JP3064458B2 - 厚み縦振動圧電磁器トランスとその駆動方法 - Google Patents
厚み縦振動圧電磁器トランスとその駆動方法Info
- Publication number
- JP3064458B2 JP3064458B2 JP3069609A JP6960991A JP3064458B2 JP 3064458 B2 JP3064458 B2 JP 3064458B2 JP 3069609 A JP3069609 A JP 3069609A JP 6960991 A JP6960991 A JP 6960991A JP 3064458 B2 JP3064458 B2 JP 3064458B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric ceramic
- thickness
- transformer
- longitudinal vibration
- low impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000000919 ceramic Substances 0.000 claims description 66
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 27
- 230000010287 polarization Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 229910052573 porcelain Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/40—Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Description
【0001】
【産業上の利用分野】本発明は、高周波帯で動作可能な
圧電磁器トランス、特に小型化、低ノイズ化が要求され
るオンボード用圧電磁器トランスに関する。
圧電磁器トランス、特に小型化、低ノイズ化が要求され
るオンボード用圧電磁器トランスに関する。
【0002】
【従来の技術】近年、電子装置を小型化するために、ス
イッチング電源のスイッチング周波数の高周波化が図ら
れている。従来より、このスイッチング電源には電磁ト
ランスが用いられているが、このスイッチング周波数を
高くすると、電磁トランスに用いられている磁性材料の
ヒステリシス損失、渦電流損失や導線の表皮効果による
損失が急激に増大し、トランスの効率が非常に低くなる
欠点があった。このため、電磁トランスの実用的な周波
数帯域の上限はせいぜい500KHzであった。
イッチング電源のスイッチング周波数の高周波化が図ら
れている。従来より、このスイッチング電源には電磁ト
ランスが用いられているが、このスイッチング周波数を
高くすると、電磁トランスに用いられている磁性材料の
ヒステリシス損失、渦電流損失や導線の表皮効果による
損失が急激に増大し、トランスの効率が非常に低くなる
欠点があった。このため、電磁トランスの実用的な周波
数帯域の上限はせいぜい500KHzであった。
【0003】これに対して、圧電磁器トランスは、共振
状態で使用され、一般の電磁トランスに比べて(1)同
一の周波数においてエネルギー密度が高いため小型化が
図れること、(2)不燃化が図れること、(3)電磁誘
導によるノイズがでないこと、など、数多くの長所を有
している。
状態で使用され、一般の電磁トランスに比べて(1)同
一の周波数においてエネルギー密度が高いため小型化が
図れること、(2)不燃化が図れること、(3)電磁誘
導によるノイズがでないこと、など、数多くの長所を有
している。
【0004】図4には従来の代表的な圧電トランスであ
るローゼン型圧電トランスの構造を示す。以下、図面に
沿って説明する。高電圧を取り出す場合、表面に電極が
設けられた圧電磁器板において、41で示す部分は圧電
トランスの低インピーダンスの駆動部分であり、その上
下面に電極43、44が設けられており、この部分は高
インピーダンスの発電部分であり、その端面に電極45
が設けられており、発電部分42は図中47で示すよう
に圧電磁器板の長さ方向に分極されている。この圧電ト
ランスの動作は、駆動電極43、44に電圧が印加され
ると横効果31モードで電気機械結合係数k31によって
縦振動が励振され、トランス全体が振動する。さらに発
電部分42では、電気機械結合係数k33により縦効果縦
振動(33モード)により、出力電極45から高電圧が
取り出せる。一方、高電圧を入力して低電圧を出力させ
るには、縦効果の高インピーダンス部分42を入力側と
し、横効果の低インピーダンス部分41を出力側にすれ
ばよいことは明らかである。他の圧電トランスいずれも
ローゼン型と同じ平板の伸び振動や円板径方向の径広が
り振動を利用したものであり、適用周波数は最高200
kHzまでである。
るローゼン型圧電トランスの構造を示す。以下、図面に
沿って説明する。高電圧を取り出す場合、表面に電極が
設けられた圧電磁器板において、41で示す部分は圧電
トランスの低インピーダンスの駆動部分であり、その上
下面に電極43、44が設けられており、この部分は高
インピーダンスの発電部分であり、その端面に電極45
が設けられており、発電部分42は図中47で示すよう
に圧電磁器板の長さ方向に分極されている。この圧電ト
ランスの動作は、駆動電極43、44に電圧が印加され
ると横効果31モードで電気機械結合係数k31によって
縦振動が励振され、トランス全体が振動する。さらに発
電部分42では、電気機械結合係数k33により縦効果縦
振動(33モード)により、出力電極45から高電圧が
取り出せる。一方、高電圧を入力して低電圧を出力させ
るには、縦効果の高インピーダンス部分42を入力側と
し、横効果の低インピーダンス部分41を出力側にすれ
ばよいことは明らかである。他の圧電トランスいずれも
ローゼン型と同じ平板の伸び振動や円板径方向の径広が
り振動を利用したものであり、適用周波数は最高200
kHzまでである。
【0005】それに対し、本発明者らはすでに厚み方向
に分極した圧電磁器板を積み重ねた構造であり、厚み縦
振動の共振周波数で駆動する事により、MHz帯での動
作が可能な圧電磁器トランスを提案している。(特願平
1−139525)。
に分極した圧電磁器板を積み重ねた構造であり、厚み縦
振動の共振周波数で駆動する事により、MHz帯での動
作が可能な圧電磁器トランスを提案している。(特願平
1−139525)。
【0006】
【発明が解決しようとする課題】本発明者らがすでに提
案した厚み縦振動モードを用いた積層圧電磁器トランス
を駆動させる際、低インピーダンス部の分極が厚み方向
に一様で同じ向きでありかつ各磁器層の厚みが均一であ
ると、低インピーダンス部全体で電荷のキャンセルが起
こり、各磁器層に誘起される電界は互いに打ち消し合
う。すなわち、蓄えられる静電エネルギーはキャンセル
されて電力伝送効率は低下する。
案した厚み縦振動モードを用いた積層圧電磁器トランス
を駆動させる際、低インピーダンス部の分極が厚み方向
に一様で同じ向きでありかつ各磁器層の厚みが均一であ
ると、低インピーダンス部全体で電荷のキャンセルが起
こり、各磁器層に誘起される電界は互いに打ち消し合
う。すなわち、蓄えられる静電エネルギーはキャンセル
されて電力伝送効率は低下する。
【0007】また、従来の分極法では素子全体を厚み方
向に一様に分極後、低インピーダンス部の各磁器層を、
互いに向きを変えて分極していたが、この方法では低イ
ンピーダンス部の分極反転にともなう機械的歪により、
電極の剥離や圧電磁器層の破壊が部分的に起こり、この
ため圧電磁器トランスの機械的品質係数Qmが低下し、
圧電磁器トランスの電力伝送効率が劣化する欠点があっ
た。
向に一様に分極後、低インピーダンス部の各磁器層を、
互いに向きを変えて分極していたが、この方法では低イ
ンピーダンス部の分極反転にともなう機械的歪により、
電極の剥離や圧電磁器層の破壊が部分的に起こり、この
ため圧電磁器トランスの機械的品質係数Qmが低下し、
圧電磁器トランスの電力伝送効率が劣化する欠点があっ
た。
【0008】さらには、先の圧電トランスでは構造的に
出力端子対を複数個とすることは困難であった。
出力端子対を複数個とすることは困難であった。
【0009】
【課題を解決するための手段】本発明は、内部電極と圧
電磁器層とが交互に積層された構造を有し、該積層体中
に低インピーダンス部と高インピーダンス部とが形成さ
れた厚み縦振動圧電磁器トランスであって、複数の圧電
磁器層からなる低インピーダンス部では、駆動時に電荷
分布の最大になる位置またはその近傍に他の圧電磁器層
より厚みの薄い圧電磁器層が1また2以上配置されてお
り、また該トランスにおいて、各内部電極間の圧電磁器
層は厚さ方向にかつ同じ向きに分極されている。
電磁器層とが交互に積層された構造を有し、該積層体中
に低インピーダンス部と高インピーダンス部とが形成さ
れた厚み縦振動圧電磁器トランスであって、複数の圧電
磁器層からなる低インピーダンス部では、駆動時に電荷
分布の最大になる位置またはその近傍に他の圧電磁器層
より厚みの薄い圧電磁器層が1また2以上配置されてお
り、また該トランスにおいて、各内部電極間の圧電磁器
層は厚さ方向にかつ同じ向きに分極されている。
【0010】また、低インピーダンス部と高インピーダ
ンス部を同時に厚み方向にかつ同じ向きに分極した該圧
電磁器トランスにおいて、上下面を平行平面研磨するこ
とにより厚み縦振動の2分の1波長モードあるいは1波
長モードの共振周波数が所期の周波数と一致するように
厚さを調整し、その共振周波数で駆動することを特徴と
する駆動方法である。
ンス部を同時に厚み方向にかつ同じ向きに分極した該圧
電磁器トランスにおいて、上下面を平行平面研磨するこ
とにより厚み縦振動の2分の1波長モードあるいは1波
長モードの共振周波数が所期の周波数と一致するように
厚さを調整し、その共振周波数で駆動することを特徴と
する駆動方法である。
【0011】
【作用】本発明は、1MHz以上の高周波において低損
失で十分な機能を有する圧電トランスを提供するために
なされたものである。図1に例示するように、本発明の
圧電磁器トランスは、厚み方向に分極され厚みの異なる
圧電磁器層111〜115を多数積層した低インピーダ
ンス部11と単層もしくはせいぜい2、3層の圧電磁器
層からなる高インピーダンス部12および周波数調整用
磁器層13、14、低インピーダンス部11と高インピ
ーダンス部を電気的に分離する働きを持つ絶縁層15で
構成されている。ここで低インピーダンス部11の圧電
磁器板を隣接する各層の分極が厚み方向にかつ同じ向き
に一様になるように、また各層の厚みがt2 >t1 とな
るように積層している。厚みt1 をもつ大容量の、相対
向する2つの電極を有する磁器層が電荷分布の最大にな
る位置k近いほど電力伝送効率が高くなることは言うま
でもない。このような構造に設計することで低インピー
ダンス部の電荷のキャンセルの少ない、従って電力伝送
効率の高い圧電磁器トランスを実現できる。
失で十分な機能を有する圧電トランスを提供するために
なされたものである。図1に例示するように、本発明の
圧電磁器トランスは、厚み方向に分極され厚みの異なる
圧電磁器層111〜115を多数積層した低インピーダ
ンス部11と単層もしくはせいぜい2、3層の圧電磁器
層からなる高インピーダンス部12および周波数調整用
磁器層13、14、低インピーダンス部11と高インピ
ーダンス部を電気的に分離する働きを持つ絶縁層15で
構成されている。ここで低インピーダンス部11の圧電
磁器板を隣接する各層の分極が厚み方向にかつ同じ向き
に一様になるように、また各層の厚みがt2 >t1 とな
るように積層している。厚みt1 をもつ大容量の、相対
向する2つの電極を有する磁器層が電荷分布の最大にな
る位置k近いほど電力伝送効率が高くなることは言うま
でもない。このような構造に設計することで低インピー
ダンス部の電荷のキャンセルの少ない、従って電力伝送
効率の高い圧電磁器トランスを実現できる。
【0012】また、本発明の圧電磁器トランスは厚み縦
振動共振モードで駆動させるため、使用される材料には
輪郭広がり振動のスプリアス振動を抑制した、すなわち
電気機械結合係数の異方性を有する材料、例えばPbT
iO3 系材料を用いる。従来、分極操作の際には素子全
体を厚み方向にかつ同じ向きに一様に分極処理した後、
低インピーダンス部を、電極に挟まれた各磁器層の分極
の向きが互いに逆向きになるようにさらにもう1回の分
極操作を行うが、PbTiO3 系材料のように結晶の軸
率c/aの大きな材料を用いて作製した圧電磁器トラン
スに対してこの方法を用いると、低インピーダンス部の
分極反転に伴う歪が大きいために、電極の剥離や圧電磁
器の部分的な破壊が起こり易くなる。電極の剥離や圧電
磁器の破壊は電力伝送効率を低下させる。そこで高イン
ピーダンス部と低インピーダンス部を1回で同時に、ま
た厚み方向にかつ同じ向きに一様な分極操作を行うこと
により、電極の剥離や圧電磁器の破壊を完全になくすこ
とができる。
振動共振モードで駆動させるため、使用される材料には
輪郭広がり振動のスプリアス振動を抑制した、すなわち
電気機械結合係数の異方性を有する材料、例えばPbT
iO3 系材料を用いる。従来、分極操作の際には素子全
体を厚み方向にかつ同じ向きに一様に分極処理した後、
低インピーダンス部を、電極に挟まれた各磁器層の分極
の向きが互いに逆向きになるようにさらにもう1回の分
極操作を行うが、PbTiO3 系材料のように結晶の軸
率c/aの大きな材料を用いて作製した圧電磁器トラン
スに対してこの方法を用いると、低インピーダンス部の
分極反転に伴う歪が大きいために、電極の剥離や圧電磁
器の部分的な破壊が起こり易くなる。電極の剥離や圧電
磁器の破壊は電力伝送効率を低下させる。そこで高イン
ピーダンス部と低インピーダンス部を1回で同時に、ま
た厚み方向にかつ同じ向きに一様な分極操作を行うこと
により、電極の剥離や圧電磁器の破壊を完全になくすこ
とができる。
【0013】このような内部多層電極構造を有する圧電
磁器トランスは、積層セラミックコンデンサーや積層圧
電アクチュエター等で用いられている積層セラミック技
術(ドクターブレード法)で作製可能であり、このよう
な方法で作製した圧電磁器トランスでは層間隔を20μ
m程度まで薄くすることができる。従って、2分の1波
長モード(両端自由の基本モード)あるいは1波長モー
ド(両端自由の2次モード)で厚み縦共振振動を利用す
るとしても、積層セラミック技術を用いて、5〜10M
Hz帯の超高周波領域で動作する圧電磁器トランスも実
現できる。
磁器トランスは、積層セラミックコンデンサーや積層圧
電アクチュエター等で用いられている積層セラミック技
術(ドクターブレード法)で作製可能であり、このよう
な方法で作製した圧電磁器トランスでは層間隔を20μ
m程度まで薄くすることができる。従って、2分の1波
長モード(両端自由の基本モード)あるいは1波長モー
ド(両端自由の2次モード)で厚み縦共振振動を利用す
るとしても、積層セラミック技術を用いて、5〜10M
Hz帯の超高周波領域で動作する圧電磁器トランスも実
現できる。
【0014】厚み縦振動で駆動させる本圧電磁器トラン
スの結線図を図2に示す。低インピーダンス部11の内
部電極16に電気端子23、24を図のように接続す
る。このように接続した場合、高インピーダンス側の電
気端子21、22間に厚み縦振動の共振周波数と等しい
周波数の高電圧を印加すると、高インピーダンス部12
の圧電逆効果により圧電磁器トランスは機械的に共振し
低インピーダンス部11では圧電正効果により入力電圧
と同一周波数の電圧が発生し、電気端子21、22間に
出力する。その際、入力側と出力側のインピーダンスの
違いにより、電気端子23、24間の電圧は電気端子2
1、22間の電圧よりも低くなる。逆に低電圧を高電圧
に変換する場合は、電気端子23、24間に低電圧を印
加すれば端子21、22間から高電圧が出力されること
はもちろん可能である。
スの結線図を図2に示す。低インピーダンス部11の内
部電極16に電気端子23、24を図のように接続す
る。このように接続した場合、高インピーダンス側の電
気端子21、22間に厚み縦振動の共振周波数と等しい
周波数の高電圧を印加すると、高インピーダンス部12
の圧電逆効果により圧電磁器トランスは機械的に共振し
低インピーダンス部11では圧電正効果により入力電圧
と同一周波数の電圧が発生し、電気端子21、22間に
出力する。その際、入力側と出力側のインピーダンスの
違いにより、電気端子23、24間の電圧は電気端子2
1、22間の電圧よりも低くなる。逆に低電圧を高電圧
に変換する場合は、電気端子23、24間に低電圧を印
加すれば端子21、22間から高電圧が出力されること
はもちろん可能である。
【0015】図2では本発明圧電磁器トランスに対して
高インピーダンス部12に入力1系統、低インピーダン
ス部は相対向する内部電極に挟まれた各圧電磁器を並列
に接続した出力1系統とする結線図を示したが、図3の
ように低インピーダンス部11の電気端子33〜38を
単独に取り出せば、多系統の出力端子対が得られ、様々
な変成比を得ることが可能である。
高インピーダンス部12に入力1系統、低インピーダン
ス部は相対向する内部電極に挟まれた各圧電磁器を並列
に接続した出力1系統とする結線図を示したが、図3の
ように低インピーダンス部11の電気端子33〜38を
単独に取り出せば、多系統の出力端子対が得られ、様々
な変成比を得ることが可能である。
【0016】また、図2に示すように、低インピーダン
ス部11と高インピーダンス部12の間に絶縁層15を
配置すれば電気端子21、22と電気端子23、24を
電気的に分離できるため周辺回路の自由度を増すことが
できる。
ス部11と高インピーダンス部12の間に絶縁層15を
配置すれば電気端子21、22と電気端子23、24を
電気的に分離できるため周辺回路の自由度を増すことが
できる。
【0017】
【実施例】本発明に基づく圧電磁器トランスの実施例と
して、図1に示した構成の圧電磁器トランスを積層セラ
ミック技術により作製した。圧電磁器の材料はPbTi
O3 系圧電磁器(株式会社トーキン製、商品名NEPE
C−200)である。
して、図1に示した構成の圧電磁器トランスを積層セラ
ミック技術により作製した。圧電磁器の材料はPbTi
O3 系圧電磁器(株式会社トーキン製、商品名NEPE
C−200)である。
【0018】低インピーダンス部11の圧電磁器板を、
1層の厚さが約0.17mmのものを3枚、約0.34
mmのものを2枚交互に積層した。但し、厚さ約0.1
7mmの磁器板1枚を電極分布が最大となる位置に配置
した。高インピーダンス部12の厚さは約1.4mmと
し、また低インピーダンス部11と高インピーダンス部
12に挟まれた絶縁層15の厚さを0.2mmとする。
また、周波数調整層13、14にも同じ材料を用い、厚
さは約0.1mmとした。 尚、この周波数調整層は低
インピーダンス部、高インピーダンス部と一体焼成でき
るものであれば一向に構わない。ここで該圧電磁器トラ
ンスの外形寸法を約1.8mm(=l)×1.4mm
(=w)×2.8(t)mmとした。白金ペーストをス
クリーン印刷し圧電磁器板とともに一体焼成することに
より白金の内部電極層16を形成した。焼成後に#30
00の研磨材を用いて上下面に対し平行平面研磨を行っ
た。その後、直流高電圧により分極処理を施した。
1層の厚さが約0.17mmのものを3枚、約0.34
mmのものを2枚交互に積層した。但し、厚さ約0.1
7mmの磁器板1枚を電極分布が最大となる位置に配置
した。高インピーダンス部12の厚さは約1.4mmと
し、また低インピーダンス部11と高インピーダンス部
12に挟まれた絶縁層15の厚さを0.2mmとする。
また、周波数調整層13、14にも同じ材料を用い、厚
さは約0.1mmとした。 尚、この周波数調整層は低
インピーダンス部、高インピーダンス部と一体焼成でき
るものであれば一向に構わない。ここで該圧電磁器トラ
ンスの外形寸法を約1.8mm(=l)×1.4mm
(=w)×2.8(t)mmとした。白金ペーストをス
クリーン印刷し圧電磁器板とともに一体焼成することに
より白金の内部電極層16を形成した。焼成後に#30
00の研磨材を用いて上下面に対し平行平面研磨を行っ
た。その後、直流高電圧により分極処理を施した。
【0019】実施例では本発明圧電磁器トランスを、高
インピーダンス部12の電気端子21、22から厚み縦
2次モード(1波長共振モード)励振する高周波、高圧
電圧信号を入力し、低インピーダンス部11の電気端子
23、24から出力を取り出す降圧型の4端子トランス
として評価した。
インピーダンス部12の電気端子21、22から厚み縦
2次モード(1波長共振モード)励振する高周波、高圧
電圧信号を入力し、低インピーダンス部11の電気端子
23、24から出力を取り出す降圧型の4端子トランス
として評価した。
【0020】一方、外形寸法を本発明圧電磁器トランス
と同様にし、低インピーダンス部の各電極の厚みを均一
(t1 =t2 =約0.25mm)にし、分極処理を素子
厚み方向に同じ向きに一様に施した後、低インピーダン
ス部の各磁器層の分極の向きが厚み方向に対して交互に
異なるように分極処理を施した圧電磁器トランスの電力
伝送効率は、駆動共振周波数1.62MHzにおいて8
5%であるのに対し、本発明圧電磁器トランスは駆動共
振波数1.64MHzにおいて98%の電力伝送効率が
得られた。
と同様にし、低インピーダンス部の各電極の厚みを均一
(t1 =t2 =約0.25mm)にし、分極処理を素子
厚み方向に同じ向きに一様に施した後、低インピーダン
ス部の各磁器層の分極の向きが厚み方向に対して交互に
異なるように分極処理を施した圧電磁器トランスの電力
伝送効率は、駆動共振周波数1.62MHzにおいて8
5%であるのに対し、本発明圧電磁器トランスは駆動共
振波数1.64MHzにおいて98%の電力伝送効率が
得られた。
【0021】別の実施例として図3に示すように、同様
に分極処理を施した本発明圧電磁器トランスを、高イン
ピーダンス部に入力1系統2端子、低インピーダンス部
に出力3系統6端子の降圧型8端子トランスとして評価
したところ、低インピーダンス部の各々の出力端子対か
ら異なる変成比が得られ、電力伝送効率も駆動周波数
1.64MHzにおいて98%の高効率となった。
に分極処理を施した本発明圧電磁器トランスを、高イン
ピーダンス部に入力1系統2端子、低インピーダンス部
に出力3系統6端子の降圧型8端子トランスとして評価
したところ、低インピーダンス部の各々の出力端子対か
ら異なる変成比が得られ、電力伝送効率も駆動周波数
1.64MHzにおいて98%の高効率となった。
【0022】
【発明の効果】以上記述した如く、本発明に従った構成
の圧電磁器トランスは、すでに提案されているものの欠
点を解決し、1MHz以上の高周波帯において使用する
ことができ、かつ小型で高効率であるという従来の圧電
トランスにはない長所があり、工業価値も多大である。
の圧電磁器トランスは、すでに提案されているものの欠
点を解決し、1MHz以上の高周波帯において使用する
ことができ、かつ小型で高効率であるという従来の圧電
トランスにはない長所があり、工業価値も多大である。
【図1】本発明の実施例を示す圧電磁器トランスの斜視
図である。
図である。
【図2】本発明の実施例を示す圧電磁器トランスの結線
図である。
図である。
【図3】本発明の実施例を示す圧電磁器トランスの結線
図である。
図である。
【図4】従来のローゼン型圧電トランスの斜視図であ
る。
る。
11、41 低インピーダンス部 12、42 高インピーダンス部 111、112、113、114、115 磁器層 15 絶縁層 16 内部電極 21、22、23、24、31、32、33、34、3
5、36、37、38 電気端子
5、36、37、38 電気端子
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−206581(JP,A) 特開 平4−196493(JP,A) 特開 平4−18776(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 41/107 H01F 30/00 H01L 41/083
Claims (4)
- 【請求項1】 内部電極と圧電磁器層とが交互に積層さ
れた構造を有し、該積層体中に低インピーダンス部と高
インピーダンス部とが形成された厚み縦振動圧電磁器ト
ランスにおいて、複数の圧電磁器層からなる低インピー
ダンス部では、駆動時に電荷分布の最大になる位置また
はその近傍に他の圧電磁器層より厚みの薄い圧電磁器層
が1または2以上配置されており、また該トランスにお
いて、各内部電極間の圧電磁器層は厚さ方向にかつ同じ
向きに分極されていることを特徴とする厚み縦振動圧電
磁器トランス。 - 【請求項2】 請求項(1)の厚み縦振動圧電磁器トラ
ンスにおいて厚さ方向の上下面を平行平面研磨すること
により、厚み縦振動2分の1波長モードあるいは1波長
モードの周辺数が所期の周波数と一致するように厚さを
調整し、その共振周波数で駆動することを特徴とする厚
み縦振動圧電磁器トランスの駆動方法。 - 【請求項3】 請求項(1)の厚み縦振動圧電磁器トラ
ンスに於いて、高インピーダンス部を入力1系統、低イ
ンピーダンス部の電気端子対を並列接続して出力1系統
とした構成を特徴とする厚み縦振動圧電磁器トランス。 - 【請求項4】 請求項(1)の厚み縦振動圧電磁器トラ
ンスに於いて、高インピーダンス部を入力1系統、低イ
ンピーダンス部の電気端子対を互いに独立として出力多
系統にした構成を特徴とする厚み縦振動圧電磁器トラン
ス。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3069609A JP3064458B2 (ja) | 1991-04-02 | 1991-04-02 | 厚み縦振動圧電磁器トランスとその駆動方法 |
| US07/861,436 US5241236A (en) | 1991-04-02 | 1992-04-01 | Piezoelectric ceramic transformer being driven with thickness extensional vibration |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3069609A JP3064458B2 (ja) | 1991-04-02 | 1991-04-02 | 厚み縦振動圧電磁器トランスとその駆動方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH04304685A JPH04304685A (ja) | 1992-10-28 |
| JP3064458B2 true JP3064458B2 (ja) | 2000-07-12 |
Family
ID=13407767
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3069609A Expired - Fee Related JP3064458B2 (ja) | 1991-04-02 | 1991-04-02 | 厚み縦振動圧電磁器トランスとその駆動方法 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US5241236A (ja) |
| JP (1) | JP3064458B2 (ja) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190020497A (ko) * | 2017-08-21 | 2019-03-04 | 전자부품연구원 | 자기전기 에너지하베스터 및 그의 제조방법 |
Families Citing this family (214)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9021122D0 (en) * | 1990-09-28 | 1990-11-14 | Cookson Group Plc | Composite multilayer ceramic structure |
| JPH08153914A (ja) * | 1994-11-25 | 1996-06-11 | Philips Japan Ltd | 圧電磁器トランス |
| US5912679A (en) * | 1995-02-21 | 1999-06-15 | Kabushiki Kaisha Toshiba | Ink-jet printer using RF tone burst drive signal |
| JP2996137B2 (ja) * | 1995-03-31 | 1999-12-27 | 株式会社村田製作所 | 振動ジャイロ |
| DE29510901U1 (de) * | 1995-07-05 | 1995-08-24 | Siemens AG, 80333 München | Piezoelektrischer Übertrager |
| JP3141744B2 (ja) * | 1995-08-31 | 2001-03-05 | 株式会社村田製作所 | 圧電トランス |
| US6016024A (en) * | 1996-04-05 | 2000-01-18 | Murata Manufacturing Co., Ltd. | Piezoelectric component |
| JP3266031B2 (ja) * | 1996-04-18 | 2002-03-18 | 株式会社村田製作所 | 圧電共振子およびそれを用いた電子部品 |
| JP3271517B2 (ja) * | 1996-04-05 | 2002-04-02 | 株式会社村田製作所 | 圧電共振子およびそれを用いた電子部品 |
| US5939819A (en) * | 1996-04-18 | 1999-08-17 | Murata Manufacturing Co., Ltd. | Electronic component and ladder filter |
| JPH1079639A (ja) * | 1996-07-10 | 1998-03-24 | Murata Mfg Co Ltd | 圧電共振子およびそれを用いた電子部品 |
| JPH1084244A (ja) * | 1996-07-18 | 1998-03-31 | Murata Mfg Co Ltd | 圧電共振子およびそれを用いた電子部品 |
| JP3271541B2 (ja) * | 1996-07-26 | 2002-04-02 | 株式会社村田製作所 | 圧電共振子およびそれを用いた電子部品 |
| JP3577170B2 (ja) * | 1996-08-05 | 2004-10-13 | 株式会社村田製作所 | 圧電共振子とその製造方法およびそれを用いた電子部品 |
| JPH10107579A (ja) * | 1996-08-06 | 1998-04-24 | Murata Mfg Co Ltd | 圧電部品 |
| JPH10126203A (ja) * | 1996-08-27 | 1998-05-15 | Murata Mfg Co Ltd | 圧電共振子およびそれを用いた電子部品 |
| JP3267171B2 (ja) * | 1996-09-12 | 2002-03-18 | 株式会社村田製作所 | 圧電共振子およびそれを用いた電子部品 |
| ES2118042B1 (es) * | 1996-10-03 | 1999-04-16 | Univ Catalunya Politecnica | Transductor piezoelectrico para medida de altas tensiones y su procedimiento de funcionamiento. |
| JPH10126202A (ja) * | 1996-10-23 | 1998-05-15 | Murata Mfg Co Ltd | 圧電共振子およびそれを用いた電子部品 |
| WO1998019348A1 (en) | 1996-10-29 | 1998-05-07 | Dong Il Technology Ltd. | Converter with piezoceramic transformer |
| JP3271538B2 (ja) * | 1996-11-28 | 2002-04-02 | 株式会社村田製作所 | 圧電共振子およびそれを用いた電子部品 |
| US5892318A (en) * | 1997-01-02 | 1999-04-06 | Motorola Inc. | Piezoelectric transformer with multiple output |
| TW356618B (en) * | 1997-01-16 | 1999-04-21 | Nippon Electric Co | AC/DC converter with a piezoelectric transformer |
| TW379457B (en) * | 1997-04-18 | 2000-01-11 | Nippon Electric Co | Laminated piezo transformer |
| DE19737472A1 (de) * | 1997-08-28 | 1999-03-04 | Philips Patentverwaltung | Schaltungsanordnung mit einem piezoelekrischen Transformator |
| JP3262076B2 (ja) * | 1997-10-03 | 2002-03-04 | 株式会社村田製作所 | 圧電共振子、圧電共振子の周波数調整方法および通信機器 |
| JP3082724B2 (ja) * | 1997-11-10 | 2000-08-28 | 日本電気株式会社 | 圧電磁器トランスおよびその製造方法 |
| DK176073B1 (da) * | 1998-03-03 | 2006-04-03 | Limiel Aps | Piezoelektrisk transformer |
| JP3139452B2 (ja) * | 1998-04-10 | 2001-02-26 | 日本電気株式会社 | 圧電トランス及びその製造方法 |
| EP1024540A3 (en) | 1999-01-29 | 2001-09-12 | Seiko Epson Corporation | Piezoelectric transducer and electrophoretic ink display apparatus using piezoelectric transducer |
| CN1138287C (zh) * | 1999-06-01 | 2004-02-11 | 李竑一 | 扩张振模的多输出复合结构压电变压器 |
| JP3478227B2 (ja) * | 1999-08-03 | 2003-12-15 | 株式会社村田製作所 | 圧電体の分極方法 |
| JP2001258280A (ja) * | 2000-03-10 | 2001-09-21 | Seiko Instruments Inc | 圧電アクチュエータの製造方法 |
| US6342753B1 (en) | 2000-09-25 | 2002-01-29 | Rockwell Technologies, Llc | Piezoelectric transformer and operating method |
| US6362560B1 (en) * | 2001-01-04 | 2002-03-26 | Meng-Chang Yang | Multi-layer piezoelectric center-drive ceramic transformer |
| US6674222B2 (en) | 2001-04-05 | 2004-01-06 | Mide Technology Corporation | Single crystal piezoelectric transformer |
| US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
| US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
| US20060079874A1 (en) | 2004-10-08 | 2006-04-13 | Faller Craig N | Tissue pad for use with an ultrasonic surgical instrument |
| US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
| TWI312161B (en) * | 2006-01-05 | 2009-07-11 | Nat Taiwan Universit | Multiple output piezoelectric transformer and inverter |
| US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
| US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
| US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
| US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
| US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
| US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
| US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
| US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
| US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
| EP2217157A2 (en) | 2007-10-05 | 2010-08-18 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
| US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
| US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
| US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
| US20100057118A1 (en) * | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
| US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
| US8334635B2 (en) | 2009-06-24 | 2012-12-18 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
| US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
| US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
| US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
| DE102009029570A1 (de) * | 2009-09-18 | 2011-03-31 | Robert Bosch Gmbh | Piezoelektrischer Transformator mit einem multifunktionalen Innenelektrodenaufbau |
| USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
| US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
| US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
| US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
| US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
| US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
| US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
| US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
| US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
| US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
| US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
| US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
| US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
| US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
| GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
| US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
| US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
| US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
| US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
| US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
| US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
| MX2014001358A (es) | 2011-08-01 | 2014-08-22 | Gareth J Knowles | Circuitos piezotransformadores intrinsecos adaptivos y autonomos. |
| USD700966S1 (en) | 2011-08-23 | 2014-03-11 | Covidien Ag | Portable surgical device |
| CN103529990B (zh) * | 2011-10-19 | 2017-05-10 | 松下电器产业株式会社 | 压电元件及电子设备 |
| USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
| US20130123776A1 (en) | 2011-10-24 | 2013-05-16 | Ethicon Endo-Surgery, Inc. | Battery shut-off algorithm in a battery powered device |
| JP6165780B2 (ja) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ロボット制御式の手術器具 |
| US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
| US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
| US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
| US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
| US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
| US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
| US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
| US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
| US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
| US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
| US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
| US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
| US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
| US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
| IN2015DN02432A (ja) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
| US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
| US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
| US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
| US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
| US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
| US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
| US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
| GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
| GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
| US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
| US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
| US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
| US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
| US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
| US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
| US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
| US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
| US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
| US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
| US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
| US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
| US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
| US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
| US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
| US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
| US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
| US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
| US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
| US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
| US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
| US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
| US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
| US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
| US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
| US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
| US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
| US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
| US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
| US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
| US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
| US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
| US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
| US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
| US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
| US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
| US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
| US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
| US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
| US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
| US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
| US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
| US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
| US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
| US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
| US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
| US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
| USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
| US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
| US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
| US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
| US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
| US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
| US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
| US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
| US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
| US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
| US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
| US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
| US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
| US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
| DE102018113190B4 (de) * | 2018-06-04 | 2020-03-12 | Epcos Ag | Vorrichtung mit einem elektrokeramischem Bauteil |
| US12431861B2 (en) * | 2019-07-31 | 2025-09-30 | Qxoniix Inc. | Layers, structures, acoustic wave resonators, devices and systems |
| US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
| US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
| US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
| US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
| US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
| US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
| US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
| US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
| US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
| US20210196357A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with asynchronous energizing electrodes |
| US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
| US12349961B2 (en) | 2019-12-30 | 2025-07-08 | Cilag Gmbh International | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
| US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
| US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
| US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
| US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
| US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
| US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
| US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
| US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
| US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
| US12336747B2 (en) | 2019-12-30 | 2025-06-24 | Cilag Gmbh International | Method of operating a combination ultrasonic / bipolar RF surgical device with a combination energy modality end-effector |
| US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
| US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
| US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
| US12343063B2 (en) | 2019-12-30 | 2025-07-01 | Cilag Gmbh International | Multi-layer clamp arm pad for enhanced versatility and performance of a surgical device |
| US12471982B2 (en) | 2020-12-02 | 2025-11-18 | Cilag Gmbh International | Method for tissue treatment by surgical instrument |
| US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1207974A (en) * | 1966-11-17 | 1970-10-07 | Clevite Corp | Frequency selective apparatus including a piezoelectric device |
| US3489931A (en) * | 1968-08-30 | 1970-01-13 | Bourns Inc | Monolithic electrical transformer |
| US3487239A (en) * | 1968-12-10 | 1969-12-30 | Motorola Inc | Piezoelectric transformer |
| US4564782A (en) * | 1983-09-02 | 1986-01-14 | Murata Manufacturing Co., Ltd. | Ceramic filter using multiple thin piezoelectric layers |
| US5118982A (en) * | 1989-05-31 | 1992-06-02 | Nec Corporation | Thickness mode vibration piezoelectric transformer |
-
1991
- 1991-04-02 JP JP3069609A patent/JP3064458B2/ja not_active Expired - Fee Related
-
1992
- 1992-04-01 US US07/861,436 patent/US5241236A/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20190020497A (ko) * | 2017-08-21 | 2019-03-04 | 전자부품연구원 | 자기전기 에너지하베스터 및 그의 제조방법 |
| KR102021183B1 (ko) * | 2017-08-21 | 2019-09-11 | 전자부품연구원 | 자기전기 에너지하베스터 및 그의 제조방법 |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH04304685A (ja) | 1992-10-28 |
| US5241236A (en) | 1993-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3064458B2 (ja) | 厚み縦振動圧電磁器トランスとその駆動方法 | |
| US5278471A (en) | Piezoelectric ceramic transformer | |
| JP2004516657A (ja) | 複合圧電変圧器 | |
| JPH06224484A (ja) | 圧電磁器トランスとその駆動方法 | |
| US6326718B1 (en) | Multilayer piezoelectric transformer | |
| WO1997028568A1 (fr) | Transformateur piezo-electrique | |
| JP3060666B2 (ja) | 厚み縦振動圧電磁器トランスとその駆動方法 | |
| JP2940282B2 (ja) | 厚み縦振動圧電磁器トランス及びその駆動方法 | |
| JP3706509B2 (ja) | 圧電トランス | |
| JP2576648B2 (ja) | 厚み縦振動圧電磁器トランスとその駆動方法 | |
| JP2910392B2 (ja) | 厚み振動圧電磁器トランスの製造方法 | |
| JPH04167504A (ja) | 圧電セラミックトランスとその駆動方法 | |
| JP3709114B2 (ja) | 圧電トランス | |
| JP2531087B2 (ja) | 圧電磁器トランス及びその駆動方法 | |
| JP3659309B2 (ja) | 圧電トランス | |
| JPH05235434A (ja) | 厚み縦振動圧電磁器トランス及びその駆動方法 | |
| JP2757561B2 (ja) | 厚み縦振動圧電磁器トランスとその駆動方法 | |
| JP2907153B2 (ja) | 圧電トランスおよびその製造方法 | |
| JP3450689B2 (ja) | 圧電磁器トランス | |
| JP2655450B2 (ja) | 厚み縦振動圧電磁器トランスとその製造方法および駆動方法 | |
| JP2755177B2 (ja) | 圧電磁器トランス | |
| JPH065944A (ja) | 圧電磁器トランスフィルタとその駆動方法 | |
| JP4831859B2 (ja) | 圧電トランス | |
| JPH04291773A (ja) | 厚み縦振動圧電磁器トランス及びその製造方法 | |
| JPH04116167U (ja) | 厚み振動圧電磁器トランス |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000411 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090512 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100512 Year of fee payment: 10 |
|
| LAPS | Cancellation because of no payment of annual fees |