BR112019010912A2 - sistema de calibração e controle de atuador de extremidade - Google Patents

sistema de calibração e controle de atuador de extremidade Download PDF

Info

Publication number
BR112019010912A2
BR112019010912A2 BR112019010912A BR112019010912A BR112019010912A2 BR 112019010912 A2 BR112019010912 A2 BR 112019010912A2 BR 112019010912 A BR112019010912 A BR 112019010912A BR 112019010912 A BR112019010912 A BR 112019010912A BR 112019010912 A2 BR112019010912 A2 BR 112019010912A2
Authority
BR
Brazil
Prior art keywords
end actuator
clamping arm
ultrasonic blade
tube
ultrasonic
Prior art date
Application number
BR112019010912A
Other languages
English (en)
Other versions
BR112019010912B1 (pt
Inventor
Nott Cameron
J Ulrich Daniel
J Cagle David
F Cummings John
H Clauda Phillip
Original Assignee
Ethicon Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Llc filed Critical Ethicon Llc
Publication of BR112019010912A2 publication Critical patent/BR112019010912A2/pt
Publication of BR112019010912B1 publication Critical patent/BR112019010912B1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00128Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00725Calibration or performance testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • A61B2017/00977Surgical instruments, devices or methods, e.g. tourniquets pedal-operated the depression depth determining the power rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B2017/2808Clamp, e.g. towel clamp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2925Pistol grips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320072Working tips with special features, e.g. extending parts
    • A61B2017/320074Working tips with special features, e.g. extending parts blade
    • A61B2017/320077Working tips with special features, e.g. extending parts blade double edge blade, e.g. reciprocating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320094Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgical Instruments (AREA)

Abstract

a invenção refere-se a métodos e aparelhos para o controle e a calibração de efetor de extremidade que são descritos. o método pode incluir a detecção de um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, o primeiro tubo acionando o movimento de um braço de aperto do efetor de extremidade. o método pode ainda incluir a determinação de uma posição de braço de aperto do efetor de extremidade em relação a uma lâmina ultrassônica do efetor de extremidade com base no sinal. o método também pode incluir o ajuste de uma saída de potência para a lâmina ultrassônica do efetor de extremidade com base na posição do braço de aperto.

Description

Relatório Descritivo da Patente de Invenção para SISTEMA DE CALIBRAÇÃO E CONTROLE DE ATUADOR DE EXTREMIDADE”.
CAMPO DA TÉCNICA [001] O campo da técnica pode se referir genericamente ao controle de instrumentos cirúrgicos e, em particular, ao controle e calibração dos atuadores de extremidade dos instrumentos cirúrgicos. ANTECEDENTES DA INVENÇÃO [002] Vários aspectos são direcionados a instrumentos cirúrgicos, e ao controle e calibração dos atuadores de extremidade dos instrumentos cirúrgicos.
[003] Por exemplo, dispositivos cirúrgicos ultrassônicos estão encontrando aplicações cada vez mais difundidas em procedimentos cirúrgicos em virtude de suas características exclusivas de desempenho. Dependendo de configurações e parâmetros operacionais específicos do dispositivo, os dispositivos cirúrgicos ultrassônicos podem oferecer, de maneira substancialmente simultânea, transecção de tecidos e homeostase por coagulação, desejavelmente minimizando o trauma do paciente. Um dispositivo cirúrgico ultrassônico pode compreender uma empunhadura contendo um transdutor ultrassônico, e um instrumento acoplado ao transdutor ultrassônico que possui um atuador de extremidade montado distalmente (por exemplo, uma lâmina ultrassônica e um braço de aperto, onde o braço de aperto pode incluir uma almofada de tecido antiaderente) para cortar e selar o tecido. Em alguns casos, o instrumento pode estar permanentemente fixado à peça de mão. Em outros casos, o instrumento pode ser separável da peça de mão, como no caso de um instrumento descartável ou um instrumento que é intercambiável entre diferentes peças de mão. O atuador de extremidade transmite energia ultrassônica aos tecidos colocados em
Petição 870190062513, de 04/07/2019, pág. 4/162
2/114 contato com o mesmo, para realizar a ação de corte e cauterização. Os dispositivos cirúrgicos ultrassônicos dessa natureza podem ser configurados para uso em procedimentos cirúrgicos abertos, laparoscópicos ou endoscópicos, inclusive procedimentos roboticamente assistidos.
[004] A energia ultrassônica corta e coagula tecidos com o uso de temperaturas mais baixas que aquelas utilizadas em procedimentos eletrocirúrgicos. Vibrando em altas frequências (por exemplo, 55.500 vezes por segundo), a lâmina ultrassônica desnatura a proteína presente nos tecidos para formar um coágulo pegajoso. A pressão exercida sobre os tecidos pela superfície da lâmina ultrassônica achata os vasos sanguíneos e possibilita que o coágulo forme um selo hemostático. Um cirurgião pode controlar a velocidade de corte e coagulação por meio da força aplicada aos tecidos pelo atuador de extremidade, do tempo durante o qual a força é aplicada e do nível de excursão selecionado para o atuador de extremidade.
SUMÁRIO DA INVENÇÃO [005] Em um aspecto, um método para controlar um atuador de extremidade pode incluir detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O método pode incluir, também, determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal. O método pode, também, incluir adicionalmente ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[006] Um ou mais dentre os recursos a seguir podem estar incluídos. O primeiro tubo pode ser um tubo interno e o segundo tubo pode ser um tubo externo, sendo que o tubo interno é móvel em relação
Petição 870190062513, de 04/07/2019, pág. 5/162
3/114 ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno. O método pode incluir, também, detectar o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo. O método pode incluir, também, mover um ímã posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O método pode incluir adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall. Além disso, o método pode incluir ajustar dinamicamente a saída de energia à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Além disso, o método pode incluir ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com o uso de um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[007] Em uma ou mais implementações, o método pode incluir determinar um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal. O método pode incluir adicionalmente ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto. O método pode incluir adicionalmente, em resposta à determinação de que o tipo de tecido entre o braço de aperto e a lâmina ultrassônica é um vaso sanguíneo pequeno, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para um vaso sanguíneo maior. Além disso, o método pode incluir, em resposta à determinação de que o tipo de tecido entre o braço de aperto e a lâmina ultrassônica é um vaso sanguíneo grande, reduzir a saída de
Petição 870190062513, de 04/07/2019, pág. 6/162
4/114 energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para um vaso sanguíneo menor.
[008] Em um aspecto, um aparelho para controlar um atuador de extremidade pode incluir um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O aparelho pode incluir, também, um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal. O aparelho pode incluir adicionalmente um transdutor configurado para ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
[009] Um ou mais dentre os recursos a seguir podem estar incluídos. O primeiro tubo pode ser um tubo interno e o segundo tubo pode ser um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno. O aparelho pode incluir adicionalmente um ímã posicionado sobre o primeiro tubo sendo que o sensor é um sensor de efeito Hall utilizado para detectar o sinal com base em uma posição do ímã. O ímã pode ser posicionado no primeiro tubo que se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O transdutor pode ser um transdutor ultrassônico configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall. O aparelho pode incluir também um controlador proporcional integral configurado para ajustar dinamicamente a saída de energia à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
Petição 870190062513, de 04/07/2019, pág. 7/162
5/114 [0010] Em um aspecto, um método para calibrar um aparelho para controlar um atuador de extremidade pode incluir detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade. O método pode incluir também detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica. O método pode incluir adicionalmente detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade. O método pode incluir adicionalmente determinar uma curva de melhor ajuste para representar a intensidade de sinal como função do deslocamento do sensor com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido. Além disso, o método pode incluir criar uma tabela de consulta com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, e nas posições completamente abertas, intermediárias e completamente fechadas.
[0011] Os detalhes de uma ou mais implementações são demonstrados nos desenhos em anexo e na descrição abaixo. Outros recursos e vantagens serão evidentes a partir da descrição, dos desenhos e das reivindicações.
BREVE DESCRIÇÃO DOS DESENHOS [0012] A Figura 1 é uma vista em elevação de um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente descrição;
[0013] a Figura 2 é uma vista em perspectiva de um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente
Petição 870190062513, de 04/07/2019, pág. 8/162
6/114 descrição;
[0014] a Figura 3 ilustra um atuador de extremidade exemplificador instrumentos cirúrgicos, de acordo com um aspecto da presente descrição;
[0015] a Figura 4 ilustra um atuador de extremidade exemplificador de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0016] a Figura 5 é uma vista explodida de um aspecto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0017] a Figura 6 ilustra um diagrama lógico de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0018] a Figura 7 ilustra uma vista estrutural de uma arquitetura de gerador, de acordo com um aspecto da presente descrição;
[0019] as Figuras 8A a 8C ilustram vistas funcionais de uma arquitetura de gerador, de acordo com um aspecto da presente descrição;
[0020] a Figura 9 ilustra um controlador para monitorar dispositivos de entrada e controlar dispositivos de saída, de acordo com um aspecto da presente descrição;
[0021] as Figuras 10A e 10B ilustram aspectos estruturais e funcionais de um aspecto do gerador, de acordo com um aspecto da presente descrição;
[0022] a Figura 11 ilustra um atuador de extremidade exemplificador e eixo de acionamento de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0023] a Figura 12 ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha perpendicular à face do sensor Hall;
Petição 870190062513, de 04/07/2019, pág. 9/162
7/114 [0024] a Figura 13A ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha paralela à face do sensor de efeito Hall;
[0025] a Figura 13B ilustra uma configuração de ímã e sensor de efeito Hall exemplificadora, de acordo com um aspecto da presente descrição, na qual o sensor de efeito Hall é fixo e o ímã se move em uma linha paralela à face do sensor de efeito Hall;
[0026] a Figura 14A é uma tabela de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0027] a Figura 14B é um gráfico de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0028] a Figura 15A é uma vista de topo de um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico e uma posição de atuador de extremidade de garras abertas correspondente, de acordo com um aspecto da presente descrição;
[0029] a Figura 15B é uma vista de topo de um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico e uma posição de atuador de extremidade de garras fechadas correspondente, de acordo com um aspecto da presente descrição;
[0030] a Figura 16 ilustra uma vista em planta de um sistema que compreende um sensor de efeito Hall e uma configuração de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 10/162
8/114 [0031] a Figura 17A ilustra uma vista de um sensor de efeito Hall e configurações de ímã no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0032] a Figura 17B ilustra uma vista de um sensor de efeito Hall e configurações de ímã no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0033] a Figura 18 ilustra um sensor de efeito Hall e a configuração de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0034] a Figura 19A ilustra um sensor de efeito Hall e a configuração de ímã, de acordo com um aspecto da presente descrição;
[0035] a Figura 19B ilustra um sensor de efeito Hall e configurações de ímã em um instrumento cirúrgico, de acordo com um aspecto da presente descrição;
[0036] a Figura 20 é um gráfico de uma curva representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função do tempo (s) ao longo do eixo geométrico x, de acordo com um aspecto da presente descrição;
[0037] a Figura 21 ilustra um gráfico de uma primeira curva representando a razão de deslocamento (RD) ao longo do eixo geométrico y esquerdo, com base na tensão de saída do sensor de efeito Hall, como função do tempo (s) ao longo do eixo geométrico x, de acordo com um aspecto da presente descrição;
[0038] a Figura 22 ilustra gráficos que mostram o controle integral proporcional de saída de energia para uma lâmina ultrassônica, de acordo com um aspecto da presente descrição;
[0039] a Figura 23 ilustra vários vasos que foram vedados com o uso das técnicas e recursos aqui descritos, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 11/162
9/114 [0040] a Figura 24 ilustra um gráfico de uma curva de melhor ajuste da tensão de saída do sensor de efeito Hall como função da distância para várias posições do braço de aperto conforme o braço de aperto se move entre posições completamente fechadas para uma posição completamente aberta, de acordo com um aspecto da presente descrição;
[0041] as Figuras 25 a 28 ilustram um atuador de extremidade sendo calibrado em quatro configurações diferentes, de acordo com vários aspectos da presente descrição, usando pinos de calibre para duas das configurações a fim de registrar uma resposta do sensor de efeito Hall correspondente a várias posições do braço de aperto para registrar quatro pontos de dados (1 a 4) de modo a criar uma curva de melhor ajuste durante a produção, onde:
[0042] a Figura 25 ilustra um atuador de extremidade em uma configuração completamente aberta para registrar um primeiro ponto de dados (1), de acordo com um aspecto da presente descrição;
[0043] a Figura 26 ilustra um atuador de extremidade em uma segunda configuração intermediária que segura um primeiro pino de calibre de um diâmetro conhecido para registrar um segundo ponto de dados (2), de acordo com um aspecto da presente descrição;
[0044] a Figura 27 ilustra um atuador de extremidade em uma terceira configuração intermediária que segura um segundo pino de calibre de um diâmetro conhecido para registrar um terceiro ponto de dados (3), de acordo com um aspecto da presente descrição; e [0045] a Figura 28 ilustra um atuador de extremidade em uma configuração completamente fechada para registrar um quarto ponto de dados (4), de acordo com um aspecto da presente descrição;
[0046] as Figuras 29A a D ilustram um instrumento cirúrgico exemplificador, de acordo com um aspecto da presente descrição, e gráficos mostrando o nível de energia de saída exemplificador em um
Petição 870190062513, de 04/07/2019, pág. 12/162
10/114 modo de hemostasia para vasos pequenos e grandes, onde:
[0047] a Figura 29A é um diagrama esquemático de um instrumento cirúrgico configurado para vedar vasos pequenos e grandes, de acordo com um aspecto da presente descrição;
[0048] a Figura 29B é um diagrama de uma faixa exemplificadora de um vaso pequeno e um vaso grande e a posição relativa de um braço de aperto do atuador de extremidade, de acordo com um aspecto da presente descrição;
[0049] a Figura 29C é um gráfico que representa um processo para vedar pequenos vasos mediante a aplicação de vários níveis de energia ultrassônica durante períodos de tempo diferentes, de acordo com um aspecto da presente descrição; e [0050] a Figura 29D é um gráfico que representa um processo para vedar vasos grandes mediante a aplicação de vários níveis de energia ultrassônica durante períodos de tempo diferentes, de acordo com um aspecto da presente descrição;
[0051] a Figura 30 é um diagrama lógico que ilustra um processo exemplificador para determinar se o modo de hemostasia deve ser utilizado, de acordo com um aspecto da presente descrição;
[0052] a Figura 31 é um diagrama lógico que ilustra um processo exemplificador para controle do atuador de extremidade, de acordo com um aspecto da presente descrição;
[0053] a Figura 32 é um diagrama lógico que ilustra um processo exemplificador para calibrar um aparelho para controlar um atuador de extremidade, de acordo com um aspecto da presente descrição;
[0054] a Figura 33 é um diagrama lógico de um processo para rastrear o desgaste da porção de emplastro de tecido do braço de aperto e compensar o desvio resultante do sensor de efeito Hall e determinar o coeficiente de atrito do tecido, de acordo com um aspecto da presente descrição;
Petição 870190062513, de 04/07/2019, pág. 13/162
11/114 [0055] a Figura 34 ilustra um sistema de sensor de efeito Hall que pode ser empregado com o processo da Figura 33, de acordo com um aspecto da presente descrição; e [0056] a Figura 35 ilustra um aspecto de um conversor analógico/digital (ADC, conversor A-D) de contador tipo rampa que pode ser empregado com o sistema de sensor de efeito Hall da Figura 34, de acordo com um aspecto da presente descrição.
DESCRIÇÃO [0057] Vários aspectos aqui descritos se referem a instrumentos cirúrgicos compreendendo conjuntos de garras articuláveis situadas em posição distai. Os conjuntos de garras podem ser utilizados em vez de ou em adição à articulação de eixo de acionamento. Por exemplo, os conjuntos de garras podem ser usados para prender tecidos e movê-los em direção a uma lâmina ultrassônica, eletrodos de radiofrequência ou outro componente para tratamento dos tecidos.
[0058] Em um aspecto, um instrumento cirúrgico pode compreender um atuador de extremidade com uma lâmina ultrassônica estendendose distalmente a partir do mesmo. O conjunto de garras pode ser articulável e pode revolver em torno de pelo menos dois eixos geométricos. Um primeiro eixo geométrico ou eixo de pivô de pulso, pode ser substancialmente perpendicular a um eixo geométrico longitudinal do eixo de acionamento do instrumento. O conjunto de garras pode girar em tomo do eixo de pivô de pulso a partir de uma primeira posição na qual o conjunto de garras é substancialmente paralelo à lâmina ultrassônica para uma segunda posição na qual o conjunto de garras não é substancialmente paralelo à lâmina ultrassônica. Além disso, o conjunto de garras pode compreender um primeiro e um segundo membro de garra que são giratórios ao redor de um segundo eixo geométrico ou eixo de pivô da garra. O eixo de pivô da garra pode ser substancialmente perpendicular ao eixo de pivô de
Petição 870190062513, de 04/07/2019, pág. 14/162
12/114 pulso. Em alguns aspectos, o próprio eixo de pivô de garra pode girar à medida que o conjunto de garras gira em tomo do eixo de pivô de pulso. O primeiro e o segundo membros de garra podem ser articuláveis um em relação ao outro em torno do eixo de pivô de garra de modo que o primeiro e o segundo membro de garra possam abrir e fechar. Adicionalmente, em alguns aspectos, o primeiro e o segundo membro de garra também são articuláveis ao redor do eixo de pivô da garra, de modo que a direção do primeiro e do segundo membro de garra possa mudar.
[0059] Agora será feita referência, em detalhes, a vários aspectos, inclusive aspectos que mostram implementações exemplificadoras de instrumentos cirúrgicos manuais e robóticos com atuadores de extremidade que compreendem elementos ultrassônicos e/ou eletrocirúrgicos. Sempre que possível, números de referência similares ou semelhantes podem ser usados nas figuras, e podem indicar funcionalidades similares ou semelhantes. As Figuras representam aspectos exemplificadores dos instrumentos cirúrgicos e/ou métodos de uso apresentados, apenas para propósitos ilustrativos. O versado na técnica reconhecerá prontamente, a partir da descrição a seguir, que aspectos exemplificadores alternativos das estruturas e dos métodos aqui ilustrados podem ser utilizados sem que se afaste dos princípios aqui descritos.
[0060] A Figura 1 é uma vista do lado direito de um aspecto de um instrumento cirúrgico ultrassônico 10. No aspecto ilustrado, o instrumento cirúrgico ultrassônico 10 pode ser utilizado em vários procedimentos cirúrgicos, inclusive procedimentos cirúrgicos endoscópicos ou abertos tradicionais. Em um aspecto exemplificador, o instrumento cirúrgico ultrassônico 10 compreende um conjunto de cabo 12, um conjunto de eixo de acionamento alongado 14 e um transdutor ultrassônico 16. O conjunto de punho 12 compreende um conjunto de
Petição 870190062513, de 04/07/2019, pág. 15/162
13/114 gatilho 24, um conjunto de rotação distai 13 e um conjunto de chave 28. O conjunto de eixo de acionamento alongado 14 compreende um conjunto de atuador de extremidade 26, o qual compreende elementos para dissecar tecidos ou mutuamente agarrar, cortar e coagular vasos sanguíneos e/ou tecidos, e elementos atuadores para acionar o conjunto de atuador de extremidade 26. O conjunto de cabo 12 é adaptado para receber o transdutor ultrassônico 16 na extremidade proximal. O transdutor ultrassônico 16 está mecanicamente engatado ao conjunto de eixo de acionamento alongado 14 e a porções do conjunto de atuador de extremidade 26. O transdutor ultrassônico 16 está eletricamente acoplado a um gerador 20, por meio de um cabo 22. Embora a maioria dos desenhos represente um conjunto com múltiplos atuadores de extremidade 26, para uso em conjunto com procedimentos cirúrgicos laparoscópicos, o instrumento cirúrgico ultrassônico 10 pode ser utilizado em procedimentos cirúrgicos abertos mais tradicionais e em outros aspectos, pode ser configurado para uso em procedimentos endoscópicos. Para os propósitos da presente invenção, o instrumento cirúrgico ultrassônico 10 é descrito em termos de um instrumento endoscópico; entretanto, contempla-se que uma versão aberta e/ou laparoscópica do instrumento cirúrgico ultrassônico 10 também pode incluir recursos e componentes operacionais iguais ou similares, conforme descrito aqui.
[0061] Em vários aspectos, o gerador 20 compreende vários elementos funcionais, como módulos e/ou blocos. Diferentes elementos ou módulos funcionais podem ser configurados para acionar diferentes tipos de dispositivos cirúrgicos. Por exemplo, um módulo gerador ultrassônico 21 pode acionar um dispositivo ultrassônico, como o instrumento cirúrgico ultrassônico 10. Em alguns aspectos exemplificadores, o gerador 20 compreende, também, um módulo gerador para eletrocirurgia/de RF 23 para acionar um dispositivo
Petição 870190062513, de 04/07/2019, pág. 16/162
14/114 eletrocirúrgico (ou um aspecto eletrocirúrgico do instrumento cirúrgico ultrassônico 10). No aspecto exemplificador ilustrado na Figura 1, o gerador 20 inclui um sistema de controle 25 integrado ao gerador 20, e uma chave de pedal 29 conectada ao gerador por meio de um cabo 27. O gerador 20 pode compreender, também, um mecanismo de disparo para acionar um instrumento cirúrgico, como o instrumento 10. O mecanismo de disparo pode incluir uma chave de alimentação (não mostrada), bem como uma chave de pedal 29. Quando ativado pela chave de pedal 29, o gerador 20 pode fornecer energia para acionar o conjunto acústico do instrumento cirúrgico 10, e para acionar o atuador de extremidade 18 em um nível de curso predeterminado. O gerador 20 aciona ou excita o conjunto acústico em qualquer frequência de ressonância adequada do conjunto acústico, e/ou deriva a energia eletromagnética ou de RF terapêutica/subterapêutica. Em um aspecto, o módulo gerador eletrocirúrgico/de RF 23 pode ser implementado como uma unidade de eletrocirurgia (ESU) capaz de fornecer energia suficiente para executar eletrocirurgia bipolar com o uso de energia de radiofrequência (RF). Em um aspecto, a ESU pode ser um equipamento ERBE ICC 350 bipolar, disponível junto à ERBE USA, Inc. de Marietta, GA, EUA. Em aplicações de eletrocirurgia bipolar, conforme anteriormente discutido, pode ser usado um instrumento cirúrgico com um eletrodo ativo e um eletrodo de retorno, em que o eletrodo ativo e o eletrodo de retorno podem ser posicionados contra, ou adjacentes a, o tecido a ser tratado, de modo que a corrente possa fluir do eletrodo ativo para o eletrodo de retomo através do tecido. Consequentemente, o gerador do módulo eletrocirúrgico/RF 23 pode ser configurado para propósitos terapêuticos mediante a aplicação, ao tecido T, de energia elétrica suficiente para tratar o tecido (por exemplo, cauterização). Por exemplo, em alguns aspectos, o eletrodo ativo e/ou de retorno pode estar posicionado sobre o conjunto de garras aqui descrito.
Petição 870190062513, de 04/07/2019, pág. 17/162
15/114 [0062] Em um aspecto, o módulo eletrocirúrgico/gerador de RF 23 pode ser configurado para fornecer um sinal de RF subterapêutico para implementar um módulo de medição da impedância do tecido. Em um aspecto, o módulo de gerador eletrocirúrgico/de RF 23 compreende um gerador de radiofrequência bipolar. Em um aspecto, o módulo de gerador eletrocirúrgico/de RF 23 pode estar configurado para monitorar a impedância elétrica Z do tecido T, e para controlar as características do tempo e nível de energia com base no tecido T, por meio de um eletrodo de retorno disposto sobre um membro de pinça do conjunto de atuador de extremidade 26. Consequentemente, o módulo de gerador eletrocirúrgico/de RF 23 pode ser configurado para propósitos subterapêuticos, para medir a impedância ou outras características elétricas do tecido T. Técnicas e configurações de circuito para medir a impedância ou outras características elétricas do tecido T são discutidas em mais detalhes na publicação de patente US n° 201 1/0015631, cedida à mesma requerente, intitulada Electrosurgical Generator for Ultrasonic Surgical Instrument, cuja descrição está aqui incorporada a título de referência, em sua totalidade.
[0063] Um módulo gerador ultrassônico 21 adequado pode ser configurado para operar funcionalmente de modo similar ao equipamento GEN300, disponível junto à Ethicon Endo-Surgery, Inc. de Cincinnati, Ohio, EUA, conforme apresentado em uma ou mais dentre as seguintes patentes US, todas as quais estão aqui incorporadas, a título de referência: Patente US n°6.480.796 (Meth od for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); Patente US n° 6.537.291 (Method for Detecting a Loose Blade in a Hand Piece Connected to an Ultrasonic Surgical System); patente US n°6.662.127 (Method for Detecting Presence of a Blade in an Ultrasonic System), patente US n° 6.977.495 (Detection Circuitry for Su rgical Handpiece System), patente US n° 7.077.853 (Method for Calcul ating Transducer
Petição 870190062513, de 04/07/2019, pág. 18/162
16/114
Capacitance to Determine Transducer Temperature); patente US n° 7.179.271 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); e patente US n° 7.273.483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).
[0064] Será reconhecido que, em vários aspectos, o gerador 20 pode ser configurado para funcionar em vários modos. Em um modo, o gerador 20 pode ser configurado de modo que o módulo gerador ultrassônico 21 e o módulo gerador eletrocirúrgico/de RF 23 possam ser independentemente operados.
[0065] Por exemplo, o módulo gerador ultrassônico 21 pode ser ativado para aplicar energia ultrassônica ao conjunto de atuador de extremidade 26 e, subsequentemente, energia de RF terapêutica ou subterapêutica pode ser aplicada ao conjunto de atuador de extremidade 26 pelo módulo gerador eletrocirúrgico/de RF 23. Conforme anteriormente discutido, o sub-terapêutico energia eletrocirúrgica/de RF pode ser aplicada ao tecido pinçado entre elementos de mandíbula do conjunto de atuador de extremidade 26 para medir impedância do tecido, de modo a controlar a ativação, ou modificar a ativação, do módulo gerador ultrassônico 21. A retroinformação quanto à impedância do tecido proveniente da aplicação de energia subterapêutica pode, também, ser usada para ativar um nível terapêutico do módulo gerador eletrocirúrgico/de RF 23 para cauterizar o tecido (por exemplo, vaso sanguíneo) pinçado entre elementos de pinça do conjunto de atuador de extremidade 26.
[0066] Em um outro aspecto, o módulo gerador ultrassônico 21 e o módulo eletrocirúrgico/gerador de RF 23 podem ser ativados simultaneamente. Em um exemplo, o módulo gerador ultrassônico 21 é simultaneamente ativado com um nível de energia de RF subterapêutico para medir a impedância do tecido enquanto, simultaneamente, a
Petição 870190062513, de 04/07/2019, pág. 19/162
17/114 lâmina ultrassônica do conjunto de atuador de extremidade 26 corta e coagula o tecido (ou vaso sanguíneo) pinçado entre os elementos de pinça do conjunto de atuador de extremidade 26. Essa retroinformaçâo pode ser usada, por exemplo, para modificar a saída de acionamento do módulo gerador ultrassônico 21. Em um outro exemplo, o módulo gerador ultrassônico 21 pode ser acionado simultaneamente ao módulo gerador eletrocirúrgico/de RF 23 de modo que a porção de lâmina ultrassônica do conjunto de atuador de extremidade 26 seja usada para cortar o tecido danificado, enquanto a energia eletrocirúrgica/de RF é aplicada a porções de eletrodo do conjunto de pinça do atuador de extremidade 26 para cauterizar o tecido (ou vaso sanguíneo).
[0067] Quando o gerador 20 é ativado por meio do mecanismo de disparo, a energia elétrica é continuamente aplicada pelo gerador 20 a uma pilha ou conjunto de transdutores do conjunto acústico. Em um outro aspecto, a energia elétrica é intermitentemente aplicada (por exemplo, pulsada) pelo gerador 20. Uma malha de captura de fase no sistema de controle do gerador 20 pode monitorar a retroinformaçâo proveniente do conjunto acústico. A malha de captura de fase ajusta a frequência da energia elétrica enviada pelo gerador 20 para que corresponda à frequência de ressonância do modo de vibração longitudinal selecionado do conjunto acústico. Além disso, um segundo circuito de retroinformaçâo no sistema de controle 25 mantém a corrente elétrica fornecida ao conjunto acústico em um nível constante previamente selecionado, de modo a se obter um curso substancialmente constante no atuador de extremidade 18 do conjunto acústico. Em ainda um outro aspecto, um terceiro circuito de retroinformaçâo no sistema de controle 25 monitora a impedância entre os eletrodos situados no conjunto de atuador de extremidade 26. Embora as Figuras de 1 a 5 mostrem um instrumento cirúrgico ultrassônico de funcionamento manual, será reconhecido que os
Petição 870190062513, de 04/07/2019, pág. 20/162
18/114 instrumentos cirúrgicos ultrassônicos podem, também, ser utilizados em aplicações robóticas, por exemplo, conforme aqui descrito, bem como em combinações de aplicações manuais e robóticas.
[0068] No modo de operação ultrassônico, o sinal elétrico fornecido ao conjunto acústico pode fazer com que a extremidade distal do atuador de extremidade 18 vibre longitudinalmente na faixa de, por exemplo, aproximadamente 20 kHz a 250 kHz. De acordo com vários aspectos, a lâmina ultrassônica 22 pode vibrar na faixa de cerca de 54 kHz a 56 kHz, por exemplo a cerca de 55,5 kHz. Em outros aspectos, a lâmina ultrassônica 22 pode vibrar em outras frequências incluindo, por exemplo, cerca de 31 kHz ou cerca de 80 kHz. A excursão das vibrações na lâmina ultrassônica pode ser controlada, por exemplo, mediante o controle da amplitude do sinal elétrico aplicado ao conjunto transdutor do conjunto acústico pelo gerador 20. Conforme observado acima, o mecanismo de ativação do gerador 20 permite que um usuário ative o gerador 20 de modo que a energia elétrica possa ser fornecida de maneira contínua ou intermitente ao conjunto acústico. O gerador 20 tem, também, uma linha de transmissão de energia elétrica para inserção em uma unidade eletrocirúrgica ou em uma tomada eléctrica convencional. Contempla-se que o gerador 20 pode, também, ser alimentado por uma fonte de corrente contínua (CG), como uma batería. O gerador 20 pode compreender qualquer gerador adequado, como o modelo n°GEN04 e/ou o modelo n°GEN11, disponíveis junto à Ethicon Endo-Surgery, Inc.
[0069] A Figura 2 é uma vista em perspectiva esquerda de um aspecto exemplificador do instrumento cirúrgico ultrassônico 10, mostrando o conjunto de cabo 12, o conjunto de rotação distai 13 e o conjunto de eixo de acionamento alongado 14. A Figura 3 mostra o conjunto de atuador de extremidade 26. No aspecto ilustrado, o conjunto de eixo de acionamento alongado 14 compreende uma extremidade
Petição 870190062513, de 04/07/2019, pág. 21/162
19/114 distal 52 dimensionada para engatar-se mecanicamente ao conjunto de atuador de extremidade 26, e uma extremidade proximal 50 que se engata mecanicamente ao conjunto de cabo 12 e ao conjunto de rotação distai 13. A extremidade proximal 50 do conjunto de eixo de acionamento alongado 14 é recebida no interior do conjunto de punho 12 e do conjunto de rotação distai 13. Mais detalhes relacionados às conexões entre o conjunto de eixo de acionamento endoscópico alongado 14, o conjunto de cabo 12 e o conjunto de rotação distai 13 são fornecidos na descrição da Figura 5. No aspecto ilustrado, o conjunto de gatilho 24 compreende um gatilho 32 que funciona em conjunto com um cabo fixo 34. O cabo fixo 34 e o gatilho 32 são ergonomicamente formados e adaptados para oferecer uma interface confortável ao usuário. O cabo fixo 34 está integralmente associado ao conjunto de cabo 12. O gatilho 32 é capaz de se mover de forma articulada em relação ao cabo fixo 34, conforme explicado abaixo com mais detalhes em relação ao funcionamento do instrumento cirúrgico ultrassônico 10. O gatilho 32 é capaz de se mover de forma articulada na direção 33a, em direção ao cabo fixo 34, quando o usuário aplica uma força de aperto contra o gatilho 32. Um elemento de mola 98 (Figura 5) faz com que o gatilho 32 se mova de forma articulada na direção 33b, quando o usuário cessa a força de aperto contra o gatilho 32.
[0070] Em um aspecto exemplificador, o gatilho 32 compreende um gancho de gatilho alongado 36, o qual define uma abertura 38 entre o gancho de gatilho alongado 36 e o gatilho 32. A abertura 38 é adequadamente dimensionada para receber, através da mesma, um ou mais dedos do usuário. O gatilho 32 pode, também, compreender uma porção resiliente 32a moldada sobre o substrato do gatilho 32. A porção resiliente sobremoldada 32a é formada para proporcionar uma superfície de contato mais confortável para controle do gatilho 32 na
Petição 870190062513, de 04/07/2019, pág. 22/162
20/114 direção para fora 33b. Em um aspecto exemplificador, a porção resiliente sobremoldada 32a pode estar disposta sobre uma porção do gancho de gatilho alongado 36. A superfície proximal do gancho de gatilho alongado 32 permanece não revestida ou revestida com um substrato não resiliente, para possibilitar que o usuário deslize facilmente seus dedos para dentro e para fora da abertura 38. Em outro aspecto, a geometria do gatilho forma uma laçada totalmente fechada, a qual define uma abertura adequadamente dimensionada para receber, através da mesma, um ou mais dedos do usuário. O gatilho com laçada totalmente fechada pode, também, compreender uma porção resiliente moldada sobre o substrato do gatilho.
[0071] Em um aspecto exemplificador, o cabo fixo 34 compreende uma superfície de contato proximal 40 e uma âncora de preensão ou superfície côncava 42. A superfície côncava 42 repousa sobre a membrana da mão onde o polegar e o dedo indicador se unem. A superfície de contato proximal 40 tem um contorno de empunhadura de pistola que recebe a palma da mão em uma empunhadura de pistola normal, sem anéis ou aberturas. A curva de perfil da superfície de contato proximal 40 pode ser contornada para acomodar ou receber a palma da mão. Uma cauda de estabilização 44 está situada em direção a uma porção mais proximal do conjunto de punho 12. A cauda de estabilização 44 pode ficar em contato com a parte mais superior da porção de membrana da mão, situada entre o polegar e o dedo indicador, para estabilizar o conjunto de punho 12 e tomá-lo mais controlável.
[0072] Em um aspecto exemplificador, o conjunto de chave 28 pode compreender uma chave biestável 30. A chave biestável 30 pode ser implementada sob a forma de um componente único com um pivô central 304, situado no interior do conjunto de punho 12, para eliminar a possibilidade de ativação simultânea. Em um aspecto exemplificador,
Petição 870190062513, de 04/07/2019, pág. 23/162
21/114 a chave biestável 30 compreende um primeiro botão saliente 30a e um segundo botão saliente 30b para selecionar o ajuste de potência do transdutor ultrassônico 16 entre um nível de energia mínimo (por exemplo, MÍN) e um nível de energia máximo (por exemplo, MÁX). Em um outro aspecto, a chave biestável pode pi votar entre um ajuste convencional e um ajuste especial. A configuração especial pode possibilitar que um ou mais programas especiais, processos ou algoritmos, e aqui descritos, sejam implementados pelo dispositivo. O comutador 30 roda em torno do pivô central à medida que o primeiro botão saliente 30a e o segundo botão saliente 30b são acionados. Um ou mais botões salientes 30a, 30b são acoplados a um ou mais braços que se movem através de um pequeno arco e fazem os contatos elétricos fechar ou abrir um circuito elétrico para energizar ou desenergizar eletricamente o transdutor ultrassônico 16 de acordo com a ativação do primeiro ou do segundo botão de projeção 30a, 30b. A chave biestável 30 é acoplada ao gerador 20 para controlar a ativação do transdutor ultrassônico 16. A chave biestável 30 compreende uma ou mais chaves de configuração de energia elétrica para ativar o transdutor ultrassônico 16 de modo a definir uma ou mais configurações de energia para o transdutor ultrassônico 16. As forças necessárias para ativar a chave biestável 30 são dirigidas substancialmente em direção ao ponto côncavo 42, evitando, assim, qualquer tendência do instrumento a girar na mão, quando a chave biestável 30 está ativada. [0073] Em um aspecto exemplificador, o primeiro e o segundo botão saliente, 30a e 30b, estão situados sobre a extremidade distal do conjunto de cabo 12, de modo que os mesmos possam ser facilmente acessados pelo usuário para ativar a energia com um reposicionamento mínimo, ou substancialmente nulo, da empunhadura, o que é adequado para manter o controle e manter a atenção focalizada no sítio cirúrgico (por exemplo, um monitor em um procedimento laparoscópico) durante
Petição 870190062513, de 04/07/2019, pág. 24/162
22/114 a ativação da chave biestável 30. Os botões salientes, 30a e 30b, podem ser configurados de modo a dar a volta na lateral do conjunto de punho 12 até um certo ponto, para serem mais facilmente acessíveis a comprimentos de dedo variáveis, e para permitir uma maior liberdade de acesso para ativação em posições desconfortáveis ou para dedos mais curtos. No aspecto ilustrado, o primeiro botão saliente 30a compreende uma pluralidade de elementos táteis 30c, por exemplo, protuberâncias ou saliências texturizadas no aspecto ilustrado, para possibilitar que o usuário diferencie o primeiro botão saliente 30a do segundo botão saliente 30b. Será entendido pelos versados na técnica que várias características ergonômicas podem ser incorporadas ao conjunto de punho 12. Tais recursos ergonômicos são descritos no pedido de patente US n°2009/0105750, intitulado Έ rgonomic Surgical Instruments, aqui incorporado em sua totalidade, a título de referência. [0074] Em um aspecto exemplificador, a chave biestável 30 pode ser operada pela mão do usuário. O usuário pode facilmente acessar o primeiro e o segundo botões salientes, 30a e 30b, a qualquer ponto, enquanto também evita a ativação inadvertida ou não intencional a qualquer tempo. A chave biestável 30 pode ser prontamente operada com um dedo para controlar o fornecimento de energia ao conjunto ultrassônico 16 e/ou o conjunto ultrassônico 16. Por exemplo, o dedo indicador pode ser usado para ativar a primeira porção de contato 30a, para ligar o conjunto ultrassônico 16 em um nível de potência máximo (MAX). O dedo indicador pode ser usado para ativar a segunda porção de contato 30b, para ligar o conjunto ultrassônico 16 em um a nível de potência mínimo (MIN). Em outro aspecto, a chave biestável pode alternar o instrumento 10 entre um ajuste convencional e um ajuste especial. O ajuste especial pode permitir que um ou mais programas especiais sejam implementados pelo instrumento 10. A chave biestável 30 pode ser operada sem que o usuário precise olhar para o primeiro
Petição 870190062513, de 04/07/2019, pág. 25/162
23/114 ou o segundo botão saliente, 30a ou 30b. Por exemplo, o primeiro botão saliente 30a ou o segundo botão saliente 30b pode compreender uma textura ou saliências para diferenciar tatilmente entre o primeiro e o segundo botões salientes, 30a e 30b, sem olhar.
[0075] Em um aspecto exemplificador, o conjunto de rotação distai 13 gira sem limitação em qualquer direção em torno de um eixo geométrico longitudinal T. O conjunto de rotação distai 13 é mecanicamente acoplado ao conjunto de eixo de acionamento alongado
14. O conjunto de rotação distai 13 está situado sobre uma extremidade distal do conjunto de punho 12. O conjunto de rotação distai 13 compreende um cubo cilíndrico 46 e um botão rotativo 48 formado sobre o cubo 46. O cubo 46 se engata mecanicamente ao conjunto de eixo de acionamento alongado 14. O botão rotativo 48 pode compreender recursos poliméricos estriados e pode ser manipulado por um dedo (por exemplo, um dedo indicador) para girar o conjunto de eixo de acionamento alongado 14. O cubo 46 pode compreender um material moldado sobre a estrutura principal para formar o botão rotativo 48. O botão rotativo 48 pode ser sobremoldado no cubo 46. O cubo 46 compreende uma porção de tampão 46a que fica exposta na extremidade distal. A porção de tampão 46a do cubo 46 pode entrar em contato com a superfície de um trocarte durante procedimentos laparoscópicos. O cubo 46 pode ser formado por um plástico rígido durável, como policarbonato, para aliviar qualquer atrito que possa ocorrer entre a porção de tampão 46a e o trocarte. O botão rotativo 48 pode compreender canelados ou estrias formados por nervuras elevadas 48a e porções côncavas 48b situadas entre as nervuras 48a, para proporcionar uma preensão rotacional mais precisa. Em um aspecto exemplificador, o botão rotativo 48 pode compreender uma pluralidade de estrias (por exemplo, três ou mais estrias). Em outros aspectos, pode-se usar qualquer número adequado de estrias. O botão
Petição 870190062513, de 04/07/2019, pág. 26/162
24/114 rotativo 48 pode ser formado a partir de um material polimérico mais macio, sobremoldado no material de plástico rígido. Por exemplo, o botão rotativo 48 pode ser formado a partir de materiais poliméricos maleáveis, resilientes e flexíveis, inclusive ligas de TPE Versaflex®, disponíveis junto à GLS Corporation, por exemplo. Esse material sobremoldado mais macio pode proporcionar uma melhor preensão e um controle mais preciso do movimento do botão rotativo 48. Deve-se compreender que quaisquer materiais que ofereçam resistência adequada a esterilização, sejam biocompatíveis e proporcionem resistência friccional adequada a luvas cirúrgicas, podem ser utilizados para formar o botão rotativo 48.
[0076] Em um aspecto exemplificador, o conjunto de cabo 12 é formado a partir de duas (2) porções de carcaça, ou invólucros, compreendendo uma primeira porção 12a e uma segunda porção 12b. Da perspectiva de um usuário observando o conjunto de punho 12 a partir da extremidade distai e em direção à extremidade proximal, a primeira porção 12a é considerada a porção direita, e a segunda porção 12b é considerada a porção esquerda. Cada uma dentre a primeira e a segunda porções, 12a e 12b, inclui uma pluralidade de interfaces 69 (Figura 5) dimensionadas para alinhar e engatar mecanicamente umas às outras, de modo a formar o conjunto de punho 12 e conter os componentes funcionais internos do mesmo. O punho fixo 34, que está integralmente associado ao conjunto de punho 12, toma forma mediante a montagem da primeira e da segunda porções 12a e 12b do conjunto de punho 12. Uma pluralidade de interfaces adicionais (não mostrada) pode estar disposta em vários pontos em torno da periferia da primeira e da segunda porções, 12a e 12b, do conjunto de punho 12, para propósitos de soldagem ultrassônica, por exemplo, pontos de direção/deflexão de energia. A primeira e a segunda porções, 12a e 12b (bem como os outros componentes descritos a seguir) podem ser
Petição 870190062513, de 04/07/2019, pág. 27/162
25/114 montadas uma à outra de qualquer maneira conhecida na técnica. Por exemplo, pinos de alinhamento, interfaces de encaixe por pressão, interfaces de lingueta e sulco, abas travantes e portas adesivas podem todos ser usados, por si sós ou em combinação, para propósitos de montagem.
[0077] Em um aspecto exemplificador, o conjunto de eixo de acionamento alongado 14 compreende uma extremidade proximal 50 adaptada para se engatar mecanicamente ao conjunto de cabo 12 e ao conjunto de rotação distai 13; e uma extremidade distai 52 adaptada para engatar mecanicamente o conjunto de atuador de extremidade 26. O conjunto de eixo de acionamento alongado 14 compreende uma bainha tubular externa 56 e um membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56. A extremidade proximal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao gatilho 32 do conjunto de cabo 12 para se mover na direção 60A ou 60B em resposta ao acionamento e/ou à liberação do gatilho 32. O gatilho 32 móvel de maneira pivotante pode gerar movimento reciprocante ao longo do eixo geométrico longitudinal ST. Tal movimento pode ser utilizado, por exemplo, para acionar as garras ou o mecanismo de pinçamento do conjunto de atuador de extremidade 26. Uma série de articulações converte a rotação pivotante do gatilho 32 em movimento axial de um balancim acoplado a um mecanismo de acionamento, que controla a abertura e fechamento das mandíbulas do mecanismo de pinçamento do conjunto de atuador de extremidade 26. A extremidade distal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao conjunto de atuador de extremidade 26. No aspecto ilustrado, a extremidade distal do membro de acionamento tubular alternativo tubular 58 é engatado mecanicamente a um conjunto de braço de aperto 64, que pode rodar em tomo de um ponto de pivô 70 (Figura 4) para abrir e fechar o conjunto de braço de aperto 64 em
Petição 870190062513, de 04/07/2019, pág. 28/162
26/114 resposta à atuação e/ou liberação do gatilho 32, Por exemplo, no aspecto ilustrado, o conjunto de braço de aperto 64 é capaz de moverse na direção 62A, de uma posição aberta para uma posição fechada, ao redor de um ponto de pivô 70, quando o gatilho 32 é apertado na direção 33a. O conjunto de braço de aperto 64 é capaz de mover-se na direção 62B, de uma posição fechada para uma posição aberta, ao redor do ponto de pivô 70, quando o gatilho 32 é liberado ou empurrado para fora na direção 33b.
[0078] Em um aspecto exemplificador, o conjunto de atuador de extremidade 26 está conectado à extremidade distai 52 do conjunto de eixo de acionamento alongado 14 e inclui um conjunto de braço de aperto 64 e uma lâmina ultrassônica 66. As garras do mecanismo de pinçamento do conjunto de atuador de extremidade 26 são formadas pelo conjunto de braço de aperto 64 e pela lâmina ultrassônica 66. A lâmina ultrassônica 66 é atuável por ultrassom, e está acusticamente acoplada ao transdutor ultrassônico 16. O gatilho 32 no conjunto de punho 12 está, por fim, conectado a um conjunto de acionamento, com o qual coopera mecanicamente para obter o movimento do conjunto de braço de pinça 64. Apertar o gatilho 32 na direção 33a move o conjunto de braço de aperto 64 na direção 62A de uma posição aberta, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em uma relação espaçada um em relação ao outro, para uma posição pinçada ou fechada, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 cooperam para prender o tecido entre os mesmos. O conjunto de braço de aperto 64 pode compreender um bloco de pinça 69 para prender o tecido entre a lâmina ultrassônica 66 e o braço de aperto 64. A liberação do gatilho 32 na direção 33b move o conjunto de braço de aperto 64 na direção 62B, de uma relação fechada para uma posição aberta, na qual o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em uma relação espaçada um
Petição 870190062513, de 04/07/2019, pág. 29/162
27/114 em relação ao outro.
[0079] A porção proximal do conjunto de punho 12 compreende uma abertura proximal 68 para receber uma extremidade distal do conjunto ultrassônico 16. O conjunto ultrassônico 16 é inserido na abertura proximal 68, e é mecanicamente engatado ao conjunto de eixo de acionamento alongado 14.
[0080] Em um aspecto exemplificador, a porção de gancho de gatilho alongado 36 do gatilho 32 oferece uma alavanca de gatilho mais longa, com um curso de extensão e rotação mais curto. A alavanca mais longa do gancho de gatilho alongado 36 permite que o usuário empregue múltiplos dedos dentro da abertura 38, para operar o gancho de gatilho alongado 36 e fazer com que o gatilho 32 revolva na direção 33b para abrir as garras do conjunto de atuador de extremidade 26. Por exemplo, o usuário pode inserir três dedos (por exemplo, os dedos médio, anular e mínimo) na abertura 38. O uso de múltiplos dedos permite que o cirurgião exerça maiores forças de entrada no gatilho 32 e no gancho de gatilho alongado 326 para ativar o conjunto de atuador de extremidade 26. O curso de extensão e rotação mais curto cria uma preensão mais confortável quando se está fechando ou apertando o gatilho 32 na direção 33a, ou quando se está abrindo o gatilho 32 no movimento de abertura para fora, na direção 33b, diminuindo a necessidade de estender os dedos mais para fora. Isso diminui substancialmente a fadiga e o esforço da mão, associados ao movimento de abertura para fora do gatilho 32 na direção 33b. O movimento de abertura para fora do gatilho pode ser auxiliado por molas, pelo elemento de mola 98 (Figura 5), para ajudar a aliviar a fadiga. A força da mola de abertura é suficiente para auxiliar na facilidade de abertura, mas não é forte o bastante para afetar adversamente a retrainformação tátil da tensão do tecido durante a propagação da dissecção.
Petição 870190062513, de 04/07/2019, pág. 30/162
28/114 [0081] Por exemplo, durante um procedimento cirúrgico, o dedo indicador pode ser usado para controlar a rotação do conjunto de eixo de acionamento alongado 14, de modo a posicionar as mandíbulas do conjunto de atuador de extremidade 26 em uma orientação adequada. O dedo médio e/ou os outros dedos menores podem ser usados para apertar o gatilho 32 e prender o tecido entre as mandíbulas. Uma vez que a mandíbulas estejam situadas na posição desejada e tenham pinçado o tecido, o dedo indicador pode ser usado para ativar a chave biestável 30 de modo a ajustar o nível de energia do transdutor ultrassônico 16 para tratar o tecido. Uma vez que o tecido tenha sido tratado, o usuário pode liberar o gatilho 32, empurrando para fora na direção distai contra o gancho de gatilho alongado 36, com o dedo médio e/ou os dedos menores, para abrir as mandíbulas do conjunto de atuador de extremidade 26. Esse procedimento básico pode ser realizado sem que o usuário precise ajustar sua preensão no conjunto de punho 12.
[0082] As Figuras de 3 a 4 ilustram a conexão do conjunto de eixo de acionamento alongado 14 em relação ao conjunto de atuador de extremidade 26. Conforme anteriormente descrito, no aspecto ilustrado, o conjunto de atuador de extremidade 26 compreende um conjunto de braço de aperto 64 e uma lâmina ultrassônica 66 para formar as garras do mecanismo de pinçamento. A lâmina ultrassônica 66 pode ser uma lâmina ultrassônica atuável por ultrassom, acusticamente acoplada ao transdutor ultrassônico 16. O gatilho 32 está mecanicamente conectado a um conjunto de acionamento. Juntos, o gatilho 32 e o conjunto de acionamento cooperam mecanicamente para mover o conjunto de braço de aperto 64 para uma posição aberta na direção 62A, em que o conjunto de braço de aperto 64 e a lâmina ultrassônica 66 estão dispostos em relação espaçada um em relação ao outro, e para uma posição pinçada ou fechada na direção 62B, em que o conjunto de braço
Petição 870190062513, de 04/07/2019, pág. 31/162
29/114 de aperto 64 e a lâmina ultrassônica 66 cooperam para prender o tecido entre os mesmos. O conjunto de braço de aperto 64 pode compreender um bloco de pinça 69 para prender o tecido entre a lâmina ultrassônica 66 e o braço de aperto 64. A extremidade distal do membro atuador tubular reciprocante 58 é mecanicamente engatada ao conjunto de atuador de extremidade 26. No aspecto ilustrado, a extremidade distai do membro de acionamento tubular alternativo tubular 58 é engatado mecanicamente ao conjunto de braço de aperto 64, que pode rodar em torno do ponto de pivô 70 para abrir e fechar o conjunto de braço de aperto 64 em resposta à atuação e/ou liberação do gatilho 32. Por exemplo, no aspecto ilustrado, o conjunto de braço de aperto 64 é capaz de mover-se de uma posição aberta para uma posição fechada na direção 62B, em redor de um ponto de pivô 70, quando o gatilho 32 é apertado na direção 33a. O conjunto de braço de aperto 64 é capaz de mover-se de uma posição fechada para uma posição aberta na direção 62A, em redor do ponto de pivô 70, quando o gatilho 32 é liberado ou empurrado para fora na direção 33b.
[0083] Conforme anteriormente discutido, o conjunto de braço de aperto 64 pode compreender eletrodos eletricamente acoplados ao módulo gerador eletrocirúrgico/de RF 23 para receber energia terapêutica e/ou subterapêutica, em que a energia eletrocirúrgica/de RF pode ser aplicada aos eletrodos, seja simultaneamente ou não simultaneamente, com a energia ultrassônica sendo aplicada à lâmina ultrassônica 66. Essas ativações de energia podem ser aplicadas em quaisquer combinações adequadas para se obter um efeito desejado sobre o tecido, em cooperação com um algoritmo ou outra lógica de controle.
[0084] A Figura 5 é uma vista explodida do instrumento cirúrgico ultrassônico 10 mostrado na Figura 2. No aspecto ilustrado, a vista explodida mostra os elementos internos do conjunto de cabo 12, o
Petição 870190062513, de 04/07/2019, pág. 32/162
30/114 conjunto de cabo 12, o conjunto de rotação distal 13, o conjunto de chave 28, e o conjunto de eixo de acionamento alongado 14. No aspecto ilustrado, a primeira e a segunda porções, 12a e 12b, se encaixam para formar o conjunto de cabo 12. Cada uma dentre a primeira e a segunda porções, 12a e 12b, compreende uma pluralidade de interfaces 69, dimensionadas para se alinhar e engatar mecanicamente uma à outra para formar o conjunto de punho 12 e conter os componentes funcionais internos do instrumento cirúrgico ultrassônico 10. O botão rotativo 48 é mecanicamente engatado à bainha tubular externa 56, de modo que possa ser girado na direção circular 54 até 360°. A bainha tubular externa 56 está situada sobre o membro atuador tubular reciprocante 58, que é mecanicamente engatado e retido no interior do conjunto de cabo 12 por meio de uma pluralidade de elementos de acoplamento 72. Os elementos de acoplamento 72 podem compreender um anel de vedação tipo anel de vedação 0 72a, uma tampa do colarinho do tubo 72b, uma arruela distai 72c, uma arruela proximal 72d e um colarinho do tubo rosqueado 72e. O membro atuador tubular reciprocante 58 está situado dentro de uma forquilha reciprocante 84, que é retida entre a primeira e a segunda porções 12a, 12b do conjunto de cabo 12. O balancim 84 faz parte de um conjunto de balancim reciprocante 88. Uma série de articulações converte a rotação pivotante do gancho de gatilho alongado 32 no movimento axial do balancim reciprocante 84, que controla a abertura e o fechamento das mandíbulas do mecanismo de pinçamento do conjunto de atuador de extremidade 26 na extremidade distal do instrumento cirúrgico ultrassônico 10. Em um aspecto exemplificador, um design com quatro elos oferece vantagem mecânica em uma extensão de rotação relativamente curta, por exemplo.
[0085] Em um aspecto exemplificador, um guia de onda de transmissão ultrassônica 78 está disposto dentro do membro atuador tubular reciprocante 58. A extremidade distai 52 do guia de ondas de
Petição 870190062513, de 04/07/2019, pág. 33/162
31/114 transmissão ultrassônica 78 está acusticamente acoplada (por exemplo, direta ou indiretamente mecanicamente acoplada) à lâmina ultrassônica 66, e a extremidade proximal 50 do guia de ondas de transmissão ultrassônica 78 é recebida no interior do conjunto de cabo 12. A extremidade proximal 50 do guia de ondas de transmissão ultrassônica 78 é adaptada para acoplar-se acusticamente à extremidade distal do transdutor ultrassônico 16. O guia de ondas de transmissão ultrassônica 78 é isolado dos outros elementos do conjunto de eixo de acionamento alongado 14 por meio de uma bainha protetora 80 e uma pluralidade de elementos isolantes 82, como anéis de silicone. A bainha tubular externa 56, o membro atuador tubular reciprocante 58 e o guia de ondas de transmissão ultrassônica 78 são mecanicamente engatados por um pino 74. O conjunto de chave 28 compreende a chave biestável 30 e elementos elétricos 86a,b para energizar eletricamente o transdutor ultrassônico 16, de acordo com a ativação do primeiro ou do segundo botões salientes, 30a ou 30b.
[0086] Em um aspecto exemplificador, a bainha tubular externa 56 isola o usuário ou o paciente das vibrações ultrassônicas do guia de ondas de transmissão ultrassônica 78. A bainha tubular externa 56 geralmente inclui um cubo 76. A bainha tubular externa 56 é rosqueada sobre a extremidade distal do conjunto de punho 12. O guia de ondas de transmissão ultrassônica 78 se estende através da abertura da bainha tubular externa 56, e os elementos isolantes 82 isolam o guia de ondas de transmissão ultrassônica 24 da bainha tubular externa 56. A bainha tubular externa 56 pode ser fixada ao guia de ondas 78 com o pino 74. O orifício para receber o pino 74 no guia de ondas 78 pode ocorrer nominalmente em um nó de deslocamento. O guia de ondas 78 pode ser rosqueado ou encaixado no interior do conjunto de punho 12 do manipulo por meio de um parafuso prisioneiro. As porções planas no cubo 76 podem permitir que o conjunto seja submetido a torque até um
Petição 870190062513, de 04/07/2019, pág. 34/162
32/114 nível necessário. Em um aspecto exemplificador, a porção de cubo 76 da bainha tubular externa 56 é, de preferência, construída em plástico, e a porção alongada tubular da bainha tubular externa 56 é fabricada em aço inoxidável. Alternativamente, o guia de ondas de transmissão ultrassônica 78 pode compreender material polimérico circundando o mesmo, para isolamento contra contato externo.
[0087] Em um aspecto exemplificador, a extremidade distal do guia de ondas de transmissão ultrassônica 78 pode estar acoplada à extremidade proximal da lâmina ultrassônica 66 por uma conexão rosqueada interna, de preferência em um antinó ou próximo ao mesmo. Contempla~se que a lâmina ultrassônica 66 possa ser fixada ao guia de ondas de transmissão ultrassônica 78 por quaisquer meios adequados, como uma junta soldada ou similar. Embora a lâmina ultrassônica 66 possa ser removível do guia de ondas de transmissão ultrassônica 78, contempla~se também que o atuador de extremidade com elemento único (por exemplo, a lâmina ultrassônica 66) e o guia de ondas de transmissão ultrassônica 78 podem ser formados como uma peça unitária única.
[0088] Em um aspecto exemplificador, o gatilho 32 é acoplado a um mecanismo de ligação para transladar o movimento giratório do gatilho 32 nas direções 33a e 33b para o movimento linear do membro atuador tubular reciprocante 58 nas direções correspondentes 60a e 60b (Figura 2). O gatilho 32 compreende um primeiro conjunto de flanges 98 com aberturas formadas em seu interior para receber um primeiro pino de balancim 94a. O primeiro pino de balancim 94a está, também, posicionado através de um conjunto de aberturas formadas na extremidade distal do balancim 84. O gatilho 32 compreende, também, um segundo conjunto de flanges 96 para receber uma primeira extremidade de um elo 92. Um pino do gatilho 90 é recebido nas aberturas formadas no elo 92 e no segundo conjunto de flanges 96. O
Petição 870190062513, de 04/07/2019, pág. 35/162
33/114 pino do gatilho 90 é recebido nas aberturas formadas no elo 92 e no segundo conjunto de flanges 96, e está adaptado para ser acoplado às primeira e segunda porções, 12a e 12b, do conjunto de punho 12, para formar um ponto de pivô para o gatilho 32. Uma segunda extremidade do elo 92 é recebida em uma fenda formada em uma extremidade proximal do balancim 84, e é retida em seu interior por um segundo pino de balancim 94b. Conforme o gatilho 32 é girado em tomo de um ponto de pivô de forma articulada pelo pino do gatilho 90 formado, a forquilha traslada horizontalmente ao longo de um eixo geométrico longitudinal T em uma direção indicada pelas setas 60a,b.
[0089] A Figura 6 ilustra um diagrama de um aspecto de um dispositivo cirúrgico de retrainformação de força 100 que pode incluir ou implementar muitos dos recursos aqui descritos. Por exemplo, em um aspecto, o dispositivo cirúrgico 100 pode ser similar ou representativo do instrumento cirúrgico 10. O dispositivo cirúrgico 100 pode incluir um gerador 102. O dispositivo cirúrgico 100 pode incluir também um atuador de extremidade ultrassônico 106, que pode ser ativado quando um médico opera um gatilho 110. Quando o gatilho 110 é atuado, um sensor de força 112 pode gerar um sinal que indica a quantidade de força que é aplicada ao gatilho 110. Além de, ou em vez de, um sensor de força 112, o dispositivo cirúrgico 100 pode incluir um sensor de posição 113, que pode gerar um sinal indicando a posição do gatilho 110 (por exemplo, quão longe o gatilho foi pressionado ou de outro modo atuado). Em um aspecto, o sensor de posição 113 pode ser um sensor posicionado com a bainha tubular externa 56 descrita acima ou membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56 descrita acima. Em um aspecto, o sensor pode ser um sensor de efeito Hall ou qualquer transdutor adequado que varia sua tensão de saída em resposta a um campo magnético. O sensor de efeito Hall pode ser utilizado para aplicações de chaveamento por
Petição 870190062513, de 04/07/2019, pág. 36/162
34/114 proximidade, posicionamento, detecção de velocidade e detecção de corrente. Em um aspecto, o sensor de efeito Hall funciona como um transdutor analógico, retomando diretamente uma tensão. Com um campo magnético conhecido, sua distância da placa de Hall pode ser determinada.
[0090] Um circuito de controle 108 pode receber os sinais dos sensores 112 e/ou 113.0 circuito de controle 108 pode incluir quaisquer componentes de circuito analógico ou digital adequados. O circuito de controle 108 pode também se comunicar com o gerador 102 e/ou com o transdutor 104 para modular a energia fornecida ao atuador de extremidade 106 e/ou o nível do gerador ou a amplitude da lâmina ultrassônica do atuador de extremidade 106 com base na força aplicada ao gatilho 110 e/ou na posição do gatilho 110 e/ou na posição da bainha tubular externa 56 descrita acima em relação ao membro de atuação tubular reciprocante 58 situado no interior da bainha tubular externa 56 descrita acima (por exemplo, conforme medido por uma combinação de sensor de efeito Hall e ímã). Por exemplo, quanto mais força é aplicada ao gatilho 110, mais energia e/ou uma maior amplitude de lâmina ultrassônica pode ser fornecida ao atuador de extremidade 106. De acordo com vários aspectos, o sensor de força 112 pode ser substituído por uma chave de múltiplas posições.
[0091] De acordo com vários aspectos, o atuador de extremidade 106 pode incluir um mecanismo de aperto ou de travamento, por exemplo, como aquele descrito acima em conexão com as Figuras 1 a
5. Quando o gatilho 110 é inicialmente acionado, o mecanismo de travamento pode fechar, prender o tecido entre um braço de aperto e o atuador de extremidade 106. Conforme a força aplicada ao gatilho aumenta (por exemplo, conforme detectado pelo sensor de força 112), o circuito de controle 608 pode aumentar a energia fornecida ao atuador de extremidade 106 pelo transdutor 104 e/ou o nível de gerador ou a
Petição 870190062513, de 04/07/2019, pág. 37/162
35/114 amplitude de lâmina ultrassônica gerada no atuador de extremidade 106. Em um aspecto, a posição do gatilho, conforme detectada pelo sensor de posição 113 ou a posição da garra ou do braço de garra, conforme detectada pelo sensor de posição 113 (por exemplo, com um sensor de efeito Hall), podem ser utilizadas pelo circuito de controle 108 para definir a energia e/ou a amplitude do atuador de extremidade 106. Por exemplo, conforme o gatilho é movimentado adicionalmente em direção a uma posição completamente atuada, ou a garra ou o braço de garra se move adicionalmente em direção à lâmina ultrassônica (ou atuador de extremidade 106), a energia e/ou amplitude do atuador de extremidade 106 podem ser aumentadas.
[0092] De acordo com vários aspectos, o dispositivo cirúrgico 100 pode incluir também um ou mais dispositivos de retroinformação para indicar a quantidade de energia fornecida ao atuador de extremidade 106. Por exemplo, um alto-falante 114 pode emitir um sinal indicativo da energia do atuador de extremidade. De acordo com vários aspectos, o alto-falante 114 pode emitir uma série de sons de pulso, onde a frequência dos sons indica a energia. Além de, ou em vez do alto-falante 114,o dispositivo pode incluir uma tela visual 116. A tela visual 116 pode indicar o atuador de extremidade de acordo com qualquer método adequado. Por exemplo, a tela visual 116 pode incluir uma série de diodos emissores de luz (LEDs), em que a energia do atuador de extremidade é indicada pelo número de LEDs iluminados. O alto-falante 114 e/ou a tela visual 116 podem ser acionados peto circuito de controle 108. De acordo com vários aspectos, o dispositivo 100 pode incluir um dispositivo de catraca (não mostrado) conectado ao gatilho 110. O dispositivo de catraca pode gerar um sinal audível quanto mais força é aplicada ao gatilho 110, fornecendo uma indicação indireta de energia do atuador de extremidade. O dispositivo 100 pode incluir outros recursos que podem aumentar a segurança. Por exemplo, o circuito de
Petição 870190062513, de 04/07/2019, pág. 38/162
36/114 controle 108 pode ser configurado para impedir que a energia seja fornecida ao atuador de extremidade 106 além do limiar predeterminado. Além disso, o circuito de controle 108 pode implementar um atraso entre o tempo em que uma alteração na energia do atuador de extremidade é indicada (por exemplo, pelo alto-falante 114 ou tela 116) e o tempo em que a alteração na energia do atuador de extremidade é fornecida. Dessa forma, um médico pode ter ampla ciência de que o nível de energia ultrassônica que deve ser fornecida ao atuador de extremidade 106 está prestes a mudar.
[0093] A Figura 7 é um diagrama simplificado de um aspecto do gerador 102 que pode fornecer sintonia sem indutor, entre outros benefícios. As Figuras 8A a 8C ilustram uma arquitetura do gerador 102 da Figura 7, de acordo com um aspecto da presente descrição. A Figura 9 ilustra um controlador 196 para monitorar dispositivos de entrada e controlar dispositivos de saída de acordo com um aspecto da presente descrição. Com referência agora às Figuras 7 a 9, o gerador 102 pode compreender um estágio isolado do paciente 152 em comunicação com um estágio não isolado 154 por meio de um transformador de potência 156. Um enrolamento secundário 158 do transformador de potência 156 está contido na plataforma isolada 152 e pode compreender uma configuração com derivação (por exemplo, uma configuração com derivação central ou com derivação não central) para definir as saídas de sinal de acionamento 160a, 160b e 160c, de modo a fornecer sinais de acionamento a diferentes dispositivos cirúrgicos, como um dispositivo cirúrgico 100, um instrumento cirúrgico ultrassônico 10 ou um dispositivo eletrocirúrgico 106. Em particular, as saídas de sinal de acionamento 160a e 160c podem fornecer um sinal de acionamento (por exemplo, um sinal de acionamento a 420 V RMS) a um instrumento ultrassônico 10, e as saídas de sinal de acionamento 160b e 160c podem fornecer um sinal de acionamento (por exemplo, um sinal de
Petição 870190062513, de 04/07/2019, pág. 39/162
37/114 acionamento a 100 V RMS) a um dispositivo eletrocirúrgico 106, com a saída 160b correspondendo à derivação central do transformador de potência 156. O estágio não isolado 154 pode compreender um amplificador de potência 162 que tem uma saída conectada a um enrolamento primário 164 do transformador de potência 156. Em certos aspectos, o amplificador de potência 162 pode compreender um amplificador do tipo push-pull, por exemplo. A plataforma não isolada 154 pode conter, ainda, um dispositivo lógico programável 166 para fornecer uma saída digital a um conversor de digital para analógico (DAC) 168 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência 162. Em certos aspectos, o dispositivo lógico programável 166 pode compreender um arranjo de portas programável em campo (FRGA), por exemplo. O dispositivo lógico programável 166, pelo fato de controlar a entrada do amplificador de potência 162 através do DAC 168 pode, portanto, controlar qualquer dentre um certo número de parâmetros (por exemplo, frequência, formato de onda, amplitude do formato de onda) de sinais de acionamento aparecendo nas saídas de sinal de acionamento 160a, 160b e 160c. Em certos aspectos e conforme discutido abaixo, o dispositivo lógico programável 166, em conjunto com um processador (por exemplo, o processador 174 discutido abaixo), pode implementar um certo número de algoritmos de controle baseados em processamento de sinal digital (DSP) e/ou outros algoritmos de controle para parâmetros de controle dos sinais de acionamento fornecidos pelo gerador 102.
[0094] A potência pode ser fornecida a um trilho de alimentação do amplificador de potência 162 por um regulador de modo de chave 170. Em certos aspectos, o regulador de modo de chave 170 pode compreender um regulador ajustável de antagônico, por exemplo. A plataforma não isolada 154 pode conter, ainda, um processador 174
Petição 870190062513, de 04/07/2019, pág. 40/162
38/114 que, em um aspecto pode compreender um processador DSP como um ADSP-21469 SHARC DSP Analog Devices, disponível junto à Analog Devices, de Norwood, Mass., EUA, por exemplo. Em certos aspectos, o processador 174 pode controlar a operação do conversor de potência de modo de chave 170 responsive a dados de retroinformação da tensão recebidos do amplificador de potência 162 pelo processador 174 por meio de um conversor analógico-para-digital (ADC) 176. Em um aspecto, por exemplo, o processador 174 pode receber como entrada, através do ADC 176, o envelope de formato de onda de um sinal (por exemplo, um sinal de RF) sendo amplificado pelo amplificador de potência 162. O processador 174 pode então controlar o regulador de modo de chave 170 (por exemplo, através de uma saída modulada de largura de pulso (PWM, de pulse-width modulated) de modo que a tensão de trilho provida ao amplificador de potência 162 siga o envelope forma de onda do sinal amplificado. Modulando-se dinamicamente a tensão do trilho do amplificador de potência 162 com base no envelope de forma de onda, a eficiência do amplificador de potência 162 pode ser significativamente aprimorada em relação a esquemas de amplificador com tensão de trilho fixa.
[0095] Em certos aspectos e conforme discutido em detalhes adicionais em conexão com as Figuras 10A e 10B, o dispositivo lógico programável 166, em conjunto com o processador 174, pode implementar um esquema de controle com sintetizador digital direto (DDS) para controlar o formato de onda, a frequência e/ou a amplitude do fornecimento de sinais de acionamento pelo gerador 102. Em um aspecto, por exemplo, o dispositivo lógico programável 166 pode implementar um algoritmo de controle de DDS 268 mediante a recuperação de amostras de formato de onda armazenado em uma tabela de pesquisa (LUT) atualizada dinamicamente, como uma RAM LUT que pode ser integrada em um FPGA. Esse algoritmo de controle
Petição 870190062513, de 04/07/2019, pág. 41/162
39/114 é particularmente útil para aplicações ultrassônicas nas quais um transdutor ultrassônico pode ser acionado por uma corrente senoidal limpa em sua frequência ressonante. Como outras frequências podem excitar ressonâncias parasíticas, minimizar ou reduzir a distorção total da corrente da ramificação de movimento pode correspondentemente minimizar ou reduzir os efeitos indesejáveis da ressonância. Como o formato de onda de uma saída de sinal de acionamento pelo gerador 102 sofre o impacto de várias fontes de distorção presentes no circuito de acionamento de saída (por exemplo, o transformador de potência 156, o amplificador de potência 162), dados de retroinformação sobre tensão e corrente com base no sinal de acionamento podem ser fornecidos a um algoritmo, como um algoritmo para controle de erros implementado pelo processador 174, que compensa a distorção mediante a adequada pré-distorção ou modificação das amostras de formato de onda armazenadas na LUT de maneira dinâmica e contínua (por exemplo, em tempo real). Em um aspecto, a quantidade ou o grau de pré-distorção aplicada às amostras da LUT pode ser baseada no erro entre uma corrente da ramificação de movimento computadorizada e um forma de onda de corrente desejado, sendo que o erro é determinado em uma base de amostra por amostra. Dessa maneira, as amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento, podem resultar em um sinal de acionamento da ramificação de movimento tendo o formato de onda desejado (por exemplo, senoidal) para acionar de maneira ótima o transdutor ultrassônico. Em tais aspectos, as amostras de forma de onda de LUT não irão, portanto, representar a forma de onda desejada do sinal de acionamento, mas sim a forma de onda que é necessária para produzir, por fim, a forma de onda desejado do sinal de acionamento da ramificação de movimento, quando são levados em conta os efeitos de distorção.
Petição 870190062513, de 04/07/2019, pág. 42/162
40/114 [0096] O estágio não isolado 154 pode compreender adicionalmente um ADC 178 e um ADC 180 acoplados à saída do transformador de potência 156 por meio dos respectivos transformadores de isolamento, 182 e 184, para respectivamente amostrar a tensão e a corrente de sinais de acionamento emitidos pelo gerador 102. Em certos aspectos, os ADCs 178 e 180 podem ser configurados para amostragem em altas velocidades (por exemplo, 80 Msps) para possibilitar a sobreamostragem dos sinais de acionamento. Em um aspecto, por exemplo, a velocidade de amostragem dos ADCs 178 e 180 pode possibilitar uma sobreamostragem de aproximadamente 200x (dependendo da frequência de acionamento) dos sinais de acionamento. Em certos aspectos, as operações de amostragem dos ADCs 178 e 180 podem ser realizadas por um único ADC recebendo sinais de entrada de tensão e corrente por meio de um multiplexador bidirecional. O uso de amostragem em alta velocidade nos aspectos do gerador 102 pode possibilitar, entre outras coisas, cálculo da corrente complexa que flui através da ramificação de movimento (que pode ser utilizada em certos aspectos para implementar o controle de formato de onda baseado em DDS descrito acima), filtragem digital acurada dos sinais amostrados, e cálculo do consumo real de energia com um alto grau de precisão. A saída dos dados de retroinformação sobre tensão e corrente pelos ADCs 178 e 180 pode ser recebida e processada (por exemplo, buffering do tipo FIFO, multiplexação) peto dispositivo lógico programável 166 e armazenada em memória de dados para subsequente recuperação, por exemplo, pelo processador 174. Conforme observado acima, os dados de retroinformação sobre tensão e corrente podem ser usados como entrada para um algoritmo para prédistorção ou modificação de amostras de formato de onda na LUT, de maneira dinâmica e contínua. Em certos aspectos, isso pode requerer que cada par de dados de retroinformação sobre tensão e corrente
Petição 870190062513, de 04/07/2019, pág. 43/162
41/114 armazenado seja indexado com base em, ou de outro modo associado a, uma correspondente amostra da LUT que foi fornecida pelo dispositivo lógico programável 166 quando o par de dados de retroinformação sobre tensão e corrente foi capturado, A sincronização das amostras da LUT com os dados de retroinformação sobre tensão e corrente dessa maneira contribui para a correta temporização e estabilidade do algoritmo pré-distorção.
[0097] Em certos aspectos, os dados de retroinformação sobre tensão e corrente podem ser utilizados para controlar a frequência e/ou a amplitude (por exemplo, amplitude de corrente) dos sinais de acionamento. Em um aspecto, por exemplo, os dados de retroinformação sobre tensão e corrente podem ser utilizados para determinar a fase da impedância. A frequência do sinal de acionamento pode, então, ser controlada para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, O'), minimizando ou reduzi ndo assim os efeitos da distorção ultrassônica e, correspondentemente, acentuando a acurácia da medição de fase da impedância, A determinação da impedância de fase e um sinal de controle da frequência podem ser implementados no processador 174, por exemplo, com o sinal de controle da frequência sendo fornecido como entrada a um algoritmo de controle de DDS implementado pelo dispositivo lógico programável 166. [0098] Em outro aspecto, por exemplo, os dados de retroinformação da corrente podem ser monitorados de modo a manter a amplitude de corrente do sinal de acionamento em um ponto de ajuste da amplitude de corrente. O ponto de ajuste da amplitude de corrente pode ser especificado diretamente ou determinado indiretamente com base nos pontos de ajuste especificados para amplitude de tensão e potência. Em certos aspectos, o controle da amplitude de corrente pode ser implementado pelo algoritmo de controle, como, por exemplo, um
Petição 870190062513, de 04/07/2019, pág. 44/162
42/114 algoritmo de controle proporcional-integral-derivado (PID) ou algoritmo de controle proporcional-integral (Pl), no processador 174. As variáveis controladas pelo algoritmo de controle para controlar adequadamente a amplitude de corrente do sinal de acionamento podem incluir, por exemplo, a alteração de escala das amostras de formato de onda da LUT armazenada no dispositivo lógico programável 166 e/ou a tensão de saída em escala total do DAC 168 (que fornece a entrada ao amplificador de potência 162) por meio de um a DAC 186.
[0099] A plataforma não isolada 154 pode conter, ainda, um processador 190 para proporcionar, entre outras coisas, a funcionalidade da interface de usuário (UI). Em um aspecto, o processador 190 pode compreender um processador Atmel SAM9263 com um núcleo ARM 926EJ-S, disponível junto à Atmel Corporation, de San Jose, Califórnia, EUA, por exemplo. Exemplos de funcionalidade de UI suportados pelo processador 190 podem incluir retroinformação audível e visual do usuário, comunicação com dispositivos periféricos (por exemplo, através de uma interface de barramento serial universal (USB)), comunicação com a chave de pedal 120, comunicação com um dispositivo de entrada de dados 145 (por exemplo, uma tela sensível ao toque) e comunicação com um dispositivo de saída 146 (por exemplo, um alto-falante). O processador 190 pode comunicar-se com o processador 174 e o dispositivo lógico programável (por exemplo, via barramentos de interface serial para periféricos (SPI)). Embora o processador 190 possa primariamente suportar funcionalidade de UI, o mesmo pode também coordenar-se com o processador 174 para implementar mitigação de riscos em certos aspectos. Por exemplo, o processador 190 pode ser programado para monitorar vários aspectos das entradas pelo usuário e/ou outras entradas (por exemplo, entradas pela tela sensível ao toque, entradas de chave de pedal 120, entradas do sensor de temperatura) e pode desabilitar a saída de acionamento
Petição 870190062513, de 04/07/2019, pág. 45/162
43/114 do gerador 102 quando uma condição de erro é detectada.
[00100] Em certos aspectos, tanto o processador 174 como o processador 190 podem determinar e monitorar o estado operacional do gerador 102. Para o processador 174, o estado operacional do gerador 102 pode determinar, por exemplo, quais processos de controle e/ou diagnóstico são implementados pelo processador 174. Para o processador 190, o estado operacional do gerador 102 pode determinar, por exemplo, quais elementos de uma interface de usuário (por exemplo, telas de monitor, sons) são apresentados a um usuário. Os processadores 174 e 190 podem manter independentemente o estado operacional atual do gerador 102, bem como reconhecer e avaliar possíveis transições para fora do estado operacional atual. O processador 174 pode funcionar como o mestre nessa relação, e pode determinar quando devem ocorrer as transições entre estados operacionais. O processador 190 pode estar ciente das transições válidas entre estados operacionais, e pode confirmar se uma determinada transição é adequada. Por exemplo, quando o processador 174 instrui o processador 190 a transicionar para um estado específico, o processador 190 pode verificar que a transição solicitada é válida. Caso uma transição solicitada entre estados seja determinada como inválida pelo processador 190, o processador 190 pode fazer com que o gerador 102 entre em um modo de falha.
[00101] A plataforma não isolada 154 pode conter, ainda, um controlador 196 para monitoramento de dispositivos de entrada 145 (por exemplo, um sensor de toque capacitivo usado para ligar e desligar o gerador 102, uma tela capacitiva sensível ao toque). Em certos aspectos, o controlador 196 pode compreender ao menos um processador e/ou outro dispositivo controlador em comunicação com o processador 190. Em um aspecto, por exemplo, o controlador 196 pode compreender um processador (por exemplo, um controlador Mega168
Petição 870190062513, de 04/07/2019, pág. 46/162
44/114 de 8 bits disponível junto à Atmel) configurado para monitorar as entradas fornecidas pelo usuário através de um ou mais sensores de toque capacitivos. Em um aspecto, o controlador 196 pode compreender um controlador de tela sensível ao toque (por exemplo, um controlador de tela sensível ao toque QT5480 disponível junto à Atmei) para controlar e gerenciar a captura de dados de toque a partir de uma tela capacitiva sensível ao toque.
[00102] Em certos aspectos, quando o gerador 102 está em um estado desligado, o controlador 196 pode continuar a receber energia operacional (por exemplo, através de uma linha de uma fonte de alimentação do gerador 102, como a fonte de alimentação 211 discutida abaixo). Dessa maneira, o controlador 196 pode continuar a monitorar um dispositivo de entrada 145 (por exemplo, um sensor de toque capacitivo situado sobre um painel frontal do gerador 102) para ligar e desligar o gerador 102. Quando o gerador 102 está no estado desligado, o controlador 196 pode despertar a fonte de alimentação (por exemplo, possibilitar o funcionamento de um ou mais conversores de tensão CC/CC 213 da fonte de alimentação 211), se for detectada a ativação do dispositivo de entrada liga/desliga 145 por um usuário. O controlador 196 pode, portanto, iniciar uma sequência para fazer a transição do gerador 102 para um estado ligado. Por outro lado, o controlador 196 pode iniciar uma sequência para fazer a transição do gerador 102 para o estado desligado se for detectada a ativação do dispositivo de entrada liga/desliga 145, quando o gerador 102 estiver no estado ligado. Em certos aspectos, por exemplo, o controlador 196 pode relatar a ativação do dispositivo de entrada liga/desliga 145 ao processador 190 que, por sua vez, implementa a sequência de processo necessária para transicionar o gerador 102 ao estado desligado. Nesses aspectos, o controlador 196 pode não ter qualquer capacidade independente para causar a remoção da potência do gerador 102, após
Petição 870190062513, de 04/07/2019, pág. 47/162
45/114 seu estado ligado ter sido estabelecido.
[00103] Em certos aspectos, o controlador 196 pode fazer com que o gerador 102 ofereça retroinformação audível ou outra retroinformação sensorial para alertar o usuário de que foi iniciada uma sequência de ligar ou desligar. Esse tipo de alerta pode ser fornecido no início de uma sequência de ligar ou desligar, e antes do início de outros processos associados à sequência.
[00104] Em certos aspectos, a plataforma isolada 152 pode compreender um circuito de interface de instrumento 198 para, por exemplo, oferecer uma interface de comunicação entre um circuito de controle de um dispositivo cirúrgico (por exemplo, um circuito de controle que compreende chaves de cabo) e componentes da plataforma não isolada 154, como o dispositivo lógico programável 166, o processador 174 e/ou o processador 190. O circuito de interface de instrumento 198 pode trocar informações com componentes do estágio não isolado 154 por meio de um link de comunicação que mantém um grau adequado de isolamento elétrico entre os estágios 152 e 154 como, por exemplo, um link de comunicação baseado em infravermelho (IR, de infrared). A potência pode ser fornecida ao circuito de interface do instrumento 198 com o uso de, por exemplo, um regulador de tensão de baixa queda alimentado por um transformador de isolamento acionado a partir do estágio não isolado 154.
[00105] Em um aspecto, o circuito de interface de instrumento 198 pode compreender um dispositivo lógico programável 200 (por exemplo, um FRGA) em comunicação com um circuito condicionador de sinal 202. O circuito condicionador de sinal 202 pode ser configurado para receber um sinal periódico do dispositivo lógico programável 200 (por exemplo, uma onda quadrada de 2 kHz) para gerar um sinal de interrogação que tem uma frequência idêntica. O sinal de interrogação pode ser gerado, por exemplo, usando-se uma fonte de corrente bipolar alimentada por
Petição 870190062513, de 04/07/2019, pág. 48/162
46/114 um amplificador diferencial. O sinal de interrogação pode ser comunicado a um circuito de controle do dispositivo cirúrgico (por exemplo, mediante o uso de um par condutor em um fio que conecta o gerador 102 ao dispositivo cirúrgico) e monitorado para determinar um estado ou configuração do circuito de controle. O circuito de controle pode compreender inúmeras chaves, resistores e/ou diodos para modificar uma ou mais características (por exemplo, amplitude, retificação) do sinal de interrogação de modo que um estado ou configuração do circuito de controle seja discernível, de modo inequívoco, com base nessa uma ou mais características. Em um aspecto, por exemplo, o circuito condicionador de sinal 202 pode compreender um ADO para geração de amostras de um sinal de tensão aparecendo entre entradas do circuito de controle, resultando da passagem do sinal de interrogação através do mesmo. O dispositivo lógico programável 200 (ou um componente da plataforma não isolada 154) pode, então, determinar o estado ou a configuração do circuito de controle com base nas amostras de ADO.
[00106] Em um aspecto, o circuito de interface de instrumento 198 podem compreender uma primeira interface de circuito de dados 204 para possibilitar a troca de informações entre o dispositivo lógico programável 200 (ou outro elemento do circuito de interface de instrumento 198) e um primeiro circuito de dados disposto em, ou de outro modo associado a, um dispositivo cirúrgico. Em certos aspectos, um primeiro circuito de dados 206 pode estar disposto em um fio integralmente fixado a uma empunhadura do dispositivo cirúrgico, ou em um adaptador para fazer a interface entre um tipo ou modelo específico de dispositivo cirúrgico e o gerador 102. Em certos aspectos, o primeiro circuito de dados pode compreender um dispositivo de armazenamento não volátil, como um dispositivo de memória só de leitura programável eletricamente apagável (EEPROM). Em certos
Petição 870190062513, de 04/07/2019, pág. 49/162
47/114 aspectos e novamente com referência à Figura 7, a primeira interface de circuito de dados 204 pode ser implementada separadamente do dispositivo lógico programável 200 e compreende um conjunto de circuitos adequado (por exemplo, dispositivos lógicos distintos, um processador) para possibilitar a comunicação entre o dispositivo lógico programável 200 e o primeiro circuito de dados. Em outros aspectos, a primeira interface de circuito de dados 204 pode ser integral ao dispositivo lógico programável 200.
[00107] Em certos aspectos, o primeiro circuito de dados 206 pode armazenar informações relacionadas ao dispositivo cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número serial, um número de operações nas quais o dispositivo cirúrgico foi usado, e/ou quaisquer outros tipos de informações. Essas informações podem ser lidas pelo circuito de interface do instrumento 198 (por exemplo, peto dispositivo lógico programável 200), transferidas para um componente da plataforma não isolada 154 (por exemplo, para o dispositivo lógico programável 166, processador 174 e/ou processador 190) para apresentação a um usuário por meio de um dispositivo de saída 146 e/ou para controlar uma função ou operação do gerador 102. Adicionalmente, qualquer tipo de informação pode ser comunicado para o primeiro circuito de dados 206 para armazenamento no mesmo através da primeira interface do circuito de dados 204 (por exemplo, usando~se o dispositivo lógico programável 200). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o dispositivo cirúrgico foi usado e/ou a datas e/ou horários de seu uso.
[00108] Um instrumento cirúrgico pode ser removível de uma empunhadura para promover a intermutabilidade e/ou a descartabilidade do instrumento. Nesses casos, geradores conhecidos
Petição 870190062513, de 04/07/2019, pág. 50/162
48/114 podem ser limitados em sua capacidade para reconhecer configurações de instrumento específicas sendo usadas, bem como para otimizar os processos de controle e diagnóstico conforme necessário. A adição de circuitos de dados legíveis a instrumentos de dispositivo cirúrgico para resolver essa questão é problemática de um ponto de vista de compatibilidade, porém. Por exemplo, projetar um dispositivo cirúrgico para que permaneça compatível com versões anteriores de geradores desprovidos da indispensável funcionalidade de leitura de dados pode ser pouco prático devido, por exemplo, a esquemas de sinalização diferentes, complexidade do design e custo. Aspectos de instrumentos podem usar circuitos de dados que podem ser implementados em instrumentos cirúrgicos existentes, economicamente e com mínimas alterações de design para preservar a compatibilidade dos dispositivos cirúrgicos com as plataformas de gerador atuais.
[00109] Adicionalmente, aspectos do gerador 102 podem possibilitar comunicação com circuitos de dados baseados em instrumento. Por exemplo, o gerador 102 pode ser configurado para comunicar-se com um segundo circuito de dados contido em um instrumento de um dispositivo cirúrgico. O circuito de interface de instrumento 198 pode compreender uma segunda interface de circuito de dados 210 para possibilitar essa comunicação. Em um aspecto, a segunda interface de circuito de dados 210 pode compreender uma interface digital triestado, embora também possam ser utilizadas outras interfaces. Em certos aspectos, o segundo circuito de dados pode ser geralmente qualquer circuito para transmissão e/ou recepção de dados. Em um aspecto, por exemplo, o segundo circuito de dados pode armazenar informações relacionadas ao instrumento cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número de série, um número de operações nas quais o instrumento cirúrgico foi usado, e/ou quaisquer outros tipos de
Petição 870190062513, de 04/07/2019, pág. 51/162
49/114 informações. Adicional ou alternativamente, qualquer tipo de informação pode ser comunicado ao segundo circuito de dados para armazenamento no mesmo através da segunda interface de circuito de dados 210 (por exemplo, usando-se o dispositivo lógico programável 200). Essas informações podem compreender, por exemplo, um número atualizado de operações nas quais o instrumento cirúrgico foi usado e/ou a datas e/ou horários de seu uso. Em certos aspectos, o segundo circuito de dados pode transmitir dados capturados por um ou mais sensores (por exemplo, um sensor de temperatura baseado em instrumento). Em certos aspectos, o segundo circuito de dados pode receber dados do gerador 102 e fornecer uma indicação ao usuário (por exemplo, uma indicação por LED ou outra indicação visível) com base nos dados recebidos.
[00110] Em certos aspectos, o segundo circuito de dados e a segunda interface de circuito de dados 210 podem ser configurados de modo que a comunicação entre o dispositivo lógico programável 200 e o segundo circuito de dados possa ser obtida sem a necessidade de proporcionar condutores adicionais para esse propósito (por exemplo, condutores dedicados de um fio conectando um cabo ao gerador 102). Em um aspecto, por exemplo, as informações podem ser comunicadas de e para o segundo circuito de dados com o uso de um esquema de comunicação por barramento 1-wire, implementado na fiação existente, como um dos condutores utilizados transmitindo sinais de interrogação a partir do circuito condicionador de sinal 202 para um circuito de controle em um cabo. Dessa maneira, são minimizadas ou reduzidas as alterações ou modificações ao design do dispositivo cirúrgico que possam, de outro modo, ser necessárias. Além disso, devido ao fato de que diferentes tipos de comunicações podem ser implementados em um canal físico comum (com ou sem separação de banda de frequência), a presença de um segundo circuito de dados pode ser invisível a
Petição 870190062513, de 04/07/2019, pág. 52/162
50/114 geradores que não têm a indispensável funcionalidade de leitura de dados, o que, portanto, permite a retrocompatibilidade do instrumento de dispositivo cirúrgico. Em certos aspectos, a plataforma isolada 152 pode compreender ao menos um capacitor de bloqueio 296-1 conectado à saída do sinal de acionamento 160b, para impedir a passagem de corrente contínua para um paciente. Um único capacitor de bloqueio pode ser necessário para estar de acordo com os regulamentos e padrões médicos, por exemplo. Embora falhas em designs com um só capacitor sejam relativamente incomuns, esse tipo de falha pode, ainda assim, ter consequências negativas. Em um aspecto, um segundo capacitor de bloqueio 296-2 pode ser colocado em série com o capacitor de bloqueio 296-1, com o vazamento de corrente de um ponto entre os capacitares de bloqueio 296-1 e 296-2 sendo monitorado, por exemplo, por um ADC 298 para amostragem de uma tensão induzida por vazamento de corrente. As amostras podem ser recebidas pelo dispositivo lógico programável 200, por exemplo. Com base nas alterações da corrente de dispersão (conforme indicado pelas amostras de tensão no aspecto da Figura 7), o gerador 102 pode determinar quando ao menos um dentre os capacitares de bloqueio 2961 e 296-2 tiver apresentado falha. Consequentemente, o aspecto da Figura 7 pode proporcionar um benefício em relação a designs com somente um capacitor, tendo um único ponto de falha.
[00111] Em certos aspectos, a plataforma não isolada 154 pode compreender uma fonte de alimentação 211 para saída de energia em CC com tensão e corrente adequadas. A fonte de alimentação pode compreender, por exemplo, uma fonte de alimentação de 400 W para fornecer uma tensão do sistema de 48 VDC. Afonte de alimentação 211 pode compreender adicionalmente um ou mais conversores de tensão CC/CC 213 para receber a saída da fonte de alimentação para gerar saídas de CC nas tensões e correntes exigidas pelos vários
Petição 870190062513, de 04/07/2019, pág. 53/162
51/114 componentes do gerador 102. Conforme discutido acima em relação ao controlador 196, um ou mais dentre os conversores de tensão CC/CC 213 podem receber uma entrada do controlador 196 quando a ativação do dispositivo de entrada Hga/desliga 145 por um usuário é detectada pelo controlador 196, para possibilitar o funcionamento ou o despertar dos conversores de tensão CC/CC 213.
[00112] As Figuras 10A e 10B ilustram certos aspectos funcionais e estruturais de um aspecto do gerador 102. A retroi nformação indicando saída de corrente e tensão do enrolamento secundário 158 do transformador de potência 156 é recebida pelos ADCs 178 e 180, respectivamente. Conforme mostrado, os ADCs 178 e 180 podem ser implementados sob a forma de um ADC de 2 canais e podem tomar amostras dos sinais de retrainformação a uma alta velocidade (por exemplo, 80 Msps) para possibilitar a sobreamostragem (por exemplo, aproximadamente 200x de sobreamostragem) dos sinais de acionamento. Os sinais de retrainformação de corrente e tensão podem ser adequadamente condicionados no domínio analógico (por exemplo, amplificado, filtrado) antes do processamento pelos ADCs 178 e 180. As amostras de retroinformação de corrente e tensão dos ADCs 178 e 180 podem ser individualmente registradas (buffered) e subsequentemente multiplexadas ou intercaladas em um único fluxo de dados no interior do bloco 212 do dispositivo lógico programável 166. No aspecto das Figuras 10A e 10B, o dispositivo lógico programável 166 compreende um FRGA.
[00113] As amostras de retroinformação de corrente e tensão multiplexadas podem ser recebidas por uma porta paralela de captura de dados (PDAP) implementada no interior do bloco 214 do processador 174. O PDAP pode compreender uma unidade de empacotamento para implementar quaisquer dentre as inúmeras metodologias para correlação das amostras de retroinformação multiplexadas com um
Petição 870190062513, de 04/07/2019, pág. 54/162
52/114 endereço de memória. Em um aspecto, por exemplo, as amostras de retroinformação correspondentes a uma saída de amostra de LUT específica pelo dispositivo lógico programável 166 podem ser armazenadas em um ou mais endereços de memória que estão correlacionados ou indexados ao endereço da LUT na amostra de LUT. Em outro aspecto, as amostras de retroinformação correspondentes a uma amostra de LUT específica pelo dispositivo lógico programável 166 podem ser armazenadas, juntamente com o endereço de LUT da amostra de LUT, em uma localização de memória em comum. De qualquer modo, as amostras de retroinformação podem ser armazenadas de modo que o endereço de uma amostra de LUT a partir da qual se originou um conjunto específico de amostras de retroinformação possa ser subsequentemente determinado. Conforme discutido acima, a sincronização dos endereços das amostras de LUT e das amostras de retroinformação dessa maneira contribui para a correta temporização e estabilidade do algoritmo pré-distorção. Um controlador de acesso direto à memória (DMA) implementado no bloco 216 do processador 174 pode armazenar as amostras de retroinformação (e quaisquer LUT dados de endereço da amostra, onde aplicável) em uma localização de memória designada 218 do processador 174 (por exemplo, RAM interna).
[00114] O bloco 220 do processador 174 pode implementar um algoritmo de pré-distorção para pré-distorcer ou modificar as amostras de LUT armazenadas no dispositivo lógico programável 166 de maneira dinâmica e contínua. Conforme discutido acima, a pré-distorção das amostras de LUT pode compensar por várias fontes de distorção presentes no circuito de acionamento de saída do gerador 102. As amostras da LUT pré-distorcidas, quando processadas através do circuito de acionamento resultarão, portanto, em um sinal de acionamento tendo o formato de onda desejado (por exemplo, senoidal)
Petição 870190062513, de 04/07/2019, pág. 55/162
53/114 para acionar de maneira ótima o transdutor ultrassônico.
[00115] No bloco 222 do algoritmo de pré-distorção, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. A corrente da ramificação de movimento pode ser determinada com o uso da Lei de Corrente de Kirchoff com base, por exemplo, nas amostras de retroinformação de corrente e tensão armazenadas na localização de memória 218, um valor da capacitância estática do transdutor ultrassônico Co (medida ou conhecida a priori) e um valor conhecido da frequência de acionamento. Pode ser determinada uma amostra de corrente da ramificação de movimento para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT.
[00116] No bloco 224 do algoritmo de pré-distorção, cada amostra de corrente da ramificação de movimento determinada no bloco 222 é comparada a uma amostra de um formato de onda da corrente desejado para determinar uma diferença, ou erro de amplitude da amostra, entre as amostras comparadas. Para essa determinação, a amostra com o formato de onda da corrente desejado pode ser fornecida, por exemplo, de uma LUT 226 de formatos de onda contendo amostras de amplitude para um ciclo de um formato de onda da corrente desejado. A amostra específica do formato de onda da corrente da LUT 226 utilizada para a comparação pode ser determinada pelo endereço da amostra da LUT associado à amostra de corrente da ramificação de movimento utilizada na comparação. Conforme necessário, a entrada da corrente da ramificação de movimento no bloco 224 pode ser sincronizada com a entrada de seu endereço da amostra da LUT associado no bloco 224. As amostras da LUT armazenadas no dispositivo lógico programável 166 e as amostras da LUT armazenadas na LUT de formatos de onda 226 podem, portanto, ser iguais em termos de número. Em certos aspectos, o formato de onda da corrente desejado, representado pelas
Petição 870190062513, de 04/07/2019, pág. 56/162
54/114 amostras de LUT armazenadas na LUT de formatos de onda 226 pode ser uma onda senoidal fundamental. Outros formatos de onda podem ser desejáveis. Por exemplo, contempla-se que podería ser utilizada uma onda senoidal fundamental para acionar o movimento longitudinal principal de um transdutor ultrassônico, sobreposta a um ou mais outros sinais de acionamento em outras frequências, como uma ultrassônica de terceira ordem para acionar ao menos duas ressonâncias mecânicas de modo a obter vibrações benéficas em modo transversal ou outros modos.
[00117] Cada valor do erro de amplitude da amostra determinado no bloco 224 pode ser transmitido para a LUT do dispositivo lógico programável 166 (mostrado no bloco 228 na Figura 10A) juntamente com uma indicação de seu endereço de LUT associado. Com base no valor da amostra de erro de amplitude e seu endereço associado (e, opcionalmente, os valores da amostra de erro de amplitude para o mesmo endereço de LUT anteriormente recebido), a LUT 228 (ou outro bloco de controle do dispositivo lógico programável 166) pode prédistorcer ou modificar o valor da amostra de LUT armazenada no endereço de LUT, de modo que a amostra de erro de amplitude seja reduzida ou minimizada. Deve-se compreender que essa pré-distorção ou modificação de cada amostra de LUT de um modo iterative ao longo da faixa de endereços de LUT fará com que o formato de onda da corrente de saída do gerador se iguale ou se adapte ao formato de onda da corrente desejado, representado pelas amostras da LUT 226 de formatos de onda.
[00118] As medições de amplitude de corrente e tensão, as medições de potência e as medições de impedância podem ser determinadas no bloco 230 do processador 174, com base nas amostras de retroinformaçâo de corrente e tensão armazenadas na localização de memória 218. Antes da determinação dessas
Petição 870190062513, de 04/07/2019, pág. 57/162
55/114 quantidades, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro 232 adequado para remover o ruído resultante, por exemplo, do processo de captura de dados e dos componentes ultrassônicos induzidos. As amostras filtradas de tensão e corrente podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador. Em certos aspectos, o filtro 232 pode ser um filtro de resposta ao impulso finita (FIR) aplicado no domínio da frequência. Esses aspectos podem usar a transformada rápida de Fourier (FFT) dos sinais de saída de corrente e tensão do sinal de acionamento. Em certos aspectos, o espectro de frequência resultante pode ser utilizado para proporcionar funcionalidades adicionais ao gerador. Em um aspecto, por exemplo, a razão entre o componente ultrassônico de segunda e/ou terceira ordem em relação ao componente de frequência fundamental pode ser utilizado como indicador de diagnóstico. No bloco 234, um cálculo de valor quadrático médio (RMS) pode ser aplicado a um tamanho de amostra das amostras de retroinformação da corrente representando um número integral de ciclos do sinal de acionamento, para gerar uma medição Irms representando a corrente de saída do sinal de acionamento.
[00119] No bloco 236, um cálculo de valor quadrático médio (RMS) pode ser aplicada a um tamanho de amostra das amostras de retroinformação da tensão representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Vrms representando a tensão de saída do sinal de acionamento. No bloco 238, as amostras de retroinformação de corrente e tensão podem ser multiplicadas ponto por ponto, e um cálculo de média é aplicado às amostras representando um número integral de ciclos do sinal de acionamento, para determinar uma medição Pr da real energia de saída
Petição 870190062513, de 04/07/2019, pág. 58/162
56/114 do gerador.
[00120] No bloco 240, a medição Pa da energia de saída aparente do gerador pode ser determinada como o produto Vrmsfrms.
[00121] No bloco 242, a medição Zm da magnitude da impedância de carga pode ser determinada como o quociente Vrms/lrms.
[00122] Em certos aspectos, as quantidades !rms, Vrms, Pr, Pa e Zm determinadas nos blocos 234, 236, 238, 240 e 242, podem ser utilizadas pelo gerador 102 para implementar quaisquer dentre um número de processos de controle e/ou diagnóstico. Em certos aspectos, qualquer dessas quantidades pode ser comunicada a um usuário por meio, por exemplo, de um dispositivo de saída 146 Integral ao gerador 102, ou um dispositivo de saída 146 conectado ao gerador 102 através de uma interface de comunicação adequada (por exemplo, uma interface USB). Os vários processos de diagnóstico podem incluir, sem limitação, integridade do cabo, integridade do instrumento, integridade da fixação instrumento, sobrecarga do instrumento, proximidade de sobrecarga do instrumento, falha no travamento da frequência, excesso de tensão, excesso de corrente, excesso de potência, falha no sensor de tensão, falha no sensor de corrente, falha na indicação por áudio, falha na indicação visual, curto-circuito, falha no fornecimento de potência e falha no capacitor de bloqueio, por exemplo.
[00123] O bloco 244 do processador 174 pode implementar um algoritmo de controle de fases para determinação e controle da fase da impedância de uma carga elétrica (por exemplo, o transdutor ultrassônico) conduzida pelo gerador 102. Conforme discutido acima, ao controlar a frequência do sinal de acionamento para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, O'), os efeitos de distorção ultrassônica podem ser minimizados ou reduzidos, sendo aumentada a exatidão na medição de fase.
Petição 870190062513, de 04/07/2019, pág. 59/162
57/114 [00124] O algoritmo de controle de fases recebe como entrada as amostras de retroinformação de corrente e tensão armazenadas na localização de memória 218. Antes de seu uso no algoritmo de controle de fases, as amostras de retroinformação podem ser adequadamente dimensionadas e, em certos aspectos, processadas através de um filtro adequado 246 (que pode ser idêntico ao filtro 232) para remover o ruído resultante do processo de captura de dados e dos componentes ultrassônicos induzidos, por exemplo. As amostras filtradas de tensão e corrente podem, portanto, representar substancialmente a frequência fundamental do sinal de saída do acionamento do gerador.
[00125] No bloco 248 do algoritmo de controle de fases, é determinada a corrente através da ramificação de movimento do transdutor ultrassônico. Essa determinação pode ser idêntica àquela descrita acima em conexão com o bloco 222 do algoritmo de prédistorção. Assim, a saída do bloco 248 pode ser, para cada conjunto de amostras de retroinformação de corrente e tensão armazenado associado a uma amostra de LUT, uma amostra de corrente da ramificação de movimento.
[00126] No bloco 250 do algoritmo de controle de fases, a fase da impedância é determinada com base na entrada sincronizada de amostras da corrente da ramificação de movimento determinada no bloco 248 e correspondente a amostras de retroinformação da tensão. Em certos aspectos, a fase da impedância é determinada como a média entre a fase da impedância medida na borda de subida dos formatos de onda e a fase da impedância medida na borda de descida dos formatos de onda.
[00127] No bloco 252 do algoritmo de controle de fases, o valor da fase da impedância determinado no bloco 222 é comparado ao ponto de ajuste da fase 254 para determinar uma diferença, ou erro de fase, entre os valores comparados.
Petição 870190062513, de 04/07/2019, pág. 60/162
58/114 [00128] No bloco 256 do algoritmo de controle de fases, com base em um valor do erro de fase determinado no bloco 252 e na magnitude de impedância determinada no bloco 242, é determinada uma saída de frequência para controlar a frequência do sinal de acionamento. O valor da saída de frequência pode ser continuamente ajustado pelo bloco 256 e transferido para um bloco de controle DDS 268 (discutido abaixo) de modo a manter a fase da impedância determinada no bloco 250 do ponto de ajuste da fase (por exemplo, erro de fase zero). Em certos aspectos, a fase da impedância pode ser regulada para um ponto de ajuste de fase de 0o. Dessa maneira, qualquer disto rção ultrassônica estará centralizada em redor da crista do formato de onda da tensão, acentuando a acurácia da determinação da impedância de fase.
[00129] O bloco 258 do processador 174 pode implementar um algoritmo para modulação da amplitude de corrente do sinal de acionamento, de modo a controlar a corrente, a tensão e a potência do sinal de acionamento, de acordo com pontos de ajuste especificados pelo usuário, ou de acordo com requisitos especificados por outros processos ou algoritmos implementados pelo gerador 102. O controle dessas quantidades pode ser realizado, por exemplo, mediante o dimensionamento das amostras de LUT na LUT 228, e/ou mediante o ajuste da tensão de saída em escala total do DAC 168 (que fornece a entrada ao amplificador de potência 162) por meio de um DAC 186. O bloco 260 (que pode ser implementado como um controlador PID em certos aspectos) pode receber como entrada amostras de retroinformação da corrente (que podem ser adequadamente dimensionadas e filtradas) a partir da localização de memória 218. As amostras de retroinformação da corrente podem ser comparadas ao valor de demanda por corrente Id determinado pela variável controlada (por exemplo, corrente, tensão ou potência) para determinar se o sinal de acionamento está fornecendo a corrente necessária. Em aspectos
Petição 870190062513, de 04/07/2019, pág. 61/162
59/114 nos quais a corrente do sinal de acionamento é a variável de controle, a demanda por corrente Id pode ser especificada diretamente por um ponto de ajuste da corrente 262A (Isp). Por exemplo, um valor RMS dos dados de retroinformação da corrente (determinado como no bloco 234) pode ser comparado ao ponto de ajuste da corrente RMS Isp especificado pelo usuário para determinar a ação adequada para o controlador. Se por exemplo os dados de retroinformação da corrente indicam um valor de RMS menor que o ponto de ajuste da corrente Isp, dimensionamento da LUT e/ou tensão de saída em escala total do DAC 168 pode ser ajustada pelo bloco 260, de modo que seja aumentada a corrente do sinal de acionamento. Por outro lado, o bloco 260 pode ajustar um dimensionamento da LUT e/ou a tensão de saída em escala total do DAC 168 para diminuir a corrente do sinal de acionamento quando os dados de retroinformação da corrente indicam um valor RMS maior que o ponto de ajuste da corrente Isp.
[00130] Em aspectos nos quais a tensão do sinal de acionamento é a variável de controle, o Id de demanda de corrente pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um valor de referência de tensão desejado 262B (Vsp) dada a magnitude de impedância de carga Zm medida no bloco 242 (por exemplo, Id = Vsp/Zm). Da mesma forma, em aspectos em que a potência do sinal do inversor é a variável de controle, o Id da demanda atual pode ser especificado indiretamente, por exemplo, com base na corrente necessária para manter um ponto de ajuste de potência desejado 262C (Psp) dada a tensão Vrms medida nos blocos 236 (por exemplo, Id ~ Psp/Vrms).
[00131] O bloco 268 pode implementar um algoritmo de controle DDS para controlar o sinal de acionamento mediante a recuperação de amostras da LUT armazenadas na LUT 228. Em certos aspectos, o algoritmo de controle DDS é um algoritmo de oscilador numericamente
Petição 870190062513, de 04/07/2019, pág. 62/162
60/114 controlado (NCO, de numerically-controlled oscillator) para gerar amostras de um formato de onda a uma taxa de temporização fixa com o uso de uma técnica de saltar pontos (localizações na memória). O algoritmo NCO pode implementar um acumulador de fase, ou conversor de frequência para fase, que funciona como um apontador de endereço para recuperação de amostras de LUT da LUT 228. Em um aspecto, o acumulador de fase pode ser um acumulador de fase com tamanho do passo D, módulo N, onde D é um número inteiro positivo representando um valor de controle da frequência, e N é o número de amostras de LUT na LUT 228. Um valor de controle da frequência D~1, por exemplo, pode fazer com que o acumulador de fase aponte sequencialmente para cada endereço da LUT 228, resultando em uma saída de formato de onda que replica o formato de onda armazenado na LUT 228. Quando D>1, o acumulador de fase pode saltar endereços na LUT 228, resultando em uma saída de formato de onda que tem uma frequência mais alta. Consequentemente, a frequência do formato de onda gerado pelo algoritmo de controle DDS pode, portanto, ser controlado variando-se adequadamente o valor de controle da frequência. Em certos aspectos, o valor de controle da frequência pode ser determinado com base na saída do algoritmo de controle de fases implementado no bloco 244. A saída do bloco 268 pode fornecer a entrada de (DAC) 168 que, por sua vez, fornece um sinal analógico correspondente a uma entrada do amplificador de potência 162.
[00132] O bloco 270 do processador 174 pode implementar um algoritmo de controle do conversor de modo da chave para modular dinamicamente a Tensão do trilho do amplificador de potência 162 com base no envelope de forma de onda do sinal sendo amplificado, melhorando assim a eficiência do amplificador de potência 162. Em certos aspectos, as características do envelope de formato de onda podem ser determinadas mediante o monitoramento de um ou mais
Petição 870190062513, de 04/07/2019, pág. 63/162
61/114 sinais contidos no amplificador de potência 162. Em um aspecto, por exemplo, as características do envelope de formato de onda podem ser determinadas por monitoramento da mínima de uma tensão de drenagem (por exemplo, uma tensão de drenagem MOSFETj que é modulada de acordo com o envelope do sinal amplificado. Um sinal de tensão da mínima pode ser gerado, por exemplo, por um detector de mínima da tensão acoplado à tensão de drenagem. O sinal de tensão mínima pode ser amostrado pelo ADC 176, com as amostras de tensão mínima de saída sendo recebidas no bloco 272 do algoritmo de controle do conversor de modo de chaveamento. Com base nos valores das amostras de tensão mínima, o bloco 274 pode controlar uma saída de sinal PWM por um gerador de PWM 276 que, por sua vez, controla a tensão do trilho fornecida ao amplificador de potência 162 pelo regulador de modo de chaveamento 170. Em certos aspectos, contanto que os valores das amostras de tensão da mínima sejam menores que uma entrada-alvo para a mínima 278 no bloco 262, a tensão no trilho pode ser modulada de acordo com o envelope de formato de onda, conforme caracterizado pelas amostras de tensão da mínima. Quando as amostras de tensão da mínima indicam baixos níveis de potência do envelope, por exemplo, o bloco 274 pode causar uma baixa tensão no trilho a ser fornecida ao amplificador de potência 162, com a tensão total do trilho sendo fornecida somente quando as amostras de tensão da mínima indicam níveis máximos de potência do envelope. Quando as amostras de tensão da mínima caem abaixo do alvo para a mínima 278, o bloco 274 pode fazer com que a tensão do trilho seja mantida em um valor mínimo adequado para garantir o funcionamento adequado do amplificador de potência 162.
[00133] Em um aspecto, um método e/ou aparelho pode fornecer funcionalidade para detectar uma posição de braço de aperto em relação a uma lâmina ultrassônica de um atuador de extremidade, e um
Petição 870190062513, de 04/07/2019, pág. 64/162
62/114 gerador como o gerador 102 e um controlador, como um circuito de controle 108 e/ou controlador 196 pode ser utilizado para ajustar uma saída de energia à lâmina ultrassônica com base na posição de braço de aperto. Agora com referência à Figura 32, um processo 3200 para controlar um atuador de extremidade é mostrado. O processo 3200 pode ser executado ao menos em parte por um processador que pode estar em comunicação com ou pode ser parte de um ou mais dentre o gerador 102, o circuito de controle 108 e/ou o controlador 196. Agora com referência à Figura 32, um processo 3300 para calibrar um controlador para um atuador de extremidade é mostrado. O processo 3200 pode ser executado ao menos em parte por um processador que pode estar em comunicação com ou pode ser parte de um ou mais dentre o gerador 102, o circuito de controle 108 e/ou o controlador 196. [00134] Agora com referência à Figura 11, um atuador de extremidade exemplificador 300 e do eixo de acionamento 302 são mostrados. O braço de aperto 304 pode ter uma posição (por exemplo, representada pelo ângulo, seta ou um deslocamento) em relação à lâmina ultrassônica 306, que pode ser medida com o uso de um ou mais sensores como sensor de efeito Hall. A detecção da posição do braço de aperto em relação à lâmina ultrassônica pode fornecer informações relevantes sobre o dispositivo, permitindo novos recursos, como a capacidade de detectar a espessura, a quantidade ou os tipos de tecidos presos dentro das garras. Em um aspecto, o processo 3200 da Figura 32 pode determinar 3220 um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base em um sinal (de, por exemplo, um sensor de efeito Hall). Adicionalmente, com o uso de um processador e/ou memória, um ou mais algoritmos (por exemplo, para vedar um vaso sem transecção) pode ser escolhido com base na espessura, quantidade ou o tipo de tecido determinado a ser preso dentro das garras.
Petição 870190062513, de 04/07/2019, pág. 65/162
63/114 [00135] A lâmina ultrassônica 306 pode fornecer um efeito de tecido através de vibração mecânica aos tecidos e/ou vasos sanguíneos. O braço de aperto 304 pode girar ao redor do ponto 314, que pode representar uma conexão entre o braço de aperto e um tubo externo 310. Um tubo interno 308 pode se mover para frente e para trás e pode acionar o fechamento do braço de aperto 304 na lâmina ultrassônica 306. Em vários aspectos, pode ser desejável medir o ângulo entre o braço de aperto 304 e a lâmina ultrassônica 306.
[00136] Em um aspecto, a posição do braço de aperto 304 em relação à lâmina ultrassônica 306 (por exemplo, durante a ativação) pode ser aproximada através de um acoplamento com o tubo interno 308. O tubo interno 308 pode ser ligado ao braço de aperto 304 e pode ser similar ao membro atuador tubular reciprocante 58 situado no interior da bainha tubular externa 56. O tubo externo 310, que pode ser similar à bainha tubular externa 56, e/ou lâmina ultrassônica 306, pode ser utilizado para determinar uma posição e/ou ângulo do braço de aperto 304 em relação à lâmina ultrassônica 306. O tubo externo 310 pode ser estático e, em um aspecto, pode ser ligado ao braço de aperto 304. Como resultado, com o uso das técnicas e recursos aqui descritos, o movimento (por exemplo, representado com a seta bidirecional 312) do tubo interno 308 em relação ao tubo externo 310 pode ser medido e utilizado para aproximar a posição do braço de aperto.
[00137] Com referência brevemente à Figura 32, o processo 3200 pode detectar 3202 um sinal (por exemplo, em um sensor de efeito Hall) em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O primeiro tubo pode ser, por exemplo, similar ao membro atuador tubular reciprocante 58 e o segundo tubo pode ser, por exemplo, similar à bainha tubular externa 56. Em outras palavras, conforme descrito na Figura 32, o primeiro tubo
Petição 870190062513, de 04/07/2019, pág. 66/162
64/114 pode ser um tubo interno e o segundo tubo é um tubo externo. O tubo interno pode ser móvel 3208 em relação ao tubo externo. O tubo externo pode ser estático em relação ao tubo interno. O processo 3200 pode detectar 3210 o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00138] O uso de sensores de efeito Hall será aqui descrito em relação a vários aspectos da presente descrição, entretanto, outros tipos de sensores podem ser utilizados para medir o movimento 312. Por exemplo, transformadores de diferencial de variação linear (LVDT), transformador diferencial de variação giratório, transdutores piezelétricos, potenciômetros, sensores fotoelétricos podem ser utilizados para medir o movimento 312. Além disso, os sensores de efeito Hall e equivalentes adequados podem ser utilizados para medir a posição de dois corpos um em relação ao outro através do uso de uma pequena placa eletrônica e ímãs.
[00139] Agora com referência à Figura 12, é mostrada uma representação de um sensor de efeito Hall exemplificador. Um ímã 402 pode ter polos norte e sul que se movem em uma linha perpendicular à face do sensor de efeito Hall 404, que pode estar em uma posição fixa. Agora com referência à Figura 13A, é mostrada outra representação de um sensor de efeito Hall exemplificador. Um ímã 408 pode ter polos norte e sul se movendo em uma linha paralela à face do sensor de efeito Hall 410, que pode estar em uma posição fixa. Agora com referência à Figura 13B, é mostrada outra representação de um sensor de efeito Hall exemplificador. Um ímã 414 pode ter polos norte e sul se movendo em uma linha (418) paralela à face do sensor de efeito Hall 416, que pode estar em uma posição fixa. O ímã pode ter diâmetro D e o ímã e o sensor de efeito Hall 416 podem ter uma lacuna de ar eficaz total (TEAG) 420. Essa configuração pode possibilitar uma medição muito sensível do movimento em distâncias pequenas com a combinação de sensor de
Petição 870190062513, de 04/07/2019, pág. 67/162
65/114 ímã adequada.
[00140] O sensor de efeito Hall pode incluir um pequeno circuito integrado eletrônico que pode detectar campos magnéticos e alterar sua saída elétrica com base na proximidade relativa do ímã ou na resistência dos campos magnéticos ao sensor de efeito Hall. À medida que o ímã se move ao longo da face do sensor de efeito Hall (por exemplo, marcado de X) e se aproxima de estar diretamente na frente da face, um sinal de saída do sensor de efeito Hall pode mudar e ser utilizado para determinar uma posição do ímã em relação ao sensor de efeito Hall. Em um aspecto, o ímã pode não causar muita alteração no sinal de saída do sensor de efeito Hall. Por exemplo, com o uso de um ímã e um sensor de efeito Hall que tem características particulares, o ímã estando a mais de 1,5 polegada ou outras distâncias a partir do sensor de efeito Hall podem produzir muito pouco em termos do sinal de saída, mas conforme o ímã se move cada vez mais perto do sensor de efeito Hall, a saída elétrica muda mais rapidamente, de modo que uma alteração de sinal muito perceptível ocorra em resposta aos pequenos movimentos do ímã à medida que é movido para mais perto de uma posição crítica. A resposta elétrica do sensor de efeito Hall em várias posições do ímã pode ser utilizada para criar uma melhor curva de ajuste. Por exemplo, a saída de tensão do sensor de efeito Hall como função do deslocamento do ímã pode ser determinada.
[00141] A Figura 14A é uma tabela 1400 de tensão de saída de um sensor de efeito Hall como função da distância conforme um braço de aperto se move de uma posição completamente fechada para uma posição completamente aberta, de acordo com a presente descrição. A distância relativa (mm) é mencionada na primeira coluna 1402. A distância absoluta (mm) é listada na segunda coluna 1404 e a distância absoluta em cm (polegadas) é enumerada na terceira coluna 1406. A tensão de saída do sensor de efeito Hall é mencionada na quarta coluna
Petição 870190062513, de 04/07/2019, pág. 68/162
66/114
1410 e a posição do braço de aperto é mencionada na quinta coluna, onde a célula mais alta indica o braço de aperto na posição completamente fechada e a célula mais baixa indica o braço de aperto na posição completamente aberta.
[00142] Agora com referência às Figuras 14A e 14B, uma tabela 1400 e um gráfico 1450 da tensão de saída de um sensor de efeito Hall (eixo geométrico y) como função do deslocamento (eixo geométrico x) e dados relacionados são mostrados. Neste exemplo, a sensibilidade de uma combinação de sensor de efeito Hall/ímã protótipo é mostrada como um movimento linear relativamente pequeno (por exemplo, 0,100%) que pode resultar em uma alteração de sinal de 1,5 volts. Essa alteração de sinal pode ser lida por um gerador (por exemplo, gerador 102) e utilizada para fazer determinações sobre o deslocamento da lâmina ultrassônica, ou fornecer retroinformação auditiva, tátil e/ou outra retroinformação para um usuário (por exemplo, através de alto-falante 114 e/ou tela visual 116). Uma curva de melhor ajuste 1452 pode ser determinada a partir dos pontos de dados plotados 145a-h (por exemplo, um ou mais dentre deslocamento relativo, deslocamento absoluto, saída de tensão e posição) e pode resultar uma equação polinomial para tensão de saída do sensor de efeito Hall (eixo geométrico y) como função do deslocamento (eixo geométrico x) do ímã. A curva de melhor ajuste pode ser de 2a, 3a, 4a... enésima ordem. Os pontos de dados 1454a-h e/ou a curva de melhor ajuste 1452 podem ser utilizados para criar uma tabela de pesquisa armazenada em uma memória e/ou a equação resultante pode ser executada em um processador para determinar, por exemplo, um deslocamento para o ímã (e uma posição de braço de aperto correspondente) dada uma tensão de saída específica do sensor de efeito Hall. Dessa forma, voltando brevemente para Figura 32, o processo 3200 pode determinar 3204 uma posição de braço de aperto do atuador de extremidade em
Petição 870190062513, de 04/07/2019, pág. 69/162
67/114 relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal (a partir de, por exemplo, saída de tensão do sensor de efeito Hall).
[00143] Voltando-se agora para a Figura 15A, é mostrada uma vista de topo de um sensor de efeito Hall 510 e configurações de ímã 508 em um instrumento cirúrgico e uma posição de atuador de extremidade de garras abertas 500 correspondente, de acordo com um aspecto da presente descrição, e a Figura 15B é uma vista de topo das configurações do sensor de efeito Hall 510 e do ímã 508 em um instrumento cirúrgico e a posição do atuador de extremidade de garras fechadas 500 correspondente, de acordo com um aspecto da presente descrição. Em um aspecto, conforme mostrado nas Figuras 15A e 15B, a saída de tensão do sensor de efeito Hall 50 é 1,6 VCC quando as garras do atuador de extremidade 500 estão abertas e 3,1 VCC quando as garras do atuador de extremidade 500 estão fechadas.
[00144] Agora com referência às Figuras 15A e 15B, um aspecto de uma combinação de sensor de efeito Hall 510 e ímã 508 é mostrado como implementado em um dispositivo cirúrgico como um ou mais daqueles discutidos na presente invenção. As Figuras 15A e 15B mostram duas imagens de vistas de cima para baixo do exemplo. Um colar rosqueado interno 502 pode ser fixado a um ímã 508. Como um acionador do dispositivo cirúrgico é fechado, um braço de aperto 504 do atuador de extremidade 500 entra em contato próximo com uma lâmina ultrassônica 504, o ímã 508 se move mais proximalmente conforme mostrado nas vistas de cima para baixo. Conforme o imã 508 se move (em uma direção indicada pela seta 506), o potencial de tensão do sensor de efeito Hall 510 altera. O ímã 508 posicionado no primeiro tubo em relação ao sensor de efeito Hall 510 pode se mover conforme o primeiro tubo aciona o movimento do braço de aperto 503 do atuador de extremidade 500.
Petição 870190062513, de 04/07/2019, pág. 70/162
68/114 [00145] Deve-se notar que embora vários aspectos discutidos na presente invenção sejam descritos para incluir um tubo externo que é estático e um tubo interno que aciona o movimento do braço de aperto, outras configurações são possíveis e estão dentro do escopo da presente descrição. Por exemplo, em vários aspectos, um tubo externo pode acionar o movimento do braço de aperto e o tubo interno pode ser estático. Adicionalmente, embora vários aspectos discutidos na presente invenção sejam descritos para incluir um sensor de efeito Hall 510 e/ou circuito integrado (por exemplo, chip) que é estático e um ímã 508 que se move conforme o braço de aperto 500 se move, outras configurações são possíveis e estão dentro do escopo da presente descrição. Por exemplo, em vários aspectos, o sensor de efeito Hall 510 pode se mover conforme o braço de aperto 503 se move e o ímã pode ser estático. Muitas combinações são possíveis, incluindo um tubo externo fixo e um interior móvel, um ímã móvel 508 e um sensor de efeito de Hall estacionário 510 ou outro circuito de detecção, um sensor de efeito Hall 510 ou outro circuito de detecção e um ímã estacionário 508, um tubo externo móvel e um tubo interno fixo, um ímã fixo em um dos tubos interno e externo e/ou um ímã móvel em um dos tubos interno e externo. O sensor de efeito Hall 510 ou outro circuito pode ser montado na parte móvel (por exemplo, tubo interno ou externo) ou montado na parte estacionária (por exemplo, tubo interno ou externo), desde que sejam consideradas conexões elétricas flexíveis e ser alcançado.
[00146] Conforme mostrado na Figura 15A, o colar rosqueado interno 502 com o ímã fixo 508 está posicionado mais para a esquerda do que na Figura 15B, e o atuador de extremidade correspondente 500 tem uma garra aberta, por exemplo, braço de aperto aberto 503. Quando o usuário puxa o gatilho e fecha o atuador de extremidade 500, múltiplas molas e o colar rosqueado interno 502 se movem (na direção
Petição 870190062513, de 04/07/2019, pág. 71/162
69/114 indicada pela seta 506), o braço de aperto 503 é acionado fechado ou é conduzido ao enxerto de tecido capturado entre o braço de aperto 503 e a lâmina ultrassônica 504. São mostrados um sensor de efeito Hall 510 e um ímã 508, que pode ser cilíndrico, se movendo sobre o sensor de efeito Hall 510, conforme o braço de aperto 503 se fecha em direção à lâmina ultrassônica 504.
[00147] Agora com referência à Figura 16, é mostrada uma vista em planta de um sistema 600 que compreende um sensor de efeito Hall 602 e uma disposição de ímã 606. O sensor de efeito Hall 602 inclui uma placa de circuito 604 e um circuito integrado 606. O ímã 608 se move para frente e para trás ao longo da linha 610, conforme o braço de aperto é fechado e aberto. Conforme o imã 608 se move em direção ao centro do circuito integrado de efeito Hall 606, a sensibilidade do sensor de efeito Hall 602 se altera e o sinal de saída aumenta. Um suporte 612 para o ímã 608 pode ser acoplado ao tubo interno que aciona o braço de aperto. Em um aspecto, conforme o tubo interno é puxado em direção ao cabo do instrumento cirúrgico (por exemplo, pelo gatilho), a garra se fecha (por exemplo, o braço de aperto se fecha). O ímã 608 está conectado a uma perna estendida do colar interno rosqueado do tubo externo.
[00148] As Figuras 17A e 17B ilustram vistas diferentes do sistema 600 que compreende um sensor de efeito Hall 602 e configurações de ímã 608 no contexto de um instrumento cirúrgico, de acordo com um aspecto da presente descrição. Com referência às Figuras 17A e 17B, o sensor de efeito Hall 602 é mostrado posicionado dentro de um instrumento cirúrgico. O sensor de efeito Hall 602 é posicionado no colar interno rosqueado 620 do tubo externo 622. Uma fenda 624 é definida em um botão de rotação do tubo externo 622 para possibilitar que o ímã 608 se desloque. O ímã 608 está posicionado no interior do suporte 612, que é móvel de maneira deslizante dentro da fenda 624. Por exemplo,
Petição 870190062513, de 04/07/2019, pág. 72/162
70/114 o sensor de efeito Hall 602 conforme descrito na presente invenção pode ser estático e é fixado a um botão de rotação, de modo que ele possa girar ao redor da linha central da lâmina ultrassônica. Um pino 626 pode ser posicionado dentro de uma abertura 628 através do botão de rotação e do sensor de efeito Hall 602 e através de uma porção de lâmina ultrassônica central. Como resultado, a lâmina ultrassônica não se mova axialmente, mas o tubo interno é capaz de se mover axialmente à direita e à esquerda do pino 626. Uma conexão rosqueada 630 é feita de náilon ou qualquer outro material adequado com fluxo magnético mínimo.
[00149] A Figura 18 ilustra um sensor de efeito Hall 602 e a configuração do ímã 608 no contexto de um instrumento cirúrgico de acordo com a presente descrição. Agora com referência à Figura 18, um eixo de acionamento de um instrumento cirúrgico é mostrado e o ímã 608 é posicionado dentro do suporte 612. Um movimento do ímã 632 é acoplado ao tubo interno 634. O ímã 608 pode ser acoplado com encaixes por pressão a um colar rosqueado 638 do tubo interno 634. O sensor de efeito Hall 602 conforme descrito na presente invenção é estático e é fixado a um botão de rotação, de modo que ele possa girar em tomo da linha central da lâmina ultrassônica.
[00150] A Figura 19A ilustra um sensor de efeito Hall 602 e uma configuração de ímã 608, de acordo com um aspecto da presente descrição. A Figura 19B é uma vista detalhada do sensor de efeito Hall 602 e da configuração do ímã 608 no contexto de um instrumento cirúrgico, de acordo com a presente descrição. Agora com referência às Figuras 19A E 19B, em um aspecto, o sensor de efeito Hall 602 e a configuração do ímã 608 estão localizados sobre um eixo de acionamento de um instrumento cirúrgico. Em um aspecto, as faces dos polos do ímã 608 e o sensor de efeito Hall 602 se movem em linha um em relação ao outro. Nas Figuras 17A, 17B, 19A e 19B, o sensor de
Petição 870190062513, de 04/07/2019, pág. 73/162
71/114 efeito Hall 602 é estacionário, enquanto o imã 608 se move em conexão com o braço de aperto. Em um aspecto, o colar rosqueado interno é configurado para transportar o ímã 608 e pode ser diretamente conectado ao tubo interno. Desse modo, o sensor de efeito Hall 602 pode ser posicionado em uma maneira diferente sobre o botão de rotação, de modo que as faces do ímã 608 e o sensor de efeito Hall 602 se unam de forma perpendicular conforme mostrado pela seta 640 em movimento.
[00151] Em um aspecto, um algoritmo ou processo ultrassônico pode ser utilizado para possibilitar que um dispositivo cirúrgico vede o tecido sem transecção. A implementação desse algoritmo ou processo pode exigir a medição da posição do braço de aperto em relação à lâmina ultrassônica de um atuador de extremidade. Um método pode ser utilizado para detectar a posição do braço de aperto em relação à lâmina ultrassônica, conforme descrito aqui, e que o posicionamento pode ser consistentemente calibrado durante a fabricação, conforme será descrito abaixo, de modo que as estimativas de espessura do tecido possam ser feitas. Por exemplo, um algoritmo ou processo que é alimentado com informações sobre a quantidade de tecido pode reagir à medida que a quantidade muda. Isso pode possibilitar que o dispositivo cirúrgico trate o tecido sem transeccionar completamente um vaso.
[00152] Voltando agora brevemente para a Figura 32, uma vez que a posição de braço de aperto em relação à lâmina ultrassônica é conhecida, o modo como a lâmina ultrassônica vibra pode ser ajustado para obter diferentes efeitos de tecido. Nesse modo, o processo 3200 pode ajustar 3206 uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto. Por exemplo, o processo 3200 pode ajustar 3214 a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um
Petição 870190062513, de 04/07/2019, pág. 74/162
72/114 transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
[00153] Tipicamente, atuadores de extremidade podem ser utilizados para coagular e cortes vasos ao mesmo tempo. Contudo, utilizando as técnicas e características aqui descritas, pode ser utilizado um atuador de extremidade para selar uma carótida ou vaso sem efetivamente transeccioná-lo, como pode ser desejado por um cirurgião. Com informações sobre a posição do braço de aperto, uma razão de deslocamento (RD) pode ser calculada, através do qual se o braço de aperto estiver na posição completamente fechada sem nada capturado no atuador de extremidade, o sensor (por exemplo, sensor de efeito Hall) pode indicar uma RD de 1. Por exemplo, para propósitos ilustrativos apenas, deixar o XT representar uma posição do braço de aperto relativa em qualquer dado momento na ativação, X1 ser uma posição do braço de aperto quando o dispositivo cirúrgico estiver totalmente preso sem tecido, e X2 ser uma posição do braço de aperto no início da ativação, com o tecido segurado no atuador de extremidade, sendo que:
[00154] Continuando com o exemplo acima, X1 pode ser um valor programado no dispositivo cirúrgico para a posição do braço de aperto quando as garras estão completamente fechadas e nada é capturado no atuador de extremidade. X2 pode ser a posição de braço de aperto no início de uma ativação, de modo que se um vaso for fixado no atuador de extremidade e o braço de aperto for fechado por todo o caminho, o braço de aperto pode comprimir o vaso para baixo, mas com alguma distância a percorrer antes de o vaso ser cortado transversalmente e o braço de aperto estar diretamente oposto à lâmina ultrassônica com contato total. XT pode mudar dinamicamente, visto que ele é a posição do braço de aperto em qualquer dado momento.
Petição 870190062513, de 04/07/2019, pág. 75/162
73/114 [00155] Por exemplo, no início da ativação, RD pode ser zero, já que X1 pode ser ajustado para representar a posição do braço de aperto sendo completamente fechada sem nada capturado. X2, no início da ativação, quando o braço de aperto está tocando um vaso, pode fornecer uma espessura relativa antes do disparo da lâmina ultrassônica. XT pode ser o valor na equação que está atualizando continuamente com o tempo conforme o braço de aperto se desloca adicionalmente e comprime e começa a cortar o tecido. Em um aspecto, pode ser desejável desativar (por exemplo, parar de disparar) a lâmina ultrassônica quando o braço de aperto tiver percorrido 70% ou 0,7. Dessa forma, isso pode ser determinado empiricamente antecipadamente que um RD é desejado 0,7 do caminho entre o braço de aperto sendo fechado com uma mordedura total de tecido e ser completamente fechado com nada entre o braço de aperto e a lâmina ultrassônica.
[00156] O RD de 0,7 foi descrito apenas para propósitos ilustrativos e pode depender de muitos parâmetros. Por exemplo, a RD desejada para o ponto no qual a lâmina ultrassônica será fechada pode ser baseada no tamanho do vaso. A RD pode ser qualquer valor observado para trabalhar para tratar um determinado tecido ou vaso sem transecção. Uma vez que a posição desejada é conhecida, a vibração da lâmina ultrassônica pode ser ajustada com base na posição desejada. A Figura 20 é um gráfico 2000 de uma curva 2002 representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função de tempo (s) ao longo do eixo geométrico x. Conforme mostrado na Figura 20, o RD desejado é 0,7, o que significa que a lâmina ultrassônica é desativada (por exemplo, parar de disparar) quando o braço de aperto percorreu 70% ou 0,7. Isso é relativo a um braço de aperto em um vaso com um disparo da lâmina ultrassônica em
Petição 870190062513, de 04/07/2019, pág. 76/162
74/114 que a RD da extremidade desejada era 0,7. No exemplo específico da Figura 20, a lâmina ultrassônica foi ativada (por exemplo, disparo) em uma carótida e desligada na RD de 0,7 após cerca de 16 segundos.
[00157] Em um aspecto, pode ser desejável usar um controlador integral proporcional. A Figura 21 é um gráfico 2100 de uma primeira curva 2102 representando a razão de deslocamento (RD) ao longo do eixo geométrico y, com base na tensão de saída do sensor de efeito Hall, como função de tempo (s) ao longo do eixo geométrico x. Uma segunda curva 2104 representa potência (Watts) ao longo do eixo geométrico y direito como função do tempo (s) ao longo do eixo geométrico x. O gráfico 2100 fornece um exemplo do que pode ser realizado com um controlador proporcional integral (PI). A curva da razão de deslocamento (RD) 2102 é representada no gráfico 2100 pela linha marcada RAZÃO DE DESLOCAMENTO. O objetivo ou valor desejado para a razão de deslocamento pode ser 0,7, conforme mostrado pela linha marcada valor desejado, embora vários outros valores possam ser utilizados. A curva de saída de energia 2104 representa a potência através da lâmina ultrassônica e é mostrada e marcada POTÊNCIA(Watts).
[00158] Voltando agora brevemente para a Figura 32, é mostrado que o processo 3200 pode ajustar 3216 a energia de saída para a lâmina ultrassônica do atuador de extremidade dinamicamente, com base na razão de deslocamento que muda à medida que o braço de aperto se aproxima da lâmina ultrassônica. Por exemplo, conforme o braço de aperto se move em direção à lâmina ultrassônica e o valor desejado é aproximado, a quantidade de saída de energia para a lâmina ultrassônica e para dentro do tecido pode ser reduzida. Isto é porque a lâmina ultrassônica irá cortar o tecido com energia suficiente. Entretanto, se a potência sendo produzida for reduzida ao longo do tempo conforme o valor desejado é aproximado (onde uma transecção
Petição 870190062513, de 04/07/2019, pág. 77/162
75/114 total pode ser representada por uma razão de deslocamento de 1), a chance de o tecido ser transeccionado pode ser drasticamente reduzida. Desse modo, a vedação eficaz pode ser obtida sem corte do tecido conforme possa ser desejado pelo cirurgião.
[00159] Voltando à Figura 21, mostra-se que a curva de energia de saída 2104 mostrada na Figura 21 pode representara potência aplicada com um sinal de acionamento a uma pilha de transdutor para ativar (por exemplo, disparar) a lâmina ultrassônica. O valor de potência pode ser proporcional ao movimento da porção de braço de aperto do atuador de extremidade e aplicado ao tecido e a curva de potência pode representar a tensão e corrente aplicadas ao transdutor ultrassônico. Em um aspecto, o gerador ultrassônico (por exemplo, gerador 102) pode ler os dados de saída de tensão do sensor de efeito Hall e, em resposta, enviar comandos para quanta tensão e corrente fornecer ao transdutor para acionar a lâmina ultrassônica, conforme desejado. À medida que a porção do braço de aperto do atuador de extremidade é movida e o valor desejado é aproximado, a lâmina ultrassônica pode ser forçada a liberar menos energia ao tecido e reduzir a probabilidade de cortar o tecido.
[00160] À medida que a lâmina ultrassônica é energizada, a lâmina ultrassônica produzirá o tecido ou o vaso, de modo que o atrito na interface da lâmina ultrassônica e o tecido cause calor para acionar a umidade e secar o tecido. Durante esse processo, a porção de braço de aperto é capaz de comprimir cada vez mais o tecido conforme a vedação se desenvolve. Como a RD aumenta ao longo do tempo, o tecido mediante a aplicação de mais pressão achata com o braço de aperto conforme o tecido seca. Dessa forma, um controlador de PI pode ser utilizado para cozinhar o tecido de um ponto inicial (onde RD-0) para uma certa segunda posição através do controle de saída de energia para efetivamente vedar grandes vasos. Com o controlador PI, conforme a RD se aproxima do valor desejado, o dispositivo ultrassônico
Petição 870190062513, de 04/07/2019, pág. 78/162
76/114 cai a aplicação de energia (à lâmina ultrassônica) para controlar suavemente a compressão e coagulação do tecido. Este processo demonstrou ter capacidade para efetivamente selar vasos sem transecção. Nesse modo, o processo 3200 pode ajustar 3218 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral (Pl), com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Será entendido que o controle de Pl não é o único sistema lógico através do qual a energia pode ser controlada. Existem muitos mapeamentos matemáticos para reduzir adequadamente a potência como função do sensor de efeito Hall. Exemplos de outros sistemas lógicos incluem controladores PID, controladores proporcionais, lógica difusa, redes neurais, polinômios, redes bayesianas, entre outros.
[00161] A Figura 22 é um gráfico 2200 mostrando como o controlador de Pl funciona. O termo proporcional pode ser uma indicação da diferença absoluta entre RD e o valor desejado para a RD. A RD se aproxima do valor desejado, o efeito do termo proporcional pode encolher e como resultado a potência ultrassônica (por exemplo, entregue pela lâmina ultrassônica) pode ser reduzida. O termo integral, mostrado como a área 2202 sob a curva, pode ser um acúmulo de erros ao longo de uma dada seção de tempo. Por exemplo, conforme mostrado acima, o termo integral pode não começar a se acumular até após 5 segundos. Após 5 segundos, o termo integral pode começar a produzir efeito e a energia para a lâmina ultrassônica pode ser aumentada. Após cerca de 9 segundos, a redução do efeito no termo proporcional pode compensar o efeito do aumento no termo integral fazendo com que a aplicação de energia à lâmina ultrassônica se torne reduzida. Neste exemplo, um valor desejado de 0,7 para a RD foi utilizado, entretanto, conforme discutido acima, o valor da RD pode ser
Petição 870190062513, de 04/07/2019, pág. 79/162
77/114 otimizado para um dispositivo específico juntamente com os termos proporcionais e integrais do controlador.
[00162] No efeito, o controlador de PI pode indicar que a saída de energia deve ser com base na distância em qualquer dado momento entre a razão de deslocamento e o valor desejado. A partir dessa distância, o controlador de PI pode gerar um certo valor (por exemplo, 0,4). No exemplo da Figura 22, em um momento no tempo (por exemplo, 1 segundo) a distância se baseia nos valores atribuídos a Pe I. Essa distância pode ser multiplicada por uma constante que representa P e resulta em 0,78. O gerador pode instruir o sistema a enviar 0,78 ou enviar, por exemplo, 7,8 watts de potência quando a distância entre essas duas é uma certa quantidade. Como resultado, a curva de RD se aproxima do valor desejado, e a distância reduz. Ao longo do tempo, a quantidade de energia do gerador diz ao sistema para que o envio diminua, o que pode ser o resultado desejado. Entretanto, isso também podería significar que se apenas P e não I for utilizado, quando o tempo se aproxima de 15 segundos, pode não haver energia de saída suficiente para o tecido para completar o objetivo. Isso é onde a porção I (porção integral) é calculada em um período de tempo definido, que pode ser de cerca de cinco segundos. Pelo cálculo da área sob a curva 2202 (mostrado na Figura 22 por submetido a linhas hachuradas, capturado entre o valor desejado e razão de deslocamento ao longo do tempo) e adicionalmente a 0,78, mostrada entre 0 e 5 segundos, a porção I começa a adicionar a sua própria quantidade de potência para ajudar a progressão da razão de deslocamento para o valor desejado e se certificar de que ele chega lá em um pouco tempo hábil. Por exemplo, em cinco segundos, a porção I não é ativa, mas à medida que o tempo progride, a porção I começa a calcular a área capturada entre as duas curvas e adiciona esse valor (por exemplo, quatro Watts adicionais) que é a área sob a curva, além da potência proveniente do valor
Petição 870190062513, de 04/07/2019, pág. 80/162
78/114 proporcional. A utilização desses dois cálculos juntos pode fornecer a potência curva (isto é, a saída de energia) conforme mostrado na Figura 22. O controlador de PI é configurado para acionar em direção ao efeito de vedação de uma maneira um pouco oportuna.
[00163] Em um aspecto, as técnicas aqui descritas podem ser empregadas para vedar diferentes tamanhos de vasos (por exemplo, 5 mm, 6 mm e 7 mm de vasos redondos). A resistência das vedações pode ser testada até que o lacre se rompa e registre a pressão de ruptura. Uma pressão de ruptura maior indica uma vedação mais forte. No caso de uma cirurgia real, se um instrumento ou dispositivo cirúrgico conforme descrito na presente invenção for utilizado para selar um vaso, a vedação não irá vazar se ele tiver uma alta pressão de ruptura associada. Em um aspecto, as pressões de ruptura podem ser medidas em diferentes tamanhos de vasos, por exemplo, vasos redondos de 5 mm, 6 mm e 7 mm, respectivamente. Tipicamente, os vasos menores têm maior pressão de ruptura com vasos maiores, a pressão de ruptura é diminuída.
[00164] Agora com referência à Figura 23, são mostrados vários vasos 2400 que foram vedados com o uso das técnicas e recursos aqui descritos (por exemplo, com o uso de uma lâmina ultrassônica e um sensor de efeito Hall). Usando o controlador de PI conforme descrito acima, 60 vasos foram vedados. 58 vasos foram vedados sem transecção.
[00165] Em um aspecto, foi observado que a ativação de uma lâmina ultrassônica com o braço de aperto aberto pode ajudar a liberar tecido que pode ter aderido à lâmina ultrassônica ao ser coagulado. Detectar uma alteração no sinal de um sensor de efeito Hall pode indicar quando o usuário está abrindo o braço de aperto após a ativação do dispositivo. Essas informações podem acionar o sistema para enviar um sinal ultrassônico de baixo nível durante um curto período de tempo, de modo
Petição 870190062513, de 04/07/2019, pág. 81/162
79/114 a liberar qualquer tecido preso à lâmina ultrassônica. Esse sinal subterapêutico curto pode reduzir o nível de adesão experimentada pelo usuário. Esse recurso pode ser útil se um dispositivo de cisalhamento ultrassônico tiver sido projetado para múltiplos usos e a lâmina ultrassônica revestimento começar a se desgastar. Dessa forma, as técnicas e recursos aqui descritos podem ser utilizados para reduzir a quantidade de tecido grudado à lâmina ultrassônica.
[00166] Um método para calibrar um atuador de extremidade e sensor de efeito Hall pode incluir calibração do atuador de extremidade e sensor de efeito Hall durante a fabricação de depois disso. Conforme discutido acima, o processo 3300 mostrado na Figura 32, pode ser utilizado para calibrar um controlador para o atuador de extremidade. Por exemplo, uma posição do braço de aperto de um dispositivo ultrassônico pode ser calibrada durante a montagem. Como aqui discutido, a detecção da posição do braço de aperto em relação à lâmina ultrassônica pode fornecer informação relevante ao dispositivo cirúrgico que pode possibilitar novas capacidades, incluindo, mas não limitado à capacidade de detectar uma quantidade ou tipo de tecidos que podem ser fixados dentro das garras. Adicionalmente, determinações a serem executadas sobre vários algoritmos (por exemplo, essa vedação de um vaso sem transecção) pode ser feita com base na detecção da posição do braço de aperto. Entretanto, em vários aspectos, para que essas informações sejam úteis e confiáveis, o dispositivo cirúrgico precisa ser calibrado em relação a uma linha de base como quando o braço de aperto está completamente aberto ou quando o braço de aperto é completamente fechado com material zero no atuador de extremidade.
[00167] Conforme descrito acima, a determinação de uma razão de deslocamento (RD) pode ajudar em vários processos a controlar um atuador de extremidade. Na determinação de RD, X1 é a posição do
Petição 870190062513, de 04/07/2019, pág. 82/162
80/114 braço de aperto quando o dispositivo está completamente fechado sem tecido. Determinar o valor (por exemplo, sinal de efeito Hall) correspondente a X1 pode ser feito durante a fabricação e pode ser parte do processo de calibraçâo.
[00168] Voltando agora à Figura 24, é mostrado um gráfico 2500 de uma curva de melhor ajuste 2502 da tensão de saída do sensor de efeito Hall ao longo do eixo geométrico y como função de distância absoluta (polegada) ao longo do eixo geométrico x para várias posições do braço de aperto. A curva de melhor ajuste 2502 é representada graficamente com base na distância absoluta (polegada) do braço de aperto da lâmina ultrassônica, conforme listado na terceira coluna 1406 da tabela 1400 mostrada na Figura 14A e a tensão de saída do sensor de efeito Hall correspondente, listada na quarta coluna 1408 da tabela 1400 mostrada na Figura 14A, quando o braço de aperto se move de uma posição totalmente aberta para uma posição totalmente fechada de acordo com a presente divulgação.
[00169] Ainda com referência à Figura 24, é mostrada uma saída elétrica exemplificadora de um sensor de efeito Hall configurado para detectar a posição do braço de aperto mostrada. A intensidade do sinal do sensor de efeito Hall plotada contra o deslocamento do sensor (por exemplo, um ímã) pode seguir um formato parabólico conforme mostrado pela curva de melhor ajuste 2502. Para calibrar o sensor de efeito Hall, várias leituras do sensor são tomadas em locais de linha de base conhecidos. Durante a calibragem, a curva de melhor ajuste 2502 conforme mostrado na Figura 24 pode ser analisada para confirmar que o sensor de efeito Hall está lendo efetivamente com base em leituras feitas em uma configuração de produção. Dessa maneira, uma resposta do sensor de efeito Hall correspondente a várias posições do braço de aperto (por exemplo, posições completamente abertas, completamente fechadas e distintas entre os mesmos) pode ser registrada para criar
Petição 870190062513, de 04/07/2019, pág. 83/162
81/114 uma curva de melhor ajuste durante a produção. Vários pontos de dados podem ser registrados (por exemplo, quatro pontos de dados 1--4, conforme mostrado na Figura 24 ou mais, conforme pode ser necessário) para criar a curva de melhor ajuste 2502. Por exemplo, em uma primeira posição, uma resposta do sensor de efeito Hall pode ser medida quando o braço de aperto está totalmente aberto. Dessa forma, voltando brevemente para a Figura 32, o processo 3300 mostrado na Figura 32 pode detectar 3302 um primeiro sinal de medição (por exemplo, uma resposta do sensor de efeito Hall) correspondente para uma posição totalmente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade.
[00170] Voltando agora à Figura 24 em conjunto com a Figura 25, os quatro pontos de dados 1-4 representam a tensão medida com um sensor de efeito Hall como função do vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608, conforme mostrado na Figura 24. Esses pontos de dados 1-4 podem ser registrados conforme descrito em conexão com as Figuras 25 a 28. O primeiro ponto de dados (1) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 25. O primeiro ponto de dados (1) corresponde à tensão de saída do sensor de efeito Hall registrada quando o braço de aperto 2606 está na posição completamente aberta em relação à lâmina ultrassônica 2608.
[00171] O segundo ponto de dados (2) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 26. De modo a obter um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808, um primeiro pino de calibre 2602 de diâmetro conhecido é colocado em um local predeterminado dentro das garras do atuador de extremidade 2600, por exemplo, entre o braço de aperto 2606 e a lâmina ultrassônica 2608. Conforme mostrado na Figura 26, o primeiro pino de calibre 2602 é posicionado entre a extremidade distai
Petição 870190062513, de 04/07/2019, pág. 84/162
82/114 e a extremidade proximal da lâmina ultrassônica 2608 e é segurado entre o braço de aperto 2606 e a lâmina ultrassônica 2608 para definir um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808. Uma vez que o braço de aperto 2606 é fechado para segurar o primeiro pino de calibre 2602, a tensão de saída do sensor de efeito Hall é medida e registrada. O segundo ponto de dados (2) é correlacionado ao vão definido entre o braço de aperto 2606 e a lâmina ultrassônica 2608 pelo primeiro pino de calibre 2602. Dessa forma, a tesão de saída do sensor de efeito Hall é equiparada à distância de vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608. O segundo ponto de dados (2) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar o polinômio).
[00172] O terceiro ponto de dados (3) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 27. Para obter outro vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808, o primeiro pino de calibre 2602 é removido e um segundo pino de calibre 2604 de diâmetro conhecido é colocado em um local predeterminado dentro das garras do atuador de extremidade 2600, por exemplo, entre o braço de aperto 2606 e a lâmina ultrassônica 2608, que é diferente da localização do primeiro pino de calibre 2602. Conforme mostrado na Figura 27, o segundo pino de calibre 2604 é posicionado entre a extremidade distal e a extremidade proximal da lâmina ultrassônica 2608 e é segurado entre o braço de aperto 2606 e a lâmina ultrassônica 2608 para definir um vão preciso entre o braço de aperto 2606 e a lâmina ultrassônica 2808. Uma vez que o braço de aperto 2606 é fechado para segurar o segundo pino de calibre 2602, a
Petição 870190062513, de 04/07/2019, pág. 85/162
83/114 tensão de saída do sensor de efeito Hall é medida e registrada. O terceiro ponto de dados (3) é correlacionado ao vão definido entre o braço de aperto 2606 e a lâmina ultrassônica 2608 pelo segundo pino de calibre 2604. Dessa forma, a tesão de saída do sensor de efeito Hall é equiparada à distância de vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608. O terceiro ponto de dados (3) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar o polinômio).
[00173] O quarto ponto de dados (4) é registrado quando o atuador de extremidade 2600 está na configuração mostrada na Figura 28. Para se obter o quarto ponto de dados (4), não existem pinos de calibre 2602, 2604 colocados entre o braço de aperto 2606 e a lâmina ultrassônica 2608, mas sim, o braço de aperto 2606 é colocado na posição totalmente fechada em relação à lâmina ultrassônica 2608. Uma vez que o braço de aperto 2606 é colocado na posição totalmente fechada, a tensão de saída do sensor de efeito Hall é medida e registrada. O quarto ponto de dados (4) está correlacionado com a posição do braço de aperto 2606 completamente fechado. Dessa forma, a tensão de saída do sensor de efeito Hall é equivalente ao braço de aperto 2606 posição completamente fechada em relação à lâmina ultrassônica 2608. O quarto ponto de dados (4) é um dos vários pontos de dados para desenvolver o polinômio para gerar a curva de melhor ajuste 2502 mostrada na Figura 24. O processo 3300 descrito na Figura 32 detecta 3304 uma tensão de sensor de sensor de efeito Hall real 3304 e determina o vão entre o braço de aperto 2606 e a lâmina ultrassônica 2608 com base na melhor primeira curva 2502 (por exemplo, computar
Petição 870190062513, de 04/07/2019, pág. 86/162
84/114 o polinômio).
[00174] Várias configurações de pinos de calibre podem criar deslocamentos e/ou ângulos conhecidos entre o braço de aperto 2606 e a lâmina ultrassônica 2608 do atuador de extremidade 2600. Utilizando cinemática de um dado braço de aperto/lâmina ultrassônica/projeto de eixo de acionamento e pinos calibradores de diâmetro conhecido, pode ser conhecido um deslocamento teórico do conjunto de eixos de acionamento em cada uma das, por exemplo, quatro ou mais posições. Essa informação pode ser introduzida, juntamente com as leituras de tensão do sensor de efeito Hall, para ajustar uma curva parabólica (por exemplo, curva 2502 de melhor ajuste como mostrado na Figura 24), que pode se tomar uma característica de cada dispositivo cirúrgico individual. Essa informação pode ser carregada no dispositivo cirúrgico através de uma EEPROM ou outro dispositivo eletrônico programável configurado para se comunicar com o gerador (por exemplo, o gerador 102 mostrado na Figura 6) durante a utilização do dispositivo cirúrgico.
[00175] A resposta do sinal do sensor de efeito Hall em, por exemplo, as quatro posições do braço de braçadeira descrito acima podem ser representadas graficamente e as respostas podem ser ajustadas e inseridas em uma tabela de consulta ou desenvolvidas em um polinômio que pode ser utilizado para definir/calibrar o sensor de efeito Hall, de tal modo que, quando utilizado por um cirurgião, o efetor final fornece o efeito tecidual desejado. Desse modo, o processo 3300 pode determinar uma curva de melhor ajuste para representar a força do sinal (por exemplo, do sensor de efeito Hall) como função do deslocamento do sensor (por exemplo, deslocamento de ímã) baseado em ao menos o primeiro, o segundo e o terceiro sinal, as posições totalmente abertas, intermediárias e totalmente fechadas, e uma dimensão do corpo rígido. O processo 3300 também pode criar 3310 uma tabela de pesquisa com
Petição 870190062513, de 04/07/2019, pág. 87/162
85/114 base em ao menos o primeiro, o segundo e o terceiro sinal e as posições totalmente abertas, intermediárias e totalmente fechadas.
[00176] O posicionamento da disposição de ímã/sensor de efeito Hall nas configurações descritas acima pode ser utilizado para calibrar o dispositivo cirúrgico, de tal modo que os movimentos mais sensíveis do braço de fixação 2606 existam quando o braço de fixação 2606 está mais próximo da lâmina ultrassônica 2608. Quatro posições, correspondentes a quatro pontos de dados (1-4), foram escolhidas no exemplo descrito acima, mas qualquer número de posições podería ser utilizado à discrição de equipes de projeto e desenvolvimento para assegurar a calibração adequada.
[00177] Em um aspecto, as técnicas e recursos aqui descritos podem ser utilizados para fornecer retroinformação a um cirurgião para indicar quando o cirurgião deve usar o modo de hemostasia para o procedimento de vedação do vaso antes de engatar o procedimento de corte. Por exemplo, o algoritmo de modo de hemostasia pode ser alterado dinamicamente com base no tamanho de um vaso preso pelo atuador de extremidade 2600 a fim de poupar tempo. Isso pode exigir retroalimentação com base na posição do braço de aperto 2606.
[00178] A Figura 29A é um diagrama esquemático 3000 de um instrumento cirúrgico 3002 configurado para vedar vasos pequenos e grandes, de acordo com um aspecto da presente descrição. O instrumento cirúrgico 3002 compreende um atuador de extremidade 3004, onde o atuador de extremidade compreende um braço de aperto 3006 e uma lâmina ultrassônica 3008 para tratar tecido incluindo vasos de vários tamanhos. O instrumento cirúrgico 3002 compreende um sensor de efeito Hall 3010 para medir a posição do atuador de extremidade 3004. Uma chave de fechamento 3012 é fornecida para fornecer um sinal de retroinformação que indica se o cabo do disparador 3013 do instrumento cirúrgico está em uma posição completamente
Petição 870190062513, de 04/07/2019, pág. 88/162
86/114 fechada.
[00179] Voltando-se agora para a Figura 29B, é mostrado um diagrama de uma faixa exemplificadora de um vaso pequeno 3014 e um vaso grande 3016 e a posição relativa de um braço de aperto do atuador de extremidade de acordo com um aspecto da presente descrição. Com referência às Figuras 29A a B, o instrumento cirúrgico 3002 mostrado na Figura 29A está configurado para vedar pequenos vasos 3014 com um diâmetro < 4 mm e grandes recipientes 3016 com um diâmetro> 4 mm e a posição relativa do braço de grampo 3006 ao agarrar vasos pequenos e grandes 3014, 3016 e as diferentes leituras de tensão fornecidas pelo efetor final 3010 dependendo do tamanho do vaso.
[00180] As Figuras 29C e 29D são dois gráficos 3020, 3030 que descrevem dois processos para vedar vasos pequenos e grandes aplicando-se vários níveis de energia ultrassônica durante períodos de tempo diferentes de acordo com um aspecto da presente descrição. O nível de energia ultrassônico é mostrado ao longo do eixo geométrico y e o tempo (s) é mostrado ao longo do eixo geométrico x. Com referência agora às Figuras 29A a C, o primeiro gráfico 3020 mostrado na Figura 29C mostra um processo para ajustar o nível de acionamento de energia ultrassônica de uma linha ultrassônica para selar um pequeno vaso 3014. De acordo com o processo ilustrado pelo primeiro gráfico 3020 para vedar e transeccionar um pequeno vaso 3014, uma alta energia ultrassônica (5) é aplicada durante um primeiro período 3022. O nível de energia é então diminuído para (3,5) durante um segundo período 3024. Finalmente, o nível de energia é elevado de volta para (5) durante um terceiro período 3026 para completar a vedação do pequeno vaso 3014 e conseguir a transecção e depois o nível de energia é desligado. Todo o ciclo durou cerca de 5 segundos.
[00181] Com referência agora às Figuras 29A a D, o segundo gráfico 3030 mostrado na Figura 29D mostra um processo para ajustar o nível
Petição 870190062513, de 04/07/2019, pág. 89/162
87/114 de acionamento de energia ultrassônica de uma linha ultrassônica para selar um vaso grande 3016. De acordo com o processo ilustrado pelo segundo gráfico 3030 para vedar e transeccionar um vaso grande 3016, uma alta energia ultrassônica (5) é aplicada durante um primeiro período 3032. O nível de energia é então diminuído para (1) durante um segundo período 3034. Finalmente, o nível de energia é elevado de volta para (5) durante um terceiro período 3036 para completar a vedação do vaso grande 3016 e conseguir a transecção e depois o nível de energia é desligado. Todo o ciclo durou cerca de 10 segundos.
[00182] Vasos menores 3014 podem ser mais fáceis de vedar em níveis de alta pressão de ruptura. Dessa forma, pode ser desejável detectar e determinar se um vaso menor 3014 (por exemplo, 4 mm de menos) é preso pelo braço de aperto 3006, e em caso afirmativo, o nível de energia ultrassônica pode não precisar ser diminuído para 1. Em vez disso, o nível de energia poderia diminuir menos, para cerca de 3,5, por exemplo, como mostrado pelo primeiro gráfico 3020 mostrado na Figura 29C. Isso pode possibilitar que o cirurgião atravesse o vaso, coagule e corte o vaso mais rapidamente, sabendo que o processo pode ir mais rápido porque o vaso 3014 é um pouco menor. Se o vaso 3016 for maior (por exemplo, 4 mm ou superior), um processo que aqueça o vaso mais lentamente e durante um período de tempo mais longo pode ser mais desejável, como mostrado pelo segundo gráfico 3030 na Figura 29D.
[00183] A Figura 30 é um diagrama lógico que ilustra um processo exemplificador 3100 para determinar se o modo de hemostasia deve ser utilizado, de acordo com um aspecto da presente descrição. No início, o processo 3100 indica 3102 que o sinal de um sensor de efeito Hall determina 3102 a posição de um atuador final. O processo 3100 determina então 3104 se uma chave de fechamento completo do dispositivo cirúrgico está pressionada, ou se o cabo do dispositivo cirúrgico está totalmente fechado. Se a chave de fechamento completo
Petição 870190062513, de 04/07/2019, pág. 90/162
88/114 do dispositivo cirúrgico não for pressionada e/ou se o cabo do dispositivo cirúrgico não estiver totalmente fechado, o processo 3100 pode continuar a ler o sensor de efeito Hall 3102 para determinar a posição do atuador de extremidade. Se a chave de fechamento completo do dispositivo cirúrgico estiver pressionada, ou se o cabo do dispositivo cirúrgico estiver completamente fechado, o processo 3100 determinará 3106 se a posição do atuador de extremidade indicar um vaso maior que 5 mm. Se a posição do atuador de extremidade não indicar um vaso maior que 5 mm, e nenhum indicador do sistema for encontrado 3108, o processo 3100 pode continuar a ler 3102 o sensor de efeito Hall e determinar a posição do atuador de extremidade.
[00184] Se a posição do atuador de extremidade indicar um vaso maior que 5 mm, o processo 3100 determinará 3110 se a posição do atuador final indicar um vaso maior que 7 mm. Se a posição do atuador de extremidade não indicar um vaso maior que 7 mm, o processo 3100 indica 3112 que o modo de hemostasia deve ser utilizado. Essa condição pode ser indicada utilizando uma variedade de técnicas auditivas, vibratórias ou de retrainformação visual incluindo, por exemplo, um LED verde localizado no dispositivo cirúrgico (por exemplo, no topo do cabo) pode ser ativado. Se a posição do atuador de extremidade indica um vaso maior que 7 mm, o processo 3100 indica 3114 que o tecido não deve ser tomado (isto é, modo de hemostasia não deve ser utilizado), devido ao fato de muito tecido ter sido capturado pelo atuador de extremidade. Essa condição pode ser indicada utilizando uma variedade de técnicas auditivas, vibratórias ou de retroinformação visual incluindo, por exemplo, um LED vermelho no dispositivo cirúrgico (por exemplo, no topo do cabo) pode ser ativado.
[00185] A Figura 31 é um diagrama lógico que ilustra um processo exemplificador 3200 para controle de atuador de extremidade, de acordo com um aspecto da presente descrição; Em um aspecto,
Petição 870190062513, de 04/07/2019, pág. 91/162
89/114 referindo-se à Figura 31, o processo 3200 detecta 3202 um sinal (por exemplo, em um sensor de efeito Hall) em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade. O primeiro tubo pode ser, por exemplo, similar ao membro atuador tubular reciprocante 58 (Figuras 3 e 4) e o segundo tubo pode ser, por exemplo, similar à bainha tubular externa 56 (Figuras 3 e 4). Em outras palavras, conforme descrito na Figura 31, o primeiro tubo pode ser um tubo interno e o segundo tubo é um tubo externo. O tubo interno pode ser móvel 3208 em relação ao tubo externo. O tubo externo pode ser estático em relação ao tubo interno. O processo 3200 detecta 3210 o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00186] O processo 3200 continua e determina 3204 uma posição de braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade baseado no sinal (de, por exemplo, saída de tensão do sensor de efeito Hall). Uma vez que a posição do braço de aperto em relação à lâmina ultrassônica é conhecida, o modo vibracional da lâmina ultrassônica pode ser ajustado para se obter diferentes efeitos de tecido. Nesse modo, o processo 3200 ajusta 3206 uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto. Por exemplo, o processo 3200 pode ajustar 3214 a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall. Altemativamente, o processo pode efetivamente selar vasos sem transecção. Nesse modo, o processo 3200 pode ajustar 3218 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de
Petição 870190062513, de 04/07/2019, pág. 92/162
90/114 aperto se aproxima da lâmina ultrassônica.
[00187] Em outro aspecto, o processo 3200 pode ajustar 3216 a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente com base na razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica. Por exemplo, conforme o braço de aperto se move em direção à lâmina ultrassônica e um valor desejado (Figuras 21 e 22) é aproximado, a quantidade de saída de energia para a lâmina ultrassônica e para dentro do tecido pode ser reduzida. Isto é porque a lâmina ultrassônica irá cortar o tecido com energia suficiente. Entretanto, se a potência sendo produzida for reduzida ao longo do tempo conforme o valor desejado é aproximado (onde uma transecção total pode ser representada por uma razão de deslocamento de 1), a chance de o tecido ser transeccionado pode ser drasticamente reduzida. Desse modo, a vedação eficaz pode ser obtida sem corte do tecido conforme possa ser desejado pelo cirurgião.
[00188] Em um aspecto, o processo 3200 da Figura 31 move 3212 um ímã posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade. O processo 3200 então determina 3220 um tipo de tecido entre o braço de aperto e a lâmina ultrassônica com base em um sinal (a partir de, por exemplo, um sensor de efeito Hall). Adicionalmente, com o uso de um processador e/ou memória, um ou mais algoritmos (por exemplo, para vedar um vaso sem transecção) pode ser escolhido com base na espessura, quantidade ou o tipo de tecido determinado a ser preso dentro das garras. Em resposta a determinar que o tipo de tecido entre o grampo e a lâmina ultrassônica é um vaso grande, o processo 3200 pode reduzir 3226 a energia de saída para a lâmina ultrassônica do atuador de extremidade em uma quantidade superior à de um pequeno vaso. Além disso, em resposta à
Petição 870190062513, de 04/07/2019, pág. 93/162
91/114 determinação de que o tipo de tecido entre o grampo e a lâmina ultrassônica é um vaso pequeno, o processo 3200 pode reduzir 3224 a energia de saída para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para um vaso grande. Em um aspecto, em vez de alterar algoritmos para pequenos vasos, conforme descrito acima, um indicador pode ser fornecido ao cirurgião para indicar a espessura do tecido capturado no atuador de extremidade. Em um aspecto, o processo 3200 ajusta 3222 a energia de saída para a lâmina ultrassônica do atuador de extremidade com base no tipo de tecido.
[00189] A Figura 32 é um diagrama lógico que ilustra um processo exemplificador 3300 para calibrar um aparelho para controlar um atuador de extremidade, de acordo com um aspecto da presente descrição. Em um aspecto, o processo 3300 detecta 3302 um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade. O processo 3300, então, detecta 3304 um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina. O processo detecta 3306 um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina do atuador de extremidade. Uma vez que os três sinais são detectados, o processo 3300 determina 3308 uma curva de melhor ajuste para representar a intensidade do sinal como função do deslocamento do sensor baseado em ao menos o primeiro, o segundo e o terceiro sinal correspondentes às posições totalmente aberta, intermediária e totalmente fechada, respectivamente, e uma dimensão do corpo rígido. Um exemplo de uma curva de melhor ajuste nesse contexto é mostrado nas Figuras 14B e 24. Finalmente, o processo 3300 cria 3310 uma tabela de pesquisa baseada em ao menos o primeiro, o segundo e o
Petição 870190062513, de 04/07/2019, pág. 94/162
92/114 terceiro sinal correspondendo às posições totalmente aberta, intermediária e totalmente fechada, respectivamente.
[00190] Como descrito acima, a posição da parte do braço de aperto do atuador de extremidade pode ser medida com uma disposição de ímã/sensor de efeito Hall. Um emplastro de tecido, geralmente feito de TEFLON, pode ser posicionado sobre o braço de aperto para evitar que o tecido fique aderido ao braço de aperto. À medida que o atuador de extremidade é utilizado e o emplastro de tecido é utilizado, será necessário rastrear o desvio do sinal de saída do sensor de efeito Hall e estabelecer limites de alteração para manter a integridade da seleção do algoritmo de tratamento de tecido e a extremidade do retorno dos pontos de gatilho de corte aos algoritmos de tratamento de tecido.
[00191] Consequentemente, é fornecido um sistema de controle. A saída do sensor de efeito Hall sob a forma de contagens pode ser utilizada para rastrear a abertura do braço de aperto do atuador de extremidade. O leitor pode se referir às Figuras 34 e 35 para os sistemas ADC 3500, 3600 que podem empregar a saída do contador de um ADC. A posição do braço de aperto, com ou sem um emplastro de tecido, pode ser calibrada com o uso das técnicas aqui descritas. Uma vez que a posição do braço de aperto é calibrada, a posição do braço de aperto e o desgaste do emplastro de tecido podem ser monitorados. Em um aspecto, o sistema de controle determina que o braço de aperto está em uma posição fechada peto monitoramento por um aumento na impedância acústica que ocorre quando a lâmina ultrassônica entra em contato com o tecido ou o emplastro de tecido. Dessa forma, um número específico de contador de ADC acumulará um número específico de contagens a partir do momento em que o braço de aperto vai de uma posição completamente aberta para uma posição completamente fechada. Em uma implementação, com base na configuração do sensor de efeito Hall, as contagens de ADC do sensor de efeito Hall aumentam
Petição 870190062513, de 04/07/2019, pág. 95/162
93/114 à medida que o braço de aperto se fecha em direção à lâmina ultrassônica. À medida que o emplastro de tecido se desgasta, o contador acumulará um número adicional incrementai de contagens devido ao deslocamento rotacional adicional experimentado pelo braço de aperto devido ao desgaste do emplastro de tecido. Ao rastrear o novo valor de contagem para uma posição de braço de aperto fechada, o sistema de controle pode ajustar o limite de gatilho para uma extremidade de corte e prever melhor a faixa total de abertura do braço de aperto que ocorreu.
[00192] Além disso, as contagens de ADC do sensor de efeito Hall podem ser empregadas para determinar o coeficiente de atrito de tecido (μ) do tecido em tratamento com base na abertura do braço de aperto empregando valores de μ predeterminados armazenados em uma tabela de consulta. Por exemplo, o algoritmo de tratamento de tecido específico pode ser dinamicamente ajustado ou modificado durante um ciclo de tratamento ultrassônico (por exemplo, sequência de disparo ou ativação de energia ultrassônica) para otimizar o corte do tecido com base no tipo de tecido (por exemplo, tecido adiposo, mesentério, vaso) ou a quantidade ou espessura do tecido.
[00193] A Figura 33 é um diagrama lógico de um processo 3400 para rastrear o desgaste da porção de emplastro de tecido do braço de aperto e compensar o desvio resultante do sensor de efeito Hall e determinar o coeficiente de atrito do tecido, de acordo com um aspecto da presente descrição. O processo 3400 pode ser implementado em software, hardware, firmware ou uma combinação dos mesmos, empregando ambiente de circuito do gerador ilustrado em conexão com as Figuras 6 a 10.
[00194] Em um aspecto, o processo 3400 pode ser implementado por um circuito que pode compreender um controlador compreendendo um ou mais processadores (por exemplo, microprocessador,
Petição 870190062513, de 04/07/2019, pág. 96/162
94/114 microcontrolador) acoplados a ao menos um circuito de memória. O ao menos um circuito de memória armazena instruções executáveis por máquina que, quando executadas pelo processador, fazem com que o processador execute o processo 3400.
[00195] O processador pode ser qualquer um dentre inúmeros processadores de núcleo simples ou processadores de múltiplos núcleos (multi-core) conhecidos na técnica. O circuito de memória pode compreender meios de armazenamento voláteis e não voláteis. Em um aspecto, o processador pode incluir uma unidade de processamento de instruções e uma unidade aritmética. A unidade de processamento de instrução pode ser configurada para receber instruções a partir do circuito de memória.
[00196] Em um aspecto, um circuito pode compreender uma máquina de estado finito compreendendo um circuito lógico combinacional configurado para implementar o processo 3400 aqui descrito. Em um aspecto, um circuito pode compreender uma máquina de estados finitos compreendendo um circuito lógico sequencial compreendendo um circuito lógico combinacional e, ao menos, um circuito de memória, por exemplo. O ao menos um circuito de memória pode armazenar um estado atual da máquina de estados finitos. O circuito lógico sequencial ou o circuito lógico combinatório pode ser configurado para implementar o processo 3400 aqui descrito. Em certos casos, o circuito lógico sequencial pode ser síncrono ou assíncrono.
[00197] Em outros aspectos, o circuito pode compreender uma combinação do processador e da máquina de estados finitos para implementar as técnicas de compressão e descompressão aqui descritas. Em outras modalidades, a máquina de estados finitos pode compreender uma combinação do circuito lógico combinacional e do circuito lógico sequencial.
[00198] Como aqui descrito, a posição do braço de aperto é
Petição 870190062513, de 04/07/2019, pág. 97/162
95/114 detectada por um sensor de efeito Hall em relação a um ímã localizado em um tubo de fechamento de um instrumento cirúrgico. Voltando agora para o processo 3400, a posição inicial do braço de aperto, por exemplo, a posição do sensor de efeito Hall localizado no tubo de fechamento, é armazenada 3402 na memória. À medida que o tubo de fecho é deslocado em uma direção distai, o braço de aperto é fechado na direção da lâmina ultrassônica e a posição instantânea do braço de aperto é armazenada 3404 na memória. A diferença, delta (x), entre a posição instantânea e a posição inicial do braço de aperto é calculada 3406. A diferença, delta (x), pode ser utilizada para determinar uma alteração no deslocamento do tubo, que pode ser utilizada para calcular o ângulo e a força aplicada pelo braço de aperto ao tecido localizado entre o braço de aperto e a lâmina ultrassônica. A posição instantânea do braço de aperto é comparada 3408 à posição fechada do braço de aperto para determinar se o braço de aperto está em uma posição fechada. Enquanto o braço de aperto ainda não está em uma posição fechada, o processo 3400 prossegue ao longo da trajetória não (N) e compara a posição instantânea do braço de aperto com a posição inicial do braço de aperto até o grampo atingir uma posição fechada.
[00199] Quando o braço de aperto atinja uma posição fechada, o processo 3400 continua ao longo da trajetória sim (Y) e a posição fechada do braço de aperto é aplicada para uma entrada de uma função AND de lógica 3410. A função AND de lógica 3410 é uma representação de alto nível de uma operação lógica, que pode compreender operações AND, OR, XOR e AND booleanas implementadas em um software, hardware ou uma combinação dos mesmos. Quando uma condição de abuso ou desgaste do emplastro de tecido é determinada com base nas medições de impedância acústica, a posição de fechamento do braço de fixação atual é ajustada 3414 como a nova posição inicial do braço de fixação para compensar a condição de abuso ou desgaste. Se
Petição 870190062513, de 04/07/2019, pág. 98/162
96/114 nenhum abuso ou desgaste do emplastro de tecido for determinado, a posição inicial do braço de fixação permanece a mesma. O abuso ou o desgaste do emplastro de tecido do braço de aperto é determinado pelo monitoramento 3420 da impedância 3422 da lâmina ultrassônica. A impedância de interface da lâmina ultrassônica/emplastro de tecido ID determinou 3422 e comparou 3412 com uma condição de abuso ou desgaste do emplastro de tecido. Quando a impedância corresponde a uma condição de abuso ou desgaste do emplastro de tecido, o processo 3400 prossegue ao longo da trajetória sim (Y) e a posição atual fechada do braço de aperto é definida como a nova posição inicial do braço de aperto para compensar a condição de abuso ou desgaste do emplastro de tecido. Quando a impedância não corresponde a uma condição de abuso ou desgaste do emplastro de tecido, o processo 3400 prossegue ao longo da trajetória não (N) e a posição inicial do braço de aperto permanece a mesma.
[00200] A posição instantânea armazenada 3404 do braço de aperto é também fornecida à entrada de outra função lógica AND 3416 para determinar a quantidade e a espessura do tecido preso entre o braço de aperto e a lâmina ultrassônica. A impedância da interface tecido/lâmina ultrassônica é determinada 3422 e é comparada a 3424, 34267, 3428 para múltiplos coeficientes de atrito do tecido μ = x, μ = y ou μ = Z. Assim, quando a impedância da interface lâmina ultrassônica/tecido corresponde a um dos coeficientes de atrito μ - x, μ - y ou μ - z com base na quantidade ou espessura do tecido, por exemplo, a abertura do braço de aperto, o algoritmo de tecido atual é mantido 3430 e o algoritmo atual é utilizado para monitorar 3420 a impedância 3422 da lâmina ultrassônica. Se o coeficiente de atrito do tecido μ = x, μ = y ou μ = Z com base na quantidade ou espessura do tecido, por exemplo, a abertura do braço de aperto, for alterado 3418 com base no novo coeficiente de atrito do tecido μ e na quantidade ou espessura do tecido,
Petição 870190062513, de 04/07/2019, pág. 99/162
97/114 por exemplo, a abertura do braço de aperto, o algoritmo de tecido atual é utilizado para monitorar 3420 a impedância 3422 da lâmina ultrassônica.
[00201] Consequentemente, a abertura atual do braço de fixação é utilizada para determinar o coeficiente de atrito de tecido atual μ com base na quantidade e espessura do tecido, conforme medido pela abertura do braço de aperto. Dessa forma, um algoritmo inicial pode ser baseado em uma abertura inicial do braço de aperto. A impedância da lâmina ultrassônica é comparada 3424, 3426, 3428 a vários coeficientes de atrito do tecido μ = x, μ = y ου μ = z, que são armazenados em uma tabela de consulta, e correspondem a tecido adiposo, tecido mesentério ou tecido do vaso, por exemplo. Se não ocorrer qualquer coincidência entre a impedância da lâmina ultrassônica e o coeficiente de atrito do tecido, o processo 3400 prossegue ao longo das trajetórias não (N) de qualquer das comparações de impedância de tecido 3424, 3426, 3428 e o algoritmo de tecido atual é mantido. Se qualquer uma das saídas das funções de comparação 3424, 3426, 3428 for verdadeira, o processador alterna para um algoritmo de tratamento de tecido diferente com base na nova impedância do tecido e na abertura do braço de aperto. Consequentemente, um novo algoritmo de tratamento de tecido é carregado no instrumento ultrassônico. O processo 3400 continua mediante o monitoramento 3420 da impedância da lâmina ultrassônica, da abertura do braço de aperto e do abuso ou desgaste do emplastro de tecido.
[00202] A Figura 34 ilustra um sistema sensor de efeito Hall 3500 que pode ser empregado com o processo 3400 da Figura 33, de acordo com um aspecto da presente descrição. Em conexão com o processo 3400 descrito na Figura 33, o sistema de sensor de efeito Hall 3500 da Figura 34 inclui um sensor de efeito Hall 3502 alimentado por um regulador de tensão 3504. A saída do sensor de efeito Hall 3502 é uma tensão
Petição 870190062513, de 04/07/2019, pág. 100/162
98/114 analógica proporcional à posição do braço de aperto, que é aplicada a um conversor analógico-digital 3506 (ADC). A saída digital de n bits do ADO 3506 é aplicada a um microprocessador 3508 acoplado a uma memória 3510. O microprocessador 3508 é configurado para processar e determinar a posição do braço de aperto com base na entrada digital de n bits do ADC 3505. Será entendido que a saída digital do ADC 3506 pode ser chamada de uma contagem.
[00203] Conforme descrito na presente invenção, a saída analógica do sensor de efeito Hall é fornecida a um conversor analógico-digital interno ou externo como o ADC 3506 mostrado na Figura 34 ou qualquer um dos circuitos de conversor analógico para digital situados no gerador. O transdutor 104 mostrado na Figura 6 pode compreender um sensor de efeito Hall que compreende um circuito conversor analógicodigital cuja saída é aplicada ao circuito de controle 108. Em um aspecto, o gerador 102 mostrado na Figura 7 compreende vários circuitos conversores analógico/digital como ADCs 176,178,180, que podem ser adaptados e configurados para receber a saída de tensão analógica do sensor de efeito Hall e convertê-lo em formas digitais para obter contagens e para fazer interface do sensor de efeito Hall com um processador DSP 174, microprocessador 190, um dispositivo lógico 166 e/ou um controlador 196.
[00204] A Figura 35 ilustra um aspecto de um conversor analógicodigital (ADC) de contador tipo rampa 3600 que pode ser empregado com o sistema de sensor de efeito Hall 3500 da Figura 34, de acordo com um aspecto da presente descrição. O ADC 3600 de rampa digital recebe uma tensão de entrada analógica de um sensor de efeito Hall no terminal de entrada positivo Vin de um comparador 3602 e Dn até D0 (Dn a D0) são as saídas digitais (n bits). A linha de controle encontrada em um contador 3606 liga o contador 3606 quando esse está baixo e para o contador 3606 quando esse está alto. Em funcionamento, o
Petição 870190062513, de 04/07/2019, pág. 101/162
99/114 contador 3606 é aumentado até que o valor encontrado no contador 3606 corresponda ao valor do sinal de entrada analógico em Vin. A saída digital Dn~D0 é aplicada a um conversor digital-analógico 3604 (DAC) e a saída analógica é aplicada ao terminal negativo do comparador 3602 e é comparada com a tensão de entrada analógica em Vin. Quando essa condição é satisfeita, o valor no contador 3606 é o equivalente digital do sinal de entrada analógico em Vin.
[00205] Um pulso START é fornecido para cada tensão de entrada analógica Vin ser convertida em um sinal digital. O sinal END representa o fim da conversão para cada tensão de entrada analógica individual encontrada em Vin (cada amostra), e não para todo o sinal de entrada analógico. Cada pulso de relógio incrementa o contador 3606. Supondo um ADC de 8 bits, para converter o valor analógico de 128 em digital, por exemplo, seriam necessários 128 ciclos por instrução. O ADC 3600 conta de 0 até o valor máximo possível (2n-1) até que o valor Dn-DO de saída digital correto seja identificado para a tensão de entrada analógica presente em Vin. Quando isso é verdade, o sinal END é dado e o valor digital para Vin é para Dn~D0.
[00206] Embora vários aspectos tenham sido descritos, deve ficar evidente, entretanto, que várias modificações, alterações e adaptações a essas modalidades podem ocorrer aos indivíduos versados na técnica com a obtenção de algumas ou todas as vantagens da invenção. Os aspectos divulgados são, portanto, destinados a incluir todas essas modificações, alterações e adaptações sem se afastar do escopo e do espírito da invenção. Por conseguinte, outros aspectos e implementações estão dentro do escopo das reivindicações seguintes. Por exemplo, as ações mencionadas nas reivindicações podem ser realizadas em uma ordem diferente e ainda obter resultados desejáveis. [00207] Embora vários detalhes tenham sido apresentados na descrição acima, será reconhecido que os vários aspectos das técnicas
Petição 870190062513, de 04/07/2019, pág. 102/162
100/114 para operar um gerador para gerar digitalmente as formas de onda de sinal elétrico e os instrumentos cirúrgicos podem ser praticados sem esses detalhes específicos. Os versados na técnica reconhecerão que os componentes (por exemplo, operações), dispositivos e objetivos descritos na presente invenção, e a discussão que os acompanha, são usados como exemplos tendo em vista a clareza conceituai, e que são contempladas várias modificações de configuração. Consequentemente, como usado na presente invenção, os exemplares específicos apresentados e a discussão que os acompanha pretendem ser representativos de suas classes mais gerais. Em geral, o uso de qualquer exemplar específico pretende ser representativo de sua classe, e a não inclusão de componentes (por exemplo, operações), dispositivos e objetos específicos não deve ser considerada limitadora. [00208] Além disso, embora várias formas tenham sido ilustradas e descritas, não é intenção do requerente restringir ou limitar o escopo das reivindicações em anexo a tal detalhe. Numerosas modificações, variações, alterações, substituições, combinações e equivalentes destas formas podem ser implementadas e ocorrerão aos versados na técnica sem se que afaste do escopo da presente descrição. Além disso, a estrutura de cada elemento associado com a forma pode ser altemativamente descrita como um meio para fornecer a função realizada pelo elemento. Além disso, onde forem revelados materiais para determinados componentes, outros materiais podem ser usados. Deve-se compreender, portanto, que a descrição precedente e as reivindicações em anexo pretendem cobrir todas essas modificações, combinações e variações abrangidas pelo escopo das modalidades apresentadas. As reivindicações em anexo se destinam a cobrir todas essas modificações, variações, alterações, substituições, modificações e equivalentes.
[00209] Para concisão e clareza da descrição, aspectos
Petição 870190062513, de 04/07/2019, pág. 103/162
101/114 selecionados da descrição acima foram apresentados em forma de diagrama de blocos e não em detalhes. Algumas porções das descrições detalhadas aqui fornecidas podem ser apresentadas em termos de instruções que operam em dados que são armazenados em uma ou mais memórias de computador ou um ou mais dispositivos de armazenamento de dados (por exemplo, disquete, unidade de disco rígido, disco compacto (CD), Disco de Vídeo Digital (DVD) ou fita digital). Essas descrições e representações são usadas pelos versados na técnica para descrever e transmitir a substância de seu trabalho a outros versados na técnica. Em geral, um algoritmo se refere à sequência autoconsistente em etapas que levam ao resultado desejado, em que uma etapa” se refere à manipulação de quantidades físicas e/ou estados lógicos que podem, embora não necessariamente precisem, assumir a forma de sinais elétricos ou magnéticos que possam ser armazenados, transferidos, combinados, comparados e manipulados de qualquer outra forma. É uso comum chamar esses sinais de bits, valores, elementos, símbolos, caracteres, termos, números ou congêneres. Esses termos e termos similares podem estar associados às grandezas físicas apropriadas e são identificações meramente convenientes aplicadas a essas quantidades e/ou estados.
[00210] Salvo afirmação expressa em contrário, conforme fica evidente a partir da descrição precedente, é entendido que, ao longo da descrição precedente, as discussões que usam termos como processamento, ou computação, ou cálculo, ou determinação, ou exibição, ou similares, se referem à ação e aos processos de um computador, ou dispositivo de computação eletrônica similar, que manipule e transforme os dados representados sob a forma de grandezas físicas (eletrônicas) nos registros e nas memórias do computador em outros dados representados de modo similar sob a forma de grandezas físicas nas memórias ou nos registros do
Petição 870190062513, de 04/07/2019, pág. 104/162
102/114 computador, ou em outros dispositivos similares de armazenamento, transmissão ou exibição de informações.
[00211] Em um sentido geral, os versados na técnica reconhecerão que os vários aspectos aqui descritos, os quais podem ser implementados, individual e/ou coletivamente, por meio de uma ampla gama de hardware, software, firmware, ou qualquer combinação destes, podem ser vistos como sendo compostos por vários tipos de ’’circuitos elétricos. Consequentemente, como usado na presente invenção, circuito elétrico inclui, mas não se limita aos, circuitos elétricos que tenham pelo menos um circuito elétrico discreto, circuitos elétricos que tenham pelo menos um circuito integrado, circuitos elétricos que tenham pelo menos um circuito integrado para aplicação específica, circuitos elétricos que formem um dispositivo de computação para finalidades gerais configurado por um programa de computador (por exemplo, um computador para finalidades gerais configurado por um programa de computador que pelo menos parcialmente execute processos e/ou dispositivos aqui descritos, ou um microprocessador configurado por um programa de computador que pelo menos parcialmente execute os processos e/ou dispositivos aqui descritos), circuitos elétricos que formem um dispositivo de memória (por exemplo, formas de memória de acesso aleatório), e/ou circuitos elétricos que formem um dispositivo de comunicações (por exemplo, um modem, roteadores ou equipamento óptico-elétrico). Os versados na técnica reconhecerão que o assunto aqui descrito pode ser implementado de modo analógico ou digital, ou em alguma combinação destes.
[00212] A descrição detalhada precedente apresentou várias formas dos dispositivos e/ou processos por meio do uso de diagramas de blocos, fluxogramas e/ou exemplos. Embora esses diagramas de bloco, fluxogramas e/ou exemplos contenham uma ou mais funções e/ou operações, será compreendido pelos versados na técnica que cada
Petição 870190062513, de 04/07/2019, pág. 105/162
103/114 função e/ou operação dentro desses diagramas de bloco, fluxogramas e/ou exemplos pode ser implementada, individual e/ou coletivamente, através de uma ampla gama de hardware, software, firmware ou praticamente qualquer combinação destes. Em uma modalidade, várias porções do assunto aqui descrito podem ser implementadas através de circuitos integrados de aplicação específica (ASICs), arranjos de portas programáveis em campo (FPGAs), processadores de sinal digital (PSDs) ou outros formatos integrados. Contudo, os versados na técnica reconhecerão que alguns aspectos das modalidades aqui reveladas, no todo ou em parte, podem ser implementados de modo equivalente em circuitos integrados, como um ou mais programas de computador executando em um ou mais computadores (por exemplo, como um ou mais programas operando em um ou mais sistemas de computador), como um ou mais programas operando em um ou mais processadores (por exemplo, como um ou mais programas operando em um ou mais microprocessadores), como firmware, ou virtualmente como qualquer combinação dos mesmos, e que projetar o conjunto de circuitos e/ou escrever o código para o software e firmware estaria dentro do âmbito de prática de um elemento versado na técnica à luz desta descrição. Além disso, os versados na técnica entenderão que os mecanismos do assunto aqui descrito podem ser distribuídos como um ou mais produtos de programa em uma variedade de formas e que uma forma ilustrativa do assunto aqui descrito é aplicável independentemente do tipo específico de meio de transmissão de sinais utilizado para efetivamente realizar a distribuição. Exemplos de um meio de transmissão de sinais incluem, mas não se limitam aos seguintes: um meio do tipo gravável como um disquete, uma unidade de disco rígido, um disco compacto (CD), um disco de vídeo digital (DVD), uma fita digital, uma memória de computador, etc.; e uma mídia do tipo de transmissão, como uma mídia de comunicação digital e/ou analógica (por exemplo, um cabo de fibra
Petição 870190062513, de 04/07/2019, pág. 106/162
104/114 óptica, um guia de onda, um enlace de comunicação com fio, um enlace de comunicação sem fio (por exemplo, transmissor, receptor, lógica de transmissão, lógica de recepção, etc.), etc.).
[00213] Em alguns casos, um ou mais elementos podem ser descritos usando a expressão acoplado e conectado junto com seus derivados. Deve-se compreender que esses termos não são concebidos para serem sinônimos uns dos outros. Por exemplo, alguns aspectos podem ser descritos com o uso do termo conectado para indicar que dois ou mais elementos estão em contato físico direto ou em contato elétrico uns com os outros. Em outro exemplo, alguns aspectos podem ser descritos com o uso do termo acoplado para indicar que dois ou mais elementos estão em contato físico direto ou em contato elétrico. O termo acoplado, entretanto, também pode significar que dois ou mais elementos não estão em contato direto um com o outro, mas ainda assim cooperam ou interagem entre si. Deve-se compreender que as arquiteturas representadas de diferentes componentes contidas no interior, ou conectadas a outros componentes diferentes são meramente exemplos, e que, de fato, muitas outras arquiteturas que alcançam a mesma funcionalidade podem ser implementadas. No sentido conceituai, qualquer disposição de componentes para alcançar a mesma funcionalidade está efetivamente associada se a funcionalidade desejada for alcançada. Assim, quaisquer dois componentes mencionados na presente invenção que sejam combinados para alcançar uma funcionalidade específica podem ser vistos como associados um ao outro se a funcionalidade desejada é alcançada, independentemente das arquiteturas ou dos componentes intermediários. De modo semelhante, quaisquer desses dois componentes assim associados também podem ser vistos como estando operacionalmente conectados ou operacionalmente acoplados um ao outro para alcançar a funcionalidade desejada, e
Petição 870190062513, de 04/07/2019, pág. 107/162
105/114 quaisquer desses dois componentes capazes de serem associados dessa forma podem ser vistos como sendo 'Operacionalmente acopláveis um ao outro para alcançar a funcionalidade desejada. Exemplos específicos de componentes operacionalmente acopláveis incluem, mas não se limitam a componentes fisicamente encaixáveis e/ou em interação física e/ou os que podem interagir por conexão sem fio e/ou componentes que interajam por conexão sem fio e/ou que interajam por lógica e/ou componentes que podem interagir por lógica e/ou componentes que interajam eletricamente e/ou componentes que podem interagir eletricamente e/ou componentes que interajam oticamente e/ou componentes que podem interagir oticamente.
[00214] Em outros casos, um ou mais componentes podem ser chamados na presente invenção de configurado para, configurável para, operável/operacional para, adaptado/adaptável para, capaz de, conformável/conformado para, etc. Os versados na técnica reconhecerão que configurado para pode, de modo geral, abranger componentes em estado ativo e/ou componentes em estado inativo e/ou componentes em estado de espera, exceto quando o contexto determinar o contrário.
[00215] Embora aspectos específicos da presente descrição tenham sido mostrados e descritos, ficará evidente aos versados na técnica que, com base nos ensinamentos da presente invenção, podem ser feitas mudanças e modificações sem se afastar do assunto aqui descrito e de seus aspectos mais amplos e, portanto, as reivindicações em anexo abrangem em seu escopo todas essas alterações e modificações do mesmo modo que elas estão dentro do verdadeiro escopo do assunto aqui descrito. Será compreendido pelos versados na técnica que, em geral, os termos usados aqui, e principalmente nas reivindicações em anexo (por exemplo, corpos das reivindicações em anexo) destinam-se geralmente como termos abertos (por exemplo, o termo incluindo
Petição 870190062513, de 04/07/2019, pág. 108/162
106/114 deve ser interpretado como incluindo, mas não se limitando a, o termo tendo deve ser interpretado como tendo, ao menos, o termo inclui deve ser interpretado como inclui, mas não se limita a, etc.). Será ainda entendido pelos versados na técnica que, quando um número específico de uma menção de reivindicação introduzida for pretendido, tal intenção será expressamente mencionada na reivindicação e, na ausência de tal menção, nenhuma intenção estará presente. Por exemplo, como uma ajuda para a compreensão, as seguintes reivindicações em anexo podem conter o uso das frases introdutórias ao menos um e um ou mais para introduzir menções de reivindicação. Entretanto, o uso de tais frases não deve ser interpretado como implicando que a introdução de uma menção da reivindicação pelos artigos indefinidos um, uns ou uma, umas limita qualquer reivindicação específica contendo a menção da reivindicação introduzida a reivindicações que contêm apenas uma tal menção, mesmo quando a mesma reivindicação inclui as frases introdutórias um ou mais ou ao menos um e artigos indefinidos, como um, uns ou uma, umas (por exemplo, um, uns e/ou uma, umas deve tipicamente ser interpretado como significando ao menos um ou um ou mais); o mesmo vale para o uso de artigos definidos usados para introduzir as menções de reivindicação.
[00216] Além disso, mesmo se um número específico de uma menção de reivindicação introduzida for explicitamente mencionado, os versados na técnica reconhecerão que essa menção precisa ser tipicamente interpretada como significando ao menos o número mencionado (por exemplo, a mera menção de duas menções, sem outros modificadores, tipicamente significa ao menos duas menções, ou duas ou mais menções). Além disso, em casos onde é usada uma convenção análoga a pelo menos um dentre A, B e C, etc., em geral essa construção se destina a ter o sentido no qual a convenção seria
Petição 870190062513, de 04/07/2019, pág. 109/162
107/114 entendida por (por exemplo, um sistema que tem ao menos um dentre A, B e C incluiría, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Em casos nos quais é usada uma convenção análoga a pelo menos um dentre A, B ou C, etc., em geral essa construção se destina a ter o sentido no qual a convenção seria entendida por (por exemplo, um sistema que tem ao menos um dentre A, B e C incluiría, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Será adicionalmente entendido pelos versados na técnica que tipicamente uma palavra e/ou uma frase disjuntiva apresentando dois ou mais termos alternativos, quer na descrição, nas reivindicações ou nos desenhos, deve ser entendida como contemplando a possibilidade de incluir um dos termos, qualquer um dos termos ou ambos os termos, exceto quando o contexto determinar indicar algo diferente. Por exemplo, a frase A ou B será tipicamente entendida como incluindo as possibilidades de A ou B ou A e B.
[00217] Com relação às reivindicações em anexo, os versados na técnica entenderão que as operações mencionadas nas mesmas podem, de modo geral, ser executadas em qualquer ordem. Além disso, embora vários fluxos operacionais sejam apresentados em uma ou mais sequências, deve-se compreender que as várias operações podem ser executadas em outras ordens diferentes daquelas que estão ilustradas, ou podem ser executadas simultaneamente. Exemplos dessas ordenações alternativas podem incluir ordenações sobrepostas, intercaladas, interrompidas, reordenadas, incrementais, preparatórias, suplementares, simultâneas, inversas ou outras ordenações variantes, exceto quando o contexto determinar em contrário. Ademais, termos como responsivo a, relacionado a ou outros particípios adjetivos não pretendem de modo geral excluir essas variantes, exceto quando o
Petição 870190062513, de 04/07/2019, pág. 110/162
108/114 contexto determinar em contrário.
[00218] Vale notar que qualquer referência a um (1) aspecto, um aspecto, uma (1) forma ou uma forma significa que um determinado recurso, estrutura ou característica descrito em conexão com o aspecto está incluído em ao menos um aspecto. Dessa forma, o uso de expressões como em um (1) aspecto, em um aspecto, em uma (1) modalidade, em uma modalidade, em vários locais ao longo deste relatório descritivo não se refere necessariamente ao mesmo aspecto. Além disso, os recursos, estruturas ou características específicas podem ser combinados de qualquer maneira adequada em um ou mais aspectos.
[00219] Com relação ao uso de substancialmente quaisquer termos plurais e/ou singulares na presente invenção, os versados na técnica podem mudar do plural para o singular e/ou do singular para o plural conforme seja adequado ao contexto e/ou aplicação. As várias permutações singular/plural não são expressamente aqui apresentadas por fins de clareza.
[00220] Em certos casos, o uso de um sistema ou método pode ocorrer mesmo se os componentes em um território estão localizados fora do território. Por exemplo, em um contexto de computação distribuída, o uso de um sistema de computação distribuída pode ocorrer em uma região ainda que partes do sistema possam ser localizados fora do território (por exemplo, relé, servidor, processador, sinal contendo meio, transmissão de computador, computador, etc., localizado fora do território).
[00221] Uma venda de um sistema ou método pode, da mesma forma, ocorrer em um território mesmo se os componentes do sistema e/ou método estiverem situados e/ou forem usados fora do território. Adicionalmente, a implementação de pelo menos parte de um sistema para executar um método em um território não impede o uso do sistema
Petição 870190062513, de 04/07/2019, pág. 111/162
109/114 em outro território.
[00222] Todas as patentes US, publicações de pedido de patente US, pedidos de patente US, patentes estrangeiras, pedidos de patentes estrangeiros e publicações de não patentes supracitados neste relatório descritivo e/ou listados em qualquer Folha de Dados de Pedido (ADS, de Application Data Sheet), ou qualquer outro material de descrição estão aqui incorporados, por referência, na medida em que não forem inconsistentes com o conteúdo da presente descrição. Desse modo, e na medida em que for necessário, a descrição como explicitamente aqui apresentada substitui qualquer material conflitante incorporado à presente invenção a título de referência. Qualquer material, ou porção do mesmo, tido como aqui incorporado a título de referência, mas que entre em conflito com as definições, declarações, ou outros materiais de descrição existentes aqui apresentados estará aqui incorporado apenas na medida em que não haja conflito entre o material incorporado e o material de descrição existente.
[00223] Em resumo, foram descritos numerosos benefícios que resultam do emprego dos conceitos descritos no presente documento. A descrição anteriormente mencionada de uma ou mais modalidades foi apresentada para propósitos de ilustração e descrição. Essa descrição não pretende ser exaustiva nem limitar a invenção à forma precisa revelada. Modificações ou variações são possíveis à luz dos ensinamentos acima. Uma ou mais modalidades foram escolhidas e descritas com a finalidade de ilustrar os princípios e a aplicação prática para, assim, permitir que o versado na técnica use as várias modalidades e com várias modificações, conforme sejam convenientes ao uso específico contemplado. Pretende-se que as reivindicações apresentadas em anexo definam o escopo global.
[00224] Vários aspectos do assunto aqui descrito são definidos nas seguintes cláusulas numeradas:
Petição 870190062513, de 04/07/2019, pág. 112/162
110/114 [00225] 1. Método para controlar um atuador de extremidade, sendo que o método é caracterizado pelo fato de que compreende: detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade; determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[00226] 2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o ajuste da saída de energia à lâmina ultrassônica é alcançado pela manipulação da corrente elétrica enviada à empunhadura.
[00227] 3. Método, de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
[00228] 4. Método, de acordo com qualquer uma das reivindicações ou 2, caracterizado peto fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo interno.
[00229] 5. Método, de acordo com qualquer uma das reivindicações a 4, caracterizado peto fato de que compreende adicionalmente detectar o sinal com o uso de um sensor de efeito Hall e um ímã posicionado no primeiro tubo.
[00230] 6. Método, de acordo com qualquer uma das reivindicações a 5, caracterizado peto fato de que compreende adicionalmente mover um ímã posicionado no primeiro tubo em relação a um sensor de efeito
Petição 870190062513, de 04/07/2019, pág. 113/162
111/114
Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
[00231] 7. Método, de acordo com qualquer uma das reivindicações a 6, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
[00232] 8. Método, de acordo com qualquer uma das reivindicações a 7, caracterizado peto fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00233] 9. Método, de acordo com qualquer uma das reivindicações a 8, caracterizado peto fato de que compreende adicionalmente ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00234] 10. Método, de acordo com qualquer uma das reivindicações 1 a 9, caracterizado peto fato de que compreende adicionalmente desligar completamente a saída de energia à lâmina ultrassônica do atuador de extremidade uma vez que um limite de razão de deslocamento tiver sido atingido.
[00235] 11. Método, de acordo com qualquer uma das reivindicações 1 a 10, caracterizado pelo fato de que compreende adicionalmente: determinar uma quantidade ou espessura do tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal; e ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base na quantidade ou espessura do tecido.
Petição 870190062513, de 04/07/2019, pág. 114/162
112/114 [00236] 12. Método, de acordo com a reivindicação 11, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou a espessura de tecido entre o braço de aperto e a lâmina ultrassônica é menor que um limite predeterminado, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para uma quantidade ou espessura maior de tecido.
[00237] 13. Método, de acordo com a reivindicação 11 ou 12, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braço de aperto e a lâmina ultrassônica está acima de um limite predeterminado, reduzir a saída de energia para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para uma quantidade ou espessura menor de tecido.
[00238] 14. Aparelho para controlar um atuador de extremidade, sendo que o aparelho é caracterizado pelo fato de que compreende: um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade; um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e um transdutor configurado para ajustar uma saída de energia à lâmina ultrassônica do atuador de extremidade com base na posição do braço de aperto.
[00239] 15. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo externo.
Petição 870190062513, de 04/07/2019, pág. 115/162
113/114 [00240] 16. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
[00241] 17. Aparelho, de acordo com qualquer uma das reivindicações 14 a 16, caracterizado pelo fato de que compreende adicionalmente: um ímã posicionado no primeiro tubo; e sendo que o sensor é um sensor de efeito Hall utilizado para detectar o sinal com base em uma posição do ímã.
[00242] 18. Aparelho, de acordo com qualquer uma das reivindicações 14 a 17, caracterizado pelo fato de que o ímã posicionado no primeiro tubo se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
[00243] 19. Aparelho, de acordo com qualquer uma das reivindicações 14 a 18, caracterizado pelo fato de que o transdutor é um transdutor ultrassônico configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall.
[00244] 20. Aparelho, de acordo com qualquer uma das reivindicações 14 a 19, caracterizado pelo fato de que o transdutor é configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00245] 21. Aparelho, de acordo com qualquer uma das reivindicações 14 a 20, caracterizado pelo fato de que compreende: um controlador integral proporcional configurado para ajustar a saída de energia à lâmina ultrassônica do atuador de extremidade
Petição 870190062513, de 04/07/2019, pág. 116/162
114/114 dinamicamente, com base em uma razão de deslocamento que se altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
[00246] 22. Método para calibrar um aparelho para controlar um atuador de extremidade, sendo que o método é caracterizado pelo fato de que compreende: detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade; detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica; e detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade.
[00247] 23. Método, de acordo com a reivindicação 22, caracterizado pelo fato de que compreende adicionalmente: determinar uma curva de melhor ajuste para representar a intensidade de sinal como função do deslocamento do sensor com base em ao menos um dentre o primeiro, o segundo e o terceiro sinal, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido.
[00248] 24. Método, de acordo com a reivindicação 22 ou 23, caracterizado pelo fato de que compreende: criar uma tabela de consulta com base em ao menos um dentre o primeiro, segundo e terceiro sinal, e nas posições completamente abertas, intermediárias e completamente fechadas.

Claims (24)

  1. REIVINDICAÇÕES
    1. Método para controlar um instrumento um atuador de extremidade, caracterizado pelo fato de que compreende:
    detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade;
    determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e ajustar uma saída de potência à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
  2. 2. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o ajuste da saída de potência à lâmina ultrassônica é alcançado pela manipulação da corrente elétrica enviada à empunhadura.
  3. 3. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
  4. 4. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo interno.
  5. 5. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente detectar o sinal com o uso de um sensor de efeito Hall e um magneto posicionado no primeiro tubo.
  6. 6. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente mover um magneto posicionado no primeiro tubo em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do
    Petição 870190062513, de 04/07/2019, pág. 118/162
    2/5 atuador de extremidade.
  7. 7. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com o uso de um transdutor ultrassônico com base em uma alteração de tensão em um sensor de efeito Hall.
  8. 8. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
  9. 9. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, usando um controlador proporcional integral, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
  10. 10. Método, de acordo com a reivindicação 1, caracterizado peto fato de que compreende adicionalmente desligar completamente a saída de potência à lâmina ultrassônica do atuador de extremidade uma vez que um limite de razão de deslocamento tiver sido atingido.
  11. 11. Método, de acordo com a reivindicação 1, caracterizado pelo fato de que compreende adicionalmente:
    determinar uma quantidade ou espessura do tecido entre o braço de aperto e a lâmina ultrassônica com base no sinal; e ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com base na quantidade ou espessura do tecido.
  12. 12. Método, de acordo com a reivindicação 11, caracterizado peto fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braço
    Petição 870190062513, de 04/07/2019, pág. 119/162
    3/5 de aperto e a lâmina ultrassônica é menor que um limite predeterminado, reduzir a saída de potência para a lâmina ultrassônica do atuador de extremidade em uma quantidade menor que para uma quantidade ou espessura maior de tecido.
  13. 13. Método, de acordo com a reivindicação 11, caracterizado pelo fato de que compreende adicionalmente em resposta à determinação de que a quantidade ou espessura de tecido entre o braço de aperto e a lâmina ultrassônica está acima de um limite predeterminado, reduzir a saída de potência para a lâmina ultrassônica do atuador de extremidade em uma quantidade maior que para uma quantidade ou espessura menor de tecido.
  14. 14. Aparelho para controlar um atuador de extremidade, caracterizado pelo fato de que compreende:
    um sensor configurado para detectar um sinal em resposta ao movimento de um primeiro tubo em relação a um segundo tubo, sendo que o primeiro tubo aciona o movimento de um braço de aperto do atuador de extremidade;
    um processador configurado para determinar uma posição do braço de aperto do atuador de extremidade em relação a uma lâmina ultrassônica do atuador de extremidade com base no sinal; e um transdutor configurado para ajustar uma saída de potência à lâmina ultrassônica do atuador de extremidade com base na posição de braço de aperto.
  15. 15. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o segundo tubo é um tubo externo, sendo que o tubo externo é móvel em relação ao tubo interno, sendo que o tubo interno é estático em relação ao tubo externo.
  16. 16. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o primeiro tubo é um tubo interno e o
    Petição 870190062513, de 04/07/2019, pág. 120/162
    4/5 segundo tubo é um tubo externo, sendo que o tubo interno é móvel em relação ao tubo externo, sendo que o tubo externo é estático em relação ao tubo interno.
  17. 17. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que compreende adicionalmente:
    um magneto posicionado no primeiro tubo; e sendo que o sensor é um sensor de efeito Hall usado para detectar o sinal com base em uma posição do magneto.
  18. 18. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o magneto posicionado no primeiro tubo se move em relação a um sensor de efeito Hall à medida que o primeiro tubo aciona o movimento do braço de aperto do atuador de extremidade.
  19. 19. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o transdutor é um transdutor ultrassônico configurado para ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade com base em uma alteração de tensão em um sensor de efeito Hall.
  20. 20. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que o transdutor é configurado para ajustar a saída de potência à lâmina ultrassônica do atuador de extremidade dinamicamente, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
  21. 21. Aparelho, de acordo com a reivindicação 14, caracterizado pelo fato de que compreende adicionalmente:
    um controlador proporcional integral configurado para ajustar dinamicamente a saída de potência à lâmina ultrassônica do atuador de extremidade, com base em uma razão de deslocamento que altera à medida que o braço de aperto se aproxima da lâmina ultrassônica.
  22. 22. Método para calibrar um aparelho para controlar um atuador de extremidade, caracterizado pelo fato de que compreende:
    Petição 870190062513, de 04/07/2019, pág. 121/162
    5/5 detectar um primeiro sinal que corresponde a uma posição completamente aberta de um braço de aperto e uma lâmina ultrassônica do atuador de extremidade;
    detectar um segundo sinal que corresponde a uma posição intermediária do braço de aperto e da lâmina ultrassônica do atuador de extremidade, sendo que a posição intermediária é resultante da preensão de um corpo rígido entre o braço de aperto e a lâmina ultrassônica; e detectar um terceiro sinal que corresponde a uma posição completamente fechada do braço de aperto e da lâmina ultrassônica do atuador de extremidade.
  23. 23. Método, de acordo com a reivindicação 22, caracterizado pelo fato de que compreende adicionalmente:
    determinar uma curva de melhor ajuste para representar a intensidade de sinal como uma função do deslocamento do sensor com base em peto menos um dentre o primeiro, o segundo e o terceiro sinais, as posições completamente abertas, intermediárias e completamente fechadas, e uma dimensão do corpo rígido.
  24. 24. Método, de acordo com a reivindicação 22, caracterizado peto fato de que compreende adicionalmente:
    criar uma tabela de consulta com base em pelo menos um dentre o primeiro, segundo e terceiro sinais, e nas posições completamente aberta, intermediária e completamente fechada.
BR112019010912-9A 2016-11-29 2017-11-22 Aparelho para controlar um atuador de extremidade BR112019010912B1 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/363,244 2016-11-29
US15/363,244 US11266430B2 (en) 2016-11-29 2016-11-29 End effector control and calibration
PCT/US2017/062959 WO2018102210A1 (en) 2016-11-29 2017-11-22 End effector control and calibration system

Publications (2)

Publication Number Publication Date
BR112019010912A2 true BR112019010912A2 (pt) 2019-10-01
BR112019010912B1 BR112019010912B1 (pt) 2023-09-26

Family

ID=60703068

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112019010912-9A BR112019010912B1 (pt) 2016-11-29 2017-11-22 Aparelho para controlar um atuador de extremidade

Country Status (7)

Country Link
US (2) US11266430B2 (pt)
EP (1) EP3547939A1 (pt)
JP (1) JP7210447B2 (pt)
KR (1) KR20190091307A (pt)
CN (1) CN110352040A (pt)
BR (1) BR112019010912B1 (pt)
WO (1) WO2018102210A1 (pt)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
IN2015DN02432A (pt) 2012-09-28 2015-09-04 Ethicon Endo Surgery Inc
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11806554B2 (en) * 2017-10-03 2023-11-07 Profound Medical Inc. Multi-channel real-time phase modulation for EMI reduction in an ultrasound device
US11540856B2 (en) * 2018-05-31 2023-01-03 Covidien Lp Methods and systems for ultrasonic vessel sealing
TWI747079B (zh) * 2019-11-19 2021-11-21 財團法人資訊工業策進會 機械手臂的定位精度量測系統與方法
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
GB2597925B (en) 2020-08-03 2024-05-22 Gyrus Medical Ltd A flow valve position sensor for an electrosurgical device
WO2023073524A2 (en) * 2021-10-25 2023-05-04 Cilag Gmbh International Electrodes and methods for use with a multi-layer clamp arm pad to enhance the performance of a surgical device
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
CN114081564B (zh) * 2021-11-12 2024-04-05 苏州优脉瑞医疗科技有限公司 一种防止多层缝合的肠道动力吻合器
CN115813492A (zh) * 2022-07-22 2023-03-21 武汉迈瑞医疗技术研究院有限公司 超声刀能量输出控制系统、方法及计算机可读存储介质

Family Cites Families (2840)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25033E (en) 1961-08-29 Vibratory machine tool and vibratory abrasion method
US1570025A (en) 1926-01-19 John van doiten yottng
US969528A (en) 1909-12-23 1910-09-06 Reuben B Disbrow Butter-spade.
US1813902A (en) 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US2188497A (en) 1936-09-24 1940-01-30 Waldorf Paper Prod Co Container and method of making the same
US2366274A (en) 1942-06-03 1945-01-02 Brunswick Balke Collender Co Plastic fastening means and method of applying the same
US2510693A (en) 1944-03-29 1950-06-06 Lee B Green Fastening member
US2425245A (en) 1945-03-30 1947-08-05 Conrad B Johnson Cushion grip for air hammers and the like
US2458152A (en) 1945-04-03 1949-01-04 Us Rubber Co Plastic rivet and method of making same
US2442966A (en) 1946-09-07 1948-06-08 American Cystoscope Makers Inc Electrosurgical resecting instrument
US2597564A (en) 1948-01-31 1952-05-20 Kenly C Bugg Stitch and seam opener
US2704333A (en) 1951-03-15 1955-03-15 Raytheon Mfg Co Ultrasonic vibratory devices
US2748967A (en) 1952-03-19 1956-06-05 William B Roach Bottle closure
US2849788A (en) 1952-08-02 1958-09-02 A V Roe Canada Ltd Method and apparatus for making hollow blades
US3033407A (en) 1953-07-03 1962-05-08 Union Carbide Corp Bottle closures
US2736960A (en) 1954-01-29 1956-03-06 James A Armstrong Razor blade knife
US2874470A (en) 1954-05-28 1959-02-24 James R Richards High frequency dental tool
DE1008144B (de) 1955-02-26 1957-05-09 Artur Haerter K G Elektrisches Trockenrasiergeraet
NL106732C (pt) 1955-03-08
US2845072A (en) 1955-06-21 1958-07-29 William A Shafer Surgical knife
US3053124A (en) 1959-11-16 1962-09-11 Cavitron Ultrasonics Inc Ultrasonic welding
US3015961A (en) 1960-05-02 1962-01-09 Sheffield Corp Machine component
US3166971A (en) 1960-11-23 1965-01-26 Air Reduction Riveting by electric discharge
US3082805A (en) 1960-12-21 1963-03-26 John H Royce Tissue macerator
US3433226A (en) 1965-07-21 1969-03-18 Aeroprojects Inc Vibratory catheterization apparatus and method of using
US3322403A (en) 1965-11-15 1967-05-30 Gray Company Inc Agitator
US3616375A (en) 1966-03-03 1971-10-26 Inoue K Method employing wave energy for the extraction of sulfur from petroleum and the like
US3525912A (en) 1966-03-28 1970-08-25 Scovill Manufacturing Co Selectable power source for a motor driven appliance
US3432691A (en) 1966-09-15 1969-03-11 Branson Instr Oscillatory circuit for electro-acoustic converter
US3526219A (en) 1967-07-21 1970-09-01 Ultrasonic Systems Method and apparatus for ultrasonically removing tissue from a biological organism
US3554198A (en) 1967-08-04 1971-01-12 Cardiac Electronics Inc Patient-isolating circuitry for cardiac facing device
US3636943A (en) 1967-10-27 1972-01-25 Ultrasonic Systems Ultrasonic cauterization
US3514856A (en) 1967-10-30 1970-06-02 Corning Glass Works Razor blade configuration
US3606682A (en) 1967-10-30 1971-09-21 Corning Glass Works Razor blades
US3513848A (en) 1967-12-11 1970-05-26 Ultrasonic Systems Ultrasonic suturing
US3489930A (en) 1968-07-29 1970-01-13 Branson Instr Apparatus for controlling the power supplied to an ultrasonic transducer
US3580841A (en) 1969-07-31 1971-05-25 Us Interior Ultrathin semipermeable membrane
US3629726A (en) 1969-08-29 1971-12-21 Surgical Design Corp Oscillator and oscillator control circuit
US3614484A (en) 1970-03-25 1971-10-19 Branson Instr Ultrasonic motion adapter for a machine tool
US3668486A (en) 1971-01-08 1972-06-06 Crest Ultrasonics Corp Load-sensitive generator for driving piezo-electric transducers
US3809977A (en) 1971-02-26 1974-05-07 Ultrasonic Systems Ultrasonic kits and motor systems
US3924335A (en) 1971-02-26 1975-12-09 Ultrasonic Systems Ultrasonic dental and other instrument means and methods
US3703651A (en) 1971-07-12 1972-11-21 Kollmorgen Corp Temperature-controlled integrated circuits
US3776238A (en) 1971-08-24 1973-12-04 Univ California Ophthalmic instrument
US3777760A (en) 1971-09-09 1973-12-11 H Essner Surgical stick
US3702948A (en) 1972-01-07 1972-11-14 Ultrasonic Systems Ultrasonic motors and scissors
US3885438A (en) 1972-02-04 1975-05-27 Sr Rano J Harris Automatic fluid injector
US3805787A (en) 1972-06-16 1974-04-23 Surgical Design Corp Ultrasonic surgical instrument
US3830098A (en) 1973-03-22 1974-08-20 Blackstone Corp Output monitored electromechanical devices
US3900823A (en) 1973-03-28 1975-08-19 Nathan O Sokal Amplifying and processing apparatus for modulated carrier signals
US5172344A (en) 1973-06-29 1992-12-15 Raytheon Company Deep submergence transducer
US4058126A (en) 1973-08-02 1977-11-15 Leveen Harry H Device for the fracture of the blood vessel lining
DE2339827B2 (de) 1973-08-06 1977-02-24 A6 In 3-02 Zahnaerztliches geraet
US3918442A (en) 1973-10-10 1975-11-11 Georgy Alexandrovich Nikolaev Surgical instrument for ultrasonic joining of biological tissue
US3875945A (en) 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
JPS50100891A (pt) 1973-12-21 1975-08-09
US3854737A (en) 1974-01-21 1974-12-17 Chemprene Combination rotary and reciprocating unitary sealing mechanism
US4012647A (en) 1974-01-31 1977-03-15 Ultrasonic Systems, Inc. Ultrasonic motors and converters
US3956826A (en) 1974-03-19 1976-05-18 Cavitron Corporation Ultrasonic device and method
US3946738A (en) 1974-10-24 1976-03-30 Newton David W Leakage current cancelling circuit for use with electrosurgical instrument
US3955859A (en) 1975-03-25 1976-05-11 The Torrington Company Bearing with multiple lip seal
US4005714A (en) 1975-05-03 1977-02-01 Richard Wolf Gmbh Bipolar coagulation forceps
US4074719A (en) 1975-07-12 1978-02-21 Kurt Semm Method of and device for causing blood coagulation
US4034762A (en) 1975-08-04 1977-07-12 Electro Medical Systems, Inc. Vas cautery apparatus
DE2646229A1 (de) 1976-10-13 1978-04-20 Erbe Elektromedizin Hochfrequenz-chirurgiegeraet
DE2656278B2 (de) 1976-12-11 1979-03-15 Kurt Prof. Dr.Med. 2300 Kiel Semm Elektrokoagulationsinstrument und
US4203430A (en) 1976-12-16 1980-05-20 Nagashige Takahashi Device for controlling curvature of an end section in an endoscope
US4180074A (en) 1977-03-15 1979-12-25 Fibra-Sonics, Inc. Device and method for applying precise irrigation, aspiration, medication, ultrasonic power and dwell time to biotissue for surgery and treatment
US4167944A (en) 1977-06-27 1979-09-18 Surgical Design Corp. Rotatable surgical cutting instrument with improved cutter blade wear
US4300083A (en) 1977-07-05 1981-11-10 Automation Devices, Inc. Constant amplitude controller and method
US4200106A (en) 1977-10-11 1980-04-29 Dinkelkamp Henry T Fixed arc cyclic ophthalmic surgical instrument
US4203444A (en) 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4188927A (en) 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
US4304987A (en) 1978-09-18 1981-12-08 Raychem Corporation Electrical devices comprising conductive polymer compositions
GB2032221A (en) 1978-10-23 1980-04-30 Keeler Instr Ltd Hand Held Ultrasonic Transducer Instrument
US4237441A (en) 1978-12-01 1980-12-02 Raychem Corporation Low resistivity PTC compositions
JPS5590195A (en) 1978-12-28 1980-07-08 Ootake Seisakusho:Kk Ultrasonic oscillator with output meter
SU850068A1 (ru) 1979-06-01 1981-07-30 Всесоюзный Научно-Исследовательскийинститут Медицинского Приборостроения Устройство дл ультразвуковойХиРуРгии
US4461304A (en) 1979-11-05 1984-07-24 Massachusetts Institute Of Technology Microelectrode and assembly for parallel recording of neurol groups
US4314559A (en) 1979-12-12 1982-02-09 Corning Glass Works Nonstick conductive coating
US4281785A (en) 1979-12-21 1981-08-04 Dayco Corporation Stapling apparatus and method and thermoplastic stables used therewith
US4545926A (en) 1980-04-21 1985-10-08 Raychem Corporation Conductive polymer compositions and devices
JPS614260B2 (pt) 1980-05-13 1986-02-07 Amerikan Hosupitaru Sapurai Corp
US4306570A (en) 1980-08-20 1981-12-22 Matthews Larry S Counter rotating biopsy needle
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
US4562838A (en) 1981-01-23 1986-01-07 Walker William S Electrosurgery instrument
US5026370A (en) 1981-03-11 1991-06-25 Lottick Edward A Electrocautery instrument
US4409981A (en) 1981-07-20 1983-10-18 Minnesota Mining And Manufacturing Company Medical electrode
US4463759A (en) 1982-01-13 1984-08-07 Garito Jon C Universal finger/foot switch adaptor for tube-type electrosurgical instrument
US4535773A (en) 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
GB2119102B (en) 1982-04-01 1985-09-04 Victor Company Of Japan Load impedance detector for audio power amplifiers
US4512344A (en) 1982-05-12 1985-04-23 Barber Forest C Arthroscopic surgery dissecting apparatus
US4445063A (en) 1982-07-26 1984-04-24 Solid State Systems, Corporation Energizing circuit for ultrasonic transducer
US4491132A (en) 1982-08-06 1985-01-01 Zimmer, Inc. Sheath and retractable surgical tool combination
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4553544A (en) 1982-09-20 1985-11-19 Janome Sewing Machine Co. Ltd. Suturing instrument for surgical operation
US4504264A (en) 1982-09-24 1985-03-12 Kelman Charles D Apparatus for and method of removal of material using ultrasonic vibraton
US4526571A (en) 1982-10-15 1985-07-02 Cooper Lasersonics, Inc. Curved ultrasonic surgical aspirator
EP0111386B1 (en) 1982-10-26 1987-11-19 University Of Aberdeen Ultrasound hyperthermia unit
JPS5968513U (ja) 1982-10-28 1984-05-09 持田製薬株式会社 超音波メス用ホ−ン
DE3301890C2 (de) 1983-01-21 1986-04-10 W.C. Heraeus Gmbh, 6450 Hanau Wundhaken
US4593691A (en) 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
JPS6045668A (ja) 1983-08-23 1985-03-12 廣瀬 徳三 縫い糸の機能を果す樹脂針を用いる縫合装置
DE3480462D1 (en) 1983-09-13 1989-12-21 Valleylab Inc Electrosurgical generator
US4550870A (en) 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
US4808154A (en) 1983-10-26 1989-02-28 Freeman Jerre M Phacoemulsification/irrigation and aspiration sleeve apparatus
US4878493A (en) 1983-10-28 1989-11-07 Ninetronix Venture I Hand-held diathermy apparatus
US4494759A (en) 1983-10-31 1985-01-22 Kieffer Robert A Seal for relatively rotatable parts
JPS60104872A (ja) 1983-11-09 1985-06-10 Nippon Pillar Packing Co Ltd 非常用軸封装置
US4574615A (en) 1983-12-19 1986-03-11 The Babcock & Wilcox Company Sonic apparatus and method for detecting the presence of a gaseous substance in a closed space
US4617927A (en) 1984-02-29 1986-10-21 Aspen Laboratories, Inc. Electrosurgical unit
US4633119A (en) 1984-07-02 1986-12-30 Gould Inc. Broadband multi-resonant longitudinal vibrator transducer
US4641053A (en) 1984-08-14 1987-02-03 Matsushita Seiko Co., Ltd. Ultrasonic liquid atomizer with an improved soft start circuit
EP0171967A3 (en) 1984-08-15 1987-11-04 Valleylab, Inc. Electrosurgical generator
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4634420A (en) 1984-10-31 1987-01-06 United Sonics Incorporated Apparatus and method for removing tissue mass from an organism
US4649919A (en) 1985-01-23 1987-03-17 Precision Surgical Instruments, Inc. Surgical instrument
US4739759A (en) 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
US4640279A (en) 1985-08-08 1987-02-03 Oximetrix, Inc. Combination surgical scalpel and electrosurgical instrument
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4922902A (en) 1986-05-19 1990-05-08 Valleylab, Inc. Method for removing cellular material with endoscopic ultrasonic aspirator
US4712722A (en) 1985-09-04 1987-12-15 Eg&G, Inc. Concurrent ultrasonic weld evaluation system
JPH0712111B2 (ja) 1985-09-04 1995-02-08 ユーエフイー・インコーポレイテッド 電気回路埋設方法及びプラスチック製品
JPS6266848A (ja) 1985-09-20 1987-03-26 住友ベークライト株式会社 外科手術用具
US4674502A (en) 1985-09-27 1987-06-23 Coopervision, Inc. Intraocular surgical instrument
US4708127A (en) 1985-10-24 1987-11-24 The Birtcher Corporation Ultrasonic generating system with feedback control
US4662068A (en) 1985-11-14 1987-05-05 Eli Polonsky Suture fusing and cutting apparatus
US4646738A (en) 1985-12-05 1987-03-03 Concept, Inc. Rotary surgical tool
JPH0796017B2 (ja) 1986-03-20 1995-10-18 オリンパス光学工業株式会社 生体組織切除装置
JPH0767460B2 (ja) 1986-03-28 1995-07-26 オリンパス光学工業株式会社 超音波処置装置
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4694835A (en) 1986-05-21 1987-09-22 Minnesota Mining And Manufacturing Company Biomedical electrode
JPS62292153A (ja) 1986-06-13 1987-12-18 オリンパス光学工業株式会社 超音波生体組織切除プロ−ブ
JPS62292154A (ja) 1986-06-13 1987-12-18 オリンパス光学工業株式会社 超音波生体組織切除プロ−ブ
DE3689889D1 (de) 1986-07-17 1994-07-07 Erbe Elektromedizin Hochfrequenz-Chirurgiegerät für die thermische Koagulation biologischer Gewebe.
US4735603A (en) 1986-09-10 1988-04-05 James H. Goodson Laser smoke evacuation system and method
JPH0777161B2 (ja) 1986-10-24 1995-08-16 日本メクトロン株式会社 Ptc組成物、その製造法およびptc素子
JPS63109386A (ja) 1986-10-28 1988-05-14 Honda Denshi Giken:Kk 超音波センサの温度補償方法
US4954960A (en) 1986-11-07 1990-09-04 Alcon Laboratories Linear power control for ultrasonic probe with tuned reactance
EP0270819A3 (en) 1986-11-07 1989-01-11 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
US4852578A (en) 1986-11-13 1989-08-01 The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rapidly quantifying the relative distention of a human bladder
US4761871A (en) 1986-11-21 1988-08-09 Phillips Petroleum Company Method of joining two thermoplastic articles
US4836186A (en) 1987-01-16 1989-06-06 Scholz Francis J Body compression device for patients under fluoroscopic examination
US4838853A (en) 1987-02-05 1989-06-13 Interventional Technologies Inc. Apparatus for trimming meniscus
DE8702446U1 (de) 1987-02-18 1987-10-08 Kothe, Lutz, 7760 Radolfzell Medizinische Vorrichtung
DE3807004A1 (de) 1987-03-02 1988-09-15 Olympus Optical Co Ultraschall-behandlungsgeraet
US5001649A (en) 1987-04-06 1991-03-19 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
IL82163A (en) 1987-04-10 1990-07-26 Laser Ind Ltd Optical-fiber type power transmission device
US4936842A (en) 1987-05-08 1990-06-26 Circon Corporation Electrosurgical probe apparatus
US5106538A (en) 1987-07-21 1992-04-21 Raychem Corporation Conductive polymer composition
JP2568564B2 (ja) 1987-07-21 1997-01-08 松下電器産業株式会社 ライニング材及びそのライニング材を用いた超音波駆動モ−タ
US4850354A (en) 1987-08-13 1989-07-25 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4867157A (en) 1987-08-13 1989-09-19 Baxter Travenol Laboratories, Inc. Surgical cutting instrument
US4819635A (en) 1987-09-18 1989-04-11 Henry Shapiro Tubular microsurgery cutting apparatus
US4844064A (en) 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4915643A (en) 1987-10-28 1990-04-10 Yazaki Corporation Connector
US5035695A (en) 1987-11-30 1991-07-30 Jaroy Weber, Jr. Extendable electrocautery surgery apparatus and method
JPH01151452A (ja) 1987-12-09 1989-06-14 Olympus Optical Co Ltd 超音波吸引装置
JPH01198540A (ja) 1987-12-24 1989-08-10 Sumitomo Bakelite Co Ltd 排泄処理装置
ATE132047T1 (de) 1988-01-20 1996-01-15 G2 Design Ltd Diathermiegerät
US5163421A (en) 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US4926860A (en) 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4862890A (en) 1988-02-29 1989-09-05 Everest Medical Corporation Electrosurgical spatula blade with ceramic substrate
EP0336742A3 (en) 1988-04-08 1990-05-16 Bristol-Myers Company Method and apparatus for the calibration of electrosurgical apparatus
JPH0532094Y2 (pt) 1988-05-17 1993-08-18
US4910389A (en) 1988-06-03 1990-03-20 Raychem Corporation Conductive polymer compositions
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US4965532A (en) 1988-06-17 1990-10-23 Olympus Optical Co., Ltd. Circuit for driving ultrasonic transducer
US6417969B1 (en) 1988-07-01 2002-07-09 Deluca Michael Multiple viewer headset display apparatus and method with second person icon display
US4896009A (en) 1988-07-11 1990-01-23 James River Corporation Gas permeable microwave reactive package
US4865159A (en) 1988-07-18 1989-09-12 Jamison Michael V Acoustic horn and attachment device
JP3088004B2 (ja) 1989-04-28 2000-09-18 株式会社東芝 操作指令装置
US4920978A (en) 1988-08-31 1990-05-01 Triangle Research And Development Corporation Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia
US4903696A (en) 1988-10-06 1990-02-27 Everest Medical Corporation Electrosurgical generator
JPH0529698Y2 (pt) 1988-10-27 1993-07-29
GB2226245A (en) 1988-11-18 1990-06-27 Alan Crockard Endoscope, remote actuator and aneurysm clip applicator.
US5318570A (en) 1989-01-31 1994-06-07 Advanced Osseous Technologies, Inc. Ultrasonic tool
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
US5084052A (en) 1989-02-09 1992-01-28 Baxter International Inc. Surgical cutting instrument with plurality of openings
DE3904558C2 (de) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
US4981756A (en) 1989-03-21 1991-01-01 Vac-Tec Systems, Inc. Method for coated surgical instruments and tools
US5653713A (en) 1989-04-24 1997-08-05 Michelson; Gary Karlin Surgical rongeur
US5451227A (en) 1989-04-24 1995-09-19 Michaelson; Gary K. Thin foot plate multi bite rongeur
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
US6129740A (en) 1989-04-24 2000-10-10 Michelson; Gary Karlin Instrument handle design
JPH02286149A (ja) 1989-04-27 1990-11-26 Sumitomo Bakelite Co Ltd 外科手術装置
CA2007210C (en) 1989-05-10 1996-07-09 Stephen D. Kuslich Intervertebral reamer
JP2829864B2 (ja) 1989-07-05 1998-12-02 株式会社トプコン 手術用カッター
US5226910A (en) 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
DE3923851C1 (pt) 1989-07-19 1990-08-16 Richard Wolf Gmbh, 7134 Knittlingen, De
US5123903A (en) 1989-08-10 1992-06-23 Medical Products Development, Inc. Disposable aspiration sleeve for ultrasonic lipectomy
US5226909A (en) 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
EP0613650A3 (en) 1989-10-13 1995-01-18 Machida Endoscope Co Ltd Bending device.
DE69019289T2 (de) 1989-10-27 1996-02-01 Storz Instr Co Verfahren zum Antreiben eines Ultraschallwandlers.
US5105117A (en) 1989-10-31 1992-04-14 Brother Kogyo Kabushiki Kaisha Ultrasonic motor
US5167619A (en) 1989-11-17 1992-12-01 Sonokineticss Group Apparatus and method for removal of cement from bone cavities
US5176677A (en) 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
US5797958A (en) 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
US5984938A (en) 1989-12-05 1999-11-16 Yoon; Inbae Surgical instrument with jaws and movable internal scissors and method for use thereof
US6099550A (en) 1989-12-05 2000-08-08 Yoon; Inbae Surgical instrument having jaws and an operating channel and method for use thereof
US5665100A (en) 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5108383A (en) 1989-12-08 1992-04-28 Allied-Signal Inc. Membranes for absorbent packets
IL93141A0 (en) 1990-01-23 1990-11-05 Urcan Medical Ltd Ultrasonic recanalization system
US5391144A (en) 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5126618A (en) 1990-03-06 1992-06-30 Brother Kogyo Kabushiki Kaisha Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver
US5263957A (en) 1990-03-12 1993-11-23 Ultracision Inc. Ultrasonic scalpel blade and methods of application
US5026387A (en) 1990-03-12 1991-06-25 Ultracision Inc. Method and apparatus for ultrasonic surgical cutting and hemostatis
US5167725A (en) 1990-08-01 1992-12-01 Ultracision, Inc. Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel
US5112300A (en) 1990-04-03 1992-05-12 Alcon Surgical, Inc. Method and apparatus for controlling ultrasonic fragmentation of body tissue
US5075839A (en) 1990-04-05 1991-12-24 General Electric Company Inductor shunt, output voltage regulation system for a power supply
JPH03296308A (ja) 1990-04-13 1991-12-27 Advantest Corp 波形発生器
US5241968A (en) 1990-05-10 1993-09-07 Symbiosis Corporation Single acting endoscopic instruments
US5507297A (en) 1991-04-04 1996-04-16 Symbiosis Corporation Endoscopic instruments having detachable proximal handle and distal portions
US5156633A (en) 1990-05-10 1992-10-20 Symbiosis Corporation Maryland dissector laparoscopic instrument
JPH0546429Y2 (pt) 1990-06-21 1993-12-06
CA2042006C (en) 1990-05-11 1995-08-29 Morito Idemoto Surgical ultrasonic horn
WO1991017716A1 (en) 1990-05-17 1991-11-28 Sumitomo Bakelite Company Limited Surgical instrument
USD327872S (en) 1990-06-06 1992-07-14 Raychem Corporation Coaxial cable connector
US5275609A (en) 1990-06-22 1994-01-04 Vance Products Incorporated Surgical cutting instrument
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
JP2863280B2 (ja) 1990-07-04 1999-03-03 アスモ株式会社 超音波モータの駆動方法
JPH0621450Y2 (ja) 1990-07-05 1994-06-08 アロカ株式会社 超音波手術器
JP2987175B2 (ja) 1990-07-05 1999-12-06 オリンパス光学工業株式会社 超音波治療装置
US5911699A (en) 1990-07-17 1999-06-15 Aziz Yehia Anis Removal of tissue
US5218529A (en) 1990-07-30 1993-06-08 University Of Georgia Research Foundation, Inc. Neural network system and methods for analysis of organic materials and structures using spectral data
USD332660S (en) 1990-09-17 1993-01-19 United States Surgical Corporation Surgical clip applier
US5725529A (en) 1990-09-25 1998-03-10 Innovasive Devices, Inc. Bone fastener
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
US5486189A (en) 1990-10-05 1996-01-23 United States Surgical Corporation Endoscopic surgical instrument
US5509922A (en) 1990-10-05 1996-04-23 United States Surgical Corporation Endoscopic surgical instrument
JPH04150847A (ja) 1990-10-12 1992-05-25 Katsuya Takasu わきが手術装置およびその手術用チップ
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
JP2960954B2 (ja) 1990-10-17 1999-10-12 オリンパス光学工業株式会社 超音波治療装置
US5242460A (en) 1990-10-25 1993-09-07 Devices For Vascular Intervention, Inc. Atherectomy catheter having axially-disposed cutting edge
US5152762A (en) 1990-11-16 1992-10-06 Birtcher Medical Systems, Inc. Current leakage control for electrosurgical generator
US5162044A (en) 1990-12-10 1992-11-10 Storz Instrument Company Phacoemulsification transducer with rotatable handle
US5052145A (en) 1990-12-26 1991-10-01 Wang Wen Chang Electric fishing float
US5304115A (en) 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
US5447509A (en) 1991-01-11 1995-09-05 Baxter International Inc. Ultrasound catheter system having modulated output with feedback control
US5368557A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having multiple ultrasound transmission members
US5957882A (en) 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5222937A (en) 1991-01-11 1993-06-29 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5184605A (en) 1991-01-31 1993-02-09 Excel Tech Ltd. Therapeutic ultrasound generator with radiation dose control
WO1992014514A1 (en) 1991-02-13 1992-09-03 Applied Medical Resources, Inc. Surgical trocar
US5231989A (en) 1991-02-15 1993-08-03 Raychem Corporation Steerable cannula
GB9103777D0 (en) 1991-02-22 1991-04-10 B & W Loudspeakers Analogue and digital convertors
US5438997A (en) 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5217460A (en) 1991-03-22 1993-06-08 Knoepfler Dennis J Multiple purpose forceps
US5109819A (en) 1991-03-29 1992-05-05 Cummins Electronics Company, Inc. Accelerator control system for a motor vehicle
JP3064458B2 (ja) 1991-04-02 2000-07-12 日本電気株式会社 厚み縦振動圧電磁器トランスとその駆動方法
US5258004A (en) 1991-04-04 1993-11-02 Symbiosis Corporation Double acting, dual pivot thoracoscopic surgical lung clamps
US5396900A (en) 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5163537A (en) 1991-04-29 1992-11-17 Simmons-Rand Company Battery changing system for electric battery-powered vehicles
US5160334A (en) 1991-04-30 1992-11-03 Utah Medical Products, Inc. Electrosurgical generator and suction apparatus
US5221282A (en) 1991-05-29 1993-06-22 Sonokinetics Group Tapered tip ultrasonic aspirator
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5484436A (en) 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5472443A (en) 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US5324289A (en) 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5196007A (en) 1991-06-07 1993-03-23 Alan Ellman Electrosurgical handpiece with activator
US5234428A (en) 1991-06-11 1993-08-10 Kaufman David I Disposable electrocautery/cutting instrument with integral continuous smoke evacuation
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5176695A (en) 1991-07-08 1993-01-05 Davinci Medical, Inc. Surgical cutting means
USD334173S (en) 1991-07-17 1993-03-23 Pan-International Industrial Corp. Plastic outer shell for a computer connector
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
JP3197310B2 (ja) 1991-07-24 2001-08-13 オリンパス光学工業株式会社 処置装置
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
JPH0541716A (ja) 1991-08-05 1993-02-19 Matsushita Electric Ind Co Ltd デジタル伝送方式
US5387207A (en) 1991-08-12 1995-02-07 The Procter & Gamble Company Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same
GR920100358A (el) 1991-08-23 1993-06-07 Ethicon Inc Οργανο συρραφής χειρουργικής αναστομώσεως.
US5246003A (en) 1991-08-28 1993-09-21 Nellcor Incorporated Disposable pulse oximeter sensor
US5285795A (en) 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5275607A (en) 1991-09-23 1994-01-04 Visionary Medical, Inc. Intraocular surgical scissors
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
JPH0595955A (ja) 1991-10-07 1993-04-20 Olympus Optical Co Ltd 超音波治療装置
CA2535467C (en) 1991-10-09 2008-04-01 Ethicon, Inc. Electrosurgical device
USD347474S (en) 1991-10-11 1994-05-31 Ethicon, Inc. Endoscopic stapler
US5242339A (en) 1991-10-15 1993-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration Apparatus and method for measuring subject work rate on an exercise device
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
US5163945A (en) 1991-10-18 1992-11-17 Ethicon, Inc. Surgical clip applier
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US5562703A (en) 1994-06-14 1996-10-08 Desai; Ashvin H. Endoscopic surgical instrument
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
JPH05115490A (ja) 1991-10-25 1993-05-14 Olympus Optical Co Ltd 超音波処置装置
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
JPH07500757A (ja) 1991-11-08 1995-01-26 イーピー テクノロジーズ,インコーポレイテッド 組織のインピーダンスをモニタしながら組織を切除するシステム及び方法
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5197964A (en) 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5254129A (en) 1991-11-22 1993-10-19 Alexander Chris B Arthroscopic resector
US5433725A (en) 1991-12-13 1995-07-18 Unisurge, Inc. Hand-held surgical device and tools for use therewith, assembly and method
US6210402B1 (en) 1995-11-22 2001-04-03 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US5324299A (en) 1992-02-03 1994-06-28 Ultracision, Inc. Ultrasonic scalpel blade and methods of application
WO1993014708A1 (en) 1992-02-03 1993-08-05 Ultracision Inc. Laparoscopic surgical apparatus and methods using ultrasonic energy
AU663543B2 (en) 1992-02-07 1995-10-12 Sherwood Services Ag Ultrasonic surgical apparatus
US5387215A (en) 1992-02-12 1995-02-07 Sierra Surgical Inc. Surgical instrument for cutting hard tissue and method of use
US5626595A (en) 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5645075A (en) 1992-02-18 1997-07-08 Symbiosis Corporation Jaw assembly for an endoscopic instrument
US5428504A (en) 1992-02-18 1995-06-27 Motorola, Inc. Cooling cover for RF power devices
US5261922A (en) 1992-02-20 1993-11-16 Hood Larry L Improved ultrasonic knife
US5695510A (en) 1992-02-20 1997-12-09 Hood; Larry L. Ultrasonic knife
US5269297A (en) 1992-02-27 1993-12-14 Angiosonics Inc. Ultrasonic transmission apparatus
US5213569A (en) 1992-03-31 1993-05-25 Davis Peter L Tip for a tissue phacoemulsification device
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5318525A (en) 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5620459A (en) 1992-04-15 1997-04-15 Microsurge, Inc. Surgical instrument
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5318564A (en) 1992-05-01 1994-06-07 Hemostatic Surgery Corporation Bipolar surgical snare and methods of use
US5353474A (en) 1992-05-01 1994-10-11 Good Wayne T Transferrable personalized grip for a handle assembly and method for making same
US5293863A (en) 1992-05-08 1994-03-15 Loma Linda University Medical Center Bladed endoscopic retractor
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
JP3069819B2 (ja) 1992-05-28 2000-07-24 富士通株式会社 ヒートシンク並びに該ヒートシンクに用いるヒートシンク取付具及びヒートシンクを用いた可搬型電子装置
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5318563A (en) 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
JP3098858B2 (ja) 1992-06-08 2000-10-16 オリンパス光学工業株式会社 超音波モータ
DE69316894T2 (de) 1992-06-24 1998-09-24 Microsurge Inc Wiederverwendbares endoskopisches, chirurgisches instrument
US6449006B1 (en) 1992-06-26 2002-09-10 Apollo Camera, Llc LED illumination system for endoscopic cameras
JP3386517B2 (ja) 1992-06-26 2003-03-17 オリンパス光学工業株式会社 超音波処置装置
US5408268A (en) 1992-06-26 1995-04-18 Apollo Camera, L.L.C. Video imaging system and method using a single full frame sensor and sequential color object illumination
US5394187A (en) 1992-06-26 1995-02-28 Apollo Camera, L.L.C. Video imaging systems and method using a single interline progressive scanning sensor and sequential color object illumination
US5264925A (en) 1992-06-26 1993-11-23 Life Surgery, Inc. Single sensor video imaging system and method using sequential color object illumination
US5366466A (en) 1992-07-09 1994-11-22 Unisurge, Inc. Surgical scissors
DE9210327U1 (de) 1992-07-16 1992-11-26 Kothe, Lutz, 7760 Radolfzell Zangengriff für medizinische Gerätschaften
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
US5258006A (en) 1992-08-21 1993-11-02 Everest Medical Corporation Bipolar electrosurgical forceps
US5282817A (en) 1992-09-08 1994-02-01 Hoogeboom Thomas J Actuating handle for multipurpose surgical instrument
US5562659A (en) 1992-09-09 1996-10-08 Materials Conversion Corp. Electro-surgical instrument and method of fabrication
US5282800A (en) 1992-09-18 1994-02-01 Edward Weck, Inc. Surgical instrument
JPH06104503A (ja) 1992-09-18 1994-04-15 Sharp Corp バイモルフ型圧電アクチュエータ
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5334198A (en) 1992-10-09 1994-08-02 Innovasive Devices, Inc. Surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5520704A (en) 1992-10-09 1996-05-28 United States Surgical Corporation Everting forceps with locking mechanism
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5374813A (en) 1992-10-15 1994-12-20 Life Surgery, Inc. Surgical instrument recycling and tracking system
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5275166A (en) 1992-11-16 1994-01-04 Ethicon, Inc. Method and apparatus for performing ultrasonic assisted surgical procedures
US5395364A (en) 1993-06-10 1995-03-07 Symbiosis Corporation Endoscopic instrument incorporating an elastomeric fluid seal
EP0768840B1 (en) 1992-11-30 2001-12-12 Sherwood Services AG Circuitry for an ultrasonic surgical instrument with an energy initiator to maintain the vibration and linear dynamics
US5342356A (en) 1992-12-02 1994-08-30 Ellman Alan G Electrical coupling unit for electrosurgery
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5807393A (en) 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
DE4300307C2 (de) 1993-01-08 1996-09-19 Aesculap Ag Chirurgisches Instrument
JPH06217988A (ja) 1993-01-26 1994-08-09 Terumo Corp 血管穿刺器具
US5322055B1 (en) 1993-01-27 1997-10-14 Ultracision Inc Clamp coagulator/cutting system for ultrasonic surgical instruments
DE69409565T2 (de) 1993-01-29 1998-10-01 Smith & Nephew Inc Schwenkbares gekrümmtes Instrument
US5620447A (en) 1993-01-29 1997-04-15 Smith & Nephew Dyonics Inc. Surgical instrument
US5342359A (en) 1993-02-05 1994-08-30 Everest Medical Corporation Bipolar coagulation device
US5357423A (en) 1993-02-22 1994-10-18 Kulicke And Soffa Investments, Inc. Apparatus and method for automatically adjusting power output of an ultrasonic generator
KR940019363A (ko) 1993-02-22 1994-09-14 요시히데 시바노 초음파세정에 있어서의 초음파진동자의 발진방법
US5445638B1 (en) 1993-03-08 1998-05-05 Everest Medical Corp Bipolar coagulation and cutting forceps
US5381067A (en) 1993-03-10 1995-01-10 Hewlett-Packard Company Electrical impedance normalization for an ultrasonic transducer array
JPH07507707A (ja) 1993-03-22 1995-08-31 アニス,アジズ・イェヒア 組織の除去
US5346502A (en) 1993-04-15 1994-09-13 Ultracision, Inc. Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
ATE231364T1 (de) 1993-04-30 2003-02-15 Medical Scient Inc Elektrochirurgisches impedanzrückkopplungssystem
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
CA2121194A1 (en) 1993-05-06 1994-11-07 Corbett Stone Bipolar electrosurgical instruments
US5449370A (en) 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
WO1994026167A1 (en) 1993-05-14 1994-11-24 Sri International Remote center positioner
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
US5396266A (en) 1993-06-08 1995-03-07 Technical Research Associates, Inc. Kinesthetic feedback apparatus and method
US5500216A (en) 1993-06-18 1996-03-19 Julian; Jorge V. Topical hydrophobic composition and method
USD354564S (en) 1993-06-25 1995-01-17 Richard-Allan Medical Industries, Inc. Surgical clip applier
US5715817A (en) 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5395363A (en) 1993-06-29 1995-03-07 Utah Medical Products Diathermy coagulation and ablation apparatus and method
DE4323585A1 (de) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolares Hochfrequenz-Chirurgieinstrument
US5501654A (en) 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
US5731804A (en) 1995-01-18 1998-03-24 Immersion Human Interface Corp. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5827323A (en) 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
JPH09501333A (ja) 1993-07-21 1997-02-10 エイチ. クリーマン,チャールズ 内視鏡検査及び外科手術用の外科的器具
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
GR940100335A (el) 1993-07-22 1996-05-22 Ethicon Inc. Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων.
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
CA2145314C (en) 1993-07-26 2005-05-03 Rickey D. Hart Suture grasping device
US5678568A (en) 1993-07-27 1997-10-21 Olympus Optical Co., Ltd. System control apparatus, medical system control apparatus and image-plane display method of medical system control apparatus
US5419761A (en) 1993-08-03 1995-05-30 Misonix, Inc. Liposuction apparatus and associated method
US5451161A (en) 1993-08-24 1995-09-19 Parkell Products, Inc. Oscillating circuit for ultrasonic dental scaler
US5858018A (en) 1993-08-25 1999-01-12 Apollo Camera, Llc Low profile tool for applying spring action ligation clips
CA2147757A1 (en) 1993-08-25 1995-03-02 John I. Shipp Surgical ligation clip
US5483501A (en) 1993-09-14 1996-01-09 The Whitaker Corporation Short distance ultrasonic distance meter
US5397333A (en) 1993-09-24 1995-03-14 Nusurg Medical, Inc. Surgical hook knife
DE4333257C2 (de) 1993-09-27 1997-09-04 Siemens Ag Verfahren zum Gewinnen eines Fehlerkennzeichnungs-Signals
US5371429A (en) 1993-09-28 1994-12-06 Misonix, Inc. Electromechanical transducer device
US5361583A (en) 1993-09-30 1994-11-08 Ethicon, Inc. Pressurized fluid actuation system with variable force and stroke output for use in a surgical instrument
US5339723A (en) 1993-09-30 1994-08-23 Ethicon, Inc. Pressurized fluid actuation system for amplifying operator input force in a surgical instrument
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5456689A (en) 1993-10-13 1995-10-10 Arnold J. Kresch Method and device for tissue resection
US5600526A (en) 1993-10-15 1997-02-04 The Texas A & M University System Load analysis system for fault detection
WO1995010978A1 (en) 1993-10-19 1995-04-27 Ep Technologies, Inc. Segmented electrode assemblies for ablation of tissue
US5423844A (en) 1993-10-22 1995-06-13 Promex, Inc. Rotary surgical cutting instrument
US6632221B1 (en) 1993-11-08 2003-10-14 Rita Medical Systems, Inc. Method of creating a lesion in tissue with infusion
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5472005A (en) 1993-11-16 1995-12-05 Campbell; Keith S. Ultrasonic cleaning apparatus for cleaning chandeliers
DE4340056A1 (de) 1993-11-24 1995-06-01 Delma Elektro Med App Chirurgische laparoskopische Vorrichtung
US5458598A (en) 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
USD358887S (en) 1993-12-02 1995-05-30 Cobot Medical Corporation Combined cutting and coagulating forceps
US5490860A (en) 1993-12-08 1996-02-13 Sofamor Danek Properties, Inc. Portable power cutting tool
US5471988A (en) 1993-12-24 1995-12-05 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
US5359994A (en) 1994-01-24 1994-11-01 Welch Allyn, Inc. Proximal steering cable adjustment
US5638827A (en) 1994-02-01 1997-06-17 Symbiosis Corporation Super-elastic flexible jaws assembly for an endoscopic multiple sample bioptome
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
DE4405656C2 (de) 1994-02-22 1998-12-10 Ferton Holding Einrichtung zum Entfernen von Körpersteinen
US5429131A (en) 1994-02-25 1995-07-04 The Regents Of The University Of California Magnetized electrode tip catheter
DE4447669B4 (de) 1994-02-27 2005-12-08 Hahn, Rainer, Dr.Med.Dent. Verwendung einer Suspension, die zur Schallübertragung zwischen einer ultraschallbeaufschlagten Arbeitsspitze und einem zu bearbeitenden Material dient
US5649955A (en) 1994-03-17 1997-07-22 Terumo Kabushiki Kaisha Surgical instrument
US5649547A (en) 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
US6500112B1 (en) 1994-03-30 2002-12-31 Brava, Llc Vacuum dome with supporting rim and rim cushion
US5584830A (en) 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5817033A (en) 1994-04-11 1998-10-06 Desantis; Stephen A. Needle core biopsy device
US5511556A (en) 1994-04-11 1996-04-30 Desantis; Stephen A. Needle core biopsy instrument
US5417709A (en) 1994-04-12 1995-05-23 Symbiosis Corporation Endoscopic instrument with end effectors forming suction and/or irrigation lumens
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5823197A (en) 1994-06-24 1998-10-20 Somnus Medical Technologies, Inc. Method for internal ablation of turbinates
US6464689B1 (en) 1999-09-08 2002-10-15 Curon Medical, Inc. Graphical user interface for monitoring and controlling use of medical devices
JPH0824266A (ja) 1994-07-20 1996-01-30 Sumitomo Bakelite Co Ltd 超音波手術用具のホーン
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
US5507738A (en) 1994-08-05 1996-04-16 Microsonic Engineering Devices Company, Inc. Ultrasonic vascular surgical system
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
US5451220A (en) 1994-08-15 1995-09-19 Microsonic Engineering Devices Company, Inc. Battery operated multifunction ultrasonic wire for angioplasty
TW266267B (en) 1994-08-23 1995-12-21 Ciba Geigy Process for sterilizing articles and providing sterile storage environments
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5522839A (en) 1994-09-09 1996-06-04 Pilling Weck Incorporated Dissecting forceps
US5451053A (en) 1994-09-09 1995-09-19 Garrido; Fernando P. Reconfigurable video game controller
US5694936A (en) 1994-09-17 1997-12-09 Kabushiki Kaisha Toshiba Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation
US5674219A (en) 1994-10-06 1997-10-07 Donaldson Company, Inc. Electrosurgical smoke evacuator
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5562609A (en) 1994-10-07 1996-10-08 Fibrasonics, Inc. Ultrasonic surgical probe
US5562610A (en) 1994-10-07 1996-10-08 Fibrasonics Inc. Needle for ultrasonic surgical probe
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5632717A (en) 1994-10-07 1997-05-27 Yoon; Inbae Penetrating endoscope
US5720742A (en) 1994-10-11 1998-02-24 Zacharias; Jaime Controller and actuating system for surgical instrument
JP2638750B2 (ja) 1994-10-13 1997-08-06 リョービ株式会社 電動工具のハンドル構造
US5752973A (en) 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
USD381077S (en) 1994-10-25 1997-07-15 Ethicon Endo-Surgery Multifunctional surgical stapling instrument
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
US5717306A (en) 1994-11-18 1998-02-10 Shipp; John I. Battery identification and power interrupt system
JPH08153914A (ja) 1994-11-25 1996-06-11 Philips Japan Ltd 圧電磁器トランス
DE4444853B4 (de) 1994-12-16 2006-09-28 Hilti Ag Handgerät zur materialabtragenden Bearbeitung mit elektroakustischem Wandler für die Erzeugung von Ultraschallschwingungen
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
AU701320B2 (en) 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5836957A (en) 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US5505693A (en) 1994-12-30 1996-04-09 Mackool; Richard J. Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery
US5563179A (en) 1995-01-10 1996-10-08 The Proctor & Gamble Company Absorbent foams made from high internal phase emulsions useful for acquiring and distributing aqueous fluids
US5486162A (en) 1995-01-11 1996-01-23 Fibrasonics, Inc. Bubble control device for an ultrasonic surgical probe
US5603711A (en) 1995-01-20 1997-02-18 Everest Medical Corp. Endoscopic bipolar biopsy forceps
CA2168404C (en) 1995-02-01 2007-07-10 Dale Schulze Surgical instrument with expandable cutting element
US5573424A (en) 1995-02-09 1996-11-12 Everest Medical Corporation Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6544264B2 (en) 1995-03-10 2003-04-08 Seedling Enterprises, Llc Electrosurgery with cooled electrodes
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US6503248B1 (en) 2000-10-30 2003-01-07 Seedling Enterprises, Llc Cooled, non-sticking electrosurgical devices
US5571121A (en) 1995-03-28 1996-11-05 Heifetz; Milton D. Atraumatic clamp for temporary occlusion of blood vessels
DK0817594T3 (da) 1995-03-28 2002-07-15 Straub Medical Ag Kateter til fjernelse af unormale aflejringer i humane blodkar
US5882206A (en) 1995-03-29 1999-03-16 Gillio; Robert G. Virtual surgery system
US5655100A (en) 1995-03-31 1997-08-05 Sun Microsystems, Inc. Transaction activation processor for controlling memory transaction execution in a packet switched cache coherent multiprocessor system
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5618307A (en) 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
US6669690B1 (en) 1995-04-06 2003-12-30 Olympus Optical Co., Ltd. Ultrasound treatment system
JP3686117B2 (ja) 1995-04-06 2005-08-24 オリンパス株式会社 超音波切開凝固装置
JP3571414B2 (ja) 1995-05-11 2004-09-29 オリンパス株式会社 超音波切開凝固装置
US6056735A (en) 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US6264650B1 (en) 1995-06-07 2001-07-24 Arthrocare Corporation Methods for electrosurgical treatment of intervertebral discs
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5779701A (en) 1995-04-27 1998-07-14 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
US5800432A (en) 1995-05-01 1998-09-01 Ep Technologies, Inc. Systems and methods for actively cooling ablation electrodes using diodes
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
US5674235A (en) 1995-05-10 1997-10-07 Ultralase Technologies International Ultrasonic surgical cutting instrument
AU6268396A (en) 1995-06-02 1996-12-18 Surgical Design Corporation Phacoemulsification handpiece, sleeve, and tip
WO1996039086A1 (en) 1995-06-06 1996-12-12 Valleylab Inc. Power control for an electrosurgical generator
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US6293943B1 (en) 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
US6210337B1 (en) 1995-06-07 2001-04-03 Atl Ultrasound Inc. Ultrasonic endoscopic probe
US7090672B2 (en) 1995-06-07 2006-08-15 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from the base of tongue
US6837887B2 (en) 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
JP4219418B2 (ja) 1995-06-13 2009-02-04 株式会社ミワテック 超音波手術装置
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
JP3760959B2 (ja) 1995-09-06 2006-03-29 株式会社デンソー 発電機
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5662667A (en) 1995-09-19 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5797959A (en) 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5674220A (en) 1995-09-29 1997-10-07 Ethicon Endo-Surgery, Inc. Bipolar electrosurgical clamping device
US5883615A (en) 1995-09-29 1999-03-16 Liebel-Flarsheim Company Foot-operated control system for a multi-function
US5630420A (en) 1995-09-29 1997-05-20 Ethicon Endo-Surgery, Inc. Ultrasonic instrument for surgical applications
US6059997A (en) 1995-09-29 2000-05-09 Littlelfuse, Inc. Polymeric PTC compositions
US5796188A (en) 1995-10-05 1998-08-18 Xomed Surgical Products, Inc. Battery-powered medical instrument with power booster
AU7255896A (en) 1995-10-06 1997-04-28 Brian S. Kelleher Steerable, flexible forceps device
US6428538B1 (en) 1995-10-20 2002-08-06 United States Surgical Corporation Apparatus and method for thermal treatment of body tissue
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
JPH09130655A (ja) 1995-10-30 1997-05-16 Sharp Corp 撮像装置
JPH09140722A (ja) 1995-11-29 1997-06-03 Olympus Optical Co Ltd 超音波治療装置
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5916229A (en) 1996-02-07 1999-06-29 Evans; Donald Rotating needle biopsy device and method
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5669922A (en) 1996-02-20 1997-09-23 Hood; Larry Ultrasonically driven blade with a radial hook that defines a circular recess
US5792138A (en) 1996-02-22 1998-08-11 Apollo Camera, Llc Cordless bipolar electrocautery unit with automatic power control
US6682501B1 (en) 1996-02-23 2004-01-27 Gyrus Ent, L.L.C. Submucosal tonsillectomy apparatus and method
US5609573A (en) 1996-02-28 1997-03-11 Conmed Corporation Electrosurgical suction/irrigation instrument
DE19608716C1 (de) 1996-03-06 1997-04-17 Aesculap Ag Bipolares chirurgisches Faßinstrument
US6036707A (en) 1996-03-07 2000-03-14 Devices For Vascular Intervention Catheter device having a selectively flexible housing
US6325795B1 (en) 1996-03-12 2001-12-04 Sherwood Services Ag Replaceable accessory cord and handswitch
US5702390A (en) 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5728130A (en) 1996-03-22 1998-03-17 Olympus Optical Co., Ltd. Ultrasonic trocar system
DE19613012C1 (de) 1996-03-25 1997-08-14 Siemens Ag Verfahren zum Erzeugen von Fehlerklassifizierungssignalen
FR2746995B1 (fr) 1996-03-28 1998-05-15 Sgs Thomson Microelectronics Procede et dispositif de codage de transmission et utilisation de ce procede
US5700261A (en) 1996-03-29 1997-12-23 Ethicon Endo-Surgery, Inc. Bipolar Scissors
US5626608A (en) 1996-03-29 1997-05-06 United States Surgical Corporation Surgical instrument having locking handle
US5723970A (en) 1996-04-05 1998-03-03 Linear Technology Corporation Battery charging circuitry having supply current regulation
US5766164A (en) 1996-07-03 1998-06-16 Eclipse Surgical Technologies, Inc. Contiguous, branched transmyocardial revascularization (TMR) channel, method and device
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5843109A (en) 1996-05-29 1998-12-01 Allergan Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator
US5746756A (en) 1996-06-03 1998-05-05 Ethicon Endo-Surgery, Inc. Internal ultrasonic tip amplifier
US6887252B1 (en) 1996-06-21 2005-05-03 Olympus Corporation Ultrasonic treatment appliance
JPH10127654A (ja) 1996-11-05 1998-05-19 Olympus Optical Co Ltd 超音波処置具
US6129735A (en) 1996-06-21 2000-10-10 Olympus Optical Co., Ltd. Ultrasonic treatment appliance
JP3274826B2 (ja) 1997-10-15 2002-04-15 オリンパス光学工業株式会社 超音波処置具
JPH11128238A (ja) 1997-10-28 1999-05-18 Olympus Optical Co Ltd 超音波治療装置
JPH105237A (ja) 1996-06-26 1998-01-13 Olympus Optical Co Ltd 超音波処置具
US5906628A (en) 1996-06-26 1999-05-25 Olympus Optical Co., Ltd. Ultrasonic treatment instrument
AU737271B2 (en) 1996-07-01 2001-08-16 Ethicon Endo-Surgery, Inc. Fingertip-mounted minimally invasive surgical instruments and methods of use
US6113594A (en) 1996-07-02 2000-09-05 Ethicon, Inc. Systems, methods and apparatus for performing resection/ablation in a conductive medium
US5800448A (en) 1996-07-24 1998-09-01 Surgical Design Corporation Ultrasonic surgical instrument
US6358264B2 (en) 1996-07-24 2002-03-19 Surgical Design Corporation Surgical instruments with movable member
US6031526A (en) 1996-08-08 2000-02-29 Apollo Camera, Llc Voice controlled medical text and image reporting system
US5826576A (en) 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US6544260B1 (en) 1996-08-20 2003-04-08 Oratec Interventions, Inc. Method for treating tissue in arthroscopic environment using precooling and apparatus for same
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5993972A (en) 1996-08-26 1999-11-30 Tyndale Plains-Hunter, Ltd. Hydrophilic and hydrophobic polyether polyurethanes and uses therefor
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5836909A (en) 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
DE29623113U1 (de) 1996-09-18 1997-10-30 Winter & Ibe Olympus Axialgriff für chirurgische, insbesondere endoskopische Instrumente
US20050143769A1 (en) 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
CA2213948C (en) 1996-09-19 2006-06-06 United States Surgical Corporation Ultrasonic dissector
GB2317566B (en) 1996-09-27 2000-08-09 Smiths Industries Plc Electrosurgery apparatus
US6847336B1 (en) 1996-10-02 2005-01-25 Jerome H. Lemelson Selectively controllable heads-up display system
US5833696A (en) 1996-10-03 1998-11-10 United States Surgical Corporation Apparatus for applying surgical clips
EP1698289B1 (en) 1996-10-04 2008-04-30 United States Surgical Corporation Instrument for cutting tissue
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
EP1946708B1 (en) 1996-10-04 2011-06-22 Tyco Healthcare Group LP Instrument for cutting tissue
US5989274A (en) 1996-10-17 1999-11-23 Ethicon Endo-Surgery, Inc. Methods and devices for improving blood flow to a heart of a patient
US5730752A (en) 1996-10-29 1998-03-24 Femrx, Inc. Tubular surgical cutters having aspiration flow control ports
US6126676A (en) 1996-10-30 2000-10-03 Ethicon, Inc. Surgical tipping apparatus
US6238366B1 (en) 1996-10-31 2001-05-29 Ethicon, Inc. System for fluid retention management
US5759183A (en) 1996-11-05 1998-06-02 Vandusseldorp; Gregg A. Vaporizing roller for an electrosurgical probe
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6292700B1 (en) 1999-09-10 2001-09-18 Surx, Inc. Endopelvic fascia treatment for incontinence
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
DE19651362C1 (de) 1996-12-10 1998-06-10 Endress Hauser Gmbh Co Vorrichtung zur Überwachung eines vorbestimmten Füllstands in einem Behälter
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US5808396A (en) 1996-12-18 1998-09-15 Alcon Laboratories, Inc. System and method for tuning and controlling an ultrasonic handpiece
US5910129A (en) 1996-12-19 1999-06-08 Ep Technologies, Inc. Catheter distal assembly with pull wires
US6063098A (en) 1996-12-23 2000-05-16 Houser; Kevin Articulable ultrasonic surgical apparatus
US6051010A (en) 1996-12-23 2000-04-18 Ethicon Endo-Surgery, Inc. Methods and devices for joining transmission components
US5776155A (en) 1996-12-23 1998-07-07 Ethicon Endo-Surgery, Inc. Methods and devices for attaching and detaching transmission components
DE19700402C2 (de) 1997-01-08 1999-12-30 Ferdinand Peer Instrument zur Kompensation des Handzitterns bei der Manipulation feiner Strukturen
SE508289C2 (sv) 1997-01-28 1998-09-21 Ericsson Telefon Ab L M Förfarande och anordning vid övervakning och styrning av oscillatorsignal
US6156389A (en) 1997-02-03 2000-12-05 Cytonix Corporation Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5904681A (en) 1997-02-10 1999-05-18 Hugh S. West, Jr. Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy
US5810828A (en) 1997-02-13 1998-09-22 Mednext, Inc. Adjustable depth drill guide
US5810859A (en) 1997-02-28 1998-09-22 Ethicon Endo-Surgery, Inc. Apparatus for applying torque to an ultrasonic transmission component
US6508825B1 (en) 1997-02-28 2003-01-21 Lumend, Inc. Apparatus for treating vascular occlusions
US6206844B1 (en) 1997-02-28 2001-03-27 Ethicon Endo-Surgery, Inc. Reusable ultrasonic surgical instrument with removable outer sheath
US5968060A (en) 1997-02-28 1999-10-19 Ethicon Endo-Surgery, Inc. Ultrasonic interlock and method of using the same
US5944737A (en) 1997-10-10 1999-08-31 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved waveguide support member
US5989275A (en) 1997-02-28 1999-11-23 Ethicon Endo-Surgery, Inc. Damping ultrasonic transmission components
US6626901B1 (en) 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US5957943A (en) 1997-03-05 1999-09-28 Ethicon Endo-Surgery, Inc. Method and devices for increasing ultrasonic effects
US7083613B2 (en) 1997-03-05 2006-08-01 The Trustees Of Columbia University In The City Of New York Ringed forceps
US6461363B1 (en) 1997-03-10 2002-10-08 Donald L. Gadberry Surgical clips and clamps
US5800449A (en) 1997-03-11 1998-09-01 Ethicon Endo-Surgery, Inc. Knife shield for surgical instruments
WO1998040015A2 (en) 1997-03-13 1998-09-17 Biomax Technologies, Inc. Catheters and endoscopes comprising optical probes and bioptomes and methods of using the same
JP3832075B2 (ja) 1997-03-25 2006-10-11 セイコーエプソン株式会社 インクジェット式記録ヘッド、その製造方法および圧電体素子
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US5897569A (en) 1997-04-16 1999-04-27 Ethicon Endo-Surgery, Inc. Ultrasonic generator with supervisory control circuitry
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
JPH10295700A (ja) 1997-04-25 1998-11-10 Sumitomo Bakelite Co Ltd 外科手術用具
AU6357298A (en) 1997-04-28 1998-10-29 Ethicon Endo-Surgery, Inc. Methods and devices for controlling the vibration of ultrasonic transmission components
US5968007A (en) 1997-05-01 1999-10-19 Sonics & Materials, Inc. Power-limit control for ultrasonic surgical instrument
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
US6183426B1 (en) 1997-05-15 2001-02-06 Matsushita Electric Works, Ltd. Ultrasonic wave applying apparatus
WO1998052792A1 (de) 1997-05-21 1998-11-26 Siemens Aktiengesellschaft Verfahren und vorrichtung zur übertragung von digitalen daten von einer messstation eines insassenschutzsystems eines kraftfahrzeugs zu einem airbagsteuergerät
US6152902A (en) 1997-06-03 2000-11-28 Ethicon, Inc. Method and apparatus for collecting surgical fluids
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
FR2764516B1 (fr) 1997-06-11 1999-09-03 Inst Nat Sante Rech Med Applicateur intratissulaire ultrasonore pour l'hyperthermie
EP0998229A4 (en) 1997-06-17 2001-04-04 Cool Laser Optics Inc METHOD AND APPARATUS FOR REGULATING BIOLOGICAL TISSUE TEMPERATURE BY SIMULTANEOUS IRRADIATION
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US20030109778A1 (en) 1997-06-20 2003-06-12 Cardiac Assist Devices, Inc. Electrophysiology/ablation catheter and remote actuator therefor
JPH1112222A (ja) 1997-06-25 1999-01-19 Nippon Shokubai Co Ltd アクリル酸の回収方法
US6144402A (en) 1997-07-08 2000-11-07 Microtune, Inc. Internet transaction acceleration
US5938633A (en) 1997-07-09 1999-08-17 Ethicon Endo-Surgery, Inc. Ultrasonic surgical devices
US5913823A (en) 1997-07-15 1999-06-22 Acuson Corporation Ultrasound imaging method and system for transmit signal generation for an ultrasonic imaging system capable of harmonic imaging
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
JP2001510067A (ja) 1997-07-18 2001-07-31 ガイラス・メディカル・リミテッド 電気外科用器具
EP0895755B1 (en) 1997-08-04 2005-04-27 Ethicon, Inc. Apparatus for treating body tissue
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6102909A (en) 1997-08-26 2000-08-15 Ethicon, Inc. Scissorlike electrosurgical cutting instrument
US6024744A (en) 1997-08-27 2000-02-15 Ethicon, Inc. Combined bipolar scissor and grasper
US6013052A (en) 1997-09-04 2000-01-11 Ep Technologies, Inc. Catheter and piston-type actuation device for use with same
US6267761B1 (en) 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
AU9478498A (en) 1997-09-11 1999-03-29 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5921956A (en) 1997-09-24 1999-07-13 Smith & Nephew, Inc. Surgical instrument
US5954717A (en) 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6436116B1 (en) 1997-10-06 2002-08-20 Smith & Nephew, Inc. Methods and apparatus for removing veins
US6048224A (en) 1997-10-09 2000-04-11 Tekonsha Engineering Company Sealed multiple-contact electrical connector
US5954746A (en) 1997-10-09 1999-09-21 Ethicon Endo-Surgery, Inc. Dual cam trigger for a surgical instrument
US5954736A (en) 1997-10-10 1999-09-21 Ethicon Endo-Surgery, Inc. Coagulator apparatus having indexed rotational positioning
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US5947984A (en) 1997-10-10 1999-09-07 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
US5980510A (en) 1997-10-10 1999-11-09 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount
SE510713C2 (sv) 1997-10-10 1999-06-14 Ericsson Telefon Ab L M Faslåsningskrets samt metod för reglering av spänningsstyrd oscillator
US5873873A (en) 1997-10-10 1999-02-23 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp mechanism
US6068647A (en) 1997-10-10 2000-05-30 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having improved clamp arm tissue pad
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US5974342A (en) 1997-10-16 1999-10-26 Electrologic Of America, Inc. Electrical stimulation therapy method and apparatus
US6176857B1 (en) 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
JP2001520081A (ja) 1997-10-23 2001-10-30 アースロケア コーポレイション 導電流体における電気外科のための電源およびその供給方法
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
AU1401699A (en) 1997-11-12 1999-05-31 Isothermix, Inc. Methods and apparatus for welding blood vessels
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6156029A (en) 1997-11-25 2000-12-05 Eclipse Surgical Technologies, Inc. Selective treatment of endocardial/myocardial boundary
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
JPH11169381A (ja) 1997-12-15 1999-06-29 Olympus Optical Co Ltd 高周波処置具
US6126629A (en) 1997-12-18 2000-10-03 Bausch & Lomb Surgical, Inc. Multiple port phaco needle
US6033375A (en) 1997-12-23 2000-03-07 Fibrasonics Inc. Ultrasonic probe with isolated and teflon coated outer cannula
JPH11178833A (ja) 1997-12-24 1999-07-06 Olympus Optical Co Ltd 超音波処置具
US6165150A (en) 1997-12-29 2000-12-26 Surgical Design Corporation Tips for ultrasonic handpiece
US6388657B1 (en) 1997-12-31 2002-05-14 Anthony James Francis Natoli Virtual reality keyboard system and method
US6080149A (en) 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
JP4343434B2 (ja) 1998-01-19 2009-10-14 ヤング、マイケル・ジョン・ラドリー 超音波切断ツール
US6736813B2 (en) 1998-01-23 2004-05-18 Olympus Optical Co., Ltd. High-frequency treatment tool
DE19803439A1 (de) 1998-01-29 1999-08-05 Sachse Hans E Oszillierendes Knochenentnahmegerät
US6296640B1 (en) 1998-02-06 2001-10-02 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
JPH11225951A (ja) 1998-02-17 1999-08-24 Olympus Optical Co Ltd 内視鏡用処置具
US6132429A (en) 1998-02-17 2000-10-17 Baker; James A. Radiofrequency medical instrument and methods for luminal welding
AU2769399A (en) 1998-02-17 1999-08-30 James A. Baker Jr. Radiofrequency medical instrument for vessel welding
DE19806718A1 (de) 1998-02-18 1999-08-26 Storz Endoskop Gmbh Vorrichtung zur Behandlung von Körpergewebe mittels Ultraschall
US6126658A (en) 1998-02-19 2000-10-03 Baker; James A. Radiofrequency medical instrument and methods for vessel welding
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
US6860878B2 (en) 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US8303576B2 (en) 1998-02-24 2012-11-06 Hansen Medical, Inc. Interchangeable surgical instrument
US7775972B2 (en) 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US20060074442A1 (en) 2000-04-06 2006-04-06 Revascular Therapeutics, Inc. Guidewire for crossing occlusions or stenoses
AUPP229398A0 (en) 1998-03-11 1998-04-09 Ampcontrol Pty Ltd Two wire communicaton system
US6159160A (en) 1998-03-26 2000-12-12 Ethicon, Inc. System and method for controlled infusion and pressure monitoring
US5935144A (en) 1998-04-09 1999-08-10 Ethicon Endo-Surgery, Inc. Double sealed acoustic isolation members for ultrasonic
US6589200B1 (en) 1999-02-22 2003-07-08 Ethicon Endo-Surgery, Inc. Articulating ultrasonic surgical shears
US5897523A (en) 1998-04-13 1999-04-27 Ethicon Endo-Surgery, Inc. Articulating ultrasonic surgical instrument
US5980546A (en) 1998-04-13 1999-11-09 Nexus Medical System, Inc. Llc Guillotine cutter used with medical procedures
US6454782B1 (en) 1998-04-13 2002-09-24 Ethicon Endo-Surgery, Inc. Actuation mechanism for surgical instruments
JP3686765B2 (ja) 1998-04-16 2005-08-24 オリンパス株式会社 超音波処置具
AU754594B2 (en) 1998-04-24 2002-11-21 Indigo Medical, Incorporated Energy application system with ancillary information exchange capability, energy applicator, and methods associated therewith
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6270831B2 (en) 1998-04-30 2001-08-07 Medquest Products, Inc. Method and apparatus for providing a conductive, amorphous non-stick coating
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US5994855A (en) 1998-05-07 1999-11-30 Optiva Corporation Automatic power adjustment system for introductory use of a vibrating device on a human body
US6193709B1 (en) 1998-05-13 2001-02-27 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US6162194A (en) 1998-05-20 2000-12-19 Apollo Camera, Llc Surgical irrigation apparatus and methods for use
US6740082B2 (en) 1998-12-29 2004-05-25 John H. Shadduck Surgical instruments for treating gastro-esophageal reflux
US6974450B2 (en) 1999-12-30 2005-12-13 Pearl Technology Holdings, Llc Face-lifting device
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US6132448A (en) 1998-06-19 2000-10-17 Stryker Corporation Endoscopic irrigated bur
US6679882B1 (en) 1998-06-22 2004-01-20 Lina Medical Aps Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US6390973B1 (en) 1998-06-25 2002-05-21 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscope for ultrasonic examination and surgical treatment associated thereto
CA2276313C (en) 1998-06-29 2008-01-29 Ethicon Endo-Surgery, Inc. Balanced ultrasonic blade including a plurality of balance asymmetries
US6309400B2 (en) 1998-06-29 2001-10-30 Ethicon Endo-Surgery, Inc. Curved ultrasonic blade having a trapezoidal cross section
US6660017B2 (en) 1998-06-29 2003-12-09 Ethicon Endo-Surgery, Inc. Balanced ultrasonic blade including a singular balance asymmetry
CA2276316C (en) 1998-06-29 2008-02-12 Ethicon Endo-Surgery, Inc. Method of balancing asymmetric ultrasonic surgical blades
US6077285A (en) 1998-06-29 2000-06-20 Alcon Laboratories, Inc. Torsional ultrasound handpiece
US6066132A (en) 1998-06-30 2000-05-23 Ethicon, Inc. Articulating endometrial ablation device
US6537272B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6096033A (en) 1998-07-20 2000-08-01 Tu; Hosheng Medical device having ultrasonic ablation capability
US6572639B1 (en) 1998-07-31 2003-06-03 Surx, Inc. Interspersed heating/cooling to shrink tissues for incontinence
US7534243B1 (en) 1998-08-12 2009-05-19 Maquet Cardiovascular Llc Dissection and welding of tissue
US6794027B1 (en) 1998-08-24 2004-09-21 Daikin Industries, Ltd. Thin coating film comprising fluorine-containing polymer and method of forming same
US6833865B1 (en) 1998-09-01 2004-12-21 Virage, Inc. Embedded metadata engines in digital capture devices
DE19839826A1 (de) 1998-09-01 2000-03-02 Karl Fastenmeier Hochfrequenzeinrichtung zur Erzeugung eines Plasmabogens für die Behandlung von menschlichem Gewebe
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6022362A (en) 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6086584A (en) 1998-09-10 2000-07-11 Ethicon, Inc. Cellular sublimation probe and methods
US6391026B1 (en) 1998-09-18 2002-05-21 Pro Duct Health, Inc. Methods and systems for treating breast tissue
US6132427A (en) 1998-09-21 2000-10-17 Medicor Corporation Electrosurgical instruments
US6402748B1 (en) 1998-09-23 2002-06-11 Sherwood Services Ag Electrosurgical device having a dielectrical seal
US6929602B2 (en) 1998-09-28 2005-08-16 Kabushiki Kaisha Toshiba Endoscope apparatus
JP4136118B2 (ja) 1998-09-30 2008-08-20 オリンパス株式会社 電気手術装置
US20100042093A9 (en) 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US6277117B1 (en) 1998-10-23 2001-08-21 Sherwood Services Ag Open vessel sealing forceps with disposable electrodes
CA2347633C (en) 1998-10-23 2011-01-04 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US6796981B2 (en) 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US6511480B1 (en) 1998-10-23 2003-01-28 Sherwood Services Ag Open vessel sealing forceps with disposable electrodes
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US20040249374A1 (en) 1998-10-23 2004-12-09 Tetzlaff Philip M. Vessel sealing instrument
US6585735B1 (en) 1998-10-23 2003-07-01 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US20040167508A1 (en) 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
JP4245278B2 (ja) 1998-10-23 2009-03-25 コビディエン アクチェンゲゼルシャフト ディスポーザブル電極を備えた外切開式血管シール用鉗子
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US6174311B1 (en) 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
JP2000210299A (ja) 1999-01-20 2000-08-02 Olympus Optical Co Ltd 手術装置
DE19850068C1 (de) 1998-10-30 2000-06-08 Storz Karl Gmbh & Co Kg Medizinisches Instrument zum Präparieren von Gewebe
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
EP1016630B1 (de) 1998-12-30 2005-12-28 Wedeco AG Vorrichtung zur UV-Bestrahlung, insbesondere zur Desinfektion von strömenden Flüssigkeiten mit verminderter UV-Transmission
US6436129B1 (en) 1999-01-20 2002-08-20 Oratec Interventions, Inc. Method and apparatus for stimulating nerve regeneration
US20030171747A1 (en) 1999-01-25 2003-09-11 Olympus Optical Co., Ltd. Medical treatment instrument
US7189206B2 (en) 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6332891B1 (en) 1999-02-16 2001-12-25 Stryker Corporation System and method for performing image guided surgery
US6350269B1 (en) 1999-03-01 2002-02-26 Apollo Camera, L.L.C. Ligation clip and clip applier
US6290575B1 (en) 1999-03-01 2001-09-18 John I. Shipp Surgical ligation clip with increased ligating force
DE19908721A1 (de) 1999-03-01 2000-09-28 Storz Karl Gmbh & Co Kg Instrument zum Schneiden von biologischem und insbesondere menschlichem Gewebe
US6027515A (en) 1999-03-02 2000-02-22 Sound Surgical Technologies Llc Pulsed ultrasonic device and method
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
JP2000271142A (ja) 1999-03-24 2000-10-03 Olympus Optical Co Ltd 電気駆動型処置具
US6666875B1 (en) 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
US6311783B1 (en) 1999-03-08 2001-11-06 William Harpell Gardening tool
US6190386B1 (en) 1999-03-09 2001-02-20 Everest Medical Corporation Electrosurgical forceps with needle electrodes
US6582451B1 (en) 1999-03-16 2003-06-24 The University Of Sydney Device for use in surgery
JP2000271145A (ja) 1999-03-24 2000-10-03 Olympus Optical Co Ltd 治療装置及び治療システム
US6416486B1 (en) 1999-03-31 2002-07-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical device having an embedding surface and a coagulating surface
US6257241B1 (en) 1999-03-31 2001-07-10 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using ultrasonic radio frequency energy
US6251110B1 (en) 1999-03-31 2001-06-26 Ethicon Endo-Surgery, Inc. Combined radio frequency and ultrasonic surgical device
US6287344B1 (en) 1999-03-31 2001-09-11 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using an ultrasonic device
JP2000287987A (ja) 1999-04-01 2000-10-17 Olympus Optical Co Ltd 充電式医療装置
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
DE60040788D1 (de) 1999-04-15 2008-12-24 Ethicon Endo Surgery Verfahren zum abstimmen von ultraschallwandlern
US6278218B1 (en) 1999-04-15 2001-08-21 Ethicon Endo-Surgery, Inc. Apparatus and method for tuning ultrasonic transducers
AU4420100A (en) 1999-04-21 2000-11-10 Michael John Radley Young Improved waveguide output configurations
WO2000064357A1 (en) 1999-04-23 2000-11-02 United States Surgical Corporation Second generation coil fastener applier with memory ring
US6152923A (en) 1999-04-28 2000-11-28 Sherwood Services Ag Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue
US6689146B1 (en) 1999-04-29 2004-02-10 Stryker Corporation Powered surgical handpiece with integrated irrigator and suction application
ES2270814T3 (es) 1999-05-07 2007-04-16 AESCULAP AG &amp; CO. KG Herramienta quirurgica rotatoria.
US20030130693A1 (en) 1999-05-18 2003-07-10 Levin John M. Laparoscopic/thorascopic insertion caps
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US6174310B1 (en) 1999-05-24 2001-01-16 Kirwan Surgical Products, Inc. Bipolar coaxial coagulator having offset connector pin
US6454781B1 (en) 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
US20030181898A1 (en) 1999-05-28 2003-09-25 Bowers William J. RF filter for an electrosurgical generator
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US6517565B1 (en) 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
KR100660771B1 (ko) 1999-06-03 2006-12-26 아스린 에스.아. 구강외과에서 사용되는 드릴 기구를 위한 정지 부재를 포함하는 안전 장치와 드릴 깊이 예비 보정 및 기억 장치
US6273852B1 (en) 1999-06-09 2001-08-14 Ethicon, Inc. Surgical instrument and method for treating female urinary incontinence
US6117152A (en) 1999-06-18 2000-09-12 Ethicon Endo-Surgery, Inc. Multi-function ultrasonic surgical instrument
US6214023B1 (en) 1999-06-21 2001-04-10 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with removable clamp arm
US6811842B1 (en) 1999-06-29 2004-11-02 The Procter & Gamble Company Liquid transport member for high flux rates between two port regions
US6254623B1 (en) 1999-06-30 2001-07-03 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator surgical instrument with improved blade geometry
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
JP3911368B2 (ja) * 1999-07-08 2007-05-09 オリンパス株式会社 超音波処置具
US20010031950A1 (en) 1999-07-16 2001-10-18 Samantha Bell Surgical blade coatings
JP2001029353A (ja) 1999-07-21 2001-02-06 Olympus Optical Co Ltd 超音波処置装置
US6423073B2 (en) 1999-07-23 2002-07-23 Ethicon, Inc. Instrument for inserting graft fixation device
US6258034B1 (en) 1999-08-04 2001-07-10 Acuson Corporation Apodization methods and apparatus for acoustic phased array aperture for diagnostic medical ultrasound transducer
TW449185U (en) 1999-08-20 2001-08-01 Chroma Ate Inc Charge/discharge control circuit for battery
US6590733B1 (en) 1999-08-20 2003-07-08 Agere Systems Inc. Digital processing of pilot-tone amplitudes
US6666860B1 (en) 1999-08-24 2003-12-23 Olympus Optical Co., Ltd. Electric treatment system
US20020087155A1 (en) 1999-08-30 2002-07-04 Underwood Ronald A. Systems and methods for intradermal collagen stimulation
US6419675B1 (en) 1999-09-03 2002-07-16 Conmed Corporation Electrosurgical coagulating and cutting instrument
US6651669B1 (en) 1999-09-07 2003-11-25 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US7077039B2 (en) 2001-11-13 2006-07-18 Sd3, Llc Detection system for power equipment
US6432118B1 (en) 1999-10-05 2002-08-13 Ethicon Endo-Surgery, Inc. Multifunctional curved blade for use with an ultrasonic surgical instrument
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
JP4233742B2 (ja) 1999-10-05 2009-03-04 エシコン・エンド−サージェリィ・インコーポレイテッド 超音波外科用器具と共に使用される湾曲クランプアームと組織パッドの連結
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6551337B1 (en) 1999-10-05 2003-04-22 Omnisonics Medical Technologies, Inc. Ultrasonic medical device operating in a transverse mode
US20030036705A1 (en) 1999-10-05 2003-02-20 Omnisonics Medical Technologies, Inc. Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means
US6379350B1 (en) 1999-10-05 2002-04-30 Oratec Interventions, Inc. Surgical instrument for ablation and aspiration
US20020077550A1 (en) 1999-10-05 2002-06-20 Rabiner Robert A. Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode
US6458142B1 (en) 1999-10-05 2002-10-01 Ethicon Endo-Surgery, Inc. Force limiting mechanism for an ultrasonic surgical instrument
US6204592B1 (en) 1999-10-12 2001-03-20 Ben Hur Ultrasonic nailing and drilling apparatus
DK1150616T3 (da) 1999-10-15 2006-02-13 Lina Medical Aps Elkirurgisk indretning til koagulering og til frembringelse af snit, en metode til overskaring af blodkar og en metode til koagulering og til frembringelse af snit i vav eller til overskaring af vav
US6356224B1 (en) 1999-10-21 2002-03-12 Credence Systems Corporation Arbitrary waveform generator having programmably configurable architecture
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US6340878B1 (en) 1999-10-22 2002-01-22 Motorola, Inc. Silicon equivalent PTC circuit
US6716215B1 (en) 1999-10-29 2004-04-06 Image-Guided Neurologics Cranial drill with sterile barrier
US6440062B1 (en) 1999-11-10 2002-08-27 Asahi Kogaku Kogyo Kabushiki Kaisha Control wire driving mechanism for use in endoscope
US6443969B1 (en) 2000-08-15 2002-09-03 Misonix, Inc. Ultrasonic cutting blade with cooling
JP2001149374A (ja) 1999-11-29 2001-06-05 Asahi Optical Co Ltd 内視鏡用組織採取具
RU2154437C1 (ru) 1999-11-30 2000-08-20 Зао "Вниимп-Вита" Аппарат электрохирургический
US6635057B2 (en) 1999-12-02 2003-10-21 Olympus Optical Co. Ltd. Electric operation apparatus
US7153312B1 (en) 1999-12-02 2006-12-26 Smith & Nephew Inc. Closure device and method for tissue repair
US6352532B1 (en) 1999-12-14 2002-03-05 Ethicon Endo-Surgery, Inc. Active load control of ultrasonic surgical instruments
US6743245B2 (en) 1999-12-20 2004-06-01 Alcon Universal Ltd. Asynchronous method of operating microsurgical instruments
DK176336B1 (da) 1999-12-22 2007-08-20 Asahi Optical Co Ltd Endoskopisk vævsindsamlingsinstrument
US6884252B1 (en) 2000-04-04 2005-04-26 Circuit Tree Medical, Inc. Low frequency cataract fragmenting device
US6511493B1 (en) 2000-01-10 2003-01-28 Hydrocision, Inc. Liquid jet-powered surgical instruments
US6702821B2 (en) 2000-01-14 2004-03-09 The Bonutti 2003 Trust A Instrumentation for minimally invasive joint replacement and methods for using same
US6416469B1 (en) 2000-01-26 2002-07-09 Genzyme Corporation Suture organizing and retaining device and base member for surgical retractor
US6589239B2 (en) 2000-02-01 2003-07-08 Ashok C. Khandkar Electrosurgical knife
AU2001234681A1 (en) 2000-02-01 2001-08-14 Sound Surgical Technologies Llc Aluminum ultrasonic surgical applicator and method of making such an applicator
SE0000344D0 (sv) 2000-02-02 2000-02-02 Sudhir Chowdhury Disinfection of water
JP2002186901A (ja) 2000-12-21 2002-07-02 Olympus Optical Co Ltd 超音波手術装置
RU2201169C2 (ru) 2000-02-08 2003-03-27 Санкт-Петербургская медицинская академия последипломного образования Нейрохирургическое ультразвуковое устройство
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
US6723091B2 (en) 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
WO2001062173A2 (en) 2000-02-25 2001-08-30 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US6506208B2 (en) 2000-03-06 2003-01-14 Robert B. Hunt Surgical instrument
US6428539B1 (en) 2000-03-09 2002-08-06 Origin Medsystems, Inc. Apparatus and method for minimally invasive surgery using rotational cutting tool
AU2001245727A1 (en) 2000-03-15 2001-09-24 Bioaccess, Inc. Orthopedic medical device
DE20004812U1 (de) 2000-03-16 2000-09-28 Knop, Christian, Dr., 30163 Hannover Endoskopische Spreizzange
AR028271A1 (es) 2000-03-24 2003-04-30 Kimberly Clark Co Un sistema para un producto higienico y una almohadilla para la higiene de la mujer que comprende dicho sistema
US6926712B2 (en) 2000-03-24 2005-08-09 Boston Scientific Scimed, Inc. Clamp having at least one malleable clamp member and surgical method employing the same
US6423082B1 (en) 2000-03-31 2002-07-23 Ethicon Endo-Surgery, Inc. Ultrasonic surgical blade with improved cutting and coagulation features
US6623501B2 (en) 2000-04-05 2003-09-23 Therasense, Inc. Reusable ceramic skin-piercing device
FR2807827B1 (fr) 2000-04-12 2002-07-05 Technomed Medical Systems Systeme de manipulation de fluide pour appareil de therapie
US6984220B2 (en) 2000-04-12 2006-01-10 Wuchinich David G Longitudinal-torsional ultrasonic tissue dissection
AU2001249874A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. System and method for assessing transmurality of ablation lesions
WO2001082812A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US20020107514A1 (en) 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
AU6321301A (en) 2000-05-16 2001-11-26 Atrionix Inc Apparatus and method incorporating an ultrasound transducer onto a delivery member
DE10025352B4 (de) 2000-05-23 2007-09-20 Hilti Ag Werkzeuggerät mit einem Ultraschalladapter
USD445092S1 (en) 2000-05-24 2001-07-17 Aten International Co., Ltd. Computer-cord-connector
USD445764S1 (en) 2000-05-24 2001-07-31 Aten International Co., Ltd. Computer-cord-connector
US6602262B2 (en) 2000-06-02 2003-08-05 Scimed Life Systems, Inc. Medical device having linear to rotation control
US20030204188A1 (en) 2001-11-07 2003-10-30 Artemis Medical, Inc. Tissue separating and localizing catheter assembly
DE10028319A1 (de) 2000-06-07 2001-12-13 Endress Hauser Gmbh Co Elektromechanischer Wandler
WO2001095810A2 (en) 2000-06-14 2001-12-20 Harmonia Medical Technologies, Inc. Surgical instrument and method of using the same
US6558376B2 (en) 2000-06-30 2003-05-06 Gregory D. Bishop Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface
US20020002380A1 (en) 2000-06-30 2002-01-03 Bishop Gregory D. Ultrasonic clamp and coagulation apparatus with tissue support surface
US6511478B1 (en) 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
US7235073B2 (en) 2000-07-06 2007-06-26 Ethicon Endo-Surgery, Inc. Cooled electrosurgical forceps
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
JP2003000612A (ja) 2001-06-18 2003-01-07 Olympus Optical Co Ltd エネルギー処置システム
US6761698B2 (en) 2000-07-28 2004-07-13 Olympus Corporation Ultrasonic operation system
US6773443B2 (en) 2000-07-31 2004-08-10 Regents Of The University Of Minnesota Method and apparatus for taking a biopsy
DE20013827U1 (de) 2000-08-10 2001-12-20 Kaltenbach & Voigt GmbH & Co., 88400 Biberach Medizinisches oder dentalmedizinisches Behandlungsinstrument mit einem Werkzeugträger in Form eines Schwingstabes
JP2002059380A (ja) 2000-08-22 2002-02-26 Olympus Optical Co Ltd マスタースレーブ装置
US6730080B2 (en) 2000-08-23 2004-05-04 Olympus Corporation Electric operation apparatus
DE10042606A1 (de) 2000-08-30 2001-08-16 Siemens Ag Medizinisches Gerät
US6551309B1 (en) 2000-09-14 2003-04-22 Cryoflex, Inc. Dual action cryoprobe and methods of using the same
IT1318881B1 (it) 2000-09-19 2003-09-10 St Microelectronics Srl Circuito di pilotaggio ad alta efficienza per carichi capacitivi.
US20020082621A1 (en) 2000-09-22 2002-06-27 Schurr Marc O. Methods and devices for folding and securing tissue
US6475215B1 (en) 2000-10-12 2002-11-05 Naim Erturk Tanrisever Quantum energy surgical device and method
GB0025427D0 (en) 2000-10-17 2000-11-29 Young Michael J R Ultrasonic tool mechanism
US7077853B2 (en) 2000-10-20 2006-07-18 Ethicon Endo-Surgery, Inc. Method for calculating transducer capacitance to determine transducer temperature
US6537291B2 (en) 2000-10-20 2003-03-25 Ethicon Endo-Surgery, Inc. Method for detecting a loose blade in a hand piece connected to an ultrasonic surgical system
JP4156231B2 (ja) 2000-10-20 2008-09-24 エシコン・エンド−サージェリィ・インコーポレイテッド 超音波ハンド・ピースにおける横振動を検出するための方法
US6626926B2 (en) 2000-10-20 2003-09-30 Ethicon Endo-Surgery, Inc. Method for driving an ultrasonic system to improve acquisition of blade resonance frequency at startup
US6809508B2 (en) 2000-10-20 2004-10-26 Ethicon Endo-Surgery, Inc. Detection circuitry for surgical handpiece system
US7273483B2 (en) 2000-10-20 2007-09-25 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
US6623500B1 (en) 2000-10-20 2003-09-23 Ethicon Endo-Surgery, Inc. Ring contact for rotatable connection of switch assembly for use in a surgical system
US6908472B2 (en) 2000-10-20 2005-06-21 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
JP4248781B2 (ja) 2000-10-20 2009-04-02 エシコン・エンド−サージェリィ・インコーポレイテッド 外科ハンドピース・システム用の検出回路
US6678621B2 (en) 2000-10-20 2004-01-13 Ethicon Endo-Surgery, Inc. Output displacement control using phase margin in an ultrasonic surgical hand piece
US6633234B2 (en) 2000-10-20 2003-10-14 Ethicon Endo-Surgery, Inc. Method for detecting blade breakage using rate and/or impedance information
US6480796B2 (en) 2000-10-20 2002-11-12 Ethicon Endo-Surgery, Inc. Method for improving the start up of an ultrasonic system under zero load conditions
US6679899B2 (en) 2000-10-20 2004-01-20 Ethicon Endo-Surgery, Inc. Method for detecting transverse vibrations in an ultrasonic hand piece
US6662127B2 (en) 2000-10-20 2003-12-09 Ethicon Endo-Surgery, Inc. Method for detecting presence of a blade in an ultrasonic system
US20020049551A1 (en) 2000-10-20 2002-04-25 Ethicon Endo-Surgery, Inc. Method for differentiating between burdened and cracked ultrasonically tuned blades
US6945981B2 (en) 2000-10-20 2005-09-20 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
CA2359281C (en) 2000-10-20 2010-12-14 Ethicon Endo-Surgery, Inc. Detection circuitry for surgical handpiece system
USD511145S1 (en) 2000-10-20 2005-11-01 Ethicon Endo-Surgery, Inc. Hand piece switch adapter
US6338657B1 (en) 2000-10-20 2002-01-15 Ethicon Endo-Surgery Hand piece connector
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6527736B1 (en) 2000-10-23 2003-03-04 Grieshaber & Co. Ag Schaffhausen Device for use in ophthalmologic procedures
JP2002132917A (ja) 2000-10-26 2002-05-10 Fujitsu Ltd 印刷サービス方法、システム及びプリンタ
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
JP2002143177A (ja) 2000-11-07 2002-05-21 Miwatec:Kk 超音波ハンドピ−スとこれに使用する超音波ホーン
US6543452B1 (en) 2000-11-16 2003-04-08 Medilyfe, Inc. Nasal intubation device and system for intubation
US6733506B1 (en) 2000-11-16 2004-05-11 Ethicon, Inc. Apparatus and method for attaching soft tissue to bone
CN2460047Y (zh) 2000-11-16 2001-11-21 黄健平 计算机虚拟b超仪
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6558380B2 (en) 2000-12-08 2003-05-06 Gfd Gesellschaft Fur Diamantprodukte Mbh Instrument for surgical purposes and method of cleaning same
IT249046Y1 (it) 2000-12-11 2003-03-25 Optikon 2000 Spa Punta emulsificata per chirurgia oculistica, in particolare per lafacoemulsificazione della cataratta.
JP4080874B2 (ja) 2000-12-20 2008-04-23 フォックス ハロウ テクノロジーズ,インコーポレイティド 減嵩カテーテル
JP3561234B2 (ja) 2000-12-21 2004-09-02 アイシン機工株式会社 超音波発生伝達装置
DE20021619U1 (de) 2000-12-21 2001-03-08 Neumann, Anne-Kathrin, 26605 Aurich Chirurgisches Handwerkzeug, insbesondere Ultraschall-Skalpell
US6690960B2 (en) 2000-12-21 2004-02-10 David T. Chen Video-based surgical targeting system
US8133218B2 (en) 2000-12-28 2012-03-13 Senorx, Inc. Electrosurgical medical system and method
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US7530986B2 (en) 2001-01-08 2009-05-12 Ethicon Endo-Surgery, Inc. Laminated ultrasonic end effector
CA2434151C (en) 2001-01-11 2009-12-22 Rita Medical Systems, Inc. Bone-treatment instrument and method
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US6554829B2 (en) 2001-01-24 2003-04-29 Ethicon, Inc. Electrosurgical instrument with minimally invasive jaws
US6620161B2 (en) 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
US6458128B1 (en) 2001-01-24 2002-10-01 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US6464702B2 (en) 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US20020107517A1 (en) 2001-01-26 2002-08-08 Witt David A. Electrosurgical instrument for coagulation and cutting
US6500188B2 (en) 2001-01-29 2002-12-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with finger actuator
USD444365S1 (en) 2001-01-31 2001-07-03 Campbell Hausfeld/Scott Fetzer Company Handheld power tool housing and handle
EP1359851B1 (en) 2001-01-31 2010-09-22 Rex Medical, Inc. Apparatus for stapling and resectioning gastro-edophageal tissue
US6561983B2 (en) 2001-01-31 2003-05-13 Ethicon Endo-Surgery, Inc. Attachments of components of ultrasonic blades or waveguides
US6752815B2 (en) 2001-01-31 2004-06-22 Ethicon Endo-Surgery, Inc. Method and waveguides for changing the direction of longitudinal vibrations
CA2437582C (en) 2001-02-08 2009-09-15 Tyco Healthcare Group Lp Ultrasonic surgical instrument
US20080214967A1 (en) 2004-02-17 2008-09-04 Ernest Aranyi Ultrasonic surgical instrument
US20040054364A1 (en) 2002-02-08 2004-03-18 Ernest Aranyi Ultrasonic surgical instrument
US20040097911A1 (en) 2001-02-13 2004-05-20 Olympus Optical Co., Ltd. Ultrasonic operating apparartus and tool for changing tip thereof
JP2002238919A (ja) 2001-02-20 2002-08-27 Olympus Optical Co Ltd 医療システム用制御装置及び医療システム
US6986686B2 (en) 2001-02-23 2006-01-17 Olympus Corporation Electrical plug for supplying electric power from a power supply to a medical instrument
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
WO2002067798A1 (en) 2001-02-26 2002-09-06 Ntero Surgical, Inc. System and method for reducing post-surgical complications
US6383194B1 (en) 2001-02-26 2002-05-07 Viswanadham Pothula Flexible ultrasonic surgical snare
US6666862B2 (en) 2001-03-01 2003-12-23 Cardiac Pacemakers, Inc. Radio frequency ablation system and method linking energy delivery with fluid flow
US6719776B2 (en) 2001-03-01 2004-04-13 Ethicon Endo-Surgery, Inc. Thumb pad actuator for an ultrasonic surgical instrument
JP2002263579A (ja) 2001-03-07 2002-09-17 Olympus Optical Co Ltd 超音波振動子駆動装置
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
US6514267B2 (en) 2001-03-26 2003-02-04 Iep Pharmaceutical Devices Inc. Ultrasonic scalpel
US6626848B2 (en) 2001-03-30 2003-09-30 Eric M. Neuenfeldt Method and device to reduce needle insertion force
US20030014087A1 (en) 2001-03-30 2003-01-16 Neurocontrol Corporation Systems and methods for performing prosthetic or therapeutic neuromuscular stimulation using a programmable universal external controller
US8348880B2 (en) 2001-04-04 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument incorporating fluid management
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US7101373B2 (en) 2001-04-06 2006-09-05 Sherwood Services Ag Vessel sealer and divider
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
AU2001249937B2 (en) 2001-04-06 2006-02-09 Covidien Ag Vessel sealing instrument
EP1527746B1 (en) 2001-04-06 2013-03-13 Covidien AG Vessel sealing forceps with disposable electrodes
CA2442598C (en) 2001-04-06 2011-10-04 Sean T. Dycus Vessel sealer and divider with non-conductive stop members
US7118587B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealer and divider
US20030229344A1 (en) 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
US7083618B2 (en) 2001-04-06 2006-08-01 Sherwood Services Ag Vessel sealer and divider
AU2002250551B2 (en) 2001-04-06 2006-02-02 Covidien Ag Molded insulating hinge for bipolar instruments
US20020151837A1 (en) 2001-04-16 2002-10-17 Surgicon Inc. Surgical irrigation apparatus and methods for use
JP2002306504A (ja) 2001-04-18 2002-10-22 Olympus Optical Co Ltd 外科手術システム
US7824401B2 (en) 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
US6562035B1 (en) 2001-04-19 2003-05-13 Levin John M Insulated surgical scissors including cauterizing tip
US6994708B2 (en) 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
ATE551955T1 (de) 2001-04-20 2012-04-15 Tyco Healthcare Chirurgische vorrichtung mit bipolaren oder ultraschalleigenschaften
US6807968B2 (en) 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6531846B1 (en) 2001-05-03 2003-03-11 National Semiconductor Corporation Final discharge of a cell activated by a circuit that senses when a charging fault has occurred
US20020165577A1 (en) 2001-05-04 2002-11-07 Ethicon Endo-Surgery, Inc. Easily detachable ultrasonic clamping device
EP1385439A1 (en) 2001-05-10 2004-02-04 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
US6588277B2 (en) 2001-05-21 2003-07-08 Ethicon Endo-Surgery Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade
US7182604B2 (en) 2001-06-01 2007-02-27 Sherwood Services Ag Return pad cable connector
US6656198B2 (en) 2001-06-01 2003-12-02 Ethicon-Endo Surgery, Inc. Trocar with reinforced obturator shaft
US8052672B2 (en) 2001-06-06 2011-11-08 LENR Solutions, Inc. Fat removal and nerve protection device and method
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US20030009154A1 (en) 2001-06-20 2003-01-09 Whitman Michael P. Method and system for integrated medical tracking
JP2003010201A (ja) 2001-06-27 2003-01-14 Pentax Corp 超音波治療具
WO2003001988A2 (en) 2001-06-29 2003-01-09 The Trustees Of Columbia University In City Of New York Tripod knife for venous access
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
AU2002322374B2 (en) 2001-06-29 2006-10-26 Intuitive Surgical, Inc. Platform link wrist mechanism
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
US6923804B2 (en) 2001-07-12 2005-08-02 Neothermia Corporation Electrosurgical generator
US6740079B1 (en) 2001-07-12 2004-05-25 Neothermia Corporation Electrosurgical generator
US7037255B2 (en) 2001-07-27 2006-05-02 Ams Research Corporation Surgical instruments for addressing pelvic disorders
IL144638A (en) 2001-07-30 2005-12-18 Nano Size Ltd High power ultrasound reactor for the production of nano-powder materials
US6778023B2 (en) 2001-07-31 2004-08-17 Nokia Corporation Tunable filter and method of tuning a filter
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
US20030040758A1 (en) 2001-08-21 2003-02-27 Yulun Wang Robotically controlled surgical instrument, visual force-feedback
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
EP1287788B1 (en) 2001-08-27 2011-04-20 Gyrus Medical Limited Electrosurgical system
WO2004078051A2 (en) 2001-08-27 2004-09-16 Gyrus Medial Limited Electrosurgical system
US6994709B2 (en) 2001-08-30 2006-02-07 Olympus Corporation Treatment device for tissue from living tissues
US7229455B2 (en) 2001-09-03 2007-06-12 Olympus Corporation Ultrasonic calculus treatment apparatus
NL1018874C2 (nl) 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Chirurgisch instrument.
WO2007143665A2 (en) 2006-06-05 2007-12-13 Broncus Technologies, Inc. Devices for creating passages and sensing blood vessels
US20050033278A1 (en) 2001-09-05 2005-02-10 Mcclurken Michael Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US20030050572A1 (en) 2001-09-07 2003-03-13 Brautigam Robert T. Specimen retrieving needle
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6773434B2 (en) 2001-09-18 2004-08-10 Ethicon, Inc. Combination bipolar forceps and scissors instrument
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
GB2379878B (en) 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
US6616661B2 (en) 2001-09-28 2003-09-09 Ethicon, Inc. Surgical device for clamping, ligating, and severing tissue
AU2002327779B2 (en) 2001-09-28 2008-06-26 Angiodynamics, Inc. Impedance controlled tissue ablation apparatus and method
US7166103B2 (en) 2001-10-01 2007-01-23 Electrosurgery Associates, Llc High efficiency electrosurgical ablator with electrode subjected to oscillatory or other repetitive motion
WO2003028544A2 (en) 2001-10-04 2003-04-10 Gibbens & Borders, Llc Cycling suturing and knot-tying device
EP2452636B1 (en) 2001-10-05 2016-03-23 Covidien LP Surgical stapling apparatus
US7796969B2 (en) 2001-10-10 2010-09-14 Peregrine Semiconductor Corporation Symmetrically and asymmetrically stacked transistor group RF switch
ES2327907T3 (es) 2001-10-11 2009-11-05 Tyco Healthcare Group Lp Cuchilla de corte iltrasonico larga formada por cuchillas mas pequeñas estratificadas.
JP2003126110A (ja) 2001-10-24 2003-05-07 Olympus Optical Co Ltd 超音波処置具
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US20050267464A1 (en) 2001-10-18 2005-12-01 Surgrx, Inc. Electrosurgical instrument and method of use
US6685703B2 (en) 2001-10-19 2004-02-03 Scimed Life Systems, Inc. Generator and probe adapter
US7517349B2 (en) 2001-10-22 2009-04-14 Vnus Medical Technologies, Inc. Electrosurgical instrument and method
US7354440B2 (en) 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US20040098010A1 (en) 2001-10-22 2004-05-20 Glenn Davison Confuser crown skin pricker
US20060293656A1 (en) 2001-10-22 2006-12-28 Shadduck John H Electrosurgical instrument and method of use
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US8075558B2 (en) 2002-04-30 2011-12-13 Surgrx, Inc. Electrosurgical instrument and method
US7311709B2 (en) 2001-10-22 2007-12-25 Surgrx, Inc. Electrosurgical instrument and method of use
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7189233B2 (en) 2001-10-22 2007-03-13 Surgrx, Inc. Electrosurgical instrument
JP2003126104A (ja) 2001-10-23 2003-05-07 Olympus Optical Co Ltd 超音波切開装置
CA2463903A1 (en) 2001-10-24 2003-05-01 Stephen L.(M.D.) Tillim A handle/grip and method for designing the like
JP3676997B2 (ja) 2001-11-07 2005-07-27 株式会社岳将 超音波加工機のスピンドル構造およびこれに用いる支持ホーン
JP4302524B2 (ja) 2001-11-08 2009-07-29 エシコン・エンド−サージェリィ・インコーポレイテッド 改良されたクランピング・エンドエフェクタを備えた超音波クランプ凝固装置
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US6719765B2 (en) 2001-12-03 2004-04-13 Bonutti 2003 Trust-A Magnetic suturing system and method
US7686770B2 (en) 2005-10-14 2010-03-30 Microfabrica Inc. Discrete or continuous tissue capture device and method for making
US7753908B2 (en) 2002-02-19 2010-07-13 Endoscopic Technologies, Inc. (Estech) Apparatus for securing an electrophysiology probe to a clamp
US7226448B2 (en) 2001-12-04 2007-06-05 Estech, Inc. (Endoscopic Technologies, Inc.) Cardiac treatment devices and methods
EP1453432B1 (en) 2001-12-04 2012-08-01 Tyco Healthcare Group LP System and method for calibrating a surgical instrument
RU22035U1 (ru) 2001-12-06 2002-03-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Каскад-НТЛ" Устройство для коагуляции и резекции биологических тканей
EP1627662B1 (en) 2004-06-10 2011-03-02 Candela Corporation Apparatus for vacuum-assisted light-based treatments of the skin
US7052496B2 (en) 2001-12-11 2006-05-30 Olympus Optical Co., Ltd. Instrument for high-frequency treatment and method of high-frequency treatment
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
DE10201569B4 (de) 2002-01-11 2008-12-24 Aesculap Ag Chirurgisches Instrument
ATE540606T1 (de) 2002-01-22 2012-01-15 Surgrx Inc Elektrochirurgisches instrument und anwendungsverfahren
US20030144680A1 (en) 2002-01-22 2003-07-31 Sontra Medical, Inc. Portable ultrasonic scalpel/cautery device
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US6887209B2 (en) 2002-01-25 2005-05-03 Advanced Medical Optics Pulsed vacuum and/or flow method and apparatus for tissue removal
DE10203630A1 (de) 2002-01-30 2003-08-14 Fraunhofer Ges Forschung Probenträger zur Kryokonservierung biologischer Proben
DE10204487B4 (de) 2002-01-30 2004-03-04 Infineon Technologies Ag Temperatursensor
US7625370B2 (en) 2002-02-13 2009-12-01 Applied Medical Resources Corporation Tissue fusion/welder apparatus and method
US20080177268A1 (en) 2002-02-14 2008-07-24 Wolfgang Daum Minimally-Invasive Approach to Bone-Obstructed Soft Tissue
US20030158548A1 (en) 2002-02-19 2003-08-21 Phan Huy D. Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US6610059B1 (en) 2002-02-25 2003-08-26 Hs West Investments Llc Endoscopic instruments and methods for improved bubble aspiration at a surgical site
US7041083B2 (en) 2002-02-26 2006-05-09 Scimed Life Systems, Inc. Medical catheter assembly including a removable inner sleeve and method of using the same
US6819027B2 (en) 2002-03-04 2004-11-16 Cepheid Method and apparatus for controlling ultrasonic transducer
US20060259026A1 (en) 2005-05-05 2006-11-16 Baylis Medical Company Inc. Electrosurgical treatment method and device
US7285117B2 (en) 2002-03-15 2007-10-23 Boston Scientific Scimed, Inc. Medical device control systems
US7247161B2 (en) 2002-03-22 2007-07-24 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
GB2387782B (en) 2002-03-28 2004-04-07 Michael John Radley Young Improved surgical tool mechanism
WO2003086223A1 (en) 2002-04-12 2003-10-23 San Diego Swiss Machining, Inc. Ultrasonic microtube dental instruments and methods of using same
US7258688B1 (en) 2002-04-16 2007-08-21 Baylis Medical Company Inc. Computerized electrical signal generator
JP2003305050A (ja) 2002-04-17 2003-10-28 Olympus Optical Co Ltd 超音波手術装置
US20040030330A1 (en) 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
EP1496805B1 (en) 2002-04-25 2012-01-11 Tyco Healthcare Group LP Surgical instruments including micro-electromechanical systems (mems)
US20030204199A1 (en) 2002-04-30 2003-10-30 Novak Theodore A. D. Device and method for ultrasonic tissue excision with tissue selectivity
US6969385B2 (en) 2002-05-01 2005-11-29 Manuel Ricardo Moreyra Wrist with decoupled motion transmission
AU2003230359B2 (en) 2002-05-10 2008-11-13 Covidien Lp Electrosurgical stapling apparatus
US20030212392A1 (en) 2002-05-13 2003-11-13 Paul Fenton Ultrasonic soft tissue cutting and coagulation systems having a curvilinear blade member and clamp
US20030212422A1 (en) 2002-05-13 2003-11-13 Paul Fenton Ultrasonic soft tissue cutting and coagulation systems with movable vibrating probe and fixed receiving clamp
JP4425782B2 (ja) 2002-05-13 2010-03-03 アクシーア メディカル インコーポレイテッド 柔組織の切断及び凝固のための超音波システム
US20030212332A1 (en) 2002-05-13 2003-11-13 Paul Fenton Disposable ultrasonic soft tissue cutting and coagulation systems
GB2388741B (en) 2002-05-17 2004-06-30 Morgan Crucible Co Transducer assembly
US6814731B2 (en) 2002-05-20 2004-11-09 Scimed Life Systems, Inc. Methods for RF ablation using jet injection of conductive fluid
JP2004000336A (ja) 2002-05-31 2004-01-08 Olympus Corp 超音波処置装置
US6543456B1 (en) 2002-05-31 2003-04-08 Ethicon Endo-Surgery, Inc. Method for minimally invasive surgery in the digestive system
US20060159731A1 (en) 2002-06-03 2006-07-20 Yissum Research Development Company Of The Hebrew University Of Jerusalem Multi-layer collagenic article useful for wounds healing and a method for its production thereof
JP4808961B2 (ja) 2002-06-04 2011-11-02 オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ 被包化された体空間内から体組織を迅速に吸引及び採取するための装置
ATE528046T1 (de) 2002-06-04 2011-10-15 Sound Surgical Technologies Llc Ultraschallgerät für die gewebekoagulation
US6855140B2 (en) 2002-06-06 2005-02-15 Thomas E. Albrecht Method of tissue lesion removal
US7066893B2 (en) 2002-06-06 2006-06-27 Ethicon Endo-Surgery, Inc. Biopsy method
US7153315B2 (en) 2002-06-11 2006-12-26 Boston Scientific Scimed, Inc. Catheter balloon with ultrasonic microscalpel blades
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
CN101803938B (zh) 2002-06-14 2012-06-20 Tyco医疗健康集团 用于夹紧、切割及缝合组织的器械
RU2284160C2 (ru) 2002-06-24 2006-09-27 Аркадий Вениаминович Дубровский Устройство для поворота инструмента с дистанционным управлением
AUPS322702A0 (en) 2002-06-28 2002-07-18 Cochlear Limited Cochlear implant electrode array
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US7331410B2 (en) 2002-07-03 2008-02-19 Smith International, Inc. Drill bit arcuate-shaped inserts with cutting edges and method of manufacture
US6958071B2 (en) 2002-07-13 2005-10-25 Stryker Corporation Surgical tool system
US7318831B2 (en) 2002-07-13 2008-01-15 Stryker Corporation System and method for performing irrigated nose and throat surgery
US6929622B2 (en) 2002-07-15 2005-08-16 Lai-Wen Chian Safety syringe cylinder
US20040047485A1 (en) 2002-07-16 2004-03-11 Stewart Sherrit Folded horns for vibration actuators
US7060075B2 (en) 2002-07-18 2006-06-13 Biosense, Inc. Distal targeting of locking screws in intramedullary nails
JP2004057588A (ja) 2002-07-30 2004-02-26 Olympus Corp 外科用処置具
AU2003269931A1 (en) 2002-07-31 2004-02-16 Tyco Heathcare Group, Lp Tool member cover and cover deployment device
JP4388475B2 (ja) 2002-08-02 2009-12-24 オリンパス株式会社 超音波処置具
US20040030254A1 (en) 2002-08-07 2004-02-12 Eilaz Babaev Device and method for ultrasound wound debridement
EP1531749A2 (en) 2002-08-13 2005-05-25 Microbotics Corporation Microsurgical robot system
US20040132383A1 (en) 2002-08-14 2004-07-08 Langford Mark A. Fluid jet cutting system
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
JP2004073582A (ja) 2002-08-20 2004-03-11 Olympus Corp 生体組織切除具
US8986297B2 (en) 2002-08-21 2015-03-24 Resect Medical, Inc. Thermal hemostasis and/or coagulation of tissue
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
DE10241702A1 (de) 2002-09-09 2004-03-18 Berchtold Holding Gmbh Ultraschallinstrument
USD490059S1 (en) 2002-09-09 2004-05-18 Thermal Dynamics Corporation Connector adapter
US20040064151A1 (en) 2002-09-27 2004-04-01 Starion Instruments Corporation Ultrasonic forceps
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
ATE416707T1 (de) 2002-10-02 2008-12-15 Olympus Corp Operationssystem mit mehreren medizinischen geräten und mehreren fernbedienungen
USD477408S1 (en) 2002-10-04 2003-07-15 Conmed Corporation Electrosurgical generator
ES2377813T5 (es) 2002-10-04 2020-12-18 Covidien Lp Conjunto de herramienta para un dispositivo de grapado quirúrgico
ES2274284T3 (es) 2002-10-04 2007-05-16 Tyco Healthcare Group Lp Grapadora quirugica con articulacion universal y dispositivo de sujeccion previa del tejido.
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
CA2712039C (en) 2002-10-04 2013-03-12 Tyco Healthcare Group Lp Tool assembly for surgical stapling device
JP2004129871A (ja) 2002-10-10 2004-04-30 Olympus Corp 超音波処置装置
US7041088B2 (en) 2002-10-11 2006-05-09 Ethicon, Inc. Medical devices having durable and lubricious polymeric coating
US7682366B2 (en) 2002-10-16 2010-03-23 Olympus Corporation Calculus manipulation apparatus
US20040147934A1 (en) 2002-10-18 2004-07-29 Kiester P. Douglas Oscillating, steerable, surgical burring tool and method of using the same
US20040092921A1 (en) 2002-10-21 2004-05-13 Kadziauskas Kenneth E. System and method for pulsed ultrasonic power delivery employing cavitation effects
US20040092992A1 (en) 2002-10-23 2004-05-13 Kenneth Adams Disposable battery powered rotary tissue cutting instruments and methods therefor
JP2003116870A (ja) 2002-10-23 2003-04-22 Miwatec:Kk 超音波ハンドピ−スとこれに使用する超音波ホ−ン
US8162966B2 (en) 2002-10-25 2012-04-24 Hydrocision, Inc. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
ATE485777T1 (de) 2002-10-25 2010-11-15 Hydrocision Inc Chirurgische einrichtung zur erzeugung eines flüssigkeitsstrahles für das entfernen von biologischem gewebe
JP4086621B2 (ja) 2002-10-28 2008-05-14 株式会社トップ 外科用器具のハンドル構造
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US7678125B2 (en) 2002-11-12 2010-03-16 Apollo Camera, L.L.C. Surgical ligation clip
US6786383B2 (en) 2002-11-14 2004-09-07 Kimberly-Clark Worldwide, Inc. Ultrasonic horn assembly with fused stack components
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US6835082B2 (en) 2002-11-18 2004-12-28 Conmed Corporation Monopolar electrosurgical multi-plug connector device and method which accepts multiple different connector plugs
US20040097912A1 (en) 2002-11-18 2004-05-20 Gonnering Wayne J. Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles
US6942660B2 (en) 2002-11-19 2005-09-13 Conmed Corporation Electrosurgical generator and method with multiple semi-autonomously executable functions
US6948503B2 (en) 2002-11-19 2005-09-27 Conmed Corporation Electrosurgical generator and method for cross-checking output power
US6905499B1 (en) 2002-11-26 2005-06-14 Thermal Corp. Heat pipe for cautery surgical Instrument
US7390317B2 (en) 2002-12-02 2008-06-24 Applied Medical Resources Corporation Universal access seal
JP4095919B2 (ja) 2002-12-09 2008-06-04 ジンマー株式会社 人工膝関節全置換手術用計測装置
US7217128B2 (en) 2002-12-12 2007-05-15 Discus Dental Impressions, Inc. Ultrasonic dental insert having interchangeable plastic and metal tips
US8057468B2 (en) 2002-12-17 2011-11-15 Bovie Medical Corporation Method to generate a plasma stream for performing electrosurgery
US20040176686A1 (en) 2002-12-23 2004-09-09 Omnisonics Medical Technologies, Inc. Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures
US6875220B2 (en) 2002-12-30 2005-04-05 Cybersonics, Inc. Dual probe
US8454639B2 (en) 2002-12-30 2013-06-04 Cybersonics, Inc. Dual probe with floating inner probe
US6926717B1 (en) 2003-01-14 2005-08-09 Jon C. Garito Electrosurgical breast electrode
US7287682B1 (en) 2003-01-20 2007-10-30 Hazem Ezzat Surgical device and method
US20040142667A1 (en) 2003-01-21 2004-07-22 Lochhead Donald Laird Method of correcting distortion in a power amplifier
US6899685B2 (en) 2003-01-24 2005-05-31 Acueity, Inc. Biopsy device
US20040158237A1 (en) 2003-02-11 2004-08-12 Marwan Abboud Multi-energy ablation station
JP2004248368A (ja) 2003-02-12 2004-09-02 Asmo Co Ltd 超音波モータ、及びその製造方法
EP1603474B1 (en) 2003-02-14 2013-09-11 The Board Of Trustees Of The Leland Stanford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7169146B2 (en) 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
ES2367304T3 (es) 2003-02-20 2011-11-02 Covidien Ag Sistema y método para conectar un instrumento electroquirúrgico a un generador.
JP4754474B2 (ja) 2003-02-25 2011-08-24 エシコン・エンド−サージェリィ・インコーポレイテッド 可変速度カッターを備えた生検装置
CA2877504C (en) 2003-02-25 2017-07-25 Bennie Thompson Biopsy device with variable speed cutter advance
US7476237B2 (en) 2003-02-27 2009-01-13 Olympus Corporation Surgical instrument
WO2004080278A2 (en) 2003-03-06 2004-09-23 Tissuelink Medical, Inc. Fluid -assisted medical devices, systems and methods
US7077845B2 (en) 2003-03-11 2006-07-18 Arthrex, Inc. Surgical abrader with suction port proximal to bearing
WO2004080291A2 (en) 2003-03-12 2004-09-23 Color Kinetics Incorporated Methods and systems for medical lighting
US20040181242A1 (en) 2003-03-12 2004-09-16 Stack Richard S. Articulated suturing system
US20060064086A1 (en) 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
WO2004083797A2 (en) 2003-03-14 2004-09-30 Thermosurgery Technologies, Inc. Hyperthermia treatment system
US20040199192A1 (en) 2003-04-04 2004-10-07 Takayuki Akahoshi Phacoemulsification needle
JP3840194B2 (ja) 2003-04-07 2006-11-01 キヤノン株式会社 振動ナイフ
US7566318B2 (en) 2003-04-11 2009-07-28 Cardiac Pacemakers, Inc. Ultrasonic subcutaneous dissection tool incorporating fluid delivery
WO2004098426A1 (en) 2003-04-15 2004-11-18 Omnisonics Medical Technologies, Inc. Apparatus and method for preshaped ultrasonic probe
US20040215132A1 (en) 2003-04-22 2004-10-28 Inbae Yoon Spot coagulating & occluding instrument and method of use
US7147638B2 (en) 2003-05-01 2006-12-12 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
WO2004098385A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
AU2004241092B2 (en) 2003-05-15 2009-06-04 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
US7431694B2 (en) 2003-05-16 2008-10-07 Ethicon Endo-Surgery, Inc. Method of guiding medical devices
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
DE60326121D1 (de) 2003-05-20 2009-03-26 Dsm Ip Assets Bv Verfahren zur Herstellung von Nanostrukturierten Oberflächenbeschichtungen, deren Beschichtungen und Gegenständen enthaltend die Beschichtung
US20100222752A1 (en) 2003-05-20 2010-09-02 Collins Jr James F Ophthalmic fluid delivery system
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
USD491666S1 (en) 2003-06-03 2004-06-15 Megadyne Medical Products, Inc. Electrosurgical generator
ITVI20030111A1 (it) 2003-06-06 2004-12-07 Telea Electronic Eng Srl Bisturi elettronico per coagulazione.
US8172870B2 (en) 2003-06-09 2012-05-08 Microline Surgical, Inc. Ligation clip applier
JP4079266B2 (ja) 2003-06-11 2008-04-23 株式会社リコー トナーの接着力測定装置及び測定方法
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
JP4664909B2 (ja) 2003-06-17 2011-04-06 タイコ ヘルスケア グループ リミテッド パートナーシップ 外科用ステープリング装置
JP5089980B2 (ja) 2003-06-17 2012-12-05 エシコン・エンド−サージェリィ・インコーポレイテッド 手動式超音波器械
US20040260273A1 (en) 2003-06-18 2004-12-23 Wan Elaine Y. Magnetic surgical instrument system
US20040260300A1 (en) 2003-06-20 2004-12-23 Bogomir Gorensek Method of delivering an implant through an annular defect in an intervertebral disc
AU2004253501B2 (en) 2003-06-24 2011-10-20 Healthonics, Inc. Apparatus and method for bioelectric stimulation, healing acceleration, pain relief, or pathogen devitalization
US9035741B2 (en) 2003-06-27 2015-05-19 Stryker Corporation Foot-operated control console for wirelessly controlling medical devices
US7128720B2 (en) 2003-06-30 2006-10-31 Ethicon, Inc. Ultrasonic finger probe
US7074218B2 (en) 2003-06-30 2006-07-11 Ethicon, Inc. Multi-modality ablation device
US7066895B2 (en) 2003-06-30 2006-06-27 Ethicon, Inc. Ultrasonic radial focused transducer for pulmonary vein ablation
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US7412008B2 (en) 2003-06-30 2008-08-12 Freescale Semiconductor, Inc. Programmable phase mapping and phase rotation modulator and method
US7037306B2 (en) 2003-06-30 2006-05-02 Ethicon, Inc. System for creating linear lesions for the treatment of atrial fibrillation
JP4206843B2 (ja) 2003-07-02 2009-01-14 アイシン・エィ・ダブリュ株式会社 ナビゲーション装置
JP2005027907A (ja) 2003-07-07 2005-02-03 Olympus Corp 超音波手術システムおよびプローブ
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US6786382B1 (en) 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
JP3895709B2 (ja) 2003-07-10 2007-03-22 オリンパス株式会社 超音波凝固切開装置及び超音波凝固切開装置の制御方法
JP4130385B2 (ja) 2003-07-23 2008-08-06 独立行政法人科学技術振興機構 ゲスト分子を内包した単層カーボンナノチューブの製造方法
JP2005040222A (ja) 2003-07-24 2005-02-17 Olympus Corp 超音波処置装置
US7144403B2 (en) 2003-07-29 2006-12-05 Alcon, Inc. Surgical knife
JP4128496B2 (ja) 2003-07-30 2008-07-30 オリンパス株式会社 超音波処置装置
JP4472395B2 (ja) 2003-08-07 2010-06-02 オリンパス株式会社 超音波手術システム
US6915623B2 (en) 2003-08-14 2005-07-12 Ethicon, Inc. Method for assembling a package for sutures
US7951165B2 (en) 2003-08-18 2011-05-31 Boston Scientific Scimed, Inc. Endoscopic medical instrument and related methods of use
JP2005058616A (ja) 2003-08-19 2005-03-10 Olympus Corp 医療システム用制御装置及び医療システム用制御方法
US8562604B2 (en) 2003-08-19 2013-10-22 Miyuki Nishimura Bipolar high frequency treatment device
JP4217134B2 (ja) 2003-08-28 2009-01-28 オリンパス株式会社 スイッチ制御装置
JP3999715B2 (ja) 2003-08-28 2007-10-31 オリンパス株式会社 超音波処置装置
JP2005074088A (ja) 2003-09-02 2005-03-24 Olympus Corp 超音波処置具
US7578820B2 (en) 2003-09-02 2009-08-25 Moore Jeffrey D Devices and techniques for a minimally invasive disc space preparation and implant insertion
EP1514518A1 (en) 2003-09-11 2005-03-16 SDGI Holdings, Inc. Impulsive percussion instruments for endplate preparation
US9168085B2 (en) 2006-09-29 2015-10-27 Baylis Medical Company Inc. Monitoring and controlling energy delivery of an electrosurgical device
JP4129217B2 (ja) 2003-09-29 2008-08-06 オリンパス株式会社 超音波手術システム、その異常検知方法および異常検知プログラム
US7083075B2 (en) 2003-09-29 2006-08-01 Ethicon Endo-Surgery, Inc. Multi-stroke mechanism with automatic end of stroke retraction
US7135018B2 (en) 2003-09-30 2006-11-14 Ethicon, Inc. Electrosurgical instrument and method for transecting an organ
US6746284B1 (en) 2003-10-02 2004-06-08 Hon Hai Precision Ind. Co., Ltd. Electrical connector assembly having signal and power terminals
JP4391788B2 (ja) 2003-10-03 2009-12-24 オリンパス株式会社 医療システム制御装置
US8357103B2 (en) 2003-10-14 2013-01-22 Suros Surgical Systems, Inc. Vacuum assisted biopsy needle set
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
JP4642770B2 (ja) 2003-10-17 2011-03-02 タイコ ヘルスケア グループ リミテッド パートナーシップ 独立先端部回転を備えた外科用ステープル留めデバイス
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
USD509589S1 (en) 2003-10-17 2005-09-13 Tyco Healthcare Group, Lp Handle for surgical instrument
US7572266B2 (en) 2003-10-21 2009-08-11 Young Wayne P Clip applier tool having a discharge configuration
US20050090817A1 (en) 2003-10-22 2005-04-28 Scimed Life Systems, Inc. Bendable endoscopic bipolar device
WO2005039395A2 (en) 2003-10-23 2005-05-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Sonic and ultrasonic surgical tips
US7217269B2 (en) 2003-10-28 2007-05-15 Uab Research Foundation Electrosurgical control system
KR20050040451A (ko) 2003-10-28 2005-05-03 삼성전자주식회사 무선주파수 식별 기능을 가지는 이동통신 단말기 및 그이동통신 단말기에서의 무선주파수 식별 프로그래밍 방법
US7686826B2 (en) 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
US20050096683A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool
US6979332B2 (en) 2003-11-04 2005-12-27 Medtronic, Inc. Surgical micro-resecting instrument with electrocautery and continuous aspiration features
US7163548B2 (en) 2003-11-05 2007-01-16 Ethicon Endo-Surgery, Inc Ultrasonic surgical blade and instrument having a gain step
CA2544749A1 (en) 2003-11-12 2005-05-26 Applied Medical Resources Corporation Overmolded grasper jaw
US20050107777A1 (en) 2003-11-13 2005-05-19 West Hugh S.Jr. Parallel wire ablator
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7232440B2 (en) 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7241294B2 (en) 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
WO2005052959A2 (en) 2003-11-19 2005-06-09 Surgrx, Inc. Polymer compositions exhibiting a ptc property and method of fabrication
US7252667B2 (en) 2003-11-19 2007-08-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism and distal lockout
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7431720B2 (en) 2003-11-25 2008-10-07 Ethicon, Inc. Multi-function clamping device with stapler and ablation heads
US7118564B2 (en) 2003-11-26 2006-10-10 Ethicon Endo-Surgery, Inc. Medical treatment system with energy delivery device for limiting reuse
US8002770B2 (en) 2003-12-02 2011-08-23 Endoscopic Technologies, Inc. (Estech) Clamp based methods and apparatus for forming lesions in tissue and confirming whether a therapeutic lesion has been formed
US7317955B2 (en) 2003-12-12 2008-01-08 Conmed Corporation Virtual operating room integration
US20050149108A1 (en) 2003-12-17 2005-07-07 Microvention, Inc. Implant delivery and detachment system and method
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
CN1634601A (zh) 2003-12-26 2005-07-06 吉林省中立实业有限公司 一种用于医疗器械灭菌的方法
US7210881B2 (en) 2003-12-30 2007-05-01 Greenberg Alex M Sleeved stop for a drill bit
US8337407B2 (en) 2003-12-30 2012-12-25 Liposonix, Inc. Articulating arm for medical procedures
JP4262631B2 (ja) 2004-01-13 2009-05-13 オリンパス株式会社 超音波処置具
US7632269B2 (en) 2004-01-16 2009-12-15 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with replaceable cartridge
US20050165429A1 (en) 2004-01-23 2005-07-28 Peter Douglas Surgical clamp possessing a combined parallel and scissor style clamp head
US20050171522A1 (en) 2004-01-30 2005-08-04 Christopherson Mark A. Transurethral needle ablation system with needle position indicator
US7251531B2 (en) 2004-01-30 2007-07-31 Ams Research Corporation Heating method for tissue contraction
US7204835B2 (en) 2004-02-02 2007-04-17 Gyrus Medical, Inc. Surgical instrument
US20050177184A1 (en) 2004-02-09 2005-08-11 Easley James C. Torsional dissection tip
US7488322B2 (en) 2004-02-11 2009-02-10 Medtronic, Inc. High speed surgical cutting instrument
US20060264995A1 (en) 2004-02-18 2006-11-23 Fanton Gary S Apparatus and methods for clearing obstructions from surgical cutting instruments
US7124932B2 (en) 2004-02-25 2006-10-24 Megadyne Medical Products, Inc. Electrosurgical counter and lockout mechanism
CN1922563A (zh) 2004-02-25 2007-02-28 玛格戴恩医疗产品公司 电外科计数器及闭锁机构
US20050188743A1 (en) 2004-02-26 2005-09-01 H. P. Intellectual Corp. Automatic ultrasonic frequency calibration scheme
US20050192611A1 (en) 2004-02-27 2005-09-01 Houser Kevin L. Ultrasonic surgical instrument, shears and tissue pad, method for sealing a blood vessel and method for transecting patient tissue
US20050192610A1 (en) 2004-02-27 2005-09-01 Houser Kevin L. Ultrasonic surgical shears and tissue pad for same
US20050234484A1 (en) 2004-02-27 2005-10-20 Houser Kevin L Ultrasonic surgical blade having transverse and longitudinal vibration
US7235071B2 (en) 2004-02-27 2007-06-26 Conmed Corporation Gas-assisted electrosurgical accessory connector and method with improved gas sealing and biasing for maintaining a gas tight seal
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7703459B2 (en) 2004-03-09 2010-04-27 Usgi Medical, Inc. Apparatus and methods for mapping out endoluminal gastrointestinal surgery
US7179254B2 (en) 2004-03-09 2007-02-20 Ethicon, Inc. High intensity ablation device
US7955331B2 (en) 2004-03-12 2011-06-07 Ethicon Endo-Surgery, Inc. Electrosurgical instrument and method of use
US8181840B2 (en) 2004-03-19 2012-05-22 Tyco Healthcare Group Lp Tissue tensioner assembly and approximation mechanism for surgical stapling device
US7625388B2 (en) 2004-03-22 2009-12-01 Alcon, Inc. Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US20050249667A1 (en) 2004-03-24 2005-11-10 Tuszynski Jack A Process for treating a biological organism
JP4282523B2 (ja) 2004-03-30 2009-06-24 オリンパス株式会社 超音波処置装置
CA2603195C (en) 2004-04-05 2016-07-12 Robert A. Ganz Device and method for treating tissue
US20050222598A1 (en) 2004-04-05 2005-10-06 Manoa Medical, Inc., A Delaware Corporation Tissue cutting device
JP2005296412A (ja) 2004-04-13 2005-10-27 Olympus Corp 内視鏡治療装置
US7220951B2 (en) 2004-04-19 2007-05-22 Surgrx, Inc. Surgical sealing surfaces and methods of use
JP4291202B2 (ja) 2004-04-20 2009-07-08 オリンパス株式会社 超音波処置具
BRPI0510550A (pt) 2004-05-03 2007-11-20 Ams Res Corp implante cirúrgico, kit cirúrgico, método para formar ou montar um implante cirúrgico, molde de inserção, aparelho, e, método para produzir um implante cirúrgico
EP1668760A2 (en) 2004-05-04 2006-06-14 02Micro, Inc. Cordless power tool with tool identification circuitry
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US20050256405A1 (en) 2004-05-17 2005-11-17 Makin Inder Raj S Ultrasound-based procedure for uterine medical treatment
JP4554431B2 (ja) 2004-05-18 2010-09-29 ローム株式会社 Dtmf信号生成回路、音信号生成回路、ならびに通信装置
US7951095B2 (en) 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US7708751B2 (en) 2004-05-21 2010-05-04 Ethicon Endo-Surgery, Inc. MRI biopsy device
US20050261588A1 (en) 2004-05-21 2005-11-24 Makin Inder Raj S Ultrasound medical system
US9638770B2 (en) 2004-05-21 2017-05-02 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating an imageable penetrating portion
JP4304486B2 (ja) 2004-05-27 2009-07-29 マツダ株式会社 エンジンの燃料配管構造
JP2008501444A (ja) 2004-06-07 2008-01-24 エドワーズ ライフサイエンシーズ コーポレイション 組織を方向性をもって切除するための方法およびデバイス
US7066936B2 (en) 2004-06-07 2006-06-27 Ethicon, Inc. Surgical cutting and tissue vaporizing instrument
WO2005122918A1 (ja) 2004-06-15 2005-12-29 Olympus Corporation エネルギー処置具
JP4343778B2 (ja) 2004-06-16 2009-10-14 オリンパス株式会社 超音波手術装置
JP2006006410A (ja) 2004-06-22 2006-01-12 Olympus Corp 超音波手術装置
US7226447B2 (en) 2004-06-23 2007-06-05 Smith & Nephew, Inc. Electrosurgical generator
DE102004031141A1 (de) 2004-06-28 2006-01-26 Erbe Elektromedizin Gmbh Elektrochirurgisches Instrument
CN100357150C (zh) 2004-07-12 2007-12-26 曹海洋 带有活动地板的封闭式二轮摩托车
USD536093S1 (en) 2004-07-15 2007-01-30 Olympus Corporation Treatment apparatus for endoscope
US7535233B2 (en) 2004-07-15 2009-05-19 Cooper Technologies Company Traveling wave based relay protection
US7601136B2 (en) 2004-07-20 2009-10-13 Takayuki Akahoshi Infusion sleeve
US7896875B2 (en) 2004-07-20 2011-03-01 Microline Surgical, Inc. Battery powered electrosurgical system
AU2005285459A1 (en) 2004-07-20 2006-03-23 Team Medical, Llc Multielectrode electrosurgical instrument
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US7862579B2 (en) 2004-07-28 2011-01-04 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for grasper
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
CA2574977C (en) 2004-07-29 2010-01-26 X-Sten, Corp. Spinal ligament modification devices
CN100394897C (zh) 2004-08-03 2008-06-18 张毓笠 复合振动的超声骨骼手术仪
US8911438B2 (en) 2004-08-10 2014-12-16 Medtronic, Inc. Tuna device with integrated saline reservoir
DE102004055669B4 (de) 2004-08-11 2009-09-24 Erbe Elektromedizin Gmbh Elektrochirurgisches Instrument
DE102004040959B4 (de) 2004-08-24 2008-12-24 Erbe Elektromedizin Gmbh Chirurgisches Instrument
JP2006068396A (ja) 2004-09-03 2006-03-16 Olympus Corp 医療用システム、医療用システムの制御方法
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
JP4300169B2 (ja) 2004-09-10 2009-07-22 アロカ株式会社 超音波手術器
WO2006030563A1 (ja) 2004-09-14 2006-03-23 Olympus Corporation 超音波処置具、並びに、超音波処置具用のプローブ、処置部及び太径部
JP2006081664A (ja) 2004-09-15 2006-03-30 Olympus Corp 医療用システム、医療用システムの制御方法
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US20070190485A1 (en) 2004-09-21 2007-08-16 Discus Dental Impressions, Inc. Dental instrument
JP4727964B2 (ja) 2004-09-24 2011-07-20 株式会社日立製作所 半導体装置
MX2007003095A (es) 2004-09-24 2007-05-16 Univ Leland Stanford Junior Metodos y dispositivos para cerrar los vasos sanguineos inducidos electricamente no termicos.
EP1806108B1 (en) 2004-09-27 2010-05-05 Olympus Corporation Ultrasonic operating system
US7422582B2 (en) 2004-09-29 2008-09-09 Stryker Corporation Control console to which powered surgical handpieces are connected, the console configured to simultaneously energize more than one and less than all of the handpieces
US7740594B2 (en) 2004-09-29 2010-06-22 Ethicon Endo-Surgery, Inc. Cutter for biopsy device
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
ES2598134T3 (es) 2004-10-08 2017-01-25 Ethicon Endo-Surgery, Llc Instrumento ultrasónico quirúrgico
US7553309B2 (en) 2004-10-08 2009-06-30 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US7628792B2 (en) 2004-10-08 2009-12-08 Covidien Ag Bilateral foot jaws
JP2006114072A (ja) 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd ディスクデータの管理および仮想ディスク作成装置、方法、プログラム及び媒体
US20080161809A1 (en) 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
JP2006115631A (ja) 2004-10-15 2006-04-27 Konica Minolta Holdings Inc 圧電駆動装置
WO2006044693A2 (en) 2004-10-18 2006-04-27 Black & Decker Inc. Cordless power system
US7582086B2 (en) 2004-10-20 2009-09-01 Atricure, Inc. Surgical clamp
JP4287354B2 (ja) 2004-10-25 2009-07-01 株式会社日立製作所 手術器具
US7337010B2 (en) 2004-10-29 2008-02-26 Medtronic, Inc. Medical device having lithium-ion battery
US20060095045A1 (en) 2004-11-01 2006-05-04 Sdgi Holdings, Inc. Methods for explantation of intervertebral disc implants
WO2006048966A1 (ja) 2004-11-04 2006-05-11 Olympus Medical Systems Corp. 超音波処置装置、内視鏡装置および処置方法
US7479148B2 (en) 2004-11-08 2009-01-20 Crescendo Technologies, Llc Ultrasonic shear with asymmetrical motion
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
US7641671B2 (en) 2004-11-22 2010-01-05 Design Standards Corporation Closing assemblies for clamping device
WO2006055585A1 (en) 2004-11-22 2006-05-26 Masterwave, Inc. System and method for narrow bandwidth amplitude modulation
US7156189B1 (en) 2004-12-01 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self mountable and extractable ultrasonic/sonic anchor
GB0426503D0 (en) 2004-12-02 2005-01-05 Orthosonics Ltd Improved osteotome
JP2006158525A (ja) 2004-12-03 2006-06-22 Olympus Medical Systems Corp 超音波手術装置及び超音波処置具の駆動方法
US7803168B2 (en) 2004-12-09 2010-09-28 The Foundry, Llc Aortic valve repair
WO2006063156A1 (en) 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
US7371227B2 (en) 2004-12-17 2008-05-13 Ethicon Endo-Surgery, Inc. Trocar seal assembly
US7691095B2 (en) 2004-12-28 2010-04-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Bi-directional steerable catheter control handle
US7513025B2 (en) 2004-12-28 2009-04-07 The Boeing Company Magnetic field concentrator for electromagnetic forming
US7862561B2 (en) 2005-01-08 2011-01-04 Boston Scientific Scimed, Inc. Clamp based lesion formation apparatus with variable spacing structures
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US20160038228A1 (en) 2005-01-18 2016-02-11 Steven A. Daniel Thermal hemostasis and/or coagulation of tissue
JP2006217716A (ja) 2005-02-02 2006-08-17 Olympus Corp 超音波アクチュエータ駆動装置及び超音波アクチュエータ駆動方法
US8628534B2 (en) 2005-02-02 2014-01-14 DePuy Synthes Products, LLC Ultrasonic cutting device
US7559450B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US7654431B2 (en) 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7784662B2 (en) 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US7559452B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US7780054B2 (en) 2005-02-18 2010-08-24 Ethicon Endo-Surgery, Inc. Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
CN101160104B (zh) 2005-02-22 2012-07-04 马科外科公司 触觉引导系统及方法
WO2006096169A1 (en) 2005-03-03 2006-09-14 Granit Medical Innovations, Llc Needle biopsy forceps with integral sample ejector
GB2423931B (en) 2005-03-03 2009-08-26 Michael John Radley Young Ultrasonic cutting tool
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
US20060200041A1 (en) 2005-03-04 2006-09-07 Ethicon Endo-Surgery, Inc. Biopsy device incorporating an adjustable probe sleeve
US7674263B2 (en) 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US9031667B2 (en) 2005-03-04 2015-05-12 InterventionTechnology Pty Ltd Minimal device and method for effecting hyperthermia derived anesthesia
US20060206100A1 (en) 2005-03-09 2006-09-14 Brasseler Usa Medical Llc Surgical apparatus and power module for same, and a method of preparing a surgical apparatus
US20060217729A1 (en) 2005-03-09 2006-09-28 Brasseler Usa Medical Llc Surgical apparatus and tools for same
USD552241S1 (en) 2005-03-10 2007-10-02 Conmed Corporation Electrosurgical generator
US7285895B2 (en) 2005-03-15 2007-10-23 Crescendo Technologies, Llc Ultrasonic medical device and method
US20060211943A1 (en) 2005-03-15 2006-09-21 Crescendo Technologies, Llc Ultrasonic blade with terminal end balance features
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
US7931611B2 (en) 2005-03-23 2011-04-26 Misonix, Incorporated Ultrasonic wound debrider probe and method of use
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7674261B2 (en) 2005-03-28 2010-03-09 Elliquence, Llc Electrosurgical instrument with enhanced capability
US20090204114A1 (en) 2005-03-31 2009-08-13 Covidien Ag Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US7335997B2 (en) 2005-03-31 2008-02-26 Ethicon Endo-Surgery, Inc. System for controlling ultrasonic clamping and cutting instruments
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US20060224160A1 (en) 2005-04-01 2006-10-05 Trieu Hai H Instruments and methods for aggressive yet continuous tissue removal
JP2006288431A (ja) 2005-04-05 2006-10-26 Olympus Medical Systems Corp 超音波手術装置
EP1869424A4 (en) 2005-04-11 2015-01-14 Terumo Corp METHOD AND DEVICE FOR CLOSING A LAYER WEBSECTED EFFECT
US20060264809A1 (en) 2005-04-12 2006-11-23 Hansmann Douglas R Ultrasound catheter with cavitation promoting surface
US8523882B2 (en) 2005-04-14 2013-09-03 Ethicon Endo-Surgery, Inc. Clip advancer mechanism with alignment features
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US8092475B2 (en) 2005-04-15 2012-01-10 Integra Lifesciences (Ireland) Ltd. Ultrasonic horn for removal of hard tissue
AU2006239877B2 (en) 2005-04-21 2012-11-01 Boston Scientific Scimed, Inc. Control methods and devices for energy delivery
CN101166472A (zh) 2005-04-25 2008-04-23 皇家飞利浦电子股份有限公司 具有改进的热管理的超声波换能器组件
JP4966296B2 (ja) 2005-04-29 2012-07-04 ボヴィー メディカル コーポレイション 内視鏡手術又は関節鏡手術を行う鉗子
US20070011836A1 (en) 2005-05-03 2007-01-18 Second Act Partners, Inc. Oral hygiene devices employing an acoustic waveguide
US7320687B2 (en) 2005-05-04 2008-01-22 Lee Thomas H Tendon stripper
US8597193B2 (en) 2005-05-06 2013-12-03 Vasonova, Inc. Apparatus and method for endovascular device guiding and positioning using physiological parameters
US8696662B2 (en) 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US7803156B2 (en) 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US9339323B2 (en) 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
JP4481922B2 (ja) 2005-05-13 2010-06-16 オリンパスメディカルシステムズ株式会社 医療用処置具
US20060270916A1 (en) 2005-05-20 2006-11-30 Medtronic, Inc. Portable therapy delivery device with a removable connector board
JP4398406B2 (ja) 2005-06-01 2010-01-13 オリンパスメディカルシステムズ株式会社 手術器具
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
EP1887961B1 (en) 2005-06-06 2012-01-11 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
CN1877756A (zh) 2005-06-10 2006-12-13 富准精密工业(深圳)有限公司 磁性粉体
US20080147058A1 (en) 2005-06-13 2008-06-19 Horrell Robin S Electrocautery system, provided with safe lighting during operational use
US7727177B2 (en) 2005-06-21 2010-06-01 Inasurgica, Llc Four function surgical instrument
CA2613360A1 (en) 2005-06-21 2007-01-04 Traxtal Inc. System, method and apparatus for navigated therapy and diagnosis
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
JP2007000427A (ja) 2005-06-24 2007-01-11 Olympus Medical Systems Corp 内視鏡
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
JP2007007810A (ja) 2005-07-01 2007-01-18 Bosch Corp 超音波加工スピンドル装置
US7632267B2 (en) 2005-07-06 2009-12-15 Arthrocare Corporation Fuse-electrode electrosurgical apparatus
WO2007008703A2 (en) 2005-07-08 2007-01-18 Conceptual Gray, Llc Apparatus and method thereof for drilling holes in discrete controlled increments
WO2007008710A2 (en) 2005-07-11 2007-01-18 Kyphon Inc. Apparatus and methods of tissue removal within a spine
US20070060935A1 (en) 2005-07-11 2007-03-15 Schwardt Jeffrey D Apparatus and methods of tissue removal within a spine
US20070016236A1 (en) 2005-07-18 2007-01-18 Crescendo Technologies, Llc Balanced ultrasonic curved blade
WO2007014215A2 (en) 2005-07-22 2007-02-01 Berg Howard K Ultrasonic scalpel device
US7554343B2 (en) 2005-07-25 2009-06-30 Piezoinnovations Ultrasonic transducer control method and system
US20070063618A1 (en) 2005-07-25 2007-03-22 Piezoinnovations Ultrasonic transducer devices and methods of manufacture
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US8573462B2 (en) 2006-05-19 2013-11-05 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8097012B2 (en) 2005-07-27 2012-01-17 The Spectranetics Corporation Endocardial lead removing apparatus
DE602005017139D1 (de) 2005-07-28 2009-11-26 Covidien Ag Elektrodenanordnung mit Elektrodenkühlkörper für ein elektrochirurgisches Gerät
JP4734058B2 (ja) 2005-07-29 2011-07-27 オリンパスメディカルシステムズ株式会社 医療用処置装置
US20070027468A1 (en) 2005-08-01 2007-02-01 Wales Kenneth S Surgical instrument with an articulating shaft locking mechanism
EP1749479A1 (en) 2005-08-02 2007-02-07 Marco Gandini Retractor instrument
US7659833B2 (en) 2005-08-02 2010-02-09 Warner Thomas P System and method for remotely controlling devices
US7540871B2 (en) 2005-08-03 2009-06-02 Conmed Corporation Integrated three-port receptacle and method for connecting hand and foot switched electrosurgical accessories
JP5124920B2 (ja) 2005-08-16 2013-01-23 コニカミノルタアドバンストレイヤー株式会社 駆動装置
JP4402629B2 (ja) 2005-08-19 2010-01-20 オリンパスメディカルシステムズ株式会社 超音波凝固切開装置
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7751115B2 (en) 2005-08-26 2010-07-06 Lg Electronics Inc. Electronic paper display device, manufacturing method and driving method thereof
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070056596A1 (en) 2005-08-31 2007-03-15 Alcon, Inc. Pulse manipulation for controlling a phacoemulsification surgical system
JP2009507617A (ja) 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド 経腔的及び他の操作を行うための方法及び装置
US8852184B2 (en) 2005-09-15 2014-10-07 Cannuflow, Inc. Arthroscopic surgical temperature control system
US7678105B2 (en) 2005-09-16 2010-03-16 Conmed Corporation Method and apparatus for precursively controlling energy during coaptive tissue fusion
US20070067123A1 (en) 2005-09-19 2007-03-22 Jungerman Roger L Advanced arbitrary waveform generator
US7472815B2 (en) 2005-09-21 2009-01-06 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with collapsible features for controlling staple height
US20070066971A1 (en) 2005-09-21 2007-03-22 Podhajsky Ronald J Method and system for treating pain during an electrosurgical procedure
EP1767164B1 (en) 2005-09-22 2013-01-09 Covidien AG Electrode assembly for tissue fusion
US9445784B2 (en) 2005-09-22 2016-09-20 Boston Scientific Scimed, Inc Intravascular ultrasound catheter
US7311526B2 (en) 2005-09-26 2007-12-25 Apple Inc. Magnetic connector for electronic device
US7451904B2 (en) 2005-09-26 2008-11-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
DK1928518T3 (en) 2005-09-27 2016-08-01 Allegiance Corp MEDICAL SUCTION AND douche
US7357287B2 (en) 2005-09-29 2008-04-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having preloaded firing assistance mechanism
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
CN100467087C (zh) 2005-09-30 2009-03-11 东北大学 可遥控运动行为的脑神经电刺激装置
US20070074584A1 (en) 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
US7572268B2 (en) 2005-10-13 2009-08-11 Bacoustics, Llc Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US8152825B2 (en) 2005-10-14 2012-04-10 Ethicon Endo-Surgery, Inc. Medical ultrasound system and handpiece and methods for making and tuning
US20080033465A1 (en) 2006-08-01 2008-02-07 Baxano, Inc. Multi-Wire Tissue Cutter
US20080051812A1 (en) 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
CN2868227Y (zh) 2005-10-24 2007-02-14 钟李宽 五合一切割刀
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
WO2007056590A1 (en) 2005-11-08 2007-05-18 Trustees Of Boston University Manipulators employing multiple deformable elongate members
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20070118115A1 (en) 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
US8246642B2 (en) 2005-12-01 2012-08-21 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument and medical instrument connection assembly
EP1956992B1 (en) 2005-12-02 2013-03-06 Koninklijke Philips Electronics N.V. Automating the ablation procedure to minimize the need for manual intervention
US8033173B2 (en) 2005-12-12 2011-10-11 Kimberly-Clark Worldwide, Inc. Amplifying ultrasonic waveguides
US20070130771A1 (en) 2005-12-12 2007-06-14 Kimberly-Clark Worldwide, Inc. Methods for producing ultrasonic waveguides having improved amplification
JP2007165707A (ja) 2005-12-15 2007-06-28 Nitto Denko Corp フレキシブル配線回路基板
US20070149881A1 (en) 2005-12-22 2007-06-28 Rabin Barry H Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof
US7525309B2 (en) 2005-12-30 2009-04-28 Depuy Products, Inc. Magnetic sensor array
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US7879029B2 (en) 2005-12-30 2011-02-01 Biosense Webster, Inc. System and method for selectively energizing catheter electrodes
US8382748B2 (en) 2006-01-03 2013-02-26 Donald J. Geisel High efficiency, precision electrosurgical apparatus and method
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US7871392B2 (en) 2006-01-12 2011-01-18 Integra Lifesciences (Ireland) Ltd. Endoscopic ultrasonic surgical aspirator for use in fluid filled cavities
US8721657B2 (en) 2006-01-13 2014-05-13 Olympus Medical Systems Corp. Medical instrument
CN100463660C (zh) 2006-01-18 2009-02-25 重庆海扶(Hifu)技术有限公司 超声治疗钳
US20070166663A1 (en) 2006-01-18 2007-07-19 Telles Heidi A Cordless ultrasonic dental scaler
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20070173872A1 (en) 2006-01-23 2007-07-26 Ethicon Endo-Surgery, Inc. Surgical instrument for cutting and coagulating patient tissue
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US20160045248A1 (en) 2006-01-24 2016-02-18 Covidien Lp System and method for tissue sealing
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US7649410B2 (en) 2006-01-24 2010-01-19 D2Audio Corporation Systems and methods for improving performance in a digital amplifier by adding an ultrasonic signal to an input audio signal
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
EP2289446B1 (en) 2006-01-24 2017-05-31 Covidien AG System for tissue sealing
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US7815641B2 (en) 2006-01-25 2010-10-19 The Regents Of The University Of Michigan Surgical instrument and method for use thereof
AU2007210010A1 (en) 2006-01-27 2007-08-09 Medtronic, Inc. Ablation device and system for guiding said ablation device into a patient's body
TWI344558B (en) 2006-01-27 2011-07-01 Mstar Semiconductor Inc Measurement device for measuring gray-to-gray response time
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
WO2007089724A2 (en) 2006-01-31 2007-08-09 Angiotech Biocoatings Corp. Lubricious coatings
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US7503893B2 (en) 2006-02-03 2009-03-17 Cannuflow, Inc. Anti-extravasation sheath and method
EP1815950A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
CA2640174C (en) 2006-02-07 2011-11-08 Ams Research Corporation Laparoscopic laser device and method
US7936203B2 (en) 2006-02-08 2011-05-03 Micron Technology, Inc. Temperature compensation via power supply modification to produce a temperature-independent delay in an integrated circuit
AR059339A1 (es) 2006-02-09 2008-03-26 Chugai Pharmaceutical Co Ltd Derivados de la cumarina para trastornos proliferativos de celulas, composicion farmaceutica y agente terapeutico que los contiene
US20070191712A1 (en) 2006-02-15 2007-08-16 Ethicon Endo-Surgery, Inc. Method for sealing a blood vessel, a medical system and a medical instrument
US7662151B2 (en) 2006-02-15 2010-02-16 Boston Scientific Scimed, Inc. Contact sensitive probes
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
US20070239101A1 (en) 2006-02-21 2007-10-11 David Kellogg Method for applying serum to a person's skin
US7645278B2 (en) 2006-02-22 2010-01-12 Olympus Corporation Coagulating cutter
US9820771B2 (en) 2006-03-03 2017-11-21 Axcess Instruments Inc. Apparatus and method for minimally invasive surgery
US20070219481A1 (en) 2006-03-16 2007-09-20 Eilaz Babaev Apparatus and methods for the treatment of avian influenza with ultrasound
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8394115B2 (en) 2006-03-22 2013-03-12 Ethicon Endo-Surgery, Inc. Composite end effector for an ultrasonic surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US20070236213A1 (en) 2006-03-30 2007-10-11 Paden Bradley E Telemetry method and apparatus using magnetically-driven mems resonant structure
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US8425410B2 (en) 2008-09-30 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical access device with protective element
US8430811B2 (en) 2008-09-30 2013-04-30 Ethicon Endo-Surgery, Inc. Multiple port surgical access device
US8485970B2 (en) 2008-09-30 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical access device
US20100081863A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastrectomies and gastroplasties
JP5062577B2 (ja) 2006-04-11 2012-10-31 エルベ エレクトロメディツィン ゲーエムベーハー 内視鏡手術用多機能装置
US20070249941A1 (en) 2006-04-21 2007-10-25 Alcon, Inc. Method for driving an ultrasonic handpiece with a class D amplifier
US20070265560A1 (en) 2006-04-24 2007-11-15 Ekos Corporation Ultrasound Therapy System
US7601119B2 (en) 2006-04-25 2009-10-13 Hrayr Kamig Shahinian Remote manipulator with eyeballs
US7867228B2 (en) 2006-04-28 2011-01-11 Ethicon Endo-Surgery, Inc. Apparatus and method for performing an endoscopic mucosal resection
US9339326B2 (en) 2006-05-03 2016-05-17 Boston Scientific Scimed, Inc. Diamond-like carbon electrode coating
US7641653B2 (en) 2006-05-04 2010-01-05 Covidien Ag Open vessel sealing forceps disposable handswitch
US20070265613A1 (en) 2006-05-10 2007-11-15 Edelstein Peter Seth Method and apparatus for sealing tissue
US20070265616A1 (en) 2006-05-10 2007-11-15 Sherwood Services Ag Vessel sealing instrument with optimized power density
US7351095B2 (en) 2006-05-10 2008-04-01 Craig Olsen Disposable surgical connector
DE202006020056U1 (de) 2006-05-15 2007-09-20 Olympus Winter & Ibe Gmbh Zange zur Gefäßkoagulation
US7586289B2 (en) 2006-05-23 2009-09-08 Ultralife Corporation Complete discharge device
JP2008001876A (ja) 2006-05-23 2008-01-10 Asahi Kasei Corp ポリエステルイミドおよびその製造方法
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US8366727B2 (en) 2006-06-01 2013-02-05 Ethicon Endo-Surgery, Inc. Tissue pad ultrasonic surgical instrument
EP1862133A1 (en) 2006-06-02 2007-12-05 Olympus Medical Systems Corp. Ultrasonic surgical apparatus and method of driving ultrasonic treatment device
US7431704B2 (en) 2006-06-07 2008-10-07 Bacoustics, Llc Apparatus and method for the treatment of tissue with ultrasound energy by direct contact
US20070287933A1 (en) 2006-06-08 2007-12-13 Chris Phan Tissue debulking device and method of using the same
US20070299895A1 (en) 2006-06-09 2007-12-27 Johnson Scot L System and method of generating electrical stimulation waveforms as a therapeutic modality
JP4504332B2 (ja) 2006-06-12 2010-07-14 オリンパスメディカルシステムズ株式会社 手術システム及びそのシステム稼働情報告知方法
US8814870B2 (en) 2006-06-14 2014-08-26 Misonix, Incorporated Hook shaped ultrasonic cutting blade
US20080097501A1 (en) 2006-06-22 2008-04-24 Tyco Healthcare Group Lp Ultrasonic probe deflection sensor
ES2928065T3 (es) 2006-06-28 2022-11-15 Medtronic Ardian Luxembourg Sistemas de neuromodulación renal inducida térmicamente
IL176652A0 (en) 2006-06-29 2007-08-19 Elisra Electronic Systems Ltd Phase-coherent signal generator
DE102006030889B4 (de) 2006-07-04 2010-07-08 Infineon Technologies Ag Konzept zur Erzeugung von Radar-Signalen
JP4157574B2 (ja) 2006-07-04 2008-10-01 オリンパスメディカルシステムズ株式会社 外科用処置具
EP2043542B1 (en) 2006-07-06 2014-09-03 Leroy L. Yates Resecting device
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
GB0613662D0 (en) 2006-07-10 2006-08-16 Rotork Controls Improvements to valve actuators
JP2008017876A (ja) 2006-07-10 2008-01-31 Tetsuya Araki 医療用処置具
US7717914B2 (en) 2006-07-11 2010-05-18 Olympus Medical Systems Corporation Treatment device
WO2008008441A2 (en) 2006-07-12 2008-01-17 Nelson Drew V Multifunctional surgical instrument
US7502234B2 (en) 2006-07-12 2009-03-10 Aaron Medical Industries, Inc. Planar transformer power supply
US9585714B2 (en) 2006-07-13 2017-03-07 Bovie Medical Corporation Surgical sealing and cutting apparatus
US20080015575A1 (en) 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US20080013809A1 (en) 2006-07-14 2008-01-17 Bracco Imaging, Spa Methods and apparatuses for registration in image guided surgery
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
EP2076195B1 (en) 2006-07-20 2015-12-02 Medtronic, Inc. Transmural ablation systems
US7419490B2 (en) 2006-07-27 2008-09-02 Applied Medical Resources Corporation Bipolar electrosurgical scissors
US7587536B2 (en) 2006-07-28 2009-09-08 Icron Technologies Corporation Method and apparatus for distributing USB hub functions across a network
JP2008033644A (ja) 2006-07-28 2008-02-14 Takao Oishi アプリケーションサービス提供システム、並びに、アプリケーションサービスの提供方法
US20080029573A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with replaceable power sources
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US20080125768A1 (en) 2006-08-09 2008-05-29 Olympus Medical Systems Corp. Relay device and ultrasonic-surgical and electrosurgical system
US9757142B2 (en) 2006-08-09 2017-09-12 Olympus Corporation Relay device and ultrasonic-surgical and electrosurgical system
US7708758B2 (en) 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7919184B2 (en) 2006-08-21 2011-04-05 Mohapatra Satish C Hybrid nanoparticles
US8926620B2 (en) 2006-08-25 2015-01-06 Kyphon Sarl Apparatus and methods for use of expandable members in surgical applications
EP2056935A2 (en) 2006-08-25 2009-05-13 Eilaz Babaev Portable ultrasound device for the treatment of wounds
US8430897B2 (en) 2006-08-29 2013-04-30 Misonix Incorporated Ultrasonic wound debrider probe and method of use
US8025672B2 (en) 2006-08-29 2011-09-27 Misonix, Incorporated Ultrasonic wound treatment method and apparatus
US20080058775A1 (en) 2006-08-29 2008-03-06 Darian Alexander L Ultrasonic debrider probe and method of use
US20080071269A1 (en) 2006-09-18 2008-03-20 Cytyc Corporation Curved Endoscopic Medical Device
US7780663B2 (en) 2006-09-22 2010-08-24 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
US9107692B2 (en) 2006-09-22 2015-08-18 The Invention Science Fund I, Llc Switchable sterilizing cutting system
US20100049180A1 (en) 2007-10-19 2010-02-25 Lockheed Martin Corporation System and method for conditioning animal tissue using laser light
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US20110087276A1 (en) 2009-10-09 2011-04-14 Ethicon Endo-Surgery, Inc. Method for forming a staple
US20080082098A1 (en) 2006-09-29 2008-04-03 Kazue Tanaka Electric processing system
US20080082039A1 (en) 2006-09-29 2008-04-03 Eilaz Babaev Ultrasound Liquid Delivery Device
US7799020B2 (en) 2006-10-02 2010-09-21 Conmed Corporation Near-instantaneous responsive closed loop control electrosurgical generator and method
WO2008040483A1 (de) 2006-10-05 2008-04-10 Erbe Elektromedizin Gmbh Rohrschaftinstrument
DE102006047204B4 (de) 2006-10-05 2015-04-23 Erbe Elektromedizin Gmbh Rohrschaftinstrument
JP5481194B2 (ja) 2006-10-05 2014-04-23 コヴィディエン リミテッド パートナーシップ 可撓性の内視鏡的縫合装置
US8807414B2 (en) 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
CA2664167A1 (en) 2006-10-06 2008-04-17 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7637410B2 (en) 2006-10-06 2009-12-29 Tyco Healthcare Group Lp Surgical instrument including a locking assembly
DE602006012054D1 (de) 2006-10-06 2010-03-18 Ethicon Endo Surgery Inc Anastomosenapplikator
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US20090082716A1 (en) 2006-10-13 2009-03-26 Takayuki Akahoshi Akahoshi Linear to Torsional Converter for Phaco Handpieces
EP2076193A4 (en) 2006-10-18 2010-02-03 Minnow Medical Inc MATCHED RF-ENERGY AND ELECTRO-TISSUE CHARACTERIZATION FOR THE SELECTIVE TREATMENT OF TARGET TISSUE
EP2455034B1 (en) 2006-10-18 2017-07-19 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US20080147092A1 (en) 2006-10-23 2008-06-19 Michael Rogge Hybrid energy instrument combined with clip application capability
US20090131885A1 (en) 2006-11-08 2009-05-21 Takayuki Akahoshi Curved Irrigation/Aspiration Needle
US20080114355A1 (en) 2006-11-09 2008-05-15 Ncontact Surgical, Inc. Vacuum coagulation probes
JP2008119250A (ja) 2006-11-13 2008-05-29 Miwatec:Kk 超音波手術器用ハンドピースおよびホーン
US20080114364A1 (en) 2006-11-15 2008-05-15 Aoi Medical, Inc. Tissue cavitation device and method
US7714481B2 (en) 2006-11-30 2010-05-11 Olympus Medical Systems Corp. Ultrasonic treatment apparatus
US9456877B2 (en) 2006-12-01 2016-10-04 Boston Scientific Scimed, Inc. Direct drive instruments and methods of use
CA2670969C (en) 2006-12-06 2016-01-19 Boston Scientific Limited Tissue ablation using pulse modulated radio frequency energy
DE102006058867A1 (de) 2006-12-07 2008-06-12 Aesculap Ag & Co. Kg Chirurgisches Schaltnetzteil und chirurgisches Gleichstromelektrowerkzeug
US7846160B2 (en) 2006-12-21 2010-12-07 Cytyc Corporation Method and apparatus for sterilization
DE602006014291D1 (de) 2006-12-29 2010-06-24 Ultrazonix Dnt Ab Herstellungsverfahren für eine Membran und mit einer solchen Membran versehener Gegenstand
US8444637B2 (en) 2006-12-29 2013-05-21 St. Jude Medical, Atrial Filbrillation Division, Inc. Steerable ablation device
CN201029899Y (zh) 2007-01-05 2008-03-05 苏州天臣国际医疗科技有限公司 微创外科侧侧装订器械
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US20080169333A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapler end effector with tapered distal end
US20080171938A1 (en) 2007-01-15 2008-07-17 Shinya Masuda Ultrasonic operating apparatus
US8529565B2 (en) 2007-01-15 2013-09-10 Olympus Medical Systems Corp. Ultrasonic operating apparatus
JP5165696B2 (ja) 2007-01-16 2013-03-21 エシコン・エンド−サージェリィ・インコーポレイテッド 切断および凝固用超音波装置
JP4933911B2 (ja) 2007-02-02 2012-05-16 学校法人日本医科大学 超音波手術器
WO2008098085A2 (en) 2007-02-06 2008-08-14 The Uab Research Foundation Universal surgical function control system
EP1972264A1 (en) 2007-02-07 2008-09-24 CODMAN &amp; SHURTLEFF, INC. Endoscopic instrument holder
TWM318226U (en) 2007-02-09 2007-09-01 Guo-An Guo Structure for fast connection of waterproof cable connector
US7935114B2 (en) 2007-02-14 2011-05-03 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
US7789883B2 (en) 2007-02-14 2010-09-07 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
EP2653128B1 (en) 2007-02-25 2016-10-19 Avent, Inc. Control of energy delivery to multiple energy delivery devices
US20080208108A1 (en) 2007-02-28 2008-08-28 Kenichi Kimura Treatment apparatus for operation
WO2008109061A2 (en) 2007-03-01 2008-09-12 Lightfleet Corporation Time domain symbols
AU2008223389B2 (en) 2007-03-06 2013-07-11 Covidien Lp Surgical stapling apparatus
US7669747B2 (en) 2007-03-15 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
CN101674780B (zh) 2007-03-22 2012-05-23 伊西康内外科公司 超声外科器械刀片
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US7862560B2 (en) 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
US8608745B2 (en) 2007-03-26 2013-12-17 DePuy Synthes Products, LLC System, apparatus, and method for cutting bone during an orthopaedic surgical procedure
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
JP5197980B2 (ja) 2007-03-29 2013-05-15 オリンパスメディカルシステムズ株式会社 多関節湾曲機構及び多関節湾曲機構を備えた医療器具
JP5074069B2 (ja) 2007-03-29 2012-11-14 オリンパスメディカルシステムズ株式会社 多関節湾曲機構及び多関節湾曲機構を備えた医療器具
US8377044B2 (en) 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US20080243162A1 (en) 2007-04-02 2008-10-02 Norikiyo Shibata Trocar
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US8187267B2 (en) 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
EP2134283B1 (en) 2007-04-06 2014-06-11 Hologic, Inc. System and device for tissue removal
US20090270812A1 (en) 2007-04-06 2009-10-29 Interlace Medical , Inc. Access device with enhanced working channel
US9259233B2 (en) 2007-04-06 2016-02-16 Hologic, Inc. Method and device for distending a gynecological cavity
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
AU2008242981B2 (en) 2007-04-16 2014-06-12 Smith & Nephew, Inc. Powered surgical system
WO2008130793A1 (en) 2007-04-17 2008-10-30 Tyco Healthcare Group Lp Electrical connector adapter
US8814856B2 (en) 2007-04-30 2014-08-26 Medtronic, Inc. Extension and retraction mechanism for a hand-held device
US20080275440A1 (en) 2007-05-03 2008-11-06 Medtronic, Inc. Post-ablation verification of lesion size
GB0708783D0 (en) 2007-05-04 2007-06-13 Gyrus Medical Ltd Electrosurgical system
US20090138025A1 (en) 2007-05-04 2009-05-28 Hansen Medical, Inc. Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity
US20090327715A1 (en) 2007-05-04 2009-12-31 Smith Kevin W System and Method for Cryptographic Identification of Interchangeable Parts
US20080281200A1 (en) 2007-05-10 2008-11-13 Misonix, Incorporated Elevated coupling liquid temperature during HIFU treatment method and hardware
US20090157064A1 (en) 2007-05-11 2009-06-18 Hodel Michael R RFID System and Method Therefor
WO2008141238A1 (en) * 2007-05-11 2008-11-20 Voyage Medical, Inc. Visual electrode ablation systems
US8641704B2 (en) 2007-05-11 2014-02-04 Medtronic Ablation Frontiers Llc Ablation therapy system and method for treating continuous atrial fibrillation
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
JP5019108B2 (ja) 2007-05-22 2012-09-05 オリンパス株式会社 処置具
GB0709994D0 (en) 2007-05-24 2007-07-04 Gyrus Medical Ltd Electrosurgical generator
US8409234B2 (en) 2007-05-25 2013-04-02 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8659208B1 (en) 2007-06-14 2014-02-25 Misonix, Inc. Waveform generator for driving electromechanical device
US20090023985A1 (en) 2007-06-14 2009-01-22 Usgi Medical, Inc. Endoluminal instrument management system
US8845630B2 (en) 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US7588176B2 (en) 2007-06-18 2009-09-15 Ethicon Endo-Surgery, Inc. Surgical cutting instrument with improved closure system
GB2456533A (en) 2008-01-16 2009-07-22 Gyrus Medical Ltd Selection method for multi-instrument electrosurgical system
GB2450679A (en) 2007-06-19 2009-01-07 Gyrus Medical Ltd Electrosurgical System with status indicators on instruments
USD576725S1 (en) 2007-06-20 2008-09-09 Abbot Laboratories, Inc. Medical device delivery handle
USD578645S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
USD578644S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
USD578643S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7604150B2 (en) 2007-06-22 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an anti-back up mechanism
CA2691582A1 (en) 2007-06-29 2009-01-08 Tyco Healthcare Group Lp Method and system for monitoring tissue during an electrosurgical procedure
US8328738B2 (en) 2007-06-29 2012-12-11 Actuated Medical, Inc. Medical tool for reduced penetration force with feedback means
US8105230B2 (en) 2007-07-09 2012-01-31 Olympus Medical Systems Corp. Medical system
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
DE102007034271A1 (de) 2007-07-19 2009-01-22 Celon Ag Medical Instruments Hochfrequenzchirurgiegerät und Verfahren zu dessen Betrieb
US8702609B2 (en) 2007-07-27 2014-04-22 Meridian Cardiovascular Systems, Inc. Image-guided intravascular therapy catheters
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
AU2008286980A1 (en) 2007-08-10 2009-02-19 Eleme Medical Inc. Multi-module skin or body treatment device and the method of using
US20090048589A1 (en) 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
GB0716590D0 (en) 2007-08-24 2007-10-03 Gyrus Medical Ltd Electrosurgical system
US20090054886A1 (en) 2007-08-24 2009-02-26 Chie Yachi Surgical operating apparatus
US20090054894A1 (en) 2007-08-24 2009-02-26 Chie Yachi Surgical operating apparatus
DE102007040358A1 (de) 2007-08-27 2009-03-05 Technische Universität München Trokarrohr, Trokar, Obturator bzw. Rektoskop für die transluminale endoskopische Chirurgie über natürliche Körperöffnungen
US8998891B2 (en) 2007-08-30 2015-04-07 Ellman International, Inc. Tri-frequency electrosurgical instrument
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8070036B1 (en) 2007-09-06 2011-12-06 Cardica, Inc True multi-fire surgical stapler configured to fire staples of different sizes
US7876030B2 (en) 2007-09-11 2011-01-25 Ngk Spark Plug Co., Ltd. Ultrasonic transducer which is either crimped or welded during assembly
US20090065565A1 (en) 2007-09-12 2009-03-12 Vascular Technologies, Inc. System, method and apparatus for preventing reuse of medical instruments
JP4104648B1 (ja) 2007-09-13 2008-06-18 和征 榊原 電池パック
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
DE102007044790A1 (de) 2007-09-19 2009-04-02 Dieter Mann Einhandgerät für die Augenchirurgie
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US20090082766A1 (en) 2007-09-20 2009-03-26 Tyco Healthcare Group Lp Tissue Sealer and End Effector Assembly and Method of Manufacturing Same
EP2233081B2 (en) 2007-09-21 2018-03-28 Covidien LP Surgical device
DE102007047243A1 (de) 2007-09-25 2009-04-02 Karl Storz Gmbh & Co. Kg Bipolares medizinisches Instrument
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US20090088745A1 (en) 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Tapered Insulating Boot for Electrosurgical Forceps
US20090088785A1 (en) 2007-09-28 2009-04-02 Shinya Masuda Surgical operating apparatus
USD594983S1 (en) 2007-10-05 2009-06-23 Ethicon Endo-Surgery, Inc. Handle assembly for surgical instrument
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US20110022032A1 (en) 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
WO2009046234A2 (en) 2007-10-05 2009-04-09 Ethicon Endo-Surgery, Inc Ergonomic surgical instruments
EP2044888B1 (en) 2007-10-05 2016-12-07 Covidien LP Articulation mechanism for a surgical instrument
US8535308B2 (en) 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
AU2008310869B2 (en) 2007-10-10 2014-04-17 Ethicon Endo-Surgery, Inc Ultrasonic device for cutting and coagulating
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8460284B2 (en) 2007-10-26 2013-06-11 Encision, Inc. Multiple parameter fault detection in electrosurgical instrument shields
JP5364255B2 (ja) 2007-10-31 2013-12-11 テルモ株式会社 医療用マニピュレータ
PL2214562T3 (pl) 2007-11-05 2016-10-31 Urządzenie chirurgiczne do zamykania naczyń krwionośnych i klej utwardzany ciepłem jako lek
US8241343B2 (en) 2007-11-08 2012-08-14 Angiodynamics, Inc. Device and method for providing power to lighting elements for use as a visual indicator in a medical probe
EP2211744A1 (en) 2007-11-13 2010-08-04 Boston Scientific Scimed, Inc. Apparatus system and method for coagulating and cutting tissue
EP2060238B1 (de) 2007-11-15 2012-02-15 Ewald Hensler Koagulationsinstrument
US9326754B2 (en) 2007-11-20 2016-05-03 The Cleveland Clinic Method and apparatus for tissue sampling
US9050098B2 (en) 2007-11-28 2015-06-09 Covidien Ag Cordless medical cauterization and cutting device
US8758342B2 (en) 2007-11-28 2014-06-24 Covidien Ag Cordless power-assisted medical cauterization and cutting device
US8377059B2 (en) 2007-11-28 2013-02-19 Covidien Ag Cordless medical cauterization and cutting device
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8334468B2 (en) 2008-11-06 2012-12-18 Covidien Ag Method of switching a cordless hand-held ultrasonic cautery cutting device
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8435257B2 (en) 2007-12-03 2013-05-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8403948B2 (en) 2007-12-03 2013-03-26 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8303613B2 (en) 2007-12-07 2012-11-06 Zevex, Inc. Ultrasonic instrument using langevin type transducers to create transverse motion
WO2009082477A2 (en) 2007-12-18 2009-07-02 Bovie Medical Surgical apparatus with removable tool cartridge
US20090163807A1 (en) 2007-12-21 2009-06-25 Sliwa John W Finger-mounted or robot-mounted transducer device
US8562600B2 (en) 2007-12-27 2013-10-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Integration of control software with a medical device and system
US9043018B2 (en) 2007-12-27 2015-05-26 Intuitive Surgical Operations, Inc. Medical device with orientable tip for robotically directed laser cutting and biomaterial application
US8147488B2 (en) 2007-12-28 2012-04-03 Olympus Medical Systems Corp. Surgical operating apparatus
US8186877B2 (en) 2007-12-30 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for using common subchannel to assess the operating characteristics of transducers
US20090177119A1 (en) 2008-01-03 2009-07-09 Boston Scientific Scimed, Inc. Articulating intracorporeal medical device
US20090182322A1 (en) 2008-01-11 2009-07-16 Live Tissue Connect, Inc. Bipolar modular forceps modular arms
US20090182331A1 (en) 2008-01-11 2009-07-16 Live Tissue Connect, Inc. Bipolar modular forceps cover assembly
US20090182332A1 (en) 2008-01-15 2009-07-16 Ethicon Endo-Surgery, Inc. In-line electrosurgical forceps
US8489172B2 (en) 2008-01-25 2013-07-16 Kardium Inc. Liposuction system
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8221418B2 (en) * 2008-02-07 2012-07-17 Tyco Healthcare Group Lp Endoscopic instrument for tissue identification
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US8382792B2 (en) 2008-02-14 2013-02-26 Covidien Lp End effector assembly for electrosurgical device
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
DE102008009623A1 (de) 2008-02-18 2009-08-20 Kaltenbach & Voigt Gmbh Vorrichtung zum Betreiben eines elektrisch betriebenen medizinischen Instruments
US20090216157A1 (en) 2008-02-22 2009-08-27 Norihiro Yamada Ultrasonic operating apparatus
US8388646B2 (en) 2008-02-22 2013-03-05 Covidien Lp Monocoque jaw design
US8246575B2 (en) 2008-02-26 2012-08-21 Tyco Healthcare Group Lp Flexible hollow spine with locking feature and manipulation structure
GB2460392B (en) 2008-02-29 2012-08-01 Surgical Innovations Ltd Handle
EP3352107A1 (en) 2008-03-03 2018-07-25 NIKE Innovate C.V. Interactive athletic equipment system
DE102008013590A1 (de) 2008-03-11 2009-09-24 Epcos Ag Verfahren zum Betrieb eines Piezoelements
US20090240244A1 (en) 2008-03-19 2009-09-24 Synergetics Usa, Inc. Electrosurgical Generator Having Boost Mode Control Based on Impedance
US8328802B2 (en) 2008-03-19 2012-12-11 Covidien Ag Cordless medical cauterization and cutting device
JP2009236177A (ja) 2008-03-26 2009-10-15 Nok Corp 密封構造
US8641663B2 (en) 2008-03-27 2014-02-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system input device
US9241768B2 (en) 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US8048074B2 (en) 2008-03-28 2011-11-01 Olympus Medical Systems Corp. Surgical operating apparatus
US8484833B2 (en) 2008-03-31 2013-07-16 Covidien Lp Automated assembly device to tolerate blade variation
US20090248021A1 (en) 2008-03-31 2009-10-01 Tyco Healthcare Group Lp End Effector Assembly for Electrosurgical Devices and System for Using the Same
CA3022982C (en) 2008-03-31 2022-07-26 Applied Medical Resources Corporation Electrosurgical system
US9642669B2 (en) 2008-04-01 2017-05-09 Olympus Corporation Treatment system, and treatment method for living tissue using energy
US8226665B2 (en) 2008-04-04 2012-07-24 Tyco Healthcare Group Lp Ultrasonic needle driver
US20090254080A1 (en) 2008-04-07 2009-10-08 Satoshi Honda Surgical operation apparatus
US20090254077A1 (en) 2008-04-08 2009-10-08 Tyco Healthcare Group Lp Arc Generation in a Fluid Medium
US20090259149A1 (en) 2008-04-15 2009-10-15 Naoko Tahara Power supply apparatus for operation
DE102008019380B4 (de) 2008-04-17 2012-11-22 Erbe Elektromedizin Gmbh Bipolare Klemme für die HF-Chirurgie
US20090264909A1 (en) 2008-04-18 2009-10-22 Jean Michael Beaupre Ultrasonic shears stop pad
US20090270891A1 (en) 2008-04-18 2009-10-29 Jean Michael Beaupre Balanced ultrasonic curved blade
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
WO2009132359A2 (en) 2008-04-25 2009-10-29 Downey Earl C Laparoscopic surgical instrument
US8348947B2 (en) 2008-04-25 2013-01-08 Olympus Medical Systems Corp. Treatment system, and treatment method for living tissue using energy
US20090270853A1 (en) 2008-04-28 2009-10-29 Chie Yachi Surgical operating apparatus
AU2009244445B8 (en) 2008-05-05 2014-12-18 Stryker Corporation A powered surgical tool system and control console
DE102008001664B4 (de) 2008-05-08 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medizinischer Roboter und Verfahren zur Erfüllung der Performanceanforderung eines medizinischen Roboters
JP5380705B2 (ja) 2008-05-15 2014-01-08 株式会社リバーセイコー 内視鏡用高周波止血鉗子
US20090287205A1 (en) 2008-05-16 2009-11-19 Boston Scientific Scimed, Inc. Systems and methods for preventing tissue popping caused by bubble expansion during tissue ablation
GB0809243D0 (en) 2008-05-21 2008-06-25 Sra Dev Ltd Improved torsional mode tissue dissector
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
GB0809461D0 (en) 2008-05-23 2008-07-02 Gyrus Medical Ltd An electrosurgical generator and system
US9402680B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovasular, Llc Surgical instrument and method
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8357149B2 (en) 2008-06-05 2013-01-22 Biosense Webster, Inc. Filter for simultaneous pacing and ablation
US20090306639A1 (en) 2008-06-06 2009-12-10 Galil Medical Ltd. Cryoprobe incorporating electronic module, and system utilizing same
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
CN102014759B (zh) 2008-06-11 2012-12-26 韩商未来股份有限公司 用于手术机器人臂的仪器
JP5379501B2 (ja) 2008-06-19 2013-12-25 オリンパスメディカルシステムズ株式会社 超音波処置具
JP5430161B2 (ja) 2008-06-19 2014-02-26 オリンパスメディカルシステムズ株式会社 超音波手術装置
US7543730B1 (en) 2008-06-24 2009-06-09 Tyco Healthcare Group Lp Segmented drive member for surgical instruments
JP2010009686A (ja) 2008-06-27 2010-01-14 Pioneer Electronic Corp 光ディスク読み取り装置、その管理情報提供方法、管理情報提供プログラム、管理情報提供プログラムを記録したコンピュータ読み取り可能な記録媒体、及び、光ディスク再生システム
DE102008038314A1 (de) 2008-06-30 2010-01-07 Erbe Elektromedizin Gmbh Elektrochirurgiegenerator zum Behandeln eines biologischen Gewebes, Verfahren zum Regeln einer Ausgangsspannung eines elektrochirurgischen Generators und entsprechende Verwendung des Elektrochirurgiegeneators
US8340726B1 (en) 2008-06-30 2012-12-25 Iwao Fujisaki Communication device
US9265567B2 (en) 2008-06-30 2016-02-23 Intuitive Surgical Operations, Inc. Vessel sealing instrument with stepped jaw
CA2730240A1 (en) 2008-07-08 2010-01-14 Tyco Healthcare Group Lp Surgical attachment for use with a robotic surgical system
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8771270B2 (en) 2008-07-16 2014-07-08 Intuitive Surgical Operations, Inc. Bipolar cautery instrument
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
JP4267055B1 (ja) 2008-07-18 2009-05-27 規方 田熊 吸引カテーテル、及び吸引カテーテルシステム
FR2934390B1 (fr) 2008-07-22 2010-08-13 St Microelectronics Rousset Transmission multicanaux sur un bus unifilaire
KR101076785B1 (ko) 2008-07-24 2011-10-25 박영석 분말사출 성형체 제조방법
JP5384869B2 (ja) 2008-07-24 2014-01-08 オリンパスメディカルシステムズ株式会社 内視鏡処置システム
US9247953B2 (en) 2008-08-01 2016-02-02 Syntheon, Llc Medical ultrasonic cauterization and cutting device and method
US8801752B2 (en) 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US8968355B2 (en) 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8529437B2 (en) 2008-08-06 2013-09-10 Encision, Inc. Multifunctional surgical instrument with flexible end effector tools
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US8172836B2 (en) 2008-08-11 2012-05-08 Tyco Healthcare Group Lp Electrosurgical system having a sensor for monitoring smoke or aerosols
US8454599B2 (en) 2008-08-13 2013-06-04 Olympus Medical Systems Corp. Treatment apparatus and electro-surgical device
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
CN102131896A (zh) 2008-08-28 2011-07-20 智索株式会社 液晶组成物以及液晶显示元件
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US20100057081A1 (en) 2008-08-28 2010-03-04 Tyco Healthcare Group Lp Tissue Fusion Jaw Angle Improvement
US8974477B2 (en) 2008-08-29 2015-03-10 Olympus Medical Systems Corp. Ultrasonic operating apparatus
US20100057118A1 (en) 2008-09-03 2010-03-04 Dietz Timothy G Ultrasonic surgical blade
US20100063528A1 (en) 2008-09-05 2010-03-11 Beaupre Jean Michael Ultrasonic shears actuating mechanism
US20100063527A1 (en) 2008-09-05 2010-03-11 Beaupre Jean Michael Tissue pad
KR101644842B1 (ko) 2008-09-08 2016-08-12 후지필름 가부시키가이샤 내시경 시스템, 그 사용 방법, 보조구, 및 어댑터
AU2009291688A1 (en) 2008-09-12 2010-03-18 Ethicon Endo-Surgery, Inc. Ultrasonic device for fingertip control
US20100069903A1 (en) 2008-09-18 2010-03-18 Tyco Healthcare Group Lp Vessel Sealing Instrument With Cutting Mechanism
US7832612B2 (en) 2008-09-19 2010-11-16 Ethicon Endo-Surgery, Inc. Lockout arrangement for a surgical stapler
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8328761B2 (en) 2008-09-30 2012-12-11 Ethicon Endo-Surgery, Inc. Variable surgical access device
US7967602B2 (en) 2008-10-07 2011-06-28 John Theodore Lindquist Pliers for forming orthodontic wires
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US20100106173A1 (en) 2008-10-23 2010-04-29 Hideto Yoshimine Ultrasonic surgical device
WO2010053108A1 (ja) 2008-11-05 2010-05-14 株式会社 日立メディコ 位相シフト型インバータ回路、それを用いたx線高電圧装置、x線ct装置、および、x線撮影装置
US8295902B2 (en) 2008-11-11 2012-10-23 Shifamed Holdings, Llc Low profile electrode assembly
US20110313415A1 (en) 2008-11-11 2011-12-22 The Board Of Regents Of The University Of Texas System Medical Devices, Apparatuses, Systems, and Methods
JP5271050B2 (ja) 2008-11-20 2013-08-21 アズビル株式会社 ヒュームフード管理システムおよび管理方法
US8308721B2 (en) 2008-12-04 2012-11-13 Olympus Medical Systems Corp. Surgical system and surgical method
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
EP2376175B1 (en) 2008-12-12 2019-01-30 Corindus, Inc. Remote catheter procedure system
US20100168741A1 (en) 2008-12-29 2010-07-01 Hideo Sanai Surgical operation apparatus
CN101474081A (zh) 2008-12-30 2009-07-08 深圳市蓝韵实业有限公司 一种连续多普勒超声成像系统正交本振信号产生装置
US8303579B2 (en) 2008-12-31 2012-11-06 Olympus Medical Systems Corp. Surgical operation system and surgical operation method
US8864757B2 (en) 2008-12-31 2014-10-21 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measuring force and torque applied to a catheter electrode tip
US20110238010A1 (en) 2008-12-31 2011-09-29 Kirschenman Mark B Robotic catheter system input device
JP5569818B2 (ja) 2009-01-07 2014-08-13 エンライテン テクノロジーズ, インコーポレイテッド 組織除去デバイス、システムおよび方法
US8602031B2 (en) 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
US8211100B2 (en) 2009-01-12 2012-07-03 Tyco Healthcare Group Lp Energy delivery algorithm for medical devices based on maintaining a fixed position on a tissue electrical conductivity v. temperature curve
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8235917B2 (en) 2009-01-13 2012-08-07 Tyco Healthcare Group Lp Wireless electrosurgical controller
JP5829526B2 (ja) 2009-01-14 2015-12-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. アブレーション処置を監視するモニタリング装置
US20100187283A1 (en) 2009-01-26 2010-07-29 Lawrence Crainich Method For Feeding Staples In a Low Profile Surgical Stapler
US8287485B2 (en) 2009-01-28 2012-10-16 Olympus Medical Systems Corp. Treatment system for surgery and control method of treatment system for surgery
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US8989855B2 (en) 2009-01-30 2015-03-24 Medtronic Xomed, Inc. Nerve monitoring during electrosurgery
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8696917B2 (en) 2009-02-09 2014-04-15 Edwards Lifesciences Corporation Analyte sensor and fabrication methods
DE102009010101A1 (de) 2009-02-24 2010-08-26 Karl Storz Gmbh & Co. Kg Medizinisches Instrument zum Ergreifen von chirurgischem Nahtmaterial
AU2010218473B2 (en) 2009-02-26 2014-03-06 Stryker Corporation Surgical tool arrangement having a handpiece usable with multiple surgical tools
US8858547B2 (en) 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US20100228250A1 (en) 2009-03-05 2010-09-09 Intuitive Surgical Operations, Inc. Cut and seal instrument
EP2403421B1 (en) 2009-03-05 2019-07-31 Covidien LP Endoscopic vessel sealer and divider having a flexible articulating shaft
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8055208B2 (en) 2009-03-09 2011-11-08 Mettler-Toledo, Inc. Low energy data communication circuit for hazardous or nonhazardous environments
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US20120053597A1 (en) 2009-03-10 2012-03-01 Mcmaster University Mobile robotic surgical system
DE102009012600B3 (de) 2009-03-11 2010-10-28 Erbe Elektromedizin Gmbh Hochfrequenzchirurgiegenerator
US9351642B2 (en) 2009-03-12 2016-05-31 The General Hospital Corporation Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s)
US20100234906A1 (en) 2009-03-16 2010-09-16 Pacesetter, Inc. System and method for controlling rate-adaptive pacing based on a cardiac force-frequency relation detected by an implantable medical device
US8597287B2 (en) 2009-03-17 2013-12-03 Stryker Corporation Method and system for varying output intensity of energy applied to an electrosurgical probe
US8298225B2 (en) 2009-03-19 2012-10-30 Tyco Healthcare Group Lp System and method for return electrode monitoring
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
CN102123670B (zh) 2009-03-24 2014-03-19 奥林巴斯医疗株式会社 内窥镜处置用机器人系统
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8251994B2 (en) 2009-04-07 2012-08-28 Tyco Healthcare Group Lp Vessel sealer and divider with blade deployment alarm
US8287532B2 (en) 2009-04-13 2012-10-16 Biosense Webster, Inc. Epicardial mapping and ablation catheter
US10045819B2 (en) 2009-04-14 2018-08-14 Covidien Lp Frequency identification for microwave ablation probes
US8506561B2 (en) 2009-04-17 2013-08-13 Domain Surgical, Inc. Catheter with inductively heated regions
US20100274160A1 (en) 2009-04-22 2010-10-28 Chie Yachi Switching structure and surgical equipment
US20100274278A1 (en) 2009-04-22 2010-10-28 Pare Surgical, Inc. Endoscopic tissue grasping apparatus and method
US8277446B2 (en) 2009-04-24 2012-10-02 Tyco Healthcare Group Lp Electrosurgical tissue sealer and cutter
USD621503S1 (en) 2009-04-28 2010-08-10 Tyco Healthcare Group Ip Pistol grip laparoscopic sealing and dissection device
US8738110B2 (en) 2009-05-01 2014-05-27 Livermore National Security, Llc Rigid spine reinforced polymer microelectrode array probe and method of fabrication
RU2405603C1 (ru) 2009-05-04 2010-12-10 Валерий Викторович Педдер Высокоамплитудная акустическая система для ультразвуковой хирургии и терапии
WO2014143014A1 (en) 2013-03-15 2014-09-18 Triagenics, Llc Therapeutic tooth bud ablation
US8246615B2 (en) 2009-05-19 2012-08-21 Vivant Medical, Inc. Tissue impedance measurement using a secondary frequency
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US20100298743A1 (en) 2009-05-20 2010-11-25 Ethicon Endo-Surgery, Inc. Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8056720B2 (en) 2009-05-28 2011-11-15 Symmetry Medical Manufacturing, Inc. Method and system for medical instrument sterilization containers
CN104605929B (zh) 2009-06-02 2017-04-12 博维医药公司 用于对组织进行封口的外科钳夹
US8845537B2 (en) 2009-06-03 2014-09-30 Olympus Medical Systems Corp. Ultrasound operation apparatus, ultrasound operation system, and cavitation utilization method
JP5462530B2 (ja) 2009-06-03 2014-04-02 国立大学法人 東京医科歯科大学 発熱装置及び生体組織接着装置
US8650728B2 (en) 2009-06-24 2014-02-18 Ethicon Endo-Surgery, Inc. Method of assembling a transducer for a surgical instrument
US20100331742A1 (en) 2009-06-26 2010-12-30 Shinya Masuda Surgical operating apparatus
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
WO2011004449A1 (ja) 2009-07-06 2011-01-13 オリンパスメディカルシステムズ株式会社 超音波手術装置
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
EP3524189B1 (en) 2009-07-15 2020-12-09 Ethicon LLC Ultrasonic surgical instrument having clamp with electrodes
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
GB2472216A (en) 2009-07-28 2011-02-02 Gyrus Medical Ltd Bipolar electrosurgical instrument with four electrodes
US8932282B2 (en) 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US8647350B2 (en) 2009-08-11 2014-02-11 Raptor Ridge, Llc Delivery device and method for compliant tissue fasteners
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
US7956620B2 (en) 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8747351B2 (en) 2009-08-28 2014-06-10 Biosense Webster, Inc. Catheter with multi-functional control handle having linear mechanism
WO2011024200A1 (en) 2009-08-31 2011-03-03 Indian Institute Of Science Laparoscopic apparatus
US8568412B2 (en) 2009-09-09 2013-10-29 Covidien Lp Apparatus and method of controlling cutting blade travel through the use of etched features
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
EP2478854B8 (en) 2009-09-15 2019-03-06 Olympus Corporation Endoscope treatment tool
DE102009041329A1 (de) 2009-09-15 2011-03-24 Celon Ag Medical Instruments Kombiniertes Ultraschall- und HF Chirurgisches System
US8207651B2 (en) 2009-09-16 2012-06-26 Tyco Healthcare Group Lp Low energy or minimum disturbance method for measuring frequency response functions of ultrasonic surgical devices in determining optimum operating point
DE102009042411A1 (de) 2009-09-21 2011-03-31 Richard Wolf Gmbh Medizinisches Instrument
WO2011060031A1 (en) 2009-09-23 2011-05-19 Intuitive Surgical Operations, Inc. Curved cannula surgical system
US20110071523A1 (en) 2009-09-23 2011-03-24 Tyco Healthcare Group Lp Vessel Sealer with Self-Aligning Jaws
US8568400B2 (en) 2009-09-23 2013-10-29 Covidien Lp Methods and apparatus for smart handset design in surgical instruments
US9820806B2 (en) 2009-09-29 2017-11-21 Covidien Lp Switch assembly for electrosurgical instrument
US8323310B2 (en) 2009-09-29 2012-12-04 Covidien Lp Vessel sealing jaw with offset sealing surface
US8292886B2 (en) 2009-10-06 2012-10-23 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8512371B2 (en) 2009-10-06 2013-08-20 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US8574231B2 (en) 2009-10-09 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
CN102647949B (zh) 2009-10-09 2015-01-21 伊西康内外科公司 外科器械
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8939974B2 (en) 2009-10-09 2015-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8623011B2 (en) 2009-10-09 2014-01-07 Ethicon Endo-Surgery, Inc. Magnetic surgical sled with locking arm
US8906016B2 (en) 2009-10-09 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising steam control paths
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
WO2011052939A2 (ko) 2009-10-26 2011-05-05 주식회사 이턴 수술용 인스트루먼트 및 싱글 포트 수술용 어댑터
US8388647B2 (en) 2009-10-28 2013-03-05 Covidien Lp Apparatus for tissue sealing
WO2011052391A1 (ja) 2009-10-28 2011-05-05 オリンパスメディカルシステムズ株式会社 医療用装置
US8460288B2 (en) 2009-10-28 2013-06-11 Olympus Corporation Biological-tissue joining apparatus
WO2011052390A1 (ja) 2009-10-28 2011-05-05 オリンパスメディカルシステムズ株式会社 医療用装置
WO2011052349A1 (ja) 2009-10-28 2011-05-05 オリンパスメディカルシステムズ株式会社 高周波手術装置及び手術制御方法
US20110112400A1 (en) 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
DE102009046561A1 (de) 2009-11-10 2011-05-12 Robert Bosch Gmbh Verfahren zum Betrieb mindestens eines Ultraschallwandlers
US8521331B2 (en) 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
BR112012011435B1 (pt) 2009-11-13 2020-06-23 Intuitive Surgical Operations, Inc. Mecanismo de instrumento cirúrgico, conjunto robótico de instrumento cirúrgico e sistema robótico de instrumento cirúrgico
US8610501B2 (en) 2009-11-16 2013-12-17 Covidien Lp Class resonant-H electrosurgical generators
US20110125151A1 (en) 2009-11-24 2011-05-26 Strauss Timo High frequency surgical device
US9241730B2 (en) 2009-11-25 2016-01-26 Eliaz Babaev Ultrasound surgical saw
EP2491880A4 (en) 2009-11-27 2014-04-23 Olympus Medical Systems Corp INSTRUMENT FOR THERAPEUTIC TREATMENT, DEVICE FOR THERAPEUTIC TREATMENT AND METHOD FOR THERAPEUTIC TREATMENT
US8070711B2 (en) 2009-12-09 2011-12-06 Alcon Research, Ltd. Thermal management algorithm for phacoemulsification system
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
JP5293586B2 (ja) 2009-12-15 2013-09-18 富士通株式会社 非接触型icカードシステム
CN102100582A (zh) 2009-12-16 2011-06-22 余姚市柳叶刀医疗器械科技有限公司 可转腕微创电极
US10039588B2 (en) 2009-12-16 2018-08-07 Covidien Lp System and method for tissue sealing
USD627066S1 (en) 2009-12-18 2010-11-09 Tyco Healthcare Group Lp Surgical instrument handle
US8591459B2 (en) 2009-12-21 2013-11-26 Ethicon Endo-Surgery, Inc. Use of biomarkers and therapeutic agents with surgical devices
CA2785246C (en) 2009-12-22 2014-10-21 Cook Medical Technologies Llc Medical devices with detachable pivotable jaws
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
EP2474280B1 (en) 2010-01-21 2015-06-10 Olympus Medical Systems Corp. Surgical treatment device
US8374670B2 (en) 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
WO2011089717A1 (ja) 2010-01-22 2011-07-28 オリンパスメディカルシステムズ株式会社 治療用処置具、治療用処置装置および治療処置方法
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
KR101638393B1 (ko) 2010-01-29 2016-07-11 삼성전자주식회사 휴대용 장치에서 배터리 잔량 및 충방전 상태 표시 장치 및 방법
WO2011092464A1 (en) 2010-02-01 2011-08-04 Gyrus Medical Limited Electrosurgical instrument and system
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
DE102010015899B4 (de) 2010-02-04 2022-07-28 Erbe Elektromedizin Gmbh Elektrochirurgische Anordnung und elektrochirurgisches Instrument
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
EP2484301B1 (en) 2010-02-12 2016-06-15 Olympus Corporation Ultrasonic treatment device
US8585727B2 (en) 2010-02-14 2013-11-19 Oscar R. Polo Tissue severing devices and methods
USD631155S1 (en) 2010-02-23 2011-01-18 Cambridge Endoscopic Devices, Inc. Medical instrument
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8439912B2 (en) 2010-02-26 2013-05-14 Covidien Lp De-tensioning mechanism for articulation drive cables
US9107684B2 (en) 2010-03-05 2015-08-18 Covidien Lp System and method for transferring power to intrabody instruments
US8864761B2 (en) 2010-03-10 2014-10-21 Covidien Lp System and method for determining proximity relative to a critical structure
CN102792305B (zh) 2010-03-11 2016-10-26 皇家飞利浦电子股份有限公司 用于表征和可视化电磁跟踪误差的方法和系统
US20110238079A1 (en) 2010-03-18 2011-09-29 SPI Surgical, Inc. Surgical Cockpit Comprising Multisensory and Multimodal Interfaces for Robotic Surgery and Methods Related Thereto
US8827992B2 (en) 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8419727B2 (en) 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
WO2011121827A1 (ja) 2010-03-31 2011-10-06 オリンパスメディカルシステムズ株式会社 医療装置及び外科用処置具
USD638540S1 (en) 2010-04-08 2011-05-24 Terumo Kabushiki Kaisha Manipulator system operating handle for medical use
US8709035B2 (en) 2010-04-12 2014-04-29 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8496682B2 (en) 2010-04-12 2013-07-30 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8623044B2 (en) 2010-04-12 2014-01-07 Ethicon Endo-Surgery, Inc. Cable actuated end-effector for a surgical instrument
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
EP2377477B1 (en) 2010-04-14 2012-05-30 Tuebingen Scientific Medical GmbH Surgical instrument with elastically moveable instrument head
US8535311B2 (en) 2010-04-22 2013-09-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising closing and firing systems
US9241692B2 (en) 2010-04-28 2016-01-26 Sanovas, Inc. Pressure/vacuum actuated catheter forceps
US8568397B2 (en) 2010-04-28 2013-10-29 Covidien Lp Induction sealing
US10265118B2 (en) 2010-05-04 2019-04-23 Covidien Lp Pinion blade drive mechanism for a laparoscopic vessel dissector
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
JP5059231B2 (ja) 2010-05-18 2012-10-24 オリンパスメディカルシステムズ株式会社 医療装置
US9044256B2 (en) 2010-05-19 2015-06-02 Board Of Regents, The University Of Texas System Medical devices, apparatuses, systems, and methods
US20110284014A1 (en) 2010-05-19 2011-11-24 The Board Of Regents Of The University Of Texas System Medical Devices That Include Removable Magnet Units and Related Methods
US9059547B2 (en) 2010-05-20 2015-06-16 Cook Medical Technologies Llc Lead system for electrical devices used in medical procedures
USD669992S1 (en) 2010-05-20 2012-10-30 Sound Surgical Technologies, Llc Ultrasonic amplifier
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
JP4933684B2 (ja) 2010-05-31 2012-05-16 オリンパスメディカルシステムズ株式会社 内視鏡用処置具
US8638428B2 (en) 2010-06-01 2014-01-28 Joe Denton Brown Method and apparatus for using optical feedback to detect fiber breakdown during surgical laser procedures
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491625B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
US8790342B2 (en) 2010-06-09 2014-07-29 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing pressure-variation electrodes
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US8926607B2 (en) 2010-06-09 2015-01-06 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing multiple positive temperature coefficient electrodes
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US20110306967A1 (en) 2010-06-10 2011-12-15 Payne Gwendolyn P Cooling configurations for electrosurgical instruments
US8753338B2 (en) 2010-06-10 2014-06-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a thermal management system
US8764747B2 (en) 2010-06-10 2014-07-01 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising sequentially activated electrodes
JP5006475B2 (ja) 2010-06-17 2012-08-22 オリンパスメディカルシステムズ株式会社 超音波処置システム及び超音波処置システムの作動方法
WO2011160008A1 (en) 2010-06-18 2011-12-22 Howmedica Osteonics Corp. Patient-specific total hip arthroplasty
DE102010025298B4 (de) 2010-06-28 2023-06-15 Celon Ag Medical Instruments Hochfrequenz-Chriurgiegerät
US8657489B2 (en) 2010-06-28 2014-02-25 Infineon Technologies Ag Power switch temperature control device and method
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US20120004655A1 (en) 2010-06-30 2012-01-05 Harrison Jay Kim Bipolar Connector System
ES2758557T3 (es) 2010-07-07 2020-05-05 Carevature Medical Ltd Dispositivo quirúrgico para la extirpación de tejidos
US8512336B2 (en) 2010-07-08 2013-08-20 Covidien Lp Optimal geometries for creating current densities in a bipolar electrode configuration
US8834466B2 (en) 2010-07-08 2014-09-16 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US20120016413A1 (en) 2010-07-14 2012-01-19 Ethicon Endo-Surgery, Inc. Surgical fastening devices comprising rivets
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US20120022519A1 (en) 2010-07-22 2012-01-26 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with controlled energy delivery
US8702704B2 (en) 2010-07-23 2014-04-22 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979844B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US20120022526A1 (en) 2010-07-23 2012-01-26 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US20120022583A1 (en) 2010-07-23 2012-01-26 Eric Sugalski Surgical Tool with Crossbar Lever
USD637288S1 (en) 2010-07-23 2011-05-03 Conmed Corporation Surgical handpiece
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
CA2750482C (en) 2010-08-25 2016-11-01 Syntheon, Llc Battery-powered hand-held ultrasonic surgical cautery cutting device
CN103200893A (zh) 2010-09-07 2013-07-10 波士顿科学西美德公司 用于肾去神经的自供电消融导管
US8663222B2 (en) 2010-09-07 2014-03-04 Covidien Lp Dynamic and static bipolar electrical sealing and cutting device
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
KR20120030174A (ko) 2010-09-17 2012-03-28 삼성전자주식회사 촉각 피드백을 제공하는 수술 로봇 시스템 및 수술 장치, 그리고 그의 촉각 피드백 제공 방법
GB201015998D0 (en) 2010-09-22 2010-11-03 Orthosonics Ltd Improved femoral implant revision tool
US9089327B2 (en) 2010-09-24 2015-07-28 Ethicon Endo-Surgery, Inc. Surgical instrument with multi-phase trigger bias
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
US9545253B2 (en) 2010-09-24 2017-01-17 Ethicon Endo-Surgery, Llc Surgical instrument with contained dual helix actuator assembly
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
USD669993S1 (en) 2010-09-29 2012-10-30 Sound Surgical Technologies, Llc Console for use in power assisted lipoplasty
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
RU2599210C2 (ru) 2010-09-30 2016-10-10 Этикон Эндо-Серджери, Инк. Хирургические рассекающие и сшивающие инструменты с отдельными и раздельными системами наложения крепежных элементов и рассечения ткани
US8752699B2 (en) 2010-09-30 2014-06-17 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising bioabsorbable layers
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
JP5905472B2 (ja) 2010-10-01 2016-04-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 顎部材を有する外科用器具
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
ES2912092T3 (es) 2010-10-01 2022-05-24 Applied Med Resources Instrumentos electroquirúrgicos y conexiones a los mismos
USD696631S1 (en) 2011-05-17 2013-12-31 Ethicon Endo-Surgery, Inc. Electrical connector
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US9345534B2 (en) 2010-10-04 2016-05-24 Covidien Lp Vessel sealing instrument
GB201017968D0 (en) 2010-10-23 2010-12-08 Sra Dev Ltd Ergonomic handpiece for laparoscopic and open surgery
CN103313671B (zh) 2010-10-25 2017-06-06 美敦力Af卢森堡有限责任公司 用于神经调节治疗的估算及反馈的装置、系统及方法
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US20120109186A1 (en) 2010-10-29 2012-05-03 Parrott David A Articulating laparoscopic surgical instruments
US9451967B2 (en) 2010-11-01 2016-09-27 Boston Scientific Scimed, Inc. Tissue closure
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
JP2014500059A (ja) 2010-11-05 2014-01-09 エシコン・エンド−サージェリィ・インコーポレイテッド 外科用器具のハンドピースを介したユーザーフィードバック
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
CN103281982B (zh) 2010-11-05 2016-12-28 伊西康内外科公司 具有模块化端部执行器和检测结构的外科器械
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US10085792B2 (en) 2010-11-05 2018-10-02 Ethicon Llc Surgical instrument with motorized attachment feature
US9770285B2 (en) 2010-11-08 2017-09-26 Bovie Medical Corporation System and method for identifying and controlling an electrosurgical apparatus
US9095333B2 (en) 2012-07-02 2015-08-04 Bovie Medical Corporation Systems and methods of discriminating between argon and helium gases for enhanced safety of medical devices
US9144453B2 (en) 2010-11-08 2015-09-29 Bovie Medical Corporation Multi-mode electrosurgical apparatus
KR101993815B1 (ko) 2010-11-15 2019-06-27 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 기구에서 기구 샤프트 감김과 단부 작동기 작동의 해제
US8480703B2 (en) 2010-11-19 2013-07-09 Covidien Lp Surgical device
US8784418B2 (en) 2010-11-29 2014-07-22 Covidien Lp Endoscopic surgical forceps
US8920421B2 (en) 2010-11-29 2014-12-30 Covidien Lp System and method for tissue sealing
JP5734631B2 (ja) 2010-12-02 2015-06-17 オリンパス株式会社 手術支援システム
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8801710B2 (en) * 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
US20120150049A1 (en) 2010-12-09 2012-06-14 Medtronic, Inc. Impedance measurement to monitor organ perfusion or hemodynamic status
GB201021032D0 (en) 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
WO2012088141A2 (en) 2010-12-21 2012-06-28 Stryker Corporation Powered surgical tool with a control module in a sealed housing the housing having active seals for protecting internal components from the effects of sterilization
US9364171B2 (en) 2010-12-22 2016-06-14 Veebot Systems, Inc. Systems and methods for autonomous intravenous needle insertion
JP2014501143A (ja) 2010-12-23 2014-01-20 バード・アクセス・システムズ,インコーポレーテッド 医療器具を案内するシステムおよび方法
BR112013016141A2 (pt) 2010-12-23 2018-06-26 Straumann Holding Ag cartucho para armazenamento de instrumentos médicos
US8862955B2 (en) 2010-12-29 2014-10-14 Stmicroelectronics S.R.L. Apparatus for at-speed testing, in inter-domain mode, of a multi-clock-domain digital integrated circuit according to BIST or SCAN techniques
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
US9044245B2 (en) 2011-01-05 2015-06-02 Medtronic Ablation Frontiers Llc Multipolarity epicardial radiofrequency ablation
US9028481B2 (en) 2011-01-05 2015-05-12 Covidien Lp System and method for measuring current of an electrosurgical generator
CN102595386A (zh) 2011-01-06 2012-07-18 北京三星通信技术研究有限公司 一种支持用户设备ue移动性的方法
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
US20120191091A1 (en) 2011-01-24 2012-07-26 Tyco Healthcare Group Lp Reusable Medical Device with Advanced Counting Capability
US9028476B2 (en) 2011-02-03 2015-05-12 Covidien Lp Dual antenna microwave resection and ablation device, system and method of use
US9326787B2 (en) 2011-02-07 2016-05-03 Olympus Corporation Energy treatment instrument
CN103260539B (zh) 2011-02-10 2016-02-17 奥林巴斯株式会社 高频手术装置以及手术装置
AU2012214166A1 (en) 2011-02-10 2013-09-12 Actuated Medical, Inc. Medical tool with electromechanical control and feedback
US8986287B2 (en) 2011-02-14 2015-03-24 Adrian E. Park Adjustable laparoscopic instrument handle
KR101964642B1 (ko) 2011-02-15 2019-04-02 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법
MX355380B (es) 2011-02-15 2018-04-16 Smith & Nephew Inc Dispositivo de resección artroscópica.
JP6293486B2 (ja) 2011-02-15 2018-03-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド クランプ又は発射の不成功を検出するシステム
EP3308723B1 (en) 2011-02-15 2021-03-10 Intuitive Surgical Operations Inc. Systems for indicating a clamping prediction
US8767970B2 (en) 2011-02-16 2014-07-01 Apple Inc. Audio panning with multi-channel surround sound decoding
US9017370B2 (en) 2011-02-17 2015-04-28 Covidien Lp Vessel sealer and divider with captured cutting element
US9055961B2 (en) 2011-02-18 2015-06-16 Intuitive Surgical Operations, Inc. Fusing and cutting surgical instrument and related methods
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
JP2012171088A (ja) 2011-02-24 2012-09-10 Olympus Corp マスタ操作入力装置及びマスタスレーブマニピュレータ
CN103354736B (zh) 2011-03-09 2015-08-19 奥林巴斯医疗株式会社 双极处理装置
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
CN103747752B (zh) 2011-03-24 2017-04-26 伊西康内外科公司 基于能量的剪刀装置
JP5165163B2 (ja) 2011-03-24 2013-03-21 オリンパスメディカルシステムズ株式会社 把持処置装置
CN202027624U (zh) 2011-03-25 2011-11-09 薛新汶 一种手术用超声波工具
US10729458B2 (en) 2011-03-30 2020-08-04 Covidien Lp Ultrasonic surgical instruments
US8974479B2 (en) 2011-03-30 2015-03-10 Covidien Lp Ultrasonic surgical instruments
WO2012135721A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Ultrasonic surgical instruments
US20120253328A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Combined presentation unit for reposable battery operated surgical system
US20120265241A1 (en) 2011-04-12 2012-10-18 Tyco Healthcare Group Lp Surgical Forceps and Method of Manufacturing Thereof
CA2774751C (en) 2011-04-15 2018-11-06 Covidien Ag Battery powered hand-held ultrasonic surgical cautery cutting device
ITTO20110394A1 (it) 2011-05-05 2012-11-06 Univ Pisa Catetere munito di sensori elettromagnetici di posizione, e sistema di localizzazione per cateteri e fili guida
JP5763407B2 (ja) 2011-05-09 2015-08-12 株式会社ダイヘン 異常検出装置、およびこの異常検出装置を備えた発電システム
US9265568B2 (en) 2011-05-16 2016-02-23 Coviden Lp Destruction of vessel walls for energy-based vessel sealing enhancement
US8444664B2 (en) 2011-05-16 2013-05-21 Covidien Lp Medical ultrasound instrument with articulated jaws
US20120296371A1 (en) 2011-05-17 2012-11-22 Tyco Healthcare Group Lp Modular Shaft for Endoscopic Vessel Sealer and Divider
US8968283B2 (en) 2011-05-19 2015-03-03 Covidien Lp Ultrasound device for precise tissue sealing and blade-less cutting
US9358065B2 (en) 2011-06-23 2016-06-07 Covidien Lp Shaped electrode bipolar resection apparatus, system and methods of use
US9636167B2 (en) 2011-05-31 2017-05-02 Covidien Lp Surgical device with DC power connection
KR101828354B1 (ko) 2011-06-03 2018-02-12 삼성전자주식회사 수술 장치
KR101298237B1 (ko) 2011-06-09 2013-08-22 국립암센터 수술 장치
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
JP5342041B2 (ja) 2011-07-11 2013-11-13 キヤノン株式会社 マルチビーム走査光学装置の組立調整方法及び製造方法
US9028478B2 (en) 2011-07-20 2015-05-12 Covidien Lp Articulating surgical apparatus
US20130023925A1 (en) 2011-07-20 2013-01-24 Tyco Healthcare Group Lp Articulating Surgical Apparatus
US8568390B2 (en) 2011-07-20 2013-10-29 Covidien Lp Articulating surgical apparatus
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US10004526B2 (en) 2011-07-25 2018-06-26 Covidien Lp Ultrasonic dissection system
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
EP2554132B1 (de) 2011-08-01 2016-03-02 Erbe Elektromedizin GmbH Gewebefusionsinstrument
WO2013018861A1 (ja) 2011-08-04 2013-02-07 オリンパス株式会社 医療用マニピュレータおよびその制御方法
JP5936914B2 (ja) 2011-08-04 2016-06-22 オリンパス株式会社 操作入力装置およびこれを備えるマニピュレータシステム
US8968317B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US20140236152A1 (en) 2011-08-23 2014-08-21 Aesculap Ag Electrosurgical device and methods of manufacture and use
JP5859650B2 (ja) 2011-08-25 2016-02-10 アンドコントロルEndocontrol 係合解除可能なハンドル付きの手術器具
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
US9033973B2 (en) 2011-08-30 2015-05-19 Covidien Lp System and method for DC tissue impedance sensing
DE102011082102A1 (de) 2011-09-02 2013-03-07 Celon Ag Medical Instruments Elektrodenanordnung und elektronisches Greifinstrument
DE102011082307A1 (de) 2011-09-07 2013-03-07 Celon Ag Medical Instruments Elektrochirurgisches Instrument, Elektrochirurgieanordnung und zugehörige Verfahren
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
US20130071282A1 (en) 2011-09-19 2013-03-21 Tyco Healthcare Group Lp Method For Securing A Stop Member To A Seal Plate Configured For Use With An Electrosurgical Instrument
US9039692B2 (en) 2011-09-20 2015-05-26 Covidien Lp Handheld medical devices including microwave amplifier unit at device handle
US9204918B2 (en) 2011-09-28 2015-12-08 RELIGN Corporation Medical ablation system and method of use
US8961515B2 (en) 2011-09-28 2015-02-24 Covidien Lp Electrosurgical instrument
US9668806B2 (en) 2011-09-29 2017-06-06 Covidien Lp Surgical forceps including a removable stop member
US20130085510A1 (en) 2011-09-30 2013-04-04 Ethicon Endo-Surgery, Inc. Robot-mounted surgical tables
US9004071B2 (en) 2011-10-18 2015-04-14 Ian Joseph Alexander Nasal guide and method of use thereof
EP2768418B1 (en) 2011-10-19 2017-07-19 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US9492221B2 (en) 2011-10-20 2016-11-15 Covidien Lp Dissection scissors on surgical device
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
US10085762B2 (en) 2011-10-21 2018-10-02 Ethicon Llc Ultrasonic device for cutting and coagulating
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9333025B2 (en) 2011-10-24 2016-05-10 Ethicon Endo-Surgery, Llc Battery initialization clip
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
CN103945783B (zh) 2011-11-15 2016-10-26 直观外科手术操作公司 具有收起的刀片的手术器械
US8968312B2 (en) 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
US8876726B2 (en) 2011-12-08 2014-11-04 Biosense Webster (Israel) Ltd. Prevention of incorrect catheter rotation
US9266310B2 (en) 2011-12-16 2016-02-23 Apple Inc. Methods of joining device structures with adhesive
US20130158660A1 (en) 2011-12-20 2013-06-20 Richard A. Bergs Medical Devices, Apparatuses, Systems, and Methods with Magnetic Shielding
US20130158659A1 (en) 2011-12-20 2013-06-20 Richard A. Bergs Medical Devices, Apparatuses, Systems, and Methods With Configurations for Shaping Magnetic-Fields and Interactions
CA2859989C (en) 2011-12-23 2020-03-24 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
DE102012100040A1 (de) 2012-01-04 2013-07-04 Aesculap Ag Elektrochirurgisches Instrument und Maulteil hierfür
US9023035B2 (en) 2012-01-06 2015-05-05 Covidien Lp Monopolar pencil with integrated bipolar/ligasure tweezers
US8382775B1 (en) 2012-01-08 2013-02-26 Vibrynt, Inc. Methods, instruments and devices for extragastric reduction of stomach volume
JP5192591B2 (ja) 2012-01-16 2013-05-08 富士フイルム株式会社 カプセル内視鏡、およびカプセル内視鏡の動作制御方法
US8961513B2 (en) 2012-01-25 2015-02-24 Covidien Lp Surgical tissue sealer
JP6165780B2 (ja) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. ロボット制御式の手術器具
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
US11399898B2 (en) 2012-03-06 2022-08-02 Briteseed, Llc User interface for a system used to determine tissue or artifact characteristics
US20130253256A1 (en) 2012-03-20 2013-09-26 David B. Griffith Apparatuses, systems, and methods for use and transport of magnetic medical devices with transport fixtures or safety cages
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
TWM438061U (en) 2012-04-03 2012-09-21 Inhon Internat Co Ltd Connector module and a male connector and the female connector
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20130267874A1 (en) 2012-04-09 2013-10-10 Amy L. Marcotte Surgical instrument with nerve detection feature
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9044238B2 (en) 2012-04-10 2015-06-02 Covidien Lp Electrosurgical monopolar apparatus with arc energy vascular coagulation control
JP5883343B2 (ja) 2012-04-12 2016-03-15 株式会社スズキプレシオン 医療用マニピュレータ
JP5940864B2 (ja) 2012-04-12 2016-06-29 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 医療用マニピュレータ
US8968294B2 (en) 2012-04-17 2015-03-03 Covidien Lp Single or limited use device designs
EP2838439A4 (en) 2012-04-18 2015-11-25 Cardica Inc SAFETY LOCK FOR A SURGICAL CLIP DEVICE
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
DE102012103503A1 (de) 2012-04-20 2013-10-24 Aesculap Ag Medizinisches TFT-Instrument mit schwenkbarem Elektrodenlager
WO2013157571A1 (ja) 2012-04-20 2013-10-24 オリンパスメディカルシステムズ株式会社 手術装置
DE112013002175T5 (de) 2012-04-24 2015-01-22 Cibiem, Inc. Endovaskuläre Katheter und Verfahren zur Ablation des Glomus Caroticum
EP2796105B1 (en) 2012-04-26 2017-11-01 Olympus Corporation Surgical system
US9060778B2 (en) 2012-04-26 2015-06-23 Medtronic Ablation Frontiers Llc Intermittent short circuit detection on a multi-electrode catheter
US9216050B2 (en) 2012-05-01 2015-12-22 Medtronic Ablation Frontiers Llc Detection of microbubble formation during catheter ablation
JP6224082B2 (ja) 2012-05-02 2017-11-01 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 切断及び凝固用電気外科装置
US20150119901A1 (en) 2012-05-04 2015-04-30 Agile Endosurgery, Inc. Surgical tool
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
DE102012208605A1 (de) 2012-05-23 2013-11-28 Karl Storz Gmbh & Co. Kg Medizinisches Instrument mit einem Schaft mit einem flexiblen Abschnitt und einem gesteuert krümmbaren Abschnitt
EP2668922B1 (en) 2012-05-30 2016-10-26 Covidien AG System for tissue sealing
US9681884B2 (en) 2012-05-31 2017-06-20 Ethicon Endo-Surgery, Llc Surgical instrument with stress sensor
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
WO2013180294A1 (ja) 2012-06-01 2013-12-05 オリンパスメディカルシステムズ株式会社 エネルギを用いた処置具
US20130321425A1 (en) 2012-06-05 2013-12-05 Dexcom, Inc. Reporting modules
EP2859858B1 (en) 2012-06-06 2016-12-28 Olympus Corporation Ultrasound probe
US10677764B2 (en) 2012-06-11 2020-06-09 Covidien Lp Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
JP2014003731A (ja) 2012-06-15 2014-01-09 Canon Inc 振動型アクチュエータの駆動装置及びこれを用いた医用システム
EP3593740B1 (en) 2012-06-20 2021-10-06 Stryker Corporation System for off-axis tissue manipulation
US9510891B2 (en) 2012-06-26 2016-12-06 Covidien Lp Surgical instruments with structures to provide access for cleaning
US8968296B2 (en) 2012-06-26 2015-03-03 Covidien Lp Energy-harvesting system, apparatus and methods
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
JP5931604B2 (ja) 2012-06-28 2016-06-08 オリンパス株式会社 治療用処置装置
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US10028786B2 (en) 2012-06-29 2018-07-24 Covidien Lp Helical connector assembly
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9072524B2 (en) 2012-06-29 2015-07-07 Covidien Lp Surgical forceps
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US10194907B2 (en) 2012-07-18 2019-02-05 Covidien Lp Multi-fire stapler with electronic counter, lockout, and visual indicator
US9301798B2 (en) 2012-07-19 2016-04-05 Covidien Lp Surgical forceps including reposable end effector assemblies
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US9305497B2 (en) 2012-08-31 2016-04-05 Qualcomm Mems Technologies, Inc. Systems, devices, and methods for driving an analog interferometric modulator
DE102012109037B4 (de) 2012-09-25 2020-11-26 Adolf Würth Gmbh & Co Kg Ultraschall-Generator mit ausgangsseitigem Tiefpass für ein Handgerät
US9147965B2 (en) 2012-09-26 2015-09-29 Kc Magcon, Inc. Magnetic-enabled connector device
GB2506377A (en) 2012-09-27 2014-04-02 Creo Medical Ltd Electrosurgical apparatus comprising an RF generator, microwave generator, combining circuit and waveguide isolator
IN2015DN02432A (pt) 2012-09-28 2015-09-04 Ethicon Endo Surgery Inc
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US8702702B1 (en) 2012-10-05 2014-04-22 Gyrus Acmi, Inc. Surgical cutting instrument with electromechanical cutting
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US10478182B2 (en) 2012-10-18 2019-11-19 Covidien Lp Surgical device identification
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) * 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140121569A1 (en) 2012-10-25 2014-05-01 Solta Medical, Inc. Ultrasonically heated probe
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9572622B2 (en) 2012-12-10 2017-02-21 Ethicon Endo-Surgery, Llc Bipolar electrosurgical features for targeted hemostasis
US9050100B2 (en) 2012-12-10 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument with feedback at end effector
US8874220B2 (en) 2012-12-13 2014-10-28 Nuraleve Inc. Neurostimulation system, device, and method
EP2932930B1 (en) 2012-12-13 2018-06-27 Olympus Corporation Treatment instrument
US9468498B2 (en) 2012-12-20 2016-10-18 Cook Medical Technologies Llc Magnetic activation of monopolar and bipolar devices
US20140194875A1 (en) 2013-01-10 2014-07-10 Covidien Lp Surgical forceps
US20140194874A1 (en) 2013-01-10 2014-07-10 Ethicon Endo-Surgery, Inc. Electrosurgical end effector with independent closure feature and blade
GB201300490D0 (en) 2013-01-11 2013-02-27 Univ Leuven Kath An apparatus and method for generating motion around a remote centre of motion
US20140207124A1 (en) 2013-01-23 2014-07-24 Ethicon Endo-Surgery, Inc. Surgical instrument with selectable integral or external power source
US9149325B2 (en) 2013-01-25 2015-10-06 Ethicon Endo-Surgery, Inc. End effector with compliant clamping jaw
US9610114B2 (en) 2013-01-29 2017-04-04 Ethicon Endo-Surgery, Llc Bipolar electrosurgical hand shears
US20140221994A1 (en) 2013-02-05 2014-08-07 Covidien Lp Electrosurgical instrument
US9375256B2 (en) 2013-02-05 2016-06-28 Covidien Lp Electrosurgical forceps
US9560995B2 (en) 2013-02-25 2017-02-07 Covidien Lp Methods and systems for determining a probe-off condition in a medical device
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9456863B2 (en) 2013-03-11 2016-10-04 Covidien Lp Surgical instrument with switch activation control
US10070916B2 (en) 2013-03-11 2018-09-11 Covidien Lp Surgical instrument with system and method for springing open jaw members
ES2828224T3 (es) 2013-03-12 2021-05-25 Biolase Inc Unidad láser dental con enlace de comunicación al centro de asistencia
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9877782B2 (en) 2013-03-14 2018-01-30 Ethicon Llc Electrosurgical instrument end effector with compliant electrode
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9498275B2 (en) 2013-03-14 2016-11-22 Covidien Lp Systems and methods for arc detection and drag adjustment
US9592056B2 (en) 2013-03-14 2017-03-14 Covidien Lp Powered stapling apparatus
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10842563B2 (en) 2013-03-15 2020-11-24 Covidien Lp System and method for power control of electrosurgical resonant inverters
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
EP2777583B1 (de) 2013-03-15 2020-07-01 Erbe Elektromedizin GmbH Instrument zur Gefäßfusion und Trennung
US9510906B2 (en) 2013-03-15 2016-12-06 Ethicon Endo-Surgery, Llc Tissue clamping features of surgical instrument end effector
US20140276797A1 (en) 2013-03-15 2014-09-18 GYRUS ACMI, INC., d/b/a Olympus Surgical Technologies America Combination electrosurgical device
EP2967711B1 (en) 2013-03-15 2020-05-06 Cynosure, LLC Electrosurgical instruments with multimodes of operation
US9763730B2 (en) 2013-03-15 2017-09-19 Gyrus Acmi, Inc. Electrosurgical instrument
EP2974682B1 (en) 2013-03-15 2017-08-30 Gyrus ACMI, Inc. Combination electrosurgical device
WO2014148281A1 (ja) 2013-03-18 2014-09-25 オリンパスメディカルシステムズ株式会社 処置具
GB201305987D0 (en) 2013-04-03 2013-05-15 Gyrus Medical Ltd Electrosurgical system
US20140303605A1 (en) 2013-04-04 2014-10-09 Elwha Llc Active tremor control in surgical instruments responsive to a particular user
CA3135151A1 (en) 2013-04-08 2014-10-16 Boston Scientific Scimed, Inc. Fluid management system
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
EP2992847B1 (en) 2013-05-02 2017-08-30 Olympus Corporation Ultrasonic treatment system
WO2014189969A1 (en) 2013-05-21 2014-11-27 Camplex, Inc. Surgical visualization systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
CN203468630U (zh) 2013-05-31 2014-03-12 瑞奇外科器械(中国)有限公司 超声外科系统
US9385831B2 (en) 2013-06-05 2016-07-05 Raytheon Company Circuits and method to enable efficient generation of direct digital synthesizer based waveforms of arbitrary bandwidth
US9504520B2 (en) 2013-06-06 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instrument with modular motor
US20140373003A1 (en) 2013-06-13 2014-12-18 L'oreal Appliance-based firmware upgrade system
US9815211B2 (en) 2013-06-17 2017-11-14 Abb Schweiz Ag Rotary joint of a robot and the robot including the same
US9629633B2 (en) 2013-07-09 2017-04-25 Covidien Lp Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9554845B2 (en) 2013-07-18 2017-01-31 Covidien Lp Surgical forceps for treating and cutting tissue
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US10285750B2 (en) 2013-07-29 2019-05-14 Covidien Lp Systems and methods for operating an electrosurgical generator
WO2015016346A1 (ja) 2013-08-02 2015-02-05 オリンパスメディカルシステムズ株式会社 処置システム、処置具制御装置、および、処置システムの作動方法
WO2015020147A1 (ja) 2013-08-07 2015-02-12 オリンパスメディカルシステムズ株式会社 超音波プローブ及び超音波処置装置
CN104434298B (zh) 2013-08-07 2017-11-03 柯惠有限合伙公司 具有组织限位件的双极外科器械
WO2015021359A1 (en) 2013-08-09 2015-02-12 Chamberlain Lisa Magnetic shields
US9636112B2 (en) 2013-08-16 2017-05-02 Covidien Lp Chip assembly for reusable surgical instruments
JP6416260B2 (ja) 2013-08-23 2018-10-31 エシコン エルエルシー 動力付き外科用器具のための発射部材後退装置
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9554465B1 (en) 2013-08-27 2017-01-24 Flextronics Ap, Llc Stretchable conductor design and methods of making
US9674949B1 (en) 2013-08-27 2017-06-06 Flextronics Ap, Llc Method of making stretchable interconnect using magnet wires
JP5797353B2 (ja) 2013-08-29 2015-10-21 オリンパス株式会社 把持処置装置及び把持ユニット
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9597141B2 (en) 2013-09-03 2017-03-21 Covidien Lp Switch assemblies for multi-function surgical instruments and surgical instruments incorporating the same
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US20150080876A1 (en) 2013-09-16 2015-03-19 Ethoicon Endo-Surgery, Inc Integrated systems for electrosurgical steam or smoke control
US9943357B2 (en) 2013-09-16 2018-04-17 Covidien Lp Split electrode for use in a bipolar electrosurgical instrument
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US10271840B2 (en) 2013-09-18 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
US10231747B2 (en) 2013-09-20 2019-03-19 Ethicon Llc Transducer features for ultrasonic surgical instrument
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US10695119B2 (en) 2013-09-24 2020-06-30 Covidien Lp Power and bi directional data interface assembly and surgical system including the same
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
US10130412B2 (en) 2013-09-26 2018-11-20 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US9867651B2 (en) 2013-09-26 2018-01-16 Covidien Lp Systems and methods for estimating tissue parameters using surgical devices
US10448986B2 (en) 2013-09-27 2019-10-22 Covidien Lp Electrosurgical medical device with power modulation
US20150112335A1 (en) 2013-10-18 2015-04-23 Ethicon Endo-Surgery, Inc. Electrosurgical devices with fluid flow control
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9861381B2 (en) 2013-11-12 2018-01-09 Ethicon Llc Removable battery casing for surgical instrument
US9949785B2 (en) 2013-11-21 2018-04-24 Ethicon Llc Ultrasonic surgical instrument with electrosurgical feature
BR112016011680B1 (pt) 2013-11-26 2022-02-15 Ethicon Endo-Surgery, Llc Aparelho
GB201321710D0 (en) 2013-12-09 2014-01-22 Creo Medical Ltd Electrosurgical apparatus
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9724120B2 (en) 2013-12-17 2017-08-08 Ethicon Endo-Surgery, Llc Clamp arm features for ultrasonic surgical instrument
US9743946B2 (en) 2013-12-17 2017-08-29 Ethicon Llc Rotation features for ultrasonic surgical instrument
JP6482560B2 (ja) 2013-12-18 2019-03-13 コヴィディエン リミテッド パートナーシップ 電気外科手術用エンドエフェクタ
GB201322844D0 (en) 2013-12-23 2014-02-12 Creo Medical Ltd Electrosurgical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9802033B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Surgical devices having controlled tissue cutting and sealing
JP5836543B1 (ja) 2014-02-06 2015-12-24 オリンパス株式会社 超音波プローブ及び超音波処置装置
US9974541B2 (en) 2014-02-14 2018-05-22 Covidien Lp End stop detection
US10420607B2 (en) 2014-02-14 2019-09-24 Arthrocare Corporation Methods and systems related to an electrosurgical controller
US20150238260A1 (en) 2014-02-26 2015-08-27 Covidien Lp Surgical instruments including nerve stimulator apparatus for use in the detection of nerves in tissue and methods of directing energy to tissue using same
WO2015138708A1 (en) 2014-03-12 2015-09-17 Proximed, Llc Surgical guidance systems, devices, and methods
WO2015137139A1 (ja) 2014-03-14 2015-09-17 オリンパス株式会社 把持ユニット及びバイポーラ処置具
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9675374B2 (en) 2014-03-24 2017-06-13 Ethicon Llc Ultrasonic forceps
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20180132850A1 (en) 2014-03-26 2018-05-17 Ethicon Llc Surgical instrument comprising a sensor system
US20150272659A1 (en) 2014-03-27 2015-10-01 Ethicon Endo-Surgery, Inc. Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
CN106163445B (zh) 2014-03-31 2019-11-29 直观外科手术操作公司 带有可切换传动装置的外科手术器械
US10342601B2 (en) 2014-04-02 2019-07-09 Covidien Lp Electrosurgical devices including transverse electrode configurations
US20150282879A1 (en) 2014-04-03 2015-10-08 Medtronic Minimed, Inc. Precise insertion site locator
EP2928271A1 (en) 2014-04-04 2015-10-07 Clothing Plus MBU Oy Stretchable device for transmitting signal
US9918730B2 (en) 2014-04-08 2018-03-20 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9895160B2 (en) 2014-04-16 2018-02-20 Gyrus Acmi Inc. Surgical operating apparatus with temperature control
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US20150317899A1 (en) 2014-05-01 2015-11-05 Covidien Lp System and method for using rfid tags to determine sterilization of devices
US20150313667A1 (en) 2014-05-02 2015-11-05 Covidien Lp Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue
US9872722B2 (en) 2014-05-05 2018-01-23 Covidien Lp Wake-up system and method for powered surgical instruments
US10111703B2 (en) 2014-05-06 2018-10-30 Cosman Instruments, Llc Electrosurgical generator
US10251725B2 (en) 2014-06-09 2019-04-09 Covidien Lp Authentication and information system for reusable surgical instruments
CN104001276A (zh) 2014-06-11 2014-08-27 郭锐 一种可标识和识别超声探头的方法和超声治疗设备
CN104013444A (zh) 2014-06-23 2014-09-03 南京广慈医疗科技有限公司 一种相控阵高强度聚焦超声消融系统
DE102014108914A1 (de) 2014-06-25 2015-12-31 Aesculap Ag Elektrochirurgisches Instrument und Maulteil hierfür
EP2959854B1 (de) 2014-06-25 2018-03-21 Erbe Elektromedizin GmbH Chirurgisches Instrument
JPWO2016009921A1 (ja) 2014-07-15 2017-04-27 オリンパス株式会社 処置具
US10348941B2 (en) 2014-07-30 2019-07-09 Karl Storz Endovision, Inc. Durable flexible circuit assembly
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
EP3134019A1 (en) 2014-08-20 2017-03-01 Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) Reconfigurable electrosurgical device
US20160051316A1 (en) 2014-08-25 2016-02-25 Ethicon Endo-Surgery, Inc. Electrosurgical electrode mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
WO2016044640A1 (en) 2014-09-18 2016-03-24 Omniguide, Inc. Laparoscopic handpiece for waveguides
US10172666B2 (en) 2014-09-18 2019-01-08 Covidien Lp System and method for controlling operation of an electrosurgical system
US10039564B2 (en) * 2014-09-30 2018-08-07 Ethicon Llc Surgical devices having power-assisted jaw closure and methods for compressing and sensing tissue
US9833239B2 (en) 2014-10-15 2017-12-05 Ethicon Llc Surgical instrument battery pack with power profile emulation
US10136938B2 (en) 2014-10-29 2018-11-27 Ethicon Llc Electrosurgical instrument with sensor
EP3213702A4 (en) 2014-10-29 2018-07-04 Sumitomo Bakelite Co., Ltd. Endoscope scissors and endoscopic high-frequency treatment tool
EP3229718B1 (en) 2014-12-08 2019-02-27 Olympus Corporation A combined ultrasonic and hf surgical system as well as a control device and a method thereof
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10010366B2 (en) 2014-12-17 2018-07-03 Ethicon Llc Surgical devices and methods for tissue cutting and sealing
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
GB2533411B (en) 2014-12-19 2020-08-05 Gyrus Medical Ltd Electrosurgical system
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US20160175029A1 (en) 2014-12-22 2016-06-23 Ethicon Endo-Surgery, Inc. Tissue sealing and cutting instrument with locking features
WO2016104051A1 (ja) 2014-12-24 2016-06-30 オリンパス株式会社 把持処置ユニット及び把持処置具
GB2535627B (en) 2015-01-14 2017-06-28 Gyrus Medical Ltd Electrosurgical system
GB2535003B (en) 2015-01-14 2018-12-12 Gyrus Medical Ltd Electrosurgical instrument
US9113912B1 (en) 2015-01-21 2015-08-25 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
WO2016130844A1 (en) 2015-02-13 2016-08-18 Trice Medical, Inc. Tissue visualization and modification devices and methods
US10130367B2 (en) 2015-02-26 2018-11-20 Covidien Lp Surgical apparatus
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US20160262786A1 (en) 2015-03-10 2016-09-15 Ethicon Endo-Surgery, Llc Surgical blades with fatigue resistant properties
US10190888B2 (en) * 2015-03-11 2019-01-29 Covidien Lp Surgical stapling instruments with linear position assembly
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) * 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US20160270842A1 (en) 2015-03-20 2016-09-22 Ethicon Endo-Surgery, Llc Electrosurgical device having controllable current paths
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10363084B2 (en) 2015-04-01 2019-07-30 Covidien Lp Interdigitation of waveforms for dual-output electrosurgical generators
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US20160296270A1 (en) 2015-04-10 2016-10-13 Ethicon Endo-Surgery, Llc Devices and methods for providing additional power to surgical devices
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
CN107530126B (zh) 2015-04-10 2020-12-15 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) 具有偏移齿的医用镊子
JPWO2016163450A1 (ja) 2015-04-10 2017-04-27 オリンパス株式会社 医療機器
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
WO2016187006A1 (en) 2015-05-15 2016-11-24 Intuitive Surgical Operations, Inc. System and method for minimally invasive cutting instrument operation
US10064270B2 (en) 2015-06-05 2018-08-28 North Carolina State University Flexible interconnects, systems, and uses thereof
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
GB2541369B (en) 2015-07-22 2021-03-31 Cmr Surgical Ltd Drive mechanisms for robot arms
US20180188125A1 (en) 2015-07-22 2018-07-05 Carnegie Mellon University Flexible and Stretchable Sensor Using Soft Optical Waveguides
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10507033B2 (en) 2015-08-26 2019-12-17 Ethicon Llc Ultrasonic surgical instrument with replaceable clamp pad
EP3138522B1 (de) 2015-09-03 2020-11-04 Erbe Elektromedizin GmbH Instrument zum fassen, trennen und/oder koagulieren von biologischem gewebe
CN108024835B (zh) 2015-09-25 2021-08-31 柯惠Lp公司 机器人外科手术组件及其器械驱动连接器
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
JP2018531694A (ja) 2015-10-05 2018-11-01 フレックスデックス, インク.Flexdex, Inc. 円滑に関節屈曲するマルチクラスタジョイントを有する医療デバイス
WO2017062683A1 (en) 2015-10-07 2017-04-13 Bioaccess, Inc. Surgical power tool
US10548655B2 (en) 2015-10-16 2020-02-04 Ethicon Llc Control and electrical connections for electrode endocutter device
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US11045275B2 (en) 2015-10-19 2021-06-29 Cilag Gmbh International Surgical instrument with dual mode end effector and side-loaded clamp arm assembly
US10772630B2 (en) 2015-11-13 2020-09-15 Intuitive Surgical Operations, Inc. Staple pusher with lost motion between ramps
US10973517B2 (en) 2015-11-13 2021-04-13 Intuitive Surgical Operations, Inc. Stapler with composite cardan and screw drive
EP3383601B1 (en) 2015-12-01 2024-02-14 ABB Schweiz AG Robot joint and robot including the same
US10660692B2 (en) 2015-12-10 2020-05-26 Ethicon Llc End effector for instrument with ultrasonic blade and bipolar clamp arm
US20170164972A1 (en) 2015-12-10 2017-06-15 Ethicon Endo-Surgery, Llc End effector for instrument with ultrasonic and electrosurgical features
US20170164997A1 (en) 2015-12-10 2017-06-15 Ethicon Endo-Surgery, Llc Method of treating tissue using end effector with ultrasonic and electrosurgical features
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US20170189095A1 (en) 2015-12-31 2017-07-06 Ethicon Endo-Surgery, Llc Multiple port electrical isolation technique for surgical instruments
US10314579B2 (en) 2016-01-07 2019-06-11 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US20170202595A1 (en) 2016-01-15 2017-07-20 Ethicon Endo-Surgery, Llc Modular battery powered handheld surgical instrument with a plurality of control programs
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
CN108463184B (zh) 2016-01-19 2021-08-13 提坦医疗公司 用于机器人外科手术系统的图形用户界面
WO2017130214A1 (en) 2016-01-25 2017-08-03 K-Nine Writing Systems Pvt. Ltd. Tissue/vessel sealer and/or cutter with variable shapes of jaw assembly with partial dlc coating
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10926022B2 (en) 2016-02-09 2021-02-23 Johnson & Johnson Surgical Vision, Inc. Tip detection apparatus and method for medical device
US10398439B2 (en) 2016-02-10 2019-09-03 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10631858B2 (en) 2016-03-17 2020-04-28 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and distal pulley
US10350016B2 (en) 2016-03-17 2019-07-16 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10722233B2 (en) 2016-04-07 2020-07-28 Intuitive Surgical Operations, Inc. Stapling cartridge
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US20170312018A1 (en) 2016-04-29 2017-11-02 Ethicon Endo-Surgery, Llc Electrosurgical instrument with conductive gap setting member and insulative tissue engaging member having variable dimensions and stiffness
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10624667B2 (en) 2016-05-20 2020-04-21 Ethicon Llc System and method to track usage of surgical instrument
WO2017203634A1 (ja) 2016-05-25 2017-11-30 オリンパス株式会社 高周波処置具
US11076908B2 (en) 2016-06-02 2021-08-03 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
US11464561B2 (en) 2016-06-02 2022-10-11 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US20180014872A1 (en) 2016-07-15 2018-01-18 Ethicon Endo-Surgery, Llc Paired device and generator codes
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10610291B2 (en) 2016-09-26 2020-04-07 Gyrus Acmi, Inc. Reconfigurable instrument
DE112016007183T5 (de) 2016-09-28 2019-07-04 Olympus Corporation Behandlungswerkzeug
JP6701365B2 (ja) 2016-10-07 2020-05-27 オリンパス株式会社 外科処置具
JP7481114B2 (ja) 2016-11-11 2024-05-10 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 走査ベースの位置付けを伴う遠隔操作手術システム
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US20180168619A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US20180168650A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Connection portions for disposable loading units for surgical stapling instruments
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10758298B2 (en) 2017-01-20 2020-09-01 Ethicon Llc Articulating electrosurgical tools
US10631928B2 (en) 2017-03-24 2020-04-28 Biosense Webster (Israel) Ltd. Catheter with deformable distal electrode
US10813680B2 (en) 2017-03-27 2020-10-27 Medtronic Cryocath Lp Cryoballoon contact assessment using capacitive or resistive sensors
US20180289432A1 (en) 2017-04-05 2018-10-11 Kb Medical, Sa Robotic surgical systems for preparing holes in bone tissue and methods of their use
WO2018195969A1 (en) 2017-04-28 2018-11-01 Abb Schweiz Ag A cable harness management module and a robot
US10881409B2 (en) 2017-05-02 2021-01-05 Covidien Lp Rotation assembly for a surgical device
US11311295B2 (en) 2017-05-15 2022-04-26 Covidien Lp Adaptive powered stapling algorithm with calibration factor
US11051866B2 (en) 2017-05-22 2021-07-06 Cilag Gmbh International Combination ultrasonic and electrosurgical instrument having ultrasonic waveguide with distal overmold member
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
USD865175S1 (en) 2017-06-28 2019-10-29 Ethicon Llc Staple cartridge for surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD908216S1 (en) 2017-06-28 2021-01-19 Ethicon Llc Surgical instrument
US11129666B2 (en) 2017-06-28 2021-09-28 Cilag Gmbh International Shaft module circuitry arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD893717S1 (en) 2017-06-28 2020-08-18 Ethicon Llc Staple cartridge for surgical instrument
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11065048B2 (en) 2017-06-28 2021-07-20 Cilag Gmbh International Flexible circuit arrangement for surgical fastening instruments
WO2019006068A1 (en) 2017-06-30 2019-01-03 Intuitive Surgical Operations, Inc. ELECTROSURGICAL INSTRUMENT WITH FLEXIBLE ELASTOMERIC ELECTRODE
CN107374752B (zh) 2017-07-31 2023-12-26 中国人民解放军第二军医大学第二附属医院 椎骨支撑测距装置
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US10485566B2 (en) 2017-08-17 2019-11-26 Gyrus Acmi, Inc. Forceps with tissue stop
GB2567480A (en) 2017-10-13 2019-04-17 Creo Medical Ltd Electrosurgical resector tool
US11129634B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instrument with rotary drive selectively actuating multiple end effector functions
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
EP3476331B1 (en) 2017-10-30 2021-05-26 Ethicon LLC Surgical instrument comprising an adaptive electrical system
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US10959744B2 (en) 2017-10-30 2021-03-30 Ethicon Llc Surgical dissectors and manufacturing techniques
EP3476302A3 (en) 2017-10-30 2019-07-31 Ethicon LLC Surgical suturing instrument comprising a non-circular needle
WO2019097608A1 (ja) 2017-11-15 2019-05-23 オリンパス株式会社 医療機器
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
WO2019130113A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical instrument having a flexible electrode
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US20190206569A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of cloud based data analytics for use with the hub
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US20190200987A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Variable output cartridge sensor assembly
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US20190206564A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method for facility data collection and interpretation
CN111527561B (zh) 2017-12-28 2024-06-18 爱惜康有限责任公司 可变输出仓传感器组件
US11246625B2 (en) 2018-01-19 2022-02-15 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US20190298353A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
EP3768186B1 (en) 2018-05-31 2022-09-14 St. Jude Medical, Cardiology Division, Inc. Catheter handle with compliant circuit
US20190388091A1 (en) 2018-06-21 2019-12-26 Covidien Lp Powered surgical devices including strain gauges incorporated into flex circuits
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10350025B1 (en) 2018-09-06 2019-07-16 Gyrus Acmi, Inc. System and method for preventing reuse of medical device
US11806062B2 (en) 2018-09-07 2023-11-07 Cilag Gmbh International Surgical modular energy system with a segmented backplane
US10881452B2 (en) 2018-10-16 2021-01-05 Covidien Lp Method of assembling an end effector for a surgical instrument
US11197734B2 (en) 2018-10-30 2021-12-14 Covidien Lp Load sensing devices for use in surgical instruments
CN111546552A (zh) 2019-02-08 2020-08-18 柯惠Lp公司 完全封装的电子器件和印刷电路板
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11298129B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11534164B2 (en) 2019-04-05 2022-12-27 Covidien Lp Strain gauge stabilization in a surgical device
US11819285B2 (en) 2019-04-05 2023-11-21 Covidien Lp Magnetic interference detection systems and methods
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11361176B2 (en) 2019-06-28 2022-06-14 Cilag Gmbh International Surgical RFID assemblies for compatibility detection
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US20210196270A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical instrument comprising a flex circuit
US20210196353A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US20210196345A1 (en) 2019-12-30 2021-07-01 Ethicon Llc User interface for surgical instrument with combination energy modality end-effector
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US20210196352A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Partially conductive clamp arm pad to enable electrode wear through and minimize short circuiting
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210196334A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Method of operating a combination ultrasonic / bipolar rf surgical device with a combination energy modality end-effector
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US20220167982A1 (en) 2020-12-02 2022-06-02 Ethicon Llc Surgical instruments with electrical connectors for power transmission across sterile barrier
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier

Also Published As

Publication number Publication date
BR112019010912B1 (pt) 2023-09-26
US20220226014A1 (en) 2022-07-21
US20180146976A1 (en) 2018-05-31
US11998230B2 (en) 2024-06-04
JP2019535447A (ja) 2019-12-12
KR20190091307A (ko) 2019-08-05
CN110352040A (zh) 2019-10-18
WO2018102210A1 (en) 2018-06-07
EP3547939A1 (en) 2019-10-09
JP7210447B2 (ja) 2023-01-23
US11266430B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
BR112019010912A2 (pt) sistema de calibração e controle de atuador de extremidade
US11457944B2 (en) Adaptive advanced tissue treatment pad saver mode
US11051873B2 (en) Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
BR112017028403B1 (pt) Instrumento cirúrgico para coagular e dissecar tecido e gerador para aplicação de energia a um instrumento cirúrgico para coagular e dissecar tecido
BR112017028462B1 (pt) Instrumento cirúrgico para coagular e dissecar tecido, e gerador para fornecer energia a um instrumento cirúrgico para coagular e dissecar tecido
BR112017028369B1 (pt) Aparelho para dissecção e coagulação de tecido
BR112020017254A2 (pt) Aplicação de lâmina inteligente para dispositivos reutilizáveis e descartáveis
BR112018006256B1 (pt) Método de geração de formas de onda de sinal elétrico por um gerador e gerador para gerar formas de onda de sinal elétrico
BR112017028508B1 (pt) Instrumento cirúrgico para coagular e dissecar tecido e gerador para fornecer energia a um instrumento cirúrgico para coagular e dissecar tecido
BR112018006376B1 (pt) Gerador para fornecer um sinal combinado que compreende um componente de radiofrequência (rf) e um componente ultrassônico a um instrumento cirúrgico, sistema que compreende tal gerador e método para realizar definição em um componente de circuito
BR112014025085B1 (pt) Instrumento cirúrgico ultrassônico e componente para um instrumento cirúrgico ultrassônico
BR112014025700B1 (pt) Dispositivo cirúrgico com circuito de controle para dispositivos ultrassônicos e electrocirúrgicos
BR112014025086B1 (pt) Aparelho, instrumento e gerador
BR112014025078B1 (pt) Métodos de acionamento de um atuador de extremidade acoplado a um sistema de acionamento ultrassônico
BR112014025089B1 (pt) Método e sistema cirúrgico para acionar um atuador de extremidade acoplado a um sistema de acionamento ultrassônico de um instrumento cirúrgico
BR112014025092B1 (pt) Conjunto de chave para um instrumento cirúrgico ultrassônico incluindo um compartimento de cabo configurado para ser segurado em apenas uma das mãos

Legal Events

Date Code Title Description
B350 Update of information on the portal [chapter 15.35 patent gazette]
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 22/11/2017, OBSERVADAS AS CONDICOES LEGAIS