US3805787A - Ultrasonic surgical instrument - Google Patents
Ultrasonic surgical instrument Download PDFInfo
- Publication number
- US3805787A US3805787A US00263448A US26344872A US3805787A US 3805787 A US3805787 A US 3805787A US 00263448 A US00263448 A US 00263448A US 26344872 A US26344872 A US 26344872A US 3805787 A US3805787 A US 3805787A
- Authority
- US
- United States
- Prior art keywords
- probe
- instrument
- shield
- sleeve
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00745—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/84—Drainage tubes; Aspiration tips
- A61M1/85—Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320084—Irrigation sleeves
Definitions
- ULTRASONIC SURGICAL INSTRUMENT This invention relates to surgical instruments and more particularly to surgical instruments using ultrasonic energy which are designed for operating on tissue, for example, to remove pieces of tissue from a larger mass.
- instruments of this general type are disclosed in which the probe end of an ultrasonic transducer is designed to be inserted through an incision into an operating field.
- the tip of the probe is to come in direct contact with tissue in the operating field and the ultrasonic energy radiated from the probe tip acts to remove particles of tissue from a larger tissue mass and to withdraw these particles from the operating field by means of a suction system.
- the removal of the tissue particles from the mass is generally accomplished by the ultrasonic energy which acts to emulsify the tissue, that is, to act upon a portion of the tissue to heat it by ultrasonic energy so that the tissue particles will break away from the larger body.
- a shield of a silicone composition is provided around a portion of the transducer probe to provide a passage for fluid to be introduced in the proximity of the operating field and to prevent the vibrator from rubbing against the walls of the incision or other parts of the body being operated upon.
- an arrangement is also provided for conveying suction pressure through the center of the transducer probe and irrigation fluid in a passage between the outer surface of the probe and the inner surface of the silicone shield. Since the suction pressure is applied directly through the center of the probe and the irrigation fluid also exits through the probe tip, this limits the use fulness of the instrument in the sense that the probe must be aimed directly at the tissue for the suction pressure and irrigation fluid to be effective.
- the tissue to be removed is to be brought directly into contact with the tip of the transducer probe.
- this has been found to be undesirable in many cases since portions of the tissue directly adjacent those in contact with the tip of the probe can become heated and possibly damaged.
- the present invention relates to an improved ultrasonic surgical instrument.
- a number of attachments are provided for use with an ultrasonic transducer, each attachment having an arrangement such that a shield of metallic material can be placed around the probe and held in concentric relationship therewith. This provides an effective shield against unwanted radiation of the ultrasonic energy.
- the attachements are such so as to be able to provide irrigation fluid or suction pressure, either individually or in combination, at desired points within the operating field, not necessarily in front of the probe.
- the attachments are also capable of providing suction pressure to draw the tissue to be removed adjacent the tip of the probe but hold it out of direct contact.
- an arrangement is provided for efficiently removing from the operating field those'particles which have been cut from the tissue mass by a combined suction and pressure flow.
- An additional object is to provide ultrasonic instruments in which the energy can be applied to a given 10- calized area with the selective application of irrigation fluid and/or suction pressure at any desired portion within the operating field.
- FIG. 1 is a plan view, taken partially in cross-section of a transducer useful with the present invention and a partial block diagram showing of the auxiliary equipment;
- FIG. 2 is a fragmentary view of the front of the transducer, partially cut away and partially in cross-section showing a shield in accordance with the invention
- FIGS. 2A and 2B are fragmentary views shown partly broken away, of modifications of the transducer tip and shield;
- FIG. 3 is a fragmentary view of the front of the transducer partially cut away and partially in cross-section showing a transducer modified for receiving irrigation fluid or suction pressure;
- FIG. 4 is a fragmentary view of aportion of a transducer partly cut away and partly in cross-section show ing another embodiment of the invention for using both irrigation fluid and suction pressure;
- FIG. 4A is an enlarged fragmentary view of the end portion of the tip of the instrument of FIG. 4 showing a modification thereof;
- FIG. 5 is a fragmentary view, taken partly in crosssection and partly broken away, of a further modification of the invention showing an external irrigation;
- FIG. 5A is an enlarged fragmentary view of the tip of the instrument shown in FIG. 5 and showing a further modification thereof;
- FIG. 6 is a fragmentary view, taken partly in crosssection, showing the tip of an instrument incorporating a further modification of the invention having internal irrigation;
- FIG. 7 is a plan view of a further embodiment of the invention shown partly broken away and partly in cross-section.
- FIG. 7A is an enlarged view of the front portion of the tip of the instrument of FIG. 7.
- a typical transducer 10 for use with the subject invention is shown. While a magnetostructure type transducer is described, it should be understood that a piezoelectric type also may be utilized.
- the transducer includes the usual stack of laminations 12 of magnetostrictive material which are fastened together, such as by brazing, at one end 11.
- the stack 12 is to have coil of wire (not shown) placed in proximity thereto in a conventional manner to supply excitation energy of a suitable frequency, preferably in the'ultrasonic range, from a source 14 over leads 16. Any suitable ultrasonic source may be utilized.
- the term ultrasonic energy? is used herein in the broad sense and encompasses energy within the range from 1,000 Hz up to 100,000 Hz.
- Typical ultrasonic frequencies which are utilized are in the range between 25,000 Hz. 50,000 Hz.
- the ultrasonic source 14 is shown as having a variablecontrol 15 for setting the frequency and/or the amplitude of power to be supplied to the transducer 10 over the leads 16.
- a suitable source of cooling fluid also can be used to cool the laminations 12 and the coil. This would be applied to a housing covering the stack and the coil.
- Such constructions are conventional in the art and are not further described.
- the transducer also includes an acoustic transformer 18 one of whose ends is threaded onto a stud 19 which is attached to the lamination stack 12.
- the transformer 18 has another set of threads 20 at an intermediate point to which is threaded the housing containing the coil for the stack 12 and the cooling fluid connections. Threads 20 are usually located at a nodal point of transformer 18.
- the acoustic transformer 18 is tapered in a manner to achieve a desired impedance transformation between the end of stack 12 and a probe 24.
- a structure generally designated as 26 is provided between the threads 20 and end of transformer 18 adjacent the probe 24 to act as a mode suppressor and also as a resonator to tune the transformer 18 so that the desired longitudinal vibrations are produced at the free end (tip) of probe 24.
- Mode suppressor structure 26 has a thread 28 thereon to accept and hold a number of different types of shielding structures to be described below. Threads 28 are preferably located at or near a mode (null) point of the mode suppressor 26.
- FIG. 1 also shows a source 30 of irrigation or treatment fluid, which can be of any desired composition, for example a saline solution, to be supplied to the area to be operated on and also a source 32 of suction pressure 32.
- the respective output conduits 30a and 32a are shown for these two sources.
- One or both conduits, as is described below, can be connected to the instrument to supply irrigation fluid and/or suction pressure to the area being operated upon.
- the two sources 30 and 32 are shown under the control of a switching circuit 34.
- the switching circuit is operated by the person using the instrument. Any suitable switching circuit can be used, for example, a relay actuated circuit. One or both of the sources 30 and/or 32 can be actuated at a given time as desired. Such circuits are also conventional and no further description thereof is necessary.
- the probe 24 is to be inserted into the tissue area to be operated upon. Where the tissue area is within the eye, a suitable incision is made and the probe inserted through the incision. The ultrasonic energy produced by the transducer 10 is converted into motion at the tip of the probe 24. Some of the energy also is radiated. The combination of the motion and the energy produce the desired effect on the tissue to change its state to a less solid form. This process is generally called emulsification. It has been found that the energy from the probe 24 preferably should be confined to the tip end so that only a predetermined portion of tissue adjacent the tip end will be effected by the instrument. To accomplish this, a shielding arrangement is used for the probe.
- FIG. 2 shows a structure for confining the bulk of the ultrasonic energy within the length of probe 24.
- a hollow cap 40 is fastened to the threads 28 on the end of resonator 26.
- An O-ring is located between the inner face of cap 40 and a shoulder in front of threads 28 to provide a fluid-seal.
- a tubular sleeve 46 is fastened within the front end of cap 40 in the area 47 by an suitable arrangement which is compatible with the materials of both the cap 40 and the sleeve 46.
- both the cap 40 and the sleeve 46 are of stainless steel. Therefore, the construction to mate the two together can be either by welding or some other suitable technique.
- the surface area 47 in which the joining of members 40 and 46 takes place provides a high degree of stability for the sleeve 46 so that it can be kept coaxial and concentric with the probe 24.
- FIG. 2 shows a further arrangement in which a curved portion 47 of shield 46 extends over the front of the probe tip 24a.
- the extending portion 47 is designed preferably to cover only a portion of the total angle of the tip 24. That is, for example, the included angle of the extending piece 47 can be in the order from 30 to about 27.
- Extending shield piece 47 serves two purposes. First of all, spaces the tip 24a of the probe away from the tissue being operated upon. That is, the tip 24a is kept substantially or entirely out of contact with the tissue by piece 47. Secondly, piece 47 confines the radiation of ultrasonic energy only to the open area of tip 24a. That is, little or no energy will be radiated into tissue in the area of the extension piece 47.
- FIG. 2B shows another embodiment of the invention in which the shield 46 extends fully over the free end of the tip 24. This arrangement serves to further narrow down the beam of the ultrasonic energy radiated from the tip of probe 24. In addition, it completely prevents the tip 24 from coming into contact with the tissue. This provides an additional safety feature.
- FIGS. 2A and 2B can be utilized with the instrument structure of FIG. 2.
- FIG. 3 shows another embodiment of the invention which is similar to that as shown in FIG. 2.
- the cap 40 is modified to have a bore 50 therein which accepts one of the conduits 30a or 320 from the irrigation or suction sources. Bore 50 communicates with an annular chamber 41 defined between the inner surface of cap 40 and the front end of the resonator 26.
- Irrigation fluid or suction pressure from conduit 30a or 32a passes from chamber 41 through the space, or passage, 25 between probe 24 and sleeve 46. Where irrigation fluid is used, the fluid exits passage 25 adjacent the tip 24a of the probe. This is shown by the arrow. Where suction pressure is used, the tissue to be operated upon will be drawn in towards the passage 25 to the active end 24a of probe 24.
- the shield 46 prevents a substantial portion of the ultrasonic energy from radiating into an undesired area.
- FIGS. 2A and 2B can be used with the instrument of FIG. 3 to space the tip 24a from the tissue and/or to confine the radiation of the energy from the tip.
- the shield 46 is also held in spaced relationship from the probe 24 by the mounting arrangement. Where treatment fluid is supplied through the passage 25, the fluid also serves to cool the probe 24 and the shield 46. Both of these elements are heated to an extent by the ultrasonic energy.
- FIG. 4 shows a further embodiment of the invention in which the instrument is provided with the capability of handling suction pressure and irrigation fluid at the same time.
- a second bore 54 is formed in the cap 40 and the cap is also formed with an annular space 57 near the front end thereof which communicates with bore 54.
- the sleeve 46 is attached to cap 40 as in the embodiments of FIGS. 2 and 3 so that the passage 25 between probe 24 and shield 46 is in communication with the annular chamber 41 which in turn is in communication with bore 50. Shield 46 is held in spacedrelationship with probe 24.
- a second sleeve 59 is attached to the front end of the cap 40 and spaced from the first sleeve 46 to define a second passage 27 therebetween.
- the second sleeve 59 can also be of the same material as sleeve 46, for example, stainless steel.
- the space 27 between the two sleeves 46 and 59 is in communication with the second annular chamber 57. Chamber 57 is isolated from chamber 41 by the ring 43 of the cap.
- the bore 50 receives one of the two conduits 30a or 32a from the irrigation and suction sources while the bore 54 receives the other conduit.
- the irrigation fluid or suction pressure is available in either of the passages 25 or 27. Normally, the irrigation fluid is provided in passage 27.
- the probe 24 is being cooled through the shield 46 and by the outgoing fluid.
- FIG. 4A shows a modification of the shield structure instrument of FIG 4.
- a nipple 61 is provided at the front end of the instrument to seal off the exit of passage 27 between the two sleeves 59 and 46.
- Outer sleeve 59 is provided with a hole 59a adjacent the collar.
- the remainder of the construction of the instrument of FIG. 4A is the same as that of FIG. 4.
- this fluid or suction pressure will exit through the opening 59a. There will be side irrigation or suction of the area being operated upon.
- only a small portion of the tip 24a of the probe is exposed and the majority of the tip is shielded against radiation of ultrasonic energy.
- irrigation fluid is normally supplied through passage 27 and suction pressure through passage 25.
- suction pressure through passage 25.
- the tissue is drawn toward the tip of probe 24.
- the structures of FIGS. 2A and 28 also can be used for the shield 46 of FIG. 4A to space the tissue from the tip of the probe.
- the suction pressure draws the tissue toward the tip of probe 24 where it is acted upon by the ultrasonic energy. Any particles which are formed by the emulsification action are drawn out of the operational field by the suction pressure through passage 25.
- FIG. 5 shows a still further embodiment of the invention.
- the portion of the instrument in the area of cap is substantially similar to that of FIG. 4.
- opening 59b provided in the outer sleeve 59 and a curved nipple 66 closes off the passageway 27 between sleeves 46 and 59 at the tip end of the instrument and in front of opening 59b.
- the irrigation fluid does not interfere with the substance to be treated by the tip of the probe.
- nipple 66 As seen best in FIG. 5A, a portion of 69 of the front of nipple 66 is cut off at an angle to expose the tip of probe 24 and to provide an exit from the inner passage 25 for the suction pressure.
- the nipple 66 can be fully circular to seal off the entire passage 27 or else, as shown in FIG. 5A, the lower portion of sleeve 59 can be bent, as at 61, and attached to the outer surface of sleeve 46 to provide the fluid seal.
- the irrigation fluid exiting from opening 59b will be to one side of the active area of the tip of probe 24.
- the suction pressure is available at the front of the tip to draw the tissue to be operated upon toward the probe tip. Radiation of ultrasonic energy is confined substantially to the angled opening 69 by the nipple 66. Also, the nipple 66 prevents tissue from coming into contact with the major portion of the probe tip.
- FIG. 5A shows a modification of the instrument of FIG. 5 in that the nipple 66 has been shortened to bring the exit port 5912 for irrigation fluid closer to the tip of the instrument.
- the particles of tissue broken from the larger mass are removed from the operating field via the passage 25.
- FIG. 6 shows a further embodiment of the instrument which is similar in many respects to that of FIGS. 5 and 5A.
- the outer sleeve 59 is made continuous and a hole 46a is provided in the inner sleeve 56.
- Nipple 66a closes off passage 27 at the probe tip and the irrigation fluid will exit through port 46a back into passage 25.
- Passage 25 also receives suction pressure to draw tissue adjacent the exposed tip .portion of probe 24.
- the mixture of irrigation fluid and suction pressure in passage 25 rapidly removes the free tissue particles from the operating field.
- some of the irrigation fluid can also leave the tip to enter the operating field.
- FIGS. 7 and7A show a further embodiment of the invention with provisions to control the suction pressure.
- This instrument has the same cap structure and is similar in some respectsto the instrument of FIG. 6.
- the sleeve 46 has a second opening 46b in addition to the first opening 46a for directing the irrigation fluid from passage 27 to passage 25.
- Sleeve 59 is sealed at the bent area 61 at the lower portion of the instrument to the rear of exit port 46b. The latter post communicates with passage 25.
- a nipple 70 with a rounded front end seals off the remainder of passage 27.
- -A movable sleeve 75 which also can be of stainless steel or other suitable material, is positioned'to slide over the outside of sleeve 59.
- the sleeve is shown in a position leaving the opening 46b unobstructed so that the suction pressure applied form opening 46b can bring the tissue into active relationship with probe 24.
- sleeve 75 is shown in the forward position with the opening 46b blocked.
- the nipple 70 prevents the tissue'from coming into direct contact with the tip of the probe 24.
- the particles of tissue are removed rapidly by the combined irrigation fluid and pressure flow.
- Each of the embodiments of the invention described above utilize the cap assembly containing the energy shield.
- the same cap assembly can also have provision for suction and/or irrigation.
- the cap assemblies are removable so that the same transducer can be used with a number of different assemblies.
- Each assembly is such that a concentric relationship is maintained between the probe and the shield and also between the shield and another sleeve, the space between the latter two members defining a passage for suction pressure or fluid flow.
- the space between the tip 24 and the sleeve 46 provides a safe distance between an active (vibrating) component and an insulating element preventing transmission of ultrasonic energy and rubbing which might generate a prohibitive amount of heat.
- metallic shield, such as 46 provides effective reflection of the energy back to the probe so that it does not radiate into the object being operated upon.
- the cap 40 and O-ring seal 42 also provide a highly effective arrangement for changing shield and suctionlirrigation flow configurations.
- the O-ring 42 also serves to dampen the vibrations of the probe.
- the use of the threaded cap also provides a range of adjustment for the shield with respect to how much of the probe tip is to be left uncovered.
- the instruments disclosed herein have particular advantages when used to emulsify semi-solid material such as the vitreous humor which is found in the eye.
- the novel suction arrangements will bring the material, which is in a viscous and flowable state, adjacent the tipend of the ultrasonic probe.
- a portion of the vitreous body is moved toward the tip as the suction pressure is applied and the material moved into active relationship with the tip is emulsified.
- the tip itself does not have to be moved directly into the area of the body which is to be emulsified.
- additional protection is provided for the other tissue which is not to be effected by the energy.
- An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means, shield means of substantially rigid metallic material, and means for mounting said shield means around and in spaced relationship to said probe means over a substantial portion without any mechanical connection between the probe means and the shield means of the length thereof to confine the vibrating energy.
- said means for mounting said shield means to said transducer means comprises first coupling means on said transducer means and mating demountable second coupling means to which said shield means are mounted.
- An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe to produce movement at the free tip end of said probe means, first coupling means on said transducer means adjacent the attached end of said probe means, second coupling means, an elongated tubular shield means attached to said second coupling means, said coupling means when connected to said first coupling means holding said shield means around and in spaced relationship to said probe means over a substantial portion of the length of said probe means to confine the vibratory energy and leaving a space between said probe means and said shield means and an exit from said space to the exterior of the instrument, and means on said second coupling means for supplying fluid to said space between said probe means and said shield means, said fluid leaving said space from said exit.
- An ultrasonic energy instrument comprising an ultrasonic transducer means including an elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means.
- first and second tubular sleeve means a. first and second tubular sleeve means
- An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said second sleeve being formed with an opening in the wall thereof through which the second fluid can exit from the second passageway.
- An instrument as in claim 10 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
- An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
- An instrument as in claim 9 further comprising means for sealing the exit of said first passageway at the tip end of the probe, said first sleeve formed with an opening in the wall thereof to direct the first fluid out of said first passageway at an angle lying off the longitudinal axis of the probe.
- An instrument as in claim 13 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said fir st and said second passageways for the second fluid.
- An instrument as in claim 13 further comprising a third sleeve means which is slidable over said second sleeve means to close off the opening in the wall of said first sleeve means.
- An instrument as in claim 15 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
- An instrument as in claim 16 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
- An instrument as in claim 13 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
- said means for mounting said first and second sleeve means comprises a holder to which said sleeve means are attached and mating coupling means on said holder and said transducer means, said means for supplying fluid to said first and second passages including means on said holder for accepting first and second fluids from respective sources.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Hematology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Anesthesiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Surgical Instruments (AREA)
Abstract
Surgical instrument using ultrasonic energy which are to operate upon tissue including arrangements for shielding ultrasonic transducer probe to prevent energy from being radiated into unwanted areas which also include provisions for applying irrigation fluid and/or suction pressure to desired locations within the operating field.
Description
United States Patent [1 1 Banko Apr. 23, 1974 [54] ULTRASONIC SURGICAL INSTRUMENT 3,589,363 6/1971 Banko 128/24 A e I 3,526,219 9/1970 128/24 A [75] lnvemor- Bank Bronx NY 3,636,947 1/1972 Balamuth 128/24 A [73] Assigneez Surgical Design Corp. L Island 3,213,537 10/1965 Balamuth 128/24 A N.Y. Primary Examiner-Lawrence W. Trapp [22] Flled: June 1972 Attorney, Agent, or FirmDarby & Darby [21] Appl. No.: 263,448
[57] ABSTRACT 52 s C] U 12 /27 23/24 A, 12 303 Surgical instrument using ultrasonic energy which are [51] Int. Cl A6lm 1/00 to Operate p tissue including arrangements for [5 Fw f Search 123/24 A, 303 27 273 shielding ultrasonic transducer probe to prevent energy from being radiated into unwanted areas which 5 References Cited also include provisions for applying irrigation fluid UNITED STATES PATENTS and/or suction pressure to desired locations within the operating field. 2,407,690 9/1946 Southworth l28/24A 2,668,529 2/1954 Huter 128/24 A 20 Claims, 12 Drawing Figures PATENTEDAPR W 3805787 sum 2 [IF '2' 300 or 320 300 or 32 FIG. 4
ULTRASONIC SURGICAL INSTRUMENT This invention relates to surgical instruments and more particularly to surgical instruments using ultrasonic energy which are designed for operating on tissue, for example, to remove pieces of tissue from a larger mass. In prior U.S. Pat. No. 3,589,363, which I am one of the co-inventors, instruments of this general type are disclosed in which the probe end of an ultrasonic transducer is designed to be inserted through an incision into an operating field. The tip of the probe is to come in direct contact with tissue in the operating field and the ultrasonic energy radiated from the probe tip acts to remove particles of tissue from a larger tissue mass and to withdraw these particles from the operating field by means of a suction system. The removal of the tissue particles from the mass is generally accomplished by the ultrasonic energy which acts to emulsify the tissue, that is, to act upon a portion of the tissue to heat it by ultrasonic energy so that the tissue particles will break away from the larger body.
In the instruments disclosed in the aforesaid patent, a shield of a silicone composition is provided around a portion of the transducer probe to provide a passage for fluid to be introduced in the proximity of the operating field and to prevent the vibrator from rubbing against the walls of the incision or other parts of the body being operated upon. In the instruments of the patent, an arrangement is also provided for conveying suction pressure through the center of the transducer probe and irrigation fluid in a passage between the outer surface of the probe and the inner surface of the silicone shield. Since the suction pressure is applied directly through the center of the probe and the irrigation fluid also exits through the probe tip, this limits the use fulness of the instrument in the sense that the probe must be aimed directly at the tissue for the suction pressure and irrigation fluid to be effective. In many cases, this is neither desirable nor possible. In accordance with the teachings of the aforesaid patent, the tissue to be removed is to be brought directly into contact with the tip of the transducer probe. Here again, this has been found to be undesirable in many cases since portions of the tissue directly adjacent those in contact with the tip of the probe can become heated and possibly damaged.
The present invention relates to an improved ultrasonic surgical instrument. In accordance with the invention, a number of attachments are provided for use with an ultrasonic transducer, each attachment having an arrangement such that a shield of metallic material can be placed around the probe and held in concentric relationship therewith. This provides an effective shield against unwanted radiation of the ultrasonic energy. In addition, the attachements are such so as to be able to provide irrigation fluid or suction pressure, either individually or in combination, at desired points within the operating field, not necessarily in front of the probe. The attachments are also capable of providing suction pressure to draw the tissue to be removed adjacent the tip of the probe but hold it out of direct contact. In addition, an arrangement is provided for efficiently removing from the operating field those'particles which have been cut from the tissue mass by a combined suction and pressure flow.
It is therefore an object of the present invention to provide ultrasonic instruments for removal of tissue in which unwanted radiation of ultrasonic energy can be controlled.
An additional object is to provide ultrasonic instruments in which the energy can be applied to a given 10- calized area with the selective application of irrigation fluid and/or suction pressure at any desired portion within the operating field.
Other objects and advantages of the present invention will become more apparent upon reference to the following specification and annexed drawings, in which:
FIG. 1 is a plan view, taken partially in cross-section of a transducer useful with the present invention and a partial block diagram showing of the auxiliary equipment;
FIG. 2 is a fragmentary view of the front of the transducer, partially cut away and partially in cross-section showing a shield in accordance with the invention;
FIGS. 2A and 2B are fragmentary views shown partly broken away, of modifications of the transducer tip and shield;
FIG. 3 is a fragmentary view of the front of the transducer partially cut away and partially in cross-section showing a transducer modified for receiving irrigation fluid or suction pressure;
FIG. 4 is a fragmentary view of aportion of a transducer partly cut away and partly in cross-section show ing another embodiment of the invention for using both irrigation fluid and suction pressure;
FIG. 4A is an enlarged fragmentary view of the end portion of the tip of the instrument of FIG. 4 showing a modification thereof;
FIG. 5 is a fragmentary view, taken partly in crosssection and partly broken away, of a further modification of the invention showing an external irrigation;
FIG. 5A is an enlarged fragmentary view of the tip of the instrument shown in FIG. 5 and showing a further modification thereof;
FIG. 6 is a fragmentary view, taken partly in crosssection, showing the tip of an instrument incorporating a further modification of the invention having internal irrigation;
FIG. 7 is a plan view of a further embodiment of the invention shown partly broken away and partly in cross-section; and
FIG. 7A is an enlarged view of the front portion of the tip of the instrument of FIG. 7.
Referring to FIG. 1, a typical transducer 10 for use with the subject invention is shown. While a magnetostructure type transducer is described, it should be understood that a piezoelectric type also may be utilized. The transducer includes the usual stack of laminations 12 of magnetostrictive material which are fastened together, such as by brazing, at one end 11. The stack 12 is to have coil of wire (not shown) placed in proximity thereto in a conventional manner to supply excitation energy of a suitable frequency, preferably in the'ultrasonic range, from a source 14 over leads 16. Any suitable ultrasonic source may be utilized. The term ultrasonic energy? is used herein in the broad sense and encompasses energy within the range from 1,000 Hz up to 100,000 Hz. Typical ultrasonic frequencies which are utilized are in the range between 25,000 Hz. 50,000 Hz. The ultrasonic source 14 is shown as having a variablecontrol 15 for setting the frequency and/or the amplitude of power to be supplied to the transducer 10 over the leads 16. If desired, a suitable source of cooling fluid also can be used to cool the laminations 12 and the coil. This would be applied to a housing covering the stack and the coil. Such constructions are conventional in the art and are not further described.
The transducer also includes an acoustic transformer 18 one of whose ends is threaded onto a stud 19 which is attached to the lamination stack 12. The transformer 18 has another set of threads 20 at an intermediate point to which is threaded the housing containing the coil for the stack 12 and the cooling fluid connections. Threads 20 are usually located at a nodal point of transformer 18.
The acoustic transformer 18 is tapered in a manner to achieve a desired impedance transformation between the end of stack 12 and a probe 24. A structure generally designated as 26 is provided between the threads 20 and end of transformer 18 adjacent the probe 24 to act as a mode suppressor and also as a resonator to tune the transformer 18 so that the desired longitudinal vibrations are produced at the free end (tip) of probe 24. Mode suppressor structure 26 has a thread 28 thereon to accept and hold a number of different types of shielding structures to be described below. Threads 28 are preferably located at or near a mode (null) point of the mode suppressor 26.
FIG. 1 also shows a source 30 of irrigation or treatment fluid, which can be of any desired composition, for example a saline solution, to be supplied to the area to be operated on and also a source 32 of suction pressure 32. The respective output conduits 30a and 32a are shown for these two sources. One or both conduits, as is described below, can be connected to the instrument to supply irrigation fluid and/or suction pressure to the area being operated upon.
The two sources 30 and 32 are shown under the control of a switching circuit 34. The switching circuit is operated by the person using the instrument. Any suitable switching circuit can be used, for example, a relay actuated circuit. One or both of the sources 30 and/or 32 can be actuated at a given time as desired. Such circuits are also conventional and no further description thereof is necessary.
As explained in my prior patent, the probe 24 is to be inserted into the tissue area to be operated upon. Where the tissue area is within the eye, a suitable incision is made and the probe inserted through the incision. The ultrasonic energy produced by the transducer 10 is converted into motion at the tip of the probe 24. Some of the energy also is radiated. The combination of the motion and the energy produce the desired effect on the tissue to change its state to a less solid form. This process is generally called emulsification. It has been found that the energy from the probe 24 preferably should be confined to the tip end so that only a predetermined portion of tissue adjacent the tip end will be effected by the instrument. To accomplish this, a shielding arrangement is used for the probe.
FIG. 2 shows a structure for confining the bulk of the ultrasonic energy within the length of probe 24. As shown, a hollow cap 40 is fastened to the threads 28 on the end of resonator 26. An O-ring is located between the inner face of cap 40 and a shoulder in front of threads 28 to provide a fluid-seal. A tubular sleeve 46 is fastened within the front end of cap 40 in the area 47 by an suitable arrangement which is compatible with the materials of both the cap 40 and the sleeve 46. In a preferred embodiment of the invention, both the cap 40 and the sleeve 46 are of stainless steel. Therefore, the construction to mate the two together can be either by welding or some other suitable technique. As should be apparent, the surface area 47 in which the joining of members 40 and 46 takes place provides a high degree of stability for the sleeve 46 so that it can be kept coaxial and concentric with the probe 24.
As seen in FIG. 2, only a small portion 24a of the probe extends beyond the free end of the sleeve 46. The material of shield 46 reflects the radiated ultrasonic energy from the probe 24. Because of this arrangement, ultrasonic energy will only be radiated from this unshielded tip portion 24a of the probe. Therefore, the area of the operational field which come in contact with the shield 46 will experience little or no deleterious effects. It should be noted that the length of the free end 24a beyond the shield 46 can be controlled somewhat by threading or unthreading in the cap 40 to move shield 46 forward or backward.
The shield-probe tip structure of FIG. 2 will have a relatively open pattern of ultrasonic energy radiation in the area beyond shield 46. Also, the tip 24a of the probe can come into contact with the tissue in the operational field. FIG. 2A shows a further arrangement in which a curved portion 47 of shield 46 extends over the front of the probe tip 24a. The extending portion 47 is designed preferably to cover only a portion of the total angle of the tip 24. That is, for example, the included angle of the extending piece 47 can be in the order from 30 to about 27.
Extending shield piece 47 serves two purposes. First of all, spaces the tip 24a of the probe away from the tissue being operated upon. That is, the tip 24a is kept substantially or entirely out of contact with the tissue by piece 47. Secondly, piece 47 confines the radiation of ultrasonic energy only to the open area of tip 24a. That is, little or no energy will be radiated into tissue in the area of the extension piece 47.
FIG. 2B shows another embodiment of the invention in which the shield 46 extends fully over the free end of the tip 24. This arrangement serves to further narrow down the beam of the ultrasonic energy radiated from the tip of probe 24. In addition, it completely prevents the tip 24 from coming into contact with the tissue. This provides an additional safety feature.
The shield structures of FIGS. 2A and 2B can be utilized with the instrument structure of FIG. 2.
FIG. 3 shows another embodiment of the invention which is similar to that as shown in FIG. 2. Here, the cap 40 is modified to have a bore 50 therein which accepts one of the conduits 30a or 320 from the irrigation or suction sources. Bore 50 communicates with an annular chamber 41 defined between the inner surface of cap 40 and the front end of the resonator 26. Irrigation fluid or suction pressure from conduit 30a or 32a passes from chamber 41 through the space, or passage, 25 between probe 24 and sleeve 46. Where irrigation fluid is used, the fluid exits passage 25 adjacent the tip 24a of the probe. This is shown by the arrow. Where suction pressure is used, the tissue to be operated upon will be drawn in towards the passage 25 to the active end 24a of probe 24. Here again, the shield 46 prevents a substantial portion of the ultrasonic energy from radiating into an undesired area.
It should be understood that the structures of FIGS. 2A and 2B can be used with the instrument of FIG. 3 to space the tip 24a from the tissue and/or to confine the radiation of the energy from the tip. In the embodiment of FIG. 3, the shield 46 is also held in spaced relationship from the probe 24 by the mounting arrangement. Where treatment fluid is supplied through the passage 25, the fluid also serves to cool the probe 24 and the shield 46. Both of these elements are heated to an extent by the ultrasonic energy.
FIG. 4 shows a further embodiment of the invention in which the instrument is provided with the capability of handling suction pressure and irrigation fluid at the same time. In the embodiment of FIG. 4 a second bore 54 is formed in the cap 40 and the cap is also formed with an annular space 57 near the front end thereof which communicates with bore 54. The sleeve 46 is attached to cap 40 as in the embodiments of FIGS. 2 and 3 so that the passage 25 between probe 24 and shield 46 is in communication with the annular chamber 41 which in turn is in communication with bore 50. Shield 46 is held in spacedrelationship with probe 24.
A second sleeve 59 is attached to the front end of the cap 40 and spaced from the first sleeve 46 to define a second passage 27 therebetween. The second sleeve 59 can also be of the same material as sleeve 46, for example, stainless steel. The space 27 between the two sleeves 46 and 59 is in communication with the second annular chamber 57. Chamber 57 is isolated from chamber 41 by the ring 43 of the cap.
The bore 50 receives one of the two conduits 30a or 32a from the irrigation and suction sources while the bore 54 receives the other conduit. Depending upon which of the bores receives the respective conduit, the irrigation fluid or suction pressure is available in either of the passages 25 or 27. Normally, the irrigation fluid is provided in passage 27. The probe 24 is being cooled through the shield 46 and by the outgoing fluid.
Either of the modified shield structures of FIGS. 2A. and 2B can be used with the instrument of FIG. 4.
FIG. 4A shows a modification of the shield structure instrument of FIG 4. Here, a nipple 61 is provided at the front end of the instrument to seal off the exit of passage 27 between the two sleeves 59 and 46. Outer sleeve 59 is provided with a hole 59a adjacent the collar. The remainder of the construction of the instrument of FIG. 4A is the same as that of FIG. 4.
In the instrument of FIG. 4A instead of having the irrigation fluid or suction pressure in the second passage 27 exit at the tip of the instrument, this fluid or suction pressure will exit through the opening 59a. There will be side irrigation or suction of the area being operated upon. Here again, only a small portion of the tip 24a of the probe is exposed and the majority of the tip is shielded against radiation of ultrasonic energy.
In the instrument of FIG. 4A, irrigation fluid is normally supplied through passage 27 and suction pressure through passage 25. Thus, the tissue is drawn toward the tip of probe 24. If desired, the structures of FIGS. 2A and 28 also can be used for the shield 46 of FIG. 4A to space the tissue from the tip of the probe.
In each of the embodiments of FIGS. 4 and 4A, the suction pressure draws the tissue toward the tip of probe 24 where it is acted upon by the ultrasonic energy. Any particles which are formed by the emulsification action are drawn out of the operational field by the suction pressure through passage 25.
FIG. 5 shows a still further embodiment of the invention. The portion of the instrument in the area of cap is substantially similar to that of FIG. 4. Here, an
opening 59b provided in the outer sleeve 59 and a curved nipple 66 closes off the passageway 27 between sleeves 46 and 59 at the tip end of the instrument and in front of opening 59b. Thus, the only exit for irrigation fluid applied from conduit 30a into passage 27 is through the opening 59b. The irrigation fluid does not interfere with the substance to be treated by the tip of the probe. I
As seen best in FIG. 5A, a portion of 69 of the front of nipple 66 is cut off at an angle to expose the tip of probe 24 and to provide an exit from the inner passage 25 for the suction pressure. The nipple 66 can be fully circular to seal off the entire passage 27 or else, as shown in FIG. 5A, the lower portion of sleeve 59 can be bent, as at 61, and attached to the outer surface of sleeve 46 to provide the fluid seal.
As seen, the irrigation fluid exiting from opening 59b will be to one side of the active area of the tip of probe 24. The suction pressure is available at the front of the tip to draw the tissue to be operated upon toward the probe tip. Radiation of ultrasonic energy is confined substantially to the angled opening 69 by the nipple 66. Also, the nipple 66 prevents tissue from coming into contact with the major portion of the probe tip.
FIG. 5A shows a modification of the instrument of FIG. 5 in that the nipple 66 has been shortened to bring the exit port 5912 for irrigation fluid closer to the tip of the instrument. In both of the instruments of FIGS. 5 and 5A, the particles of tissue broken from the larger mass are removed from the operating field via the passage 25.
FIG. 6 shows a further embodiment of the instrument which is similar in many respects to that of FIGS. 5 and 5A. Here, rather than have the hole 95b in the outer sleeve 59 so that the irrigation fluid can exit into the operation field, the outer sleeve 59 is made continuous and a hole 46a is provided in the inner sleeve 56. Nipple 66a closes off passage 27 at the probe tip and the irrigation fluid will exit through port 46a back into passage 25. Passage 25 also receives suction pressure to draw tissue adjacent the exposed tip .portion of probe 24. The mixture of irrigation fluid and suction pressure in passage 25 rapidly removes the free tissue particles from the operating field. In addition, some of the irrigation fluid can also leave the tip to enter the operating field.
FIGS. 7 and7A showa further embodiment of the invention with provisions to control the suction pressure. This instrument has the same cap structure and is similar in some respectsto the instrument of FIG. 6. The sleeve 46 has a second opening 46b in addition to the first opening 46a for directing the irrigation fluid from passage 27 to passage 25. Sleeve 59 is sealed at the bent area 61 at the lower portion of the instrument to the rear of exit port 46b. The latter post communicates with passage 25. A nipple 70 with a rounded front end seals off the remainder of passage 27.
-A movable sleeve 75, which also can be of stainless steel or other suitable material, is positioned'to slide over the outside of sleeve 59. In FIG. 7, the sleeve is shown in a position leaving the opening 46b unobstructed so that the suction pressure applied form opening 46b can bring the tissue into active relationship with probe 24. In FIG. 7A, sleeve 75 is shown in the forward position with the opening 46b blocked.
It should be noted that in the embodiment of FIGS. 7 and 7A, the nipple 70 prevents the tissue'from coming into direct contact with the tip of the probe 24. Here again, as in FIG. 6, the particles of tissue are removed rapidly by the combined irrigation fluid and pressure flow.
Each of the embodiments of the invention described above utilize the cap assembly containing the energy shield. The same cap assembly can also have provision for suction and/or irrigation. The cap assemblies are removable so that the same transducer can be used with a number of different assemblies. Each assembly is such that a concentric relationship is maintained between the probe and the shield and also between the shield and another sleeve, the space between the latter two members defining a passage for suction pressure or fluid flow.
In each of the embodiments of the invention the space between the tip 24 and the sleeve 46 provides a safe distance between an active (vibrating) component and an insulating element preventing transmission of ultrasonic energy and rubbing which might generate a prohibitive amount of heat. Also, the use of metallic shield, such as 46, provides effective reflection of the energy back to the probe so that it does not radiate into the object being operated upon.
The cap 40 and O-ring seal 42 also provide a highly effective arrangement for changing shield and suctionlirrigation flow configurations. In addition, the O-ring 42 also serves to dampen the vibrations of the probe. The use of the threaded cap also provides a range of adjustment for the shield with respect to how much of the probe tip is to be left uncovered.
It should be understood the instruments disclosed herein have particular advantages when used to emulsify semi-solid material such as the vitreous humor which is found in the eye. Here, the novel suction arrangements will bring the material, which is in a viscous and flowable state, adjacent the tipend of the ultrasonic probe. A portion of the vitreous body is moved toward the tip as the suction pressure is applied and the material moved into active relationship with the tip is emulsified. The tip itself does not have to be moved directly into the area of the body which is to be emulsified. This gives the user of the instrument a safety factor in that he does not have to come close to tissue which is to be left untouched by the ultrasonic energy. A typical of this is where the retina is to be protected during an operation. Where the various fully or partially shielded tips are used, additional protection is provided for the other tissue which is not to be effected by the energy.
What is claimed is:
1. An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means, shield means of substantially rigid metallic material, and means for mounting said shield means around and in spaced relationship to said probe means over a substantial portion without any mechanical connection between the probe means and the shield means of the length thereof to confine the vibrating energy.
2. An instrument as in claim 1 wherein said shield means extends beyond the tip of the probe means.
3. An instrument as in claim 2 wherein said shield means extends completely around the probe for its entire length.
4. Apparatus as in claim 2 wherein said shield means is partially open at the portion which extends beyond the probe tip.
5. An instrument as in claim 1 wherein said means for mounting said shield means to said transducer means comprises first coupling means on said transducer means and mating demountable second coupling means to which said shield means are mounted.
6. An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe to produce movement at the free tip end of said probe means, first coupling means on said transducer means adjacent the attached end of said probe means, second coupling means, an elongated tubular shield means attached to said second coupling means, said coupling means when connected to said first coupling means holding said shield means around and in spaced relationship to said probe means over a substantial portion of the length of said probe means to confine the vibratory energy and leaving a space between said probe means and said shield means and an exit from said space to the exterior of the instrument, and means on said second coupling means for supplying fluid to said space between said probe means and said shield means, said fluid leaving said space from said exit.
7. Apparatus as in claim 6 wherein said fluid is a liquid which flows around the probemeans to cool the same.
8. Apparatus as in claim 6 wherein said fluid is a gas.
9. An ultrasonic energy instrument comprising an ultrasonic transducer means including an elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means.
a. first and second tubular sleeve means,
b. means for mounting said first and second tubular sleeve means to said transducer means to hold said first tubular sleeve means in spaced relationship with said probe means over at least a substantial portion of the length thereof to define a first passageway between said probe means and said first tubular sleeve means and to hold said first and sec ond tubular sleeve means in a spaced relationship to define a second passageway therebetween,
c. means for supplying fluid to said first and second passageways, and
d. means for permitting the fluid in each of said passageways to exit therefrom.
10. An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said second sleeve being formed with an opening in the wall thereof through which the second fluid can exit from the second passageway.
11. An instrument as in claim 10 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
12. An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
13. An instrument as in claim 9 further comprising means for sealing the exit of said first passageway at the tip end of the probe, said first sleeve formed with an opening in the wall thereof to direct the first fluid out of said first passageway at an angle lying off the longitudinal axis of the probe.
14. An instrument as in claim 13 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said fir st and said second passageways for the second fluid.
15. An instrument as in claim 13 further comprising a third sleeve means which is slidable over said second sleeve means to close off the opening in the wall of said first sleeve means.
16. An instrument as in claim 15 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
17. An instrument as in claim 16 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
18. An instrument as in claim 13 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
19. The instrument of claim 6 wherein said shield means is of metal.
20. An instrument as in claim 9 wherein said means for mounting said first and second sleeve means comprises a holder to which said sleeve means are attached and mating coupling means on said holder and said transducer means, said means for supplying fluid to said first and second passages including means on said holder for accepting first and second fluids from respective sources.
Claims (19)
1. An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means, shield means of substantially rigid metallic material, and means for mounting said shield means around and in spaced relationship to said probe means over a substantial portion without any mechanical connection between the probe means and the shield means of the length thereof to confine the vibrating energy.
2. An instrument as in claim 1 wherein said shield means extends beyond the tip of the probe means.
3. An instrument as in claim 2 wherein said shield means extends completely around the probe for its entire length.
4. Apparatus as in claim 2 wherein said shield means is partially open at the portion which extends beyond the probe tip.
5. An instrument as in claim 1 wherein said means for mounting said shield means to said transducer means comprises first coupling means on said transducer means and mating demountable second coupling means to which said shield means are mounted.
6. An ultrasonic energy instrument comprising ultrasonic transducer means including elongated probe means for converting electrical energy into vibratory energy along the length of the probe to produce movement at the free tip end of said probe means, first coupling means on said transducer means adjacent the attached end of said probe means, second coupling means, an elongated tubular shield means attached to said second coupling means, said coupling means when connected to said first coupling means holding said shield means around and in spaced relationship to said probe means over a substantial portion of the length of said probe means to confine the vibratory energy and leaving a space between said probe means and said shield means and an exit from said space to the exterior of the instrument, and means on said second coupling means for supplying fluid to said space between said probe means and said shield means, said fluid leaving said space from said exit.
7. Apparatus as in claim 6 wherein said fluid is a liquid which flows around the probe means to cool the same.
8. Apparatus as in claim 6 wherein said fluid is a gas.
9. An ultrasonic energy instrument comprising an ultrasonic transducer means including an elongated probe means for converting electrical energy into vibratory energy along the length of the probe means to produce movement at the free tip end of said probe means. a. first and second tubular sleeve means, b. means for mounting said first and second tubular sleeve means to said transducer means to hold said first tubular sleeve means in spaced relationship with said probe means over at least a substantial portion of the length thereof to define a first passageway between said probe means and said first tubular sleeve means and to hold said first and second tubular sleeve means in a spaced relationship to define a second passageway therebetween, c. means for supplying fluid to said first and second passageways, and d. means for permitting the fluid in each of said passageways to exit therefrom. 10. An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said second sleeve being formed with an opening in the wall thereof through which the second fluid can exit from the second passageway.
11. An instrument as in claim 10 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
12. An instrument as in claim 9 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
13. An instrument as in claim 9 further comprising means for sealing the exit of said first passageway at the tip end of the probe, said first sleeve formed with an opening in the wall thereof to direct the first fluid out of said first passageway at an angle lying off the longitudinal axis of the probe.
14. An instrument as in claim 13 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
15. An instrument as in claim 13 further comprising a third sleeve means which is slidable over said second sleeve means to close off the opening in the wall of said first sleeve means.
16. An instrument as in claim 15 further comprising means for sealing the exit of the second passageway at the tip end of the probe, said first sleeve being formed with an opening in a wall thereof to provide communication between said first and said second passageways for the second fluid.
17. An instrument as in claim 16 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
18. An instrument as in claim 13 further comprising means for shielding a substantial portion of the tip of the probe means to hold it out of contact with an object with which the instrument is to be used.
19. The instrument of claim 6 wherein said shield means is of metal.
20. An instrument as in claim 9 wherein said means for mounting said first and second sleeve means comprises a holder to which said sleeve means are attached and mating coupling means on said holder and said transducer means, said means for supplying fluid to said first and second passages including means on said holder for accepting first and second fluids from respective sources.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00263448A US3805787A (en) | 1972-06-16 | 1972-06-16 | Ultrasonic surgical instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00263448A US3805787A (en) | 1972-06-16 | 1972-06-16 | Ultrasonic surgical instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
US3805787A true US3805787A (en) | 1974-04-23 |
Family
ID=23001817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00263448A Expired - Lifetime US3805787A (en) | 1972-06-16 | 1972-06-16 | Ultrasonic surgical instrument |
Country Status (1)
Country | Link |
---|---|
US (1) | US3805787A (en) |
Cited By (293)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982541A (en) * | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US4223676A (en) * | 1977-12-19 | 1980-09-23 | Cavitron Corporation | Ultrasonic aspirator |
US4314560A (en) * | 1979-11-28 | 1982-02-09 | Helfgott Maxwell A | Powered handpiece for endophthalmic surgery |
US4368734A (en) * | 1978-01-27 | 1983-01-18 | Surgical Design Corp. | Surgical instrument |
US4417578A (en) * | 1981-03-20 | 1983-11-29 | Surgical Design | Ultrasonic transducer with energy shielding |
US4493694A (en) * | 1980-10-17 | 1985-01-15 | Cooper Lasersonics, Inc. | Surgical pre-aspirator |
US4515583A (en) * | 1983-10-17 | 1985-05-07 | Coopervision, Inc. | Operative elliptical probe for ultrasonic surgical instrument and method of its use |
US4516398A (en) * | 1980-10-08 | 1985-05-14 | Cooper Lasersonics, Inc. | Method of use of an ultrasonic surgical pre-aspirator having a orifice by-pass |
US4530356A (en) * | 1983-02-08 | 1985-07-23 | Helfgott Maxwell A | Ophthalmic surgical instrument with beveled tip |
US4681561A (en) * | 1986-01-24 | 1987-07-21 | Coopervision, Inc. | Ultrasonic decoupling sleeve |
US4689040A (en) * | 1985-04-29 | 1987-08-25 | Thompson Robert J | Tip for a phacoemulsification needle |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4750488A (en) * | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4804364A (en) * | 1985-07-19 | 1989-02-14 | Satelec | Apparatus for the curettage or exeresis of biological tissues by means of an instrument vibrating at ultrasound frequencies |
US4817624A (en) * | 1985-12-20 | 1989-04-04 | The General Hospital Corporation | Mini-bolus technique for thermodilution cardiac output measurements |
US4867141A (en) * | 1986-06-18 | 1989-09-19 | Olympus Optical Co., Ltd. | Medical treatment apparatus utilizing ultrasonic wave |
US4897079A (en) * | 1988-07-22 | 1990-01-30 | Allergan, Inc. | Polymeric sleeve for surgical instruments |
US4921476A (en) * | 1980-10-08 | 1990-05-01 | Cavitron, Inc. | Method for preventing clogging of a surgical aspirator |
US4922902A (en) * | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US5011471A (en) * | 1987-12-24 | 1991-04-30 | Sumitomo Bakelite Company Limited | Excretions treating apparatus |
AU609652B2 (en) * | 1988-12-20 | 1991-05-02 | Sherwood Services Ag | Improved resonator for surgical handpiece |
US5038756A (en) * | 1989-10-30 | 1991-08-13 | Storz Instrument Company | Needle interface boot for ultrasonic surgical instrument |
US5095910A (en) * | 1990-04-18 | 1992-03-17 | Advanced Technology Laboratories, Inc. | Ultrasonic imaging of biopsy needle |
US5123903A (en) * | 1989-08-10 | 1992-06-23 | Medical Products Development, Inc. | Disposable aspiration sleeve for ultrasonic lipectomy |
US5151084A (en) * | 1991-07-29 | 1992-09-29 | Fibra-Sonics, Inc. | Ultrasonic needle with sleeve that includes a baffle |
US5151083A (en) * | 1991-07-29 | 1992-09-29 | Fibra-Sonics, Inc. | Apparatus for eliminating air bubbles in an ultrasonic surgical device |
US5181916A (en) * | 1991-04-26 | 1993-01-26 | Sorenson Laboratories, Inc. | Surgical probe and smoke eliminator |
US5181907A (en) * | 1990-03-20 | 1993-01-26 | Hilton Becker | Cannula and method for liposuction |
US5255669A (en) * | 1989-04-12 | 1993-10-26 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5261922A (en) * | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US5344395A (en) * | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5456686A (en) * | 1989-01-31 | 1995-10-10 | Biomet, Inc. | Implantation and removal of orthopedic prostheses |
US5486162A (en) * | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US5536242A (en) * | 1994-07-01 | 1996-07-16 | Scimed Life Systems, Inc. | Intravascular device utilizing fluid to extract occlusive material |
US5562610A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
US5562609A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
WO1997045078A1 (en) * | 1996-05-29 | 1997-12-04 | Allergan Sales, Inc. | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5695510A (en) * | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5725570A (en) * | 1992-03-31 | 1998-03-10 | Boston Scientific Corporation | Tubular medical endoprostheses |
US5725495A (en) * | 1995-06-02 | 1998-03-10 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5733266A (en) * | 1996-07-26 | 1998-03-31 | Gravlee, Jr.; Joseph F. | Hypodermic needle |
US5788679A (en) * | 1996-06-26 | 1998-08-04 | Gravlee, Jr.; Joseph F. | Phacoemulsification needle |
US5843022A (en) * | 1995-10-25 | 1998-12-01 | Scimied Life Systems, Inc. | Intravascular device utilizing fluid to extract occlusive material |
WO1999015120A1 (en) * | 1997-09-23 | 1999-04-01 | Alcon Laboratories, Inc. | Surgical handpiece |
US5941887A (en) * | 1996-09-03 | 1999-08-24 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US5984904A (en) * | 1996-08-22 | 1999-11-16 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US6024725A (en) * | 1996-11-27 | 2000-02-15 | Mentor Corporation | Reducing tissue trauma and fluid loss during surgery |
US6159176A (en) * | 1997-12-11 | 2000-12-12 | Sonics & Materials Inc. | Sheath and support for ultrasonic elongate tip |
EP1090658A1 (en) | 1999-10-05 | 2001-04-11 | OmniSonics Medical Technologies | Ultrasonic medical treatment apparatus |
US6224565B1 (en) | 1998-11-13 | 2001-05-01 | Sound Surgical Technologies, Llc | Protective sheath and method for ultrasonic probes |
US6270471B1 (en) * | 1997-12-23 | 2001-08-07 | Misonix Incorporated | Ultrasonic probe with isolated outer cannula |
US6277084B1 (en) * | 1992-03-31 | 2001-08-21 | Boston Scientific Corporation | Ultrasonic medical device |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US6527802B1 (en) | 1993-01-19 | 2003-03-04 | Scimed Life Systems, Inc. | Clad composite stent |
US20030065263A1 (en) * | 1999-10-05 | 2003-04-03 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means having a line contact collet |
WO2003030751A1 (en) | 2001-10-05 | 2003-04-17 | Omnisonics Medical Technologies, Inc. | Method and apparatus for removing plaque from blood vessels using ultrasonic energy |
US6551337B1 (en) | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
WO2003065908A1 (en) | 2002-02-05 | 2003-08-14 | Omnisonics Medical Technologies, Inc. | Apparatus and method for treating gynecological diseases using an ultrsonic medical device operating in a transverse mode |
US6647755B2 (en) | 2001-03-07 | 2003-11-18 | Omnisonics Medical Technologies, Inc. | Method for manufacturing small diameter medical devices |
US6652547B2 (en) | 1999-10-05 | 2003-11-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode |
US20030236539A1 (en) * | 1999-10-05 | 2003-12-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic probe to clear a vascular access device |
US20040019266A1 (en) * | 2002-07-29 | 2004-01-29 | Omnisonics Medical Technologies, Inc. | Apparatus and method for radiopaque coating for an ultrasonic medical device |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US6695781B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device for tissue remodeling |
US6716028B2 (en) | 2000-08-04 | 2004-04-06 | Hu-Friedy Mfg. Co., Inc. | Ultrasonic swivel insert |
US6730048B1 (en) | 2002-12-23 | 2004-05-04 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US6733451B2 (en) | 1999-10-05 | 2004-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe used with a pharmacological agent |
US20040097996A1 (en) * | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US20040138740A1 (en) * | 1992-03-31 | 2004-07-15 | Heath Kevin R | Tubular medical endoprostheses |
US20040158150A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
US20040176686A1 (en) * | 2002-12-23 | 2004-09-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US6790196B2 (en) | 2001-12-18 | 2004-09-14 | Scimed Life Systems, Inc. | Aspirating devices for removal of thrombus/lipid from a body lumen |
US20040193204A1 (en) * | 2003-03-26 | 2004-09-30 | Scimed Life Systems, Inc. | Percutaneous transluminal endarterectomy |
US6811399B2 (en) | 2001-07-27 | 2004-11-02 | Hu-Friedy Mfg. Co., Inc. | Torque lock for ultrasonic swivelable inserts and method |
US20040249401A1 (en) * | 1999-10-05 | 2004-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with a non-compliant balloon |
US20050020966A1 (en) * | 2002-07-22 | 2005-01-27 | Holger Soring | Medical treatment apparatus |
US6852092B2 (en) | 2002-10-02 | 2005-02-08 | Advanced Medical Optics, Inc. | Handpiece system for multiple phacoemulsification techniques |
US20050033314A1 (en) * | 2002-10-16 | 2005-02-10 | Olympus Corporation | Calculus manipulation apparatus |
US20050043753A1 (en) * | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat peripheral artery disease |
US20050043629A1 (en) * | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device having a probe with a small proximal end |
US20050096669A1 (en) * | 1999-10-05 | 2005-05-05 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions |
US20050119679A1 (en) * | 1999-10-05 | 2005-06-02 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat chronic total occlusions |
US6902558B2 (en) | 2002-03-11 | 2005-06-07 | Microsurgical Technology, Inc. | Aspirator tip |
US20060030871A1 (en) * | 2004-08-05 | 2006-02-09 | Matthew Hain | Vascular tunneler |
US20060182296A1 (en) * | 2005-02-11 | 2006-08-17 | Natan Bauman | Ultrasonic ear wax cleaning system |
US20070260173A1 (en) * | 2006-05-05 | 2007-11-08 | Alcon, Inc. | Irrigation/aspiration tip |
US20080234710A1 (en) * | 2007-03-22 | 2008-09-25 | Neurohr Mark A | Ultrasonic surgical instruments |
US20080234711A1 (en) * | 2007-03-22 | 2008-09-25 | Houser Kevin L | Surgical instruments |
US20090030437A1 (en) * | 2007-07-27 | 2009-01-29 | Houser Kevin L | Surgical instruments |
US20090030311A1 (en) * | 2007-07-27 | 2009-01-29 | Stulen Foster B | Ultrasonic end effectors with increased active length |
US20090030351A1 (en) * | 2007-07-27 | 2009-01-29 | Wiener Eitan T | Multiple end effectors ultrasonic surgical instruments |
US20090036911A1 (en) * | 2007-07-31 | 2009-02-05 | Stulen Foster B | Ultrasonic surgical instrument with modulator |
US20090036912A1 (en) * | 2007-07-31 | 2009-02-05 | Wiener Eitan T | Ultrasonic surgical instruments |
US20090042163A1 (en) * | 2005-05-16 | 2009-02-12 | Johnson Douglas B | Endodontic Procedure Employing Simultaneous Liquefaction and Acoustic Debridgement |
US20090143796A1 (en) * | 2007-11-30 | 2009-06-04 | Stulen Foster B | Folded ultrasonic end effectors with increased active length |
US20090149801A1 (en) * | 2007-12-07 | 2009-06-11 | Frank Anthony Crandall | Method of inducing transverse motion in langevin type transducers using split electroding of ceramic elements |
US20090228033A1 (en) * | 2008-03-07 | 2009-09-10 | Bacoustics, Llc | Ultrasonic scalpel method |
US20090228032A1 (en) * | 2008-03-06 | 2009-09-10 | Bacoustics, Llc | Ultrasonic scalpel |
US20090247937A1 (en) * | 2003-10-03 | 2009-10-01 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US20090276033A1 (en) * | 1993-01-19 | 2009-11-05 | Boston Scientific Seimed, Inc. | Clad Composite Stent |
US20090292204A1 (en) * | 2008-05-23 | 2009-11-26 | Oscillon Ltd. | Method and device for recognizing tissue structure using doppler effect |
US20100057118A1 (en) * | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US20100121260A1 (en) * | 2008-11-12 | 2010-05-13 | Ghannoum Ziad R | Distal Plastic End Infusion/Aspiration Tip |
US20100160851A1 (en) * | 2008-12-18 | 2010-06-24 | Ramon Dimalanta | Gilled phacoemulsification irrigation sleeve |
US20100179577A1 (en) * | 2007-03-22 | 2010-07-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US7794414B2 (en) | 2004-02-09 | 2010-09-14 | Emigrant Bank, N.A. | Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes |
US20100331871A1 (en) * | 2009-06-24 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
USD631965S1 (en) | 2007-10-05 | 2011-02-01 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
US20110196400A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US20110196403A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US20110196399A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
WO2011100332A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
WO2011100316A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
WO2011100335A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
WO2011100317A2 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
WO2011100321A2 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
WO2011100313A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
USD661801S1 (en) | 2007-10-05 | 2012-06-12 | Ethicon Endo-Surgery, Inc. | User interface for a surgical instrument |
WO2012124653A1 (en) * | 2011-03-17 | 2012-09-20 | オリンパスメディカルシステムズ株式会社 | Medical pump and medical treatment device |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US20130072950A1 (en) * | 2011-09-20 | 2013-03-21 | Tyco Healthcare Group Lp | Ultrasonic Surgical System Having A Fluid Cooled Blade And Related Cooling Methods Therefor |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8546996B2 (en) | 2008-08-06 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8545462B2 (en) | 2009-11-11 | 2013-10-01 | Alcon Research, Ltd. | Patch for irrigation/aspiration tip |
USD691265S1 (en) | 2011-08-23 | 2013-10-08 | Covidien Ag | Control assembly for portable surgical device |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
WO2014039836A1 (en) * | 2012-09-07 | 2014-03-13 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
US8784361B2 (en) | 2010-12-07 | 2014-07-22 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
US20140288560A1 (en) * | 2010-04-30 | 2014-09-25 | Medtronic Xomed, Inc. | Rotary cutting tool with improved cutting and reduced clogging on soft tissue and thin bone |
US8852091B2 (en) | 2012-04-04 | 2014-10-07 | Alcon Research, Ltd. | Devices, systems, and methods for pupil expansion |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US20150005775A1 (en) * | 2013-06-28 | 2015-01-01 | Misonix Incorporated | Ultrasonic cutting blade with cooling liquid conduction |
US8951248B2 (en) | 2009-10-09 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
WO2015194261A1 (en) * | 2014-06-19 | 2015-12-23 | オリンパス株式会社 | Energy treatment unit, energy treatment instrument, and energy treatment system |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
CN105310821A (en) * | 2015-05-15 | 2016-02-10 | 以诺康医疗科技(苏州)有限公司 | Ultrasonic vitrectomy needle and device thereof |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9433725B2 (en) | 2011-12-23 | 2016-09-06 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9549850B2 (en) | 2013-04-26 | 2017-01-24 | Novartis Ag | Partial venting system for occlusion surge mitigation |
US9554809B2 (en) | 2014-09-30 | 2017-01-31 | Robert K. Lark | Ultrasonic blade with static casing |
US9561321B2 (en) | 2011-12-08 | 2017-02-07 | Alcon Research, Ltd. | Selectively moveable valve elements for aspiration and irrigation circuits |
US9592157B2 (en) | 2012-11-09 | 2017-03-14 | Bausch & Lomb Incorporated | System and method for femto-fragmentation of a crystalline lens |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9839738B2 (en) | 2013-06-06 | 2017-12-12 | Novartis Ag | Transformer irrigation/aspiration device |
US9918775B2 (en) | 2011-04-12 | 2018-03-20 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US10076445B2 (en) | 2012-07-13 | 2018-09-18 | Bausch & Lomb Incorporated | Posterio capsulotomy using laser techniques |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US20190008545A1 (en) * | 2017-07-07 | 2019-01-10 | Ethicon Llc | Features to promote removal of debris from within ultrasonic surgical instrument |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10314595B2 (en) | 2017-01-17 | 2019-06-11 | Robert K. Lark | Ultrasonic blade with static casing |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
CN110602998A (en) * | 2017-03-06 | 2019-12-20 | 米松尼克斯股份有限公司 | Method for reducing or removing biofilm |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US20200108186A1 (en) * | 2018-10-05 | 2020-04-09 | Kogent Surgical, LLC | Irrigation system for an ultrasonic surgical handpiece |
US20200107853A1 (en) * | 2016-05-25 | 2020-04-09 | Ethicon Llc | Ultrasonic surgical instrument with cooling conduit |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10716706B2 (en) | 2011-04-07 | 2020-07-21 | Bausch & Lomb Incorporated | System and method for performing lens fragmentation |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US10751109B2 (en) | 2014-12-22 | 2020-08-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10779876B2 (en) | 2011-10-24 | 2020-09-22 | Ethicon Llc | Battery powered surgical instrument |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10881424B2 (en) | 2018-02-13 | 2021-01-05 | Covidien Lp | Removable fluid reservoir and ultrasonic surgical instrument including the same |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11166845B2 (en) | 2018-04-03 | 2021-11-09 | Alcon Inc. | Ultrasonic vitreous cutting tip |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US20220079808A1 (en) * | 2020-09-16 | 2022-03-17 | Johnson & Johnson Surgical Vision, Inc. | Robotic cataract surgery using focused ultrasound |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US20220125462A1 (en) * | 2019-01-15 | 2022-04-28 | Stryker European Operations Limited | Ultrasonic Surgical Irrigation Sleeve And Related Assemblies |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11484441B2 (en) | 2016-04-29 | 2022-11-01 | Bausch & Lomb Incorporated | Ultrasonic surgical aspiration needle assembly with molded hub |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US11540941B2 (en) | 2019-12-11 | 2023-01-03 | Alcon Inc. | Adjustable support sleeve for surgical instruments |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11998483B2 (en) | 2019-12-11 | 2024-06-04 | Alcon Inc. | Adjustable stiffener for surgical instruments |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2407690A (en) * | 1941-05-16 | 1946-09-17 | Bell Telephone Labor Inc | Wave guide electrotherapeutic system |
US2668529A (en) * | 1948-10-01 | 1954-02-09 | Theodor F Huter | Device for transmitting ultrasound energy |
US3213537A (en) * | 1954-12-24 | 1965-10-26 | Cavitron Corp | Supply and control apparatus for vibratory cutting device |
US3526219A (en) * | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3589363A (en) * | 1967-07-25 | 1971-06-29 | Cavitron Corp | Material removal apparatus and method employing high frequency vibrations |
US3636947A (en) * | 1970-12-03 | 1972-01-25 | Ultrasonic Systems | Ultrasonic home dental instrument and method |
-
1972
- 1972-06-16 US US00263448A patent/US3805787A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2407690A (en) * | 1941-05-16 | 1946-09-17 | Bell Telephone Labor Inc | Wave guide electrotherapeutic system |
US2668529A (en) * | 1948-10-01 | 1954-02-09 | Theodor F Huter | Device for transmitting ultrasound energy |
US3213537A (en) * | 1954-12-24 | 1965-10-26 | Cavitron Corp | Supply and control apparatus for vibratory cutting device |
US3526219A (en) * | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3589363A (en) * | 1967-07-25 | 1971-06-29 | Cavitron Corp | Material removal apparatus and method employing high frequency vibrations |
US3636947A (en) * | 1970-12-03 | 1972-01-25 | Ultrasonic Systems | Ultrasonic home dental instrument and method |
Cited By (577)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982541A (en) * | 1974-07-29 | 1976-09-28 | Esperance Jr Francis A L | Eye surgical instrument |
US4223676A (en) * | 1977-12-19 | 1980-09-23 | Cavitron Corporation | Ultrasonic aspirator |
US4368734A (en) * | 1978-01-27 | 1983-01-18 | Surgical Design Corp. | Surgical instrument |
US4314560A (en) * | 1979-11-28 | 1982-02-09 | Helfgott Maxwell A | Powered handpiece for endophthalmic surgery |
US4516398A (en) * | 1980-10-08 | 1985-05-14 | Cooper Lasersonics, Inc. | Method of use of an ultrasonic surgical pre-aspirator having a orifice by-pass |
US4921476A (en) * | 1980-10-08 | 1990-05-01 | Cavitron, Inc. | Method for preventing clogging of a surgical aspirator |
US4493694A (en) * | 1980-10-17 | 1985-01-15 | Cooper Lasersonics, Inc. | Surgical pre-aspirator |
US4417578A (en) * | 1981-03-20 | 1983-11-29 | Surgical Design | Ultrasonic transducer with energy shielding |
US4530356A (en) * | 1983-02-08 | 1985-07-23 | Helfgott Maxwell A | Ophthalmic surgical instrument with beveled tip |
US4515583A (en) * | 1983-10-17 | 1985-05-07 | Coopervision, Inc. | Operative elliptical probe for ultrasonic surgical instrument and method of its use |
US4689040A (en) * | 1985-04-29 | 1987-08-25 | Thompson Robert J | Tip for a phacoemulsification needle |
US4804364A (en) * | 1985-07-19 | 1989-02-14 | Satelec | Apparatus for the curettage or exeresis of biological tissues by means of an instrument vibrating at ultrasound frequencies |
US5334183A (en) * | 1985-08-28 | 1994-08-02 | Valleylab, Inc. | Endoscopic electrosurgical apparatus |
US4750902A (en) * | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4817624A (en) * | 1985-12-20 | 1989-04-04 | The General Hospital Corporation | Mini-bolus technique for thermodilution cardiac output measurements |
WO1987004335A1 (en) * | 1986-01-24 | 1987-07-30 | Coopervision, Inc. | Ultrasonic decoupling sleeve |
US4681561A (en) * | 1986-01-24 | 1987-07-21 | Coopervision, Inc. | Ultrasonic decoupling sleeve |
US4816017A (en) * | 1986-01-24 | 1989-03-28 | Coopervision, Inc. | Ultrasonic decoupling sleeve |
US4922902A (en) * | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US4750488A (en) * | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4867141A (en) * | 1986-06-18 | 1989-09-19 | Olympus Optical Co., Ltd. | Medical treatment apparatus utilizing ultrasonic wave |
US5011471A (en) * | 1987-12-24 | 1991-04-30 | Sumitomo Bakelite Company Limited | Excretions treating apparatus |
US4897079A (en) * | 1988-07-22 | 1990-01-30 | Allergan, Inc. | Polymeric sleeve for surgical instruments |
AU609652B2 (en) * | 1988-12-20 | 1991-05-02 | Sherwood Services Ag | Improved resonator for surgical handpiece |
US5456686A (en) * | 1989-01-31 | 1995-10-10 | Biomet, Inc. | Implantation and removal of orthopedic prostheses |
US5255669A (en) * | 1989-04-12 | 1993-10-26 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5123903A (en) * | 1989-08-10 | 1992-06-23 | Medical Products Development, Inc. | Disposable aspiration sleeve for ultrasonic lipectomy |
US5038756A (en) * | 1989-10-30 | 1991-08-13 | Storz Instrument Company | Needle interface boot for ultrasonic surgical instrument |
US5344395A (en) * | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5181907A (en) * | 1990-03-20 | 1993-01-26 | Hilton Becker | Cannula and method for liposuction |
US5095910A (en) * | 1990-04-18 | 1992-03-17 | Advanced Technology Laboratories, Inc. | Ultrasonic imaging of biopsy needle |
US5181916A (en) * | 1991-04-26 | 1993-01-26 | Sorenson Laboratories, Inc. | Surgical probe and smoke eliminator |
US5151083A (en) * | 1991-07-29 | 1992-09-29 | Fibra-Sonics, Inc. | Apparatus for eliminating air bubbles in an ultrasonic surgical device |
US5151084A (en) * | 1991-07-29 | 1992-09-29 | Fibra-Sonics, Inc. | Ultrasonic needle with sleeve that includes a baffle |
US5935142A (en) * | 1992-02-20 | 1999-08-10 | Hood; Larry L. | Cavitation-assisted method of material separation |
US5342380A (en) * | 1992-02-20 | 1994-08-30 | Hood Larry L | Ultrasonic knife |
US5935143A (en) * | 1992-02-20 | 1999-08-10 | Hood; Larry L. | Ultrasonic knife |
US5695510A (en) * | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5261922A (en) * | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US6277084B1 (en) * | 1992-03-31 | 2001-08-21 | Boston Scientific Corporation | Ultrasonic medical device |
US6287331B1 (en) | 1992-03-31 | 2001-09-11 | Boston Scientific Corporation | Tubular medical prosthesis |
US6290721B1 (en) | 1992-03-31 | 2001-09-18 | Boston Scientific Corporation | Tubular medical endoprostheses |
US7101392B2 (en) | 1992-03-31 | 2006-09-05 | Boston Scientific Corporation | Tubular medical endoprostheses |
US5725570A (en) * | 1992-03-31 | 1998-03-10 | Boston Scientific Corporation | Tubular medical endoprostheses |
US6497709B1 (en) | 1992-03-31 | 2002-12-24 | Boston Scientific Corporation | Metal medical device |
US20040138740A1 (en) * | 1992-03-31 | 2004-07-15 | Heath Kevin R | Tubular medical endoprostheses |
US20090276033A1 (en) * | 1993-01-19 | 2009-11-05 | Boston Scientific Seimed, Inc. | Clad Composite Stent |
US6527802B1 (en) | 1993-01-19 | 2003-03-04 | Scimed Life Systems, Inc. | Clad composite stent |
US5536242A (en) * | 1994-07-01 | 1996-07-16 | Scimed Life Systems, Inc. | Intravascular device utilizing fluid to extract occlusive material |
US5562609A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
US5562610A (en) * | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
US5486162A (en) * | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US5743871A (en) * | 1995-06-02 | 1998-04-28 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5741226A (en) * | 1995-06-02 | 1998-04-21 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5725495A (en) * | 1995-06-02 | 1998-03-10 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US6159175A (en) * | 1995-06-02 | 2000-12-12 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5843022A (en) * | 1995-10-25 | 1998-12-01 | Scimied Life Systems, Inc. | Intravascular device utilizing fluid to extract occlusive material |
WO1997045078A1 (en) * | 1996-05-29 | 1997-12-04 | Allergan Sales, Inc. | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5843109A (en) * | 1996-05-29 | 1998-12-01 | Allergan | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5788679A (en) * | 1996-06-26 | 1998-08-04 | Gravlee, Jr.; Joseph F. | Phacoemulsification needle |
US5733266A (en) * | 1996-07-26 | 1998-03-31 | Gravlee, Jr.; Joseph F. | Hypodermic needle |
US5984904A (en) * | 1996-08-22 | 1999-11-16 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US5941887A (en) * | 1996-09-03 | 1999-08-24 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US6024725A (en) * | 1996-11-27 | 2000-02-15 | Mentor Corporation | Reducing tissue trauma and fluid loss during surgery |
WO1999015120A1 (en) * | 1997-09-23 | 1999-04-01 | Alcon Laboratories, Inc. | Surgical handpiece |
US6159176A (en) * | 1997-12-11 | 2000-12-12 | Sonics & Materials Inc. | Sheath and support for ultrasonic elongate tip |
US6270471B1 (en) * | 1997-12-23 | 2001-08-07 | Misonix Incorporated | Ultrasonic probe with isolated outer cannula |
US6224565B1 (en) | 1998-11-13 | 2001-05-01 | Sound Surgical Technologies, Llc | Protective sheath and method for ultrasonic probes |
US6695781B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device for tissue remodeling |
US6733451B2 (en) | 1999-10-05 | 2004-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe used with a pharmacological agent |
US20030125645A1 (en) * | 1999-10-05 | 2003-07-03 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US20050119679A1 (en) * | 1999-10-05 | 2005-06-02 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat chronic total occlusions |
US20050096669A1 (en) * | 1999-10-05 | 2005-05-05 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat coronary thrombus bearing lesions |
US6652547B2 (en) | 1999-10-05 | 2003-11-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode |
US6660013B2 (en) | 1999-10-05 | 2003-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus for removing plaque from blood vessels using ultrasonic energy |
US20030236539A1 (en) * | 1999-10-05 | 2003-12-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method for using an ultrasonic probe to clear a vascular access device |
US6866670B2 (en) | 1999-10-05 | 2005-03-15 | Omnisonics Medical Technologies, Inc. | Apparatus for removing plaque from blood vessels using ultrasonic energy |
US6551337B1 (en) | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US20050043629A1 (en) * | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device having a probe with a small proximal end |
US7494468B2 (en) | 1999-10-05 | 2009-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
US20040073244A1 (en) * | 1999-10-05 | 2004-04-15 | Omnisonics Medical Technologies, Inc. | Method and apparatus for removing plaque from blood vessels using ultrasonic energy |
US8790359B2 (en) | 1999-10-05 | 2014-07-29 | Cybersonics, Inc. | Medical systems and related methods |
EP1090658A1 (en) | 1999-10-05 | 2001-04-11 | OmniSonics Medical Technologies | Ultrasonic medical treatment apparatus |
US20040097996A1 (en) * | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US20030065263A1 (en) * | 1999-10-05 | 2003-04-03 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means having a line contact collet |
US20040158150A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
US20040158151A1 (en) * | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe device with rapid attachment and detachment means |
US20040162571A1 (en) * | 1999-10-05 | 2004-08-19 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat deep vein thrombosis |
US20140324066A1 (en) * | 1999-10-05 | 2014-10-30 | Cybersonics, Inc. | Medical systems and related methods |
US7503895B2 (en) | 1999-10-05 | 2009-03-17 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US20040249401A1 (en) * | 1999-10-05 | 2004-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with a non-compliant balloon |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US20050043753A1 (en) * | 1999-10-05 | 2005-02-24 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device to treat peripheral artery disease |
US20040191724A1 (en) * | 2000-08-04 | 2004-09-30 | Rahman Anisur Mithu | Ultrasonic swivel insert |
US7011520B2 (en) | 2000-08-04 | 2006-03-14 | Hu-Friedy Mfg. Co., Inc. | Two part ultrasonic swivel insert, with one part rotatable relative to the other |
US6716028B2 (en) | 2000-08-04 | 2004-04-06 | Hu-Friedy Mfg. Co., Inc. | Ultrasonic swivel insert |
US20040031308A1 (en) * | 2001-03-07 | 2004-02-19 | Omnisonics Medical Technologies, Inc. | Apparatus for manufacturing small diameter medical devices |
US6647755B2 (en) | 2001-03-07 | 2003-11-18 | Omnisonics Medical Technologies, Inc. | Method for manufacturing small diameter medical devices |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US6811399B2 (en) | 2001-07-27 | 2004-11-02 | Hu-Friedy Mfg. Co., Inc. | Torque lock for ultrasonic swivelable inserts and method |
WO2003030751A1 (en) | 2001-10-05 | 2003-04-17 | Omnisonics Medical Technologies, Inc. | Method and apparatus for removing plaque from blood vessels using ultrasonic energy |
US6790196B2 (en) | 2001-12-18 | 2004-09-14 | Scimed Life Systems, Inc. | Aspirating devices for removal of thrombus/lipid from a body lumen |
WO2003065908A1 (en) | 2002-02-05 | 2003-08-14 | Omnisonics Medical Technologies, Inc. | Apparatus and method for treating gynecological diseases using an ultrsonic medical device operating in a transverse mode |
US6902558B2 (en) | 2002-03-11 | 2005-06-07 | Microsurgical Technology, Inc. | Aspirator tip |
US7608054B2 (en) * | 2002-07-22 | 2009-10-27 | Soering Gmbh | Medical treatment apparatus |
US20050020966A1 (en) * | 2002-07-22 | 2005-01-27 | Holger Soring | Medical treatment apparatus |
US20040019266A1 (en) * | 2002-07-29 | 2004-01-29 | Omnisonics Medical Technologies, Inc. | Apparatus and method for radiopaque coating for an ultrasonic medical device |
US6852092B2 (en) | 2002-10-02 | 2005-02-08 | Advanced Medical Optics, Inc. | Handpiece system for multiple phacoemulsification techniques |
US7682366B2 (en) * | 2002-10-16 | 2010-03-23 | Olympus Corporation | Calculus manipulation apparatus |
US20050033314A1 (en) * | 2002-10-16 | 2005-02-10 | Olympus Corporation | Calculus manipulation apparatus |
US20040176686A1 (en) * | 2002-12-23 | 2004-09-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US6730048B1 (en) | 2002-12-23 | 2004-05-04 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US8142457B2 (en) | 2003-03-26 | 2012-03-27 | Boston Scientific Scimed, Inc. | Percutaneous transluminal endarterectomy |
US20040193204A1 (en) * | 2003-03-26 | 2004-09-30 | Scimed Life Systems, Inc. | Percutaneous transluminal endarterectomy |
US20090247937A1 (en) * | 2003-10-03 | 2009-10-01 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US8992460B2 (en) * | 2003-10-03 | 2015-03-31 | Michael Rontal | Method and apparatus for the ultrasonic cleaning of biofilm coated surfaces |
US7794414B2 (en) | 2004-02-09 | 2010-09-14 | Emigrant Bank, N.A. | Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes |
US11730507B2 (en) | 2004-02-27 | 2023-08-22 | Cilag Gmbh International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US20060030871A1 (en) * | 2004-08-05 | 2006-02-09 | Matthew Hain | Vascular tunneler |
US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US20060182296A1 (en) * | 2005-02-11 | 2006-08-17 | Natan Bauman | Ultrasonic ear wax cleaning system |
US8043088B2 (en) * | 2005-05-16 | 2011-10-25 | Johnson Douglas B | Endodontic procedure employing simultaneous liquefaction and acoustic debridgement |
US20090042163A1 (en) * | 2005-05-16 | 2009-02-12 | Johnson Douglas B | Endodontic Procedure Employing Simultaneous Liquefaction and Acoustic Debridgement |
US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US12042168B2 (en) | 2006-01-20 | 2024-07-23 | Cilag Gmbh International | Ultrasound medical instrument having a medical ultrasonic blade |
US20070260173A1 (en) * | 2006-05-05 | 2007-11-08 | Alcon, Inc. | Irrigation/aspiration tip |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US20100179577A1 (en) * | 2007-03-22 | 2010-07-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US9987033B2 (en) | 2007-03-22 | 2018-06-05 | Ethicon Llc | Ultrasonic surgical instruments |
US8900259B2 (en) | 2007-03-22 | 2014-12-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9050124B2 (en) | 2007-03-22 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US20080234710A1 (en) * | 2007-03-22 | 2008-09-25 | Neurohr Mark A | Ultrasonic surgical instruments |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US10722261B2 (en) | 2007-03-22 | 2020-07-28 | Ethicon Llc | Surgical instruments |
US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
US8236019B2 (en) | 2007-03-22 | 2012-08-07 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US20080234711A1 (en) * | 2007-03-22 | 2008-09-25 | Houser Kevin L | Surgical instruments |
US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
US20090030437A1 (en) * | 2007-07-27 | 2009-01-29 | Houser Kevin L | Surgical instruments |
US20090030311A1 (en) * | 2007-07-27 | 2009-01-29 | Stulen Foster B | Ultrasonic end effectors with increased active length |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US20090030351A1 (en) * | 2007-07-27 | 2009-01-29 | Wiener Eitan T | Multiple end effectors ultrasonic surgical instruments |
US9220527B2 (en) | 2007-07-27 | 2015-12-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
US10531910B2 (en) | 2007-07-27 | 2020-01-14 | Ethicon Llc | Surgical instruments |
US9707004B2 (en) | 2007-07-27 | 2017-07-18 | Ethicon Llc | Surgical instruments |
US9642644B2 (en) | 2007-07-27 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8652155B2 (en) | 2007-07-27 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
US8709031B2 (en) | 2007-07-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Methods for driving an ultrasonic surgical instrument with modulator |
US9439669B2 (en) | 2007-07-31 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9445832B2 (en) | 2007-07-31 | 2016-09-20 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US20090036912A1 (en) * | 2007-07-31 | 2009-02-05 | Wiener Eitan T | Ultrasonic surgical instruments |
US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
US20090036911A1 (en) * | 2007-07-31 | 2009-02-05 | Stulen Foster B | Ultrasonic surgical instrument with modulator |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
USD631965S1 (en) | 2007-10-05 | 2011-02-01 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
US10828059B2 (en) | 2007-10-05 | 2020-11-10 | Ethicon Llc | Ergonomic surgical instruments |
US9486236B2 (en) | 2007-10-05 | 2016-11-08 | Ethicon Endo-Surgery, Llc | Ergonomic surgical instruments |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
USD661801S1 (en) | 2007-10-05 | 2012-06-12 | Ethicon Endo-Surgery, Inc. | User interface for a surgical instrument |
USD661804S1 (en) | 2007-10-05 | 2012-06-12 | Ethicon Endo-Surgery, Inc. | User interface for a surgical instrument |
USD661802S1 (en) | 2007-10-05 | 2012-06-12 | Ethicon Endo-Surgery, Inc. | User interface for a surgical instrument |
USD661803S1 (en) | 2007-10-05 | 2012-06-12 | Ethicon Endo-Surgery, Inc. | User interface for a surgical instrument |
US8623027B2 (en) | 2007-10-05 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US20090143796A1 (en) * | 2007-11-30 | 2009-06-04 | Stulen Foster B | Folded ultrasonic end effectors with increased active length |
US8591536B2 (en) | 2007-11-30 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US10463887B2 (en) | 2007-11-30 | 2019-11-05 | Ethicon Llc | Ultrasonic surgical blades |
US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US8372102B2 (en) | 2007-11-30 | 2013-02-12 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US10433866B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US11266433B2 (en) | 2007-11-30 | 2022-03-08 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US9339289B2 (en) | 2007-11-30 | 2016-05-17 | Ehticon Endo-Surgery, LLC | Ultrasonic surgical instrument blades |
US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
US10433865B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US10888347B2 (en) | 2007-11-30 | 2021-01-12 | Ethicon Llc | Ultrasonic surgical blades |
US8182502B2 (en) | 2007-11-30 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US10045794B2 (en) | 2007-11-30 | 2018-08-14 | Ethicon Llc | Ultrasonic surgical blades |
US11766276B2 (en) | 2007-11-30 | 2023-09-26 | Cilag Gmbh International | Ultrasonic surgical blades |
US10245065B2 (en) | 2007-11-30 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical blades |
US10265094B2 (en) | 2007-11-30 | 2019-04-23 | Ethicon Llc | Ultrasonic surgical blades |
US9066747B2 (en) | 2007-11-30 | 2015-06-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
US11690643B2 (en) | 2007-11-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical blades |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8303613B2 (en) | 2007-12-07 | 2012-11-06 | Zevex, Inc. | Ultrasonic instrument using langevin type transducers to create transverse motion |
US20090149801A1 (en) * | 2007-12-07 | 2009-06-11 | Frank Anthony Crandall | Method of inducing transverse motion in langevin type transducers using split electroding of ceramic elements |
US20090228032A1 (en) * | 2008-03-06 | 2009-09-10 | Bacoustics, Llc | Ultrasonic scalpel |
US20090228033A1 (en) * | 2008-03-07 | 2009-09-10 | Bacoustics, Llc | Ultrasonic scalpel method |
US20090292204A1 (en) * | 2008-05-23 | 2009-11-26 | Oscillon Ltd. | Method and device for recognizing tissue structure using doppler effect |
US10022567B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US8546996B2 (en) | 2008-08-06 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
US8749116B2 (en) | 2008-08-06 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9072539B2 (en) | 2008-08-06 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US8779648B2 (en) | 2008-08-06 | 2014-07-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US8253303B2 (en) | 2008-08-06 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
US10022568B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US8704425B2 (en) | 2008-08-06 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US20100057118A1 (en) * | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US9351871B2 (en) | 2008-11-12 | 2016-05-31 | Alcon Research, Ltd. | Distal plastic end infusion/aspiration tip |
US20100121260A1 (en) * | 2008-11-12 | 2010-05-13 | Ghannoum Ziad R | Distal Plastic End Infusion/Aspiration Tip |
US8267891B2 (en) | 2008-12-18 | 2012-09-18 | Alcon Research, Ltd. | Gilled phacoemulsification irrigation sleeve |
US20100160851A1 (en) * | 2008-12-18 | 2010-06-24 | Ramon Dimalanta | Gilled phacoemulsification irrigation sleeve |
US10709906B2 (en) | 2009-05-20 | 2020-07-14 | Ethicon Llc | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8334635B2 (en) | 2009-06-24 | 2012-12-18 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
US20100331871A1 (en) * | 2009-06-24 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US20100331872A1 (en) * | 2009-06-24 | 2010-12-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8344596B2 (en) | 2009-06-24 | 2013-01-01 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US9498245B2 (en) | 2009-06-24 | 2016-11-22 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US8546999B2 (en) | 2009-06-24 | 2013-10-01 | Ethicon Endo-Surgery, Inc. | Housing arrangements for ultrasonic surgical instruments |
US8319400B2 (en) | 2009-06-24 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8754570B2 (en) | 2009-06-24 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments comprising transducer arrangements |
US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
US8773001B2 (en) * | 2009-07-15 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US20130274732A1 (en) * | 2009-07-15 | 2013-10-17 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US9039695B2 (en) | 2009-10-09 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8986302B2 (en) | 2009-10-09 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10263171B2 (en) | 2009-10-09 | 2019-04-16 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8956349B2 (en) | 2009-10-09 | 2015-02-17 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8951248B2 (en) | 2009-10-09 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US9060775B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9060776B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8545462B2 (en) | 2009-11-11 | 2013-10-01 | Alcon Research, Ltd. | Patch for irrigation/aspiration tip |
WO2011100321A2 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US9107689B2 (en) * | 2010-02-11 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
EP3524182A1 (en) | 2010-02-11 | 2019-08-14 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US20180199957A1 (en) * | 2010-02-11 | 2018-07-19 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US20150119916A1 (en) * | 2010-02-11 | 2015-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US9510850B2 (en) | 2010-02-11 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US20160367273A1 (en) * | 2010-02-11 | 2016-12-22 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
EP3741317A1 (en) | 2010-02-11 | 2020-11-25 | Ethicon LLC | Ultrasonically powered surgical instruments with rotating cutting implement |
WO2011100328A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
EP3738531A1 (en) | 2010-02-11 | 2020-11-18 | Ethicon LLC | Ultrasonically powered surgical instruments with rotating cutting implement |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US10835768B2 (en) * | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US20160206342A1 (en) * | 2010-02-11 | 2016-07-21 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US10299810B2 (en) * | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
WO2011100338A2 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
WO2011100313A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US20110196399A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
CN102781349A (en) * | 2010-02-11 | 2012-11-14 | 伊西康内外科公司 | Ultrasonic surgical instruments with moving cutting implement |
US20110196403A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
WO2011100323A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
WO2011100317A2 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
US20150351789A1 (en) * | 2010-02-11 | 2015-12-10 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
WO2011100335A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US9259234B2 (en) * | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
WO2011100316A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US10117667B2 (en) | 2010-02-11 | 2018-11-06 | Ethicon Llc | Control systems for ultrasonically powered surgical instruments |
US20110196400A1 (en) * | 2010-02-11 | 2011-08-11 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US9848901B2 (en) * | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
EP3597127A1 (en) | 2010-02-11 | 2020-01-22 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
CN102781349B (en) * | 2010-02-11 | 2015-12-16 | 伊西康内外科公司 | There is the ultrasonic surgical instrument of mobile cutting tool |
WO2011100332A1 (en) | 2010-02-11 | 2011-08-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US9962182B2 (en) * | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US20140288560A1 (en) * | 2010-04-30 | 2014-09-25 | Medtronic Xomed, Inc. | Rotary cutting tool with improved cutting and reduced clogging on soft tissue and thin bone |
US9089344B2 (en) * | 2010-04-30 | 2015-07-28 | Medtronic Xomed, Inc. | Rotary cutting tool with improved cutting and reduced clogging on soft tissue and thin bone |
US11090103B2 (en) | 2010-05-21 | 2021-08-17 | Cilag Gmbh International | Medical device |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US9707030B2 (en) | 2010-10-01 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Surgical instrument with jaw member |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8784361B2 (en) | 2010-12-07 | 2014-07-22 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
JP5167443B2 (en) * | 2011-03-17 | 2013-03-21 | オリンパスメディカルシステムズ株式会社 | Medical liquid delivery device |
WO2012124653A1 (en) * | 2011-03-17 | 2012-09-20 | オリンパスメディカルシステムズ株式会社 | Medical pump and medical treatment device |
US8864709B2 (en) | 2011-03-17 | 2014-10-21 | Olympus Medical Systems Corp. | Medical liquid supply device |
US10716706B2 (en) | 2011-04-07 | 2020-07-21 | Bausch & Lomb Incorporated | System and method for performing lens fragmentation |
US9918775B2 (en) | 2011-04-12 | 2018-03-20 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
USD691265S1 (en) | 2011-08-23 | 2013-10-08 | Covidien Ag | Control assembly for portable surgical device |
USD700967S1 (en) | 2011-08-23 | 2014-03-11 | Covidien Ag | Handle for portable surgical device |
USD700699S1 (en) | 2011-08-23 | 2014-03-04 | Covidien Ag | Handle for portable surgical device |
USD700966S1 (en) | 2011-08-23 | 2014-03-11 | Covidien Ag | Portable surgical device |
US11000308B2 (en) | 2011-09-20 | 2021-05-11 | Covidien Lp | Ultrasonic surgical system having a fluid cooled blade and related cooling methods therefor |
US20130072950A1 (en) * | 2011-09-20 | 2013-03-21 | Tyco Healthcare Group Lp | Ultrasonic Surgical System Having A Fluid Cooled Blade And Related Cooling Methods Therefor |
US9987034B2 (en) | 2011-09-20 | 2018-06-05 | Covidien Lp | Ultrasonic surgical system having a fluid cooled blade and related cooling methods therefor |
US8974478B2 (en) * | 2011-09-20 | 2015-03-10 | Covidien Lp | Ultrasonic surgical system having a fluid cooled blade and related cooling methods therefor |
US10779876B2 (en) | 2011-10-24 | 2020-09-22 | Ethicon Llc | Battery powered surgical instrument |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US9561321B2 (en) | 2011-12-08 | 2017-02-07 | Alcon Research, Ltd. | Selectively moveable valve elements for aspiration and irrigation circuits |
US9433725B2 (en) | 2011-12-23 | 2016-09-06 | Alcon Research, Ltd. | Combined coaxial and bimanual irrigation/aspiration apparatus |
US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
US8852091B2 (en) | 2012-04-04 | 2014-10-07 | Alcon Research, Ltd. | Devices, systems, and methods for pupil expansion |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
US10842580B2 (en) | 2012-06-29 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US10434012B2 (en) | 2012-07-13 | 2019-10-08 | Bausch & Lomb Incorporated | Posterior capsulotomy using laser techniques |
US10076445B2 (en) | 2012-07-13 | 2018-09-18 | Bausch & Lomb Incorporated | Posterio capsulotomy using laser techniques |
US10434011B2 (en) | 2012-07-13 | 2019-10-08 | Bausch & Lomb Incorporated | Posterior capsulotomy using laser techniques |
CN106974761A (en) * | 2012-09-07 | 2017-07-25 | 博士伦公司 | Vibration surgery device for removing vitreum and other tissues |
AU2013312316B2 (en) * | 2012-09-07 | 2017-09-28 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
US20170027752A1 (en) * | 2012-09-07 | 2017-02-02 | Bausch & Lomb Incorporated | Vibrating Surgical Device for Removal of Vitreous and Other Tissue |
CN104640522B (en) * | 2012-09-07 | 2017-02-22 | 博士伦公司 | Vibrating surgical device for removal of vitreous and other tissue |
EP3231403A1 (en) | 2012-09-07 | 2017-10-18 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
WO2014039836A1 (en) * | 2012-09-07 | 2014-03-13 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
CN104640522A (en) * | 2012-09-07 | 2015-05-20 | 博士伦公司 | Vibrating surgical device for removal of vitreous and other tissue |
US9498377B2 (en) | 2012-09-07 | 2016-11-22 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
US10987246B2 (en) * | 2012-09-07 | 2021-04-27 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
AU2017221876B2 (en) * | 2012-09-07 | 2019-06-27 | Bausch & Lomb Incorporated | Vibrating surgical device for removal of vitreous and other tissue |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9592157B2 (en) | 2012-11-09 | 2017-03-14 | Bausch & Lomb Incorporated | System and method for femto-fragmentation of a crystalline lens |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
US9549850B2 (en) | 2013-04-26 | 2017-01-24 | Novartis Ag | Partial venting system for occlusion surge mitigation |
US9839738B2 (en) | 2013-06-06 | 2017-12-12 | Novartis Ag | Transformer irrigation/aspiration device |
US9211137B2 (en) * | 2013-06-28 | 2015-12-15 | Misonix, Incorporated | Ultrasonic cutting blade with cooling liquid conduction |
US20150005775A1 (en) * | 2013-06-28 | 2015-01-01 | Misonix Incorporated | Ultrasonic cutting blade with cooling liquid conduction |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
WO2015194261A1 (en) * | 2014-06-19 | 2015-12-23 | オリンパス株式会社 | Energy treatment unit, energy treatment instrument, and energy treatment system |
JP6022128B2 (en) * | 2014-06-19 | 2016-11-09 | オリンパス株式会社 | Energy treatment unit, energy treatment device and energy treatment system |
CN106456229A (en) * | 2014-06-19 | 2017-02-22 | 奥林巴斯株式会社 | Energy treatment unit, energy treatment instrument, and energy treatment system |
US10178999B2 (en) | 2014-06-19 | 2019-01-15 | Olympus Corporation | Energy treatment unit, energy treatment instrument and energy treatment system |
CN106456229B (en) * | 2014-06-19 | 2019-06-07 | 奥林巴斯株式会社 | Energy disposal unit, energy treatment apparatus and energy disposal system |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
USRE47883E1 (en) | 2014-09-30 | 2020-03-03 | Robert K. Lark | Ultrasonic blade with static casing |
US9554809B2 (en) | 2014-09-30 | 2017-01-31 | Robert K. Lark | Ultrasonic blade with static casing |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10751109B2 (en) | 2014-12-22 | 2020-08-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
CN105310821A (en) * | 2015-05-15 | 2016-02-10 | 以诺康医疗科技(苏州)有限公司 | Ultrasonic vitrectomy needle and device thereof |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US11484441B2 (en) | 2016-04-29 | 2022-11-01 | Bausch & Lomb Incorporated | Ultrasonic surgical aspiration needle assembly with molded hub |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US20200107853A1 (en) * | 2016-05-25 | 2020-04-09 | Ethicon Llc | Ultrasonic surgical instrument with cooling conduit |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US11883055B2 (en) | 2016-07-12 | 2024-01-30 | Cilag Gmbh International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
USD1049376S1 (en) | 2016-08-16 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
US11925378B2 (en) | 2016-08-25 | 2024-03-12 | Cilag Gmbh International | Ultrasonic transducer for surgical instrument |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US11839422B2 (en) | 2016-09-23 | 2023-12-12 | Cilag Gmbh International | Electrosurgical instrument with fluid diverter |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10314595B2 (en) | 2017-01-17 | 2019-06-11 | Robert K. Lark | Ultrasonic blade with static casing |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
CN110602998A (en) * | 2017-03-06 | 2019-12-20 | 米松尼克斯股份有限公司 | Method for reducing or removing biofilm |
EP3592255A4 (en) * | 2017-03-06 | 2021-03-10 | Misonix, Incorporated | Method for reducing or removing biofilm |
CN110602998B (en) * | 2017-03-06 | 2023-03-10 | 米松尼克斯股份有限公司 | Method for reducing or removing biofilm |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US12023087B2 (en) | 2017-03-15 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
CN110868948A (en) * | 2017-07-07 | 2020-03-06 | 爱惜康有限责任公司 | Features to facilitate removal of debris from within an ultrasonic surgical instrument |
CN110868948B (en) * | 2017-07-07 | 2023-10-03 | 爱惜康有限责任公司 | Features facilitating removal of debris from within an ultrasonic surgical instrument |
US20190008545A1 (en) * | 2017-07-07 | 2019-01-10 | Ethicon Llc | Features to promote removal of debris from within ultrasonic surgical instrument |
US11399861B2 (en) * | 2017-07-07 | 2022-08-02 | Cilag GmbH International Zug, Switzerland | Features to promote removal of debris from within ultrasonic surgical instrument |
US10478211B2 (en) * | 2017-07-07 | 2019-11-19 | Ethicon Llc | Features to promote removal of debris from within ultrasonic surgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US10881424B2 (en) | 2018-02-13 | 2021-01-05 | Covidien Lp | Removable fluid reservoir and ultrasonic surgical instrument including the same |
US11166845B2 (en) | 2018-04-03 | 2021-11-09 | Alcon Inc. | Ultrasonic vitreous cutting tip |
US20200108186A1 (en) * | 2018-10-05 | 2020-04-09 | Kogent Surgical, LLC | Irrigation system for an ultrasonic surgical handpiece |
US12053199B2 (en) * | 2019-01-15 | 2024-08-06 | Stryker European Operations Limited | Ultrasonic surgical irrigation sleeve and related assemblies |
US20220125462A1 (en) * | 2019-01-15 | 2022-04-28 | Stryker European Operations Limited | Ultrasonic Surgical Irrigation Sleeve And Related Assemblies |
US11998483B2 (en) | 2019-12-11 | 2024-06-04 | Alcon Inc. | Adjustable stiffener for surgical instruments |
US11540941B2 (en) | 2019-12-11 | 2023-01-03 | Alcon Inc. | Adjustable support sleeve for surgical instruments |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12127979B2 (en) * | 2020-09-16 | 2024-10-29 | Johnson & Johnson Surgical Vision, Inc. | Robotic cataract surgery using focused ultrasound |
US20220079808A1 (en) * | 2020-09-16 | 2022-03-17 | Johnson & Johnson Surgical Vision, Inc. | Robotic cataract surgery using focused ultrasound |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3805787A (en) | Ultrasonic surgical instrument | |
US5163433A (en) | Ultrasound type treatment apparatus | |
US5122138A (en) | Tissue vaporizing accessory and method for an endoscope | |
US5334183A (en) | Endoscopic electrosurgical apparatus | |
US3075288A (en) | Dental instrument | |
US4867141A (en) | Medical treatment apparatus utilizing ultrasonic wave | |
CA1318000C (en) | Endoscopic ultrasonic aspirator | |
EP0125784B1 (en) | Ultrasonic endodontic dental apparatus | |
US6348051B1 (en) | Preparation instruments | |
US4406284A (en) | Ultrasonic handpiece design | |
US3874372A (en) | Insert for ultrasonic medical device | |
US4861332A (en) | Ultrasonic probe | |
JP2009500798A (en) | Plasma generator, surgical plasma apparatus, use of plasma generator, and method for generating plasma | |
JPH0767460B2 (en) | Ultrasonic treatment device | |
JP2002153500A (en) | Liquefaction crushing handpiece and its tip | |
US3543757A (en) | Instrument for crushing concretions in the urinary bladder | |
JP2003512131A (en) | Liquefaction crush handpiece | |
JP2000511081A (en) | Ultrasonic generation handpiece including a plurality of piezoelectric elements and a radiator | |
EP0624344A2 (en) | Diathermy handpiece with endoscopic probe | |
US5749727A (en) | Transducer activated subgingival tool tip | |
US6589191B2 (en) | Manually actuable ultrasonic disintegrator for breaking up or removing human or animal tissue | |
JP4588713B2 (en) | Device for coagulating tissue | |
JPH06277227A (en) | Laser medical treatment device | |
KR100380713B1 (en) | Transducer-operated tool and inserts and tool tips for the tool | |
DE19700270A1 (en) | Handpiece for a multifunctional endoscopic surgical device and such a surgical device |