso sem efetivamente transeccioná-lo, como pode ser desejado por um cirurgião. Com informações sobre a posição do braço de aperto, uma razão de deslocamento (RD) pode ser calculada, através do qual se o braço de aperto estiver na posição completamente fechada sem nada capturado no atuador de extremidade, o sensor (por exemplo, sensor de efeito Hall) pode indicar uma RD de 1. Por exemplo, para propósitos ilustrativos apenas, deixar o XT representar uma posição do braço de aperto relativa em qualquer dado momento na ativação, X1 ser uma posição do braço de aperto quando o dispositivo cirúrgico estiver totalmente preso sem tecido, e X2 ser uma posição do braço de aperto no início da ativação, com o tecido segurado no atuador de extremidade, sendo que:
[00154] Continuando com o exemplo acima, X1 pode ser um valor programado no dispositivo cirúrgico para a posição do braço de aperto quando as garras estão completamente fechadas e nada é capturado no atuador de extremidade. X2 pode ser a posição de braço de aperto no início de uma ativação, de modo que se um vaso for fixado no atuador de extremidade e o braço de aperto for fechado por todo o caminho, o braço de aperto pode comprimir o vaso para baixo, mas com alguma distância a percorrer antes de o vaso ser cortado transversalmente e o braço de aperto estar diretamente oposto à lâmina ultrassônica com contato total. XT pode mudar dinamicamente, visto que ele é a posição do braço de aperto em qualquer dado momento.
Petição 870190062513, de 04/07/2019, pág. 75/162
73/114 [00155] Por exemplo, no início da ativação, RD pode ser zero, já que X1 pode ser ajustado para representar a posição do braço de aperto sendo completamente fechada sem nada capturado. X2, no início da ativação, quando o braço de aperto está tocando um vaso, pode fornecer uma espessura relativa antes do disparo da lâmina ultrassônica. XT pode ser o valor na equação que está atualizando continuamente com o tempo conforme o braço de aperto se desloca adicionalmente e comprime e começa a cortar o tecido. Em um aspecto, pode ser desejável desativar (por exemplo, parar de disparar) a lâmina ultrassônica quando o braço de aperto tiver percorrido 70% ou 0,7. Dessa forma, isso pode ser determinado empiricamente antecipadamente que um RD é desejado 0,7 do caminho entre o braço de aperto sendo fechado com uma mordedura total de tecido e ser completamente fechado com nada entre o braço de aperto e a lâmina ultrassônica.
[00156] O RD de 0,7 foi descrito apenas para propósitos ilustrativos e pode depender de muitos parâmetros. Por exemplo, a RD desejada para o ponto no qual a lâmina ultrassônica será fechada pode ser baseada no tamanho do vaso. A RD pode ser qualquer valor observado para trabalhar para tratar um determinado tecido ou vaso sem transecção. Uma vez que a posição desejada é conhecida, a vibração da lâmina ultrassônica pode ser ajustada com base na posição desejada. A Figura 20 é um gráfico 2000 de uma curva 2002 representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função de tempo (s) ao longo do eixo geométrico x. Conforme mostrado na Figura 20, o RD desejado é 0,7, o que significa que a lâmina ultrassônica é desativada (por exemplo, parar de disparar) quando o braço de aperto percorreu 70% ou 0,7. Isso é relativo a um braço de aperto em um vaso com um disparo da lâmina ultrassônica em
Petição 870190062513, de 04/07/2019, pág. 76/162
74/114 que a RD da extremidade desejada era 0,7. No exemplo específico da Figura 20, a lâmina ultrassônica foi ativada (por exemplo, disparo) em uma carótida e desligada na RD de 0,7 após cerca de 16 segundos.
[00157] Em um aspecto, pode ser desejável usar um controlador integral proporcional. A Figura 21 é um gráfico 2100 de uma primeira curva 2102 representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função de tempo (s) ao longo do eixo geométrico x. Uma segunda curva 2104 representa potência (Watts) ao longo do eixo geométrico y direito como função do tempo (s) ao longo do eixo geométrico x. O gráfico 2100 fornece um exemplo do que pode ser realizado com um controlador proporcional integral (PI). A curva da razão de deslocamento (RD) 2102 é representada no gráfico 2100 pela linha marcada RAZÃO DE DESLOCAMENTO. O objetivo ou valor desejado para a razão de deslocamento pode ser 0,7, conforme mostrado pela linha marcada valor desejado, embora vários outros valores possam ser utilizados. A curva de saída de energia 2104 representa a potência através da lâmina ultrassônica e é mostrada e marcada POTÊNCIA(Watts).
[00158] Voltando agora brevemente para a Figura 32, é mostrado que o processo 3200 pode ajustar 3216 a energia de saída para a lâmina ultrassônica do atuador de extremidade dinamicamente, com base na razão de deslocamento que muda à medida que o braço de aperto se aproxima da lâmina ultrassônica. Por exemplo, conforme o braço de aperto se move em direção à lâmina ultrassônica e o valor desejado é aproximado, a quantidade de saída de energia para a lâmina ultrassônica e para dentro do tecido pode ser reduzida. Isto é porque a lâmina ultrassônica irá cortar o tecido com energia suficiente. Entretanto, se a potência sendo produzida for reduzida ao longo do tempo conforme o valor desejado é aproximado (onde uma transecção
Petição 870190062513, de 04/07/2019, pág. 77/162
75/114 total pode ser representada por uma razão de deslocamento de 1), a chance de o tecido ser transeccionado pode ser drasticamente reduzida. Desse modo, a vedação eficaz pode ser obtida sem corte do tecido conforme possa ser desejado pelo cirurgião.
[00159] Voltando à Figura 21, mostra-se que a curva de energia de saída 2104 mostrada na Figura 21 pode representara potência aplicada com um sinal de acionamento a uma pilha de transdutor para ativar (por exemplo, disparar) a lâmina ultrassônica. O valor de potência pode ser proporcional ao movimento da porção de braço de aperto do atuador de extremidade e aplicado ao tecido e a curva de potência pode representar a tensão e corrente aplicadas ao transdutor ultrassônico. Em um aspecto, o gerador ultrassônico (por exemplo, gerador 102) pode ler os dados de saída de tensão do sensor de efeito Hall e, em resposta, enviar comandos para quanta tensão e corrente fornecer ao transdutor para acionar a lâmina ultrassônica, conforme desejado. À medida que a porção do braço de aperto do atuador de extremidade é movida e o valor desejado é aproximado, a lâmina ultrassônica pode ser forçada a liberar menos energia ao tecido e reduzir a probabilidade de cortar o tecido.
[00160] À medida que a lâmina ultrassônica é energizada, a lâmina ultrassônica produzirá o tecido ou o vaso, de modo que o atrito na interface da lâmina ultrassônica e o tecido cause calor para acionar a umidade e secar o tecido. Durante esse processo, a porção de braço de aperto é capaz de comprimir cada vez mais o tecido conforme a vedação se desenvolve. Como a RD aumenta ao longo do tempo, o tecido mediante a aplicação de mais pressão achata com o braço de aperto conforme o tecido seca. Dessa forma, um controlador de PI pode ser utilizado para cozinhar o tecido de um ponto inicial (onde RD-0) para uma certa segunda posição através do controle de saída de energia para efetivamente vedar grandes vasos. Com o controlador PI, conforme a RD se aproxima do valor desejado, o dispositivo ultrassônico
Petição 870190062513, de 04/07/2019, pág. 78/162
76/114 cai a aplicação de energia (à lâmina ultrassônica) para controlar suavemente a compressão e coagulação do tecido. Este processo demonstrou ter capacidade para efetivamente selar vasos sem transecção. Nesse modo, o processo 3200 pode ajustar 3218 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral (Pl), com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Será entendido que o controle de Pl não é o único sistema lógico através do qual a energia pode ser controlada. Existem muitos mapeamentos matemáticos para reduzir adequadamente a potência como função do sensor de efeito Hall. Exemplos de outros sistemas lógicos incluem controladores PID, controladores proporcionais, lógica difusa, redes neurais, polinômios, redes bayesianas, entre outros.
[00161] A Figura 22 é um gráfico 2200 mostrando como o controlador de Pl funciona. O termo proporcional pode ser uma indicação da diferença absoluta entre RD e o valor desejado para a RD. A RD se aproxima do valor desejado, o efeito do termo proporcional pode encolher e como resultado a potência ultrassônica (por exemplo, entregue pela lâmina ultrassônica) pode ser reduzida. O termo integral, mostrado como a área 2202 sob a curva, pode ser um acúmulo de erros ao longo de uma dada seção de tempo. Por exemplo, conforme mostrado acima, o termo integral pode não começar a se acumular até após 5 segundos. Após 5 segundos, o termo integral pode começar a produzir efeito e a energia para a lâmina ultrassônica pode ser aumentada. Após cerca de 9 segundos, a redução do efeito no termo proporcional pode compensar o efeito do aumento no termo integral fazendo com que a aplicação de energia à lâmina ultrassônica se torne reduzida. Neste exemplo, um valor desejado de 0,7 para a RD foi utilizado, entretanto, conforme discutido acima, o valor da RD pode ser
Petição 870190062513, de 04/07/2019, pág. 79/162
77/114 otimizado para um dispositivo específico juntamente com os termos proporcionais e integrais do controlador.
[00162] No efeito, o controlador de PI pode indicar que a saída de energia deve ser com base na distância em qualquer dado momento entre a razão de deslocamento e o valor desejado. A partir dessa distância, o controlador de PI pode gerar um certo valor (por exemplo, 0,4). No exemplo da Figura 22, em um momento no tempo (por exemplo, 1 segundo) a distância se baseia nos valores atribuídos a Pe I. Essa distância pode ser multiplicada por uma constante que representa P e resulta em 0,78. O gerador pode instruir o sistema a enviar 0,78 ou enviar, por exemplo, 7,8 watts de potência quando a distância entre essas duas é uma certa quantidade. Como resultado, a curva de RD se aproxima do valor desejado, e a distância reduz. Ao longo do tempo, a quantidade de energia do gerador diz ao sistema para que o envio diminua, o que pode ser o resultado desejado. Entretanto, isso também podería significar que se apenas P e não I for utilizado, quando o tempo se aproxima de 15 segundos, pode não haver energia de saída suficiente para o tecido para completar o objetivo. Isso é onde a porção I (porção integral) é calculada em um período de tempo definido, que pode ser de cerca de cinco segundos. Pelo cálculo da área sob a curva 2202 (mostrado na Figura 22 por submetido a linhas hachuradas, capturado entre o valor desejado e razão de deslocamento ao longo do tempo) e adicionalmente a 0,78, mostrada entre 0 e 5 segundos, a porção I começa a adicionar a sua própria quantidade de potência para ajudar a progressão da razão de deslocamento para o valor desejado e se certificar de que ele chega lá em um pouco tempo hábil. Por exemplo, em cinco segundos, a porção I não é ativa, mas à medida que o tempo progride, a porção I começa a calcular a área capturada entre as duas curvas e adiciona esse valor (por exemplo, quatro Watts adicionais) que é a área sob a curva, além da potência proveniente do valor
Petição 870190062513, de 04/07/2019, pág. 80/162
78/114 proporcional. A utilização desses dois cálculos juntos pode fornecer a potência curva (isto é, a saída de energia) conforme mostrado na Figura 22. O controlador de PI é configurado para acionar em direção ao efeito de vedação de uma maneira um pouco oportuna.
[00163] Em um aspecto, as técnicas aqui descritas podem ser empregadas para vedar diferentes tamanhos de vasos (por exemplo, 5 mm, 6 mm e 7 mm de vasos redondos). A resistência das vedações pode ser testada até que o lacre se rompa e registre a pressão de ruptura. Uma pressão de ruptura maior indica uma vedação mais forte. No caso de uma cirurgia real, se um instrumento ou dispositivo cirúrgico conforme descrito na presente invenção for utilizado para selar um vaso, a vedação não irá vazar se ele tiver uma alta pressão de ruptura associada. Em um aspecto, as pressões de ruptura podem ser medidas em diferentes tamanhos de vasos, por exemplo, vasos redondos de 5 mm, 6 mm e 7 mm, respectivamente. Tipicamente, os vasos menores têm maior pressão de ruptura com vasos maiores, a pressão de ruptura é diminuída.
[00164] Agora com referência à Figura 23, são mostrados vários vasos 2400 que foram vedados com o uso das técnicas e recursos aqui descritos (por exemplo, com o uso de uma lâmina ultrassônica e um sensor de efeito Hall). Usando o controlador de PI conforme descrito acima, 60 vasos foram vedados. 58 vasos foram vedados sem transecção.
[00165] Em um aspecto, foi observado que a ativação de uma lâmina ultrassônica com o braço de aperto aberto pode ajudar a liberar tecido que pode ter aderido à lâmina ultrassônica ao ser coagulado. Detectar uma alteração no sinal de um sensor de efeito Hall pode indicar quando o usuário está abrindo o braço de aperto após a ativação do dispositivo. Essas informações podem acionar o sistema para enviar um sinal ultrassônico de baixo nível durante um curto período de tempo, de modo
Petição 870190062513, de 04/07/2019, pág. 81/162
79/114 a liberar qualquer tecido preso à lâmina ultrassônica. Esse sinal subterapêutico curto pode reduzir o nível de adesão experimentada pelo usuário. Esse recurso pode ser útil se um dispositivo de cisalhamento ultrassônico tiver sido projetado para múltiplos usos e a lâmina ultrassônica revestimento começar a se desgastar. Dessa forma, as técnicas e recursos aqui descritos podem ser utilizados para reduzir a quantidade de tecido grudado à lâmina ultrassônica.
[00166] Um método para calibrar um atuador de extremidade e sensor de efeito Hall pode incluir calibração do atuador de extremidade e sensor de efeito Hall durante a fabricação de depois disso. Conforme discutido acima, o processo 3300 mostrado na Figura 32, pode ser utilizado para calibrar um controlador para o atuador de extremidade. Por exemplo, uma posição do braço de aperto de um dispositivo ultrassônico pode ser calibrada durante a montagem. Como aqui discutido, a detecção da posição do braço de aperto em relação à lâmina ultrassônica pode fornecer informação relevante ao dispositivo cirúrgico que pode possibilitar novas capacidades, incluindo, mas não limitado à capacidade de detectar uma quantidade ou tipo de tecidos que podem ser fixados dentro das garras. Adicionalmente, determinações a serem executadas sobre vários algoritmos (por exemplo, essa vedação de um vaso sem transecção) pode ser feita com base na detecção da posição do braço de aperto. Entretanto, em vários aspectos, para que essas informações sejam úteis e confiáveis, o dispositivo cirúrgico precisa ser calibrado em relação a uma linha de base como quando o braço de aperto está completamente aberto ou quando o braço de aperto é completamente fechado com material zero no atuador de extremidade.
[00167] Conforme descrito acima, a determinação de uma razão de deslocamento (RD) pode ajudar em vários processos a controlar um atuador de extremidade. Na determinação de RD, X1 é a posição do
Petição 870190062513, de 04/07/2019, pág. 82/162
80/114 braço de aperto quando o dispositivo está completamente fechado sem tecido. Determinar o valor (por exemplo, sinal de efeito Hall) correspondente a X1 pode ser feito durante a fabricação e pode ser parte do processo de calibraçâo.
[00168] Voltando agora à Figura 24, é mostrado um gráfico 2500 de uma curva de melhor ajuste 2502 da tensão de saída do sensor de efeito Hall ao longo do eixo geométrico y como função de distância absoluta (polegada) ao longo do eixo geométrico x para várias posições do braço de aperto. A curva de melhor ajuste 2502 é representada graficamente com base na distância absoluta (polegada) do braço de aperto da lâmina ultrassônica, conforme listado na terceira coluna 1406 da tabela 1400 mostrada na Figura 14A e a tensão de saída do sensor de efeito Hall correspondente, listada na quarta coluna 1408 da tabela 1400 mostrada na Figura 14A, quando o braço de aperto se move de uma posição totalmente aberta para uma posição totalmente fechada de acordo com a presente divulgação.
[00169] Ainda com referência à Figura 24, é mostrada uma saída elétrica exemplificadora de um sensor de efeito Hall configurado para detectar a posição do braço de aperto mostrada. A intensidade do sinal do sensor de efeito Hall plotada contra o deslocamento do sensor (por exemplo, um ímã) pode seguir um formato parabólico conforme mostrado pela curva de melhor ajuste 2502. Para calibrar o sensor de efeito Hall, várias leituras do sensor são tomadas em locais de linha de base conhecidos. Durante a calibragem, a curva de melhor ajuste 2502 conforme mostrado na Figura 24 pode ser analisada para confirmar que o sensor de efeito Hall está lendo efetivamente com base em leituras feitas em uma configuração de produção. Dessa maneira, uma resposta do sensor de efeito Hall correspondente a várias posições do braço de aperto (por exemplo, posições completamente abertas, completamente fechadas e distintas entre os mesmos) pode ser registrada para criar
Petição 870190062513, de 04/07/2019, pág. 83/162
81/114 uma curva de melhor ajuste durante a produção. Vários pontos de dados podem ser registrados (por exemplo, quatro pontos de dados 1--4, conforme mostrado na Figura 24 ou mais, conforme pode ser necessário) para criar a curva de melhor ajuste 2502. Por exemplo, em uma primeira posição, uma resposta do sensor de efeito Hall pode ser medida quando o braço de aperto está totalmente aberto. Dessa forma, voltando brevemente para a Figura 32, o processo 3300 mostrado na Figura 32 pode detectar 3302 um primeiro sinal de medição (por exemplo, uma resposta do sensor de efeito Hall) correspondente para uma posição totalmente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade.
[00170] Voltando agora à Figura 24 em conjunto com a Figura 25, os quatro pontos de dados 1-4 representam a tensão medida com um sensor de efeito Hall como função do vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608, conforme mostrado na Figura 24. Esses pontos de dados 1-4 podem ser registrados conforme descrito em conexão com as Figuras 25 a 28. O primeiro ponto de dados (1) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 25. O primeiro ponto de dados (1) corresponde à tensão de saída do sensor de efeito Hall registrada quando o braço de aperto 2606 está na posição completamente aberta em relação à lâmina ultrassônica 2608.
[00171] O segundo ponto de dados (2) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 26. De modo a obter um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808, um primeiro pino de calibre 2602 de diâmetro conhecido é colocado em um local predeterminado dentro das garras do atuador de extremidade 2600, por exemplo, entre o braço de aperto 2606 e a lâmina ultrassônica 2608. Conforme mostrado na Figura 26, o primeiro pino de calibre 2602 é posicionado entre a extremidade distai
Petição 870190062513, de 04/07/2019, pág. 84/162
82/114 e a extremidade proximal da lâmina ultrassônica 2608 e é segurado entre o braço de aperto 2606 e a lâmina ultrassônica 2608 para definir um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808. Uma vez que o braço de aperto 2606 é fechado para segurar o primeiro pino de calibre 2602, a tensão de saída do sensor de efeito Hall é medida e registrada. O segundo ponto de dados (2) é correlacionado ao vão definido entre o braço de aperto 2606 e a lâmina ultrassônica 2608 pelo primeiro pino de calibre 2602. Dessa forma, a tesão de saída do sensor de efeito Hall é equiparada à distância de vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608. O segundo ponto de dados (2) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar o polinômio).
[00172] O terceiro ponto de dados (3) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 27. Para obter outro vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808, o primeiro pino de calibre 2602 é removido e um segundo pino de calibre 2604 de diâmetro conhecido é colocado em um local predeterminado dentro das garras do atuador de extremidade 2600, por exemplo, entre o braço de aperto 2606 e a lâmina ultrassônica 2608, que é diferente da localização do primeiro pino de calibre 2602. Conforme mostrado na Figura 27, o segundo pino de calibre 2604 é posicionado entre a extremidade distal e a extremidade proximal da lâmina ultrassônica 2608 e é segurado entre o braço de aperto 2606 e a lâmina ultrassônica 2608 para definir um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808. Uma vez que o braço de aperto 2606 é fechado para segurar o segundo pino de calibre 2602, a
Petição 870190062513, de 04/07/2019, pág. 85/162
83/114 tensão de saída do sensor de efeito Hall é medida e registrada. O terceiro ponto de dados (3) é correlacionado ao vão definido entre o braço de aperto 2606 e a lâmina ultrassônica 2608 pelo segundo pino de calibre 2604. Dessa forma, a tesão de saída do sensor de efeito Hall é equiparada à distância de vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608. O terceiro ponto de dados (3) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar o polinômio).
[00173] O quarto ponto de dados (4) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 28. Para se obter o quarto ponto de dados (4), não existem pinos de calibre 2602, 2604 colocados entre o braço de aperto 2606 e a lâmina ultrassônica 2608, mas sim, o braço de aperto 2606 é colocado na posição totalmente fechada em relação à lâmina ultrassônica 2608. Uma vez que o braço de aperto 2606 é colocado na posição totalmente fechada, a tensão de saída do sensor de efeito Hall é medida e registrada. O quarto ponto de dados (4) está correlacionado com a posição do braço de aperto 2606 completamente fechado. Dessa forma, a tensão de saída do sensor de efeito Hall é equivalente ao braço de aperto 2606 posição completamente fechada em relação à lâmina ultrassônica 2608. O quarto ponto de dados (4) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar
Petição 870190062513, de 04/07/2019, pág. 86/162
84/114 o polinômio).
[00174] Várias configurações de pinos de calibre podem criar deslocamentos e/ou ângulos conhecidos entre o braço de aperto 2606 e a lâmina ultrassônica 2608 do atuador de extremidade 2600. Utilizando cinemática de um dado braço de aperto/lâmina ultrassônica/projeto de eixo de acionamento e pinos calibradores de diâmetro conhecido, pode ser conhecido um deslocamento teórico do conjunto de eixos de acionamento em cada uma das, por exemplo, quatro ou mais posições. Essa informação pode ser introduzida, juntamente com as leituras de tensão do sensor de efeito Hall, para ajustar uma curva parabólica (por exemplo, curva 2502 de melhor ajuste como mostrado na Figura 24), que pode se tomar uma característica de cada dispositivo cirúrgico individual. Essa informação pode ser carregada no dispositivo cirúrgico através de uma EEPROM ou outro dispositivo eletrônico programável configurado para se comunicar com o gerador (por exemplo, o gerador 102 mostrado na Figura 6) durante a utilização do dispositivo cirúrgico.
[00175] A resposta do sinal do sensor de efeito Hall em, por exemplo, as quatro posições do braço de braçadeira descrito acima podem ser representadas graficamente e as respostas podem ser ajustadas e inseridas em uma tabela de consulta ou desenvolvidas em um polinômio que pode ser utilizado para definir/calibrar o sensor de efeito Hall, de tal modo que, quando utilizado por um cirurgião, o efetor final fornece o efeito tecidual desejado. Desse modo, o processo 3300 pode determinar uma curva de melhor ajuste para representar a força do sinal (por exemplo, do sensor de efeito Hall) como função do deslocamento do sensor (por exemplo, deslocamento de ímã) baseado em ao menos o primeiro, o segundo e o terceiro sinal, as posições totalmente abertas, intermediárias e totalmente fechadas, e uma dimensão do corpo rígido. O processo 3300 também pode criar 3310 uma tabela de pesquisa com
Petição 870190062513, de 04/07/2019, pág. 87/162
85/114 base em ao menos o primeiro, o segundo e o terceiro sinal e as posições totalmente abertas, intermediárias e totalmente fechadas.
[00176] O posicionamento da disposição de ímã/sensor de efeito Hall nas configurações descritas acima pode ser utilizado para calibrar o dispositivo cirúrgico, de tal modo que os movimentos mais sensíveis do braço de fixação 2606 existam quando o braço de fixação 2606 está mais próximo da lâmina ultrassônica 2608. Quatro posições, correspondentes a quatro pontos de dados (1-4), foram escolhidas no exemplo descrito acima, mas qualquer número de posições podería ser utilizado à discrição de equipes de projeto e desenvolvimento para assegurar a calibração adequada.
[00177] Em um aspecto, as técnicas e recursos aqui descritos podem ser utilizados para fornecer retroinformação a um cirurgião para indicar quando o cirurgião deve usar o modo de hemostasia para o procedimento de vedação do vaso antes de engatar o procedimento de corte. Por exemplo, o algoritmo de modo de hemostasia pode ser alterado dinamicamente com base no tamanho de um vaso preso pelo atuador de extremidade 2600 a fim de poupar tempo. Isso pode exigir retroalimentação com base na posição do braço de aperto 2606.
[00178] A Figura 29A é um diagrama esquemático 3000 de um instrumento cirúrgico 3002 configurado para vedar vasos pequenos e grandes, de acordo com um aspecto da presente descrição. O instrumento cirúrgico 3002 compreende um atuador de extremidade 3004, onde o atuador de extremidade compreende um braço de aperto 3006 e uma lâmina ultrassônica 3008 para tratar tecido incluindo vasos de vários tamanhos. O instrumento cirúrgico 3002 compreende um sensor de efeito Hall 3010 para medir a posição do atuador de extremidade 3004. Uma chave de fechamento 3012 é fornecida para fornecer um sinal de retroinformação que indica se o cabo do disparador 3013 do instrumento cirúrgico está em uma posição completamente
Petição 870190062513, de 04/07/2019, pág. 88/162
86/114 fechada.
[00179] Voltando-se agora para a Figura 29B, é mostrado um diagrama de uma faixa exemplificadora de um vaso pequeno 3014 e um vaso grande 3016 e a posição relativa de um braço de aperto do atuador de extremidade de acordo com um aspecto da presente descrição. Com referência às Figuras 29A a B, o instrumento cirúrgico 3002 mostrado na Figura 29A está configurado para vedar pequenos vasos 3014 com um diâmetro < 4 mm e grandes recipientes 3016 com um diâmetro> 4 mm e a posição relativa do braço de grampo 3006 ao agarrar vasos pequenos e grandes 3014, 3016 e as diferentes leituras de tensão fornecidas pelo efetor final 3010 dependendo do tamanho do vaso.
[00180] As Figuras 29C e 29D são dois gráficos 3020, 3030 que descrevem dois processos para vedar vasos pequenos e grandes aplicando-se vários níveis de energia ultrassônica durante períodos de tempo diferentes de acordo com um aspecto da presente descrição. O nível de energia ultrassônico é mostrado ao longo do eixo geométrico y e o tempo (s) é mostrado ao longo do eixo geométrico x. Com referência agora às Figuras 29A a C, o primeiro gráfico 3020 mostrado na Figura 29C mostra um processo para ajustar o nível de acionamento de energia ultrassônica de uma linha ultrassônica para selar um pequeno vaso 3014. De acordo com o processo ilustrado pelo primeiro gráfico 3020 para vedar e transeccionar um pequeno vaso 3014, uma alta energia ultrassônica (5) é aplicada durante um primeiro período 3022. O nível de energia é então diminuído para (3,5) durante um segundo período 3024. Finalmente, o nível de energia é elevado de volta para (5) durante um terceiro período 3026 para completar a vedação do pequeno vaso 3014 e conseguir a transecção e depois o nível de energia é desligado. Todo o ciclo durou cerca de 5 segundos.
[00181] Com referência agora às Figuras 29A a D, o segundo gráfico 3030 mostrado na Figura 29D mostra um processo para ajustar o nível
Petição 870190062513, de 04/07/2019, pág. 89/162
87/114 de acionamento de energia ultrassônica de uma linha ultrassônica para selar um vaso grande 3016. De acordo com o processo ilustrado pelo segundo gráfico 3030 para vedar e transeccionar um vaso grande 3016, uma alta energia ultrassônica (5) é aplicada durante um primeiro período 3032. O nível de energia é então diminuído para (1) durante um segundo período 3034. Finalmente, o nível de energia é elevado de volta para (5) durante um terceiro período 3036 para completar a vedação do vaso grande 3016 e conseguir a transecção e depois o nível de energia é desligado. Todo o ciclo durou cerca de 10 segundos.
[00182] Vasos menores 3014 podem ser mais fáceis de vedar em níveis de alta pressão de ruptura. Dessa forma, pode ser desejável detectar e determinar se um vaso menor 3014 (por exemplo, 4 mm de menos) é preso pelo braço de aperto 3006, e em caso afirmativo, o nível de energia ultrassônica pode não precisar ser diminuído para 1. Em vez disso, o nível de energia poderia diminuir menos, para cerca de 3,5, por exemplo, como mostrado pelo primeiro gráfico 3020 mostrado na Figura 29C. Isso pode possibilitar que o cirurgião atravesse o vaso, coagule e corte o vaso mais rapidamente, sabendo que o processo pode ir mais rápido porque o vaso 3014 é um pouco menor. Se o vaso 3016 for maior (por exemplo, 4 mm ou superior), um processo que aqueça o vaso mais lentamente e durante um período de tempo mais longo pode ser mais desejável, como mostrado pelo segundo gráfico 3030 na Figura 29D.
[00183] A Figura 30 é um diagrama lógico que ilustra um processo exemplificador 3100 para determinar se o modo de hemostasia deve ser utilizado, de acordo com um aspecto da presente descrição. No início, o processo 3100 indica 3102 que o sinal de um sensor de efeito Hall determina 3102 a posição de um atuador final. O processo 3100 determina então 3104 se uma chave de fechamento completo do dispositivo cirúrgico está pressionada, ou se o cabo do dispositivo cirúrgico está totalmente fechado. Se a chave de fechamento completo
Petição 870190062513, de 04/07/2019, pág. 90/162
88/114 do dispositivo cirúrgico não for pressionada e/ou se o cabo do dispositivo cirúrgico não estiver totalmente fechado, o processo 3100 pode continuar a ler o sensor de efeito Hall 3102 para determinar a posição do atuador de extremidade. Se a chave de fechamento completo do dispositivo cirúrgico estiver pressionada, ou se o cabo do dispositivo cirúrgico estiver completamente fechado, o processo 3100 determinará 3106 se a posição do atuador de extremidade indicar um vaso maior que 5 mm. Se a posição do atuador de extremidade não indicar um vaso maior que 5 mm, e nenhum indicador do sistema for encontrado 3108, o processo 3100 pode continuar a ler 3102 o sensor de efeito Hall e determinar a posição do atuador de extremidade.
[00184] Se a posição do atuador de extremidade indicar um vaso maior que 5 mm, o processo 3100 determinará 3110 se a posição do atuador final indicar um vaso maior que 7 mm. Se a posição do atuador de extremidade não indicar um vaso maior que 7 mm, o processo 3100 indica 3112 que o modo de hemostasia deve ser utilizado. Essa condição pode ser indicada utilizando uma variedade de técnicas auditivas, vibratórias ou de retrainformação visual incluindo, por exemplo, um LED verde localizado no dispositivo cirúrgico (por exemplo, no topo do cabo) pode ser ativado. Se a posição do atuador de extremidade indica um vaso maior que 7 mm, o processo 3100 indica 3114 que o tecido não deve ser tomado (isto é, modo de hemostasia não deve ser utilizado), devido ao fato de muito tecido ter sido capturado pelo atuador de extremidade. Essa condição pode ser indicada utilizando uma variedade de técnicas auditivas, vibratórias ou de retroinformação visual incluindo, por exemplo, um LED vermelho no dispositivo cirúrgico (por exemplo, no topo do cabo) pode ser ativado.
[00185] A Figura 31 é um diagrama lógico que ilustra um processo exemplificador 3200 para controle de atuador de extremidade, de acordo com um aspecto da presente descrição; Em um aspecto,
Petição 870190062513, de 04/07/2019, pág. 91/162
89/114 referindo-se à Figura 31, o processo 3200 detecta 3202 um sinal (por exemplo, em um sensor de efeito Hall) em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O primeiro tubo pode ser, por exemplo, similar ao membro atuador tubular reciprocante 58 (Figuras 3 e 4) e o segundo tubo pode ser, por exemplo, similar à bainha tubular externa 56 (Figuras 3 e 4). Em outras palavras, conforme descrito na Figura 31, o primeiro tubo pode ser um tubo interno e o segundo tubo é um tubo externo. O tubo interno pode ser móvel 3208 em relação ao tubo externo. O tubo externo pode ser estático em relação ao tubo interno. O processo 3200 detecta 3210 o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00186] O processo 3200 continua e determina 3204 uma posição de braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade baseado no sinal (de, por exemplo, saída de tensão do sensor de efeito Hall). Uma vez que a posição do braço de aperto em relação à lâmina ultrassônica é conhecida, o modo vibracional da lâmina ultrassônica pode ser ajustado para se obter diferentes efeitos de tecido. Nesse modo, o processo 3200 ajusta 3206 uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto. Por exemplo, o processo 3200 pode ajustar 3214 a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall. Altemativamente, o processo pode efetivamente selar vasos sem transecção. Nesse modo, o processo 3200 pode ajustar 3218 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de
Petição 870190062513, de 04/07/2019, pág. 92/162
90/114 aperto se aproxima da lâmina ultrassônica.
[00187] Em outro aspecto, o processo 3200 pode ajustar 3216 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente com base na razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Por exemplo, conforme o braço de aperto se move em direção à lâmina ultrassônica e um valor desejado (Figuras 21 e 22) é aproximado, a quantidade de saída de energia para a lâmina ultrassônica e para dentro do tecido pode ser reduzida. Isto é porque a lâmina ultrassônica irá cortar o tecido com energia suficiente. Entretanto, se a potência sendo produzida for reduzida ao longo do tempo conforme o valor desejado é aproximado (onde uma transecção total pode ser representada por uma razão de deslocamento de 1), a chance de o tecido ser transeccionado pode ser drasticamente reduzida. Desse modo, a vedação eficaz pode ser obtida sem corte do tecido conforme possa ser desejado pelo cirurgião.
[00188] Em um aspecto, o processo 3200 da Figura 31 move 3212 um ímã posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O processo 3200 então determina 3220 um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base em um sinal (a partir de, por exemplo, um sensor de efeito Hall). Adicionalmente, com o uso de um processador e/ou memória, um ou mais algoritmos (por exemplo, para vedar um vaso sem transecção) pode ser escolhido com base na espessura, quantidade ou o tipo de tecido determinado a ser preso dentro das garras. Em resposta a determinar que o tipo de tecido entre o grampo e a lâmina ultrassônica é um vaso grande, o processo 3200 pode reduzir 3226 a energia de saída para a lâmina ultrassônica do atuador de extremidade em uma quantidade superior à de um pequeno vaso. Além disso, em resposta à
Petição 870190062513, de 04/07/2019, pág. 93/162
91/114 determinação de que o tipo de tecido entre o grampo e a lâmina ultrassônica é um vaso pequeno, o processo 3200 pode reduzir 3224 a energia de saída para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para um vaso grande. Em um aspecto, em vez de alterar algoritmos para pequenos vasos, conforme descrito acima, um indicador pode ser fornecido ao cirurgião para indicar a espessura do tecido capturado no atuador de extremidade. Em um aspecto, o processo 3200 ajusta 3222 a energia de saída para a lâmina ultrassônica do atuador de extremidade com base no tipo de tecido.
[00189] A Figura 32 é um diagrama lógico que ilustra um processo exemplificador 3300 para calibrar um aparelho para controlar um atuador de extremidade, de acordo com um aspecto da presente descrição. Em um aspecto, o processo 3300 detecta 3302 um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade. O processo 3300, então, detecta 3304 um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina. O processo detecta 3306 um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina do atuador de extremidade. Uma vez que os três sinais são detectados, o processo 3300 determina 3308 uma curva de melhor ajuste para representar a intensidade do sinal como função do deslocamento do sensor baseado em ao menos o primeiro, o segundo e o terceiro sinal correspondentes às posições totalmente aberta, intermediária e totalmente fechada, respectivamente, e uma dimensão do corpo rígido. Um exemplo de uma curva de melhor ajuste nesse contexto é mostrado nas Figuras 14B e 24. Finalmente, o processo 3300 cria 3310 uma tabela de pesquisa baseada em ao menos o primeiro, o segundo e o
Petição 870190062513, de 04/07/2019, pág. 94/162
92/114 terceiro sinal correspondendo às posições totalmente aberta, intermediária e totalmente fechada, respectivamente.
[00190] Como descrito acima, a posição da parte do braço de aperto do atuador de extremidade pode ser medida com uma disposição de ímã/sensor de efeito Hall. Um emplastro de tecido, geralmente feito de TEFLON, pode ser posicionado sobre o braço de aperto para evitar que o tecido fique aderido ao braço de aperto. À medida que o atuador de extremidade é utilizado e o emplastro de tecido é utilizado, será necessário rastrear o desvio do sinal de saída do sensor de efeito Hall e estabelecer limites de alteração para manter a integridade da seleção do algoritmo de tratamento de tecido e a extremidade do retorno dos pontos de gatilho de corte aos algoritmos de tratamento de tecido.
[00191] Consequentemente, é fornecido um sistema de controle. A saída do sensor de efeito Hall sob a forma de contagens pode ser utilizada para rastrear a abertura do braço de aperto do atuador de extremidade. O leitor pode se referir às Figuras 34 e 35 para os sistemas ADC 3500, 3600 que podem empregar a saída do contador de um ADC. A posição do braço de aperto, com ou sem um emplastro de tecido, pode ser calibrada com o uso das técnicas aqui descritas. Uma vez que a posição do braço de aperto é calibrada, a posição do braço de aperto e o desgaste do emplastro de tecido podem ser monitorados. Em um aspecto, o sistema de controle determina que o braço de aperto está em uma posição fechada peto monitoramento por um aumento na impedância acústica que ocorre quando a lâmina ultrassônica entra em contato com o tecido ou o emplastro de tecido. Dessa forma, um número específico de contador de ADC acumulará um número específico de contagens a partir do momento em que o braço de aperto vai de uma posição completamente aberta para uma posição completamente fechada. Em uma implementação, com base na configuração do sensor de efeito Hall, as contagens de ADC do sensor de efeito Hall aumentam
Petição 870190062513, de 04/07/2019, pág. 95/162
93/114 à medida que o braço de aperto se fecha em direção à lâmina ultrassônica. À medida que o emplastro de tecido se desgasta, o contador acumulará um número adicional incrementai de contagens devido ao deslocamento rotacional adicional experimentado pelo braço de aperto devido ao desgaste do emplastro de tecido. Ao rastrear o novo valor de contagem para uma posição de braço de aperto fechada, o sistema de controle pode ajustar o limite de gatilho para uma extremidade de corte e prever melhor a faixa total de abertura do braço de aperto que ocorreu.
[00192] Além disso, as contagens de ADC do sensor de efeito Hall podem ser empregadas para determinar o coeficiente de atrito de tecido (μ) do tecido em tratamento com base na abertura do braço de aperto empregando valores de μ predeterminados armazenados em uma tabela de consulta. Por exemplo, o algoritmo de tratamento de tecido específico pode ser dinamicamente ajustado ou modificado durante um ciclo de tratamento ultrassônico (por exemplo, sequência de disparo ou ativação de energia ultrassônica) para otimizar o corte do tecido com base no tipo de tecido (por exemplo, tecido adiposo, mesentério, vaso) ou a quantidade ou espessura do tecido.
[00193] A Figura 33 é um diagrama lógico de um processo 3400 para rastrear o desgaste da porção de emplastro de tecido do braço de aperto e compensar o desvio resultante do sensor de efeito Hall e determinar o coeficiente de atrito do tecido, de acordo com um aspecto da presente descrição. O processo 3400 pode ser implementado em software, hardware, firmware ou uma combinação dos mesmos, empregando ambiente de circuito do gerador ilustrado em conexão com as Figuras 6 a 10.
[00194] Em um aspecto, o processo 3400 pode ser implementado por um circuito que pode compreender um controlador compreendendo um ou mais processadores (por exemplo, microprocessador,
Petição 870190062513, de 04/07/2019, pág. 96/162
94/114 microcontrolador) acoplados a ao menos um circuito de memória. O ao menos um circuito de memória armazena instruções executáveis por máquina que, quando executadas pelo processador, fazem com que o processador execute o processo 3400.
[00195] O processador pode ser qualquer um dentre inúmeros processadores de núcleo simples ou processadores de múltiplos núcleos (multi-core) conhecidos na técnica. O circuito de memória pode compreender meios de armazenamento voláteis e não voláteis. Em um aspecto, o processador pode incluir uma unidade de processamento de instruções e uma unidade aritmética. A unidade de processamento de instrução pode ser configurada para receber instruções a partir do circuito de memória.
[00196] Em um aspecto, um circuito pode compreender uma máquina de estado finito compreendendo um circuito lógico combinacional configurado para implementar o processo 3400 aqui descrito. Em um aspecto, um circuito pode compreender uma máquina de estados finitos compreendendo um circuito lógico sequencial compreendendo um circuito lógico combinacional e, ao menos, um circuito de memória, por exemplo. O ao menos um circuito de memória pode armazenar um estado atual da máquina de estados finitos. O circuito lógico sequencial ou o circuito lógico combinatório pode ser configurado para implementar o processo 3400 aqui descrito. Em certos casos, o circuito lógico sequencial pode ser síncrono ou assíncrono.
[00197] Em outros aspectos, o circuito pode compreender uma combinação do processador e da máquina de estados finitos para implementar as técnicas de compressão e descompressão aqui descritas. Em outras modalidades, a máquina de estados finitos pode compreender uma combinação do circuito lógico combinacional e do circuito lógico sequencial.
[00198] Como aqui descrito, a posição do braço de aperto é
Petição 870190062513, de 04/07/2019, pág. 97/162
95/114 detectada por um sensor de efeito Hall em relação a um ímã localizado em um tubo de fechamento de um instrumento cirúrgico. Voltando agora para o processo 3400, a posição inicial do braço de aperto, por exemplo, a posição do sensor de efeito Hall localizado no tubo de fechamento, é armazenada 3402 na memória. À medida que o tubo de fecho é deslocado em uma direção distai, o braço de aperto é fechado na direção da lâmina ultrassônica e a posição instantânea do braço de aperto é armazenada 3404 na memória. A diferença, delta (x), entre a posição instantânea e a posição inicial do braço de aperto é calculada 3406. A diferença, delta (x), pode ser utilizada para determinar uma alteração no deslocamento do tubo, que pode ser utilizada para calcular o ângulo e a força aplicada pelo braço de aperto ao tecido localizado entre o braço de aperto e a lâmina ultrassônica. A posição instantânea do braço de aperto é comparada 3408 à posição fechada do braço de aperto para determinar se o braço de aperto está em uma posição fechada. Enquanto o braço de aperto ainda não está em uma posição fechada, o processo 3400 prossegue ao longo da trajetória não (N) e compara a posição instantânea do braço de aperto com a posição inicial do braço de aperto até o grampo atingir uma posição fechada.
[00199] Quando o braço de aperto atinja uma posição fechada, o processo 3400 continua ao longo da trajetória sim (Y) e a posição fechada do braço de aperto é aplicada para uma entrada de uma função AND de lógica 3410. A função AND de lógica 3410 é uma representação de alto nível de uma operação lógica, que pode compreender operações AND, OR, XOR e AND booleanas implementadas em um software, hardware ou uma combinação dos mesmos. Quando uma condição de abuso ou desgaste do emplastro de tecido é determinada com base nas medições de impedância acústica, a posição de fechamento do braço de fixação atual é ajustada 3414 como a nova posição inicial do braço de fixação para compensar a condição de abuso ou desgaste. Se
Petição 870190062513, de 04/07/2019, pág. 98/162
96/114 nenhum abuso ou desgaste do emplastro de tecido for determinado, a posição inicial do braço de fixação permanece a mesma. O abuso ou o desgaste do emplastro de tecido do braço de aperto é determinado pelo monitoramento 3420 da impedância 3422 da lâmina ultrassônica. A impedância de interface da lâmina ultrassônica/emplastro de tecido ID determinou 3422 e comparou 3412 com uma condição de abuso ou desgaste do emplastro de tecido. Quando a impedância corresponde a uma condição de abuso ou desgaste do emplastro de tecido, o processo 3400 prossegue ao longo da trajetória sim (Y) e a posição atual fechada do braço de aperto é definida como a nova posição inicial do braço de aperto para compensar a condição de abuso ou desgaste do emplastro de tecido. Quando a impedância não corresponde a uma condição de abuso ou desgaste do emplastro de tecido, o processo 3400 prossegue ao longo da trajetória não (N) e a posição inicial do braço de aperto permanece a mesma.
[00200] A posição instantânea armazenada 3404 do braço de aperto é também fornecida à entrada de outra função lógica AND 3416 para determinar a quantidade e a espessura do tecido preso entre o braço de aperto e a lâmina ultrassônica. A impedância da interface tecido/lâmina ultrassônica é determinada 3422 e é comparada a 3424, 34267, 3428 para múltiplos coeficientes de atrito do tecido μ = x, μ = y ou μ = Z. Assim, quando a impedância da interface lâmina ultrassônica/tecido corresponde a um dos coeficientes de atrito μ - x, μ - y ou μ - z com base na quantidade ou espessura do tecido, por exemplo, a abertura do braço de aperto, o algoritmo de tecido atual é mantido 3430 e o algoritmo atual é utilizado para monitorar 3420 a impedância 3422 da lâmina ultrassônica. Se o coeficiente de atrito do tecido μ = x, μ = y ou μ = Z com base na quantidade ou espessura do tecido, por exemplo, a abertura do braço de aperto, for alterado 3418 com base no novo coeficiente de atrito do tecido μ e na quantidade ou espessura do tecido,
Petição 870190062513, de 04/07/2019, pág. 99/162
97/114 por exemplo, a abertura do braço de aperto, o algoritmo de tecido atual é utilizado para monitorar 3420 a impedância 3422 da lâmina ultrassônica.
[00201] Consequentemente, a abertura atual do braço de fixação é utilizada para determinar o coeficiente de atrito de tecido atual μ com base na quantidade e espessura do tecido, conforme medido pela abertura do braço de aperto. Dessa forma, um algoritmo inicial pode ser baseado em uma abertura inicial do braço de aperto. A impedância da lâmina ultrassônica é comparada 3424, 3426, 3428 a vários coeficientes de atrito do tecido μ = x, μ = y ου μ = z, que são armazenados em uma tabela de consulta, e correspondem a tecido adiposo, tecido mesentério ou tecido do vaso, por exemplo. Se não ocorrer qualquer coincidência entre a impedância da lâmina ultrassônica e o coeficiente de atrito do tecido, o processo 3400 prossegue ao longo das trajetórias não (N) de qualquer das comparações de impedância de tecido 3424, 3426, 3428 e o algoritmo de tecido atual é mantido. Se qualquer uma das saídas das funções de comparação 3424, 3426, 3428 for verdadeira, o processador alterna para um algoritmo de tratamento de tecido diferente com base na nova impedância do tecido e na abertura do braço de aperto. Consequentemente, um novo algoritmo de tratamento de tecido é carregado no instrumento ultrassônico. O processo 3400 continua mediante o monitoramento 3420 da impedância da lâmina ultrassônica, da abertura do braço de aperto e do abuso ou desgaste do emplastro de tecido.
[00202] A Figura 34 ilustra um sistema sensor de efeito Hall 3500 que pode ser empregado com o processo 3400 da Figura 33, de acordo com um aspecto da presente descrição. Em conexão com o processo 3400 descrito na Figura 33, o sistema de sensor de efeito Hall 3500 da Figura 34 inclui um sensor de efeito Hall 3502 alimentado por um regulador de tensão 3504. A saída do sensor de efeito Hall 3502 é uma tensão
Petição 870190062513, de 04/07/2019, pág. 100/162
98/114 analógica proporcional à posição do braço de aperto, que é aplicada a um conversor analógico-digital 3506 (ADC). A saída digital de n bits do ADO 3506 é aplicada a um microprocessador 3508 acoplado a uma memória 3510. O microprocessador 3508 é configurado para processar e determinar a posição do braço de aperto com base na entrada digital de n bits do ADC 3505. Será entendido que a saída digital do ADC 3506 pode ser chamada de uma contagem.
[00203] Conforme descrito na presente invenção, a saída analógica do sensor de efeito Hall é fornecida a um conversor analógico-digital interno ou externo como o ADC 3506 mostrado na Figura 34 ou qualquer um dos circuitos de conversor analógico para digital situados no gerador. O transdutor 104 mostrado na Figura 6 pode compreender um sensor de efeito Hall que compreende um circuito conversor analógicodigital cuja saída é aplicada ao circuito de controle 108. Em um aspecto, o gerador 102 mostrado na Figura 7 compreende vários circuitos conversores analógico/digital como ADCs 176,178,180, que podem ser adaptados e configurados para receber a saída de tensão analógica do sensor de efeito Hall e convertê-lo em formas digitais para obter contagens e para fazer interface do sensor de efeito Hall com um processador DSP 174, microprocessador 190, um dispositivo lógico 166 e/ou um controlador 196.
[00204] A Figura 35 ilustra um aspecto de um conversor analógicodigital (ADC) de contador tipo rampa 3600 que pode ser empregado com o sistema de sensor de efeito Hall 3500 da Figura 34, de acordo com um aspecto da presente descrição. O ADC 3600 de rampa digital recebe uma tensão de entrada analógica de um sensor de efeito Hall no terminal de entrada positivo Vin de um comparador 3602 e Dn até D0 (Dn a D0) são as saídas digitais (n bits). A linha de controle encontrada em um contador 3606 liga o contador 3606 quando esse está baixo e para o contador 3606 quando esse está alto. Em funcionamento, o
Petição 870190062513, de 04/07/2019, pág. 101/162
99/114 contador 3606 é aumentado até que o valor encontrado no contador 3606 corresponda ao valor do sinal de entrada analógico em Vin. A saída digital Dn~D0 é aplicada a um conversor digital-analógico 3604 (DAC) e a saída analógica é aplicada ao terminal negativo do comparador 3602 e é comparada com a tensão de entrada analógica em Vin. Quando essa condição é satisfeita, o valor no contador 3606 é o equivalente digital do sinal de entrada analógico em Vin.
[00205] Um pulso START é fornecido para cada tensão de entrada analógica Vin ser convertida em um sinal digital. O sinal END representa o fim da conversão para cada tensão de entrada analógica individual encontrada em Vin (cada amostra), e não para todo o sinal de entrada analógico. Cada pulso de relógio incrementa o contador 3606. Supondo um ADC de 8 bits, para converter o valor analógico de 128 em digital, por exemplo, seriam necessários 128 ciclos por instrução. O ADC 3600 conta de 0 até o valor máximo possível (2n-1) até que o valor Dn-DO de saída digital correto seja identificado para a tensão de entrada analógica presente em Vin. Quando isso é verdade, o sinal END é dado e o valor digital para Vin é para Dn~D0.
[00206] Embora vários aspectos tenham sido descritos, deve ficar evidente, entretanto, que várias modificações, alterações e adaptações a essas modalidades podem ocorrer aos indivíduos versados na técnica com a obtenção de algumas ou todas as vantagens da invenção. Os aspectos divulgados são, portanto, destinados a incluir todas essas modificações, alterações e adaptações sem se afastar do escopo e do espírito da invenção. Por conseguinte, outros aspectos e implementações estão dentro do escopo das reivindicações seguintes. Por exemplo, as ações mencionadas nas reivindicações podem ser realizadas em uma ordem diferente e ainda obter resultados desejáveis. [00207] Embora vários detalhes tenham sido apresentados na descrição acima, será reconhecido que os vários aspectos das técnicas
Petição 870190062513, de 04/07/2019, pág. 102/162
100/114 para operar um gerador para gerar digitalmente as formas de onda de sinal elétrico e os instrumentos cirúrgicos podem ser praticados sem esses detalhes específicos. Os versados na técnica reconhecerão que os componentes (por exemplo, operações), dispositivos e objetivos descritos na presente invenção, e a discussão que os acompanha, são usados como exemplos tendo em vista a clareza conceituai, e que são contempladas várias modificações de configuração. Consequentemente, como usado na presente invenção, os exemplares específicos apresentados e a discussão que os acompanha pretendem ser representativos de suas classes mais gerais. Em geral, o uso de qualquer exemplar específico pretende ser representativo de sua classe, e a não inclusão de componentes (por exemplo, operações), dispositivos e objetos específicos não deve ser considerada limitadora. [00208] Além disso, embora várias formas tenham sido ilustradas e descritas, não é intenção do requerente restringir ou limitar o escopo das reivindicações em anexo a tal detalhe. Numerosas modificações, variações, alterações, substituições, combinações e equivalentes destas formas podem ser implementadas e ocorrerão aos versados na técnica sem se que afaste do escopo da presente descrição. Além disso, a estrutura de cada elemento associado com a forma pode ser altemativamente descrita como um meio para fornecer a função realizada pelo elemento. Além disso, onde forem revelados materiais para determinados componentes, outros materiais podem ser usados. Deve-se compreender, portanto, que a descrição precedente e as reivindicações em anexo pretendem cobrir todas essas modificações, combinações e variações abrangidas pelo escopo das modalidades apresentadas. As reivindicações em anexo se destinam a cobrir todas essas modificações, variações, alterações, substituições, modificações e equivalentes.
[00209] Para concisão e clareza da descrição, aspectos
Petição 870190062513, de 04/07/2019, pág. 103/162
101/114 selecionados da descrição acima foram apresentados em forma de diagrama de blocos e não em detalhes. Algumas porções das descrições detalhadas aqui fornecidas podem ser apresentadas em termos de instruções que operam em dados que são armazenados em uma ou mais memórias de computador ou um ou mais dispositivos de armazenamento de dados (por exemplo, disquete, unidade de disco rígido, disco compacto (CD), Disco de Vídeo Digital (DVD) ou fita digital). Essas descrições e representações são usadas pelos versados na técnica para descrever e transmitir a substância de seu trabalho a outros versados na técnica. Em geral, um algoritmo se refere à sequência autoconsistente em etapas que levam ao resultado desejado, em que uma etapa” se refere à manipulação de quantidades físicas e/ou estados lógicos que podem, embora não necessariamente precisem, assumir a forma de sinais elétricos ou magnéticos que possam ser armazenados, transferidos, combinados, comparados e manipulados de qualquer outra forma. É uso comum chamar esses sinais de bits, valores, elementos, símbolos, caracteres, termos, números ou congêneres. Esses termos e termos similares podem estar associados às grandezas físicas apropriadas e são identificações meramente convenientes aplicadas a essas quantidades e/ou estados.
[00210] Salvo afirmação expressa em contrário, conforme fica evidente a partir da descrição precedente, é entendido que, ao longo da descrição precedente, as discussões que usam termos como processamento, ou computação, ou cálculo, ou determinação, ou exibição, ou similares, se referem à ação e aos processos de um computador, ou dispositivo de computação eletrônica similar, que manipule e transforme os dados representados sob a forma de grandezas físicas (eletrônicas) nos registros e nas memórias do computador em outros dados representados de modo similar sob a forma de grandezas físicas nas memórias ou nos registros do
Petição 870190062513, de 04/07/2019, pág. 104/162
102/114 computador, ou em outros dispositivos similares de armazenamento, transmissão ou exibição de informações.
[00211] Em um sentido geral, os versados na técnica reconhecerão que os vários aspectos aqui descritos, os quais podem ser implementados, individual e/ou coletivamente, por meio de uma ampla gama de hardware, software, firmware, ou qualquer combinação destes, podem ser vistos como sendo compostos por vários tipos de ’’circuitos elétricos. Consequentemente, como usado na presente invenção, circuito elétrico inclui, mas não se limita aos, circuitos elétricos que tenham pelo menos um circuito elétrico discreto, circuitos elétricos que tenham pelo menos um circuito integrado, circuitos elétricos que tenham pelo menos um circuito integrado para aplicação específica, circuitos elétricos que formem um dispositivo de computação para finalidades gerais configurado por um programa de computador (por exemplo, um computador para finalidades gerais configurado por um programa de computador que pelo menos parcialmente execute processos e/ou dispositivos aqui descritos, ou um microprocessador configurado por um programa de computador que pelo menos parcialmente execute os processos e/ou dispositivos aqui descritos), circuitos elétricos que formem um dispositivo de memória (por exemplo, formas de memória de acesso aleatório), e/ou circuitos elétricos que formem um dispositivo de comunicações (por exemplo, um modem, roteadores ou equipamento óptico-elétrico). Os versados na técnica reconhecerão que o assunto aqui descrito pode ser implementado de modo analógico ou digital, ou em alguma combinação destes.
[00212] A descrição detalhada precedente apresentou várias formas dos dispositivos e/ou processos por meio do uso de diagramas de blocos, fluxogramas e/ou exemplos. Embora esses diagramas de bloco, fluxogramas e/ou exemplos contenham uma ou mais funções e/ou operações, será compreendido pelos versados na técnica que cada
Petição 870190062513, de 04/07/2019, pág. 105/162
103/114 função e/ou operação dentro desses diagramas de bloco, fluxogramas e/ou exemplos pode ser implementada, individual e/ou coletivamente, através de uma ampla gama de hardware, software, firmware ou praticamente qualquer combinação destes. Em uma modalidade, várias porções do assunto aqui descrito podem ser implementadas através de circuitos integrados de aplicação específica (ASICs), arranjos de portas programáveis em campo (FPGAs), processadores de sinal digital (PSDs) ou outros formatos integrados. Contudo, os versados na técnica reconhecerão que alguns aspectos das modalidades aqui reveladas, no todo ou em parte, podem ser implementados de modo equivalente em circuitos integrados, como um ou mais programas de computador executando em um ou mais computadores (por exemplo, como um ou mais programas operando em um ou mais sistemas de computador), como um ou mais programas operando em um ou mais processadores (por exemplo, como um ou mais programas operando em um ou mais microprocessadores), como firmware, ou virtualmente como qualquer combinação dos mesmos, e que projetar o conjunto de circuitos e/ou escrever o código para o software e firmware estaria dentro do âmbito de prática de um elemento versado na técnica à luz desta descrição. Além disso, os versados na técnica entenderão que os mecanismos do assunto aqui descrito podem ser distribuídos como um ou mais produtos de programa em uma variedade de formas e que uma forma ilustrativa do assunto aqui descrito é aplicável independentemente do tipo específico de meio de transmissão de sinais utilizado para efetivamente realizar a distribuição. Exemplos de um meio de transmissão de sinais incluem, mas não se limitam aos seguintes: um meio do tipo gravável como um disquete, uma unidade de disco rígido, um disco compacto (CD), um disco de vídeo digital (DVD), uma fita digital, uma memória de computador, etc.; e uma mídia do tipo de transmissão, como uma mídia de comunicação digital e/ou analógica (por exemplo, um cabo de fibra
Petição 870190062513, de 04/07/2019, pág. 106/162
104/114 óptica, um guia de onda, um enlace de comunicação com fio, um enlace de comunicação sem fio (por exemplo, transmissor, receptor, lógica de transmissão, lógica de recepção, etc.), etc.).
[00213] Em alguns casos, um ou mais elementos podem ser descritos usando a expressão acoplado e conectado junto com seus derivados. Deve-se compreender que esses termos não são concebidos para serem sinônimos uns dos outros. Por exemplo, alguns aspectos podem ser descritos com o uso do termo conectado para indicar que dois ou mais elementos estão em contato físico direto ou em contato elétrico uns com os outros. Em outro exemplo, alguns aspectos podem ser descritos com o uso do termo acoplado para indicar que dois ou mais elementos estão em contato físico direto ou em contato elétrico. O termo acoplado, entretanto, também pode significar que dois ou mais elementos não estão em contato direto um com o outro, mas ainda assim cooperam ou interagem entre si. Deve-se compreender que as arquiteturas representadas de diferentes componentes contidas no interior, ou conectadas a outros componentes diferentes são meramente exemplos, e que, de fato, muitas outras arquiteturas que alcançam a mesma funcionalidade podem ser implementadas. No sentido conceituai, qualquer disposição de componentes para alcançar a mesma funcionalidade está efetivamente associada se a funcionalidade desejada for alcançada. Assim, quaisquer dois componentes mencionados na presente invenção que sejam combinados para alcançar uma funcionalidade específica podem ser vistos como associados um ao outro se a funcionalidade desejada é alcançada, independentemente das arquiteturas ou dos componentes intermediários. De modo semelhante, quaisquer desses dois componentes assim associados também podem ser vistos como estando operacionalmente conectados ou operacionalmente acoplados um ao outro para alcançar a funcionalidade desejada, e
Petição 870190062513, de 04/07/2019, pág. 107/162
105/114 quaisquer desses dois componentes capazes de serem associados dessa forma podem ser vistos como sendo 'Operacionalmente acopláveis um ao outro para alcançar a funcionalidade desejada. Exemplos específicos de componentes operacionalmente acopláveis incluem, mas não se limitam a componentes fisicamente encaixáveis e/ou em interação física e/ou os que podem interagir por conexão sem fio e/ou componentes que interajam por conexão sem fio e/ou que interajam por lógica e/ou componentes que podem interagir por lógica e/ou componentes que interajam eletricamente e/ou componentes que podem interagir eletricamente e/ou componentes que interajam oticamente e/ou componentes que podem interagir oticamente.
[00214] Em outros casos, um ou mais componentes podem ser chamados na presente invenção de configurado para, configurável para, operável/operacional para, adaptado/adaptável para, capaz de, conformável/conformado para, etc. Os versados na técnica reconhecerão que configurado para pode, de modo geral, abranger componentes em estado ativo e/ou componentes em estado inativo e/ou componentes em estado de espera, exceto quando o contexto determinar o contrário.
[00215] Embora aspectos específicos da presente descrição tenham sido mostrados e descritos, ficará evidente aos versados na técnica que, com base nos ensinamentos da presente invenção, podem ser feitas mudanças e modificações sem se afastar do assunto aqui descrito e de seus aspectos mais amplos e, portanto, as reivindicações em anexo abrangem em seu escopo todas essas alterações e modificações do mesmo modo que elas estão dentro do verdadeiro escopo do assunto aqui descrito. Será compreendido pelos versados na técnica que, em geral, os termos usados aqui, e principalmente nas reivindicações em anexo (por exemplo, corpos das reivindicações em anexo) destinam-se geralmente como termos abertos (por exemplo, o termo incluindo
Petição 870190062513, de 04/07/2019, pág. 108/162
106/114 deve ser interpretado como incluindo, mas não se limitando a, o termo tendo deve ser interpretado como tendo, ao menos, o termo inclui deve ser interpretado como inclui, mas não se limita a, etc.). Será ainda entendido pelos versados na técnica que, quando um número específico de uma menção de reivindicação introduzida for pretendido, tal intenção será expressamente mencionada na reivindicação e, na ausência de tal menção, nenhuma intenção estará presente. Por exemplo, como uma ajuda para a compreensão, as seguintes reivindicações em anexo podem conter o uso das frases introdutórias ao menos um e um ou mais para introduzir menções de reivindicação. Entretanto, o uso de tais frases não deve ser interpretado como implicando que a introdução de uma menção da reivindicação pelos artigos indefinidos um, uns ou uma, umas limita qualquer reivindicação específica contendo a menção da reivindicação introduzida a reivindicações que contêm apenas uma tal menção, mesmo quando a mesma reivindicação inclui as frases introdutórias um ou mais ou ao menos um e artigos indefinidos, como um, uns ou uma, umas (por exemplo, um, uns e/ou uma, umas deve tipicamente ser interpretado como significando ao menos um ou um ou mais); o mesmo vale para o uso de artigos definidos usados para introduzir as menções de reivindicação.
[00216] Além disso, mesmo se um número específico de uma menção de reivindicação introduzida for explicitamente mencionado, os versados na técnica reconhecerão que essa menção precisa ser tipicamente interpretada como significando ao menos o número mencionado (por exemplo, a mera menção de duas menções, sem outros modificadores, tipicamente significa ao menos duas menções, ou duas ou mais menções). Além disso, em casos onde é usada uma convenção análoga a pelo menos um dentre A, B e C, etc., em geral essa construção se destina a ter o sentido no qual a convenção seria
Petição 870190062513, de 04/07/2019, pág. 109/162
107/114 entendida por (por exemplo, um sistema que tem ao menos um dentre A, B e C incluiría, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Em casos nos quais é usada uma convenção análoga a pelo menos um dentre A, B ou C, etc., em geral essa construção se destina a ter o sentido no qual a convenção seria entendida por (por exemplo, um sistema que tem ao menos um dentre A, B e C incluiría, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Será adicionalmente entendido pelos versados na técnica que tipicamente uma palavra e/ou uma frase disjuntiva apresentando dois ou mais termos alternativos, quer na descrição, nas reivindicações ou nos desenhos, deve ser entendida como contemplando a possibilidade de incluir um dos termos, qualquer um dos termos ou ambos os termos, exceto quando o contexto determinar indicar algo diferente. Por exemplo, a frase A ou B será tipicamente entendida como incluindo as possibilidades de A ou B ou A e B.
[00217] Com relação às reivindicações em anexo, os versados na técnica entenderão que as operações mencionadas nas mesmas podem, de modo geral, ser executadas em qualquer ordem. Além disso, embora vários fluxos operacionais sejam apresentados em uma ou mais sequências, deve-se compreender que as várias operações podem ser executadas em outras ordens diferentes daquelas que estão ilustradas, ou podem ser executadas simultaneamente. Exemplos dessas ordenações alternativas podem incluir ordenações sobrepostas, intercaladas, interrompidas, reordenadas, incrementais, preparatórias, suplementares, simultâneas, inversas ou outras ordenações variantes, exceto quando o contexto determinar em contrário. Ademais, termos como responsivo a, relacionado a ou outros particípios adjetivos não pretendem de modo geral excluir essas variantes, exceto quando o
Petição 870190062513, de 04/07/2019, pág. 110/162
108/114 contexto determinar em contrário.
[00218] Vale notar que qualquer referência a um (1) aspecto, um aspecto, uma (1) forma ou uma forma significa que um determinado recurso, estrutura ou característica descrito em conexão com o aspecto está incluído em ao menos um aspecto. Dessa forma, o uso de expressões como em um (1) aspecto, em um aspecto, em uma (1) modalidade, em uma modalidade, em vários locais ao longo deste relatório descritivo não se refere necessariamente ao mesmo aspecto. Além disso, os recursos, estruturas ou características específicas podem ser combinados de qualquer maneira adequada em um ou mais aspectos.
[00219] Com relação ao uso de substancialmente quaisquer termos plurais e/ou singulares na presente invenção, os versados na técnica podem mudar do plural para o singular e/ou do singular para o plural conforme seja adequado ao contexto e/ou aplicação. As várias permutações singular/plural não são expressamente aqui apresentadas por fins de clareza.
[00220] Em certos casos, o uso de um sistema ou método pode ocorrer mesmo se os componentes em um território estão localizados fora do território. Por exemplo, em um contexto de computação distribuída, o uso de um sistema de computação distribuída pode ocorrer em uma região ainda que partes do sistema possam ser localizados fora do território (por exemplo, relé, servidor, processador, sinal contendo meio, transmissão de computador, computador, etc., localizado fora do território).
[00221] Uma venda de um sistema ou método pode, da mesma forma, ocorrer em um território mesmo se os componentes do sistema e/ou método estiverem situados e/ou forem usados fora do território. Adicionalmente, a implementação de pelo menos parte de um sistema para executar um método em um território não impede o uso do sistema
Petição 870190062513, de 04/07/2019, pág. 111/162
109/114 em outro território.
[00222] Todas as patentes US, publicações de pedido de patente US, pedidos de patente US, patentes estrangeiras, pedidos de patentes estrangeiros e publicações de não patentes supracitados neste relatório descritivo e/ou listados em qualquer Folha de Dados de Pedido (ADS, de Application Data Sheet), ou qualquer outro material de descrição estão aqui incorporados, por referência, na medida em que não forem inconsistentes com o conteúdo da presente descrição. Desse modo, e na medida em que for necessário, a descrição como explicitamente aqui apresentada substitui qualquer material conflitante incorporado à presente invenção a título de referência. Qualquer material, ou porção do mesmo, tido como aqui incorporado a título de referência, mas que entre em conflito com as definições, declarações, ou outros materiais de descrição existentes aqui apresentados estará aqui incorporado apenas na medida em que não haja conflito entre o material incorporado e o material de descrição existente.
[00223] Em resumo, foram descritos numerosos benefícios que resultam do emprego dos conceitos descritos no presente documento. A descrição anteriormente mencionada de uma ou mais modalidades foi apresentada para propósitos de ilustração e descrição. Essa descrição não pretende ser exaustiva nem limitar a invenção à forma precisa revelada. Modificações ou variações são possíveis à luz dos ensinamentos acima. Uma ou mais modalidades foram escolhidas e descritas com a finalidade de ilustrar os princípios e a aplicação prática para, assim, permitir que o versado na técnica use as várias modalidades e com várias modificações, conforme sejam convenientes ao uso específico contemplado. Pretende-se que as reivindicações apresentadas em anexo definam o escopo global.
[00224] Vários aspectos do assunto aqui descrito são definidos nas seguintes cláusulas numeradas:
Petição 870190062513, de 04/07/2019, pág. 112/162
110/114 [00225] 1. Método para controlar um atuador de extremidade, sendo que o método é caracterizado pelo fato de que compreende: detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade; determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[00226] 2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o ajuste da saída de energia à lâmina ultrassônica é alcançado pela manipulação da corrente elétrica enviada à empunhadura.
[00227] 3. Método, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
[00228] 4. Método, de acordo com qualquer uma das reivindicações ou 2, caracterizado peto fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo interno.
[00229] 5. Método, de acordo com qualquer uma das reivindicações a 4, caracterizado peto fato de que compreende adicionalmente detectar o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00230] 6. Método, de acordo com qualquer uma das reivindicações a 5, caracterizado peto fato de que compreende adicionalmente mover um ímã posicionado no primeiro tubo em relação a um sensor de efeito
Petição 870190062513, de 04/07/2019, pág. 113/162
111/114
Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
[00231] 7. Método, de acordo com qualquer uma das reivindicações a 6, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
[00232] 8. Método, de acordo com qualquer uma das reivindicações a 7, caracterizado peto fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00233] 9. Método, de acordo com qualquer uma das reivindicações a 8, caracterizado peto fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00234] 10. Método, de acordo com qualquer uma das reivindicações 1 a 9, caracterizado peto fato de que compreende adicionalmente desligar completamente a saída de energia à lâmina ultrassônica do atuador de extremidade uma vez que um limite de razão de deslocamento tiver sido atingido.
[00235] 11. Método, de acordo com qualquer uma das reivindicações 1 a 10, caracterizado pelo fato de que compreende adicionalmente: determinar uma quantidade ou espessura do tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal; e ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base na quantidade ou espessura do tecido.
Petição 870190062513, de 04/07/2019, pág. 114/162
112/114 [00236] 12. Método, de acordo com a reivindicação 11, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou a espessura de tecido entre o braço de aperto e a lâmina ultrassônica é menor que um limite predeterminado, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para uma quantidade ou espessura maior de tecido.
[00237] 13. Método, de acordo com a reivindicação 11 ou 12, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braço de aperto e a lâmina ultrassônica está acima de um limite predeterminado, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para uma quantidade ou espessura menor de tecido.
[00238] 14. Aparelho para controlar um atuador de extremidade, sendo que o aparelho é caracterizado pelo fato de que compreende: um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade; um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e um transdutor configurado para ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[00239] 15. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo externo.
Petição 870190062513, de 04/07/2019, pág. 115/162
113/114 [00240] 16. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
[00241] 17. Aparelho, de acordo com qualquer uma das reivindicações 14 a 16, caracterizado pelo fato de que compreende adicionalmente: um ímã posicionado no primeiro tubo; e sendo que o sensor é um sensor de efeito Hall utilizado para detectar o sinal com base em uma posição do ímã.
[00242] 18. Aparelho, de acordo com qualquer uma das reivindicações 14 a 17, caracterizado pelo fato de que o ímã posicionado no primeiro tubo se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
[00243] 19. Aparelho, de acordo com qualquer uma das reivindicações 14 a 18, caracterizado pelo fato de que o transdutor é um transdutor ultrassônico configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall.
[00244] 20. Aparelho, de acordo com qualquer uma das reivindicações 14 a 19, caracterizado pelo fato de que o transdutor é configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00245] 21. Aparelho, de acordo com qualquer uma das reivindicações 14 a 20, caracterizado pelo fato de que compreende: um controlador integral proporcional configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade
Petição 870190062513, de 04/07/2019, pág. 116/162
114/114 dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00246] 22. Método para calibrar um aparelho para controlar um atuador de extremidade, sendo que o método é caracterizado pelo fato de que compreende: detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade; detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica; e detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade.
[00247] 23. Método, de acordo com a reivindicação 22, caracterizado pelo fato de que compreende adicionalmente: determinar uma curva de melhor ajuste para representar a intensidade de sinal como função do deslocamento do sensor com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido.
[00248] 24. Método, de acordo com a reivindicação 22 ou 23, caracterizado pelo fato de que compreende: criar uma tabela de consulta com base em ao menos um dentre o primeiro, segundo e terceiro sinal, e nas posições completamente abertas, intermediárias e completamente fechadas.
Claims (24)
- REIVINDICAÇÕES1. Método para controlar um instrumento um atuador de extremidade, caracterizado pelo fato de que compreende:detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade;determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e ajustar uma saída de potência à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
- 2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o ajuste da saída de potência à lâmina ultrassônica é alcançado pela manipulação da corrente elétrica enviada à empunhadura.
- 3. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
- 4. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo interno.
- 5. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente detectar o sinal com o uso de um sensor de efeito Hall e um magneto posicionado no primeiro tubo.
- 6. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente mover um magneto posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto doPetição 870190062513, de 04/07/2019, pág. 118/1622/5 atuador de extremidade.
- 7. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
- 8. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
- 9. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
- 10. Método, de acordo com a reivindicação 1, caracterizado peto fato de que compreende adicionalmente desligar completamente a saída de potência à lâmina ultrassônica do atuador de extremidade uma vez que um limite de razão de deslocamento tiver sido atingido.
- 11. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente:determinar uma quantidade ou espessura do tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal; e ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com base na quantidade ou espessura do tecido.
- 12. Método, de acordo com a reivindicação 11, caracterizado peto fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braçoPetição 870190062513, de 04/07/2019, pág. 119/1623/5 de aperto e a lâmina ultrassônica é menor que um limite predeterminado, reduzir a saída de potência para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para uma quantidade ou espessura maior de tecido.
- 13. Método, de acordo com a reivindicação 11, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braço de aperto e a lâmina ultrassônica está acima de um limite predeterminado, reduzir a saída de potência para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para uma quantidade ou espessura menor de tecido.
- 14. Aparelho para controlar um atuador de extremidade, caracterizado pelo fato de que compreende:um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade;um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e um transdutor configurado para ajustar uma saída de potência à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
- 15. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo externo.
- 16. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e oPetição 870190062513, de 04/07/2019, pág. 120/1624/5 segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
- 17. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que compreende adicionalmente:um magneto posicionado no primeiro tubo; e sendo que o sensor é um sensor de efeito Hall usado para detectar o sinal com base em uma posição do magneto.
- 18. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o magneto posicionado no primeiro tubo se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
- 19. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o transdutor é um transdutor ultrassônico configurado para ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall.
- 20. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o transdutor é configurado para ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
- 21. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que compreende adicionalmente:um controlador proporcional integral configurado para ajustar dinamicamente a saída de potência à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
- 22. Método para calibrar um aparelho para controlar um atuador de extremidade, caracterizado pelo fato de que compreende:Petição 870190062513, de 04/07/2019, pág. 121/1625/5 detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade;detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica; e detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade.
- 23. Método, de acordo com a reivindicação 22, caracterizado pelo fato de que compreende adicionalmente:determinar uma curva de melhor ajuste para representar a intensidade de sinal como uma função do deslocamento do sensor com base em peto menos um dentre o primeiro, o segundo e o terceiro sinais, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido.
- 24. Método, de acordo com a reivindicação 22, caracterizado peto fato de que compreende adicionalmente:criar uma tabela de consulta com base em pelo menos um dentre o primeiro, segundo e terceiro sinais, e nas posições completamente aberta, intermediária e completamente fechada.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/363,244 | 2016-11-29 | ||
US15/363,244 US11266430B2 (en) | 2016-11-29 | 2016-11-29 | End effector control and calibration |
PCT/US2017/062959 WO2018102210A1 (en) | 2016-11-29 | 2017-11-22 | End effector control and calibration system |
Publications (2)
Publication Number | Publication Date |
---|---|
BR112019010912A2 true BR112019010912A2 (pt) | 2019-10-01 |
BR112019010912B1 BR112019010912B1 (pt) | 2023-09-26 |
Family
ID=60703068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112019010912-9A BR112019010912B1 (pt) | 2016-11-29 | 2017-11-22 | Aparelho para controlar um atuador de extremidade |
Country Status (7)
Country | Link |
---|---|
US (2) | US11266430B2 (pt) |
EP (1) | EP3547939A1 (pt) |
JP (1) | JP7210447B2 (pt) |
KR (1) | KR20190091307A (pt) |
CN (1) | CN110352040A (pt) |
BR (1) | BR112019010912B1 (pt) |
WO (1) | WO2018102210A1 (pt) |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
JP6165780B2 (ja) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ロボット制御式の手術器具 |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
IN2015DN02432A (pt) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11806554B2 (en) * | 2017-10-03 | 2023-11-07 | Profound Medical Inc. | Multi-channel real-time phase modulation for EMI reduction in an ultrasound device |
US11540856B2 (en) * | 2018-05-31 | 2023-01-03 | Covidien Lp | Methods and systems for ultrasonic vessel sealing |
TWI747079B (zh) * | 2019-11-19 | 2021-11-21 | 財團法人資訊工業策進會 | 機械手臂的定位精度量測系統與方法 |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
GB2597925B (en) | 2020-08-03 | 2024-05-22 | Gyrus Medical Ltd | A flow valve position sensor for an electrosurgical device |
WO2023073524A2 (en) * | 2021-10-25 | 2023-05-04 | Cilag Gmbh International | Electrodes and methods for use with a multi-layer clamp arm pad to enhance the performance of a surgical device |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
CN114081564B (zh) * | 2021-11-12 | 2024-04-05 | 苏州优脉瑞医疗科技有限公司 | 一种防止多层缝合的肠道动力吻合器 |
CN115813492A (zh) * | 2022-07-22 | 2023-03-21 | 武汉迈瑞医疗技术研究院有限公司 | 超声刀能量输出控制系统、方法及计算机可读存储介质 |
Family Cites Families (2840)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE25033E (en) | 1961-08-29 | Vibratory machine tool and vibratory abrasion method | ||
US1570025A (en) | 1926-01-19 | John van doiten yottng | ||
US969528A (en) | 1909-12-23 | 1910-09-06 | Reuben B Disbrow | Butter-spade. |
US1813902A (en) | 1928-01-18 | 1931-07-14 | Liebel Flarsheim Co | Electrosurgical apparatus |
US2188497A (en) | 1936-09-24 | 1940-01-30 | Waldorf Paper Prod Co | Container and method of making the same |
US2366274A (en) | 1942-06-03 | 1945-01-02 | Brunswick Balke Collender Co | Plastic fastening means and method of applying the same |
US2510693A (en) | 1944-03-29 | 1950-06-06 | Lee B Green | Fastening member |
US2425245A (en) | 1945-03-30 | 1947-08-05 | Conrad B Johnson | Cushion grip for air hammers and the like |
US2458152A (en) | 1945-04-03 | 1949-01-04 | Us Rubber Co | Plastic rivet and method of making same |
US2442966A (en) | 1946-09-07 | 1948-06-08 | American Cystoscope Makers Inc | Electrosurgical resecting instrument |
US2597564A (en) | 1948-01-31 | 1952-05-20 | Kenly C Bugg | Stitch and seam opener |
US2704333A (en) | 1951-03-15 | 1955-03-15 | Raytheon Mfg Co | Ultrasonic vibratory devices |
US2748967A (en) | 1952-03-19 | 1956-06-05 | William B Roach | Bottle closure |
US2849788A (en) | 1952-08-02 | 1958-09-02 | A V Roe Canada Ltd | Method and apparatus for making hollow blades |
US3033407A (en) | 1953-07-03 | 1962-05-08 | Union Carbide Corp | Bottle closures |
US2736960A (en) | 1954-01-29 | 1956-03-06 | James A Armstrong | Razor blade knife |
US2874470A (en) | 1954-05-28 | 1959-02-24 | James R Richards | High frequency dental tool |
DE1008144B (de) | 1955-02-26 | 1957-05-09 | Artur Haerter K G | Elektrisches Trockenrasiergeraet |
NL106732C (pt) | 1955-03-08 | |||
US2845072A (en) | 1955-06-21 | 1958-07-29 | William A Shafer | Surgical knife |
US3053124A (en) | 1959-11-16 | 1962-09-11 | Cavitron Ultrasonics Inc | Ultrasonic welding |
US3015961A (en) | 1960-05-02 | 1962-01-09 | Sheffield Corp | Machine component |
US3166971A (en) | 1960-11-23 | 1965-01-26 | Air Reduction | Riveting by electric discharge |
US3082805A (en) | 1960-12-21 | 1963-03-26 | John H Royce | Tissue macerator |
US3433226A (en) | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US3322403A (en) | 1965-11-15 | 1967-05-30 | Gray Company Inc | Agitator |
US3616375A (en) | 1966-03-03 | 1971-10-26 | Inoue K | Method employing wave energy for the extraction of sulfur from petroleum and the like |
US3525912A (en) | 1966-03-28 | 1970-08-25 | Scovill Manufacturing Co | Selectable power source for a motor driven appliance |
US3432691A (en) | 1966-09-15 | 1969-03-11 | Branson Instr | Oscillatory circuit for electro-acoustic converter |
US3526219A (en) | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3554198A (en) | 1967-08-04 | 1971-01-12 | Cardiac Electronics Inc | Patient-isolating circuitry for cardiac facing device |
US3636943A (en) | 1967-10-27 | 1972-01-25 | Ultrasonic Systems | Ultrasonic cauterization |
US3514856A (en) | 1967-10-30 | 1970-06-02 | Corning Glass Works | Razor blade configuration |
US3606682A (en) | 1967-10-30 | 1971-09-21 | Corning Glass Works | Razor blades |
US3513848A (en) | 1967-12-11 | 1970-05-26 | Ultrasonic Systems | Ultrasonic suturing |
US3489930A (en) | 1968-07-29 | 1970-01-13 | Branson Instr | Apparatus for controlling the power supplied to an ultrasonic transducer |
US3580841A (en) | 1969-07-31 | 1971-05-25 | Us Interior | Ultrathin semipermeable membrane |
US3629726A (en) | 1969-08-29 | 1971-12-21 | Surgical Design Corp | Oscillator and oscillator control circuit |
US3614484A (en) | 1970-03-25 | 1971-10-19 | Branson Instr | Ultrasonic motion adapter for a machine tool |
US3668486A (en) | 1971-01-08 | 1972-06-06 | Crest Ultrasonics Corp | Load-sensitive generator for driving piezo-electric transducers |
US3809977A (en) | 1971-02-26 | 1974-05-07 | Ultrasonic Systems | Ultrasonic kits and motor systems |
US3924335A (en) | 1971-02-26 | 1975-12-09 | Ultrasonic Systems | Ultrasonic dental and other instrument means and methods |
US3703651A (en) | 1971-07-12 | 1972-11-21 | Kollmorgen Corp | Temperature-controlled integrated circuits |
US3776238A (en) | 1971-08-24 | 1973-12-04 | Univ California | Ophthalmic instrument |
US3777760A (en) | 1971-09-09 | 1973-12-11 | H Essner | Surgical stick |
US3702948A (en) | 1972-01-07 | 1972-11-14 | Ultrasonic Systems | Ultrasonic motors and scissors |
US3885438A (en) | 1972-02-04 | 1975-05-27 | Sr Rano J Harris | Automatic fluid injector |
US3805787A (en) | 1972-06-16 | 1974-04-23 | Surgical Design Corp | Ultrasonic surgical instrument |
US3830098A (en) | 1973-03-22 | 1974-08-20 | Blackstone Corp | Output monitored electromechanical devices |
US3900823A (en) | 1973-03-28 | 1975-08-19 | Nathan O Sokal | Amplifying and processing apparatus for modulated carrier signals |
US5172344A (en) | 1973-06-29 | 1992-12-15 | Raytheon Company | Deep submergence transducer |
US4058126A (en) | 1973-08-02 | 1977-11-15 | Leveen Harry H | Device for the fracture of the blood vessel lining |
DE2339827B2 (de) | 1973-08-06 | 1977-02-24 | A6 In 3-02 | Zahnaerztliches geraet |
US3918442A (en) | 1973-10-10 | 1975-11-11 | Georgy Alexandrovich Nikolaev | Surgical instrument for ultrasonic joining of biological tissue |
US3875945A (en) | 1973-11-02 | 1975-04-08 | Demetron Corp | Electrosurgery instrument |
JPS50100891A (pt) | 1973-12-21 | 1975-08-09 | ||
US3854737A (en) | 1974-01-21 | 1974-12-17 | Chemprene | Combination rotary and reciprocating unitary sealing mechanism |
US4012647A (en) | 1974-01-31 | 1977-03-15 | Ultrasonic Systems, Inc. | Ultrasonic motors and converters |
US3956826A (en) | 1974-03-19 | 1976-05-18 | Cavitron Corporation | Ultrasonic device and method |
US3946738A (en) | 1974-10-24 | 1976-03-30 | Newton David W | Leakage current cancelling circuit for use with electrosurgical instrument |
US3955859A (en) | 1975-03-25 | 1976-05-11 | The Torrington Company | Bearing with multiple lip seal |
US4005714A (en) | 1975-05-03 | 1977-02-01 | Richard Wolf Gmbh | Bipolar coagulation forceps |
US4074719A (en) | 1975-07-12 | 1978-02-21 | Kurt Semm | Method of and device for causing blood coagulation |
US4034762A (en) | 1975-08-04 | 1977-07-12 | Electro Medical Systems, Inc. | Vas cautery apparatus |
DE2646229A1 (de) | 1976-10-13 | 1978-04-20 | Erbe Elektromedizin | Hochfrequenz-chirurgiegeraet |
DE2656278B2 (de) | 1976-12-11 | 1979-03-15 | Kurt Prof. Dr.Med. 2300 Kiel Semm | Elektrokoagulationsinstrument und |
US4203430A (en) | 1976-12-16 | 1980-05-20 | Nagashige Takahashi | Device for controlling curvature of an end section in an endoscope |
US4180074A (en) | 1977-03-15 | 1979-12-25 | Fibra-Sonics, Inc. | Device and method for applying precise irrigation, aspiration, medication, ultrasonic power and dwell time to biotissue for surgery and treatment |
US4167944A (en) | 1977-06-27 | 1979-09-18 | Surgical Design Corp. | Rotatable surgical cutting instrument with improved cutter blade wear |
US4300083A (en) | 1977-07-05 | 1981-11-10 | Automation Devices, Inc. | Constant amplitude controller and method |
US4200106A (en) | 1977-10-11 | 1980-04-29 | Dinkelkamp Henry T | Fixed arc cyclic ophthalmic surgical instrument |
US4203444A (en) | 1977-11-07 | 1980-05-20 | Dyonics, Inc. | Surgical instrument suitable for closed surgery such as of the knee |
US4188927A (en) | 1978-01-12 | 1980-02-19 | Valleylab, Inc. | Multiple source electrosurgical generator |
US4304987A (en) | 1978-09-18 | 1981-12-08 | Raychem Corporation | Electrical devices comprising conductive polymer compositions |
GB2032221A (en) | 1978-10-23 | 1980-04-30 | Keeler Instr Ltd | Hand Held Ultrasonic Transducer Instrument |
US4237441A (en) | 1978-12-01 | 1980-12-02 | Raychem Corporation | Low resistivity PTC compositions |
JPS5590195A (en) | 1978-12-28 | 1980-07-08 | Ootake Seisakusho:Kk | Ultrasonic oscillator with output meter |
SU850068A1 (ru) | 1979-06-01 | 1981-07-30 | Всесоюзный Научно-Исследовательскийинститут Медицинского Приборостроения | Устройство дл ультразвуковойХиРуРгии |
US4461304A (en) | 1979-11-05 | 1984-07-24 | Massachusetts Institute Of Technology | Microelectrode and assembly for parallel recording of neurol groups |
US4314559A (en) | 1979-12-12 | 1982-02-09 | Corning Glass Works | Nonstick conductive coating |
US4281785A (en) | 1979-12-21 | 1981-08-04 | Dayco Corporation | Stapling apparatus and method and thermoplastic stables used therewith |
US4545926A (en) | 1980-04-21 | 1985-10-08 | Raychem Corporation | Conductive polymer compositions and devices |
JPS614260B2 (pt) | 1980-05-13 | 1986-02-07 | Amerikan Hosupitaru Sapurai Corp | |
US4306570A (en) | 1980-08-20 | 1981-12-22 | Matthews Larry S | Counter rotating biopsy needle |
US4353371A (en) | 1980-09-24 | 1982-10-12 | Cosman Eric R | Longitudinally, side-biting, bipolar coagulating, surgical instrument |
US4562838A (en) | 1981-01-23 | 1986-01-07 | Walker William S | Electrosurgery instrument |
US5026370A (en) | 1981-03-11 | 1991-06-25 | Lottick Edward A | Electrocautery instrument |
US4409981A (en) | 1981-07-20 | 1983-10-18 | Minnesota Mining And Manufacturing Company | Medical electrode |
US4463759A (en) | 1982-01-13 | 1984-08-07 | Garito Jon C | Universal finger/foot switch adaptor for tube-type electrosurgical instrument |
US4535773A (en) | 1982-03-26 | 1985-08-20 | Inbae Yoon | Safety puncturing instrument and method |
GB2119102B (en) | 1982-04-01 | 1985-09-04 | Victor Company Of Japan | Load impedance detector for audio power amplifiers |
US4512344A (en) | 1982-05-12 | 1985-04-23 | Barber Forest C | Arthroscopic surgery dissecting apparatus |
US4445063A (en) | 1982-07-26 | 1984-04-24 | Solid State Systems, Corporation | Energizing circuit for ultrasonic transducer |
US4491132A (en) | 1982-08-06 | 1985-01-01 | Zimmer, Inc. | Sheath and retractable surgical tool combination |
US4545374A (en) | 1982-09-03 | 1985-10-08 | Jacobson Robert E | Method and instruments for performing a percutaneous lumbar diskectomy |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4553544A (en) | 1982-09-20 | 1985-11-19 | Janome Sewing Machine Co. Ltd. | Suturing instrument for surgical operation |
US4504264A (en) | 1982-09-24 | 1985-03-12 | Kelman Charles D | Apparatus for and method of removal of material using ultrasonic vibraton |
US4526571A (en) | 1982-10-15 | 1985-07-02 | Cooper Lasersonics, Inc. | Curved ultrasonic surgical aspirator |
EP0111386B1 (en) | 1982-10-26 | 1987-11-19 | University Of Aberdeen | Ultrasound hyperthermia unit |
JPS5968513U (ja) | 1982-10-28 | 1984-05-09 | 持田製薬株式会社 | 超音波メス用ホ−ン |
DE3301890C2 (de) | 1983-01-21 | 1986-04-10 | W.C. Heraeus Gmbh, 6450 Hanau | Wundhaken |
US4593691A (en) | 1983-07-13 | 1986-06-10 | Concept, Inc. | Electrosurgery electrode |
JPS6045668A (ja) | 1983-08-23 | 1985-03-12 | 廣瀬 徳三 | 縫い糸の機能を果す樹脂針を用いる縫合装置 |
DE3480462D1 (en) | 1983-09-13 | 1989-12-21 | Valleylab Inc | Electrosurgical generator |
US4550870A (en) | 1983-10-13 | 1985-11-05 | Alchemia Ltd. Partnership | Stapling device |
US4808154A (en) | 1983-10-26 | 1989-02-28 | Freeman Jerre M | Phacoemulsification/irrigation and aspiration sleeve apparatus |
US4878493A (en) | 1983-10-28 | 1989-11-07 | Ninetronix Venture I | Hand-held diathermy apparatus |
US4494759A (en) | 1983-10-31 | 1985-01-22 | Kieffer Robert A | Seal for relatively rotatable parts |
JPS60104872A (ja) | 1983-11-09 | 1985-06-10 | Nippon Pillar Packing Co Ltd | 非常用軸封装置 |
US4574615A (en) | 1983-12-19 | 1986-03-11 | The Babcock & Wilcox Company | Sonic apparatus and method for detecting the presence of a gaseous substance in a closed space |
US4617927A (en) | 1984-02-29 | 1986-10-21 | Aspen Laboratories, Inc. | Electrosurgical unit |
US4633119A (en) | 1984-07-02 | 1986-12-30 | Gould Inc. | Broadband multi-resonant longitudinal vibrator transducer |
US4641053A (en) | 1984-08-14 | 1987-02-03 | Matsushita Seiko Co., Ltd. | Ultrasonic liquid atomizer with an improved soft start circuit |
EP0171967A3 (en) | 1984-08-15 | 1987-11-04 | Valleylab, Inc. | Electrosurgical generator |
US4633874A (en) | 1984-10-19 | 1987-01-06 | Senmed, Inc. | Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge |
US4608981A (en) | 1984-10-19 | 1986-09-02 | Senmed, Inc. | Surgical stapling instrument with staple height adjusting mechanism |
US4634420A (en) | 1984-10-31 | 1987-01-06 | United Sonics Incorporated | Apparatus and method for removing tissue mass from an organism |
US4649919A (en) | 1985-01-23 | 1987-03-17 | Precision Surgical Instruments, Inc. | Surgical instrument |
US4739759A (en) | 1985-02-26 | 1988-04-26 | Concept, Inc. | Microprocessor controlled electrosurgical generator |
US4640279A (en) | 1985-08-08 | 1987-02-03 | Oximetrix, Inc. | Combination surgical scalpel and electrosurgical instrument |
US4750488A (en) | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4922902A (en) | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US4712722A (en) | 1985-09-04 | 1987-12-15 | Eg&G, Inc. | Concurrent ultrasonic weld evaluation system |
JPH0712111B2 (ja) | 1985-09-04 | 1995-02-08 | ユーエフイー・インコーポレイテッド | 電気回路埋設方法及びプラスチック製品 |
JPS6266848A (ja) | 1985-09-20 | 1987-03-26 | 住友ベークライト株式会社 | 外科手術用具 |
US4674502A (en) | 1985-09-27 | 1987-06-23 | Coopervision, Inc. | Intraocular surgical instrument |
US4708127A (en) | 1985-10-24 | 1987-11-24 | The Birtcher Corporation | Ultrasonic generating system with feedback control |
US4662068A (en) | 1985-11-14 | 1987-05-05 | Eli Polonsky | Suture fusing and cutting apparatus |
US4646738A (en) | 1985-12-05 | 1987-03-03 | Concept, Inc. | Rotary surgical tool |
JPH0796017B2 (ja) | 1986-03-20 | 1995-10-18 | オリンパス光学工業株式会社 | 生体組織切除装置 |
JPH0767460B2 (ja) | 1986-03-28 | 1995-07-26 | オリンパス光学工業株式会社 | 超音波処置装置 |
US4827911A (en) | 1986-04-02 | 1989-05-09 | Cooper Lasersonics, Inc. | Method and apparatus for ultrasonic surgical fragmentation and removal of tissue |
US4694835A (en) | 1986-05-21 | 1987-09-22 | Minnesota Mining And Manufacturing Company | Biomedical electrode |
JPS62292153A (ja) | 1986-06-13 | 1987-12-18 | オリンパス光学工業株式会社 | 超音波生体組織切除プロ−ブ |
JPS62292154A (ja) | 1986-06-13 | 1987-12-18 | オリンパス光学工業株式会社 | 超音波生体組織切除プロ−ブ |
DE3689889D1 (de) | 1986-07-17 | 1994-07-07 | Erbe Elektromedizin | Hochfrequenz-Chirurgiegerät für die thermische Koagulation biologischer Gewebe. |
US4735603A (en) | 1986-09-10 | 1988-04-05 | James H. Goodson | Laser smoke evacuation system and method |
JPH0777161B2 (ja) | 1986-10-24 | 1995-08-16 | 日本メクトロン株式会社 | Ptc組成物、その製造法およびptc素子 |
JPS63109386A (ja) | 1986-10-28 | 1988-05-14 | Honda Denshi Giken:Kk | 超音波センサの温度補償方法 |
US4954960A (en) | 1986-11-07 | 1990-09-04 | Alcon Laboratories | Linear power control for ultrasonic probe with tuned reactance |
EP0270819A3 (en) | 1986-11-07 | 1989-01-11 | Alcon Laboratories, Inc. | Linear power control for ultrasonic probe with tuned reactance |
US4852578A (en) | 1986-11-13 | 1989-08-01 | The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Rapidly quantifying the relative distention of a human bladder |
US4761871A (en) | 1986-11-21 | 1988-08-09 | Phillips Petroleum Company | Method of joining two thermoplastic articles |
US4836186A (en) | 1987-01-16 | 1989-06-06 | Scholz Francis J | Body compression device for patients under fluoroscopic examination |
US4838853A (en) | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
DE8702446U1 (de) | 1987-02-18 | 1987-10-08 | Kothe, Lutz, 7760 Radolfzell | Medizinische Vorrichtung |
DE3807004A1 (de) | 1987-03-02 | 1988-09-15 | Olympus Optical Co | Ultraschall-behandlungsgeraet |
US5001649A (en) | 1987-04-06 | 1991-03-19 | Alcon Laboratories, Inc. | Linear power control for ultrasonic probe with tuned reactance |
IL82163A (en) | 1987-04-10 | 1990-07-26 | Laser Ind Ltd | Optical-fiber type power transmission device |
US4936842A (en) | 1987-05-08 | 1990-06-26 | Circon Corporation | Electrosurgical probe apparatus |
US5106538A (en) | 1987-07-21 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
JP2568564B2 (ja) | 1987-07-21 | 1997-01-08 | 松下電器産業株式会社 | ライニング材及びそのライニング材を用いた超音波駆動モ−タ |
US4850354A (en) | 1987-08-13 | 1989-07-25 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4867157A (en) | 1987-08-13 | 1989-09-19 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4819635A (en) | 1987-09-18 | 1989-04-11 | Henry Shapiro | Tubular microsurgery cutting apparatus |
US4844064A (en) | 1987-09-30 | 1989-07-04 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument with end and side openings |
US5015227A (en) | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4915643A (en) | 1987-10-28 | 1990-04-10 | Yazaki Corporation | Connector |
US5035695A (en) | 1987-11-30 | 1991-07-30 | Jaroy Weber, Jr. | Extendable electrocautery surgery apparatus and method |
JPH01151452A (ja) | 1987-12-09 | 1989-06-14 | Olympus Optical Co Ltd | 超音波吸引装置 |
JPH01198540A (ja) | 1987-12-24 | 1989-08-10 | Sumitomo Bakelite Co Ltd | 排泄処理装置 |
ATE132047T1 (de) | 1988-01-20 | 1996-01-15 | G2 Design Ltd | Diathermiegerät |
US5163421A (en) | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US4926860A (en) | 1988-02-05 | 1990-05-22 | Flexmedics Corporation | ARthroscopic instrumentation and method |
US4862890A (en) | 1988-02-29 | 1989-09-05 | Everest Medical Corporation | Electrosurgical spatula blade with ceramic substrate |
EP0336742A3 (en) | 1988-04-08 | 1990-05-16 | Bristol-Myers Company | Method and apparatus for the calibration of electrosurgical apparatus |
JPH0532094Y2 (pt) | 1988-05-17 | 1993-08-18 | ||
US4910389A (en) | 1988-06-03 | 1990-03-20 | Raychem Corporation | Conductive polymer compositions |
US4880015A (en) | 1988-06-03 | 1989-11-14 | Nierman David M | Biopsy forceps |
US4965532A (en) | 1988-06-17 | 1990-10-23 | Olympus Optical Co., Ltd. | Circuit for driving ultrasonic transducer |
US6417969B1 (en) | 1988-07-01 | 2002-07-09 | Deluca Michael | Multiple viewer headset display apparatus and method with second person icon display |
US4896009A (en) | 1988-07-11 | 1990-01-23 | James River Corporation | Gas permeable microwave reactive package |
US4865159A (en) | 1988-07-18 | 1989-09-12 | Jamison Michael V | Acoustic horn and attachment device |
JP3088004B2 (ja) | 1989-04-28 | 2000-09-18 | 株式会社東芝 | 操作指令装置 |
US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
US4903696A (en) | 1988-10-06 | 1990-02-27 | Everest Medical Corporation | Electrosurgical generator |
JPH0529698Y2 (pt) | 1988-10-27 | 1993-07-29 | ||
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US5318570A (en) | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
US5061269A (en) | 1989-02-07 | 1991-10-29 | Joseph J. Berke | Surgical rongeur power grip structure and method |
US5084052A (en) | 1989-02-09 | 1992-01-28 | Baxter International Inc. | Surgical cutting instrument with plurality of openings |
DE3904558C2 (de) | 1989-02-15 | 1997-09-18 | Lindenmeier Heinz | Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie |
US4981756A (en) | 1989-03-21 | 1991-01-01 | Vac-Tec Systems, Inc. | Method for coated surgical instruments and tools |
US5653713A (en) | 1989-04-24 | 1997-08-05 | Michelson; Gary Karlin | Surgical rongeur |
US5451227A (en) | 1989-04-24 | 1995-09-19 | Michaelson; Gary K. | Thin foot plate multi bite rongeur |
US5009661A (en) | 1989-04-24 | 1991-04-23 | Michelson Gary K | Protective mechanism for surgical rongeurs |
US6129740A (en) | 1989-04-24 | 2000-10-10 | Michelson; Gary Karlin | Instrument handle design |
JPH02286149A (ja) | 1989-04-27 | 1990-11-26 | Sumitomo Bakelite Co Ltd | 外科手術装置 |
CA2007210C (en) | 1989-05-10 | 1996-07-09 | Stephen D. Kuslich | Intervertebral reamer |
JP2829864B2 (ja) | 1989-07-05 | 1998-12-02 | 株式会社トプコン | 手術用カッター |
US5226910A (en) | 1989-07-05 | 1993-07-13 | Kabushiki Kaisha Topcon | Surgical cutter |
DE3923851C1 (pt) | 1989-07-19 | 1990-08-16 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
US5123903A (en) | 1989-08-10 | 1992-06-23 | Medical Products Development, Inc. | Disposable aspiration sleeve for ultrasonic lipectomy |
US5226909A (en) | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
EP0613650A3 (en) | 1989-10-13 | 1995-01-18 | Machida Endoscope Co Ltd | Bending device. |
DE69019289T2 (de) | 1989-10-27 | 1996-02-01 | Storz Instr Co | Verfahren zum Antreiben eines Ultraschallwandlers. |
US5105117A (en) | 1989-10-31 | 1992-04-14 | Brother Kogyo Kabushiki Kaisha | Ultrasonic motor |
US5167619A (en) | 1989-11-17 | 1992-12-01 | Sonokineticss Group | Apparatus and method for removal of cement from bone cavities |
US5176677A (en) | 1989-11-17 | 1993-01-05 | Sonokinetics Group | Endoscopic ultrasonic rotary electro-cauterizing aspirator |
US5797958A (en) | 1989-12-05 | 1998-08-25 | Yoon; Inbae | Endoscopic grasping instrument with scissors |
US5984938A (en) | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Surgical instrument with jaws and movable internal scissors and method for use thereof |
US6099550A (en) | 1989-12-05 | 2000-08-08 | Yoon; Inbae | Surgical instrument having jaws and an operating channel and method for use thereof |
US5665100A (en) | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5108383A (en) | 1989-12-08 | 1992-04-28 | Allied-Signal Inc. | Membranes for absorbent packets |
IL93141A0 (en) | 1990-01-23 | 1990-11-05 | Urcan Medical Ltd | Ultrasonic recanalization system |
US5391144A (en) | 1990-02-02 | 1995-02-21 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5126618A (en) | 1990-03-06 | 1992-06-30 | Brother Kogyo Kabushiki Kaisha | Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver |
US5263957A (en) | 1990-03-12 | 1993-11-23 | Ultracision Inc. | Ultrasonic scalpel blade and methods of application |
US5026387A (en) | 1990-03-12 | 1991-06-25 | Ultracision Inc. | Method and apparatus for ultrasonic surgical cutting and hemostatis |
US5167725A (en) | 1990-08-01 | 1992-12-01 | Ultracision, Inc. | Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel |
US5112300A (en) | 1990-04-03 | 1992-05-12 | Alcon Surgical, Inc. | Method and apparatus for controlling ultrasonic fragmentation of body tissue |
US5075839A (en) | 1990-04-05 | 1991-12-24 | General Electric Company | Inductor shunt, output voltage regulation system for a power supply |
JPH03296308A (ja) | 1990-04-13 | 1991-12-27 | Advantest Corp | 波形発生器 |
US5241968A (en) | 1990-05-10 | 1993-09-07 | Symbiosis Corporation | Single acting endoscopic instruments |
US5507297A (en) | 1991-04-04 | 1996-04-16 | Symbiosis Corporation | Endoscopic instruments having detachable proximal handle and distal portions |
US5156633A (en) | 1990-05-10 | 1992-10-20 | Symbiosis Corporation | Maryland dissector laparoscopic instrument |
JPH0546429Y2 (pt) | 1990-06-21 | 1993-12-06 | ||
CA2042006C (en) | 1990-05-11 | 1995-08-29 | Morito Idemoto | Surgical ultrasonic horn |
WO1991017716A1 (en) | 1990-05-17 | 1991-11-28 | Sumitomo Bakelite Company Limited | Surgical instrument |
USD327872S (en) | 1990-06-06 | 1992-07-14 | Raychem Corporation | Coaxial cable connector |
US5275609A (en) | 1990-06-22 | 1994-01-04 | Vance Products Incorporated | Surgical cutting instrument |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
JP2863280B2 (ja) | 1990-07-04 | 1999-03-03 | アスモ株式会社 | 超音波モータの駆動方法 |
JPH0621450Y2 (ja) | 1990-07-05 | 1994-06-08 | アロカ株式会社 | 超音波手術器 |
JP2987175B2 (ja) | 1990-07-05 | 1999-12-06 | オリンパス光学工業株式会社 | 超音波治療装置 |
US5911699A (en) | 1990-07-17 | 1999-06-15 | Aziz Yehia Anis | Removal of tissue |
US5218529A (en) | 1990-07-30 | 1993-06-08 | University Of Georgia Research Foundation, Inc. | Neural network system and methods for analysis of organic materials and structures using spectral data |
USD332660S (en) | 1990-09-17 | 1993-01-19 | United States Surgical Corporation | Surgical clip applier |
US5725529A (en) | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US5104025A (en) | 1990-09-28 | 1992-04-14 | Ethicon, Inc. | Intraluminal anastomotic surgical stapler with detached anvil |
US5486189A (en) | 1990-10-05 | 1996-01-23 | United States Surgical Corporation | Endoscopic surgical instrument |
US5509922A (en) | 1990-10-05 | 1996-04-23 | United States Surgical Corporation | Endoscopic surgical instrument |
JPH04150847A (ja) | 1990-10-12 | 1992-05-25 | Katsuya Takasu | わきが手術装置およびその手術用チップ |
US5042707A (en) | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5190541A (en) | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
JP2960954B2 (ja) | 1990-10-17 | 1999-10-12 | オリンパス光学工業株式会社 | 超音波治療装置 |
US5242460A (en) | 1990-10-25 | 1993-09-07 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having axially-disposed cutting edge |
US5152762A (en) | 1990-11-16 | 1992-10-06 | Birtcher Medical Systems, Inc. | Current leakage control for electrosurgical generator |
US5162044A (en) | 1990-12-10 | 1992-11-10 | Storz Instrument Company | Phacoemulsification transducer with rotatable handle |
US5052145A (en) | 1990-12-26 | 1991-10-01 | Wang Wen Chang | Electric fishing float |
US5304115A (en) | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5447509A (en) | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5368557A (en) | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5222937A (en) | 1991-01-11 | 1993-06-29 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5184605A (en) | 1991-01-31 | 1993-02-09 | Excel Tech Ltd. | Therapeutic ultrasound generator with radiation dose control |
WO1992014514A1 (en) | 1991-02-13 | 1992-09-03 | Applied Medical Resources, Inc. | Surgical trocar |
US5231989A (en) | 1991-02-15 | 1993-08-03 | Raychem Corporation | Steerable cannula |
GB9103777D0 (en) | 1991-02-22 | 1991-04-10 | B & W Loudspeakers | Analogue and digital convertors |
US5438997A (en) | 1991-03-13 | 1995-08-08 | Sieben; Wayne | Intravascular imaging apparatus and methods for use and manufacture |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
US5109819A (en) | 1991-03-29 | 1992-05-05 | Cummins Electronics Company, Inc. | Accelerator control system for a motor vehicle |
JP3064458B2 (ja) | 1991-04-02 | 2000-07-12 | 日本電気株式会社 | 厚み縦振動圧電磁器トランスとその駆動方法 |
US5258004A (en) | 1991-04-04 | 1993-11-02 | Symbiosis Corporation | Double acting, dual pivot thoracoscopic surgical lung clamps |
US5396900A (en) | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5163537A (en) | 1991-04-29 | 1992-11-17 | Simmons-Rand Company | Battery changing system for electric battery-powered vehicles |
US5160334A (en) | 1991-04-30 | 1992-11-03 | Utah Medical Products, Inc. | Electrosurgical generator and suction apparatus |
US5221282A (en) | 1991-05-29 | 1993-06-22 | Sonokinetics Group | Tapered tip ultrasonic aspirator |
US5190517A (en) | 1991-06-06 | 1993-03-02 | Valleylab Inc. | Electrosurgical and ultrasonic surgical system |
US5484436A (en) | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5324289A (en) | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5196007A (en) | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US5234428A (en) | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
US5383917A (en) | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5176695A (en) | 1991-07-08 | 1993-01-05 | Davinci Medical, Inc. | Surgical cutting means |
USD334173S (en) | 1991-07-17 | 1993-03-23 | Pan-International Industrial Corp. | Plastic outer shell for a computer connector |
US5257988A (en) | 1991-07-19 | 1993-11-02 | L'esperance Medical Technologies, Inc. | Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment |
JP3197310B2 (ja) | 1991-07-24 | 2001-08-13 | オリンパス光学工業株式会社 | 処置装置 |
US5383888A (en) | 1992-02-12 | 1995-01-24 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
JPH0541716A (ja) | 1991-08-05 | 1993-02-19 | Matsushita Electric Ind Co Ltd | デジタル伝送方式 |
US5387207A (en) | 1991-08-12 | 1995-02-07 | The Procter & Gamble Company | Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same |
GR920100358A (el) | 1991-08-23 | 1993-06-07 | Ethicon Inc | Οργανο συρραφής χειρουργικής αναστομώσεως. |
US5246003A (en) | 1991-08-28 | 1993-09-21 | Nellcor Incorporated | Disposable pulse oximeter sensor |
US5285795A (en) | 1991-09-12 | 1994-02-15 | Surgical Dynamics, Inc. | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
US5275607A (en) | 1991-09-23 | 1994-01-04 | Visionary Medical, Inc. | Intraocular surgical scissors |
US5476479A (en) | 1991-09-26 | 1995-12-19 | United States Surgical Corporation | Handle for endoscopic surgical instruments and jaw structure |
JPH0595955A (ja) | 1991-10-07 | 1993-04-20 | Olympus Optical Co Ltd | 超音波治療装置 |
CA2535467C (en) | 1991-10-09 | 2008-04-01 | Ethicon, Inc. | Electrosurgical device |
USD347474S (en) | 1991-10-11 | 1994-05-31 | Ethicon, Inc. | Endoscopic stapler |
US5242339A (en) | 1991-10-15 | 1993-09-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Apparatus and method for measuring subject work rate on an exercise device |
US5395312A (en) | 1991-10-18 | 1995-03-07 | Desai; Ashvin | Surgical tool |
US6250532B1 (en) | 1991-10-18 | 2001-06-26 | United States Surgical Corporation | Surgical stapling apparatus |
US5711472A (en) | 1991-10-18 | 1998-01-27 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5163945A (en) | 1991-10-18 | 1992-11-17 | Ethicon, Inc. | Surgical clip applier |
US5312023A (en) | 1991-10-18 | 1994-05-17 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5478003A (en) | 1991-10-18 | 1995-12-26 | United States Surgical Corporation | Surgical apparatus |
US5307976A (en) | 1991-10-18 | 1994-05-03 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US5562703A (en) | 1994-06-14 | 1996-10-08 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5326013A (en) | 1991-10-18 | 1994-07-05 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
JPH05115490A (ja) | 1991-10-25 | 1993-05-14 | Olympus Optical Co Ltd | 超音波処置装置 |
US5665085A (en) | 1991-11-01 | 1997-09-09 | Medical Scientific, Inc. | Electrosurgical cutting tool |
US5531744A (en) | 1991-11-01 | 1996-07-02 | Medical Scientific, Inc. | Alternative current pathways for bipolar surgical cutting tool |
US5713896A (en) | 1991-11-01 | 1998-02-03 | Medical Scientific, Inc. | Impedance feedback electrosurgical system |
JPH07500757A (ja) | 1991-11-08 | 1995-01-26 | イーピー テクノロジーズ,インコーポレイテッド | 組織のインピーダンスをモニタしながら組織を切除するシステム及び方法 |
US5383874A (en) | 1991-11-08 | 1995-01-24 | Ep Technologies, Inc. | Systems for identifying catheters and monitoring their use |
US5197964A (en) | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5254129A (en) | 1991-11-22 | 1993-10-19 | Alexander Chris B | Arthroscopic resector |
US5433725A (en) | 1991-12-13 | 1995-07-18 | Unisurge, Inc. | Hand-held surgical device and tools for use therewith, assembly and method |
US6210402B1 (en) | 1995-11-22 | 2001-04-03 | Arthrocare Corporation | Methods for electrosurgical dermatological treatment |
US5324299A (en) | 1992-02-03 | 1994-06-28 | Ultracision, Inc. | Ultrasonic scalpel blade and methods of application |
WO1993014708A1 (en) | 1992-02-03 | 1993-08-05 | Ultracision Inc. | Laparoscopic surgical apparatus and methods using ultrasonic energy |
AU663543B2 (en) | 1992-02-07 | 1995-10-12 | Sherwood Services Ag | Ultrasonic surgical apparatus |
US5387215A (en) | 1992-02-12 | 1995-02-07 | Sierra Surgical Inc. | Surgical instrument for cutting hard tissue and method of use |
US5626595A (en) | 1992-02-14 | 1997-05-06 | Automated Medical Instruments, Inc. | Automated surgical instrument |
US5645075A (en) | 1992-02-18 | 1997-07-08 | Symbiosis Corporation | Jaw assembly for an endoscopic instrument |
US5428504A (en) | 1992-02-18 | 1995-06-27 | Motorola, Inc. | Cooling cover for RF power devices |
US5261922A (en) | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US5695510A (en) | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5269297A (en) | 1992-02-27 | 1993-12-14 | Angiosonics Inc. | Ultrasonic transmission apparatus |
US5213569A (en) | 1992-03-31 | 1993-05-25 | Davis Peter L | Tip for a tissue phacoemulsification device |
US5411481A (en) | 1992-04-08 | 1995-05-02 | American Cyanamid Co. | Surgical purse string suturing instrument and method |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5573533A (en) | 1992-04-10 | 1996-11-12 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5620459A (en) | 1992-04-15 | 1997-04-15 | Microsurge, Inc. | Surgical instrument |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5353474A (en) | 1992-05-01 | 1994-10-11 | Good Wayne T | Transferrable personalized grip for a handle assembly and method for making same |
US5293863A (en) | 1992-05-08 | 1994-03-15 | Loma Linda University Medical Center | Bladed endoscopic retractor |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
JP3069819B2 (ja) | 1992-05-28 | 2000-07-24 | 富士通株式会社 | ヒートシンク並びに該ヒートシンクに用いるヒートシンク取付具及びヒートシンクを用いた可搬型電子装置 |
US5658300A (en) | 1992-06-04 | 1997-08-19 | Olympus Optical Co., Ltd. | Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues |
US5318563A (en) | 1992-06-04 | 1994-06-07 | Valley Forge Scientific Corporation | Bipolar RF generator |
US5906625A (en) | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
JP3098858B2 (ja) | 1992-06-08 | 2000-10-16 | オリンパス光学工業株式会社 | 超音波モータ |
DE69316894T2 (de) | 1992-06-24 | 1998-09-24 | Microsurge Inc | Wiederverwendbares endoskopisches, chirurgisches instrument |
US6449006B1 (en) | 1992-06-26 | 2002-09-10 | Apollo Camera, Llc | LED illumination system for endoscopic cameras |
JP3386517B2 (ja) | 1992-06-26 | 2003-03-17 | オリンパス光学工業株式会社 | 超音波処置装置 |
US5408268A (en) | 1992-06-26 | 1995-04-18 | Apollo Camera, L.L.C. | Video imaging system and method using a single full frame sensor and sequential color object illumination |
US5394187A (en) | 1992-06-26 | 1995-02-28 | Apollo Camera, L.L.C. | Video imaging systems and method using a single interline progressive scanning sensor and sequential color object illumination |
US5264925A (en) | 1992-06-26 | 1993-11-23 | Life Surgery, Inc. | Single sensor video imaging system and method using sequential color object illumination |
US5366466A (en) | 1992-07-09 | 1994-11-22 | Unisurge, Inc. | Surgical scissors |
DE9210327U1 (de) | 1992-07-16 | 1992-11-26 | Kothe, Lutz, 7760 Radolfzell | Zangengriff für medizinische Gerätschaften |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5258006A (en) | 1992-08-21 | 1993-11-02 | Everest Medical Corporation | Bipolar electrosurgical forceps |
US5282817A (en) | 1992-09-08 | 1994-02-01 | Hoogeboom Thomas J | Actuating handle for multipurpose surgical instrument |
US5562659A (en) | 1992-09-09 | 1996-10-08 | Materials Conversion Corp. | Electro-surgical instrument and method of fabrication |
US5282800A (en) | 1992-09-18 | 1994-02-01 | Edward Weck, Inc. | Surgical instrument |
JPH06104503A (ja) | 1992-09-18 | 1994-04-15 | Sharp Corp | バイモルフ型圧電アクチュエータ |
US5662662A (en) | 1992-10-09 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument and method |
US5334198A (en) | 1992-10-09 | 1994-08-02 | Innovasive Devices, Inc. | Surgical instrument |
US5330502A (en) | 1992-10-09 | 1994-07-19 | Ethicon, Inc. | Rotational endoscopic mechanism with jointed drive mechanism |
US5601224A (en) | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5520704A (en) | 1992-10-09 | 1996-05-28 | United States Surgical Corporation | Everting forceps with locking mechanism |
US5626587A (en) | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
US5374813A (en) | 1992-10-15 | 1994-12-20 | Life Surgery, Inc. | Surgical instrument recycling and tracking system |
US5309927A (en) | 1992-10-22 | 1994-05-10 | Ethicon, Inc. | Circular stapler tissue retention spring method |
US5275166A (en) | 1992-11-16 | 1994-01-04 | Ethicon, Inc. | Method and apparatus for performing ultrasonic assisted surgical procedures |
US5395364A (en) | 1993-06-10 | 1995-03-07 | Symbiosis Corporation | Endoscopic instrument incorporating an elastomeric fluid seal |
EP0768840B1 (en) | 1992-11-30 | 2001-12-12 | Sherwood Services AG | Circuitry for an ultrasonic surgical instrument with an energy initiator to maintain the vibration and linear dynamics |
US5342356A (en) | 1992-12-02 | 1994-08-30 | Ellman Alan G | Electrical coupling unit for electrosurgery |
US5400267A (en) | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5558671A (en) | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
DE4300307C2 (de) | 1993-01-08 | 1996-09-19 | Aesculap Ag | Chirurgisches Instrument |
JPH06217988A (ja) | 1993-01-26 | 1994-08-09 | Terumo Corp | 血管穿刺器具 |
US5322055B1 (en) | 1993-01-27 | 1997-10-14 | Ultracision Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
DE69409565T2 (de) | 1993-01-29 | 1998-10-01 | Smith & Nephew Inc | Schwenkbares gekrümmtes Instrument |
US5620447A (en) | 1993-01-29 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Surgical instrument |
US5342359A (en) | 1993-02-05 | 1994-08-30 | Everest Medical Corporation | Bipolar coagulation device |
US5357423A (en) | 1993-02-22 | 1994-10-18 | Kulicke And Soffa Investments, Inc. | Apparatus and method for automatically adjusting power output of an ultrasonic generator |
KR940019363A (ko) | 1993-02-22 | 1994-09-14 | 요시히데 시바노 | 초음파세정에 있어서의 초음파진동자의 발진방법 |
US5445638B1 (en) | 1993-03-08 | 1998-05-05 | Everest Medical Corp | Bipolar coagulation and cutting forceps |
US5381067A (en) | 1993-03-10 | 1995-01-10 | Hewlett-Packard Company | Electrical impedance normalization for an ultrasonic transducer array |
JPH07507707A (ja) | 1993-03-22 | 1995-08-31 | アニス,アジズ・イェヒア | 組織の除去 |
US5346502A (en) | 1993-04-15 | 1994-09-13 | Ultracision, Inc. | Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
US5540375A (en) | 1993-04-20 | 1996-07-30 | United States Surgical Corporation | Endoscopic stapler |
ATE231364T1 (de) | 1993-04-30 | 2003-02-15 | Medical Scient Inc | Elektrochirurgisches impedanzrückkopplungssystem |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
CA2121194A1 (en) | 1993-05-06 | 1994-11-07 | Corbett Stone | Bipolar electrosurgical instruments |
US5449370A (en) | 1993-05-12 | 1995-09-12 | Ethicon, Inc. | Blunt tipped ultrasonic trocar |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
CA2124109A1 (en) | 1993-05-24 | 1994-11-25 | Mark T. Byrne | Endoscopic surgical instrument with electromagnetic sensor |
US5396266A (en) | 1993-06-08 | 1995-03-07 | Technical Research Associates, Inc. | Kinesthetic feedback apparatus and method |
US5500216A (en) | 1993-06-18 | 1996-03-19 | Julian; Jorge V. | Topical hydrophobic composition and method |
USD354564S (en) | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
US5715817A (en) | 1993-06-29 | 1998-02-10 | C.R. Bard, Inc. | Bidirectional steering catheter |
US5395363A (en) | 1993-06-29 | 1995-03-07 | Utah Medical Products | Diathermy coagulation and ablation apparatus and method |
DE4323585A1 (de) | 1993-07-14 | 1995-01-19 | Delma Elektro Med App | Bipolares Hochfrequenz-Chirurgieinstrument |
US5501654A (en) | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
US5731804A (en) | 1995-01-18 | 1998-03-24 | Immersion Human Interface Corp. | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
US5805140A (en) | 1993-07-16 | 1998-09-08 | Immersion Corporation | High bandwidth force feedback interface using voice coils and flexures |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
JPH09501333A (ja) | 1993-07-21 | 1997-02-10 | エイチ. クリーマン,チャールズ | 内視鏡検査及び外科手術用の外科的器具 |
US5688270A (en) | 1993-07-22 | 1997-11-18 | Ethicon Endo-Surgery,Inc. | Electrosurgical hemostatic device with recessed and/or offset electrodes |
US5817093A (en) | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5709680A (en) | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
GR940100335A (el) | 1993-07-22 | 1996-05-22 | Ethicon Inc. | Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων. |
US5693051A (en) | 1993-07-22 | 1997-12-02 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
US5810811A (en) | 1993-07-22 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
CA2145314C (en) | 1993-07-26 | 2005-05-03 | Rickey D. Hart | Suture grasping device |
US5678568A (en) | 1993-07-27 | 1997-10-21 | Olympus Optical Co., Ltd. | System control apparatus, medical system control apparatus and image-plane display method of medical system control apparatus |
US5419761A (en) | 1993-08-03 | 1995-05-30 | Misonix, Inc. | Liposuction apparatus and associated method |
US5451161A (en) | 1993-08-24 | 1995-09-19 | Parkell Products, Inc. | Oscillating circuit for ultrasonic dental scaler |
US5858018A (en) | 1993-08-25 | 1999-01-12 | Apollo Camera, Llc | Low profile tool for applying spring action ligation clips |
CA2147757A1 (en) | 1993-08-25 | 1995-03-02 | John I. Shipp | Surgical ligation clip |
US5483501A (en) | 1993-09-14 | 1996-01-09 | The Whitaker Corporation | Short distance ultrasonic distance meter |
US5397333A (en) | 1993-09-24 | 1995-03-14 | Nusurg Medical, Inc. | Surgical hook knife |
DE4333257C2 (de) | 1993-09-27 | 1997-09-04 | Siemens Ag | Verfahren zum Gewinnen eines Fehlerkennzeichnungs-Signals |
US5371429A (en) | 1993-09-28 | 1994-12-06 | Misonix, Inc. | Electromechanical transducer device |
US5361583A (en) | 1993-09-30 | 1994-11-08 | Ethicon, Inc. | Pressurized fluid actuation system with variable force and stroke output for use in a surgical instrument |
US5339723A (en) | 1993-09-30 | 1994-08-23 | Ethicon, Inc. | Pressurized fluid actuation system for amplifying operator input force in a surgical instrument |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5607436A (en) | 1993-10-08 | 1997-03-04 | United States Surgical Corporation | Apparatus for applying surgical clips |
US5456689A (en) | 1993-10-13 | 1995-10-10 | Arnold J. Kresch | Method and device for tissue resection |
US5600526A (en) | 1993-10-15 | 1997-02-04 | The Texas A & M University System | Load analysis system for fault detection |
WO1995010978A1 (en) | 1993-10-19 | 1995-04-27 | Ep Technologies, Inc. | Segmented electrode assemblies for ablation of tissue |
US5423844A (en) | 1993-10-22 | 1995-06-13 | Promex, Inc. | Rotary surgical cutting instrument |
US6632221B1 (en) | 1993-11-08 | 2003-10-14 | Rita Medical Systems, Inc. | Method of creating a lesion in tissue with infusion |
US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
US5472005A (en) | 1993-11-16 | 1995-12-05 | Campbell; Keith S. | Ultrasonic cleaning apparatus for cleaning chandeliers |
DE4340056A1 (de) | 1993-11-24 | 1995-06-01 | Delma Elektro Med App | Chirurgische laparoskopische Vorrichtung |
US5458598A (en) | 1993-12-02 | 1995-10-17 | Cabot Technology Corporation | Cutting and coagulating forceps |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
US5490860A (en) | 1993-12-08 | 1996-02-13 | Sofamor Danek Properties, Inc. | Portable power cutting tool |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
US5359994A (en) | 1994-01-24 | 1994-11-01 | Welch Allyn, Inc. | Proximal steering cable adjustment |
US5638827A (en) | 1994-02-01 | 1997-06-17 | Symbiosis Corporation | Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome |
US5465895A (en) | 1994-02-03 | 1995-11-14 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
DE4405656C2 (de) | 1994-02-22 | 1998-12-10 | Ferton Holding | Einrichtung zum Entfernen von Körpersteinen |
US5429131A (en) | 1994-02-25 | 1995-07-04 | The Regents Of The University Of California | Magnetized electrode tip catheter |
DE4447669B4 (de) | 1994-02-27 | 2005-12-08 | Hahn, Rainer, Dr.Med.Dent. | Verwendung einer Suspension, die zur Schallübertragung zwischen einer ultraschallbeaufschlagten Arbeitsspitze und einem zu bearbeitenden Material dient |
US5649955A (en) | 1994-03-17 | 1997-07-22 | Terumo Kabushiki Kaisha | Surgical instrument |
US5649547A (en) | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US6500112B1 (en) | 1994-03-30 | 2002-12-31 | Brava, Llc | Vacuum dome with supporting rim and rim cushion |
US5584830A (en) | 1994-03-30 | 1996-12-17 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5817033A (en) | 1994-04-11 | 1998-10-06 | Desantis; Stephen A. | Needle core biopsy device |
US5511556A (en) | 1994-04-11 | 1996-04-30 | Desantis; Stephen A. | Needle core biopsy instrument |
US5417709A (en) | 1994-04-12 | 1995-05-23 | Symbiosis Corporation | Endoscopic instrument with end effectors forming suction and/or irrigation lumens |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
US5480409A (en) | 1994-05-10 | 1996-01-02 | Riza; Erol D. | Laparoscopic surgical instrument |
US5553675A (en) | 1994-06-10 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Orthopedic surgical device |
US5823197A (en) | 1994-06-24 | 1998-10-20 | Somnus Medical Technologies, Inc. | Method for internal ablation of turbinates |
US6464689B1 (en) | 1999-09-08 | 2002-10-15 | Curon Medical, Inc. | Graphical user interface for monitoring and controlling use of medical devices |
JPH0824266A (ja) | 1994-07-20 | 1996-01-30 | Sumitomo Bakelite Co Ltd | 超音波手術用具のホーン |
US5540684A (en) | 1994-07-28 | 1996-07-30 | Hassler, Jr.; William L. | Method and apparatus for electrosurgically treating tissue |
AU694225B2 (en) | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5507738A (en) | 1994-08-05 | 1996-04-16 | Microsonic Engineering Devices Company, Inc. | Ultrasonic vascular surgical system |
US5779130A (en) | 1994-08-05 | 1998-07-14 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5451220A (en) | 1994-08-15 | 1995-09-19 | Microsonic Engineering Devices Company, Inc. | Battery operated multifunction ultrasonic wire for angioplasty |
TW266267B (en) | 1994-08-23 | 1995-12-21 | Ciba Geigy | Process for sterilizing articles and providing sterile storage environments |
US5456684A (en) | 1994-09-08 | 1995-10-10 | Hutchinson Technology Incorporated | Multifunctional minimally invasive surgical instrument |
US5522839A (en) | 1994-09-09 | 1996-06-04 | Pilling Weck Incorporated | Dissecting forceps |
US5451053A (en) | 1994-09-09 | 1995-09-19 | Garrido; Fernando P. | Reconfigurable video game controller |
US5694936A (en) | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
EP0705571A1 (en) | 1994-10-07 | 1996-04-10 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5562609A (en) | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
US5562610A (en) | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US5632717A (en) | 1994-10-07 | 1997-05-27 | Yoon; Inbae | Penetrating endoscope |
US5720742A (en) | 1994-10-11 | 1998-02-24 | Zacharias; Jaime | Controller and actuating system for surgical instrument |
JP2638750B2 (ja) | 1994-10-13 | 1997-08-06 | リョービ株式会社 | 電動工具のハンドル構造 |
US5752973A (en) | 1994-10-18 | 1998-05-19 | Archimedes Surgical, Inc. | Endoscopic surgical gripping instrument with universal joint jaw coupler |
USD381077S (en) | 1994-10-25 | 1997-07-15 | Ethicon Endo-Surgery | Multifunctional surgical stapling instrument |
US5549637A (en) | 1994-11-10 | 1996-08-27 | Crainich; Lawrence | Articulated medical instrument |
US5717306A (en) | 1994-11-18 | 1998-02-10 | Shipp; John I. | Battery identification and power interrupt system |
JPH08153914A (ja) | 1994-11-25 | 1996-06-11 | Philips Japan Ltd | 圧電磁器トランス |
DE4444853B4 (de) | 1994-12-16 | 2006-09-28 | Hilti Ag | Handgerät zur materialabtragenden Bearbeitung mit elektroakustischem Wandler für die Erzeugung von Ultraschallschwingungen |
US5704534A (en) | 1994-12-19 | 1998-01-06 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
AU701320B2 (en) | 1994-12-22 | 1999-01-28 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5836957A (en) | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
US5505693A (en) | 1994-12-30 | 1996-04-09 | Mackool; Richard J. | Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery |
US5563179A (en) | 1995-01-10 | 1996-10-08 | The Proctor & Gamble Company | Absorbent foams made from high internal phase emulsions useful for acquiring and distributing aqueous fluids |
US5486162A (en) | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US5603711A (en) | 1995-01-20 | 1997-02-18 | Everest Medical Corp. | Endoscopic bipolar biopsy forceps |
CA2168404C (en) | 1995-02-01 | 2007-07-10 | Dale Schulze | Surgical instrument with expandable cutting element |
US5573424A (en) | 1995-02-09 | 1996-11-12 | Everest Medical Corporation | Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6544264B2 (en) | 1995-03-10 | 2003-04-08 | Seedling Enterprises, Llc | Electrosurgery with cooled electrodes |
US5647871A (en) | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US6503248B1 (en) | 2000-10-30 | 2003-01-07 | Seedling Enterprises, Llc | Cooled, non-sticking electrosurgical devices |
US5571121A (en) | 1995-03-28 | 1996-11-05 | Heifetz; Milton D. | Atraumatic clamp for temporary occlusion of blood vessels |
DK0817594T3 (da) | 1995-03-28 | 2002-07-15 | Straub Medical Ag | Kateter til fjernelse af unormale aflejringer i humane blodkar |
US5882206A (en) | 1995-03-29 | 1999-03-16 | Gillio; Robert G. | Virtual surgery system |
US5655100A (en) | 1995-03-31 | 1997-08-05 | Sun Microsystems, Inc. | Transaction activation processor for controlling memory transaction execution in a packet switched cache coherent multiprocessor system |
US5599350A (en) | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
US5618307A (en) | 1995-04-03 | 1997-04-08 | Heartport, Inc. | Clamp assembly and method of use |
US6669690B1 (en) | 1995-04-06 | 2003-12-30 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
JP3686117B2 (ja) | 1995-04-06 | 2005-08-24 | オリンパス株式会社 | 超音波切開凝固装置 |
JP3571414B2 (ja) | 1995-05-11 | 2004-09-29 | オリンパス株式会社 | 超音波切開凝固装置 |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US5624452A (en) | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US6264650B1 (en) | 1995-06-07 | 2001-07-24 | Arthrocare Corporation | Methods for electrosurgical treatment of intervertebral discs |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5779701A (en) | 1995-04-27 | 1998-07-14 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5800432A (en) | 1995-05-01 | 1998-09-01 | Ep Technologies, Inc. | Systems and methods for actively cooling ablation electrodes using diodes |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
US6430446B1 (en) | 1995-05-05 | 2002-08-06 | Thermage, Inc. | Apparatus for tissue remodeling |
US5674235A (en) | 1995-05-10 | 1997-10-07 | Ultralase Technologies International | Ultrasonic surgical cutting instrument |
AU6268396A (en) | 1995-06-02 | 1996-12-18 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
WO1996039086A1 (en) | 1995-06-06 | 1996-12-12 | Valleylab Inc. | Power control for an electrosurgical generator |
US5720744A (en) | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
US6149620A (en) | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US6293943B1 (en) | 1995-06-07 | 2001-09-25 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
US6210337B1 (en) | 1995-06-07 | 2001-04-03 | Atl Ultrasound Inc. | Ultrasonic endoscopic probe |
US7090672B2 (en) | 1995-06-07 | 2006-08-15 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from the base of tongue |
US6837887B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Articulated electrosurgical probe and methods |
JP4219418B2 (ja) | 1995-06-13 | 2009-02-04 | 株式会社ミワテック | 超音波手術装置 |
US6293942B1 (en) | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
US5591187A (en) | 1995-07-14 | 1997-01-07 | Dekel; Moshe | Laparoscopic tissue retrieval device and method |
US5762256A (en) | 1995-08-28 | 1998-06-09 | United States Surgical Corporation | Surgical stapler |
US5782396A (en) | 1995-08-28 | 1998-07-21 | United States Surgical Corporation | Surgical stapler |
JP3760959B2 (ja) | 1995-09-06 | 2006-03-29 | 株式会社デンソー | 発電機 |
US5827271A (en) | 1995-09-19 | 1998-10-27 | Valleylab | Energy delivery system for vessel sealing |
US5662667A (en) | 1995-09-19 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
US5776130A (en) | 1995-09-19 | 1998-07-07 | Valleylab, Inc. | Vascular tissue sealing pressure control |
US5797959A (en) | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US5772659A (en) | 1995-09-26 | 1998-06-30 | Valleylab Inc. | Electrosurgical generator power control circuit and method |
US5674220A (en) | 1995-09-29 | 1997-10-07 | Ethicon Endo-Surgery, Inc. | Bipolar electrosurgical clamping device |
US5883615A (en) | 1995-09-29 | 1999-03-16 | Liebel-Flarsheim Company | Foot-operated control system for a multi-function |
US5630420A (en) | 1995-09-29 | 1997-05-20 | Ethicon Endo-Surgery, Inc. | Ultrasonic instrument for surgical applications |
US6059997A (en) | 1995-09-29 | 2000-05-09 | Littlelfuse, Inc. | Polymeric PTC compositions |
US5796188A (en) | 1995-10-05 | 1998-08-18 | Xomed Surgical Products, Inc. | Battery-powered medical instrument with power booster |
AU7255896A (en) | 1995-10-06 | 1997-04-28 | Brian S. Kelleher | Steerable, flexible forceps device |
US6428538B1 (en) | 1995-10-20 | 2002-08-06 | United States Surgical Corporation | Apparatus and method for thermal treatment of body tissue |
GB9521772D0 (en) | 1995-10-24 | 1996-01-03 | Gyrus Medical Ltd | An electrosurgical instrument |
JPH09130655A (ja) | 1995-10-30 | 1997-05-16 | Sharp Corp | 撮像装置 |
JPH09140722A (ja) | 1995-11-29 | 1997-06-03 | Olympus Optical Co Ltd | 超音波治療装置 |
US5658281A (en) | 1995-12-04 | 1997-08-19 | Valleylab Inc | Bipolar electrosurgical scissors and method of manufacture |
US5755717A (en) | 1996-01-16 | 1998-05-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with improved coagulation feedback |
US5916229A (en) | 1996-02-07 | 1999-06-29 | Evans; Donald | Rotating needle biopsy device and method |
US5762255A (en) | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US5669922A (en) | 1996-02-20 | 1997-09-23 | Hood; Larry | Ultrasonically driven blade with a radial hook that defines a circular recess |
US5792138A (en) | 1996-02-22 | 1998-08-11 | Apollo Camera, Llc | Cordless bipolar electrocautery unit with automatic power control |
US6682501B1 (en) | 1996-02-23 | 2004-01-27 | Gyrus Ent, L.L.C. | Submucosal tonsillectomy apparatus and method |
US5609573A (en) | 1996-02-28 | 1997-03-11 | Conmed Corporation | Electrosurgical suction/irrigation instrument |
DE19608716C1 (de) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolares chirurgisches Faßinstrument |
US6036707A (en) | 1996-03-07 | 2000-03-14 | Devices For Vascular Intervention | Catheter device having a selectively flexible housing |
US6325795B1 (en) | 1996-03-12 | 2001-12-04 | Sherwood Services Ag | Replaceable accessory cord and handswitch |
US5702390A (en) | 1996-03-12 | 1997-12-30 | Ethicon Endo-Surgery, Inc. | Bioplar cutting and coagulation instrument |
US5830224A (en) | 1996-03-15 | 1998-11-03 | Beth Israel Deaconess Medical Center | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
US5728130A (en) | 1996-03-22 | 1998-03-17 | Olympus Optical Co., Ltd. | Ultrasonic trocar system |
DE19613012C1 (de) | 1996-03-25 | 1997-08-14 | Siemens Ag | Verfahren zum Erzeugen von Fehlerklassifizierungssignalen |
FR2746995B1 (fr) | 1996-03-28 | 1998-05-15 | Sgs Thomson Microelectronics | Procede et dispositif de codage de transmission et utilisation de ce procede |
US5700261A (en) | 1996-03-29 | 1997-12-23 | Ethicon Endo-Surgery, Inc. | Bipolar Scissors |
US5626608A (en) | 1996-03-29 | 1997-05-06 | United States Surgical Corporation | Surgical instrument having locking handle |
US5723970A (en) | 1996-04-05 | 1998-03-03 | Linear Technology Corporation | Battery charging circuitry having supply current regulation |
US5766164A (en) | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5843109A (en) | 1996-05-29 | 1998-12-01 | Allergan | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5746756A (en) | 1996-06-03 | 1998-05-05 | Ethicon Endo-Surgery, Inc. | Internal ultrasonic tip amplifier |
US6887252B1 (en) | 1996-06-21 | 2005-05-03 | Olympus Corporation | Ultrasonic treatment appliance |
JPH10127654A (ja) | 1996-11-05 | 1998-05-19 | Olympus Optical Co Ltd | 超音波処置具 |
US6129735A (en) | 1996-06-21 | 2000-10-10 | Olympus Optical Co., Ltd. | Ultrasonic treatment appliance |
JP3274826B2 (ja) | 1997-10-15 | 2002-04-15 | オリンパス光学工業株式会社 | 超音波処置具 |
JPH11128238A (ja) | 1997-10-28 | 1999-05-18 | Olympus Optical Co Ltd | 超音波治療装置 |
JPH105237A (ja) | 1996-06-26 | 1998-01-13 | Olympus Optical Co Ltd | 超音波処置具 |
US5906628A (en) | 1996-06-26 | 1999-05-25 | Olympus Optical Co., Ltd. | Ultrasonic treatment instrument |
AU737271B2 (en) | 1996-07-01 | 2001-08-16 | Ethicon Endo-Surgery, Inc. | Fingertip-mounted minimally invasive surgical instruments and methods of use |
US6113594A (en) | 1996-07-02 | 2000-09-05 | Ethicon, Inc. | Systems, methods and apparatus for performing resection/ablation in a conductive medium |
US5800448A (en) | 1996-07-24 | 1998-09-01 | Surgical Design Corporation | Ultrasonic surgical instrument |
US6358264B2 (en) | 1996-07-24 | 2002-03-19 | Surgical Design Corporation | Surgical instruments with movable member |
US6031526A (en) | 1996-08-08 | 2000-02-29 | Apollo Camera, Llc | Voice controlled medical text and image reporting system |
US5826576A (en) | 1996-08-08 | 1998-10-27 | Medtronic, Inc. | Electrophysiology catheter with multifunction wire and method for making |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US6544260B1 (en) | 1996-08-20 | 2003-04-08 | Oratec Interventions, Inc. | Method for treating tissue in arthroscopic environment using precooling and apparatus for same |
US5836943A (en) | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
US5993972A (en) | 1996-08-26 | 1999-11-30 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US5836909A (en) | 1996-09-13 | 1998-11-17 | Cosmescu; Ioan | Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor |
DE29623113U1 (de) | 1996-09-18 | 1997-10-30 | Winter & Ibe Olympus | Axialgriff für chirurgische, insbesondere endoskopische Instrumente |
US20050143769A1 (en) | 2002-08-19 | 2005-06-30 | White Jeffrey S. | Ultrasonic dissector |
CA2213948C (en) | 1996-09-19 | 2006-06-06 | United States Surgical Corporation | Ultrasonic dissector |
GB2317566B (en) | 1996-09-27 | 2000-08-09 | Smiths Industries Plc | Electrosurgery apparatus |
US6847336B1 (en) | 1996-10-02 | 2005-01-25 | Jerome H. Lemelson | Selectively controllable heads-up display system |
US5833696A (en) | 1996-10-03 | 1998-11-10 | United States Surgical Corporation | Apparatus for applying surgical clips |
EP1698289B1 (en) | 1996-10-04 | 2008-04-30 | United States Surgical Corporation | Instrument for cutting tissue |
US6109500A (en) | 1996-10-04 | 2000-08-29 | United States Surgical Corporation | Lockout mechanism for a surgical stapler |
US6036667A (en) | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
EP1946708B1 (en) | 1996-10-04 | 2011-06-22 | Tyco Healthcare Group LP | Instrument for cutting tissue |
US5989274A (en) | 1996-10-17 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for improving blood flow to a heart of a patient |
US5730752A (en) | 1996-10-29 | 1998-03-24 | Femrx, Inc. | Tubular surgical cutters having aspiration flow control ports |
US6126676A (en) | 1996-10-30 | 2000-10-03 | Ethicon, Inc. | Surgical tipping apparatus |
US6238366B1 (en) | 1996-10-31 | 2001-05-29 | Ethicon, Inc. | System for fluid retention management |
US5759183A (en) | 1996-11-05 | 1998-06-02 | Vandusseldorp; Gregg A. | Vaporizing roller for an electrosurgical probe |
US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
US6292700B1 (en) | 1999-09-10 | 2001-09-18 | Surx, Inc. | Endopelvic fascia treatment for incontinence |
US5891142A (en) | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
DE19651362C1 (de) | 1996-12-10 | 1998-06-10 | Endress Hauser Gmbh Co | Vorrichtung zur Überwachung eines vorbestimmten Füllstands in einem Behälter |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US5808396A (en) | 1996-12-18 | 1998-09-15 | Alcon Laboratories, Inc. | System and method for tuning and controlling an ultrasonic handpiece |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6063098A (en) | 1996-12-23 | 2000-05-16 | Houser; Kevin | Articulable ultrasonic surgical apparatus |
US6051010A (en) | 1996-12-23 | 2000-04-18 | Ethicon Endo-Surgery, Inc. | Methods and devices for joining transmission components |
US5776155A (en) | 1996-12-23 | 1998-07-07 | Ethicon Endo-Surgery, Inc. | Methods and devices for attaching and detaching transmission components |
DE19700402C2 (de) | 1997-01-08 | 1999-12-30 | Ferdinand Peer | Instrument zur Kompensation des Handzitterns bei der Manipulation feiner Strukturen |
SE508289C2 (sv) | 1997-01-28 | 1998-09-21 | Ericsson Telefon Ab L M | Förfarande och anordning vid övervakning och styrning av oscillatorsignal |
US6156389A (en) | 1997-02-03 | 2000-12-05 | Cytonix Corporation | Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5904681A (en) | 1997-02-10 | 1999-05-18 | Hugh S. West, Jr. | Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy |
US5810828A (en) | 1997-02-13 | 1998-09-22 | Mednext, Inc. | Adjustable depth drill guide |
US5810859A (en) | 1997-02-28 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Apparatus for applying torque to an ultrasonic transmission component |
US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US6206844B1 (en) | 1997-02-28 | 2001-03-27 | Ethicon Endo-Surgery, Inc. | Reusable ultrasonic surgical instrument with removable outer sheath |
US5968060A (en) | 1997-02-28 | 1999-10-19 | Ethicon Endo-Surgery, Inc. | Ultrasonic interlock and method of using the same |
US5944737A (en) | 1997-10-10 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved waveguide support member |
US5989275A (en) | 1997-02-28 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Damping ultrasonic transmission components |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US5957943A (en) | 1997-03-05 | 1999-09-28 | Ethicon Endo-Surgery, Inc. | Method and devices for increasing ultrasonic effects |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US6461363B1 (en) | 1997-03-10 | 2002-10-08 | Donald L. Gadberry | Surgical clips and clamps |
US5800449A (en) | 1997-03-11 | 1998-09-01 | Ethicon Endo-Surgery, Inc. | Knife shield for surgical instruments |
WO1998040015A2 (en) | 1997-03-13 | 1998-09-17 | Biomax Technologies, Inc. | Catheters and endoscopes comprising optical probes and bioptomes and methods of using the same |
JP3832075B2 (ja) | 1997-03-25 | 2006-10-11 | セイコーエプソン株式会社 | インクジェット式記録ヘッド、その製造方法および圧電体素子 |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5897569A (en) | 1997-04-16 | 1999-04-27 | Ethicon Endo-Surgery, Inc. | Ultrasonic generator with supervisory control circuitry |
GB9708268D0 (en) | 1997-04-24 | 1997-06-18 | Gyrus Medical Ltd | An electrosurgical instrument |
JPH10295700A (ja) | 1997-04-25 | 1998-11-10 | Sumitomo Bakelite Co Ltd | 外科手術用具 |
AU6357298A (en) | 1997-04-28 | 1998-10-29 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling the vibration of ultrasonic transmission components |
US5968007A (en) | 1997-05-01 | 1999-10-19 | Sonics & Materials, Inc. | Power-limit control for ultrasonic surgical instrument |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
US6183426B1 (en) | 1997-05-15 | 2001-02-06 | Matsushita Electric Works, Ltd. | Ultrasonic wave applying apparatus |
WO1998052792A1 (de) | 1997-05-21 | 1998-11-26 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zur übertragung von digitalen daten von einer messstation eines insassenschutzsystems eines kraftfahrzeugs zu einem airbagsteuergerät |
US6152902A (en) | 1997-06-03 | 2000-11-28 | Ethicon, Inc. | Method and apparatus for collecting surgical fluids |
US5851212A (en) | 1997-06-11 | 1998-12-22 | Endius Incorporated | Surgical instrument |
FR2764516B1 (fr) | 1997-06-11 | 1999-09-03 | Inst Nat Sante Rech Med | Applicateur intratissulaire ultrasonore pour l'hyperthermie |
EP0998229A4 (en) | 1997-06-17 | 2001-04-04 | Cool Laser Optics Inc | METHOD AND APPARATUS FOR REGULATING BIOLOGICAL TISSUE TEMPERATURE BY SIMULTANEOUS IRRADIATION |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US20030109778A1 (en) | 1997-06-20 | 2003-06-12 | Cardiac Assist Devices, Inc. | Electrophysiology/ablation catheter and remote actuator therefor |
JPH1112222A (ja) | 1997-06-25 | 1999-01-19 | Nippon Shokubai Co Ltd | アクリル酸の回収方法 |
US6144402A (en) | 1997-07-08 | 2000-11-07 | Microtune, Inc. | Internet transaction acceleration |
US5938633A (en) | 1997-07-09 | 1999-08-17 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical devices |
US5913823A (en) | 1997-07-15 | 1999-06-22 | Acuson Corporation | Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging |
US6096037A (en) | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
JP2001510067A (ja) | 1997-07-18 | 2001-07-31 | ガイラス・メディカル・リミテッド | 電気外科用器具 |
EP0895755B1 (en) | 1997-08-04 | 2005-04-27 | Ethicon, Inc. | Apparatus for treating body tissue |
US6024750A (en) | 1997-08-14 | 2000-02-15 | United States Surgical | Ultrasonic curved blade |
US6102909A (en) | 1997-08-26 | 2000-08-15 | Ethicon, Inc. | Scissorlike electrosurgical cutting instrument |
US6024744A (en) | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6013052A (en) | 1997-09-04 | 2000-01-11 | Ep Technologies, Inc. | Catheter and piston-type actuation device for use with same |
US6267761B1 (en) | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
AU9478498A (en) | 1997-09-11 | 1999-03-29 | Genzyme Corporation | Articulating endoscopic implant rotator surgical apparatus and method for using same |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US5921956A (en) | 1997-09-24 | 1999-07-13 | Smith & Nephew, Inc. | Surgical instrument |
US5954717A (en) | 1997-09-25 | 1999-09-21 | Radiotherapeutics Corporation | Method and system for heating solid tissue |
US6358246B1 (en) | 1999-06-25 | 2002-03-19 | Radiotherapeutics Corporation | Method and system for heating solid tissue |
US6436116B1 (en) | 1997-10-06 | 2002-08-20 | Smith & Nephew, Inc. | Methods and apparatus for removing veins |
US6048224A (en) | 1997-10-09 | 2000-04-11 | Tekonsha Engineering Company | Sealed multiple-contact electrical connector |
US5954746A (en) | 1997-10-09 | 1999-09-21 | Ethicon Endo-Surgery, Inc. | Dual cam trigger for a surgical instrument |
US5954736A (en) | 1997-10-10 | 1999-09-21 | Ethicon Endo-Surgery, Inc. | Coagulator apparatus having indexed rotational positioning |
US5893835A (en) | 1997-10-10 | 1999-04-13 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having dual rotational positioning |
US5947984A (en) | 1997-10-10 | 1999-09-07 | Ethicon Endo-Surger, Inc. | Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
SE510713C2 (sv) | 1997-10-10 | 1999-06-14 | Ericsson Telefon Ab L M | Faslåsningskrets samt metod för reglering av spänningsstyrd oscillator |
US5873873A (en) | 1997-10-10 | 1999-02-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp mechanism |
US6068647A (en) | 1997-10-10 | 2000-05-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm tissue pad |
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US5974342A (en) | 1997-10-16 | 1999-10-26 | Electrologic Of America, Inc. | Electrical stimulation therapy method and apparatus |
US6176857B1 (en) | 1997-10-22 | 2001-01-23 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymmetrically |
JP2001520081A (ja) | 1997-10-23 | 2001-10-30 | アースロケア コーポレイション | 導電流体における電気外科のための電源およびその供給方法 |
US6187003B1 (en) | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
AU1401699A (en) | 1997-11-12 | 1999-05-31 | Isothermix, Inc. | Methods and apparatus for welding blood vessels |
US6050996A (en) | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US6156029A (en) | 1997-11-25 | 2000-12-05 | Eclipse Surgical Technologies, Inc. | Selective treatment of endocardial/myocardial boundary |
US6068627A (en) | 1997-12-10 | 2000-05-30 | Valleylab, Inc. | Smart recognition apparatus and method |
JPH11169381A (ja) | 1997-12-15 | 1999-06-29 | Olympus Optical Co Ltd | 高周波処置具 |
US6126629A (en) | 1997-12-18 | 2000-10-03 | Bausch & Lomb Surgical, Inc. | Multiple port phaco needle |
US6033375A (en) | 1997-12-23 | 2000-03-07 | Fibrasonics Inc. | Ultrasonic probe with isolated and teflon coated outer cannula |
JPH11178833A (ja) | 1997-12-24 | 1999-07-06 | Olympus Optical Co Ltd | 超音波処置具 |
US6165150A (en) | 1997-12-29 | 2000-12-26 | Surgical Design Corporation | Tips for ultrasonic handpiece |
US6388657B1 (en) | 1997-12-31 | 2002-05-14 | Anthony James Francis Natoli | Virtual reality keyboard system and method |
US6080149A (en) | 1998-01-09 | 2000-06-27 | Radiotherapeutics, Corporation | Method and apparatus for monitoring solid tissue heating |
JP4343434B2 (ja) | 1998-01-19 | 2009-10-14 | ヤング、マイケル・ジョン・ラドリー | 超音波切断ツール |
US6736813B2 (en) | 1998-01-23 | 2004-05-18 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
DE19803439A1 (de) | 1998-01-29 | 1999-08-05 | Sachse Hans E | Oszillierendes Knochenentnahmegerät |
US6296640B1 (en) | 1998-02-06 | 2001-10-02 | Ethicon Endo-Surgery, Inc. | RF bipolar end effector for use in electrosurgical instruments |
US6562037B2 (en) | 1998-02-12 | 2003-05-13 | Boris E. Paton | Bonding of soft biological tissues by passing high frequency electric current therethrough |
JPH11225951A (ja) | 1998-02-17 | 1999-08-24 | Olympus Optical Co Ltd | 内視鏡用処置具 |
US6132429A (en) | 1998-02-17 | 2000-10-17 | Baker; James A. | Radiofrequency medical instrument and methods for luminal welding |
AU2769399A (en) | 1998-02-17 | 1999-08-30 | James A. Baker Jr. | Radiofrequency medical instrument for vessel welding |
DE19806718A1 (de) | 1998-02-18 | 1999-08-26 | Storz Endoskop Gmbh | Vorrichtung zur Behandlung von Körpergewebe mittels Ultraschall |
US6126658A (en) | 1998-02-19 | 2000-10-03 | Baker; James A. | Radiofrequency medical instrument and methods for vessel welding |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US6860878B2 (en) | 1998-02-24 | 2005-03-01 | Endovia Medical Inc. | Interchangeable instrument |
US8303576B2 (en) | 1998-02-24 | 2012-11-06 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US7775972B2 (en) | 1998-02-24 | 2010-08-17 | Hansen Medical, Inc. | Flexible instrument |
US20060074442A1 (en) | 2000-04-06 | 2006-04-06 | Revascular Therapeutics, Inc. | Guidewire for crossing occlusions or stenoses |
AUPP229398A0 (en) | 1998-03-11 | 1998-04-09 | Ampcontrol Pty Ltd | Two wire communicaton system |
US6159160A (en) | 1998-03-26 | 2000-12-12 | Ethicon, Inc. | System and method for controlled infusion and pressure monitoring |
US5935144A (en) | 1998-04-09 | 1999-08-10 | Ethicon Endo-Surgery, Inc. | Double sealed acoustic isolation members for ultrasonic |
US6589200B1 (en) | 1999-02-22 | 2003-07-08 | Ethicon Endo-Surgery, Inc. | Articulating ultrasonic surgical shears |
US5897523A (en) | 1998-04-13 | 1999-04-27 | Ethicon Endo-Surgery, Inc. | Articulating ultrasonic surgical instrument |
US5980546A (en) | 1998-04-13 | 1999-11-09 | Nexus Medical System, Inc. Llc | Guillotine cutter used with medical procedures |
US6454782B1 (en) | 1998-04-13 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Actuation mechanism for surgical instruments |
JP3686765B2 (ja) | 1998-04-16 | 2005-08-24 | オリンパス株式会社 | 超音波処置具 |
AU754594B2 (en) | 1998-04-24 | 2002-11-21 | Indigo Medical, Incorporated | Energy application system with ancillary information exchange capability, energy applicator, and methods associated therewith |
US6003517A (en) | 1998-04-30 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Method for using an electrosurgical device on lung tissue |
US6270831B2 (en) | 1998-04-30 | 2001-08-07 | Medquest Products, Inc. | Method and apparatus for providing a conductive, amorphous non-stick coating |
US6514252B2 (en) | 1998-05-01 | 2003-02-04 | Perfect Surgical Techniques, Inc. | Bipolar surgical instruments having focused electrical fields |
US5994855A (en) | 1998-05-07 | 1999-11-30 | Optiva Corporation | Automatic power adjustment system for introductory use of a vibrating device on a human body |
US6193709B1 (en) | 1998-05-13 | 2001-02-27 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US6162194A (en) | 1998-05-20 | 2000-12-19 | Apollo Camera, Llc | Surgical irrigation apparatus and methods for use |
US6740082B2 (en) | 1998-12-29 | 2004-05-25 | John H. Shadduck | Surgical instruments for treating gastro-esophageal reflux |
US6974450B2 (en) | 1999-12-30 | 2005-12-13 | Pearl Technology Holdings, Llc | Face-lifting device |
US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
US6132448A (en) | 1998-06-19 | 2000-10-17 | Stryker Corporation | Endoscopic irrigated bur |
US6679882B1 (en) | 1998-06-22 | 2004-01-20 | Lina Medical Aps | Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue |
US6390973B1 (en) | 1998-06-25 | 2002-05-21 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope for ultrasonic examination and surgical treatment associated thereto |
CA2276313C (en) | 1998-06-29 | 2008-01-29 | Ethicon Endo-Surgery, Inc. | Balanced ultrasonic blade including a plurality of balance asymmetries |
US6309400B2 (en) | 1998-06-29 | 2001-10-30 | Ethicon Endo-Surgery, Inc. | Curved ultrasonic blade having a trapezoidal cross section |
US6660017B2 (en) | 1998-06-29 | 2003-12-09 | Ethicon Endo-Surgery, Inc. | Balanced ultrasonic blade including a singular balance asymmetry |
CA2276316C (en) | 1998-06-29 | 2008-02-12 | Ethicon Endo-Surgery, Inc. | Method of balancing asymmetric ultrasonic surgical blades |
US6077285A (en) | 1998-06-29 | 2000-06-20 | Alcon Laboratories, Inc. | Torsional ultrasound handpiece |
US6066132A (en) | 1998-06-30 | 2000-05-23 | Ethicon, Inc. | Articulating endometrial ablation device |
US6537272B2 (en) | 1998-07-07 | 2003-03-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6096033A (en) | 1998-07-20 | 2000-08-01 | Tu; Hosheng | Medical device having ultrasonic ablation capability |
US6572639B1 (en) | 1998-07-31 | 2003-06-03 | Surx, Inc. | Interspersed heating/cooling to shrink tissues for incontinence |
US7534243B1 (en) | 1998-08-12 | 2009-05-19 | Maquet Cardiovascular Llc | Dissection and welding of tissue |
US6794027B1 (en) | 1998-08-24 | 2004-09-21 | Daikin Industries, Ltd. | Thin coating film comprising fluorine-containing polymer and method of forming same |
US6833865B1 (en) | 1998-09-01 | 2004-12-21 | Virage, Inc. | Embedded metadata engines in digital capture devices |
DE19839826A1 (de) | 1998-09-01 | 2000-03-02 | Karl Fastenmeier | Hochfrequenzeinrichtung zur Erzeugung eines Plasmabogens für die Behandlung von menschlichem Gewebe |
US6440147B1 (en) | 1998-09-03 | 2002-08-27 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6022362A (en) | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6123702A (en) | 1998-09-10 | 2000-09-26 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6245065B1 (en) | 1998-09-10 | 2001-06-12 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6086584A (en) | 1998-09-10 | 2000-07-11 | Ethicon, Inc. | Cellular sublimation probe and methods |
US6391026B1 (en) | 1998-09-18 | 2002-05-21 | Pro Duct Health, Inc. | Methods and systems for treating breast tissue |
US6132427A (en) | 1998-09-21 | 2000-10-17 | Medicor Corporation | Electrosurgical instruments |
US6402748B1 (en) | 1998-09-23 | 2002-06-11 | Sherwood Services Ag | Electrosurgical device having a dielectrical seal |
US6929602B2 (en) | 1998-09-28 | 2005-08-16 | Kabushiki Kaisha Toshiba | Endoscope apparatus |
JP4136118B2 (ja) | 1998-09-30 | 2008-08-20 | オリンパス株式会社 | 電気手術装置 |
US20100042093A9 (en) | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US6277117B1 (en) | 1998-10-23 | 2001-08-21 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
CA2347633C (en) | 1998-10-23 | 2011-01-04 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US6796981B2 (en) | 1999-09-30 | 2004-09-28 | Sherwood Services Ag | Vessel sealing system |
US6511480B1 (en) | 1998-10-23 | 2003-01-28 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US20040249374A1 (en) | 1998-10-23 | 2004-12-09 | Tetzlaff Philip M. | Vessel sealing instrument |
US6585735B1 (en) | 1998-10-23 | 2003-07-01 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
US20040167508A1 (en) | 2002-02-11 | 2004-08-26 | Robert Wham | Vessel sealing system |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
JP4245278B2 (ja) | 1998-10-23 | 2009-03-25 | コビディエン アクチェンゲゼルシャフト | ディスポーザブル電極を備えた外切開式血管シール用鉗子 |
US7582087B2 (en) | 1998-10-23 | 2009-09-01 | Covidien Ag | Vessel sealing instrument |
US6398779B1 (en) | 1998-10-23 | 2002-06-04 | Sherwood Services Ag | Vessel sealing system |
US6174311B1 (en) | 1998-10-28 | 2001-01-16 | Sdgi Holdings, Inc. | Interbody fusion grafts and instrumentation |
JP2000210299A (ja) | 1999-01-20 | 2000-08-02 | Olympus Optical Co Ltd | 手術装置 |
DE19850068C1 (de) | 1998-10-30 | 2000-06-08 | Storz Karl Gmbh & Co Kg | Medizinisches Instrument zum Präparieren von Gewebe |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
EP1016630B1 (de) | 1998-12-30 | 2005-12-28 | Wedeco AG | Vorrichtung zur UV-Bestrahlung, insbesondere zur Desinfektion von strömenden Flüssigkeiten mit verminderter UV-Transmission |
US6436129B1 (en) | 1999-01-20 | 2002-08-20 | Oratec Interventions, Inc. | Method and apparatus for stimulating nerve regeneration |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US7189206B2 (en) | 2003-02-24 | 2007-03-13 | Senorx, Inc. | Biopsy device with inner cutter |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6332891B1 (en) | 1999-02-16 | 2001-12-25 | Stryker Corporation | System and method for performing image guided surgery |
US6350269B1 (en) | 1999-03-01 | 2002-02-26 | Apollo Camera, L.L.C. | Ligation clip and clip applier |
US6290575B1 (en) | 1999-03-01 | 2001-09-18 | John I. Shipp | Surgical ligation clip with increased ligating force |
DE19908721A1 (de) | 1999-03-01 | 2000-09-28 | Storz Karl Gmbh & Co Kg | Instrument zum Schneiden von biologischem und insbesondere menschlichem Gewebe |
US6027515A (en) | 1999-03-02 | 2000-02-22 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US7550216B2 (en) | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
US20020022836A1 (en) | 1999-03-05 | 2002-02-21 | Gyrus Medical Limited | Electrosurgery system |
JP2000271142A (ja) | 1999-03-24 | 2000-10-03 | Olympus Optical Co Ltd | 電気駆動型処置具 |
US6666875B1 (en) | 1999-03-05 | 2003-12-23 | Olympus Optical Co., Ltd. | Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state |
US6311783B1 (en) | 1999-03-08 | 2001-11-06 | William Harpell | Gardening tool |
US6190386B1 (en) | 1999-03-09 | 2001-02-20 | Everest Medical Corporation | Electrosurgical forceps with needle electrodes |
US6582451B1 (en) | 1999-03-16 | 2003-06-24 | The University Of Sydney | Device for use in surgery |
JP2000271145A (ja) | 1999-03-24 | 2000-10-03 | Olympus Optical Co Ltd | 治療装置及び治療システム |
US6416486B1 (en) | 1999-03-31 | 2002-07-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical device having an embedding surface and a coagulating surface |
US6257241B1 (en) | 1999-03-31 | 2001-07-10 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using ultrasonic radio frequency energy |
US6251110B1 (en) | 1999-03-31 | 2001-06-26 | Ethicon Endo-Surgery, Inc. | Combined radio frequency and ultrasonic surgical device |
US6287344B1 (en) | 1999-03-31 | 2001-09-11 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using an ultrasonic device |
JP2000287987A (ja) | 1999-04-01 | 2000-10-17 | Olympus Optical Co Ltd | 充電式医療装置 |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
DE60040788D1 (de) | 1999-04-15 | 2008-12-24 | Ethicon Endo Surgery | Verfahren zum abstimmen von ultraschallwandlern |
US6278218B1 (en) | 1999-04-15 | 2001-08-21 | Ethicon Endo-Surgery, Inc. | Apparatus and method for tuning ultrasonic transducers |
AU4420100A (en) | 1999-04-21 | 2000-11-10 | Michael John Radley Young | Improved waveguide output configurations |
WO2000064357A1 (en) | 1999-04-23 | 2000-11-02 | United States Surgical Corporation | Second generation coil fastener applier with memory ring |
US6152923A (en) | 1999-04-28 | 2000-11-28 | Sherwood Services Ag | Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue |
US6689146B1 (en) | 1999-04-29 | 2004-02-10 | Stryker Corporation | Powered surgical handpiece with integrated irrigator and suction application |
ES2270814T3 (es) | 1999-05-07 | 2007-04-16 | AESCULAP AG & CO. KG | Herramienta quirurgica rotatoria. |
US20030130693A1 (en) | 1999-05-18 | 2003-07-10 | Levin John M. | Laparoscopic/thorascopic insertion caps |
US6233476B1 (en) | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US6174310B1 (en) | 1999-05-24 | 2001-01-16 | Kirwan Surgical Products, Inc. | Bipolar coaxial coagulator having offset connector pin |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US20030181898A1 (en) | 1999-05-28 | 2003-09-25 | Bowers William J. | RF filter for an electrosurgical generator |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US6517565B1 (en) | 1999-06-02 | 2003-02-11 | Power Medical Interventions, Inc. | Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft |
KR100660771B1 (ko) | 1999-06-03 | 2006-12-26 | 아스린 에스.아. | 구강외과에서 사용되는 드릴 기구를 위한 정지 부재를 포함하는 안전 장치와 드릴 깊이 예비 보정 및 기억 장치 |
US6273852B1 (en) | 1999-06-09 | 2001-08-14 | Ethicon, Inc. | Surgical instrument and method for treating female urinary incontinence |
US6117152A (en) | 1999-06-18 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Multi-function ultrasonic surgical instrument |
US6214023B1 (en) | 1999-06-21 | 2001-04-10 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with removable clamp arm |
US6811842B1 (en) | 1999-06-29 | 2004-11-02 | The Procter & Gamble Company | Liquid transport member for high flux rates between two port regions |
US6254623B1 (en) | 1999-06-30 | 2001-07-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator surgical instrument with improved blade geometry |
US6488196B1 (en) | 1999-06-30 | 2002-12-03 | Axya Medical, Inc. | Surgical stapler and method of applying plastic staples to body tissue |
JP3911368B2 (ja) * | 1999-07-08 | 2007-05-09 | オリンパス株式会社 | 超音波処置具 |
US20010031950A1 (en) | 1999-07-16 | 2001-10-18 | Samantha Bell | Surgical blade coatings |
JP2001029353A (ja) | 1999-07-21 | 2001-02-06 | Olympus Optical Co Ltd | 超音波処置装置 |
US6423073B2 (en) | 1999-07-23 | 2002-07-23 | Ethicon, Inc. | Instrument for inserting graft fixation device |
US6258034B1 (en) | 1999-08-04 | 2001-07-10 | Acuson Corporation | Apodization methods and apparatus for acoustic phased array aperture for diagnostic medical ultrasound transducer |
TW449185U (en) | 1999-08-20 | 2001-08-01 | Chroma Ate Inc | Charge/discharge control circuit for battery |
US6590733B1 (en) | 1999-08-20 | 2003-07-08 | Agere Systems Inc. | Digital processing of pilot-tone amplitudes |
US6666860B1 (en) | 1999-08-24 | 2003-12-23 | Olympus Optical Co., Ltd. | Electric treatment system |
US20020087155A1 (en) | 1999-08-30 | 2002-07-04 | Underwood Ronald A. | Systems and methods for intradermal collagen stimulation |
US6419675B1 (en) | 1999-09-03 | 2002-07-16 | Conmed Corporation | Electrosurgical coagulating and cutting instrument |
US6651669B1 (en) | 1999-09-07 | 2003-11-25 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage |
US6611793B1 (en) | 1999-09-07 | 2003-08-26 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-use single use devices based on detecting environmental changes |
US7077039B2 (en) | 2001-11-13 | 2006-07-18 | Sd3, Llc | Detection system for power equipment |
US6432118B1 (en) | 1999-10-05 | 2002-08-13 | Ethicon Endo-Surgery, Inc. | Multifunctional curved blade for use with an ultrasonic surgical instrument |
US6325811B1 (en) | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
JP4233742B2 (ja) | 1999-10-05 | 2009-03-04 | エシコン・エンド−サージェリィ・インコーポレイテッド | 超音波外科用器具と共に使用される湾曲クランプアームと組織パッドの連結 |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US6551337B1 (en) | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US20030036705A1 (en) | 1999-10-05 | 2003-02-20 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means |
US6379350B1 (en) | 1999-10-05 | 2002-04-30 | Oratec Interventions, Inc. | Surgical instrument for ablation and aspiration |
US20020077550A1 (en) | 1999-10-05 | 2002-06-20 | Rabiner Robert A. | Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode |
US6458142B1 (en) | 1999-10-05 | 2002-10-01 | Ethicon Endo-Surgery, Inc. | Force limiting mechanism for an ultrasonic surgical instrument |
US6204592B1 (en) | 1999-10-12 | 2001-03-20 | Ben Hur | Ultrasonic nailing and drilling apparatus |
DK1150616T3 (da) | 1999-10-15 | 2006-02-13 | Lina Medical Aps | Elkirurgisk indretning til koagulering og til frembringelse af snit, en metode til overskaring af blodkar og en metode til koagulering og til frembringelse af snit i vav eller til overskaring af vav |
US6356224B1 (en) | 1999-10-21 | 2002-03-12 | Credence Systems Corporation | Arbitrary waveform generator having programmably configurable architecture |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
US6340878B1 (en) | 1999-10-22 | 2002-01-22 | Motorola, Inc. | Silicon equivalent PTC circuit |
US6716215B1 (en) | 1999-10-29 | 2004-04-06 | Image-Guided Neurologics | Cranial drill with sterile barrier |
US6440062B1 (en) | 1999-11-10 | 2002-08-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Control wire driving mechanism for use in endoscope |
US6443969B1 (en) | 2000-08-15 | 2002-09-03 | Misonix, Inc. | Ultrasonic cutting blade with cooling |
JP2001149374A (ja) | 1999-11-29 | 2001-06-05 | Asahi Optical Co Ltd | 内視鏡用組織採取具 |
RU2154437C1 (ru) | 1999-11-30 | 2000-08-20 | Зао "Вниимп-Вита" | Аппарат электрохирургический |
US6635057B2 (en) | 1999-12-02 | 2003-10-21 | Olympus Optical Co. Ltd. | Electric operation apparatus |
US7153312B1 (en) | 1999-12-02 | 2006-12-26 | Smith & Nephew Inc. | Closure device and method for tissue repair |
US6352532B1 (en) | 1999-12-14 | 2002-03-05 | Ethicon Endo-Surgery, Inc. | Active load control of ultrasonic surgical instruments |
US6743245B2 (en) | 1999-12-20 | 2004-06-01 | Alcon Universal Ltd. | Asynchronous method of operating microsurgical instruments |
DK176336B1 (da) | 1999-12-22 | 2007-08-20 | Asahi Optical Co Ltd | Endoskopisk vævsindsamlingsinstrument |
US6884252B1 (en) | 2000-04-04 | 2005-04-26 | Circuit Tree Medical, Inc. | Low frequency cataract fragmenting device |
US6511493B1 (en) | 2000-01-10 | 2003-01-28 | Hydrocision, Inc. | Liquid jet-powered surgical instruments |
US6702821B2 (en) | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US6416469B1 (en) | 2000-01-26 | 2002-07-09 | Genzyme Corporation | Suture organizing and retaining device and base member for surgical retractor |
US6589239B2 (en) | 2000-02-01 | 2003-07-08 | Ashok C. Khandkar | Electrosurgical knife |
AU2001234681A1 (en) | 2000-02-01 | 2001-08-14 | Sound Surgical Technologies Llc | Aluminum ultrasonic surgical applicator and method of making such an applicator |
SE0000344D0 (sv) | 2000-02-02 | 2000-02-02 | Sudhir Chowdhury | Disinfection of water |
JP2002186901A (ja) | 2000-12-21 | 2002-07-02 | Olympus Optical Co Ltd | 超音波手術装置 |
RU2201169C2 (ru) | 2000-02-08 | 2003-03-27 | Санкт-Петербургская медицинская академия последипломного образования | Нейрохирургическое ультразвуковое устройство |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
US6723091B2 (en) | 2000-02-22 | 2004-04-20 | Gyrus Medical Limited | Tissue resurfacing |
US6629974B2 (en) | 2000-02-22 | 2003-10-07 | Gyrus Medical Limited | Tissue treatment method |
WO2001062173A2 (en) | 2000-02-25 | 2001-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body |
US6953461B2 (en) | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US8048070B2 (en) | 2000-03-06 | 2011-11-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
US6558385B1 (en) | 2000-09-22 | 2003-05-06 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US6506208B2 (en) | 2000-03-06 | 2003-01-14 | Robert B. Hunt | Surgical instrument |
US6428539B1 (en) | 2000-03-09 | 2002-08-06 | Origin Medsystems, Inc. | Apparatus and method for minimally invasive surgery using rotational cutting tool |
AU2001245727A1 (en) | 2000-03-15 | 2001-09-24 | Bioaccess, Inc. | Orthopedic medical device |
DE20004812U1 (de) | 2000-03-16 | 2000-09-28 | Knop, Christian, Dr., 30163 Hannover | Endoskopische Spreizzange |
AR028271A1 (es) | 2000-03-24 | 2003-04-30 | Kimberly Clark Co | Un sistema para un producto higienico y una almohadilla para la higiene de la mujer que comprende dicho sistema |
US6926712B2 (en) | 2000-03-24 | 2005-08-09 | Boston Scientific Scimed, Inc. | Clamp having at least one malleable clamp member and surgical method employing the same |
US6423082B1 (en) | 2000-03-31 | 2002-07-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical blade with improved cutting and coagulation features |
US6623501B2 (en) | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
FR2807827B1 (fr) | 2000-04-12 | 2002-07-05 | Technomed Medical Systems | Systeme de manipulation de fluide pour appareil de therapie |
US6984220B2 (en) | 2000-04-12 | 2006-01-10 | Wuchinich David G | Longitudinal-torsional ultrasonic tissue dissection |
AU2001249874A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
WO2001082812A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
AU6321301A (en) | 2000-05-16 | 2001-11-26 | Atrionix Inc | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
DE10025352B4 (de) | 2000-05-23 | 2007-09-20 | Hilti Ag | Werkzeuggerät mit einem Ultraschalladapter |
USD445092S1 (en) | 2000-05-24 | 2001-07-17 | Aten International Co., Ltd. | Computer-cord-connector |
USD445764S1 (en) | 2000-05-24 | 2001-07-31 | Aten International Co., Ltd. | Computer-cord-connector |
US6602262B2 (en) | 2000-06-02 | 2003-08-05 | Scimed Life Systems, Inc. | Medical device having linear to rotation control |
US20030204188A1 (en) | 2001-11-07 | 2003-10-30 | Artemis Medical, Inc. | Tissue separating and localizing catheter assembly |
DE10028319A1 (de) | 2000-06-07 | 2001-12-13 | Endress Hauser Gmbh Co | Elektromechanischer Wandler |
WO2001095810A2 (en) | 2000-06-14 | 2001-12-20 | Harmonia Medical Technologies, Inc. | Surgical instrument and method of using the same |
US6558376B2 (en) | 2000-06-30 | 2003-05-06 | Gregory D. Bishop | Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface |
US20020002380A1 (en) | 2000-06-30 | 2002-01-03 | Bishop Gregory D. | Ultrasonic clamp and coagulation apparatus with tissue support surface |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US7235073B2 (en) | 2000-07-06 | 2007-06-26 | Ethicon Endo-Surgery, Inc. | Cooled electrosurgical forceps |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
JP2003000612A (ja) | 2001-06-18 | 2003-01-07 | Olympus Optical Co Ltd | エネルギー処置システム |
US6761698B2 (en) | 2000-07-28 | 2004-07-13 | Olympus Corporation | Ultrasonic operation system |
US6773443B2 (en) | 2000-07-31 | 2004-08-10 | Regents Of The University Of Minnesota | Method and apparatus for taking a biopsy |
DE20013827U1 (de) | 2000-08-10 | 2001-12-20 | Kaltenbach & Voigt GmbH & Co., 88400 Biberach | Medizinisches oder dentalmedizinisches Behandlungsinstrument mit einem Werkzeugträger in Form eines Schwingstabes |
JP2002059380A (ja) | 2000-08-22 | 2002-02-26 | Olympus Optical Co Ltd | マスタースレーブ装置 |
US6730080B2 (en) | 2000-08-23 | 2004-05-04 | Olympus Corporation | Electric operation apparatus |
DE10042606A1 (de) | 2000-08-30 | 2001-08-16 | Siemens Ag | Medizinisches Gerät |
US6551309B1 (en) | 2000-09-14 | 2003-04-22 | Cryoflex, Inc. | Dual action cryoprobe and methods of using the same |
IT1318881B1 (it) | 2000-09-19 | 2003-09-10 | St Microelectronics Srl | Circuito di pilotaggio ad alta efficienza per carichi capacitivi. |
US20020082621A1 (en) | 2000-09-22 | 2002-06-27 | Schurr Marc O. | Methods and devices for folding and securing tissue |
US6475215B1 (en) | 2000-10-12 | 2002-11-05 | Naim Erturk Tanrisever | Quantum energy surgical device and method |
GB0025427D0 (en) | 2000-10-17 | 2000-11-29 | Young Michael J R | Ultrasonic tool mechanism |
US7077853B2 (en) | 2000-10-20 | 2006-07-18 | Ethicon Endo-Surgery, Inc. | Method for calculating transducer capacitance to determine transducer temperature |
US6537291B2 (en) | 2000-10-20 | 2003-03-25 | Ethicon Endo-Surgery, Inc. | Method for detecting a loose blade in a hand piece connected to an ultrasonic surgical system |
JP4156231B2 (ja) | 2000-10-20 | 2008-09-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | 超音波ハンド・ピースにおける横振動を検出するための方法 |
US6626926B2 (en) | 2000-10-20 | 2003-09-30 | Ethicon Endo-Surgery, Inc. | Method for driving an ultrasonic system to improve acquisition of blade resonance frequency at startup |
US6809508B2 (en) | 2000-10-20 | 2004-10-26 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
US7273483B2 (en) | 2000-10-20 | 2007-09-25 | Ethicon Endo-Surgery, Inc. | Apparatus and method for alerting generator functions in an ultrasonic surgical system |
US6623500B1 (en) | 2000-10-20 | 2003-09-23 | Ethicon Endo-Surgery, Inc. | Ring contact for rotatable connection of switch assembly for use in a surgical system |
US6908472B2 (en) | 2000-10-20 | 2005-06-21 | Ethicon Endo-Surgery, Inc. | Apparatus and method for altering generator functions in an ultrasonic surgical system |
JP4248781B2 (ja) | 2000-10-20 | 2009-04-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | 外科ハンドピース・システム用の検出回路 |
US6678621B2 (en) | 2000-10-20 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Output displacement control using phase margin in an ultrasonic surgical hand piece |
US6633234B2 (en) | 2000-10-20 | 2003-10-14 | Ethicon Endo-Surgery, Inc. | Method for detecting blade breakage using rate and/or impedance information |
US6480796B2 (en) | 2000-10-20 | 2002-11-12 | Ethicon Endo-Surgery, Inc. | Method for improving the start up of an ultrasonic system under zero load conditions |
US6679899B2 (en) | 2000-10-20 | 2004-01-20 | Ethicon Endo-Surgery, Inc. | Method for detecting transverse vibrations in an ultrasonic hand piece |
US6662127B2 (en) | 2000-10-20 | 2003-12-09 | Ethicon Endo-Surgery, Inc. | Method for detecting presence of a blade in an ultrasonic system |
US20020049551A1 (en) | 2000-10-20 | 2002-04-25 | Ethicon Endo-Surgery, Inc. | Method for differentiating between burdened and cracked ultrasonically tuned blades |
US6945981B2 (en) | 2000-10-20 | 2005-09-20 | Ethicon-Endo Surgery, Inc. | Finger operated switch for controlling a surgical handpiece |
CA2359281C (en) | 2000-10-20 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
USD511145S1 (en) | 2000-10-20 | 2005-11-01 | Ethicon Endo-Surgery, Inc. | Hand piece switch adapter |
US6338657B1 (en) | 2000-10-20 | 2002-01-15 | Ethicon Endo-Surgery | Hand piece connector |
US6500176B1 (en) | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6656177B2 (en) | 2000-10-23 | 2003-12-02 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6527736B1 (en) | 2000-10-23 | 2003-03-04 | Grieshaber & Co. Ag Schaffhausen | Device for use in ophthalmologic procedures |
JP2002132917A (ja) | 2000-10-26 | 2002-05-10 | Fujitsu Ltd | 印刷サービス方法、システム及びプリンタ |
US6893435B2 (en) | 2000-10-31 | 2005-05-17 | Gyrus Medical Limited | Electrosurgical system |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
US6843789B2 (en) | 2000-10-31 | 2005-01-18 | Gyrus Medical Limited | Electrosurgical system |
JP2002143177A (ja) | 2000-11-07 | 2002-05-21 | Miwatec:Kk | 超音波ハンドピ−スとこれに使用する超音波ホーン |
US6543452B1 (en) | 2000-11-16 | 2003-04-08 | Medilyfe, Inc. | Nasal intubation device and system for intubation |
US6733506B1 (en) | 2000-11-16 | 2004-05-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
CN2460047Y (zh) | 2000-11-16 | 2001-11-21 | 黄健平 | 计算机虚拟b超仪 |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
US6558380B2 (en) | 2000-12-08 | 2003-05-06 | Gfd Gesellschaft Fur Diamantprodukte Mbh | Instrument for surgical purposes and method of cleaning same |
IT249046Y1 (it) | 2000-12-11 | 2003-03-25 | Optikon 2000 Spa | Punta emulsificata per chirurgia oculistica, in particolare per lafacoemulsificazione della cataratta. |
JP4080874B2 (ja) | 2000-12-20 | 2008-04-23 | フォックス ハロウ テクノロジーズ,インコーポレイティド | 減嵩カテーテル |
JP3561234B2 (ja) | 2000-12-21 | 2004-09-02 | アイシン機工株式会社 | 超音波発生伝達装置 |
DE20021619U1 (de) | 2000-12-21 | 2001-03-08 | Neumann, Anne-Kathrin, 26605 Aurich | Chirurgisches Handwerkzeug, insbesondere Ultraschall-Skalpell |
US6690960B2 (en) | 2000-12-21 | 2004-02-10 | David T. Chen | Video-based surgical targeting system |
US8133218B2 (en) | 2000-12-28 | 2012-03-13 | Senorx, Inc. | Electrosurgical medical system and method |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US7530986B2 (en) | 2001-01-08 | 2009-05-12 | Ethicon Endo-Surgery, Inc. | Laminated ultrasonic end effector |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US20040138621A1 (en) | 2003-01-14 | 2004-07-15 | Jahns Scott E. | Devices and methods for interstitial injection of biologic agents into tissue |
US6554829B2 (en) | 2001-01-24 | 2003-04-29 | Ethicon, Inc. | Electrosurgical instrument with minimally invasive jaws |
US6620161B2 (en) | 2001-01-24 | 2003-09-16 | Ethicon, Inc. | Electrosurgical instrument with an operational sequencing element |
US6458128B1 (en) | 2001-01-24 | 2002-10-01 | Ethicon, Inc. | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
US6464702B2 (en) | 2001-01-24 | 2002-10-15 | Ethicon, Inc. | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
US20020107517A1 (en) | 2001-01-26 | 2002-08-08 | Witt David A. | Electrosurgical instrument for coagulation and cutting |
US6500188B2 (en) | 2001-01-29 | 2002-12-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with finger actuator |
USD444365S1 (en) | 2001-01-31 | 2001-07-03 | Campbell Hausfeld/Scott Fetzer Company | Handheld power tool housing and handle |
EP1359851B1 (en) | 2001-01-31 | 2010-09-22 | Rex Medical, Inc. | Apparatus for stapling and resectioning gastro-edophageal tissue |
US6561983B2 (en) | 2001-01-31 | 2003-05-13 | Ethicon Endo-Surgery, Inc. | Attachments of components of ultrasonic blades or waveguides |
US6752815B2 (en) | 2001-01-31 | 2004-06-22 | Ethicon Endo-Surgery, Inc. | Method and waveguides for changing the direction of longitudinal vibrations |
CA2437582C (en) | 2001-02-08 | 2009-09-15 | Tyco Healthcare Group Lp | Ultrasonic surgical instrument |
US20080214967A1 (en) | 2004-02-17 | 2008-09-04 | Ernest Aranyi | Ultrasonic surgical instrument |
US20040054364A1 (en) | 2002-02-08 | 2004-03-18 | Ernest Aranyi | Ultrasonic surgical instrument |
US20040097911A1 (en) | 2001-02-13 | 2004-05-20 | Olympus Optical Co., Ltd. | Ultrasonic operating apparartus and tool for changing tip thereof |
JP2002238919A (ja) | 2001-02-20 | 2002-08-27 | Olympus Optical Co Ltd | 医療システム用制御装置及び医療システム |
US6986686B2 (en) | 2001-02-23 | 2006-01-17 | Olympus Corporation | Electrical plug for supplying electric power from a power supply to a medical instrument |
US6533784B2 (en) | 2001-02-24 | 2003-03-18 | Csaba Truckai | Electrosurgical working end for transecting and sealing tissue |
WO2002067798A1 (en) | 2001-02-26 | 2002-09-06 | Ntero Surgical, Inc. | System and method for reducing post-surgical complications |
US6383194B1 (en) | 2001-02-26 | 2002-05-07 | Viswanadham Pothula | Flexible ultrasonic surgical snare |
US6666862B2 (en) | 2001-03-01 | 2003-12-23 | Cardiac Pacemakers, Inc. | Radio frequency ablation system and method linking energy delivery with fluid flow |
US6719776B2 (en) | 2001-03-01 | 2004-04-13 | Ethicon Endo-Surgery, Inc. | Thumb pad actuator for an ultrasonic surgical instrument |
JP2002263579A (ja) | 2001-03-07 | 2002-09-17 | Olympus Optical Co Ltd | 超音波振動子駆動装置 |
US6682527B2 (en) | 2001-03-13 | 2004-01-27 | Perfect Surgical Techniques, Inc. | Method and system for heating tissue with a bipolar instrument |
US6514267B2 (en) | 2001-03-26 | 2003-02-04 | Iep Pharmaceutical Devices Inc. | Ultrasonic scalpel |
US6626848B2 (en) | 2001-03-30 | 2003-09-30 | Eric M. Neuenfeldt | Method and device to reduce needle insertion force |
US20030014087A1 (en) | 2001-03-30 | 2003-01-16 | Neurocontrol Corporation | Systems and methods for performing prosthetic or therapeutic neuromuscular stimulation using a programmable universal external controller |
US8348880B2 (en) | 2001-04-04 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument incorporating fluid management |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
US7101373B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
AU2001249937B2 (en) | 2001-04-06 | 2006-02-09 | Covidien Ag | Vessel sealing instrument |
EP1527746B1 (en) | 2001-04-06 | 2013-03-13 | Covidien AG | Vessel sealing forceps with disposable electrodes |
CA2442598C (en) | 2001-04-06 | 2011-10-04 | Sean T. Dycus | Vessel sealer and divider with non-conductive stop members |
US7118587B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealer and divider |
US20030229344A1 (en) | 2002-01-22 | 2003-12-11 | Dycus Sean T. | Vessel sealer and divider and method of manufacturing same |
US7083618B2 (en) | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
AU2002250551B2 (en) | 2001-04-06 | 2006-02-02 | Covidien Ag | Molded insulating hinge for bipolar instruments |
US20020151837A1 (en) | 2001-04-16 | 2002-10-17 | Surgicon Inc. | Surgical irrigation apparatus and methods for use |
JP2002306504A (ja) | 2001-04-18 | 2002-10-22 | Olympus Optical Co Ltd | 外科手術システム |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US6562035B1 (en) | 2001-04-19 | 2003-05-13 | Levin John M | Insulated surgical scissors including cauterizing tip |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
ATE551955T1 (de) | 2001-04-20 | 2012-04-15 | Tyco Healthcare | Chirurgische vorrichtung mit bipolaren oder ultraschalleigenschaften |
US6807968B2 (en) | 2001-04-26 | 2004-10-26 | Medtronic, Inc. | Method and system for treatment of atrial tachyarrhythmias |
US6699240B2 (en) | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US7959626B2 (en) | 2001-04-26 | 2011-06-14 | Medtronic, Inc. | Transmural ablation systems and methods |
US6913579B2 (en) | 2001-05-01 | 2005-07-05 | Surgrx, Inc. | Electrosurgical working end and method for obtaining tissue samples for biopsy |
US6531846B1 (en) | 2001-05-03 | 2003-03-11 | National Semiconductor Corporation | Final discharge of a cell activated by a circuit that senses when a charging fault has occurred |
US20020165577A1 (en) | 2001-05-04 | 2002-11-07 | Ethicon Endo-Surgery, Inc. | Easily detachable ultrasonic clamping device |
EP1385439A1 (en) | 2001-05-10 | 2004-02-04 | Rita Medical Systems, Inc. | Rf tissue ablation apparatus and method |
US6588277B2 (en) | 2001-05-21 | 2003-07-08 | Ethicon Endo-Surgery | Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade |
US7182604B2 (en) | 2001-06-01 | 2007-02-27 | Sherwood Services Ag | Return pad cable connector |
US6656198B2 (en) | 2001-06-01 | 2003-12-02 | Ethicon-Endo Surgery, Inc. | Trocar with reinforced obturator shaft |
US8052672B2 (en) | 2001-06-06 | 2011-11-08 | LENR Solutions, Inc. | Fat removal and nerve protection device and method |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US20030009154A1 (en) | 2001-06-20 | 2003-01-09 | Whitman Michael P. | Method and system for integrated medical tracking |
JP2003010201A (ja) | 2001-06-27 | 2003-01-14 | Pentax Corp | 超音波治療具 |
WO2003001988A2 (en) | 2001-06-29 | 2003-01-09 | The Trustees Of Columbia University In City Of New York | Tripod knife for venous access |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
AU2002322374B2 (en) | 2001-06-29 | 2006-10-26 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US6923804B2 (en) | 2001-07-12 | 2005-08-02 | Neothermia Corporation | Electrosurgical generator |
US6740079B1 (en) | 2001-07-12 | 2004-05-25 | Neothermia Corporation | Electrosurgical generator |
US7037255B2 (en) | 2001-07-27 | 2006-05-02 | Ams Research Corporation | Surgical instruments for addressing pelvic disorders |
IL144638A (en) | 2001-07-30 | 2005-12-18 | Nano Size Ltd | High power ultrasound reactor for the production of nano-powder materials |
US6778023B2 (en) | 2001-07-31 | 2004-08-17 | Nokia Corporation | Tunable filter and method of tuning a filter |
US7208005B2 (en) | 2001-08-06 | 2007-04-24 | The Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US20030040758A1 (en) | 2001-08-21 | 2003-02-27 | Yulun Wang | Robotically controlled surgical instrument, visual force-feedback |
US7282048B2 (en) | 2001-08-27 | 2007-10-16 | Gyrus Medical Limited | Electrosurgical generator and system |
US6808525B2 (en) | 2001-08-27 | 2004-10-26 | Gyrus Medical, Inc. | Bipolar electrosurgical hook probe for cutting and coagulating tissue |
EP1287788B1 (en) | 2001-08-27 | 2011-04-20 | Gyrus Medical Limited | Electrosurgical system |
WO2004078051A2 (en) | 2001-08-27 | 2004-09-16 | Gyrus Medial Limited | Electrosurgical system |
US6994709B2 (en) | 2001-08-30 | 2006-02-07 | Olympus Corporation | Treatment device for tissue from living tissues |
US7229455B2 (en) | 2001-09-03 | 2007-06-12 | Olympus Corporation | Ultrasonic calculus treatment apparatus |
NL1018874C2 (nl) | 2001-09-03 | 2003-03-05 | Michel Petronella Hub Vleugels | Chirurgisch instrument. |
WO2007143665A2 (en) | 2006-06-05 | 2007-12-13 | Broncus Technologies, Inc. | Devices for creating passages and sensing blood vessels |
US20050033278A1 (en) | 2001-09-05 | 2005-02-10 | Mcclurken Michael | Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods |
US20030050572A1 (en) | 2001-09-07 | 2003-03-13 | Brautigam Robert T. | Specimen retrieving needle |
US6802843B2 (en) | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6773434B2 (en) | 2001-09-18 | 2004-08-10 | Ethicon, Inc. | Combination bipolar forceps and scissors instrument |
US6773409B2 (en) | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
GB2379878B (en) | 2001-09-21 | 2004-11-10 | Gyrus Medical Ltd | Electrosurgical system and method |
US6616661B2 (en) | 2001-09-28 | 2003-09-09 | Ethicon, Inc. | Surgical device for clamping, ligating, and severing tissue |
AU2002327779B2 (en) | 2001-09-28 | 2008-06-26 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
US7166103B2 (en) | 2001-10-01 | 2007-01-23 | Electrosurgery Associates, Llc | High efficiency electrosurgical ablator with electrode subjected to oscillatory or other repetitive motion |
WO2003028544A2 (en) | 2001-10-04 | 2003-04-10 | Gibbens & Borders, Llc | Cycling suturing and knot-tying device |
EP2452636B1 (en) | 2001-10-05 | 2016-03-23 | Covidien LP | Surgical stapling apparatus |
US7796969B2 (en) | 2001-10-10 | 2010-09-14 | Peregrine Semiconductor Corporation | Symmetrically and asymmetrically stacked transistor group RF switch |
ES2327907T3 (es) | 2001-10-11 | 2009-11-05 | Tyco Healthcare Group Lp | Cuchilla de corte iltrasonico larga formada por cuchillas mas pequeñas estratificadas. |
JP2003126110A (ja) | 2001-10-24 | 2003-05-07 | Olympus Optical Co Ltd | 超音波処置具 |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US20050267464A1 (en) | 2001-10-18 | 2005-12-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6685703B2 (en) | 2001-10-19 | 2004-02-03 | Scimed Life Systems, Inc. | Generator and probe adapter |
US7517349B2 (en) | 2001-10-22 | 2009-04-14 | Vnus Medical Technologies, Inc. | Electrosurgical instrument and method |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6770072B1 (en) | 2001-10-22 | 2004-08-03 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US7125409B2 (en) | 2001-10-22 | 2006-10-24 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US6905497B2 (en) | 2001-10-22 | 2005-06-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument |
US20040098010A1 (en) | 2001-10-22 | 2004-05-20 | Glenn Davison | Confuser crown skin pricker |
US20060293656A1 (en) | 2001-10-22 | 2006-12-28 | Shadduck John H | Electrosurgical instrument and method of use |
US6926716B2 (en) | 2001-11-09 | 2005-08-09 | Surgrx Inc. | Electrosurgical instrument |
US7041102B2 (en) | 2001-10-22 | 2006-05-09 | Surgrx, Inc. | Electrosurgical working end with replaceable cartridges |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US8075558B2 (en) | 2002-04-30 | 2011-12-13 | Surgrx, Inc. | Electrosurgical instrument and method |
US7311709B2 (en) | 2001-10-22 | 2007-12-25 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7083619B2 (en) | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
JP2003126104A (ja) | 2001-10-23 | 2003-05-07 | Olympus Optical Co Ltd | 超音波切開装置 |
CA2463903A1 (en) | 2001-10-24 | 2003-05-01 | Stephen L.(M.D.) Tillim | A handle/grip and method for designing the like |
JP3676997B2 (ja) | 2001-11-07 | 2005-07-27 | 株式会社岳将 | 超音波加工機のスピンドル構造およびこれに用いる支持ホーン |
JP4302524B2 (ja) | 2001-11-08 | 2009-07-29 | エシコン・エンド−サージェリィ・インコーポレイテッド | 改良されたクランピング・エンドエフェクタを備えた超音波クランプ凝固装置 |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US6719765B2 (en) | 2001-12-03 | 2004-04-13 | Bonutti 2003 Trust-A | Magnetic suturing system and method |
US7686770B2 (en) | 2005-10-14 | 2010-03-30 | Microfabrica Inc. | Discrete or continuous tissue capture device and method for making |
US7753908B2 (en) | 2002-02-19 | 2010-07-13 | Endoscopic Technologies, Inc. (Estech) | Apparatus for securing an electrophysiology probe to a clamp |
US7226448B2 (en) | 2001-12-04 | 2007-06-05 | Estech, Inc. (Endoscopic Technologies, Inc.) | Cardiac treatment devices and methods |
EP1453432B1 (en) | 2001-12-04 | 2012-08-01 | Tyco Healthcare Group LP | System and method for calibrating a surgical instrument |
RU22035U1 (ru) | 2001-12-06 | 2002-03-10 | Общество с ограниченной ответственностью "Научно-производственное объединение "Каскад-НТЛ" | Устройство для коагуляции и резекции биологических тканей |
EP1627662B1 (en) | 2004-06-10 | 2011-03-02 | Candela Corporation | Apparatus for vacuum-assisted light-based treatments of the skin |
US7052496B2 (en) | 2001-12-11 | 2006-05-30 | Olympus Optical Co., Ltd. | Instrument for high-frequency treatment and method of high-frequency treatment |
US20030114851A1 (en) | 2001-12-13 | 2003-06-19 | Csaba Truckai | Electrosurgical jaws for controlled application of clamping pressure |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
DE10201569B4 (de) | 2002-01-11 | 2008-12-24 | Aesculap Ag | Chirurgisches Instrument |
ATE540606T1 (de) | 2002-01-22 | 2012-01-15 | Surgrx Inc | Elektrochirurgisches instrument und anwendungsverfahren |
US20030144680A1 (en) | 2002-01-22 | 2003-07-31 | Sontra Medical, Inc. | Portable ultrasonic scalpel/cautery device |
US6676660B2 (en) | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
US6887209B2 (en) | 2002-01-25 | 2005-05-03 | Advanced Medical Optics | Pulsed vacuum and/or flow method and apparatus for tissue removal |
DE10203630A1 (de) | 2002-01-30 | 2003-08-14 | Fraunhofer Ges Forschung | Probenträger zur Kryokonservierung biologischer Proben |
DE10204487B4 (de) | 2002-01-30 | 2004-03-04 | Infineon Technologies Ag | Temperatursensor |
US7625370B2 (en) | 2002-02-13 | 2009-12-01 | Applied Medical Resources Corporation | Tissue fusion/welder apparatus and method |
US20080177268A1 (en) | 2002-02-14 | 2008-07-24 | Wolfgang Daum | Minimally-Invasive Approach to Bone-Obstructed Soft Tissue |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US6733498B2 (en) | 2002-02-19 | 2004-05-11 | Live Tissue Connect, Inc. | System and method for control of tissue welding |
US6610059B1 (en) | 2002-02-25 | 2003-08-26 | Hs West Investments Llc | Endoscopic instruments and methods for improved bubble aspiration at a surgical site |
US7041083B2 (en) | 2002-02-26 | 2006-05-09 | Scimed Life Systems, Inc. | Medical catheter assembly including a removable inner sleeve and method of using the same |
US6819027B2 (en) | 2002-03-04 | 2004-11-16 | Cepheid | Method and apparatus for controlling ultrasonic transducer |
US20060259026A1 (en) | 2005-05-05 | 2006-11-16 | Baylis Medical Company Inc. | Electrosurgical treatment method and device |
US7285117B2 (en) | 2002-03-15 | 2007-10-23 | Boston Scientific Scimed, Inc. | Medical device control systems |
US7247161B2 (en) | 2002-03-22 | 2007-07-24 | Gyrus Ent L.L.C. | Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus |
GB2387782B (en) | 2002-03-28 | 2004-04-07 | Michael John Radley Young | Improved surgical tool mechanism |
WO2003086223A1 (en) | 2002-04-12 | 2003-10-23 | San Diego Swiss Machining, Inc. | Ultrasonic microtube dental instruments and methods of using same |
US7258688B1 (en) | 2002-04-16 | 2007-08-21 | Baylis Medical Company Inc. | Computerized electrical signal generator |
JP2003305050A (ja) | 2002-04-17 | 2003-10-28 | Olympus Optical Co Ltd | 超音波手術装置 |
US20040030330A1 (en) | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
EP1496805B1 (en) | 2002-04-25 | 2012-01-11 | Tyco Healthcare Group LP | Surgical instruments including micro-electromechanical systems (mems) |
US20030204199A1 (en) | 2002-04-30 | 2003-10-30 | Novak Theodore A. D. | Device and method for ultrasonic tissue excision with tissue selectivity |
US6969385B2 (en) | 2002-05-01 | 2005-11-29 | Manuel Ricardo Moreyra | Wrist with decoupled motion transmission |
AU2003230359B2 (en) | 2002-05-10 | 2008-11-13 | Covidien Lp | Electrosurgical stapling apparatus |
US20030212392A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Ultrasonic soft tissue cutting and coagulation systems having a curvilinear blade member and clamp |
US20030212422A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Ultrasonic soft tissue cutting and coagulation systems with movable vibrating probe and fixed receiving clamp |
JP4425782B2 (ja) | 2002-05-13 | 2010-03-03 | アクシーア メディカル インコーポレイテッド | 柔組織の切断及び凝固のための超音波システム |
US20030212332A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Disposable ultrasonic soft tissue cutting and coagulation systems |
GB2388741B (en) | 2002-05-17 | 2004-06-30 | Morgan Crucible Co | Transducer assembly |
US6814731B2 (en) | 2002-05-20 | 2004-11-09 | Scimed Life Systems, Inc. | Methods for RF ablation using jet injection of conductive fluid |
JP2004000336A (ja) | 2002-05-31 | 2004-01-08 | Olympus Corp | 超音波処置装置 |
US6543456B1 (en) | 2002-05-31 | 2003-04-08 | Ethicon Endo-Surgery, Inc. | Method for minimally invasive surgery in the digestive system |
US20060159731A1 (en) | 2002-06-03 | 2006-07-20 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Multi-layer collagenic article useful for wounds healing and a method for its production thereof |
JP4808961B2 (ja) | 2002-06-04 | 2011-11-02 | オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ | 被包化された体空間内から体組織を迅速に吸引及び採取するための装置 |
ATE528046T1 (de) | 2002-06-04 | 2011-10-15 | Sound Surgical Technologies Llc | Ultraschallgerät für die gewebekoagulation |
US6855140B2 (en) | 2002-06-06 | 2005-02-15 | Thomas E. Albrecht | Method of tissue lesion removal |
US7066893B2 (en) | 2002-06-06 | 2006-06-27 | Ethicon Endo-Surgery, Inc. | Biopsy method |
US7153315B2 (en) | 2002-06-11 | 2006-12-26 | Boston Scientific Scimed, Inc. | Catheter balloon with ultrasonic microscalpel blades |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
CN101803938B (zh) | 2002-06-14 | 2012-06-20 | Tyco医疗健康集团 | 用于夹紧、切割及缝合组织的器械 |
RU2284160C2 (ru) | 2002-06-24 | 2006-09-27 | Аркадий Вениаминович Дубровский | Устройство для поворота инструмента с дистанционным управлением |
AUPS322702A0 (en) | 2002-06-28 | 2002-07-18 | Cochlear Limited | Cochlear implant electrode array |
US7033356B2 (en) | 2002-07-02 | 2006-04-25 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US7331410B2 (en) | 2002-07-03 | 2008-02-19 | Smith International, Inc. | Drill bit arcuate-shaped inserts with cutting edges and method of manufacture |
US6958071B2 (en) | 2002-07-13 | 2005-10-25 | Stryker Corporation | Surgical tool system |
US7318831B2 (en) | 2002-07-13 | 2008-01-15 | Stryker Corporation | System and method for performing irrigated nose and throat surgery |
US6929622B2 (en) | 2002-07-15 | 2005-08-16 | Lai-Wen Chian | Safety syringe cylinder |
US20040047485A1 (en) | 2002-07-16 | 2004-03-11 | Stewart Sherrit | Folded horns for vibration actuators |
US7060075B2 (en) | 2002-07-18 | 2006-06-13 | Biosense, Inc. | Distal targeting of locking screws in intramedullary nails |
JP2004057588A (ja) | 2002-07-30 | 2004-02-26 | Olympus Corp | 外科用処置具 |
AU2003269931A1 (en) | 2002-07-31 | 2004-02-16 | Tyco Heathcare Group, Lp | Tool member cover and cover deployment device |
JP4388475B2 (ja) | 2002-08-02 | 2009-12-24 | オリンパス株式会社 | 超音波処置具 |
US20040030254A1 (en) | 2002-08-07 | 2004-02-12 | Eilaz Babaev | Device and method for ultrasound wound debridement |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US20040132383A1 (en) | 2002-08-14 | 2004-07-08 | Langford Mark A. | Fluid jet cutting system |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
JP2004073582A (ja) | 2002-08-20 | 2004-03-11 | Olympus Corp | 生体組織切除具 |
US8986297B2 (en) | 2002-08-21 | 2015-03-24 | Resect Medical, Inc. | Thermal hemostasis and/or coagulation of tissue |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
DE10241702A1 (de) | 2002-09-09 | 2004-03-18 | Berchtold Holding Gmbh | Ultraschallinstrument |
USD490059S1 (en) | 2002-09-09 | 2004-05-18 | Thermal Dynamics Corporation | Connector adapter |
US20040064151A1 (en) | 2002-09-27 | 2004-04-01 | Starion Instruments Corporation | Ultrasonic forceps |
US7087054B2 (en) | 2002-10-01 | 2006-08-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
ATE416707T1 (de) | 2002-10-02 | 2008-12-15 | Olympus Corp | Operationssystem mit mehreren medizinischen geräten und mehreren fernbedienungen |
USD477408S1 (en) | 2002-10-04 | 2003-07-15 | Conmed Corporation | Electrosurgical generator |
ES2377813T5 (es) | 2002-10-04 | 2020-12-18 | Covidien Lp | Conjunto de herramienta para un dispositivo de grapado quirúrgico |
ES2274284T3 (es) | 2002-10-04 | 2007-05-16 | Tyco Healthcare Group Lp | Grapadora quirugica con articulacion universal y dispositivo de sujeccion previa del tejido. |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
CA2712039C (en) | 2002-10-04 | 2013-03-12 | Tyco Healthcare Group Lp | Tool assembly for surgical stapling device |
JP2004129871A (ja) | 2002-10-10 | 2004-04-30 | Olympus Corp | 超音波処置装置 |
US7041088B2 (en) | 2002-10-11 | 2006-05-09 | Ethicon, Inc. | Medical devices having durable and lubricious polymeric coating |
US7682366B2 (en) | 2002-10-16 | 2010-03-23 | Olympus Corporation | Calculus manipulation apparatus |
US20040147934A1 (en) | 2002-10-18 | 2004-07-29 | Kiester P. Douglas | Oscillating, steerable, surgical burring tool and method of using the same |
US20040092921A1 (en) | 2002-10-21 | 2004-05-13 | Kadziauskas Kenneth E. | System and method for pulsed ultrasonic power delivery employing cavitation effects |
US20040092992A1 (en) | 2002-10-23 | 2004-05-13 | Kenneth Adams | Disposable battery powered rotary tissue cutting instruments and methods therefor |
JP2003116870A (ja) | 2002-10-23 | 2003-04-22 | Miwatec:Kk | 超音波ハンドピ−スとこれに使用する超音波ホ−ン |
US8162966B2 (en) | 2002-10-25 | 2012-04-24 | Hydrocision, Inc. | Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use |
ATE485777T1 (de) | 2002-10-25 | 2010-11-15 | Hydrocision Inc | Chirurgische einrichtung zur erzeugung eines flüssigkeitsstrahles für das entfernen von biologischem gewebe |
JP4086621B2 (ja) | 2002-10-28 | 2008-05-14 | 株式会社トップ | 外科用器具のハンドル構造 |
US7083620B2 (en) | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US7678125B2 (en) | 2002-11-12 | 2010-03-16 | Apollo Camera, L.L.C. | Surgical ligation clip |
US6786383B2 (en) | 2002-11-14 | 2004-09-07 | Kimberly-Clark Worldwide, Inc. | Ultrasonic horn assembly with fused stack components |
US7799026B2 (en) | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US6835082B2 (en) | 2002-11-18 | 2004-12-28 | Conmed Corporation | Monopolar electrosurgical multi-plug connector device and method which accepts multiple different connector plugs |
US20040097912A1 (en) | 2002-11-18 | 2004-05-20 | Gonnering Wayne J. | Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles |
US6942660B2 (en) | 2002-11-19 | 2005-09-13 | Conmed Corporation | Electrosurgical generator and method with multiple semi-autonomously executable functions |
US6948503B2 (en) | 2002-11-19 | 2005-09-27 | Conmed Corporation | Electrosurgical generator and method for cross-checking output power |
US6905499B1 (en) | 2002-11-26 | 2005-06-14 | Thermal Corp. | Heat pipe for cautery surgical Instrument |
US7390317B2 (en) | 2002-12-02 | 2008-06-24 | Applied Medical Resources Corporation | Universal access seal |
JP4095919B2 (ja) | 2002-12-09 | 2008-06-04 | ジンマー株式会社 | 人工膝関節全置換手術用計測装置 |
US7217128B2 (en) | 2002-12-12 | 2007-05-15 | Discus Dental Impressions, Inc. | Ultrasonic dental insert having interchangeable plastic and metal tips |
US8057468B2 (en) | 2002-12-17 | 2011-11-15 | Bovie Medical Corporation | Method to generate a plasma stream for performing electrosurgery |
US20040176686A1 (en) | 2002-12-23 | 2004-09-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US6875220B2 (en) | 2002-12-30 | 2005-04-05 | Cybersonics, Inc. | Dual probe |
US8454639B2 (en) | 2002-12-30 | 2013-06-04 | Cybersonics, Inc. | Dual probe with floating inner probe |
US6926717B1 (en) | 2003-01-14 | 2005-08-09 | Jon C. Garito | Electrosurgical breast electrode |
US7287682B1 (en) | 2003-01-20 | 2007-10-30 | Hazem Ezzat | Surgical device and method |
US20040142667A1 (en) | 2003-01-21 | 2004-07-22 | Lochhead Donald Laird | Method of correcting distortion in a power amplifier |
US6899685B2 (en) | 2003-01-24 | 2005-05-31 | Acueity, Inc. | Biopsy device |
US20040158237A1 (en) | 2003-02-11 | 2004-08-12 | Marwan Abboud | Multi-energy ablation station |
JP2004248368A (ja) | 2003-02-12 | 2004-09-02 | Asmo Co Ltd | 超音波モータ、及びその製造方法 |
EP1603474B1 (en) | 2003-02-14 | 2013-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Electrosurgical system with uniformly enhanced electric field and minimal collateral damage |
US7169146B2 (en) | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
ES2367304T3 (es) | 2003-02-20 | 2011-11-02 | Covidien Ag | Sistema y método para conectar un instrumento electroquirúrgico a un generador. |
JP4754474B2 (ja) | 2003-02-25 | 2011-08-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | 可変速度カッターを備えた生検装置 |
CA2877504C (en) | 2003-02-25 | 2017-07-25 | Bennie Thompson | Biopsy device with variable speed cutter advance |
US7476237B2 (en) | 2003-02-27 | 2009-01-13 | Olympus Corporation | Surgical instrument |
WO2004080278A2 (en) | 2003-03-06 | 2004-09-23 | Tissuelink Medical, Inc. | Fluid -assisted medical devices, systems and methods |
US7077845B2 (en) | 2003-03-11 | 2006-07-18 | Arthrex, Inc. | Surgical abrader with suction port proximal to bearing |
WO2004080291A2 (en) | 2003-03-12 | 2004-09-23 | Color Kinetics Incorporated | Methods and systems for medical lighting |
US20040181242A1 (en) | 2003-03-12 | 2004-09-16 | Stack Richard S. | Articulated suturing system |
US20060064086A1 (en) | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
US7776036B2 (en) | 2003-03-13 | 2010-08-17 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
WO2004083797A2 (en) | 2003-03-14 | 2004-09-30 | Thermosurgery Technologies, Inc. | Hyperthermia treatment system |
US20040199192A1 (en) | 2003-04-04 | 2004-10-07 | Takayuki Akahoshi | Phacoemulsification needle |
JP3840194B2 (ja) | 2003-04-07 | 2006-11-01 | キヤノン株式会社 | 振動ナイフ |
US7566318B2 (en) | 2003-04-11 | 2009-07-28 | Cardiac Pacemakers, Inc. | Ultrasonic subcutaneous dissection tool incorporating fluid delivery |
WO2004098426A1 (en) | 2003-04-15 | 2004-11-18 | Omnisonics Medical Technologies, Inc. | Apparatus and method for preshaped ultrasonic probe |
US20040215132A1 (en) | 2003-04-22 | 2004-10-28 | Inbae Yoon | Spot coagulating & occluding instrument and method of use |
US7147638B2 (en) | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
WO2004098385A2 (en) | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Method and system for programing and controlling an electrosurgical generator system |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
AU2004241092B2 (en) | 2003-05-15 | 2009-06-04 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
US7431694B2 (en) | 2003-05-16 | 2008-10-07 | Ethicon Endo-Surgery, Inc. | Method of guiding medical devices |
US7380695B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US7380696B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7000818B2 (en) | 2003-05-20 | 2006-02-21 | Ethicon, Endo-Surger, Inc. | Surgical stapling instrument having separate distinct closing and firing systems |
DE60326121D1 (de) | 2003-05-20 | 2009-03-26 | Dsm Ip Assets Bv | Verfahren zur Herstellung von Nanostrukturierten Oberflächenbeschichtungen, deren Beschichtungen und Gegenständen enthaltend die Beschichtung |
US20100222752A1 (en) | 2003-05-20 | 2010-09-02 | Collins Jr James F | Ophthalmic fluid delivery system |
US6988649B2 (en) | 2003-05-20 | 2006-01-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a spent cartridge lockout |
US7090637B2 (en) | 2003-05-23 | 2006-08-15 | Novare Surgical Systems, Inc. | Articulating mechanism for remote manipulation of a surgical or diagnostic tool |
USD491666S1 (en) | 2003-06-03 | 2004-06-15 | Megadyne Medical Products, Inc. | Electrosurgical generator |
ITVI20030111A1 (it) | 2003-06-06 | 2004-12-07 | Telea Electronic Eng Srl | Bisturi elettronico per coagulazione. |
US8172870B2 (en) | 2003-06-09 | 2012-05-08 | Microline Surgical, Inc. | Ligation clip applier |
JP4079266B2 (ja) | 2003-06-11 | 2008-04-23 | 株式会社リコー | トナーの接着力測定装置及び測定方法 |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
JP4664909B2 (ja) | 2003-06-17 | 2011-04-06 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 外科用ステープリング装置 |
JP5089980B2 (ja) | 2003-06-17 | 2012-12-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | 手動式超音波器械 |
US20040260273A1 (en) | 2003-06-18 | 2004-12-23 | Wan Elaine Y. | Magnetic surgical instrument system |
US20040260300A1 (en) | 2003-06-20 | 2004-12-23 | Bogomir Gorensek | Method of delivering an implant through an annular defect in an intervertebral disc |
AU2004253501B2 (en) | 2003-06-24 | 2011-10-20 | Healthonics, Inc. | Apparatus and method for bioelectric stimulation, healing acceleration, pain relief, or pathogen devitalization |
US9035741B2 (en) | 2003-06-27 | 2015-05-19 | Stryker Corporation | Foot-operated control console for wirelessly controlling medical devices |
US7128720B2 (en) | 2003-06-30 | 2006-10-31 | Ethicon, Inc. | Ultrasonic finger probe |
US7074218B2 (en) | 2003-06-30 | 2006-07-11 | Ethicon, Inc. | Multi-modality ablation device |
US7066895B2 (en) | 2003-06-30 | 2006-06-27 | Ethicon, Inc. | Ultrasonic radial focused transducer for pulmonary vein ablation |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7412008B2 (en) | 2003-06-30 | 2008-08-12 | Freescale Semiconductor, Inc. | Programmable phase mapping and phase rotation modulator and method |
US7037306B2 (en) | 2003-06-30 | 2006-05-02 | Ethicon, Inc. | System for creating linear lesions for the treatment of atrial fibrillation |
JP4206843B2 (ja) | 2003-07-02 | 2009-01-14 | アイシン・エィ・ダブリュ株式会社 | ナビゲーション装置 |
JP2005027907A (ja) | 2003-07-07 | 2005-02-03 | Olympus Corp | 超音波手術システムおよびプローブ |
US6981628B2 (en) | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US7111769B2 (en) | 2003-07-09 | 2006-09-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis |
US7055731B2 (en) | 2003-07-09 | 2006-06-06 | Ethicon Endo-Surgery Inc. | Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint |
JP3895709B2 (ja) | 2003-07-10 | 2007-03-22 | オリンパス株式会社 | 超音波凝固切開装置及び超音波凝固切開装置の制御方法 |
JP4130385B2 (ja) | 2003-07-23 | 2008-08-06 | 独立行政法人科学技術振興機構 | ゲスト分子を内包した単層カーボンナノチューブの製造方法 |
JP2005040222A (ja) | 2003-07-24 | 2005-02-17 | Olympus Corp | 超音波処置装置 |
US7144403B2 (en) | 2003-07-29 | 2006-12-05 | Alcon, Inc. | Surgical knife |
JP4128496B2 (ja) | 2003-07-30 | 2008-07-30 | オリンパス株式会社 | 超音波処置装置 |
JP4472395B2 (ja) | 2003-08-07 | 2010-06-02 | オリンパス株式会社 | 超音波手術システム |
US6915623B2 (en) | 2003-08-14 | 2005-07-12 | Ethicon, Inc. | Method for assembling a package for sutures |
US7951165B2 (en) | 2003-08-18 | 2011-05-31 | Boston Scientific Scimed, Inc. | Endoscopic medical instrument and related methods of use |
JP2005058616A (ja) | 2003-08-19 | 2005-03-10 | Olympus Corp | 医療システム用制御装置及び医療システム用制御方法 |
US8562604B2 (en) | 2003-08-19 | 2013-10-22 | Miyuki Nishimura | Bipolar high frequency treatment device |
JP4217134B2 (ja) | 2003-08-28 | 2009-01-28 | オリンパス株式会社 | スイッチ制御装置 |
JP3999715B2 (ja) | 2003-08-28 | 2007-10-31 | オリンパス株式会社 | 超音波処置装置 |
JP2005074088A (ja) | 2003-09-02 | 2005-03-24 | Olympus Corp | 超音波処置具 |
US7578820B2 (en) | 2003-09-02 | 2009-08-25 | Moore Jeffrey D | Devices and techniques for a minimally invasive disc space preparation and implant insertion |
EP1514518A1 (en) | 2003-09-11 | 2005-03-16 | SDGI Holdings, Inc. | Impulsive percussion instruments for endplate preparation |
US9168085B2 (en) | 2006-09-29 | 2015-10-27 | Baylis Medical Company Inc. | Monitoring and controlling energy delivery of an electrosurgical device |
JP4129217B2 (ja) | 2003-09-29 | 2008-08-06 | オリンパス株式会社 | 超音波手術システム、その異常検知方法および異常検知プログラム |
US7083075B2 (en) | 2003-09-29 | 2006-08-01 | Ethicon Endo-Surgery, Inc. | Multi-stroke mechanism with automatic end of stroke retraction |
US7135018B2 (en) | 2003-09-30 | 2006-11-14 | Ethicon, Inc. | Electrosurgical instrument and method for transecting an organ |
US6746284B1 (en) | 2003-10-02 | 2004-06-08 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector assembly having signal and power terminals |
JP4391788B2 (ja) | 2003-10-03 | 2009-12-24 | オリンパス株式会社 | 医療システム制御装置 |
US8357103B2 (en) | 2003-10-14 | 2013-01-22 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy needle set |
US20090090763A1 (en) | 2007-10-05 | 2009-04-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US9055943B2 (en) | 2007-09-21 | 2015-06-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
JP4642770B2 (ja) | 2003-10-17 | 2011-03-02 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 独立先端部回転を備えた外科用ステープル留めデバイス |
US10105140B2 (en) | 2009-11-20 | 2018-10-23 | Covidien Lp | Surgical console and hand-held surgical device |
USD509589S1 (en) | 2003-10-17 | 2005-09-13 | Tyco Healthcare Group, Lp | Handle for surgical instrument |
US7572266B2 (en) | 2003-10-21 | 2009-08-11 | Young Wayne P | Clip applier tool having a discharge configuration |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
WO2005039395A2 (en) | 2003-10-23 | 2005-05-06 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Sonic and ultrasonic surgical tips |
US7217269B2 (en) | 2003-10-28 | 2007-05-15 | Uab Research Foundation | Electrosurgical control system |
KR20050040451A (ko) | 2003-10-28 | 2005-05-03 | 삼성전자주식회사 | 무선주파수 식별 기능을 가지는 이동통신 단말기 및 그이동통신 단말기에서의 무선주파수 식별 프로그래밍 방법 |
US7686826B2 (en) | 2003-10-30 | 2010-03-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US20050096683A1 (en) | 2003-11-01 | 2005-05-05 | Medtronic, Inc. | Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool |
US6979332B2 (en) | 2003-11-04 | 2005-12-27 | Medtronic, Inc. | Surgical micro-resecting instrument with electrocautery and continuous aspiration features |
US7163548B2 (en) | 2003-11-05 | 2007-01-16 | Ethicon Endo-Surgery, Inc | Ultrasonic surgical blade and instrument having a gain step |
CA2544749A1 (en) | 2003-11-12 | 2005-05-26 | Applied Medical Resources Corporation | Overmolded grasper jaw |
US20050107777A1 (en) | 2003-11-13 | 2005-05-19 | West Hugh S.Jr. | Parallel wire ablator |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7232440B2 (en) | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7241294B2 (en) | 2003-11-19 | 2007-07-10 | Sherwood Services Ag | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
WO2005052959A2 (en) | 2003-11-19 | 2005-06-09 | Surgrx, Inc. | Polymer compositions exhibiting a ptc property and method of fabrication |
US7252667B2 (en) | 2003-11-19 | 2007-08-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism and distal lockout |
US7131970B2 (en) | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7131860B2 (en) | 2003-11-20 | 2006-11-07 | Sherwood Services Ag | Connector systems for electrosurgical generator |
US7300435B2 (en) | 2003-11-21 | 2007-11-27 | Sherwood Services Ag | Automatic control system for an electrosurgical generator |
US7431720B2 (en) | 2003-11-25 | 2008-10-07 | Ethicon, Inc. | Multi-function clamping device with stapler and ablation heads |
US7118564B2 (en) | 2003-11-26 | 2006-10-10 | Ethicon Endo-Surgery, Inc. | Medical treatment system with energy delivery device for limiting reuse |
US8002770B2 (en) | 2003-12-02 | 2011-08-23 | Endoscopic Technologies, Inc. (Estech) | Clamp based methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed |
US7317955B2 (en) | 2003-12-12 | 2008-01-08 | Conmed Corporation | Virtual operating room integration |
US20050149108A1 (en) | 2003-12-17 | 2005-07-07 | Microvention, Inc. | Implant delivery and detachment system and method |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
CN1634601A (zh) | 2003-12-26 | 2005-07-06 | 吉林省中立实业有限公司 | 一种用于医疗器械灭菌的方法 |
US7210881B2 (en) | 2003-12-30 | 2007-05-01 | Greenberg Alex M | Sleeved stop for a drill bit |
US8337407B2 (en) | 2003-12-30 | 2012-12-25 | Liposonix, Inc. | Articulating arm for medical procedures |
JP4262631B2 (ja) | 2004-01-13 | 2009-05-13 | オリンパス株式会社 | 超音波処置具 |
US7632269B2 (en) | 2004-01-16 | 2009-12-15 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with replaceable cartridge |
US20050165429A1 (en) | 2004-01-23 | 2005-07-28 | Peter Douglas | Surgical clamp possessing a combined parallel and scissor style clamp head |
US20050171522A1 (en) | 2004-01-30 | 2005-08-04 | Christopherson Mark A. | Transurethral needle ablation system with needle position indicator |
US7251531B2 (en) | 2004-01-30 | 2007-07-31 | Ams Research Corporation | Heating method for tissue contraction |
US7204835B2 (en) | 2004-02-02 | 2007-04-17 | Gyrus Medical, Inc. | Surgical instrument |
US20050177184A1 (en) | 2004-02-09 | 2005-08-11 | Easley James C. | Torsional dissection tip |
US7488322B2 (en) | 2004-02-11 | 2009-02-10 | Medtronic, Inc. | High speed surgical cutting instrument |
US20060264995A1 (en) | 2004-02-18 | 2006-11-23 | Fanton Gary S | Apparatus and methods for clearing obstructions from surgical cutting instruments |
US7124932B2 (en) | 2004-02-25 | 2006-10-24 | Megadyne Medical Products, Inc. | Electrosurgical counter and lockout mechanism |
CN1922563A (zh) | 2004-02-25 | 2007-02-28 | 玛格戴恩医疗产品公司 | 电外科计数器及闭锁机构 |
US20050188743A1 (en) | 2004-02-26 | 2005-09-01 | H. P. Intellectual Corp. | Automatic ultrasonic frequency calibration scheme |
US20050192611A1 (en) | 2004-02-27 | 2005-09-01 | Houser Kevin L. | Ultrasonic surgical instrument, shears and tissue pad, method for sealing a blood vessel and method for transecting patient tissue |
US20050192610A1 (en) | 2004-02-27 | 2005-09-01 | Houser Kevin L. | Ultrasonic surgical shears and tissue pad for same |
US20050234484A1 (en) | 2004-02-27 | 2005-10-20 | Houser Kevin L | Ultrasonic surgical blade having transverse and longitudinal vibration |
US7235071B2 (en) | 2004-02-27 | 2007-06-26 | Conmed Corporation | Gas-assisted electrosurgical accessory connector and method with improved gas sealing and biasing for maintaining a gas tight seal |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7703459B2 (en) | 2004-03-09 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for mapping out endoluminal gastrointestinal surgery |
US7179254B2 (en) | 2004-03-09 | 2007-02-20 | Ethicon, Inc. | High intensity ablation device |
US7955331B2 (en) | 2004-03-12 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method of use |
US8181840B2 (en) | 2004-03-19 | 2012-05-22 | Tyco Healthcare Group Lp | Tissue tensioner assembly and approximation mechanism for surgical stapling device |
US7625388B2 (en) | 2004-03-22 | 2009-12-01 | Alcon, Inc. | Method of controlling a surgical system based on a load on the cutting tip of a handpiece |
US20050249667A1 (en) | 2004-03-24 | 2005-11-10 | Tuszynski Jack A | Process for treating a biological organism |
JP4282523B2 (ja) | 2004-03-30 | 2009-06-24 | オリンパス株式会社 | 超音波処置装置 |
CA2603195C (en) | 2004-04-05 | 2016-07-12 | Robert A. Ganz | Device and method for treating tissue |
US20050222598A1 (en) | 2004-04-05 | 2005-10-06 | Manoa Medical, Inc., A Delaware Corporation | Tissue cutting device |
JP2005296412A (ja) | 2004-04-13 | 2005-10-27 | Olympus Corp | 内視鏡治療装置 |
US7220951B2 (en) | 2004-04-19 | 2007-05-22 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
JP4291202B2 (ja) | 2004-04-20 | 2009-07-08 | オリンパス株式会社 | 超音波処置具 |
BRPI0510550A (pt) | 2004-05-03 | 2007-11-20 | Ams Res Corp | implante cirúrgico, kit cirúrgico, método para formar ou montar um implante cirúrgico, molde de inserção, aparelho, e, método para produzir um implante cirúrgico |
EP1668760A2 (en) | 2004-05-04 | 2006-06-14 | 02Micro, Inc. | Cordless power tool with tool identification circuitry |
US8333764B2 (en) | 2004-05-12 | 2012-12-18 | Medtronic, Inc. | Device and method for determining tissue thickness and creating cardiac ablation lesions |
US20050256405A1 (en) | 2004-05-17 | 2005-11-17 | Makin Inder Raj S | Ultrasound-based procedure for uterine medical treatment |
JP4554431B2 (ja) | 2004-05-18 | 2010-09-29 | ローム株式会社 | Dtmf信号生成回路、音信号生成回路、ならびに通信装置 |
US7951095B2 (en) | 2004-05-20 | 2011-05-31 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system |
US7708751B2 (en) | 2004-05-21 | 2010-05-04 | Ethicon Endo-Surgery, Inc. | MRI biopsy device |
US20050261588A1 (en) | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US9638770B2 (en) | 2004-05-21 | 2017-05-02 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating an imageable penetrating portion |
JP4304486B2 (ja) | 2004-05-27 | 2009-07-29 | マツダ株式会社 | エンジンの燃料配管構造 |
JP2008501444A (ja) | 2004-06-07 | 2008-01-24 | エドワーズ ライフサイエンシーズ コーポレイション | 組織を方向性をもって切除するための方法およびデバイス |
US7066936B2 (en) | 2004-06-07 | 2006-06-27 | Ethicon, Inc. | Surgical cutting and tissue vaporizing instrument |
WO2005122918A1 (ja) | 2004-06-15 | 2005-12-29 | Olympus Corporation | エネルギー処置具 |
JP4343778B2 (ja) | 2004-06-16 | 2009-10-14 | オリンパス株式会社 | 超音波手術装置 |
JP2006006410A (ja) | 2004-06-22 | 2006-01-12 | Olympus Corp | 超音波手術装置 |
US7226447B2 (en) | 2004-06-23 | 2007-06-05 | Smith & Nephew, Inc. | Electrosurgical generator |
DE102004031141A1 (de) | 2004-06-28 | 2006-01-26 | Erbe Elektromedizin Gmbh | Elektrochirurgisches Instrument |
CN100357150C (zh) | 2004-07-12 | 2007-12-26 | 曹海洋 | 带有活动地板的封闭式二轮摩托车 |
USD536093S1 (en) | 2004-07-15 | 2007-01-30 | Olympus Corporation | Treatment apparatus for endoscope |
US7535233B2 (en) | 2004-07-15 | 2009-05-19 | Cooper Technologies Company | Traveling wave based relay protection |
US7601136B2 (en) | 2004-07-20 | 2009-10-13 | Takayuki Akahoshi | Infusion sleeve |
US7896875B2 (en) | 2004-07-20 | 2011-03-01 | Microline Surgical, Inc. | Battery powered electrosurgical system |
AU2005285459A1 (en) | 2004-07-20 | 2006-03-23 | Team Medical, Llc | Multielectrode electrosurgical instrument |
US7143925B2 (en) | 2004-07-28 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating EAP blocking lockout mechanism |
US7407077B2 (en) | 2004-07-28 | 2008-08-05 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based actuation mechanism for linear surgical stapler |
US7147138B2 (en) | 2004-07-28 | 2006-12-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US7862579B2 (en) | 2004-07-28 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for grasper |
US7506790B2 (en) | 2004-07-28 | 2009-03-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation mechanism |
CA2574977C (en) | 2004-07-29 | 2010-01-26 | X-Sten, Corp. | Spinal ligament modification devices |
CN100394897C (zh) | 2004-08-03 | 2008-06-18 | 张毓笠 | 复合振动的超声骨骼手术仪 |
US8911438B2 (en) | 2004-08-10 | 2014-12-16 | Medtronic, Inc. | Tuna device with integrated saline reservoir |
DE102004055669B4 (de) | 2004-08-11 | 2009-09-24 | Erbe Elektromedizin Gmbh | Elektrochirurgisches Instrument |
DE102004040959B4 (de) | 2004-08-24 | 2008-12-24 | Erbe Elektromedizin Gmbh | Chirurgisches Instrument |
JP2006068396A (ja) | 2004-09-03 | 2006-03-16 | Olympus Corp | 医療用システム、医療用システムの制御方法 |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
JP4300169B2 (ja) | 2004-09-10 | 2009-07-22 | アロカ株式会社 | 超音波手術器 |
WO2006030563A1 (ja) | 2004-09-14 | 2006-03-23 | Olympus Corporation | 超音波処置具、並びに、超音波処置具用のプローブ、処置部及び太径部 |
JP2006081664A (ja) | 2004-09-15 | 2006-03-30 | Olympus Corp | 医療用システム、医療用システムの制御方法 |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US20070190485A1 (en) | 2004-09-21 | 2007-08-16 | Discus Dental Impressions, Inc. | Dental instrument |
JP4727964B2 (ja) | 2004-09-24 | 2011-07-20 | 株式会社日立製作所 | 半導体装置 |
MX2007003095A (es) | 2004-09-24 | 2007-05-16 | Univ Leland Stanford Junior | Metodos y dispositivos para cerrar los vasos sanguineos inducidos electricamente no termicos. |
EP1806108B1 (en) | 2004-09-27 | 2010-05-05 | Olympus Corporation | Ultrasonic operating system |
US7422582B2 (en) | 2004-09-29 | 2008-09-09 | Stryker Corporation | Control console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces |
US7740594B2 (en) | 2004-09-29 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Cutter for biopsy device |
US10646292B2 (en) | 2004-09-30 | 2020-05-12 | Intuitive Surgical Operations, Inc. | Electro-mechanical strap stack in robotic arms |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
ES2598134T3 (es) | 2004-10-08 | 2017-01-25 | Ethicon Endo-Surgery, Llc | Instrumento ultrasónico quirúrgico |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
JP2006114072A (ja) | 2004-10-12 | 2006-04-27 | Matsushita Electric Ind Co Ltd | ディスクデータの管理および仮想ディスク作成装置、方法、プログラム及び媒体 |
US20080161809A1 (en) | 2006-10-03 | 2008-07-03 | Baxano, Inc. | Articulating Tissue Cutting Device |
US7738969B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
JP2006115631A (ja) | 2004-10-15 | 2006-04-27 | Konica Minolta Holdings Inc | 圧電駆動装置 |
WO2006044693A2 (en) | 2004-10-18 | 2006-04-27 | Black & Decker Inc. | Cordless power system |
US7582086B2 (en) | 2004-10-20 | 2009-09-01 | Atricure, Inc. | Surgical clamp |
JP4287354B2 (ja) | 2004-10-25 | 2009-07-01 | 株式会社日立製作所 | 手術器具 |
US7337010B2 (en) | 2004-10-29 | 2008-02-26 | Medtronic, Inc. | Medical device having lithium-ion battery |
US20060095045A1 (en) | 2004-11-01 | 2006-05-04 | Sdgi Holdings, Inc. | Methods for explantation of intervertebral disc implants |
WO2006048966A1 (ja) | 2004-11-04 | 2006-05-11 | Olympus Medical Systems Corp. | 超音波処置装置、内視鏡装置および処置方法 |
US7479148B2 (en) | 2004-11-08 | 2009-01-20 | Crescendo Technologies, Llc | Ultrasonic shear with asymmetrical motion |
US8617152B2 (en) | 2004-11-15 | 2013-12-31 | Medtronic Ablation Frontiers Llc | Ablation system with feedback |
US7641671B2 (en) | 2004-11-22 | 2010-01-05 | Design Standards Corporation | Closing assemblies for clamping device |
WO2006055585A1 (en) | 2004-11-22 | 2006-05-26 | Masterwave, Inc. | System and method for narrow bandwidth amplitude modulation |
US7156189B1 (en) | 2004-12-01 | 2007-01-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self mountable and extractable ultrasonic/sonic anchor |
GB0426503D0 (en) | 2004-12-02 | 2005-01-05 | Orthosonics Ltd | Improved osteotome |
JP2006158525A (ja) | 2004-12-03 | 2006-06-22 | Olympus Medical Systems Corp | 超音波手術装置及び超音波処置具の駆動方法 |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
WO2006063156A1 (en) | 2004-12-09 | 2006-06-15 | Stryker Corporation | Wireless system for providing instrument and implant data to a surgical navigation unit |
US7371227B2 (en) | 2004-12-17 | 2008-05-13 | Ethicon Endo-Surgery, Inc. | Trocar seal assembly |
US7691095B2 (en) | 2004-12-28 | 2010-04-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Bi-directional steerable catheter control handle |
US7513025B2 (en) | 2004-12-28 | 2009-04-07 | The Boeing Company | Magnetic field concentrator for electromagnetic forming |
US7862561B2 (en) | 2005-01-08 | 2011-01-04 | Boston Scientific Scimed, Inc. | Clamp based lesion formation apparatus with variable spacing structures |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US20160038228A1 (en) | 2005-01-18 | 2016-02-11 | Steven A. Daniel | Thermal hemostasis and/or coagulation of tissue |
JP2006217716A (ja) | 2005-02-02 | 2006-08-17 | Olympus Corp | 超音波アクチュエータ駆動装置及び超音波アクチュエータ駆動方法 |
US8628534B2 (en) | 2005-02-02 | 2014-01-14 | DePuy Synthes Products, LLC | Ultrasonic cutting device |
US7559450B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating a fluid transfer controlled articulation mechanism |
US7654431B2 (en) | 2005-02-18 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument with guided laterally moving articulation member |
US7784662B2 (en) | 2005-02-18 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground |
US7559452B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument having fluid actuated opposing jaws |
US7780054B2 (en) | 2005-02-18 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint |
CN101160104B (zh) | 2005-02-22 | 2012-07-04 | 马科外科公司 | 触觉引导系统及方法 |
WO2006096169A1 (en) | 2005-03-03 | 2006-09-14 | Granit Medical Innovations, Llc | Needle biopsy forceps with integral sample ejector |
GB2423931B (en) | 2005-03-03 | 2009-08-26 | Michael John Radley Young | Ultrasonic cutting tool |
US7699846B2 (en) | 2005-03-04 | 2010-04-20 | Gyrus Ent L.L.C. | Surgical instrument and method |
US20060200041A1 (en) | 2005-03-04 | 2006-09-07 | Ethicon Endo-Surgery, Inc. | Biopsy device incorporating an adjustable probe sleeve |
US7674263B2 (en) | 2005-03-04 | 2010-03-09 | Gyrus Ent, L.L.C. | Surgical instrument and method |
US9031667B2 (en) | 2005-03-04 | 2015-05-12 | InterventionTechnology Pty Ltd | Minimal device and method for effecting hyperthermia derived anesthesia |
US20060206100A1 (en) | 2005-03-09 | 2006-09-14 | Brasseler Usa Medical Llc | Surgical apparatus and power module for same, and a method of preparing a surgical apparatus |
US20060217729A1 (en) | 2005-03-09 | 2006-09-28 | Brasseler Usa Medical Llc | Surgical apparatus and tools for same |
USD552241S1 (en) | 2005-03-10 | 2007-10-02 | Conmed Corporation | Electrosurgical generator |
US7285895B2 (en) | 2005-03-15 | 2007-10-23 | Crescendo Technologies, Llc | Ultrasonic medical device and method |
US20060211943A1 (en) | 2005-03-15 | 2006-09-21 | Crescendo Technologies, Llc | Ultrasonic blade with terminal end balance features |
US7784663B2 (en) | 2005-03-17 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having load sensing control circuitry |
US7931611B2 (en) | 2005-03-23 | 2011-04-26 | Misonix, Incorporated | Ultrasonic wound debrider probe and method of use |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US8197472B2 (en) | 2005-03-25 | 2012-06-12 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7674261B2 (en) | 2005-03-28 | 2010-03-09 | Elliquence, Llc | Electrosurgical instrument with enhanced capability |
US20090204114A1 (en) | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US7335997B2 (en) | 2005-03-31 | 2008-02-26 | Ethicon Endo-Surgery, Inc. | System for controlling ultrasonic clamping and cutting instruments |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20060224160A1 (en) | 2005-04-01 | 2006-10-05 | Trieu Hai H | Instruments and methods for aggressive yet continuous tissue removal |
JP2006288431A (ja) | 2005-04-05 | 2006-10-26 | Olympus Medical Systems Corp | 超音波手術装置 |
EP1869424A4 (en) | 2005-04-11 | 2015-01-14 | Terumo Corp | METHOD AND DEVICE FOR CLOSING A LAYER WEBSECTED EFFECT |
US20060264809A1 (en) | 2005-04-12 | 2006-11-23 | Hansmann Douglas R | Ultrasound catheter with cavitation promoting surface |
US8523882B2 (en) | 2005-04-14 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Clip advancer mechanism with alignment features |
US7297149B2 (en) | 2005-04-14 | 2007-11-20 | Ethicon Endo-Surgery, Inc. | Surgical clip applier methods |
US8092475B2 (en) | 2005-04-15 | 2012-01-10 | Integra Lifesciences (Ireland) Ltd. | Ultrasonic horn for removal of hard tissue |
AU2006239877B2 (en) | 2005-04-21 | 2012-11-01 | Boston Scientific Scimed, Inc. | Control methods and devices for energy delivery |
CN101166472A (zh) | 2005-04-25 | 2008-04-23 | 皇家飞利浦电子股份有限公司 | 具有改进的热管理的超声波换能器组件 |
JP4966296B2 (ja) | 2005-04-29 | 2012-07-04 | ボヴィー メディカル コーポレイション | 内視鏡手術又は関節鏡手術を行う鉗子 |
US20070011836A1 (en) | 2005-05-03 | 2007-01-18 | Second Act Partners, Inc. | Oral hygiene devices employing an acoustic waveguide |
US7320687B2 (en) | 2005-05-04 | 2008-01-22 | Lee Thomas H | Tendon stripper |
US8597193B2 (en) | 2005-05-06 | 2013-12-03 | Vasonova, Inc. | Apparatus and method for endovascular device guiding and positioning using physiological parameters |
US8696662B2 (en) | 2005-05-12 | 2014-04-15 | Aesculap Ag | Electrocautery method and apparatus |
US7803156B2 (en) | 2006-03-08 | 2010-09-28 | Aragon Surgical, Inc. | Method and apparatus for surgical electrocautery |
US9339323B2 (en) | 2005-05-12 | 2016-05-17 | Aesculap Ag | Electrocautery method and apparatus |
JP4481922B2 (ja) | 2005-05-13 | 2010-06-16 | オリンパスメディカルシステムズ株式会社 | 医療用処置具 |
US20060270916A1 (en) | 2005-05-20 | 2006-11-30 | Medtronic, Inc. | Portable therapy delivery device with a removable connector board |
JP4398406B2 (ja) | 2005-06-01 | 2010-01-13 | オリンパスメディカルシステムズ株式会社 | 手術器具 |
US7717312B2 (en) | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
EP1887961B1 (en) | 2005-06-06 | 2012-01-11 | Intuitive Surgical Operations, Inc. | Laparoscopic ultrasound robotic surgical system |
CN1877756A (zh) | 2005-06-10 | 2006-12-13 | 富准精密工业(深圳)有限公司 | 磁性粉体 |
US20080147058A1 (en) | 2005-06-13 | 2008-06-19 | Horrell Robin S | Electrocautery system, provided with safe lighting during operational use |
US7727177B2 (en) | 2005-06-21 | 2010-06-01 | Inasurgica, Llc | Four function surgical instrument |
CA2613360A1 (en) | 2005-06-21 | 2007-01-04 | Traxtal Inc. | System, method and apparatus for navigated therapy and diagnosis |
US7655003B2 (en) | 2005-06-22 | 2010-02-02 | Smith & Nephew, Inc. | Electrosurgical power control |
JP2007000427A (ja) | 2005-06-24 | 2007-01-11 | Olympus Medical Systems Corp | 内視鏡 |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
JP2007007810A (ja) | 2005-07-01 | 2007-01-18 | Bosch Corp | 超音波加工スピンドル装置 |
US7632267B2 (en) | 2005-07-06 | 2009-12-15 | Arthrocare Corporation | Fuse-electrode electrosurgical apparatus |
WO2007008703A2 (en) | 2005-07-08 | 2007-01-18 | Conceptual Gray, Llc | Apparatus and method thereof for drilling holes in discrete controlled increments |
WO2007008710A2 (en) | 2005-07-11 | 2007-01-18 | Kyphon Inc. | Apparatus and methods of tissue removal within a spine |
US20070060935A1 (en) | 2005-07-11 | 2007-03-15 | Schwardt Jeffrey D | Apparatus and methods of tissue removal within a spine |
US20070016236A1 (en) | 2005-07-18 | 2007-01-18 | Crescendo Technologies, Llc | Balanced ultrasonic curved blade |
WO2007014215A2 (en) | 2005-07-22 | 2007-02-01 | Berg Howard K | Ultrasonic scalpel device |
US7554343B2 (en) | 2005-07-25 | 2009-06-30 | Piezoinnovations | Ultrasonic transducer control method and system |
US20070063618A1 (en) | 2005-07-25 | 2007-03-22 | Piezoinnovations | Ultrasonic transducer devices and methods of manufacture |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
US7959050B2 (en) | 2005-07-26 | 2011-06-14 | Ethicon Endo-Surgery, Inc | Electrically self-powered surgical instrument with manual release |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US8097012B2 (en) | 2005-07-27 | 2012-01-17 | The Spectranetics Corporation | Endocardial lead removing apparatus |
DE602005017139D1 (de) | 2005-07-28 | 2009-11-26 | Covidien Ag | Elektrodenanordnung mit Elektrodenkühlkörper für ein elektrochirurgisches Gerät |
JP4734058B2 (ja) | 2005-07-29 | 2011-07-27 | オリンパスメディカルシステムズ株式会社 | 医療用処置装置 |
US20070027468A1 (en) | 2005-08-01 | 2007-02-01 | Wales Kenneth S | Surgical instrument with an articulating shaft locking mechanism |
EP1749479A1 (en) | 2005-08-02 | 2007-02-07 | Marco Gandini | Retractor instrument |
US7659833B2 (en) | 2005-08-02 | 2010-02-09 | Warner Thomas P | System and method for remotely controlling devices |
US7540871B2 (en) | 2005-08-03 | 2009-06-02 | Conmed Corporation | Integrated three-port receptacle and method for connecting hand and foot switched electrosurgical accessories |
JP5124920B2 (ja) | 2005-08-16 | 2013-01-23 | コニカミノルタアドバンストレイヤー株式会社 | 駆動装置 |
JP4402629B2 (ja) | 2005-08-19 | 2010-01-20 | オリンパスメディカルシステムズ株式会社 | 超音波凝固切開装置 |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US7751115B2 (en) | 2005-08-26 | 2010-07-06 | Lg Electronics Inc. | Electronic paper display device, manufacturing method and driving method thereof |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US20070056596A1 (en) | 2005-08-31 | 2007-03-15 | Alcon, Inc. | Pulse manipulation for controlling a phacoemulsification surgical system |
JP2009507617A (ja) | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
US8852184B2 (en) | 2005-09-15 | 2014-10-07 | Cannuflow, Inc. | Arthroscopic surgical temperature control system |
US7678105B2 (en) | 2005-09-16 | 2010-03-16 | Conmed Corporation | Method and apparatus for precursively controlling energy during coaptive tissue fusion |
US20070067123A1 (en) | 2005-09-19 | 2007-03-22 | Jungerman Roger L | Advanced arbitrary waveform generator |
US7472815B2 (en) | 2005-09-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with collapsible features for controlling staple height |
US20070066971A1 (en) | 2005-09-21 | 2007-03-22 | Podhajsky Ronald J | Method and system for treating pain during an electrosurgical procedure |
EP1767164B1 (en) | 2005-09-22 | 2013-01-09 | Covidien AG | Electrode assembly for tissue fusion |
US9445784B2 (en) | 2005-09-22 | 2016-09-20 | Boston Scientific Scimed, Inc | Intravascular ultrasound catheter |
US7311526B2 (en) | 2005-09-26 | 2007-12-25 | Apple Inc. | Magnetic connector for electronic device |
US7451904B2 (en) | 2005-09-26 | 2008-11-18 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having end effector gripping surfaces |
DK1928518T3 (en) | 2005-09-27 | 2016-08-01 | Allegiance Corp | MEDICAL SUCTION AND douche |
US7357287B2 (en) | 2005-09-29 | 2008-04-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having preloaded firing assistance mechanism |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
CA2561034C (en) | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
CN100467087C (zh) | 2005-09-30 | 2009-03-11 | 东北大学 | 可遥控运动行为的脑神经电刺激装置 |
US20070074584A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
US8096459B2 (en) | 2005-10-11 | 2012-01-17 | Ethicon Endo-Surgery, Inc. | Surgical stapler with an end effector support |
US7572268B2 (en) | 2005-10-13 | 2009-08-11 | Bacoustics, Llc | Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US8152825B2 (en) | 2005-10-14 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical ultrasound system and handpiece and methods for making and tuning |
US20080033465A1 (en) | 2006-08-01 | 2008-02-07 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US20080051812A1 (en) | 2006-08-01 | 2008-02-28 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US8734438B2 (en) | 2005-10-21 | 2014-05-27 | Covidien Ag | Circuit and method for reducing stored energy in an electrosurgical generator |
CN2868227Y (zh) | 2005-10-24 | 2007-02-14 | 钟李宽 | 五合一切割刀 |
US7607557B2 (en) | 2005-11-04 | 2009-10-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for pump-assisted delivery of medical agents |
WO2007056590A1 (en) | 2005-11-08 | 2007-05-18 | Trustees Of Boston University | Manipulators employing multiple deformable elongate members |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US20070118115A1 (en) | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8246642B2 (en) | 2005-12-01 | 2012-08-21 | Ethicon Endo-Surgery, Inc. | Ultrasonic medical instrument and medical instrument connection assembly |
EP1956992B1 (en) | 2005-12-02 | 2013-03-06 | Koninklijke Philips Electronics N.V. | Automating the ablation procedure to minimize the need for manual intervention |
US8033173B2 (en) | 2005-12-12 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Amplifying ultrasonic waveguides |
US20070130771A1 (en) | 2005-12-12 | 2007-06-14 | Kimberly-Clark Worldwide, Inc. | Methods for producing ultrasonic waveguides having improved amplification |
JP2007165707A (ja) | 2005-12-15 | 2007-06-28 | Nitto Denko Corp | フレキシブル配線回路基板 |
US20070149881A1 (en) | 2005-12-22 | 2007-06-28 | Rabin Barry H | Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7879029B2 (en) | 2005-12-30 | 2011-02-01 | Biosense Webster, Inc. | System and method for selectively energizing catheter electrodes |
US8382748B2 (en) | 2006-01-03 | 2013-02-26 | Donald J. Geisel | High efficiency, precision electrosurgical apparatus and method |
US7670334B2 (en) | 2006-01-10 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
US7871392B2 (en) | 2006-01-12 | 2011-01-18 | Integra Lifesciences (Ireland) Ltd. | Endoscopic ultrasonic surgical aspirator for use in fluid filled cavities |
US8721657B2 (en) | 2006-01-13 | 2014-05-13 | Olympus Medical Systems Corp. | Medical instrument |
CN100463660C (zh) | 2006-01-18 | 2009-02-25 | 重庆海扶(Hifu)技术有限公司 | 超声治疗钳 |
US20070166663A1 (en) | 2006-01-18 | 2007-07-19 | Telles Heidi A | Cordless ultrasonic dental scaler |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US20070173872A1 (en) | 2006-01-23 | 2007-07-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument for cutting and coagulating patient tissue |
CA2574935A1 (en) | 2006-01-24 | 2007-07-24 | Sherwood Services Ag | A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
US20160045248A1 (en) | 2006-01-24 | 2016-02-18 | Covidien Lp | System and method for tissue sealing |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US7649410B2 (en) | 2006-01-24 | 2010-01-19 | D2Audio Corporation | Systems and methods for improving performance in a digital amplifier by adding an ultrasonic signal to an input audio signal |
US8216223B2 (en) | 2006-01-24 | 2012-07-10 | Covidien Ag | System and method for tissue sealing |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
EP2289446B1 (en) | 2006-01-24 | 2017-05-31 | Covidien AG | System for tissue sealing |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
US20070173813A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
US8147485B2 (en) | 2006-01-24 | 2012-04-03 | Covidien Ag | System and method for tissue sealing |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US7815641B2 (en) | 2006-01-25 | 2010-10-19 | The Regents Of The University Of Michigan | Surgical instrument and method for use thereof |
AU2007210010A1 (en) | 2006-01-27 | 2007-08-09 | Medtronic, Inc. | Ablation device and system for guiding said ablation device into a patient's body |
TWI344558B (en) | 2006-01-27 | 2011-07-01 | Mstar Semiconductor Inc | Measurement device for measuring gray-to-gray response time |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US7770775B2 (en) | 2006-01-31 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7422139B2 (en) | 2006-01-31 | 2008-09-09 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting fastening instrument with tactile position feedback |
US7464846B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a removable battery |
US7766210B2 (en) | 2006-01-31 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with user feedback system |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
WO2007089724A2 (en) | 2006-01-31 | 2007-08-09 | Angiotech Biocoatings Corp. | Lubricious coatings |
US20070175955A1 (en) | 2006-01-31 | 2007-08-02 | Shelton Frederick E Iv | Surgical cutting and fastening instrument with closure trigger locking mechanism |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7416101B2 (en) | 2006-01-31 | 2008-08-26 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with loading force feedback |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US7464849B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Electro-mechanical surgical instrument with closure system and anvil alignment components |
US7503893B2 (en) | 2006-02-03 | 2009-03-17 | Cannuflow, Inc. | Anti-extravasation sheath and method |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
CA2640174C (en) | 2006-02-07 | 2011-11-08 | Ams Research Corporation | Laparoscopic laser device and method |
US7936203B2 (en) | 2006-02-08 | 2011-05-03 | Micron Technology, Inc. | Temperature compensation via power supply modification to produce a temperature-independent delay in an integrated circuit |
AR059339A1 (es) | 2006-02-09 | 2008-03-26 | Chugai Pharmaceutical Co Ltd | Derivados de la cumarina para trastornos proliferativos de celulas, composicion farmaceutica y agente terapeutico que los contiene |
US20070191712A1 (en) | 2006-02-15 | 2007-08-16 | Ethicon Endo-Surgery, Inc. | Method for sealing a blood vessel, a medical system and a medical instrument |
US7662151B2 (en) | 2006-02-15 | 2010-02-16 | Boston Scientific Scimed, Inc. | Contact sensitive probes |
US7854735B2 (en) | 2006-02-16 | 2010-12-21 | Ethicon Endo-Surgery, Inc. | Energy-based medical treatment system and method |
US20070239101A1 (en) | 2006-02-21 | 2007-10-11 | David Kellogg | Method for applying serum to a person's skin |
US7645278B2 (en) | 2006-02-22 | 2010-01-12 | Olympus Corporation | Coagulating cutter |
US9820771B2 (en) | 2006-03-03 | 2017-11-21 | Axcess Instruments Inc. | Apparatus and method for minimally invasive surgery |
US20070219481A1 (en) | 2006-03-16 | 2007-09-20 | Eilaz Babaev | Apparatus and methods for the treatment of avian influenza with ultrasound |
US7648499B2 (en) | 2006-03-21 | 2010-01-19 | Covidien Ag | System and method for generating radio frequency energy |
US8394115B2 (en) | 2006-03-22 | 2013-03-12 | Ethicon Endo-Surgery, Inc. | Composite end effector for an ultrasonic surgical instrument |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US20070236213A1 (en) | 2006-03-30 | 2007-10-11 | Paden Bradley E | Telemetry method and apparatus using magnetically-driven mems resonant structure |
US20100081883A1 (en) | 2008-09-30 | 2010-04-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for performing gastroplasties using a multiple port access device |
US8425410B2 (en) | 2008-09-30 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Surgical access device with protective element |
US8430811B2 (en) | 2008-09-30 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Multiple port surgical access device |
US8485970B2 (en) | 2008-09-30 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US20100081863A1 (en) | 2008-09-30 | 2010-04-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for performing gastrectomies and gastroplasties |
JP5062577B2 (ja) | 2006-04-11 | 2012-10-31 | エルベ エレクトロメディツィン ゲーエムベーハー | 内視鏡手術用多機能装置 |
US20070249941A1 (en) | 2006-04-21 | 2007-10-25 | Alcon, Inc. | Method for driving an ultrasonic handpiece with a class D amplifier |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US7601119B2 (en) | 2006-04-25 | 2009-10-13 | Hrayr Kamig Shahinian | Remote manipulator with eyeballs |
US7867228B2 (en) | 2006-04-28 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for performing an endoscopic mucosal resection |
US9339326B2 (en) | 2006-05-03 | 2016-05-17 | Boston Scientific Scimed, Inc. | Diamond-like carbon electrode coating |
US7641653B2 (en) | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
US20070265613A1 (en) | 2006-05-10 | 2007-11-15 | Edelstein Peter Seth | Method and apparatus for sealing tissue |
US20070265616A1 (en) | 2006-05-10 | 2007-11-15 | Sherwood Services Ag | Vessel sealing instrument with optimized power density |
US7351095B2 (en) | 2006-05-10 | 2008-04-01 | Craig Olsen | Disposable surgical connector |
DE202006020056U1 (de) | 2006-05-15 | 2007-09-20 | Olympus Winter & Ibe Gmbh | Zange zur Gefäßkoagulation |
US7586289B2 (en) | 2006-05-23 | 2009-09-08 | Ultralife Corporation | Complete discharge device |
JP2008001876A (ja) | 2006-05-23 | 2008-01-10 | Asahi Kasei Corp | ポリエステルイミドおよびその製造方法 |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US8366727B2 (en) | 2006-06-01 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Tissue pad ultrasonic surgical instrument |
EP1862133A1 (en) | 2006-06-02 | 2007-12-05 | Olympus Medical Systems Corp. | Ultrasonic surgical apparatus and method of driving ultrasonic treatment device |
US7431704B2 (en) | 2006-06-07 | 2008-10-07 | Bacoustics, Llc | Apparatus and method for the treatment of tissue with ultrasound energy by direct contact |
US20070287933A1 (en) | 2006-06-08 | 2007-12-13 | Chris Phan | Tissue debulking device and method of using the same |
US20070299895A1 (en) | 2006-06-09 | 2007-12-27 | Johnson Scot L | System and method of generating electrical stimulation waveforms as a therapeutic modality |
JP4504332B2 (ja) | 2006-06-12 | 2010-07-14 | オリンパスメディカルシステムズ株式会社 | 手術システム及びそのシステム稼働情報告知方法 |
US8814870B2 (en) | 2006-06-14 | 2014-08-26 | Misonix, Incorporated | Hook shaped ultrasonic cutting blade |
US20080097501A1 (en) | 2006-06-22 | 2008-04-24 | Tyco Healthcare Group Lp | Ultrasonic probe deflection sensor |
ES2928065T3 (es) | 2006-06-28 | 2022-11-15 | Medtronic Ardian Luxembourg | Sistemas de neuromodulación renal inducida térmicamente |
IL176652A0 (en) | 2006-06-29 | 2007-08-19 | Elisra Electronic Systems Ltd | Phase-coherent signal generator |
DE102006030889B4 (de) | 2006-07-04 | 2010-07-08 | Infineon Technologies Ag | Konzept zur Erzeugung von Radar-Signalen |
JP4157574B2 (ja) | 2006-07-04 | 2008-10-01 | オリンパスメディカルシステムズ株式会社 | 外科用処置具 |
EP2043542B1 (en) | 2006-07-06 | 2014-09-03 | Leroy L. Yates | Resecting device |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
GB0613662D0 (en) | 2006-07-10 | 2006-08-16 | Rotork Controls | Improvements to valve actuators |
JP2008017876A (ja) | 2006-07-10 | 2008-01-31 | Tetsuya Araki | 医療用処置具 |
US7717914B2 (en) | 2006-07-11 | 2010-05-18 | Olympus Medical Systems Corporation | Treatment device |
WO2008008441A2 (en) | 2006-07-12 | 2008-01-17 | Nelson Drew V | Multifunctional surgical instrument |
US7502234B2 (en) | 2006-07-12 | 2009-03-10 | Aaron Medical Industries, Inc. | Planar transformer power supply |
US9585714B2 (en) | 2006-07-13 | 2017-03-07 | Bovie Medical Corporation | Surgical sealing and cutting apparatus |
US20080015575A1 (en) | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US20080013809A1 (en) | 2006-07-14 | 2008-01-17 | Bracco Imaging, Spa | Methods and apparatuses for registration in image guided surgery |
US7744615B2 (en) | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
EP2076195B1 (en) | 2006-07-20 | 2015-12-02 | Medtronic, Inc. | Transmural ablation systems |
US7419490B2 (en) | 2006-07-27 | 2008-09-02 | Applied Medical Resources Corporation | Bipolar electrosurgical scissors |
US7587536B2 (en) | 2006-07-28 | 2009-09-08 | Icron Technologies Corporation | Method and apparatus for distributing USB hub functions across a network |
JP2008033644A (ja) | 2006-07-28 | 2008-02-14 | Takao Oishi | アプリケーションサービス提供システム、並びに、アプリケーションサービスの提供方法 |
US20080029573A1 (en) | 2006-08-02 | 2008-02-07 | Shelton Frederick E | Pneumatically powered surgical cutting and fastening instrument with replaceable power sources |
US8034049B2 (en) | 2006-08-08 | 2011-10-11 | Covidien Ag | System and method for measuring initial tissue impedance |
US7731717B2 (en) | 2006-08-08 | 2010-06-08 | Covidien Ag | System and method for controlling RF output during tissue sealing |
US20080125768A1 (en) | 2006-08-09 | 2008-05-29 | Olympus Medical Systems Corp. | Relay device and ultrasonic-surgical and electrosurgical system |
US9757142B2 (en) | 2006-08-09 | 2017-09-12 | Olympus Corporation | Relay device and ultrasonic-surgical and electrosurgical system |
US7708758B2 (en) | 2006-08-16 | 2010-05-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7919184B2 (en) | 2006-08-21 | 2011-04-05 | Mohapatra Satish C | Hybrid nanoparticles |
US8926620B2 (en) | 2006-08-25 | 2015-01-06 | Kyphon Sarl | Apparatus and methods for use of expandable members in surgical applications |
EP2056935A2 (en) | 2006-08-25 | 2009-05-13 | Eilaz Babaev | Portable ultrasound device for the treatment of wounds |
US8430897B2 (en) | 2006-08-29 | 2013-04-30 | Misonix Incorporated | Ultrasonic wound debrider probe and method of use |
US8025672B2 (en) | 2006-08-29 | 2011-09-27 | Misonix, Incorporated | Ultrasonic wound treatment method and apparatus |
US20080058775A1 (en) | 2006-08-29 | 2008-03-06 | Darian Alexander L | Ultrasonic debrider probe and method of use |
US20080071269A1 (en) | 2006-09-18 | 2008-03-20 | Cytyc Corporation | Curved Endoscopic Medical Device |
US7780663B2 (en) | 2006-09-22 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | End effector coatings for electrosurgical instruments |
US9107692B2 (en) | 2006-09-22 | 2015-08-18 | The Invention Science Fund I, Llc | Switchable sterilizing cutting system |
US20100049180A1 (en) | 2007-10-19 | 2010-02-25 | Lockheed Martin Corporation | System and method for conditioning animal tissue using laser light |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US20110087276A1 (en) | 2009-10-09 | 2011-04-14 | Ethicon Endo-Surgery, Inc. | Method for forming a staple |
US20080082098A1 (en) | 2006-09-29 | 2008-04-03 | Kazue Tanaka | Electric processing system |
US20080082039A1 (en) | 2006-09-29 | 2008-04-03 | Eilaz Babaev | Ultrasound Liquid Delivery Device |
US7799020B2 (en) | 2006-10-02 | 2010-09-21 | Conmed Corporation | Near-instantaneous responsive closed loop control electrosurgical generator and method |
WO2008040483A1 (de) | 2006-10-05 | 2008-04-10 | Erbe Elektromedizin Gmbh | Rohrschaftinstrument |
DE102006047204B4 (de) | 2006-10-05 | 2015-04-23 | Erbe Elektromedizin Gmbh | Rohrschaftinstrument |
JP5481194B2 (ja) | 2006-10-05 | 2014-04-23 | コヴィディエン リミテッド パートナーシップ | 可撓性の内視鏡的縫合装置 |
US8807414B2 (en) | 2006-10-06 | 2014-08-19 | Covidien Lp | System and method for non-contact electronic articulation sensing |
CA2664167A1 (en) | 2006-10-06 | 2008-04-17 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider having a flexible articulating shaft |
US7637410B2 (en) | 2006-10-06 | 2009-12-29 | Tyco Healthcare Group Lp | Surgical instrument including a locking assembly |
DE602006012054D1 (de) | 2006-10-06 | 2010-03-18 | Ethicon Endo Surgery Inc | Anastomosenapplikator |
US8733614B2 (en) | 2006-10-06 | 2014-05-27 | Covidien Lp | End effector identification by mechanical features |
US20090082716A1 (en) | 2006-10-13 | 2009-03-26 | Takayuki Akahoshi Akahoshi | Linear to Torsional Converter for Phaco Handpieces |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | MATCHED RF-ENERGY AND ELECTRO-TISSUE CHARACTERIZATION FOR THE SELECTIVE TREATMENT OF TARGET TISSUE |
EP2455034B1 (en) | 2006-10-18 | 2017-07-19 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US20080147092A1 (en) | 2006-10-23 | 2008-06-19 | Michael Rogge | Hybrid energy instrument combined with clip application capability |
US20090131885A1 (en) | 2006-11-08 | 2009-05-21 | Takayuki Akahoshi | Curved Irrigation/Aspiration Needle |
US20080114355A1 (en) | 2006-11-09 | 2008-05-15 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
JP2008119250A (ja) | 2006-11-13 | 2008-05-29 | Miwatec:Kk | 超音波手術器用ハンドピースおよびホーン |
US20080114364A1 (en) | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
US7714481B2 (en) | 2006-11-30 | 2010-05-11 | Olympus Medical Systems Corp. | Ultrasonic treatment apparatus |
US9456877B2 (en) | 2006-12-01 | 2016-10-04 | Boston Scientific Scimed, Inc. | Direct drive instruments and methods of use |
CA2670969C (en) | 2006-12-06 | 2016-01-19 | Boston Scientific Limited | Tissue ablation using pulse modulated radio frequency energy |
DE102006058867A1 (de) | 2006-12-07 | 2008-06-12 | Aesculap Ag & Co. Kg | Chirurgisches Schaltnetzteil und chirurgisches Gleichstromelektrowerkzeug |
US7846160B2 (en) | 2006-12-21 | 2010-12-07 | Cytyc Corporation | Method and apparatus for sterilization |
DE602006014291D1 (de) | 2006-12-29 | 2010-06-24 | Ultrazonix Dnt Ab | Herstellungsverfahren für eine Membran und mit einer solchen Membran versehener Gegenstand |
US8444637B2 (en) | 2006-12-29 | 2013-05-21 | St. Jude Medical, Atrial Filbrillation Division, Inc. | Steerable ablation device |
CN201029899Y (zh) | 2007-01-05 | 2008-03-05 | 苏州天臣国际医疗科技有限公司 | 微创外科侧侧装订器械 |
US7721936B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US7954682B2 (en) | 2007-01-10 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with elements to communicate between control unit and end effector |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US20080171938A1 (en) | 2007-01-15 | 2008-07-17 | Shinya Masuda | Ultrasonic operating apparatus |
US8529565B2 (en) | 2007-01-15 | 2013-09-10 | Olympus Medical Systems Corp. | Ultrasonic operating apparatus |
JP5165696B2 (ja) | 2007-01-16 | 2013-03-21 | エシコン・エンド−サージェリィ・インコーポレイテッド | 切断および凝固用超音波装置 |
JP4933911B2 (ja) | 2007-02-02 | 2012-05-16 | 学校法人日本医科大学 | 超音波手術器 |
WO2008098085A2 (en) | 2007-02-06 | 2008-08-14 | The Uab Research Foundation | Universal surgical function control system |
EP1972264A1 (en) | 2007-02-07 | 2008-09-24 | CODMAN & SHURTLEFF, INC. | Endoscopic instrument holder |
TWM318226U (en) | 2007-02-09 | 2007-09-01 | Guo-An Guo | Structure for fast connection of waterproof cable connector |
US7935114B2 (en) | 2007-02-14 | 2011-05-03 | Olympus Medical Systems Corp. | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
US7789883B2 (en) | 2007-02-14 | 2010-09-07 | Olympus Medical Systems Corp. | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
EP2653128B1 (en) | 2007-02-25 | 2016-10-19 | Avent, Inc. | Control of energy delivery to multiple energy delivery devices |
US20080208108A1 (en) | 2007-02-28 | 2008-08-28 | Kenichi Kimura | Treatment apparatus for operation |
WO2008109061A2 (en) | 2007-03-01 | 2008-09-12 | Lightfleet Corporation | Time domain symbols |
AU2008223389B2 (en) | 2007-03-06 | 2013-07-11 | Covidien Lp | Surgical stapling apparatus |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
CN101674780B (zh) | 2007-03-22 | 2012-05-23 | 伊西康内外科公司 | 超声外科器械刀片 |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US7862560B2 (en) | 2007-03-23 | 2011-01-04 | Arthrocare Corporation | Ablation apparatus having reduced nerve stimulation and related methods |
US8608745B2 (en) | 2007-03-26 | 2013-12-17 | DePuy Synthes Products, LLC | System, apparatus, and method for cutting bone during an orthopaedic surgical procedure |
US8056787B2 (en) | 2007-03-28 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with travel-indicating retraction member |
JP5197980B2 (ja) | 2007-03-29 | 2013-05-15 | オリンパスメディカルシステムズ株式会社 | 多関節湾曲機構及び多関節湾曲機構を備えた医療器具 |
JP5074069B2 (ja) | 2007-03-29 | 2012-11-14 | オリンパスメディカルシステムズ株式会社 | 多関節湾曲機構及び多関節湾曲機構を備えた医療器具 |
US8377044B2 (en) | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US20080243162A1 (en) | 2007-04-02 | 2008-10-02 | Norikiyo Shibata | Trocar |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US8187267B2 (en) | 2007-05-23 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter with flexible tip and methods of making the same |
EP2134283B1 (en) | 2007-04-06 | 2014-06-11 | Hologic, Inc. | System and device for tissue removal |
US20090270812A1 (en) | 2007-04-06 | 2009-10-29 | Interlace Medical , Inc. | Access device with enhanced working channel |
US9259233B2 (en) | 2007-04-06 | 2016-02-16 | Hologic, Inc. | Method and device for distending a gynecological cavity |
US20080255413A1 (en) | 2007-04-13 | 2008-10-16 | Michael Zemlok | Powered surgical instrument |
AU2008242981B2 (en) | 2007-04-16 | 2014-06-12 | Smith & Nephew, Inc. | Powered surgical system |
WO2008130793A1 (en) | 2007-04-17 | 2008-10-30 | Tyco Healthcare Group Lp | Electrical connector adapter |
US8814856B2 (en) | 2007-04-30 | 2014-08-26 | Medtronic, Inc. | Extension and retraction mechanism for a hand-held device |
US20080275440A1 (en) | 2007-05-03 | 2008-11-06 | Medtronic, Inc. | Post-ablation verification of lesion size |
GB0708783D0 (en) | 2007-05-04 | 2007-06-13 | Gyrus Medical Ltd | Electrosurgical system |
US20090138025A1 (en) | 2007-05-04 | 2009-05-28 | Hansen Medical, Inc. | Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity |
US20090327715A1 (en) | 2007-05-04 | 2009-12-31 | Smith Kevin W | System and Method for Cryptographic Identification of Interchangeable Parts |
US20080281200A1 (en) | 2007-05-10 | 2008-11-13 | Misonix, Incorporated | Elevated coupling liquid temperature during HIFU treatment method and hardware |
US20090157064A1 (en) | 2007-05-11 | 2009-06-18 | Hodel Michael R | RFID System and Method Therefor |
WO2008141238A1 (en) * | 2007-05-11 | 2008-11-20 | Voyage Medical, Inc. | Visual electrode ablation systems |
US8641704B2 (en) | 2007-05-11 | 2014-02-04 | Medtronic Ablation Frontiers Llc | Ablation therapy system and method for treating continuous atrial fibrillation |
US7832611B2 (en) | 2007-05-16 | 2010-11-16 | The Invention Science Fund I, Llc | Steerable surgical stapler |
JP5019108B2 (ja) | 2007-05-22 | 2012-09-05 | オリンパス株式会社 | 処置具 |
GB0709994D0 (en) | 2007-05-24 | 2007-07-04 | Gyrus Medical Ltd | Electrosurgical generator |
US8409234B2 (en) | 2007-05-25 | 2013-04-02 | Hansen Medical, Inc. | Rotational apparatus system and method for a robotic instrument system |
US7549564B2 (en) | 2007-06-22 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulating end effector |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US7810693B2 (en) | 2007-05-30 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with articulatable end effector |
US20080296346A1 (en) | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US7819299B2 (en) | 2007-06-04 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7832408B2 (en) | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US8659208B1 (en) | 2007-06-14 | 2014-02-25 | Misonix, Inc. | Waveform generator for driving electromechanical device |
US20090023985A1 (en) | 2007-06-14 | 2009-01-22 | Usgi Medical, Inc. | Endoluminal instrument management system |
US8845630B2 (en) | 2007-06-15 | 2014-09-30 | Syneron Medical Ltd | Devices and methods for percutaneous energy delivery |
US7588176B2 (en) | 2007-06-18 | 2009-09-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved closure system |
GB2456533A (en) | 2008-01-16 | 2009-07-22 | Gyrus Medical Ltd | Selection method for multi-instrument electrosurgical system |
GB2450679A (en) | 2007-06-19 | 2009-01-07 | Gyrus Medical Ltd | Electrosurgical System with status indicators on instruments |
USD576725S1 (en) | 2007-06-20 | 2008-09-09 | Abbot Laboratories, Inc. | Medical device delivery handle |
USD578645S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
USD578644S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
USD578643S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US7658311B2 (en) | 2007-06-22 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a geared return mechanism |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US7604150B2 (en) | 2007-06-22 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an anti-back up mechanism |
CA2691582A1 (en) | 2007-06-29 | 2009-01-08 | Tyco Healthcare Group Lp | Method and system for monitoring tissue during an electrosurgical procedure |
US8328738B2 (en) | 2007-06-29 | 2012-12-11 | Actuated Medical, Inc. | Medical tool for reduced penetration force with feedback means |
US8105230B2 (en) | 2007-07-09 | 2012-01-31 | Olympus Medical Systems Corp. | Medical system |
US7834484B2 (en) | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
DE102007034271A1 (de) | 2007-07-19 | 2009-01-22 | Celon Ag Medical Instruments | Hochfrequenzchirurgiegerät und Verfahren zu dessen Betrieb |
US8702609B2 (en) | 2007-07-27 | 2014-04-22 | Meridian Cardiovascular Systems, Inc. | Image-guided intravascular therapy catheters |
US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
AU2008286980A1 (en) | 2007-08-10 | 2009-02-19 | Eleme Medical Inc. | Multi-module skin or body treatment device and the method of using |
US20090048589A1 (en) | 2007-08-14 | 2009-02-19 | Tomoyuki Takashino | Treatment device and treatment method for living tissue |
GB0716590D0 (en) | 2007-08-24 | 2007-10-03 | Gyrus Medical Ltd | Electrosurgical system |
US20090054886A1 (en) | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
US20090054894A1 (en) | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
DE102007040358A1 (de) | 2007-08-27 | 2009-03-05 | Technische Universität München | Trokarrohr, Trokar, Obturator bzw. Rektoskop für die transluminale endoskopische Chirurgie über natürliche Körperöffnungen |
US8998891B2 (en) | 2007-08-30 | 2015-04-07 | Ellman International, Inc. | Tri-frequency electrosurgical instrument |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8070036B1 (en) | 2007-09-06 | 2011-12-06 | Cardica, Inc | True multi-fire surgical stapler configured to fire staples of different sizes |
US7876030B2 (en) | 2007-09-11 | 2011-01-25 | Ngk Spark Plug Co., Ltd. | Ultrasonic transducer which is either crimped or welded during assembly |
US20090065565A1 (en) | 2007-09-12 | 2009-03-12 | Vascular Technologies, Inc. | System, method and apparatus for preventing reuse of medical instruments |
JP4104648B1 (ja) | 2007-09-13 | 2008-06-18 | 和征 榊原 | 電池パック |
US20090076506A1 (en) | 2007-09-18 | 2009-03-19 | Surgrx, Inc. | Electrosurgical instrument and method |
DE102007044790A1 (de) | 2007-09-19 | 2009-04-02 | Dieter Mann | Einhandgerät für die Augenchirurgie |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US20090082766A1 (en) | 2007-09-20 | 2009-03-26 | Tyco Healthcare Group Lp | Tissue Sealer and End Effector Assembly and Method of Manufacturing Same |
EP2233081B2 (en) | 2007-09-21 | 2018-03-28 | Covidien LP | Surgical device |
DE102007047243A1 (de) | 2007-09-25 | 2009-04-02 | Karl Storz Gmbh & Co. Kg | Bipolares medizinisches Instrument |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US7703653B2 (en) | 2007-09-28 | 2010-04-27 | Tyco Healthcare Group Lp | Articulation mechanism for surgical instrument |
US20090088745A1 (en) | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Tapered Insulating Boot for Electrosurgical Forceps |
US20090088785A1 (en) | 2007-09-28 | 2009-04-02 | Shinya Masuda | Surgical operating apparatus |
USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
US8960520B2 (en) | 2007-10-05 | 2015-02-24 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US8967443B2 (en) | 2007-10-05 | 2015-03-03 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US20130214025A1 (en) | 2007-10-05 | 2013-08-22 | Covidien Lp | Powered surgical stapling device |
US20110022032A1 (en) | 2007-10-05 | 2011-01-27 | Tyco Healthcare Group Lp | Battery ejection design for a surgical device |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
EP2044888B1 (en) | 2007-10-05 | 2016-12-07 | Covidien LP | Articulation mechanism for a surgical instrument |
US8535308B2 (en) | 2007-10-08 | 2013-09-17 | Biosense Webster (Israel), Ltd. | High-sensitivity pressure-sensing probe |
AU2008310869B2 (en) | 2007-10-10 | 2014-04-17 | Ethicon Endo-Surgery, Inc | Ultrasonic device for cutting and coagulating |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US8460284B2 (en) | 2007-10-26 | 2013-06-11 | Encision, Inc. | Multiple parameter fault detection in electrosurgical instrument shields |
JP5364255B2 (ja) | 2007-10-31 | 2013-12-11 | テルモ株式会社 | 医療用マニピュレータ |
PL2214562T3 (pl) | 2007-11-05 | 2016-10-31 | Urządzenie chirurgiczne do zamykania naczyń krwionośnych i klej utwardzany ciepłem jako lek | |
US8241343B2 (en) | 2007-11-08 | 2012-08-14 | Angiodynamics, Inc. | Device and method for providing power to lighting elements for use as a visual indicator in a medical probe |
EP2211744A1 (en) | 2007-11-13 | 2010-08-04 | Boston Scientific Scimed, Inc. | Apparatus system and method for coagulating and cutting tissue |
EP2060238B1 (de) | 2007-11-15 | 2012-02-15 | Ewald Hensler | Koagulationsinstrument |
US9326754B2 (en) | 2007-11-20 | 2016-05-03 | The Cleveland Clinic | Method and apparatus for tissue sampling |
US9050098B2 (en) | 2007-11-28 | 2015-06-09 | Covidien Ag | Cordless medical cauterization and cutting device |
US8758342B2 (en) | 2007-11-28 | 2014-06-24 | Covidien Ag | Cordless power-assisted medical cauterization and cutting device |
US8377059B2 (en) | 2007-11-28 | 2013-02-19 | Covidien Ag | Cordless medical cauterization and cutting device |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US8061014B2 (en) | 2007-12-03 | 2011-11-22 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8435257B2 (en) | 2007-12-03 | 2013-05-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US9314261B2 (en) | 2007-12-03 | 2016-04-19 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8403948B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US8303613B2 (en) | 2007-12-07 | 2012-11-06 | Zevex, Inc. | Ultrasonic instrument using langevin type transducers to create transverse motion |
WO2009082477A2 (en) | 2007-12-18 | 2009-07-02 | Bovie Medical | Surgical apparatus with removable tool cartridge |
US20090163807A1 (en) | 2007-12-21 | 2009-06-25 | Sliwa John W | Finger-mounted or robot-mounted transducer device |
US8562600B2 (en) | 2007-12-27 | 2013-10-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Integration of control software with a medical device and system |
US9043018B2 (en) | 2007-12-27 | 2015-05-26 | Intuitive Surgical Operations, Inc. | Medical device with orientable tip for robotically directed laser cutting and biomaterial application |
US8147488B2 (en) | 2007-12-28 | 2012-04-03 | Olympus Medical Systems Corp. | Surgical operating apparatus |
US8186877B2 (en) | 2007-12-30 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for using common subchannel to assess the operating characteristics of transducers |
US20090177119A1 (en) | 2008-01-03 | 2009-07-09 | Boston Scientific Scimed, Inc. | Articulating intracorporeal medical device |
US20090182322A1 (en) | 2008-01-11 | 2009-07-16 | Live Tissue Connect, Inc. | Bipolar modular forceps modular arms |
US20090182331A1 (en) | 2008-01-11 | 2009-07-16 | Live Tissue Connect, Inc. | Bipolar modular forceps cover assembly |
US20090182332A1 (en) | 2008-01-15 | 2009-07-16 | Ethicon Endo-Surgery, Inc. | In-line electrosurgical forceps |
US8489172B2 (en) | 2008-01-25 | 2013-07-16 | Kardium Inc. | Liposuction system |
US20090198272A1 (en) | 2008-02-06 | 2009-08-06 | Lawrence Kerver | Method and apparatus for articulating the wrist of a laparoscopic grasping instrument |
US8221418B2 (en) * | 2008-02-07 | 2012-07-17 | Tyco Healthcare Group Lp | Endoscopic instrument for tissue identification |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US7861906B2 (en) | 2008-02-14 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with articulatable components |
US8382792B2 (en) | 2008-02-14 | 2013-02-26 | Covidien Lp | End effector assembly for electrosurgical device |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US7980443B2 (en) | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US8608044B2 (en) | 2008-02-15 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Feedback and lockout mechanism for surgical instrument |
DE102008009623A1 (de) | 2008-02-18 | 2009-08-20 | Kaltenbach & Voigt Gmbh | Vorrichtung zum Betreiben eines elektrisch betriebenen medizinischen Instruments |
US20090216157A1 (en) | 2008-02-22 | 2009-08-27 | Norihiro Yamada | Ultrasonic operating apparatus |
US8388646B2 (en) | 2008-02-22 | 2013-03-05 | Covidien Lp | Monocoque jaw design |
US8246575B2 (en) | 2008-02-26 | 2012-08-21 | Tyco Healthcare Group Lp | Flexible hollow spine with locking feature and manipulation structure |
GB2460392B (en) | 2008-02-29 | 2012-08-01 | Surgical Innovations Ltd | Handle |
EP3352107A1 (en) | 2008-03-03 | 2018-07-25 | NIKE Innovate C.V. | Interactive athletic equipment system |
DE102008013590A1 (de) | 2008-03-11 | 2009-09-24 | Epcos Ag | Verfahren zum Betrieb eines Piezoelements |
US20090240244A1 (en) | 2008-03-19 | 2009-09-24 | Synergetics Usa, Inc. | Electrosurgical Generator Having Boost Mode Control Based on Impedance |
US8328802B2 (en) | 2008-03-19 | 2012-12-11 | Covidien Ag | Cordless medical cauterization and cutting device |
JP2009236177A (ja) | 2008-03-26 | 2009-10-15 | Nok Corp | 密封構造 |
US8641663B2 (en) | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system input device |
US9241768B2 (en) | 2008-03-27 | 2016-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
US8048074B2 (en) | 2008-03-28 | 2011-11-01 | Olympus Medical Systems Corp. | Surgical operating apparatus |
US8484833B2 (en) | 2008-03-31 | 2013-07-16 | Covidien Lp | Automated assembly device to tolerate blade variation |
US20090248021A1 (en) | 2008-03-31 | 2009-10-01 | Tyco Healthcare Group Lp | End Effector Assembly for Electrosurgical Devices and System for Using the Same |
CA3022982C (en) | 2008-03-31 | 2022-07-26 | Applied Medical Resources Corporation | Electrosurgical system |
US9642669B2 (en) | 2008-04-01 | 2017-05-09 | Olympus Corporation | Treatment system, and treatment method for living tissue using energy |
US8226665B2 (en) | 2008-04-04 | 2012-07-24 | Tyco Healthcare Group Lp | Ultrasonic needle driver |
US20090254080A1 (en) | 2008-04-07 | 2009-10-08 | Satoshi Honda | Surgical operation apparatus |
US20090254077A1 (en) | 2008-04-08 | 2009-10-08 | Tyco Healthcare Group Lp | Arc Generation in a Fluid Medium |
US20090259149A1 (en) | 2008-04-15 | 2009-10-15 | Naoko Tahara | Power supply apparatus for operation |
DE102008019380B4 (de) | 2008-04-17 | 2012-11-22 | Erbe Elektromedizin Gmbh | Bipolare Klemme für die HF-Chirurgie |
US20090264909A1 (en) | 2008-04-18 | 2009-10-22 | Jean Michael Beaupre | Ultrasonic shears stop pad |
US20090270891A1 (en) | 2008-04-18 | 2009-10-29 | Jean Michael Beaupre | Balanced ultrasonic curved blade |
US8357158B2 (en) | 2008-04-22 | 2013-01-22 | Covidien Lp | Jaw closure detection system |
WO2009132359A2 (en) | 2008-04-25 | 2009-10-29 | Downey Earl C | Laparoscopic surgical instrument |
US8348947B2 (en) | 2008-04-25 | 2013-01-08 | Olympus Medical Systems Corp. | Treatment system, and treatment method for living tissue using energy |
US20090270853A1 (en) | 2008-04-28 | 2009-10-29 | Chie Yachi | Surgical operating apparatus |
AU2009244445B8 (en) | 2008-05-05 | 2014-12-18 | Stryker Corporation | A powered surgical tool system and control console |
DE102008001664B4 (de) | 2008-05-08 | 2015-07-30 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Medizinischer Roboter und Verfahren zur Erfüllung der Performanceanforderung eines medizinischen Roboters |
JP5380705B2 (ja) | 2008-05-15 | 2014-01-08 | 株式会社リバーセイコー | 内視鏡用高周波止血鉗子 |
US20090287205A1 (en) | 2008-05-16 | 2009-11-19 | Boston Scientific Scimed, Inc. | Systems and methods for preventing tissue popping caused by bubble expansion during tissue ablation |
GB0809243D0 (en) | 2008-05-21 | 2008-06-25 | Sra Dev Ltd | Improved torsional mode tissue dissector |
US7922061B2 (en) | 2008-05-21 | 2011-04-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument with automatically reconfigurable articulating end effector |
GB0809461D0 (en) | 2008-05-23 | 2008-07-02 | Gyrus Medical Ltd | An electrosurgical generator and system |
US9402680B2 (en) | 2008-05-27 | 2016-08-02 | Maquet Cardiovasular, Llc | Surgical instrument and method |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8357149B2 (en) | 2008-06-05 | 2013-01-22 | Biosense Webster, Inc. | Filter for simultaneous pacing and ablation |
US20090306639A1 (en) | 2008-06-06 | 2009-12-10 | Galil Medical Ltd. | Cryoprobe incorporating electronic module, and system utilizing same |
US8437832B2 (en) | 2008-06-06 | 2013-05-07 | Biosense Webster, Inc. | Catheter with bendable tip |
CN102014759B (zh) | 2008-06-11 | 2012-12-26 | 韩商未来股份有限公司 | 用于手术机器人臂的仪器 |
JP5379501B2 (ja) | 2008-06-19 | 2013-12-25 | オリンパスメディカルシステムズ株式会社 | 超音波処置具 |
JP5430161B2 (ja) | 2008-06-19 | 2014-02-26 | オリンパスメディカルシステムズ株式会社 | 超音波手術装置 |
US7543730B1 (en) | 2008-06-24 | 2009-06-09 | Tyco Healthcare Group Lp | Segmented drive member for surgical instruments |
JP2010009686A (ja) | 2008-06-27 | 2010-01-14 | Pioneer Electronic Corp | 光ディスク読み取り装置、その管理情報提供方法、管理情報提供プログラム、管理情報提供プログラムを記録したコンピュータ読み取り可能な記録媒体、及び、光ディスク再生システム |
DE102008038314A1 (de) | 2008-06-30 | 2010-01-07 | Erbe Elektromedizin Gmbh | Elektrochirurgiegenerator zum Behandeln eines biologischen Gewebes, Verfahren zum Regeln einer Ausgangsspannung eines elektrochirurgischen Generators und entsprechende Verwendung des Elektrochirurgiegeneators |
US8340726B1 (en) | 2008-06-30 | 2012-12-25 | Iwao Fujisaki | Communication device |
US9265567B2 (en) | 2008-06-30 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Vessel sealing instrument with stepped jaw |
CA2730240A1 (en) | 2008-07-08 | 2010-01-14 | Tyco Healthcare Group Lp | Surgical attachment for use with a robotic surgical system |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
US9204923B2 (en) | 2008-07-16 | 2015-12-08 | Intuitive Surgical Operations, Inc. | Medical instrument electronically energized using drive cables |
JP4267055B1 (ja) | 2008-07-18 | 2009-05-27 | 規方 田熊 | 吸引カテーテル、及び吸引カテーテルシステム |
FR2934390B1 (fr) | 2008-07-22 | 2010-08-13 | St Microelectronics Rousset | Transmission multicanaux sur un bus unifilaire |
KR101076785B1 (ko) | 2008-07-24 | 2011-10-25 | 박영석 | 분말사출 성형체 제조방법 |
JP5384869B2 (ja) | 2008-07-24 | 2014-01-08 | オリンパスメディカルシステムズ株式会社 | 内視鏡処置システム |
US9247953B2 (en) | 2008-08-01 | 2016-02-02 | Syntheon, Llc | Medical ultrasonic cauterization and cutting device and method |
US8801752B2 (en) | 2008-08-04 | 2014-08-12 | Covidien Lp | Articulating surgical device |
US8968355B2 (en) | 2008-08-04 | 2015-03-03 | Covidien Lp | Articulating surgical device |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US8529437B2 (en) | 2008-08-06 | 2013-09-10 | Encision, Inc. | Multifunctional surgical instrument with flexible end effector tools |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US20100036370A1 (en) | 2008-08-07 | 2010-02-11 | Al Mirel | Electrosurgical instrument jaw structure with cutting tip |
US8172836B2 (en) | 2008-08-11 | 2012-05-08 | Tyco Healthcare Group Lp | Electrosurgical system having a sensor for monitoring smoke or aerosols |
US8454599B2 (en) | 2008-08-13 | 2013-06-04 | Olympus Medical Systems Corp. | Treatment apparatus and electro-surgical device |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
CN102131896A (zh) | 2008-08-28 | 2011-07-20 | 智索株式会社 | 液晶组成物以及液晶显示元件 |
US8795274B2 (en) | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100057081A1 (en) | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US8974477B2 (en) | 2008-08-29 | 2015-03-10 | Olympus Medical Systems Corp. | Ultrasonic operating apparatus |
US20100057118A1 (en) | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US20100063528A1 (en) | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Ultrasonic shears actuating mechanism |
US20100063527A1 (en) | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Tissue pad |
KR101644842B1 (ko) | 2008-09-08 | 2016-08-12 | 후지필름 가부시키가이샤 | 내시경 시스템, 그 사용 방법, 보조구, 및 어댑터 |
AU2009291688A1 (en) | 2008-09-12 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for fingertip control |
US20100069903A1 (en) | 2008-09-18 | 2010-03-18 | Tyco Healthcare Group Lp | Vessel Sealing Instrument With Cutting Mechanism |
US7832612B2 (en) | 2008-09-19 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Lockout arrangement for a surgical stapler |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8328761B2 (en) | 2008-09-30 | 2012-12-11 | Ethicon Endo-Surgery, Inc. | Variable surgical access device |
US7967602B2 (en) | 2008-10-07 | 2011-06-28 | John Theodore Lindquist | Pliers for forming orthodontic wires |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8020743B2 (en) | 2008-10-15 | 2011-09-20 | Ethicon Endo-Surgery, Inc. | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
US20100106173A1 (en) | 2008-10-23 | 2010-04-29 | Hideto Yoshimine | Ultrasonic surgical device |
WO2010053108A1 (ja) | 2008-11-05 | 2010-05-14 | 株式会社 日立メディコ | 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置 |
US8295902B2 (en) | 2008-11-11 | 2012-10-23 | Shifamed Holdings, Llc | Low profile electrode assembly |
US20110313415A1 (en) | 2008-11-11 | 2011-12-22 | The Board Of Regents Of The University Of Texas System | Medical Devices, Apparatuses, Systems, and Methods |
JP5271050B2 (ja) | 2008-11-20 | 2013-08-21 | アズビル株式会社 | ヒュームフード管理システムおよび管理方法 |
US8308721B2 (en) | 2008-12-04 | 2012-11-13 | Olympus Medical Systems Corp. | Surgical system and surgical method |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
EP2376175B1 (en) | 2008-12-12 | 2019-01-30 | Corindus, Inc. | Remote catheter procedure system |
US20100168741A1 (en) | 2008-12-29 | 2010-07-01 | Hideo Sanai | Surgical operation apparatus |
CN101474081A (zh) | 2008-12-30 | 2009-07-08 | 深圳市蓝韵实业有限公司 | 一种连续多普勒超声成像系统正交本振信号产生装置 |
US8303579B2 (en) | 2008-12-31 | 2012-11-06 | Olympus Medical Systems Corp. | Surgical operation system and surgical operation method |
US8864757B2 (en) | 2008-12-31 | 2014-10-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measuring force and torque applied to a catheter electrode tip |
US20110238010A1 (en) | 2008-12-31 | 2011-09-29 | Kirschenman Mark B | Robotic catheter system input device |
JP5569818B2 (ja) | 2009-01-07 | 2014-08-13 | エンライテン テクノロジーズ, インコーポレイテッド | 組織除去デバイス、システムおよび方法 |
US8602031B2 (en) | 2009-01-12 | 2013-12-10 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
US8211100B2 (en) | 2009-01-12 | 2012-07-03 | Tyco Healthcare Group Lp | Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve |
US8361066B2 (en) | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8235917B2 (en) | 2009-01-13 | 2012-08-07 | Tyco Healthcare Group Lp | Wireless electrosurgical controller |
JP5829526B2 (ja) | 2009-01-14 | 2015-12-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | アブレーション処置を監視するモニタリング装置 |
US20100187283A1 (en) | 2009-01-26 | 2010-07-29 | Lawrence Crainich | Method For Feeding Staples In a Low Profile Surgical Stapler |
US8287485B2 (en) | 2009-01-28 | 2012-10-16 | Olympus Medical Systems Corp. | Treatment system for surgery and control method of treatment system for surgery |
US20110278343A1 (en) | 2009-01-29 | 2011-11-17 | Cardica, Inc. | Clamping of Hybrid Surgical Instrument |
US8989855B2 (en) | 2009-01-30 | 2015-03-24 | Medtronic Xomed, Inc. | Nerve monitoring during electrosurgery |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US8485413B2 (en) | 2009-02-05 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising an articulation joint |
US20100193566A1 (en) | 2009-02-05 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
US8696917B2 (en) | 2009-02-09 | 2014-04-15 | Edwards Lifesciences Corporation | Analyte sensor and fabrication methods |
DE102009010101A1 (de) | 2009-02-24 | 2010-08-26 | Karl Storz Gmbh & Co. Kg | Medizinisches Instrument zum Ergreifen von chirurgischem Nahtmaterial |
AU2010218473B2 (en) | 2009-02-26 | 2014-03-06 | Stryker Corporation | Surgical tool arrangement having a handpiece usable with multiple surgical tools |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US20100228250A1 (en) | 2009-03-05 | 2010-09-09 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
EP2403421B1 (en) | 2009-03-05 | 2019-07-31 | Covidien LP | Endoscopic vessel sealer and divider having a flexible articulating shaft |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8055208B2 (en) | 2009-03-09 | 2011-11-08 | Mettler-Toledo, Inc. | Low energy data communication circuit for hazardous or nonhazardous environments |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US20120053597A1 (en) | 2009-03-10 | 2012-03-01 | Mcmaster University | Mobile robotic surgical system |
DE102009012600B3 (de) | 2009-03-11 | 2010-10-28 | Erbe Elektromedizin Gmbh | Hochfrequenzchirurgiegenerator |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US20100234906A1 (en) | 2009-03-16 | 2010-09-16 | Pacesetter, Inc. | System and method for controlling rate-adaptive pacing based on a cardiac force-frequency relation detected by an implantable medical device |
US8597287B2 (en) | 2009-03-17 | 2013-12-03 | Stryker Corporation | Method and system for varying output intensity of energy applied to an electrosurgical probe |
US8298225B2 (en) | 2009-03-19 | 2012-10-30 | Tyco Healthcare Group Lp | System and method for return electrode monitoring |
US8066167B2 (en) | 2009-03-23 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Circular surgical stapling instrument with anvil locking system |
CN102123670B (zh) | 2009-03-24 | 2014-03-19 | 奥林巴斯医疗株式会社 | 内窥镜处置用机器人系统 |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
US8251994B2 (en) | 2009-04-07 | 2012-08-28 | Tyco Healthcare Group Lp | Vessel sealer and divider with blade deployment alarm |
US8287532B2 (en) | 2009-04-13 | 2012-10-16 | Biosense Webster, Inc. | Epicardial mapping and ablation catheter |
US10045819B2 (en) | 2009-04-14 | 2018-08-14 | Covidien Lp | Frequency identification for microwave ablation probes |
US8506561B2 (en) | 2009-04-17 | 2013-08-13 | Domain Surgical, Inc. | Catheter with inductively heated regions |
US20100274160A1 (en) | 2009-04-22 | 2010-10-28 | Chie Yachi | Switching structure and surgical equipment |
US20100274278A1 (en) | 2009-04-22 | 2010-10-28 | Pare Surgical, Inc. | Endoscopic tissue grasping apparatus and method |
US8277446B2 (en) | 2009-04-24 | 2012-10-02 | Tyco Healthcare Group Lp | Electrosurgical tissue sealer and cutter |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
US8738110B2 (en) | 2009-05-01 | 2014-05-27 | Livermore National Security, Llc | Rigid spine reinforced polymer microelectrode array probe and method of fabrication |
RU2405603C1 (ru) | 2009-05-04 | 2010-12-10 | Валерий Викторович Педдер | Высокоамплитудная акустическая система для ультразвуковой хирургии и терапии |
WO2014143014A1 (en) | 2013-03-15 | 2014-09-18 | Triagenics, Llc | Therapeutic tooth bud ablation |
US8246615B2 (en) | 2009-05-19 | 2012-08-21 | Vivant Medical, Inc. | Tissue impedance measurement using a secondary frequency |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US20100298743A1 (en) | 2009-05-20 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8056720B2 (en) | 2009-05-28 | 2011-11-15 | Symmetry Medical Manufacturing, Inc. | Method and system for medical instrument sterilization containers |
CN104605929B (zh) | 2009-06-02 | 2017-04-12 | 博维医药公司 | 用于对组织进行封口的外科钳夹 |
US8845537B2 (en) | 2009-06-03 | 2014-09-30 | Olympus Medical Systems Corp. | Ultrasound operation apparatus, ultrasound operation system, and cavitation utilization method |
JP5462530B2 (ja) | 2009-06-03 | 2014-04-02 | 国立大学法人 東京医科歯科大学 | 発熱装置及び生体組織接着装置 |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US20100331742A1 (en) | 2009-06-26 | 2010-12-30 | Shinya Masuda | Surgical operating apparatus |
US8623040B2 (en) | 2009-07-01 | 2014-01-07 | Alcon Research, Ltd. | Phacoemulsification hook tip |
WO2011004449A1 (ja) | 2009-07-06 | 2011-01-13 | オリンパスメディカルシステムズ株式会社 | 超音波手術装置 |
US8246618B2 (en) | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
EP3524189B1 (en) | 2009-07-15 | 2020-12-09 | Ethicon LLC | Ultrasonic surgical instrument having clamp with electrodes |
US8343150B2 (en) | 2009-07-15 | 2013-01-01 | Covidien Lp | Mechanical cycling of seal pressure coupled with energy for tissue fusion |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
GB2472216A (en) | 2009-07-28 | 2011-02-02 | Gyrus Medical Ltd | Bipolar electrosurgical instrument with four electrodes |
US8932282B2 (en) | 2009-08-03 | 2015-01-13 | Covidien Lp | Power level transitioning in a surgical instrument |
US8360299B2 (en) | 2009-08-11 | 2013-01-29 | Covidien Lp | Surgical stapling apparatus |
US8647350B2 (en) | 2009-08-11 | 2014-02-11 | Raptor Ridge, Llc | Delivery device and method for compliant tissue fasteners |
US8276801B2 (en) | 2011-02-01 | 2012-10-02 | Tyco Healthcare Group Lp | Surgical stapling apparatus |
US7956620B2 (en) | 2009-08-12 | 2011-06-07 | Tyco Healthcare Group Lp | System and method for augmented impedance sensing |
US8430876B2 (en) | 2009-08-27 | 2013-04-30 | Tyco Healthcare Group Lp | Vessel sealer and divider with knife lockout |
US8747351B2 (en) | 2009-08-28 | 2014-06-10 | Biosense Webster, Inc. | Catheter with multi-functional control handle having linear mechanism |
WO2011024200A1 (en) | 2009-08-31 | 2011-03-03 | Indian Institute Of Science | Laparoscopic apparatus |
US8568412B2 (en) | 2009-09-09 | 2013-10-29 | Covidien Lp | Apparatus and method of controlling cutting blade travel through the use of etched features |
US8974932B2 (en) | 2009-09-14 | 2015-03-10 | Warsaw Orthopedic, Inc. | Battery powered surgical tool with guide wire |
EP2478854B8 (en) | 2009-09-15 | 2019-03-06 | Olympus Corporation | Endoscope treatment tool |
DE102009041329A1 (de) | 2009-09-15 | 2011-03-24 | Celon Ag Medical Instruments | Kombiniertes Ultraschall- und HF Chirurgisches System |
US8207651B2 (en) | 2009-09-16 | 2012-06-26 | Tyco Healthcare Group Lp | Low energy or minimum disturbance method for measuring frequency response functions of ultrasonic surgical devices in determining optimum operating point |
DE102009042411A1 (de) | 2009-09-21 | 2011-03-31 | Richard Wolf Gmbh | Medizinisches Instrument |
WO2011060031A1 (en) | 2009-09-23 | 2011-05-19 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system |
US20110071523A1 (en) | 2009-09-23 | 2011-03-24 | Tyco Healthcare Group Lp | Vessel Sealer with Self-Aligning Jaws |
US8568400B2 (en) | 2009-09-23 | 2013-10-29 | Covidien Lp | Methods and apparatus for smart handset design in surgical instruments |
US9820806B2 (en) | 2009-09-29 | 2017-11-21 | Covidien Lp | Switch assembly for electrosurgical instrument |
US8323310B2 (en) | 2009-09-29 | 2012-12-04 | Covidien Lp | Vessel sealing jaw with offset sealing surface |
US8292886B2 (en) | 2009-10-06 | 2012-10-23 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8512371B2 (en) | 2009-10-06 | 2013-08-20 | Covidien Lp | Jaw, blade and gap manufacturing for surgical instruments with small jaws |
US8574231B2 (en) | 2009-10-09 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator |
CN102647949B (zh) | 2009-10-09 | 2015-01-21 | 伊西康内外科公司 | 外科器械 |
US8747404B2 (en) | 2009-10-09 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8939974B2 (en) | 2009-10-09 | 2015-01-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8623011B2 (en) | 2009-10-09 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Magnetic surgical sled with locking arm |
US8906016B2 (en) | 2009-10-09 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising steam control paths |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
WO2011052939A2 (ko) | 2009-10-26 | 2011-05-05 | 주식회사 이턴 | 수술용 인스트루먼트 및 싱글 포트 수술용 어댑터 |
US8388647B2 (en) | 2009-10-28 | 2013-03-05 | Covidien Lp | Apparatus for tissue sealing |
WO2011052391A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 医療用装置 |
US8460288B2 (en) | 2009-10-28 | 2013-06-11 | Olympus Corporation | Biological-tissue joining apparatus |
WO2011052390A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 医療用装置 |
WO2011052349A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 高周波手術装置及び手術制御方法 |
US20110112400A1 (en) | 2009-11-06 | 2011-05-12 | Ardian, Inc. | High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation |
DE102009046561A1 (de) | 2009-11-10 | 2011-05-12 | Robert Bosch Gmbh | Verfahren zum Betrieb mindestens eines Ultraschallwandlers |
US8521331B2 (en) | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
BR112012011435B1 (pt) | 2009-11-13 | 2020-06-23 | Intuitive Surgical Operations, Inc. | Mecanismo de instrumento cirúrgico, conjunto robótico de instrumento cirúrgico e sistema robótico de instrumento cirúrgico |
US8610501B2 (en) | 2009-11-16 | 2013-12-17 | Covidien Lp | Class resonant-H electrosurgical generators |
US20110125151A1 (en) | 2009-11-24 | 2011-05-26 | Strauss Timo | High frequency surgical device |
US9241730B2 (en) | 2009-11-25 | 2016-01-26 | Eliaz Babaev | Ultrasound surgical saw |
EP2491880A4 (en) | 2009-11-27 | 2014-04-23 | Olympus Medical Systems Corp | INSTRUMENT FOR THERAPEUTIC TREATMENT, DEVICE FOR THERAPEUTIC TREATMENT AND METHOD FOR THERAPEUTIC TREATMENT |
US8070711B2 (en) | 2009-12-09 | 2011-12-06 | Alcon Research, Ltd. | Thermal management algorithm for phacoemulsification system |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
JP5293586B2 (ja) | 2009-12-15 | 2013-09-18 | 富士通株式会社 | 非接触型icカードシステム |
CN102100582A (zh) | 2009-12-16 | 2011-06-22 | 余姚市柳叶刀医疗器械科技有限公司 | 可转腕微创电极 |
US10039588B2 (en) | 2009-12-16 | 2018-08-07 | Covidien Lp | System and method for tissue sealing |
USD627066S1 (en) | 2009-12-18 | 2010-11-09 | Tyco Healthcare Group Lp | Surgical instrument handle |
US8591459B2 (en) | 2009-12-21 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Use of biomarkers and therapeutic agents with surgical devices |
CA2785246C (en) | 2009-12-22 | 2014-10-21 | Cook Medical Technologies Llc | Medical devices with detachable pivotable jaws |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8267300B2 (en) | 2009-12-30 | 2012-09-18 | Ethicon Endo-Surgery, Inc. | Dampening device for endoscopic surgical stapler |
EP2474280B1 (en) | 2010-01-21 | 2015-06-10 | Olympus Medical Systems Corp. | Surgical treatment device |
US8374670B2 (en) | 2010-01-22 | 2013-02-12 | Biosense Webster, Inc. | Catheter having a force sensing distal tip |
WO2011089717A1 (ja) | 2010-01-22 | 2011-07-28 | オリンパスメディカルシステムズ株式会社 | 治療用処置具、治療用処置装置および治療処置方法 |
US8556929B2 (en) | 2010-01-29 | 2013-10-15 | Covidien Lp | Surgical forceps capable of adjusting seal plate width based on vessel size |
KR101638393B1 (ko) | 2010-01-29 | 2016-07-11 | 삼성전자주식회사 | 휴대용 장치에서 배터리 잔량 및 충방전 상태 표시 장치 및 방법 |
WO2011092464A1 (en) | 2010-02-01 | 2011-08-04 | Gyrus Medical Limited | Electrosurgical instrument and system |
US8328061B2 (en) | 2010-02-02 | 2012-12-11 | Covidien Lp | Surgical instrument for joining tissue |
DE102010015899B4 (de) | 2010-02-04 | 2022-07-28 | Erbe Elektromedizin Gmbh | Elektrochirurgische Anordnung und elektrochirurgisches Instrument |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
EP2484301B1 (en) | 2010-02-12 | 2016-06-15 | Olympus Corporation | Ultrasonic treatment device |
US8585727B2 (en) | 2010-02-14 | 2013-11-19 | Oscar R. Polo | Tissue severing devices and methods |
USD631155S1 (en) | 2010-02-23 | 2011-01-18 | Cambridge Endoscopic Devices, Inc. | Medical instrument |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8439912B2 (en) | 2010-02-26 | 2013-05-14 | Covidien Lp | De-tensioning mechanism for articulation drive cables |
US9107684B2 (en) | 2010-03-05 | 2015-08-18 | Covidien Lp | System and method for transferring power to intrabody instruments |
US8864761B2 (en) | 2010-03-10 | 2014-10-21 | Covidien Lp | System and method for determining proximity relative to a critical structure |
CN102792305B (zh) | 2010-03-11 | 2016-10-26 | 皇家飞利浦电子股份有限公司 | 用于表征和可视化电磁跟踪误差的方法和系统 |
US20110238079A1 (en) | 2010-03-18 | 2011-09-29 | SPI Surgical, Inc. | Surgical Cockpit Comprising Multisensory and Multimodal Interfaces for Robotic Surgery and Methods Related Thereto |
US8827992B2 (en) | 2010-03-26 | 2014-09-09 | Aesculap Ag | Impedance mediated control of power delivery for electrosurgery |
US8419727B2 (en) | 2010-03-26 | 2013-04-16 | Aesculap Ag | Impedance mediated power delivery for electrosurgery |
US8696665B2 (en) | 2010-03-26 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with reduced firing force |
WO2011121827A1 (ja) | 2010-03-31 | 2011-10-06 | オリンパスメディカルシステムズ株式会社 | 医療装置及び外科用処置具 |
USD638540S1 (en) | 2010-04-08 | 2011-05-24 | Terumo Kabushiki Kaisha | Manipulator system operating handle for medical use |
US8709035B2 (en) | 2010-04-12 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion |
US8496682B2 (en) | 2010-04-12 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
US8623044B2 (en) | 2010-04-12 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Cable actuated end-effector for a surgical instrument |
US8834518B2 (en) | 2010-04-12 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
EP2377477B1 (en) | 2010-04-14 | 2012-05-30 | Tuebingen Scientific Medical GmbH | Surgical instrument with elastically moveable instrument head |
US8535311B2 (en) | 2010-04-22 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument comprising closing and firing systems |
US9241692B2 (en) | 2010-04-28 | 2016-01-26 | Sanovas, Inc. | Pressure/vacuum actuated catheter forceps |
US8568397B2 (en) | 2010-04-28 | 2013-10-29 | Covidien Lp | Induction sealing |
US10265118B2 (en) | 2010-05-04 | 2019-04-23 | Covidien Lp | Pinion blade drive mechanism for a laparoscopic vessel dissector |
US8562592B2 (en) | 2010-05-07 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Compound angle laparoscopic methods and devices |
US9023070B2 (en) | 2010-05-13 | 2015-05-05 | Rex Medical, L.P. | Rotational thrombectomy wire coupler |
US8685020B2 (en) | 2010-05-17 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instruments and end effectors therefor |
JP5059231B2 (ja) | 2010-05-18 | 2012-10-24 | オリンパスメディカルシステムズ株式会社 | 医療装置 |
US9044256B2 (en) | 2010-05-19 | 2015-06-02 | Board Of Regents, The University Of Texas System | Medical devices, apparatuses, systems, and methods |
US20110284014A1 (en) | 2010-05-19 | 2011-11-24 | The Board Of Regents Of The University Of Texas System | Medical Devices That Include Removable Magnet Units and Related Methods |
US9059547B2 (en) | 2010-05-20 | 2015-06-16 | Cook Medical Technologies Llc | Lead system for electrical devices used in medical procedures |
USD669992S1 (en) | 2010-05-20 | 2012-10-30 | Sound Surgical Technologies, Llc | Ultrasonic amplifier |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
JP4933684B2 (ja) | 2010-05-31 | 2012-05-16 | オリンパスメディカルシステムズ株式会社 | 内視鏡用処置具 |
US8638428B2 (en) | 2010-06-01 | 2014-01-28 | Joe Denton Brown | Method and apparatus for using optical feedback to detect fiber breakdown during surgical laser procedures |
US8430877B2 (en) | 2010-06-02 | 2013-04-30 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8491625B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8795276B2 (en) | 2010-06-09 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing a plurality of electrodes |
US8790342B2 (en) | 2010-06-09 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing pressure-variation electrodes |
US8888776B2 (en) | 2010-06-09 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing an electrode |
US8926607B2 (en) | 2010-06-09 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing multiple positive temperature coefficient electrodes |
US9005199B2 (en) | 2010-06-10 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Heat management configurations for controlling heat dissipation from electrosurgical instruments |
US20110306967A1 (en) | 2010-06-10 | 2011-12-15 | Payne Gwendolyn P | Cooling configurations for electrosurgical instruments |
US8753338B2 (en) | 2010-06-10 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing a thermal management system |
US8764747B2 (en) | 2010-06-10 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument comprising sequentially activated electrodes |
JP5006475B2 (ja) | 2010-06-17 | 2012-08-22 | オリンパスメディカルシステムズ株式会社 | 超音波処置システム及び超音波処置システムの作動方法 |
WO2011160008A1 (en) | 2010-06-18 | 2011-12-22 | Howmedica Osteonics Corp. | Patient-specific total hip arthroplasty |
DE102010025298B4 (de) | 2010-06-28 | 2023-06-15 | Celon Ag Medical Instruments | Hochfrequenz-Chriurgiegerät |
US8657489B2 (en) | 2010-06-28 | 2014-02-25 | Infineon Technologies Ag | Power switch temperature control device and method |
US8226580B2 (en) | 2010-06-30 | 2012-07-24 | Biosense Webster (Israel), Ltd. | Pressure sensing for a multi-arm catheter |
US20120004655A1 (en) | 2010-06-30 | 2012-01-05 | Harrison Jay Kim | Bipolar Connector System |
ES2758557T3 (es) | 2010-07-07 | 2020-05-05 | Carevature Medical Ltd | Dispositivo quirúrgico para la extirpación de tejidos |
US8512336B2 (en) | 2010-07-08 | 2013-08-20 | Covidien Lp | Optimal geometries for creating current densities in a bipolar electrode configuration |
US8834466B2 (en) | 2010-07-08 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US9149324B2 (en) | 2010-07-08 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US8453906B2 (en) | 2010-07-14 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical instruments with electrodes |
US20120016413A1 (en) | 2010-07-14 | 2012-01-19 | Ethicon Endo-Surgery, Inc. | Surgical fastening devices comprising rivets |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US20120022519A1 (en) | 2010-07-22 | 2012-01-26 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with controlled energy delivery |
US8702704B2 (en) | 2010-07-23 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8979844B2 (en) | 2010-07-23 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9011437B2 (en) | 2010-07-23 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8979843B2 (en) | 2010-07-23 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US20120022526A1 (en) | 2010-07-23 | 2012-01-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US20120022583A1 (en) | 2010-07-23 | 2012-01-26 | Eric Sugalski | Surgical Tool with Crossbar Lever |
USD637288S1 (en) | 2010-07-23 | 2011-05-03 | Conmed Corporation | Surgical handpiece |
US8298233B2 (en) | 2010-08-20 | 2012-10-30 | Tyco Healthcare Group Lp | Surgical instrument configured for use with interchangeable hand grips |
CA2750482C (en) | 2010-08-25 | 2016-11-01 | Syntheon, Llc | Battery-powered hand-held ultrasonic surgical cautery cutting device |
CN103200893A (zh) | 2010-09-07 | 2013-07-10 | 波士顿科学西美德公司 | 用于肾去神经的自供电消融导管 |
US8663222B2 (en) | 2010-09-07 | 2014-03-04 | Covidien Lp | Dynamic and static bipolar electrical sealing and cutting device |
US10258505B2 (en) | 2010-09-17 | 2019-04-16 | Alcon Research, Ltd. | Balanced phacoemulsification tip |
KR20120030174A (ko) | 2010-09-17 | 2012-03-28 | 삼성전자주식회사 | 촉각 피드백을 제공하는 수술 로봇 시스템 및 수술 장치, 그리고 그의 촉각 피드백 제공 방법 |
GB201015998D0 (en) | 2010-09-22 | 2010-11-03 | Orthosonics Ltd | Improved femoral implant revision tool |
US9089327B2 (en) | 2010-09-24 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multi-phase trigger bias |
US9402682B2 (en) | 2010-09-24 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Articulation joint features for articulating surgical device |
US9545253B2 (en) | 2010-09-24 | 2017-01-17 | Ethicon Endo-Surgery, Llc | Surgical instrument with contained dual helix actuator assembly |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
USD669993S1 (en) | 2010-09-29 | 2012-10-30 | Sound Surgical Technologies, Llc | Console for use in power assisted lipoplasty |
US8733613B2 (en) | 2010-09-29 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
RU2599210C2 (ru) | 2010-09-30 | 2016-10-10 | Этикон Эндо-Серджери, Инк. | Хирургические рассекающие и сшивающие инструменты с отдельными и раздельными системами наложения крепежных элементов и рассечения ткани |
US8752699B2 (en) | 2010-09-30 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Implantable fastener cartridge comprising bioabsorbable layers |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
JP5905472B2 (ja) | 2010-10-01 | 2016-04-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 顎部材を有する外科用器具 |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
ES2912092T3 (es) | 2010-10-01 | 2022-05-24 | Applied Med Resources | Instrumentos electroquirúrgicos y conexiones a los mismos |
USD696631S1 (en) | 2011-05-17 | 2013-12-31 | Ethicon Endo-Surgery, Inc. | Electrical connector |
US9017372B2 (en) | 2010-10-01 | 2015-04-28 | Covidien Lp | Blade deployment mechanisms for surgical forceps |
US9345534B2 (en) | 2010-10-04 | 2016-05-24 | Covidien Lp | Vessel sealing instrument |
GB201017968D0 (en) | 2010-10-23 | 2010-12-08 | Sra Dev Ltd | Ergonomic handpiece for laparoscopic and open surgery |
CN103313671B (zh) | 2010-10-25 | 2017-06-06 | 美敦力Af卢森堡有限责任公司 | 用于神经调节治疗的估算及反馈的装置、系统及方法 |
US8628529B2 (en) | 2010-10-26 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument with magnetic clamping force |
US20120109186A1 (en) | 2010-10-29 | 2012-05-03 | Parrott David A | Articulating laparoscopic surgical instruments |
US9451967B2 (en) | 2010-11-01 | 2016-09-27 | Boston Scientific Scimed, Inc. | Tissue closure |
US20120116381A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging station and wireless communication |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
JP2014500059A (ja) | 2010-11-05 | 2014-01-09 | エシコン・エンド−サージェリィ・インコーポレイテッド | 外科用器具のハンドピースを介したユーザーフィードバック |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
CN103281982B (zh) | 2010-11-05 | 2016-12-28 | 伊西康内外科公司 | 具有模块化端部执行器和检测结构的外科器械 |
US20120116265A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging devices |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US10085792B2 (en) | 2010-11-05 | 2018-10-02 | Ethicon Llc | Surgical instrument with motorized attachment feature |
US9770285B2 (en) | 2010-11-08 | 2017-09-26 | Bovie Medical Corporation | System and method for identifying and controlling an electrosurgical apparatus |
US9095333B2 (en) | 2012-07-02 | 2015-08-04 | Bovie Medical Corporation | Systems and methods of discriminating between argon and helium gases for enhanced safety of medical devices |
US9144453B2 (en) | 2010-11-08 | 2015-09-29 | Bovie Medical Corporation | Multi-mode electrosurgical apparatus |
KR101993815B1 (ko) | 2010-11-15 | 2019-06-27 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술 기구에서 기구 샤프트 감김과 단부 작동기 작동의 해제 |
US8480703B2 (en) | 2010-11-19 | 2013-07-09 | Covidien Lp | Surgical device |
US8784418B2 (en) | 2010-11-29 | 2014-07-22 | Covidien Lp | Endoscopic surgical forceps |
US8920421B2 (en) | 2010-11-29 | 2014-12-30 | Covidien Lp | System and method for tissue sealing |
JP5734631B2 (ja) | 2010-12-02 | 2015-06-17 | オリンパス株式会社 | 手術支援システム |
US8523043B2 (en) | 2010-12-07 | 2013-09-03 | Immersion Corporation | Surgical stapler having haptic feedback |
US8801710B2 (en) * | 2010-12-07 | 2014-08-12 | Immersion Corporation | Electrosurgical sealing tool having haptic feedback |
US8715277B2 (en) | 2010-12-08 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Control of jaw compression in surgical instrument having end effector with opposing jaw members |
US20120150049A1 (en) | 2010-12-09 | 2012-06-14 | Medtronic, Inc. | Impedance measurement to monitor organ perfusion or hemodynamic status |
GB201021032D0 (en) | 2010-12-10 | 2011-01-26 | Creo Medical Ltd | Electrosurgical apparatus |
WO2012088141A2 (en) | 2010-12-21 | 2012-06-28 | Stryker Corporation | Powered surgical tool with a control module in a sealed housing the housing having active seals for protecting internal components from the effects of sterilization |
US9364171B2 (en) | 2010-12-22 | 2016-06-14 | Veebot Systems, Inc. | Systems and methods for autonomous intravenous needle insertion |
JP2014501143A (ja) | 2010-12-23 | 2014-01-20 | バード・アクセス・システムズ,インコーポレーテッド | 医療器具を案内するシステムおよび方法 |
BR112013016141A2 (pt) | 2010-12-23 | 2018-06-26 | Straumann Holding Ag | cartucho para armazenamento de instrumentos médicos |
US8862955B2 (en) | 2010-12-29 | 2014-10-14 | Stmicroelectronics S.R.L. | Apparatus for at-speed testing, in inter-domain mode, of a multi-clock-domain digital integrated circuit according to BIST or SCAN techniques |
US8936614B2 (en) | 2010-12-30 | 2015-01-20 | Covidien Lp | Combined unilateral/bilateral jaws on a surgical instrument |
US9044245B2 (en) | 2011-01-05 | 2015-06-02 | Medtronic Ablation Frontiers Llc | Multipolarity epicardial radiofrequency ablation |
US9028481B2 (en) | 2011-01-05 | 2015-05-12 | Covidien Lp | System and method for measuring current of an electrosurgical generator |
CN102595386A (zh) | 2011-01-06 | 2012-07-18 | 北京三星通信技术研究有限公司 | 一种支持用户设备ue移动性的方法 |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US8603089B2 (en) | 2011-01-19 | 2013-12-10 | Covidien Lp | Surgical instrument including inductively coupled accessory |
US20120191091A1 (en) | 2011-01-24 | 2012-07-26 | Tyco Healthcare Group Lp | Reusable Medical Device with Advanced Counting Capability |
US9028476B2 (en) | 2011-02-03 | 2015-05-12 | Covidien Lp | Dual antenna microwave resection and ablation device, system and method of use |
US9326787B2 (en) | 2011-02-07 | 2016-05-03 | Olympus Corporation | Energy treatment instrument |
CN103260539B (zh) | 2011-02-10 | 2016-02-17 | 奥林巴斯株式会社 | 高频手术装置以及手术装置 |
AU2012214166A1 (en) | 2011-02-10 | 2013-09-12 | Actuated Medical, Inc. | Medical tool with electromechanical control and feedback |
US8986287B2 (en) | 2011-02-14 | 2015-03-24 | Adrian E. Park | Adjustable laparoscopic instrument handle |
KR101964642B1 (ko) | 2011-02-15 | 2019-04-02 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법 |
MX355380B (es) | 2011-02-15 | 2018-04-16 | Smith & Nephew Inc | Dispositivo de resección artroscópica. |
JP6293486B2 (ja) | 2011-02-15 | 2018-03-14 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | クランプ又は発射の不成功を検出するシステム |
EP3308723B1 (en) | 2011-02-15 | 2021-03-10 | Intuitive Surgical Operations Inc. | Systems for indicating a clamping prediction |
US8767970B2 (en) | 2011-02-16 | 2014-07-01 | Apple Inc. | Audio panning with multi-channel surround sound decoding |
US9017370B2 (en) | 2011-02-17 | 2015-04-28 | Covidien Lp | Vessel sealer and divider with captured cutting element |
US9055961B2 (en) | 2011-02-18 | 2015-06-16 | Intuitive Surgical Operations, Inc. | Fusing and cutting surgical instrument and related methods |
US20120211542A1 (en) | 2011-02-23 | 2012-08-23 | Tyco Healthcare Group I.P | Controlled tissue compression systems and methods |
JP2012171088A (ja) | 2011-02-24 | 2012-09-10 | Olympus Corp | マスタ操作入力装置及びマスタスレーブマニピュレータ |
CN103354736B (zh) | 2011-03-09 | 2015-08-19 | 奥林巴斯医疗株式会社 | 双极处理装置 |
US8857693B2 (en) | 2011-03-15 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Surgical instruments with lockable articulating end effector |
CN103747752B (zh) | 2011-03-24 | 2017-04-26 | 伊西康内外科公司 | 基于能量的剪刀装置 |
JP5165163B2 (ja) | 2011-03-24 | 2013-03-21 | オリンパスメディカルシステムズ株式会社 | 把持処置装置 |
CN202027624U (zh) | 2011-03-25 | 2011-11-09 | 薛新汶 | 一种手术用超声波工具 |
US10729458B2 (en) | 2011-03-30 | 2020-08-04 | Covidien Lp | Ultrasonic surgical instruments |
US8974479B2 (en) | 2011-03-30 | 2015-03-10 | Covidien Lp | Ultrasonic surgical instruments |
WO2012135721A1 (en) | 2011-03-30 | 2012-10-04 | Tyco Healthcare Group Lp | Ultrasonic surgical instruments |
US20120253328A1 (en) | 2011-03-30 | 2012-10-04 | Tyco Healthcare Group Lp | Combined presentation unit for reposable battery operated surgical system |
US20120265241A1 (en) | 2011-04-12 | 2012-10-18 | Tyco Healthcare Group Lp | Surgical Forceps and Method of Manufacturing Thereof |
CA2774751C (en) | 2011-04-15 | 2018-11-06 | Covidien Ag | Battery powered hand-held ultrasonic surgical cautery cutting device |
ITTO20110394A1 (it) | 2011-05-05 | 2012-11-06 | Univ Pisa | Catetere munito di sensori elettromagnetici di posizione, e sistema di localizzazione per cateteri e fili guida |
JP5763407B2 (ja) | 2011-05-09 | 2015-08-12 | 株式会社ダイヘン | 異常検出装置、およびこの異常検出装置を備えた発電システム |
US9265568B2 (en) | 2011-05-16 | 2016-02-23 | Coviden Lp | Destruction of vessel walls for energy-based vessel sealing enhancement |
US8444664B2 (en) | 2011-05-16 | 2013-05-21 | Covidien Lp | Medical ultrasound instrument with articulated jaws |
US20120296371A1 (en) | 2011-05-17 | 2012-11-22 | Tyco Healthcare Group Lp | Modular Shaft for Endoscopic Vessel Sealer and Divider |
US8968283B2 (en) | 2011-05-19 | 2015-03-03 | Covidien Lp | Ultrasound device for precise tissue sealing and blade-less cutting |
US9358065B2 (en) | 2011-06-23 | 2016-06-07 | Covidien Lp | Shaped electrode bipolar resection apparatus, system and methods of use |
US9636167B2 (en) | 2011-05-31 | 2017-05-02 | Covidien Lp | Surgical device with DC power connection |
KR101828354B1 (ko) | 2011-06-03 | 2018-02-12 | 삼성전자주식회사 | 수술 장치 |
KR101298237B1 (ko) | 2011-06-09 | 2013-08-22 | 국립암센터 | 수술 장치 |
US9615877B2 (en) | 2011-06-17 | 2017-04-11 | Covidien Lp | Tissue sealing forceps |
US9844384B2 (en) | 2011-07-11 | 2017-12-19 | Covidien Lp | Stand alone energy-based tissue clips |
JP5342041B2 (ja) | 2011-07-11 | 2013-11-13 | キヤノン株式会社 | マルチビーム走査光学装置の組立調整方法及び製造方法 |
US9028478B2 (en) | 2011-07-20 | 2015-05-12 | Covidien Lp | Articulating surgical apparatus |
US20130023925A1 (en) | 2011-07-20 | 2013-01-24 | Tyco Healthcare Group Lp | Articulating Surgical Apparatus |
US8568390B2 (en) | 2011-07-20 | 2013-10-29 | Covidien Lp | Articulating surgical apparatus |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
US10004526B2 (en) | 2011-07-25 | 2018-06-26 | Covidien Lp | Ultrasonic dissection system |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
EP2554132B1 (de) | 2011-08-01 | 2016-03-02 | Erbe Elektromedizin GmbH | Gewebefusionsinstrument |
WO2013018861A1 (ja) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | 医療用マニピュレータおよびその制御方法 |
JP5936914B2 (ja) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | 操作入力装置およびこれを備えるマニピュレータシステム |
US8968317B2 (en) | 2011-08-18 | 2015-03-03 | Covidien Lp | Surgical forceps |
US20140236152A1 (en) | 2011-08-23 | 2014-08-21 | Aesculap Ag | Electrosurgical device and methods of manufacture and use |
JP5859650B2 (ja) | 2011-08-25 | 2016-02-10 | アンドコントロルEndocontrol | 係合解除可能なハンドル付きの手術器具 |
US9044243B2 (en) | 2011-08-30 | 2015-06-02 | Ethcon Endo-Surgery, Inc. | Surgical cutting and fastening device with descendible second trigger arrangement |
US9033973B2 (en) | 2011-08-30 | 2015-05-19 | Covidien Lp | System and method for DC tissue impedance sensing |
DE102011082102A1 (de) | 2011-09-02 | 2013-03-07 | Celon Ag Medical Instruments | Elektrodenanordnung und elektronisches Greifinstrument |
DE102011082307A1 (de) | 2011-09-07 | 2013-03-07 | Celon Ag Medical Instruments | Elektrochirurgisches Instrument, Elektrochirurgieanordnung und zugehörige Verfahren |
US9099863B2 (en) | 2011-09-09 | 2015-08-04 | Covidien Lp | Surgical generator and related method for mitigating overcurrent conditions |
US20130071282A1 (en) | 2011-09-19 | 2013-03-21 | Tyco Healthcare Group Lp | Method For Securing A Stop Member To A Seal Plate Configured For Use With An Electrosurgical Instrument |
US9039692B2 (en) | 2011-09-20 | 2015-05-26 | Covidien Lp | Handheld medical devices including microwave amplifier unit at device handle |
US9204918B2 (en) | 2011-09-28 | 2015-12-08 | RELIGN Corporation | Medical ablation system and method of use |
US8961515B2 (en) | 2011-09-28 | 2015-02-24 | Covidien Lp | Electrosurgical instrument |
US9668806B2 (en) | 2011-09-29 | 2017-06-06 | Covidien Lp | Surgical forceps including a removable stop member |
US20130085510A1 (en) | 2011-09-30 | 2013-04-04 | Ethicon Endo-Surgery, Inc. | Robot-mounted surgical tables |
US9004071B2 (en) | 2011-10-18 | 2015-04-14 | Ian Joseph Alexander | Nasal guide and method of use thereof |
EP2768418B1 (en) | 2011-10-19 | 2017-07-19 | Ethicon Endo-Surgery, Inc. | Clip applier adapted for use with a surgical robot |
US9492221B2 (en) | 2011-10-20 | 2016-11-15 | Covidien Lp | Dissection scissors on surgical device |
US8968308B2 (en) | 2011-10-20 | 2015-03-03 | Covidien Lp | Multi-circuit seal plates |
US10085762B2 (en) | 2011-10-21 | 2018-10-02 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US9333025B2 (en) | 2011-10-24 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Battery initialization clip |
US8899462B2 (en) | 2011-10-25 | 2014-12-02 | Covidien Lp | Apparatus for endoscopic procedures |
US9492146B2 (en) | 2011-10-25 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
CN103945783B (zh) | 2011-11-15 | 2016-10-26 | 直观外科手术操作公司 | 具有收起的刀片的手术器械 |
US8968312B2 (en) | 2011-11-16 | 2015-03-03 | Covidien Lp | Surgical device with powered articulation wrist rotation |
US8876726B2 (en) | 2011-12-08 | 2014-11-04 | Biosense Webster (Israel) Ltd. | Prevention of incorrect catheter rotation |
US9266310B2 (en) | 2011-12-16 | 2016-02-23 | Apple Inc. | Methods of joining device structures with adhesive |
US20130158660A1 (en) | 2011-12-20 | 2013-06-20 | Richard A. Bergs | Medical Devices, Apparatuses, Systems, and Methods with Magnetic Shielding |
US20130158659A1 (en) | 2011-12-20 | 2013-06-20 | Richard A. Bergs | Medical Devices, Apparatuses, Systems, and Methods With Configurations for Shaping Magnetic-Fields and Interactions |
CA2859989C (en) | 2011-12-23 | 2020-03-24 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
DE102012100040A1 (de) | 2012-01-04 | 2013-07-04 | Aesculap Ag | Elektrochirurgisches Instrument und Maulteil hierfür |
US9023035B2 (en) | 2012-01-06 | 2015-05-05 | Covidien Lp | Monopolar pencil with integrated bipolar/ligasure tweezers |
US8382775B1 (en) | 2012-01-08 | 2013-02-26 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
JP5192591B2 (ja) | 2012-01-16 | 2013-05-08 | 富士フイルム株式会社 | カプセル内視鏡、およびカプセル内視鏡の動作制御方法 |
US8961513B2 (en) | 2012-01-25 | 2015-02-24 | Covidien Lp | Surgical tissue sealer |
JP6165780B2 (ja) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ロボット制御式の手術器具 |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US8752264B2 (en) | 2012-03-06 | 2014-06-17 | Covidien Lp | Surgical tissue sealer |
US11399898B2 (en) | 2012-03-06 | 2022-08-02 | Briteseed, Llc | User interface for a system used to determine tissue or artifact characteristics |
US20130253256A1 (en) | 2012-03-20 | 2013-09-26 | David B. Griffith | Apparatuses, systems, and methods for use and transport of magnetic medical devices with transport fixtures or safety cages |
US20130253480A1 (en) | 2012-03-22 | 2013-09-26 | Cory G. Kimball | Surgical instrument usage data management |
TWM438061U (en) | 2012-04-03 | 2012-09-21 | Inhon Internat Co Ltd | Connector module and a male connector and the female connector |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US20130267874A1 (en) | 2012-04-09 | 2013-10-10 | Amy L. Marcotte | Surgical instrument with nerve detection feature |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9044238B2 (en) | 2012-04-10 | 2015-06-02 | Covidien Lp | Electrosurgical monopolar apparatus with arc energy vascular coagulation control |
JP5883343B2 (ja) | 2012-04-12 | 2016-03-15 | 株式会社スズキプレシオン | 医療用マニピュレータ |
JP5940864B2 (ja) | 2012-04-12 | 2016-06-29 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用マニピュレータ |
US8968294B2 (en) | 2012-04-17 | 2015-03-03 | Covidien Lp | Single or limited use device designs |
EP2838439A4 (en) | 2012-04-18 | 2015-11-25 | Cardica Inc | SAFETY LOCK FOR A SURGICAL CLIP DEVICE |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
DE102012103503A1 (de) | 2012-04-20 | 2013-10-24 | Aesculap Ag | Medizinisches TFT-Instrument mit schwenkbarem Elektrodenlager |
WO2013157571A1 (ja) | 2012-04-20 | 2013-10-24 | オリンパスメディカルシステムズ株式会社 | 手術装置 |
DE112013002175T5 (de) | 2012-04-24 | 2015-01-22 | Cibiem, Inc. | Endovaskuläre Katheter und Verfahren zur Ablation des Glomus Caroticum |
EP2796105B1 (en) | 2012-04-26 | 2017-11-01 | Olympus Corporation | Surgical system |
US9060778B2 (en) | 2012-04-26 | 2015-06-23 | Medtronic Ablation Frontiers Llc | Intermittent short circuit detection on a multi-electrode catheter |
US9216050B2 (en) | 2012-05-01 | 2015-12-22 | Medtronic Ablation Frontiers Llc | Detection of microbubble formation during catheter ablation |
JP6224082B2 (ja) | 2012-05-02 | 2017-11-01 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 切断及び凝固用電気外科装置 |
US20150119901A1 (en) | 2012-05-04 | 2015-04-30 | Agile Endosurgery, Inc. | Surgical tool |
US9039731B2 (en) | 2012-05-08 | 2015-05-26 | Covidien Lp | Surgical forceps including blade safety mechanism |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
DE102012208605A1 (de) | 2012-05-23 | 2013-11-28 | Karl Storz Gmbh & Co. Kg | Medizinisches Instrument mit einem Schaft mit einem flexiblen Abschnitt und einem gesteuert krümmbaren Abschnitt |
EP2668922B1 (en) | 2012-05-30 | 2016-10-26 | Covidien AG | System for tissue sealing |
US9681884B2 (en) | 2012-05-31 | 2017-06-20 | Ethicon Endo-Surgery, Llc | Surgical instrument with stress sensor |
US9572592B2 (en) | 2012-05-31 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Surgical instrument with orientation sensing |
WO2013180294A1 (ja) | 2012-06-01 | 2013-12-05 | オリンパスメディカルシステムズ株式会社 | エネルギを用いた処置具 |
US20130321425A1 (en) | 2012-06-05 | 2013-12-05 | Dexcom, Inc. | Reporting modules |
EP2859858B1 (en) | 2012-06-06 | 2016-12-28 | Olympus Corporation | Ultrasound probe |
US10677764B2 (en) | 2012-06-11 | 2020-06-09 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
JP2014003731A (ja) | 2012-06-15 | 2014-01-09 | Canon Inc | 振動型アクチュエータの駆動装置及びこれを用いた医用システム |
EP3593740B1 (en) | 2012-06-20 | 2021-10-06 | Stryker Corporation | System for off-axis tissue manipulation |
US9510891B2 (en) | 2012-06-26 | 2016-12-06 | Covidien Lp | Surgical instruments with structures to provide access for cleaning |
US8968296B2 (en) | 2012-06-26 | 2015-03-03 | Covidien Lp | Energy-harvesting system, apparatus and methods |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
JP5931604B2 (ja) | 2012-06-28 | 2016-06-08 | オリンパス株式会社 | 治療用処置装置 |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9039691B2 (en) | 2012-06-29 | 2015-05-26 | Covidien Lp | Surgical forceps |
US10028786B2 (en) | 2012-06-29 | 2018-07-24 | Covidien Lp | Helical connector assembly |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9072524B2 (en) | 2012-06-29 | 2015-07-07 | Covidien Lp | Surgical forceps |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US10194907B2 (en) | 2012-07-18 | 2019-02-05 | Covidien Lp | Multi-fire stapler with electronic counter, lockout, and visual indicator |
US9301798B2 (en) | 2012-07-19 | 2016-04-05 | Covidien Lp | Surgical forceps including reposable end effector assemblies |
US9192421B2 (en) | 2012-07-24 | 2015-11-24 | Covidien Lp | Blade lockout mechanism for surgical forceps |
US9305497B2 (en) | 2012-08-31 | 2016-04-05 | Qualcomm Mems Technologies, Inc. | Systems, devices, and methods for driving an analog interferometric modulator |
DE102012109037B4 (de) | 2012-09-25 | 2020-11-26 | Adolf Würth Gmbh & Co Kg | Ultraschall-Generator mit ausgangsseitigem Tiefpass für ein Handgerät |
US9147965B2 (en) | 2012-09-26 | 2015-09-29 | Kc Magcon, Inc. | Magnetic-enabled connector device |
GB2506377A (en) | 2012-09-27 | 2014-04-02 | Creo Medical Ltd | Electrosurgical apparatus comprising an RF generator, microwave generator, combining circuit and waveguide isolator |
IN2015DN02432A (pt) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9687290B2 (en) | 2012-10-02 | 2017-06-27 | Covidien Lp | Energy-based medical devices |
US8702702B1 (en) | 2012-10-05 | 2014-04-22 | Gyrus Acmi, Inc. | Surgical cutting instrument with electromechanical cutting |
US9526564B2 (en) | 2012-10-08 | 2016-12-27 | Covidien Lp | Electric stapler device |
US9421014B2 (en) | 2012-10-18 | 2016-08-23 | Covidien Lp | Loading unit velocity and position feedback |
US10478182B2 (en) | 2012-10-18 | 2019-11-19 | Covidien Lp | Surgical device identification |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) * | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US20140121569A1 (en) | 2012-10-25 | 2014-05-01 | Solta Medical, Inc. | Ultrasonically heated probe |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9572622B2 (en) | 2012-12-10 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical features for targeted hemostasis |
US9050100B2 (en) | 2012-12-10 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with feedback at end effector |
US8874220B2 (en) | 2012-12-13 | 2014-10-28 | Nuraleve Inc. | Neurostimulation system, device, and method |
EP2932930B1 (en) | 2012-12-13 | 2018-06-27 | Olympus Corporation | Treatment instrument |
US9468498B2 (en) | 2012-12-20 | 2016-10-18 | Cook Medical Technologies Llc | Magnetic activation of monopolar and bipolar devices |
US20140194875A1 (en) | 2013-01-10 | 2014-07-10 | Covidien Lp | Surgical forceps |
US20140194874A1 (en) | 2013-01-10 | 2014-07-10 | Ethicon Endo-Surgery, Inc. | Electrosurgical end effector with independent closure feature and blade |
GB201300490D0 (en) | 2013-01-11 | 2013-02-27 | Univ Leuven Kath | An apparatus and method for generating motion around a remote centre of motion |
US20140207124A1 (en) | 2013-01-23 | 2014-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectable integral or external power source |
US9149325B2 (en) | 2013-01-25 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | End effector with compliant clamping jaw |
US9610114B2 (en) | 2013-01-29 | 2017-04-04 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical hand shears |
US20140221994A1 (en) | 2013-02-05 | 2014-08-07 | Covidien Lp | Electrosurgical instrument |
US9375256B2 (en) | 2013-02-05 | 2016-06-28 | Covidien Lp | Electrosurgical forceps |
US9560995B2 (en) | 2013-02-25 | 2017-02-07 | Covidien Lp | Methods and systems for determining a probe-off condition in a medical device |
US9398911B2 (en) | 2013-03-01 | 2016-07-26 | Ethicon Endo-Surgery, Llc | Rotary powered surgical instruments with multiple degrees of freedom |
US9456863B2 (en) | 2013-03-11 | 2016-10-04 | Covidien Lp | Surgical instrument with switch activation control |
US10070916B2 (en) | 2013-03-11 | 2018-09-11 | Covidien Lp | Surgical instrument with system and method for springing open jaw members |
ES2828224T3 (es) | 2013-03-12 | 2021-05-25 | Biolase Inc | Unidad láser dental con enlace de comunicación al centro de asistencia |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9877782B2 (en) | 2013-03-14 | 2018-01-30 | Ethicon Llc | Electrosurgical instrument end effector with compliant electrode |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9498275B2 (en) | 2013-03-14 | 2016-11-22 | Covidien Lp | Systems and methods for arc detection and drag adjustment |
US9592056B2 (en) | 2013-03-14 | 2017-03-14 | Covidien Lp | Powered stapling apparatus |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10842563B2 (en) | 2013-03-15 | 2020-11-24 | Covidien Lp | System and method for power control of electrosurgical resonant inverters |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
EP2777583B1 (de) | 2013-03-15 | 2020-07-01 | Erbe Elektromedizin GmbH | Instrument zur Gefäßfusion und Trennung |
US9510906B2 (en) | 2013-03-15 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Tissue clamping features of surgical instrument end effector |
US20140276797A1 (en) | 2013-03-15 | 2014-09-18 | GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies America | Combination electrosurgical device |
EP2967711B1 (en) | 2013-03-15 | 2020-05-06 | Cynosure, LLC | Electrosurgical instruments with multimodes of operation |
US9763730B2 (en) | 2013-03-15 | 2017-09-19 | Gyrus Acmi, Inc. | Electrosurgical instrument |
EP2974682B1 (en) | 2013-03-15 | 2017-08-30 | Gyrus ACMI, Inc. | Combination electrosurgical device |
WO2014148281A1 (ja) | 2013-03-18 | 2014-09-25 | オリンパスメディカルシステムズ株式会社 | 処置具 |
GB201305987D0 (en) | 2013-04-03 | 2013-05-15 | Gyrus Medical Ltd | Electrosurgical system |
US20140303605A1 (en) | 2013-04-04 | 2014-10-09 | Elwha Llc | Active tremor control in surgical instruments responsive to a particular user |
CA3135151A1 (en) | 2013-04-08 | 2014-10-16 | Boston Scientific Scimed, Inc. | Fluid management system |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
EP2992847B1 (en) | 2013-05-02 | 2017-08-30 | Olympus Corporation | Ultrasonic treatment system |
WO2014189969A1 (en) | 2013-05-21 | 2014-11-27 | Camplex, Inc. | Surgical visualization systems |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
CN203468630U (zh) | 2013-05-31 | 2014-03-12 | 瑞奇外科器械(中国)有限公司 | 超声外科系统 |
US9385831B2 (en) | 2013-06-05 | 2016-07-05 | Raytheon Company | Circuits and method to enable efficient generation of direct digital synthesizer based waveforms of arbitrary bandwidth |
US9504520B2 (en) | 2013-06-06 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular motor |
US20140373003A1 (en) | 2013-06-13 | 2014-12-18 | L'oreal | Appliance-based firmware upgrade system |
US9815211B2 (en) | 2013-06-17 | 2017-11-14 | Abb Schweiz Ag | Rotary joint of a robot and the robot including the same |
US9629633B2 (en) | 2013-07-09 | 2017-04-25 | Covidien Lp | Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use |
US9554845B2 (en) | 2013-07-18 | 2017-01-31 | Covidien Lp | Surgical forceps for treating and cutting tissue |
US9655670B2 (en) | 2013-07-29 | 2017-05-23 | Covidien Lp | Systems and methods for measuring tissue impedance through an electrosurgical cable |
US10285750B2 (en) | 2013-07-29 | 2019-05-14 | Covidien Lp | Systems and methods for operating an electrosurgical generator |
WO2015016346A1 (ja) | 2013-08-02 | 2015-02-05 | オリンパスメディカルシステムズ株式会社 | 処置システム、処置具制御装置、および、処置システムの作動方法 |
WO2015020147A1 (ja) | 2013-08-07 | 2015-02-12 | オリンパスメディカルシステムズ株式会社 | 超音波プローブ及び超音波処置装置 |
CN104434298B (zh) | 2013-08-07 | 2017-11-03 | 柯惠有限合伙公司 | 具有组织限位件的双极外科器械 |
WO2015021359A1 (en) | 2013-08-09 | 2015-02-12 | Chamberlain Lisa | Magnetic shields |
US9636112B2 (en) | 2013-08-16 | 2017-05-02 | Covidien Lp | Chip assembly for reusable surgical instruments |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
US9554465B1 (en) | 2013-08-27 | 2017-01-24 | Flextronics Ap, Llc | Stretchable conductor design and methods of making |
US9674949B1 (en) | 2013-08-27 | 2017-06-06 | Flextronics Ap, Llc | Method of making stretchable interconnect using magnet wires |
JP5797353B2 (ja) | 2013-08-29 | 2015-10-21 | オリンパス株式会社 | 把持処置装置及び把持ユニット |
US9295514B2 (en) | 2013-08-30 | 2016-03-29 | Ethicon Endo-Surgery, Llc | Surgical devices with close quarter articulation features |
US9597141B2 (en) | 2013-09-03 | 2017-03-21 | Covidien Lp | Switch assemblies for multi-function surgical instruments and surgical instruments incorporating the same |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US20150080876A1 (en) | 2013-09-16 | 2015-03-19 | Ethoicon Endo-Surgery, Inc | Integrated systems for electrosurgical steam or smoke control |
US9943357B2 (en) | 2013-09-16 | 2018-04-17 | Covidien Lp | Split electrode for use in a bipolar electrosurgical instrument |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
US10271840B2 (en) | 2013-09-18 | 2019-04-30 | Covidien Lp | Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument |
US10231747B2 (en) | 2013-09-20 | 2019-03-19 | Ethicon Llc | Transducer features for ultrasonic surgical instrument |
US9717548B2 (en) | 2013-09-24 | 2017-08-01 | Covidien Lp | Electrode for use in a bipolar electrosurgical instrument |
US10695119B2 (en) | 2013-09-24 | 2020-06-30 | Covidien Lp | Power and bi directional data interface assembly and surgical system including the same |
US10610289B2 (en) | 2013-09-25 | 2020-04-07 | Covidien Lp | Devices, systems, and methods for grasping, treating, and dividing tissue |
US10130412B2 (en) | 2013-09-26 | 2018-11-20 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
US9867651B2 (en) | 2013-09-26 | 2018-01-16 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
US10448986B2 (en) | 2013-09-27 | 2019-10-22 | Covidien Lp | Electrosurgical medical device with power modulation |
US20150112335A1 (en) | 2013-10-18 | 2015-04-23 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices with fluid flow control |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9526565B2 (en) | 2013-11-08 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9861381B2 (en) | 2013-11-12 | 2018-01-09 | Ethicon Llc | Removable battery casing for surgical instrument |
US9949785B2 (en) | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
BR112016011680B1 (pt) | 2013-11-26 | 2022-02-15 | Ethicon Endo-Surgery, Llc | Aparelho |
GB201321710D0 (en) | 2013-12-09 | 2014-01-22 | Creo Medical Ltd | Electrosurgical apparatus |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9724120B2 (en) | 2013-12-17 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Clamp arm features for ultrasonic surgical instrument |
US9743946B2 (en) | 2013-12-17 | 2017-08-29 | Ethicon Llc | Rotation features for ultrasonic surgical instrument |
JP6482560B2 (ja) | 2013-12-18 | 2019-03-13 | コヴィディエン リミテッド パートナーシップ | 電気外科手術用エンドエフェクタ |
GB201322844D0 (en) | 2013-12-23 | 2014-02-12 | Creo Medical Ltd | Electrosurgical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9408660B2 (en) | 2014-01-17 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Device trigger dampening mechanism |
US9802033B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Surgical devices having controlled tissue cutting and sealing |
JP5836543B1 (ja) | 2014-02-06 | 2015-12-24 | オリンパス株式会社 | 超音波プローブ及び超音波処置装置 |
US9974541B2 (en) | 2014-02-14 | 2018-05-22 | Covidien Lp | End stop detection |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US20150238260A1 (en) | 2014-02-26 | 2015-08-27 | Covidien Lp | Surgical instruments including nerve stimulator apparatus for use in the detection of nerves in tissue and methods of directing energy to tissue using same |
WO2015138708A1 (en) | 2014-03-12 | 2015-09-17 | Proximed, Llc | Surgical guidance systems, devices, and methods |
WO2015137139A1 (ja) | 2014-03-14 | 2015-09-17 | オリンパス株式会社 | 把持ユニット及びバイポーラ処置具 |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US9675374B2 (en) | 2014-03-24 | 2017-06-13 | Ethicon Llc | Ultrasonic forceps |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US20180132850A1 (en) | 2014-03-26 | 2018-05-17 | Ethicon Llc | Surgical instrument comprising a sensor system |
US20150272659A1 (en) | 2014-03-27 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
CN106163445B (zh) | 2014-03-31 | 2019-11-29 | 直观外科手术操作公司 | 带有可切换传动装置的外科手术器械 |
US10342601B2 (en) | 2014-04-02 | 2019-07-09 | Covidien Lp | Electrosurgical devices including transverse electrode configurations |
US20150282879A1 (en) | 2014-04-03 | 2015-10-08 | Medtronic Minimed, Inc. | Precise insertion site locator |
EP2928271A1 (en) | 2014-04-04 | 2015-10-07 | Clothing Plus MBU Oy | Stretchable device for transmitting signal |
US9918730B2 (en) | 2014-04-08 | 2018-03-20 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9895160B2 (en) | 2014-04-16 | 2018-02-20 | Gyrus Acmi Inc. | Surgical operating apparatus with temperature control |
US9757186B2 (en) | 2014-04-17 | 2017-09-12 | Ethicon Llc | Device status feedback for bipolar tissue spacer |
US20150317899A1 (en) | 2014-05-01 | 2015-11-05 | Covidien Lp | System and method for using rfid tags to determine sterilization of devices |
US20150313667A1 (en) | 2014-05-02 | 2015-11-05 | Covidien Lp | Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue |
US9872722B2 (en) | 2014-05-05 | 2018-01-23 | Covidien Lp | Wake-up system and method for powered surgical instruments |
US10111703B2 (en) | 2014-05-06 | 2018-10-30 | Cosman Instruments, Llc | Electrosurgical generator |
US10251725B2 (en) | 2014-06-09 | 2019-04-09 | Covidien Lp | Authentication and information system for reusable surgical instruments |
CN104001276A (zh) | 2014-06-11 | 2014-08-27 | 郭锐 | 一种可标识和识别超声探头的方法和超声治疗设备 |
CN104013444A (zh) | 2014-06-23 | 2014-09-03 | 南京广慈医疗科技有限公司 | 一种相控阵高强度聚焦超声消融系统 |
DE102014108914A1 (de) | 2014-06-25 | 2015-12-31 | Aesculap Ag | Elektrochirurgisches Instrument und Maulteil hierfür |
EP2959854B1 (de) | 2014-06-25 | 2018-03-21 | Erbe Elektromedizin GmbH | Chirurgisches Instrument |
JPWO2016009921A1 (ja) | 2014-07-15 | 2017-04-27 | オリンパス株式会社 | 処置具 |
US10348941B2 (en) | 2014-07-30 | 2019-07-09 | Karl Storz Endovision, Inc. | Durable flexible circuit assembly |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
EP3134019A1 (en) | 2014-08-20 | 2017-03-01 | Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) | Reconfigurable electrosurgical device |
US20160051316A1 (en) | 2014-08-25 | 2016-02-25 | Ethicon Endo-Surgery, Inc. | Electrosurgical electrode mechanism |
US10194976B2 (en) | 2014-08-25 | 2019-02-05 | Ethicon Llc | Lockout disabling mechanism |
US9877776B2 (en) | 2014-08-25 | 2018-01-30 | Ethicon Llc | Simultaneous I-beam and spring driven cam jaw closure mechanism |
US10194972B2 (en) | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
WO2016044640A1 (en) | 2014-09-18 | 2016-03-24 | Omniguide, Inc. | Laparoscopic handpiece for waveguides |
US10172666B2 (en) | 2014-09-18 | 2019-01-08 | Covidien Lp | System and method for controlling operation of an electrosurgical system |
US10039564B2 (en) * | 2014-09-30 | 2018-08-07 | Ethicon Llc | Surgical devices having power-assisted jaw closure and methods for compressing and sensing tissue |
US9833239B2 (en) | 2014-10-15 | 2017-12-05 | Ethicon Llc | Surgical instrument battery pack with power profile emulation |
US10136938B2 (en) | 2014-10-29 | 2018-11-27 | Ethicon Llc | Electrosurgical instrument with sensor |
EP3213702A4 (en) | 2014-10-29 | 2018-07-04 | Sumitomo Bakelite Co., Ltd. | Endoscope scissors and endoscopic high-frequency treatment tool |
EP3229718B1 (en) | 2014-12-08 | 2019-02-27 | Olympus Corporation | A combined ultrasonic and hf surgical system as well as a control device and a method thereof |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10010366B2 (en) | 2014-12-17 | 2018-07-03 | Ethicon Llc | Surgical devices and methods for tissue cutting and sealing |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
GB2533411B (en) | 2014-12-19 | 2020-08-05 | Gyrus Medical Ltd | Electrosurgical system |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10092348B2 (en) | 2014-12-22 | 2018-10-09 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
US9848937B2 (en) | 2014-12-22 | 2017-12-26 | Ethicon Llc | End effector with detectable configurations |
US10111699B2 (en) | 2014-12-22 | 2018-10-30 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
US20160175029A1 (en) | 2014-12-22 | 2016-06-23 | Ethicon Endo-Surgery, Inc. | Tissue sealing and cutting instrument with locking features |
WO2016104051A1 (ja) | 2014-12-24 | 2016-06-30 | オリンパス株式会社 | 把持処置ユニット及び把持処置具 |
GB2535627B (en) | 2015-01-14 | 2017-06-28 | Gyrus Medical Ltd | Electrosurgical system |
GB2535003B (en) | 2015-01-14 | 2018-12-12 | Gyrus Medical Ltd | Electrosurgical instrument |
US9113912B1 (en) | 2015-01-21 | 2015-08-25 | Serene Medical, Inc. | Systems and devices to identify and limit nerve conduction |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
WO2016130844A1 (en) | 2015-02-13 | 2016-08-18 | Trice Medical, Inc. | Tissue visualization and modification devices and methods |
US10130367B2 (en) | 2015-02-26 | 2018-11-20 | Covidien Lp | Surgical apparatus |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US20160262786A1 (en) | 2015-03-10 | 2016-09-15 | Ethicon Endo-Surgery, Llc | Surgical blades with fatigue resistant properties |
US10190888B2 (en) * | 2015-03-11 | 2019-01-29 | Covidien Lp | Surgical stapling instruments with linear position assembly |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) * | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US20160270842A1 (en) | 2015-03-20 | 2016-09-22 | Ethicon Endo-Surgery, Llc | Electrosurgical device having controllable current paths |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10363084B2 (en) | 2015-04-01 | 2019-07-30 | Covidien Lp | Interdigitation of waveforms for dual-output electrosurgical generators |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US20160296270A1 (en) | 2015-04-10 | 2016-10-13 | Ethicon Endo-Surgery, Llc | Devices and methods for providing additional power to surgical devices |
US10117702B2 (en) | 2015-04-10 | 2018-11-06 | Ethicon Llc | Surgical generator systems and related methods |
CN107530126B (zh) | 2015-04-10 | 2020-12-15 | 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) | 具有偏移齿的医用镊子 |
JPWO2016163450A1 (ja) | 2015-04-10 | 2017-04-27 | オリンパス株式会社 | 医療機器 |
US10130410B2 (en) | 2015-04-17 | 2018-11-20 | Ethicon Llc | Electrosurgical instrument including a cutting member decouplable from a cutting member trigger |
US9872725B2 (en) | 2015-04-29 | 2018-01-23 | Ethicon Llc | RF tissue sealer with mode selection |
WO2016187006A1 (en) | 2015-05-15 | 2016-11-24 | Intuitive Surgical Operations, Inc. | System and method for minimally invasive cutting instrument operation |
US10064270B2 (en) | 2015-06-05 | 2018-08-28 | North Carolina State University | Flexible interconnects, systems, and uses thereof |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10335149B2 (en) | 2015-06-18 | 2019-07-02 | Ethicon Llc | Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
GB2541369B (en) | 2015-07-22 | 2021-03-31 | Cmr Surgical Ltd | Drive mechanisms for robot arms |
US20180188125A1 (en) | 2015-07-22 | 2018-07-05 | Carnegie Mellon University | Flexible and Stretchable Sensor Using Soft Optical Waveguides |
WO2017031712A1 (en) | 2015-08-26 | 2017-03-02 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US10507033B2 (en) | 2015-08-26 | 2019-12-17 | Ethicon Llc | Ultrasonic surgical instrument with replaceable clamp pad |
EP3138522B1 (de) | 2015-09-03 | 2020-11-04 | Erbe Elektromedizin GmbH | Instrument zum fassen, trennen und/oder koagulieren von biologischem gewebe |
CN108024835B (zh) | 2015-09-25 | 2021-08-31 | 柯惠Lp公司 | 机器人外科手术组件及其器械驱动连接器 |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
JP2018531694A (ja) | 2015-10-05 | 2018-11-01 | フレックスデックス, インク.Flexdex, Inc. | 円滑に関節屈曲するマルチクラスタジョイントを有する医療デバイス |
WO2017062683A1 (en) | 2015-10-07 | 2017-04-13 | Bioaccess, Inc. | Surgical power tool |
US10548655B2 (en) | 2015-10-16 | 2020-02-04 | Ethicon Llc | Control and electrical connections for electrode endocutter device |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US11045275B2 (en) | 2015-10-19 | 2021-06-29 | Cilag Gmbh International | Surgical instrument with dual mode end effector and side-loaded clamp arm assembly |
US10772630B2 (en) | 2015-11-13 | 2020-09-15 | Intuitive Surgical Operations, Inc. | Staple pusher with lost motion between ramps |
US10973517B2 (en) | 2015-11-13 | 2021-04-13 | Intuitive Surgical Operations, Inc. | Stapler with composite cardan and screw drive |
EP3383601B1 (en) | 2015-12-01 | 2024-02-14 | ABB Schweiz AG | Robot joint and robot including the same |
US10660692B2 (en) | 2015-12-10 | 2020-05-26 | Ethicon Llc | End effector for instrument with ultrasonic blade and bipolar clamp arm |
US20170164972A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | End effector for instrument with ultrasonic and electrosurgical features |
US20170164997A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | Method of treating tissue using end effector with ultrasonic and electrosurgical features |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US20170189095A1 (en) | 2015-12-31 | 2017-07-06 | Ethicon Endo-Surgery, Llc | Multiple port electrical isolation technique for surgical instruments |
US10314579B2 (en) | 2016-01-07 | 2019-06-11 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US20170202595A1 (en) | 2016-01-15 | 2017-07-20 | Ethicon Endo-Surgery, Llc | Modular battery powered handheld surgical instrument with a plurality of control programs |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
CN108463184B (zh) | 2016-01-19 | 2021-08-13 | 提坦医疗公司 | 用于机器人外科手术系统的图形用户界面 |
WO2017130214A1 (en) | 2016-01-25 | 2017-08-03 | K-Nine Writing Systems Pvt. Ltd. | Tissue/vessel sealer and/or cutter with variable shapes of jaw assembly with partial dlc coating |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US10926022B2 (en) | 2016-02-09 | 2021-02-23 | Johnson & Johnson Surgical Vision, Inc. | Tip detection apparatus and method for medical device |
US10398439B2 (en) | 2016-02-10 | 2019-09-03 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US20170231628A1 (en) | 2016-02-12 | 2017-08-17 | Ethicon Endo-Surgery, Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10631858B2 (en) | 2016-03-17 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and distal pulley |
US10350016B2 (en) | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10307159B2 (en) | 2016-04-01 | 2019-06-04 | Ethicon Llc | Surgical instrument handle assembly with reconfigurable grip portion |
US10456140B2 (en) | 2016-04-01 | 2019-10-29 | Ethicon Llc | Surgical stapling system comprising an unclamping lockout |
US10722233B2 (en) | 2016-04-07 | 2020-07-28 | Intuitive Surgical Operations, Inc. | Stapling cartridge |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US20170312018A1 (en) | 2016-04-29 | 2017-11-02 | Ethicon Endo-Surgery, Llc | Electrosurgical instrument with conductive gap setting member and insulative tissue engaging member having variable dimensions and stiffness |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10624667B2 (en) | 2016-05-20 | 2020-04-21 | Ethicon Llc | System and method to track usage of surgical instrument |
WO2017203634A1 (ja) | 2016-05-25 | 2017-11-30 | オリンパス株式会社 | 高周波処置具 |
US11076908B2 (en) | 2016-06-02 | 2021-08-03 | Gyrus Acmi, Inc. | Two-stage electrosurgical device for vessel sealing |
US11464561B2 (en) | 2016-06-02 | 2022-10-11 | Gyrus Acmi, Inc. | Two-stage electrosurgical device for vessel sealing |
USD822206S1 (en) | 2016-06-24 | 2018-07-03 | Ethicon Llc | Surgical fastener |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
US11000278B2 (en) | 2016-06-24 | 2021-05-11 | Ethicon Llc | Staple cartridge comprising wire staples and stamped staples |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US20180014872A1 (en) | 2016-07-15 | 2018-01-18 | Ethicon Endo-Surgery, Llc | Paired device and generator codes |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10610291B2 (en) | 2016-09-26 | 2020-04-07 | Gyrus Acmi, Inc. | Reconfigurable instrument |
DE112016007183T5 (de) | 2016-09-28 | 2019-07-04 | Olympus Corporation | Behandlungswerkzeug |
JP6701365B2 (ja) | 2016-10-07 | 2020-05-27 | オリンパス株式会社 | 外科処置具 |
JP7481114B2 (ja) | 2016-11-11 | 2024-05-10 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 走査ベースの位置付けを伴う遠隔操作手術システム |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US20180168650A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Connection portions for disposable loading units for surgical stapling instruments |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10758298B2 (en) | 2017-01-20 | 2020-09-01 | Ethicon Llc | Articulating electrosurgical tools |
US10631928B2 (en) | 2017-03-24 | 2020-04-28 | Biosense Webster (Israel) Ltd. | Catheter with deformable distal electrode |
US10813680B2 (en) | 2017-03-27 | 2020-10-27 | Medtronic Cryocath Lp | Cryoballoon contact assessment using capacitive or resistive sensors |
US20180289432A1 (en) | 2017-04-05 | 2018-10-11 | Kb Medical, Sa | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
WO2018195969A1 (en) | 2017-04-28 | 2018-11-01 | Abb Schweiz Ag | A cable harness management module and a robot |
US10881409B2 (en) | 2017-05-02 | 2021-01-05 | Covidien Lp | Rotation assembly for a surgical device |
US11311295B2 (en) | 2017-05-15 | 2022-04-26 | Covidien Lp | Adaptive powered stapling algorithm with calibration factor |
US11051866B2 (en) | 2017-05-22 | 2021-07-06 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument having ultrasonic waveguide with distal overmold member |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
USD865175S1 (en) | 2017-06-28 | 2019-10-29 | Ethicon Llc | Staple cartridge for surgical instrument |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
USD908216S1 (en) | 2017-06-28 | 2021-01-19 | Ethicon Llc | Surgical instrument |
US11129666B2 (en) | 2017-06-28 | 2021-09-28 | Cilag Gmbh International | Shaft module circuitry arrangements |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
USD893717S1 (en) | 2017-06-28 | 2020-08-18 | Ethicon Llc | Staple cartridge for surgical instrument |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11065048B2 (en) | 2017-06-28 | 2021-07-20 | Cilag Gmbh International | Flexible circuit arrangement for surgical fastening instruments |
WO2019006068A1 (en) | 2017-06-30 | 2019-01-03 | Intuitive Surgical Operations, Inc. | ELECTROSURGICAL INSTRUMENT WITH FLEXIBLE ELASTOMERIC ELECTRODE |
CN107374752B (zh) | 2017-07-31 | 2023-12-26 | 中国人民解放军第二军医大学第二附属医院 | 椎骨支撑测距装置 |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US10485566B2 (en) | 2017-08-17 | 2019-11-26 | Gyrus Acmi, Inc. | Forceps with tissue stop |
GB2567480A (en) | 2017-10-13 | 2019-04-17 | Creo Medical Ltd | Electrosurgical resector tool |
US11129634B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instrument with rotary drive selectively actuating multiple end effector functions |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
EP3476331B1 (en) | 2017-10-30 | 2021-05-26 | Ethicon LLC | Surgical instrument comprising an adaptive electrical system |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
EP3476302A3 (en) | 2017-10-30 | 2019-07-31 | Ethicon LLC | Surgical suturing instrument comprising a non-circular needle |
WO2019097608A1 (ja) | 2017-11-15 | 2019-05-23 | オリンパス株式会社 | 医療機器 |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
WO2019130113A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument having a flexible electrode |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US20190200987A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variable output cartridge sensor assembly |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US20190206564A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method for facility data collection and interpretation |
CN111527561B (zh) | 2017-12-28 | 2024-06-18 | 爱惜康有限责任公司 | 可变输出仓传感器组件 |
US11246625B2 (en) | 2018-01-19 | 2022-02-15 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US20190298353A1 (en) | 2018-03-28 | 2019-10-03 | Ethicon Llc | Surgical stapling devices with asymmetric closure features |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
EP3768186B1 (en) | 2018-05-31 | 2022-09-14 | St. Jude Medical, Cardiology Division, Inc. | Catheter handle with compliant circuit |
US20190388091A1 (en) | 2018-06-21 | 2019-12-26 | Covidien Lp | Powered surgical devices including strain gauges incorporated into flex circuits |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10350025B1 (en) | 2018-09-06 | 2019-07-16 | Gyrus Acmi, Inc. | System and method for preventing reuse of medical device |
US11806062B2 (en) | 2018-09-07 | 2023-11-07 | Cilag Gmbh International | Surgical modular energy system with a segmented backplane |
US10881452B2 (en) | 2018-10-16 | 2021-01-05 | Covidien Lp | Method of assembling an end effector for a surgical instrument |
US11197734B2 (en) | 2018-10-30 | 2021-12-14 | Covidien Lp | Load sensing devices for use in surgical instruments |
CN111546552A (zh) | 2019-02-08 | 2020-08-18 | 柯惠Lp公司 | 完全封装的电子器件和印刷电路板 |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11534164B2 (en) | 2019-04-05 | 2022-12-27 | Covidien Lp | Strain gauge stabilization in a surgical device |
US11819285B2 (en) | 2019-04-05 | 2023-11-21 | Covidien Lp | Magnetic interference detection systems and methods |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11361176B2 (en) | 2019-06-28 | 2022-06-14 | Cilag Gmbh International | Surgical RFID assemblies for compatibility detection |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US20210196270A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Surgical instrument comprising a flex circuit |
US20210196353A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US20210196345A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | User interface for surgical instrument with combination energy modality end-effector |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US20210196352A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Partially conductive clamp arm pad to enable electrode wear through and minimize short circuiting |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US20210196334A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Method of operating a combination ultrasonic / bipolar rf surgical device with a combination energy modality end-effector |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US20220167982A1 (en) | 2020-12-02 | 2022-06-02 | Ethicon Llc | Surgical instruments with electrical connectors for power transmission across sterile barrier |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
-
2016
- 2016-11-29 US US15/363,244 patent/US11266430B2/en active Active
-
2017
- 2017-11-22 CN CN201780083156.2A patent/CN110352040A/zh active Pending
- 2017-11-22 KR KR1020197018794A patent/KR20190091307A/ko not_active IP Right Cessation
- 2017-11-22 BR BR112019010912-9A patent/BR112019010912B1/pt active IP Right Grant
- 2017-11-22 EP EP17817442.1A patent/EP3547939A1/en active Pending
- 2017-11-22 WO PCT/US2017/062959 patent/WO2018102210A1/en unknown
- 2017-11-22 JP JP2019528741A patent/JP7210447B2/ja active Active
-
2022
- 2022-02-04 US US17/665,163 patent/US11998230B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
BR112019010912B1 (pt) | 2023-09-26 |
US20220226014A1 (en) | 2022-07-21 |
US20180146976A1 (en) | 2018-05-31 |
US11998230B2 (en) | 2024-06-04 |
JP2019535447A (ja) | 2019-12-12 |
KR20190091307A (ko) | 2019-08-05 |
CN110352040A (zh) | 2019-10-18 |
WO2018102210A1 (en) | 2018-06-07 |
EP3547939A1 (en) | 2019-10-09 |
JP7210447B2 (ja) | 2023-01-23 |
US11266430B2 (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112019010912A2 (pt) | sistema de calibração e controle de atuador de extremidade | |
US11457944B2 (en) | Adaptive advanced tissue treatment pad saver mode | |
US11051873B2 (en) | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters | |
BR112017028403B1 (pt) | Instrumento cirúrgico para coagular e dissecar tecido e gerador para aplicação de energia a um instrumento cirúrgico para coagular e dissecar tecido | |
BR112017028462B1 (pt) | Instrumento cirúrgico para coagular e dissecar tecido, e gerador para fornecer energia a um instrumento cirúrgico para coagular e dissecar tecido | |
BR112017028369B1 (pt) | Aparelho para dissecção e coagulação de tecido | |
BR112020017254A2 (pt) | Aplicação de lâmina inteligente para dispositivos reutilizáveis e descartáveis | |
BR112018006256B1 (pt) | Método de geração de formas de onda de sinal elétrico por um gerador e gerador para gerar formas de onda de sinal elétrico | |
BR112017028508B1 (pt) | Instrumento cirúrgico para coagular e dissecar tecido e gerador para fornecer energia a um instrumento cirúrgico para coagular e dissecar tecido | |
BR112018006376B1 (pt) | Gerador para fornecer um sinal combinado que compreende um componente de radiofrequência (rf) e um componente ultrassônico a um instrumento cirúrgico, sistema que compreende tal gerador e método para realizar definição em um componente de circuito | |
BR112014025085B1 (pt) | Instrumento cirúrgico ultrassônico e componente para um instrumento cirúrgico ultrassônico | |
BR112014025700B1 (pt) | Dispositivo cirúrgico com circuito de controle para dispositivos ultrassônicos e electrocirúrgicos | |
BR112014025086B1 (pt) | Aparelho, instrumento e gerador | |
BR112014025078B1 (pt) | Métodos de acionamento de um atuador de extremidade acoplado a um sistema de acionamento ultrassônico | |
BR112014025089B1 (pt) | Método e sistema cirúrgico para acionar um atuador de extremidade acoplado a um sistema de acionamento ultrassônico de um instrumento cirúrgico | |
BR112014025092B1 (pt) | Conjunto de chave para um instrumento cirúrgico ultrassônico incluindo um compartimento de cabo configurado para ser segurado em apenas uma das mãos |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B350 | Update of information on the portal [chapter 15.35 patent gazette] | ||
B06W | Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette] | ||
B06A | Patent application procedure suspended [chapter 6.1 patent gazette] | ||
B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 22/11/2017, OBSERVADAS AS CONDICOES LEGAIS |