CA2535467C - Electrosurgical device - Google Patents

Electrosurgical device Download PDF

Info

Publication number
CA2535467C
CA2535467C CA002535467A CA2535467A CA2535467C CA 2535467 C CA2535467 C CA 2535467C CA 002535467 A CA002535467 A CA 002535467A CA 2535467 A CA2535467 A CA 2535467A CA 2535467 C CA2535467 C CA 2535467C
Authority
CA
Canada
Prior art keywords
irrigation
end portion
vacuum
tube
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002535467A
Other languages
French (fr)
Other versions
CA2535467A1 (en
Inventor
William Douglas Fox
Richard F. Schwemberger
Edward Joseph Biehle, Iv
Harry C. Parkhurst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/773,401 external-priority patent/US5273524A/en
Application filed by Ethicon Inc filed Critical Ethicon Inc
Publication of CA2535467A1 publication Critical patent/CA2535467A1/en
Application granted granted Critical
Publication of CA2535467C publication Critical patent/CA2535467C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

An electrosurgical device for laparoscopic use in tissue dissection and coagulation. The device includes a barrel member having a dissection tip at the distal end thereof that is connected to a source of electrical energy. An insulating sheath member surrounds the barrel member. The sheath member is movable between a first position wherein the distal end thereof extends distally beyond the dissection tip and a second position wherein the dissection tip extends distally beyond the distal end portion of the sheath member. The device includes means to flush and vacuum the surgical site. The device also includes pressure relief means to limit the internal pressure within the device.

Description

ELECTROSURGICAL DEVICE
Related Applications This application is a division of Canadian Patent Application No. 2,079,969 filed October 6, 1992.
Field Of The Invention .-.--This invention generally relates to an electrosurgical or electrocautery device for use in tissue dissection and coagulation. More particularly, the invention relates to a disposable electrosurgical device that is adapted for use laparoscopically through a trocar tube.
l0 Backcround Of The Invention Surgery using laparoscopic procedures is gaining popularity among surgeons due to patient demand for less invasive surgery. Electrosurgical or electrocautery devices are well known for use in cutting and cauterizing tissue. A common use of these devices laparoscopically is in a procedure called cholecystectomy, or gallbladder removal. There have been some reported instances of injuries caused by such use of known electrosurgical devices. One of the more common injuries is bowel burn, which occurs with inadvertent direct contact of the tip of the instrument with the bowel or when an electrical charge from the device jumps or sparks to the bowel.
Electrosurgical devices have heretofore included an insulated barrel that terminates in an electrically conductive dissection tip extending outward from the distal end thereof. The dissection tip is in electrical communication with a monopolar electrosurgical generator (ESU). These ESU's typically generate two types of radio frequency electrosurgical waveforms; namely, a "Cut" and a "Coag" waveform. It is known to provide such devices with means to selectively irrigate or flush the surgical site with liquids and vacuum means to selectively remove excess body fluids and irrigation liquids from the surgical site.
In order to protect the dissection tip it is known to provide a tubular shield member that slips over the distal end of the barrel in surrounding relationship with respect to the dissection tip. Prior to use, it is necessary to remove the tubular shield member. Upon removal of the shield member and insertion of the barrel through a trocar tube during a laparoscopic procedure, the surgeon no longer has the ability to cover or shield the dissecting tip. As alluded to above, an unshielded dissecting tip may cause damage to body organs. Also, insertion and extraction of an unshielded tip may cause damage to the seal members associated with the trocar assembly.
It has heretofore been proposed to protect the dissection tip by providing a remote means to retract the dissection tip. This device includes structural elements located in the barrel that preclude use of the barrel to direct a laser fiber associated with a cooperating laser device therethrough or to permit an instrument to be directed therethrough.
There is a need for an electrosurgical device that includes a retractable electrode sheath that may be remotely and selectively controlled by the surgeon to protect the dissection tip and the trocar assembly seal during insertion and retraction and to protect body organs during surgery. There is further a need for an electrosurgical device that may be operated with one hand and that may accept laser devices of varying sizes. There also is a need for an electrosurgical device that is safe and reliable in operation and economical to manufacture.
Summary of the Invention The present invention provides an electrosurgical device, comprising: a handle member; an elongated barrel member having a proximal end portion and a distal end portion; an electrode member extending outwardly from the distal end portion of said barrel member; means for connecting said electrode member to a source of electrical energy; a manifold member positioned in said handle member in communication with the proximal end portion of said barrel member; an irrigation tube positioned in said handle member, said irrigation tube having a first end portion in communication with said manifold member and a second end portion adapted to be connected to an irrigation unit; a vacuum tube positioned in said handle member, said vacuum tube having a first end portion in communication with said manifold member and a second end portion adapted to be connected to a vacuum source; and pressure vent means in communication with said irrigation tube for venting excess pressure therefrom.
An insulating sheath member, having a proximal end portion and a distal end portion, is positioned in surrounding relationship with the barrel member. The proximal end portion of the sheath member extends into the handle member. The sheath member is movable between a first position wherein the distal end portion thereof extends distally beyond a distal end portion of the electrone member and a second position wherein a distal end portion of the electrode member extends distally beyond the distal end portion of the sheath member. A
control means permits selective movement of the sheath member between its first and second positions.
The control means may include a slide member that is secured to.the proximal end portion of the sheath member. The slide member is attached to the handle member so as to permit movement thereof between a first position wherein the sheath member is in its first position and a second position wherein the sheath member is in its second position.
The handle member may be provided with an access port that communicates with the proximal end portion of the barrel member for receipt of a laser device or other instruments therethrough.
The device is preferably provided with means to selectively irrigate or flush the surgical site with liquids and vacuum means to selectively remove excess body fluids and irrigation liquids from the surgical site. In accordance with a preferred embodiment, a manifold member is located in the handle member in communication with the proximal end portion of the barrel member. An irrigation tube is positioned in the handle member having a first end portion in communication with the manifold member and a second end portion adapted t~ be connected to an irrigation unit.
A vacuum tube is positioned in the handle member having a first end portion iri communication with the manifold member and a second end portion adapted to be connected to a vacuum source. The irrigation tube and the vacuum are provided with separate flow control means for selectively permitting and precluding fluid flow through the tubes.
Each flow control means includes a pivotal lever member selectively movable between a first position permitting flow through the corresponding tube and a second position pinching the corresponding tube so as to preclude flow therethrough. The pivotal member is spring biased into its second position. A corresponding button member extends outwardly through the handle member for controlling the movement of each of the lever members between their first and second positions.
A pressure relief means is preferably provided to limit the internal pressure within the device to from about 10 psig to about 30 psig. A connector assembly is located in the handle member. The connector assembly includes an irrigation inlet port adapted to be connected to an irrigation unit and an irrigation outlet port connected to the second end portion of the irrigation tube. The irrigation tube is in fluid communication with the irrigation inlet port through an irrigation flow channel extending therebetween. The connector assembly also includes a vacuum inlet port adapted to be connected to a vacuum source and a vacuum outlet port connected to the second end portion of the vacuum tube in fluid communication with the vacuum inlet port through a vacuum flow channel extending therebetween. A shunt channel extends between the irrigation and vacuum flow channels. A pressure vent valve member is located in the shunt channel to vent excess pressure in the irrigation flow channel through the shunt channel into the vacuum flow channel.
brief Description Of The Drawinas:
A more complete appreciation of this invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference numerals indicate the same or similar components, wherein:
FIG. 1 is a cross-sectional view of an electrosurgical device constructed in accordance with the present invention showing the sheath member in its first position;
FIG. 2 is an elevational view, partially broken away, of the electrosurgical device shown in FIG.1 showing the sheath member in its second position:
FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 1 showing a pressure vent connector assembly constructed in accordance with the invention;
FIG. 4 is a cross-sectional view taken along line 4-4 in FIG. 1 showing the flow control means in accordance with the invention: and FIG. 5 is an exploded perspective view of the flow control means as shown in FIG. 4.
getailed Description of the Preferred Embodiments Referring to FIG. 1, there is shown an electrosurgical or electrocautery device 10 for use in tissue dissection, coagulation, irrigation, and fluid evacuation. Device 10 is a hand-held, disposable surgical instrument intended to be used to perform various surgical procedures, such as cholecystectomies (gall bladder removal) and appendectomies (appendix removal). The device is used laparoscopically through a mm (or similarly sized) trocar tube or cannula to perform minimally invasive surgical techniques that replace prior open surgery methods.
Electrosurgical device 10 includes a handle 5 member 12, an elongated barrel member 14, an electrode member 16, a means 18 for connecting the electrode member 16 to a source of electrical energy, an insulating sheath member 20, and a control means 22 for controlling the movement of the sheath member. In accordance with a preferred embodiment, handle member 12 is a pistol-style grip that may be held in one hand in two alternative attitudes.
Barrel member 14 is a hollow cylindrical member made from a conductive metallic material, such as stainless steel. Barrel member 14 has a proximal end portion 24 that extends into handle member 12 and is rigidly attached thereto. Distal end portion 26 of barrel member 14 has a suitable electrode member or dissection tip 16 rigidly secured thereto. Electrode member 16 may take one of many known forms, such as a hook, spatula, ballpoint, or the like. Electrical energy is supplied to the electrode member 16 through a means 18 which may include an electrical cord 28 extending through the butt end of handle member 12.
Cord 28 at one end is attached to the proximal end 24 of barrel member 14 through a connecting ring 29 and at the _ g _ other end is connected to a "banana" jack 30 which plugs into a mating jack (not shown) in one of several possible monopolar electrosurgical generators (ESU's) that are well known in the art. These ESU's typically generate two types of radio frequency electrosurgical waveforms;
namely, "Cut" and "Coag." The selection of the particular mode of operation may be regulated by a foot control pedal associated with the ESU.
In accordance with a unique feature of the invention, an insulating sheath member 20 is provided in surrounding ~clationship to barrel member 14. Sheath member 20 is preferably a hollow cylindrical member made from a suitable material, such as Teflon~ FEP. Sheath member 20 has a proximal end portion 32 that is received in handle member 12 so as to permit reciprocal movement thereof in a manner that will be further described hereinbelow. Sheath member 20 has a distal end portion 34. Sheath member 20 is movable between a first position wherein distal end portion 34 extends distally beyond the distal end of electrode member 16, as seen in FIG. 1, and a second position wherein the distal end of electrode member 16 extends distally beyond the distal end portion 34 of sheath member 20, as seen in FIG. 2.
As one can appreciate, when sheath member 20 is in its first position, the tip of electrode member 16 is shielded to protect against the electrode member 16 ~ 10 ~
inadvertently contacting body organs when not in use and to protect the seal associated with the trocar assembly as the electrode member 16 is inserted or withdrawn therefrom. When sheath member 20 is in its second position, the electrode or dissecting tip 16 is exposed for use in a well known manner.
Control means 22 selectively controls the movement of the sheath member between its first and second positions. Control means 22 includes a slide member 40 that is attached to the proximal end portion 34 of the sheath member and is movable therewith. Slide member 40 includes a thumb activated activator portion 42 that is located exterior of the top of handle member 12 and a connector portion 44 that is received around the proximal end portion 34 of the sheath member within handle member 12. A guide portion 46 extends between activator portion 42 and connector portion 44. Guide portion 46 includes a slide section 48 that extends through an elongated slot or opening 50 formed in handle member 12. Guide portion 46 includes a forward leaf section 52 and a rearward leaf section 54 that are spaced from activator portion 42 and slidably receive corresponding portions of handle member 12 that are forward and rearward of slot 50 therebetween. Connector portion 42 extends from leaf section 52. Forward and rearward movement of activator portion 42 causes slide section 46 to move between the forward and rearward ends of slot 50 and thereby move sheath member 20 between its first and second positions. Connector portion 44 is connected to proximal end portion 34 by a polyethylene shrink tube 56.
The proximal end portion 24 of barrel member 14 extends into and is in fluid communication with a tubular manifold member 60 positioned in handle member 12. Manifold member 60 is in axial alignment with barrel member 14 and is formed with an irrigation port or fitting 62 and a vacuum port or fitting 64. An irrigation tube 66 is positioned in handle member 12 having a first end portion 68 connected to port 62 and a second end portion adopted to be connected to an irrigation unit in a manner as further described hereinbelow. A vacuum tube 70 is positioned in handle member 12 having a first end portion 72 connected to port 64 and a second end portion adapted to be connected to a vacuum source as described hereinbelow.
Referring to FIGS. l, 4 and 5, a unique flow control means is provided to selectively permit and preclude flow through each of the tubes 66 and 70. The flow control means for each of the tubes are substantially identical and are located in a side by side relationship. Accordingly, only the flow control means associated with vacuum tube 70 shall be described in detail herein. The vacuum flow control means includes a pivotal level member 74 that is pivotally mounted within handle member 12 about pivot pin 76.
Lever member 74 includes a tube pinching portion 78 and a thumb-actuated button portion 80. Pivotal movement of lever member 74 causes portion 78 to move between a first position permitting flow or the creation~of a vacuum through the tube and a second position pinching the tube precluding flow or the creation of a vacuum through the tube. As shown in FIG. 1, when lever member 74 is in its second position, .tube 70 is pinched between portion 78 and a post member 82 located in the handle member. Button portion 80 extends outwardly through an opening in the handle member for controlling the pivotal movement of lever member 74 between its first and second positions. A leaf spring member 84 biases lever member 74 into its second position.
In accordance with a unique feature of the invention, a pressure vent means is provided in communication with irrigation tube 66 for venting excess pressure therein. Referring to FIG. 3, a connector assembly 90 is positioned in the handle member 12.
Assembly 90 includes an irrigation inlet port or female Luer lock fitting 92 adapted to be connected to an irrigation unit and an irrigation outlet port 94 connected to the second end portion of irrigation tube 66. Tube 66 is in fluid communication with inlet port 92 through an irrigation flow channel 96 extending therebetween. The irrigation unit may induce a peristaltic pump, IV bag, or rubber squeeze bulb.
Assembly 90 further includes a vacuum inlet port or male fitting 98 adapted to be connected to an electric vacuum pump and a vacuum outlet port 100 connected to the second end portion of the vacuum tube 70. Tube 70 is in fluid communication with inlet port 98 through a vacuum flow channel 102 extending therebetween. A shunt channel 104 extends between channels 96 and 102.
A pressure vent means 106 is positioned in shunt channel 104 to vent excess pressure in irrigation flow channel 96 and irrigation tube 66 through the shunt channel 104, vacuum flow channel 102 and vacuum tube 70.
Pressure vent means 106 preferably includes a check ball valve member 108 that is biased into a position precluding flow through shunt channel 104 by a spring member 110. Spring member 110 is preferably selected to preclude the internal pressure in the irrigation tube 66 from exceeding from about 10 psig to about 30 psig.
Pressure vent means 106 protects the device 10 and the irrigation pumps.
An access port 112 may be provided in axial alignment with manifold member 60 and barrel member 14 for insertion of a YAG laser implement or other implements through access port 112, manifold member 60 and barrel member 14. Access port 112 is preferably made of silicone rubber.
The unique features of the electrosurgical 5 device in accordance with the invention will become apparent form the following description of the basic operation thereof. A patient grounding pad (return electrode) is firmly affixed to the patient in an area that is electrically near the operation site in a well known manner. The grounding pad is the return path for monopolar elec'~rical current to return to the ESU unit.
The single patient use disposable device 10 is removed from its sterile package. A vacuum line (not shown) is pushed onto the inlet port 98 and an irrigation supply line (not shown) is connected to the Luer~ lock fitting 92. The universal electrosurgical banana jack 30 plugs into a universal adapter or directly into the ESU unit.
The vacuum, irrigation, and the ESU units are turned on and the device is ready for use.
In many laparoscopic operations, the abdomen of the patient is first inflated using a hollow air needle. Two or more trocar tubes are typically then pierced through the abdominal wall to provide paths for introducing an endoscope and other laparoscopic instruments, such as electrosurgical device 10. An endoscope is necessary for viewing the procedure on a CRT monitor.
At such time as the use of electrosurgical device 10 is required, the barrel member 14 with the sheath member 20 in its first position (as shown in FIG.
1) is directed through a 5 mm trocar tube into the operation site. The surgeon may conveniently expose the dissection tip 16 by moving control means 22 into its second position causing sheath 20 to move into its second position (as shown in FIG. 2). The surgeon may energize the dissection tip to the appropriate power level ("Cut" or "Coag") using the ESU foot pedal.
If the surgeon deems that laser dissection is preferred instead of electrosurgery, the surgeon pierces the access port 112 using a needle or laser media. The surgeon may then push the laser fiber of a YAG laser unit through access port 112, manifold member 60 and down the barrel member 14, leaving the active end of the fiber positioned alongside tip 16. The laser can then be energized using controls on the laser unit.
After a period of dissection, the operation site can be rinsed by depressing the irrigation button 80 on the handle, causing the irrigation lever member 74 to move into its first position against the bias of spring member 84. Rinsing stops when the irrigation button 80 is released and the irrigation lever member 74 returns to its second position. After rinsing, vacuum button 80 may be depressed to move vacuum lever member 74 into its first position against the bias of spring member 84 to vacuum the fluids from the site. Although not shown, buttons 80 may be provided with a lock to selectively retain the buttons in their first positions.
The sheath member 20 may be moved into its first position in covering relationship to dissecting tip 16 at any time during the procedure by moving control 22 into its first position which in turn causes sheath member 20 to move into its first position. This function is particularly useful in protecting delicate organs during the vacuum function, and during introduction and withdrawal of barrel member 14 through the trocar tube.
When the surgical repair is completed, the barrel member 14 is withdrawn from the trocar tube and the device 10 is unhooked from the pumps and ESU unit, and is discarded.
From the foregoing, it will be observed that numerous modifications and corrections can be effected without departing from the true spirit and scope of the novel concepts of the present invention. It will be understood that no limitation with respect to the specific embodiment illustrated herein is intended or should be inferred. It is, of course, intended to cover - 1.7 -by the appended claims all such modifications as fall within the scope of the claims.

Claims (5)

Claims:
1. An electrosurgical device, comprising:
a handle member;
an elongated barrel member having a proximal end portion and a distal end portion;
an electrode member extending outwardly from the distal end portion of said barrel member;
means for connecting said electrode member to a source of electrical energy;
a manifold member positioned in said handle member in communication with the proximal end portion of said barrel member;
an irrigation tube positioned in said handle member, said irrigation tube having a first end portion in communication with said manifold member and a second end portion adapted-to be connected to an irrigation unit;
a vacuum tube positioned in said handle member, said vacuum tube having a first end portion in communication with said manifold member and a second end portion adapted to be connected to a vacuum source;
and pressure vent means in communication with said irrigation tube for venting excess pressure therefrom.
2. The electrosurgical device as defined in claim 1 wherein said pressure vent means precludes the internal pressure in said irrigation tube from exceeding from about 10 psig to about 30 psig.
3. The electrosurgical device as defined in claim 1 further including a connector assembly positioned in said handle member, said connector assembly having an irrigation inlet port adapted to be connected to an irrigation unit and an irrigation outlet port connected to the second end portion of said irrigation tube in fluid communication with said irrigation inlet port through an irrigation flow channel extending therebetween, said connector assembly having a vacuum inlet port adapted to be connected to a vacuum source and a vacuum outlet port connected to the second end portion of said vacuum tube in fluid communication with said vacuum inlet port through a vacuum flow channel extending therebetween, said connector assembly having a shunt channel extending between said irrigation flow channel and said vacuum flow channel, said pressure vent means being positioned in said shunt channel to vent excess pressure in said irrigation flow channel through said shunt channel into said vacuum flow channel.
4. The electrosurgical device as defined in claim 3 wherein said pressure vent means is a spring biased check ball valve.
5. The electrosurgical device as defined in Claim 4 wherein said pressure vent means limits the internal pressure in said irrigation flow channel to from about psig to about 30 psig.
CA002535467A 1991-10-09 1992-10-06 Electrosurgical device Expired - Lifetime CA2535467C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/773,401 US5273524A (en) 1991-10-09 1991-10-09 Electrosurgical device
US773,401 1991-10-09
CA002079969A CA2079969C (en) 1991-10-09 1992-10-06 Electrosurgical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002079969A Division CA2079969C (en) 1991-10-09 1992-10-06 Electrosurgical device

Publications (2)

Publication Number Publication Date
CA2535467A1 CA2535467A1 (en) 1993-04-10
CA2535467C true CA2535467C (en) 2008-04-01

Family

ID=36141786

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002535467A Expired - Lifetime CA2535467C (en) 1991-10-09 1992-10-06 Electrosurgical device

Country Status (1)

Country Link
CA (1) CA2535467C (en)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP3162309B1 (en) 2004-10-08 2022-10-26 Ethicon LLC Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US9554843B2 (en) 2006-09-01 2017-01-31 Conmed Corporation Adapter and method for converting gas-enhanced electrosurgical coagulation instrument for cutting
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057470B2 (en) * 2007-08-30 2011-11-15 Conmed Corporation Integrated smoke evacuation electrosurgical pencil and method
EP2796102B1 (en) 2007-10-05 2018-03-14 Ethicon LLC Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
JP6165780B2 (en) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Robot-controlled surgical instrument
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US20150112335A1 (en) * 2013-10-18 2015-04-23 Ethicon Endo-Surgery, Inc. Electrosurgical devices with fluid flow control
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US20210196358A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes biasing support
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system

Also Published As

Publication number Publication date
CA2535467A1 (en) 1993-04-10

Similar Documents

Publication Publication Date Title
CA2535467C (en) Electrosurgical device
CA2079969C (en) Electrosurgical device
EP0479482B1 (en) Electrosurgical laparoscopic cauterisation electrode
JP3428986B2 (en) Electrosurgical device suitable for laparoscopic surgery
US7935109B2 (en) Multifunctional telescopic monopolar/bipolar surgical device and method thereof
US5300069A (en) Electrosurgical apparatus for laparoscopic procedures and method of use
US5254117A (en) Multi-functional endoscopic probe apparatus
US6702812B2 (en) Multifunctional telescopic monopolar/bipolar surgical device and method therefor
US5609573A (en) Electrosurgical suction/irrigation instrument
JP3423733B2 (en) Endoscopic surgical instruments for suction and irrigation
US5366476A (en) Handle for laparoscopic instrument
US7507232B1 (en) Flexible electrosurgical electrode with manipulator
JP3602794B2 (en) Multi-function telescoping instrument
EP3573556B1 (en) Electrosurgical apparatus with flexible shaft
US6346106B1 (en) Instrument and method employing snare electrode windable about rotatable spool for minimally invasive electrosurgical resection
WO1995015123A1 (en) Multifunction laser-powered surgical tool with optical electrocautery capability
JPH05269141A (en) Combined laparoscope type electric surgical tool and probe
EP3031420B1 (en) Energizable attachment for surgical devices
EP3965678B1 (en) Medical device
CA2524529C (en) Multifunctional electrosurgical instrument, and method therefor
RU2083170C1 (en) Electrode-forceps
CA2497683C (en) Endoscopic surgical instrument for aspiration and irrigation

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry