JP2006115631A - 圧電駆動装置 - Google Patents

圧電駆動装置 Download PDF

Info

Publication number
JP2006115631A
JP2006115631A JP2004301519A JP2004301519A JP2006115631A JP 2006115631 A JP2006115631 A JP 2006115631A JP 2004301519 A JP2004301519 A JP 2004301519A JP 2004301519 A JP2004301519 A JP 2004301519A JP 2006115631 A JP2006115631 A JP 2006115631A
Authority
JP
Japan
Prior art keywords
drive
frequency
driving
speed
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301519A
Other languages
English (en)
Inventor
Yoshihiro Hara
吉宏 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004301519A priority Critical patent/JP2006115631A/ja
Priority to US11/246,737 priority patent/US7408288B2/en
Publication of JP2006115631A publication Critical patent/JP2006115631A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • H02N2/062Small signal circuits; Means for controlling position or derived quantities, e.g. for removing hysteresis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors

Abstract

【課題】 圧電アクチュエータの動作不良状態や動作不能状態といった異常状態から容易に且つ確実に脱出する。
【解決手段】 圧電アクチュエータのロッド部21に対するスライダ部22の移動速度が所定の速度より小さいか否かを駆動速度判定部14によって判別し、駆動速度判定部14により当該移動速度が所定の速度より小さいと判別された場合に、駆動周波数設定部12に、圧電アクチュエータに対する駆動周波数として該圧電アクチュエータの共振周波数(f3)又は共振周波数近傍の周波数を設定し、駆動周波数設定部12に設定した共振周波数又は共振周波数近傍の周波数に基づいて駆動部により圧電アクチュエータを駆動する。
【選択図】 図2

Description

本発明は、圧電素子を用いて駆動する圧電アクチュエータ等の圧電駆動装置に関する。
従来、スライダ等の移動体を棒状の駆動軸(駆動ロッド)に摩擦結合させて取り付けるとともに、この駆動軸の一方端に圧電素子が固着されてなるインパクト駆動方式の圧電アクチュエータ(リニアアクチュエータ)が知られている(例えば特許文献1参照)。この圧電アクチュエータにおいては、圧電素子に所定の駆動電圧を印加し、圧電素子の伸びと縮みの時間差に応じて即ち圧電素子(駆動軸)を所謂ノコギリ波状に変位させることで、慣性を利用して駆動軸との動摩擦状態において移動体を移動させる構成となっている。
特開2001−103772号公報
上記圧電アクチュエータの駆動時には、移動体及び駆動軸間に例えば数十kHzの周波数で擦れ(滑り)が生じており、これによって摩擦熱が発生する。駆動軸は軽量且つ硬度の高い素材であることが要求されることから一般的に例えばウィスカー(カーボン樹脂)等の素材で構成されているが、高温状態(摩擦熱の発生下)で長時間に亘ってアクチュエータ駆動させた場合、駆動軸内の樹脂成分が溶け出すことがあり、この状態で駆動停止させて放置していると溶け出した樹脂成分が冷却されて固まり、移動体と駆動軸との摩擦結合部が固着に近い状態又は固着状態となってしまい、摩擦力が通常駆動時(標準状態)での摩擦力よりも増大してしまうことがある。このように、圧電アクチュエータでは、温度(上記摩擦熱等)などの環境条件(その他、姿勢差;駆動姿勢の違い、或いは経時変化等の条件も含む)によって摩擦結合における摩擦力に変化が生じる。ただし、この圧電アクチュエータでは、環境条件によって、摩擦力の変化だけでなく、圧電素子に同じ駆動電圧(駆動信号)を印加した場合でのアクチュエータ発生力にも変化が生じる。
この圧電アクチュエータにおいて、例えば上述のように移動体と駆動軸とが固着に近い状態又は固着状態に陥った場合、次回の駆動時(起動時)において、アクチュエータ発生力が比較的小さくなってしまう環境条件下(例えば低温状態)での駆動では必要動作速度が得られず駆動が不安定になる、といった動作不良状態や、当該動作不良となる環境条件下での駆動のみならず、通常駆動時の環境条件下においても全く動作しない、といった動作不能状態に至ってしまうことがある。
本発明は上記問題に鑑みてなされたもので、環境条件等によって圧電アクチュエータが動作不良状態や動作不能状態に至った場合でも、当該異常状態からの脱出、すなわち動作不良状態の改善、或いは動作不能状態の解除を容易に且つ確実に行うことができる圧電駆動装置を提供することを目的とする。
本発明の請求項1に係る圧電駆動装置は、被駆動部材を駆動部材に摩擦結合させて取り付けるとともに、当該駆動部材の一端に圧電素子を固着してなり、所定の駆動周波数で駆動される圧電アクチュエータと、前記駆動部材に対する被駆動部材の移動速度が所定の速度より小さいか否かを判別する速度判別手段と、前記速度判別手段によって前記移動速度が所定の速度より小さいと判別された場合に、前記圧電アクチュエータに対する駆動周波数として、該圧電アクチュエータの共振周波数又は共振周波数近傍の周波数を設定する駆動周波数設定手段と、前記駆動周波数設定手段に設定された駆動周波数に基づいて圧電アクチュエータを駆動する駆動手段とを備えることを特徴とする。
上記構成によれば、被駆動部材が駆動部材に摩擦結合され、駆動部材の一端に圧電素子が固着されてなる、所定の駆動周波数で駆動される圧電アクチュエータの当該駆動部材に対する被駆動部材の移動速度が所定の速度より小さいか否かが速度判別手段によって判別され、駆動周波数設定手段によって、速度判別手段により移動速度が所定の速度より小さいと判別された場合に、圧電アクチュエータに対する駆動周波数として、該圧電アクチュエータの共振周波数又は共振周波数近傍の周波数が設定され、駆動周波数設定手段に設定された駆動周波数に基づいて駆動手段によって圧電アクチュエータが駆動される。このように、被駆動部材の移動速度が所定の速度よりも小さくなった場合に(速度がゼロの場合、すなわち被駆動部材が駆動部材に対して固着するなどして移動不能の状態となっている場合を含む)、共振周波数又は共振周波数近傍の周波数となる駆動周波数を用いて圧電アクチュエータの駆動が行われることで、通常駆動時よりも大きなアクチュエータ発生力或いは圧電素子の変位量(振幅)を得ることができ、移動速度が小さくなるような高摩擦状態或いは固着状態に打ち勝つことができるため、圧電アクチュエータが動作不良状態や動作不能状態に至った場合でも、当該異常状態からの脱出、すなわち動作不良状態の改善、或いは動作不能状態の解除を容易に且つ確実に行うことができる。
請求項2に係る圧電駆動装置は、請求項1において、前記共振周波数近傍の周波数は、該共振周波数から所定周波数分だけ大きい周波数又は所定周波数分だけ小さい周波数であることを特徴とする。この構成によれば、共振周波数近傍の周波数が該共振周波数から所定周波数分だけ大きい周波数又は所定周波数分だけ小さい周波数であるため、共振周波数だけでなく、さらに共振周波数近傍における、共振周波数よりも大きな周波数の場合と共振周波数よりも小さい周波数の場合との2つの場合の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、共振周波数だけを用いる場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項3に係る圧電駆動装置は、請求項1又は2において、前記駆動周波数を有する駆動信号のデューティ比を変更するデューティ比変更手段をさらに備え、前記駆動手段は、当該デューティ比変更手段によって変更された複数種類のデューティ比を有する前記駆動信号に基づいて圧電アクチュエータを駆動することを特徴とする。この構成によれば、駆動手段によって、デューティ比変更手段により変更された複数種類のデューティ比を有する駆動信号に基づいて圧電アクチュエータが駆動されるため、これらデューティ比の異なる複数種類の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、1種類のデューティ比による駆動周波数を用いた場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項4に係る圧電駆動装置は、請求項1〜3のいずれかにおいて、所定の繰り返し回数に関する回数情報を設定する回数設定手段をさらに備え、前記駆動手段は、当該回数設定手段に設定された回数情報に基づいて、被駆動部材の駆動部材に対する一方向及び他方向への移動からなる往復駆動を繰り返すことを特徴とする。この構成によれば、駆動手段によって、回数設定手段に設定された繰り返し回数に関する回数情報に基づいて、被駆動部材の駆動部材に対する一方向及び他方向への移動からなる往復駆動が繰り返し実行されるため、当該往復駆動を複数回行うことによって(或る往復駆動の動作単位を1セットとすると、これを複数セット実行することで)動作不良状態の改善、或いは動作不能状態の解除を図ることができ、往復駆動を1回だけ行う場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項5に係る圧電駆動装置は、請求項1〜4のいずれかにおいて、前記所定の速度は、所定の速度範囲における最小速度であって、前記速度判別手段は、駆動部材に対する被駆動部材の移動速度が当該速度範囲における最大速度より大きいか否かをさらに判別することを特徴とする。この構成によれば、速度判別手段によって駆動部材に対する被駆動部材の移動速度が所定の速度範囲における最小速度よりも小さいか否かが判別されるとともに、所定の速度範囲における最大速度より大きいか否かについても判別されるため、最小速度より小さいと判別される場合の動作不良状態や動作不能状態に関する動作チェックとともに、被駆動部材の移動速度の検出に用いる当該被駆動部材の位置を検出するための位置検出系の動作チェックも行うことができ、装置におけるより精度の高い動作チェックを行うことが可能となる。
請求項1記載の発明によれば、被駆動部材の移動速度が所定の速度よりも小さくなった場合に、共振周波数又は共振周波数近傍の周波数となる駆動周波数を用いて圧電アクチュエータの駆動が行われることで、通常駆動時よりも大きなアクチュエータ発生力或いは圧電素子の変位量(振幅)を得ることができ、移動速度が小さくなるような高摩擦状態或いは固着状態に打ち勝つことができるため、圧電アクチュエータが動作不良状態や動作不能状態に至った場合でも、当該異常状態からの脱出、すなわち動作不良状態の改善、或いは動作不能状態の解除を容易に且つ確実に行うことができる。
請求項2記載の発明によれば、共振周波数だけでなく、さらに共振周波数近傍における、共振周波数よりも大きな周波数の場合と共振周波数よりも小さい周波数の場合との2つの場合の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、共振周波数だけを用いる場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項3記載の発明によれば、デューティ比の異なる複数種類の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、1種類のデューティ比による駆動周波数を用いた場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項4記載の発明によれば、往復駆動を複数回行うことによって(或る往復駆動の動作単位を1セットとすると、これを複数セット実行することで)動作不良状態の改善、或いは動作不能状態の解除を図ることができ、往復駆動を1回だけ行う場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
請求項5記載の発明によれば、速度判別手段によって駆動部材に対する被駆動部材の移動速度が所定の速度範囲における最小速度よりも小さいか否かが判別されるとともに、所定の速度範囲における最大速度より大きいか否かについても判別されるため、最小速度より小さいと判別される場合の動作不良状態や動作不能状態に関する動作チェックとともに、被駆動部材の移動速度の検出に用いる当該被駆動部材の位置を検出するための位置検出系の動作チェックも行うことができ、装置におけるより精度の高い動作チェックを行うことが可能となる。
以下、図面に基づいて、本発明の実施形態につき説明する。
図1は、本発明に係る圧電駆動装置の一構成例を示すブロック図である。図1に示すように、圧電駆動装置1は、圧電アクチュエータ2及び駆動信号発生回路3を備えて構成されている。圧電アクチュエータ2は、所謂超音波駆動が行われるインパクト形のアクチュエータ(リニアアクチュエータ)である。圧電アクチュエータ2は、ロッド部21、スライダ部22及び圧電素子部23等を備えている。
ロッド部21は、圧電素子部23によって駆動(振動)される所定の断面形状を有した棒状の駆動部材(駆動軸)であり、スライダ部22の移動を支持するものである。スライダ部22は、ロッド部21に対して摩擦結合、すなわち所定の摩擦力で係合されており、ロッド部21の駆動に応じて当該ロッド部21の軸方向に沿って(図1中の矢印で示す左右方向へ)スライド移動する被駆動部材(移動体)である。スライダ部22には、該スライダ部22の位置を検出するためのLED(赤外LED)等が一体的に設けられている。
圧電素子部23は、印加される電圧に応じて伸縮され、この伸縮に応じてロッド部21を振動させるものである。圧電素子部23による当該伸縮においては、高速伸長と低速縮小とが、若しくは低速伸長と高速縮小とが、又は伸長速度及び縮小速度が同じである等速伸長と等速縮小とが交互に繰り返される。この圧電素子部23は、例えば積層型圧電素子からなり、ロッド部21の一端において分極方向が当該ロッド部21の軸方向と一致した状態で固着されている。圧電素子部23の電極部には、後述する駆動部33からの信号線が接続されており、駆動部33からの駆動信号(駆動電圧)に応じて圧電素子部23が充電又は放電(逆方向充電)されることで上記伸縮が行われる。圧電素子部23がこのように伸縮を繰り返すことにより、スライダ部22が、ロッド部21に対して相対的に正方向又は逆方向(図1の右方向又は左方向)に移動したり、或いはその場に停止した状態となる。なお、ロッド部21における圧電素子部23と反対側の端部は、圧電素子部23によって発生した振動がロッド部21に効率良く伝達されるよう錘部(ウエイト)等を含むベース部231に固定されている。
駆動信号発生回路3は、圧電アクチュエータ2に対する駆動信号を発生させるものであり、具体的には、例えばPWM(Pulse Width Modulation)駆動方式によるアクチュエータ駆動を行うためのPWM信号を発生し、このPWM信号に基づき駆動電圧を生成して圧電アクチュエータ2へ出力するものである。駆動信号発生回路3は、位置検出部31、指示表示部32、駆動部33及び制御部34等を備えて構成されている。
位置検出部31は、位置検出素子部311を備え、該位置検出素子部311からの検出信号に基づいて、ロッド部21上のスライダ部22の位置を検出するもの(検出回路)である。位置検出部31は、位置検出素子部311からの検出信号を入力し、この入力した信号に応じたスライダ部22の現在位置を示す位置情報(位置検出信号)を制御部34へ出力する。位置検出素子部311は、PSD(Position Sensitive Device)等の位置検出素子を備えており、スライダ部22と一体的に移動する上記LEDからの赤外光をこのPSDによって受光し、スライダ部22の位置に応じた検出信号を位置検出部31へ出力する。
指示表示部32は、ユーザの操作に応じて所定の指示入力を行ったり、所定の情報を表示するものである。指示表示部32は、圧電駆動装置1を起動させるための起動スイッチ(電源スイッチ)やその他の装置動作設定(入力)用のスイッチを含む操作スイッチ、及び装置を操作するためのガイドやメッセージ等の情報が表示される(指示入力用のボタン等の表示も行われる)LCD等のモニター部を備えている。このモニター部には、例えば後述の「駆動系不良」や「位置センサ不良」といった駆動系動作チェックを行った後の結果情報(メッセージ文)が表示される。なお、この結果情報は、メッセージ文によるものでなくともよく、例えば所定の報知ランプを点滅(モニター部への点灯表示でもよい)させるという方法によるものでもよい。
駆動部33は、制御部34からの駆動指示信号に基づいて、圧電アクチュエータ2に対して駆動信号を出力し、圧電素子部23を充電及び放電させることにより圧電アクチュエータ2を駆動させるさせるためのもの(駆動回路)である。駆動部33は、制御部34の発振素子から出力されるクロックパルスをカウントし、そのカウント値に基づいて、駆動部33内のレジスタ等に設定(記憶)されている駆動パルス(PWM信号)用の周期(この周期は、駆動部33から圧電アクチュエータ2へ出力される後述の駆動信号の周期つまり駆動周波数に相当する)及びデューティ比に関する設定値と上記カウント値との比較器を用いての比較結果等に基づいてPWM信号(PWM1信号)を生成するとともに、反転回路(インバータ)を用いて当該PWM1信号(におけるハイ;H、ロー;L)を反転させたPWM2信号を生成する。そしてこの生成したPWM1信号及びPWM2信号に基づいて、圧電アクチュエータ2駆動用のドライバにより圧電素子部23を充電及び放電させるための駆動電圧(駆動信号)を出力する。ただし、駆動部33における当該ドライバは、例えば所定数のスイッチ素子(例えばNチャンネル又はPチャンネルFET)から構成されるブリッジ回路からなり、圧電素子部23を充電させるための正の駆動電圧(+Vp)、及び圧電素子部23を放電(逆方向充電)させるための負の駆動電圧(−Vp)を交互に発生させ、これら駆動電圧+Vp、−Vpからなる駆動信号(矩形波)を圧電アクチュエータ2へ出力する。なお、駆動部33のレジスタ等への上記周期やデューティ比の設定は、制御部34からの設定指示に基づいて行なわれる。
制御部34は、圧電駆動装置1全体の動作制御を司るものである。制御部34は、各制御プログラム等を記憶するROM(Read Only Memory)、一時的にデータを格納するRAM(Random Access Memory)、及び上記制御プログラム等をROMから読み出して実行するCPU等からなり、位置検出部31、指示表示部32或いは駆動部33等からの各種信号に基づいて各種演算を行うとともに、各部に対する動作指示信号を出力する。例えば、制御部34は、駆動モード(例えば後述の駆動系動作チェックモード)に応じて、駆動周波数(周期)やデューティ比といった圧電アクチュエータ2駆動用の設定情報等を含む駆動指示信号を駆動部33へ出力し、駆動部33に、圧電アクチュエータ2の駆動に対する上記PWM信号や駆動信号を発生させる。なお、制御部34には所定の周波数を有したクロック信号を発生するクロック発生部としての水晶発振子等の発振素子(図略)が備えられており、駆動部33等へクロック信号を出力する。
図2は、制御部34の一構成例を示すブロック図である。図2に示すように、制御部34は、動作モード設定部11、駆動周波数設定部12、デューティ設定部13、駆動速度判定部14、低速度対策処理部15及び表示制御部16を備えている。動作モード設定部11は、例えば起動時における、圧電アクチュエータ2や位置検出部31といった駆動系の動作チェックを行う駆動系動作チェックモードや、当該駆動系のチェックが終了した後、駆動スタンバイ状態とするスタンバイモード等の各種動作モードを設定する。なお、起動時等において駆動系動作チェックを行わずにスタンバイモードに設定されるような動作モードが設定されてもよい。
駆動周波数設定部12は、圧電アクチュエータ2の駆動周波数(周期)を設定するものである。駆動周波数設定部12には、例えば、起動時に用いるデフォルト値としての駆動周波数(f2)が設定される。また、駆動系動作チェックモードにおける後述の駆動周波数切替部151による切り替え指示に応じた駆動周波数(後述の完全共振周波数又は近傍共振周波数)を設定する。なお、切り替え指示される各種駆動周波数の情報は駆動周波数設定部12に記憶されていてもよい。
デューティ設定部13は、圧電アクチュエータ2のデューティ比(Dt)を設定するものである。デューティ設定部13は、例えば通常の駆動において用いる所謂デフォルトとしてのデューティ比の情報、例えば正方向駆動用のデューティ比3:7(Dt=0.3)、及び逆方向駆動用のデューティ比7:3(Dt=0.7)の情報が設定されている。なお、デューティ設定部13は、当該デフォルト値以外のデューティ比情報も設定される。
駆動速度判定部14は、駆動系動作チェックモードにおいて、圧電アクチュエータ2の駆動速度、すなわち、圧電アクチュエータ2を駆動させたときのロッド部21に対するスライダ部22の移動速度を検出し、その移動速度が正常(通常動作状態での移動速度)であるか否かを判定する所謂駆動速度チェックを行うものである。この移動速度が正常であるか否かの判定は、駆動速度判定部14に、通常の駆動において得られる移動速度の範囲に対応した或る速度範囲の情報を予め設定しておき、位置検出部31によるスライダ部22の位置情報等を基に算出したスライダ部22の移動速度と、当該速度範囲とを比較することで、移動速度が速度範囲内にあるか否かを判別することでなされる。ただし、当該移動速度と速度範囲との比較は、具体的には、移動速度が速度範囲における最小速度Vminよりも小さいか否かを判別することで行う。
なお、駆動速度判定部14は、駆動速度チェック時(例えばウォームアップ駆動を実行しようとしたとき)に、スライダ部22とロッド部21との固着状態等によりスライダ部22の移動ができない動作不能状態となっていることを検出し、具体的には、スライダ部22の移動(駆動)開始指示がなされてから所定時間経過したか否かを判別し、所定時間経過したと判別した場合に駆動不能検出信号を低速度対策処理部15へ出力する。
また、駆動速度判定部14は、スライダ部22の移動速度が速度範囲における最大速度Vmaxよりも大きいか否かを判別することによって、スライダ部22の位置を検出する位置検出部31(位置検出系)が不良であるか(誤動作しているか)否かの判別をも行えるようになっている。なお、最大速度Vmaxよりも移動速度が大きいと判別されるというのは、実際に駆動可能な最大移動速度の値よりも大きな値が検出されることであり、スライダ部22が実際にその移動速度で移動しているわけではなく、結果としてそのスライダ部22の移動速度検出の際に用いる該スライダ部22の位置検出を行なうための位置検出系が不良であると判定されることになる。
駆動速度判定部14は、ウォームアップ駆動部141、目標位置設定部142、駆動時間計測部143及び速度算出部144等を備えている。ウォームアップ駆動部141は、圧電アクチュエータ2の駆動速度チェック動作の開始時に所定のウォームアップ駆動を行わせるものである。このウォームアップ駆動とは、例えば、スライダ部22をロッド部21に対する所定の位置(例えば後述のセンター位置)から正方向及び逆方向(負方向)に所定距離(例えば±0.5mm)交互に移動させるような駆動である。なお、このウォームアップ駆動におけるスライダ部22の移動距離情報(例えば上記±0.5mmといった位置情報)は、ウォームアップ駆動部141に設定されていてもよい。また、ウォームアップ駆動部141は、スライダ部22をロッド部21に対する所定のセンター位置(このセンター位置は必ずしもロッド部21の左右中央位置でなくともよく、予め設定された移動開始位置を示す)へセット(移動)させるセット動作も行う。
目標位置設定部142は、スライダ部22を移動させるときの移動先としての目標位置を設定するものであり、例えばセンター位置を基準点として正方向側に0.5mm(+0.5mm)の位置、逆方向側に0.5mm(−0.5mm)の位置というように設定される。駆動時間計測部143は、スライダ部22が、現在の位置から出発して上記目標位置に到達するまでの駆動時間(移動時間)を計測するものである。なお、駆動時間計測部143は、移動開始位置から目標位置に到達したか否かの判別を行い、スライダ部22が目標位置に到達するとその駆動を停止させる。速度算出部144は、駆動時間と上記目標位置に基づくスライダ部22の移動距離との情報に基づいて、ロッド部21におけるスライダ部22の或る位置(移動開始点)から或る位置(移動終了点)まで間の移動速度(駆動速度)を算出するものである。なお、速度算出部144は、算出した複数の移動速度から、さらにそれらの平均速度を算出することも可能である。
低速度対策処理部15は、駆動速度判定部14において、スライダ部22の移動速度が上記速度範囲の最小速度Vminよりも小さな低速度状態となる場合に(移動速度がゼロになる場合も含む)、当該速度範囲における移動速度での駆動(正常状態での駆動)が可能となるよう復帰動作を行うものである。換言すれば、低速度対策処理部15は、圧電アクチュエータ2が環境条件等によって動作不良状態(例えばロッド部21とスライダ部22とが固着に近い状態)や動作不能状態(例えばロッド部21とスライダ部22との固着状態)に至った場合に、当該異常状態から脱出させるための処理(低速度対策処理)を実行するものである。具体的には、低速度対策処理部15は、駆動周波数設定部12へ圧電アクチュエータ2の共振周波数(後述の完全共振周波数)や共振周波数近傍の周波数(この(完全)共振周波数近傍の周波数のことを近傍共振周波数という)を設定するなどして圧電アクチュエータ2の駆動を行う。
低速度対策処理部15は、駆動周波数切替部151、駆動時間設定部152及び駆動回数設定部153等を備えている。駆動周波数切替部151は、駆動周波数設定部12に設定される駆動周波数を、例えばデフォルト値としての通常駆動時の周波数(後述の駆動周波数f2)から、異常状態から脱出させるための駆動周波数、すなわち圧電アクチュエータ2の共振周波数(完全共振周波数f3)や共振周波数近傍の周波数(近傍共振周波数f3’又は近傍共振周波数f3”)に切り替えるものである。なお、f3’=f3+Δf(この+Δfは、完全共振周波数f3よりも若干高くなる側への周波数増加分を示す)、f3”=f3−Δf(この−Δfは、完全共振周波数f3よりも若干低くなる側への周波数減少分を示す。ただし、−Δfの大きさ即ち絶対値は、上記+Δfの絶対値と同じであってもよいし、異なる値であってもよい)を示すものであるとする。
駆動時間設定部152は、低速対策処理において、上記完全共振周波数f3又は近傍共振周波数f3’、f3”の駆動周波数下での正方向駆動及び逆方向駆動における各駆動時間を設定するものである。駆動回数設定部153は、所定の動作を何回実行するかという繰り返し回数に関する回数情報を設定するものである。例えば、ロッド部21に対するスライダ部22の正方向駆動及び逆方向駆動から構成される所定の往復駆動を1セットとすると、当該往復駆動を何セット実行するかということに関する回数情報を設定する。なお、当該回数情報が示す回数は任意の回数でよい。
表示制御部16は、指示表示部32に対する所定情報の表示を制御するものであり、例えば、駆動系動作チェックにおいて駆動速度判定部14や低速度対策処理部15により駆動系動作チェックを行った後の、例えば「駆動系不良」や「位置センサ不良」といった結果情報(メッセージ文)を指示表示部32に表示させる。
ところで、上記図1において、圧電アクチュエータ2は、駆動部33からの駆動信号(駆動電圧;矩形波)に基づいて振動駆動されるということを説明したが、その駆動信号に基づく圧電アクチュエータ2の振動駆動(駆動原理)について、以下、図3〜5を用いて詳述する。図3は、圧電アクチュエータ2の駆動周波数と該圧電アクチュエータ2の圧電素子部23及びロッド部21先端の位相及び変位との関係を示す圧電アクチュエータ2の周波数特性図である。
図3において、周波数特性図300には、駆動周波数(横軸)と圧電素子部23及びロッド部21先端の変位(縦軸)との関係の一例を示すグラフ図(以降、変位周波数関係図310という)と、符号320に示す駆動周波数(横軸)とロッド部21先端の位相(縦軸)との関係の一例を示すグラフ図(以降、位相周波数関係図320という)とが示されている。なお、各図における符号301、302に示す曲線を変位曲線301、位相曲線302とする。
変位周波数関係図310において、変位曲線301は、駆動周波数がゼロから大きくなるにつれ徐々に変位(振動幅)が大きくなり、駆動周波数f3の位置をピーク点(最大変位位置)として、それ以降は徐々に変位が小さくなるような略山形の曲線となっている。この駆動周波数f3は、圧電アクチュエータ2の所謂共振周波数を示している。ただし、駆動周波数f3の近傍位置も共振状態となっている(共振現象が生じている)ため、以降、このピーク点における共振周波数のことを完全共振周波数と称して、他の共振状態にある場合の駆動周波数と区別する。また、同図において、駆動周波数f2は、通常駆動時(正常駆動時)に用いられる周波数を示しており、例えばf2=0.7×f3という関係を満たす、完全共振周波数f3より低い値となっている。このように完全共振周波数f3の約0.7倍の大きさの駆動周波数f2とするのは、小さな電圧振幅で(後述の矩形波411、431の振幅が小さくて済み)、当該駆動周波数f2以外の駆動周波数を用いた場合と同程度の変位(ノコギリ変位)が得られて効率的であるとともに、動作が不安定となる可能性の高い完全共振周波数f3を避け、通常駆動時に用いる駆動周波数としてより安定した駆動制御を行なうためである。
また、横軸の「f2×2」で示す駆動周波数(駆動周波数f2×2とする)は、後述における駆動信号に含まれる1次の正弦波を上記駆動周波数f2とした場合の、2次の正弦波の周波数を示している。なお、駆動周波数f1は、共振状態となっていない(或いは共振の影響が少ない)領域の周波数を示しており、この駆動周波数f1における変位は小さいものとなっている。
位相周波数関係図320においては、位相曲線302に示すように、ロッド部21先端の位相は、駆動周波数がゼロの場合には位相がゼロ(0°)となっており、駆動周波数が大きくなるにつれてマイナス側へずれていく。ただし、当該位相は、駆動周波数がゼロから駆動周波数f2近辺までの区間は(ここでは駆動周波数f2の位相は−50°を示している)緩やかに変化し、駆動周波数f2を超えて大きくなると(例えば符号303に示す完全共振周波数f3及びその前後の周波数における変位が大きくなるような範囲において)急激に変化し、その先の駆動周波数f2×2に至るまでの区間は(ここでは駆動周波数f2×2での位相は−210°を示している)略一定の値、すなわち殆ど位相変化のない平坦なグラフとなっている。
図4は、圧電アクチュエータ2に対する駆動電圧(駆動信号)波形(ここでの説明において適宜、矩形波という)と、その駆動電圧によって駆動される場合の圧電素子部23及びロッド部21の変位波形とを説明するための概念図であり、(a)は正方向駆動を行う場合を説明する図、(b)は逆方向駆動を行う場合を説明する図を示す。図4(a)において、その左側には、正方向駆動する際に圧電アクチュエータ2の圧電素子部23に印加される駆動電圧波形図410を、右側には当該駆動電圧波形が印加されたときの圧電素子部23及びロッド部21(先端)の変位波形図420を示している(同様に図4(b)は、逆方向駆動する際の駆動電圧波形図430及び変位波形図440を示している)。
駆動電圧波形図410に示す矩形波411を、上記図3における例えば通常駆動時の駆動周波数f2に対応する矩形波であるとすると、符号412に示す周期を「T」としてこの周期Tに対応する(逆数(1/T)となる)周波数が駆動周波数f2となっている。また、矩形波411は、1つの周期において電圧がハイ(H)となる区間aとロー(L)となる区間bとを有しており、デューティ比Dtは、このハイ期間とロー期間との長さの比、すなわち、Dt=a/(a+b)と定義するものとする。ただし、以降、この定義を有するデューティ比を、適宜、デューティ比a:bと表現するものとする。ここでの矩形波411は、例えばa:b=3:7、すなわちデューティ比3:7(Dt=0.3(30%とパーセンテージ表示してもよい))の場合が示されている。一方、図4(b)の駆動電圧波形図430に示す逆方向駆動用の矩形波431の場合、駆動周波数は、矩形波411と同じ駆動周波数f2となっており(符号432に示す周期が上記周期Tとなっており)、例えばa:b=7:3、すなわちデューティ比7:3(Dt=0.7(70%))となっている。
なお、図4(a)、(b)には示していないが、圧電素子部23には、矩形波411、431(例えば上記正の駆動電圧+Vpに相当)とともに、この矩形波411、431が反転されてなる矩形波(上記負の駆動電圧−Vpに相当)が、圧電素子部23の充電及び放電のために印加されている。
ところで、矩形波411は、1次(項)、2次、3次・・・の正弦波の重ね合わせ(合成)によってなる、すなわち矩形波411は、当該各次の正弦波を含んでなるものである(矩形波を構成する各次の正弦波成分はフーリエ変換等により確認できる)。ただし、この1次の正弦波は矩形波411に対応しており、つまり1次の正弦波の周波数は矩形波411の周波数(ここでは駆動周波数f2)となっており、これに応じて2次の正弦波の周波数は駆動周波数f2×2となる(図3参照)。これに関し、圧電素子部23に矩形波411(駆動電圧)を印加すると、それに応じた圧電素子部23及びロッド部21(先端)の変位が得られるのであるが、これを換言すると圧電アクチュエータ2は、謂わば、矩形波を入力すると所定の変位が出力される伝達関数(電圧−変位伝達関数)を有していることになる。
矩形波411における上記1次の正弦波を圧電アクチュエータ2(圧電素子部23)に印加したとすると、すなわち、上記1次の正弦波に上記伝達関数を乗じたとすると、これにより得られる圧電素子部23及びロッド部21の変位波形の振幅、位相は、この1次の正弦波の振幅、位相からそれ程変化しない。同様に2次の正弦波に伝達関数を乗じた場合には、振幅はそれ程変化しないが、位相に遅れが生じる(これは、図3に示すように、1次及び2次の正弦波に対応する駆動周波数f2及び駆動周波数f2×2が完全共振周波数f3を挟んだ位置にあるため、互いの位相がずれるということに起因する)。3次以降の高次項に伝達関数を乗じた場合は、振幅低下が著しく、得られる変位波形に影響を及ぼさない。このことから、圧電素子部23及びロッド部21の変位波形を得るための正弦波成分として、1次及び2次の正弦波を扱う。
具体的には、矩形波411の振幅の大きさを例えば「1」とすると、この矩形波411に含まれる各次の正弦波の振幅はデューティ比に依存し、例えばDt=0.3の場合の1次と2次との正弦波の振幅の比は、1対0.6程度となる。この1次、2次の正弦波成分を含む矩形波411で圧電アクチュエータ2を駆動させた場合、変位波形図420に示すように、当該1次の正弦波に対応して得られたものが変位波形421、2次の正弦波に対応して得られたものが変位波形422となる。この変位波形421、422の振幅の比は、1対0.3程度となり、それぞれ位相が−50°、−210°となるため(この−210°は、変位波形図440に示す逆方向駆動の場合には−30°となる)、1次及び2次の正弦波による変位波形421、422が合成された結果、ノコギリ波状の変位波形であるノコギリ波形423(三角波)が得られる。図4(b)の場合も同様に、矩形波431における1次の正弦波に対応して変位波形441、2次の正弦波に対応して変位波形442が得られ、これら変位波形441、442が合成された結果、ノコギリ波形443が得られる。
このようにして、例えば図5に示すように、圧電アクチュエータ2に正方向駆動用の矩形波411を印加すると、圧電素子部23及びロッド部21に正方向駆動用のノコギリ波形423を有した振動が発生し、ロッド部21と摩擦結合されたスライダ部22のインパクト駆動による正方向への移動(例えば符号501の変位変化に示す移動)が可能となる。圧電アクチュエータ2に矩形波431を印加する場合も同様に、逆方向駆動用のノコギリ波形443を有した振動が発生し、スライダ部22のインパクト駆動による逆方向への移動が可能となる。
以上の通り構成された本実施形態に係る圧電駆動装置1の動作につき、先ず全体的なフローを説明する。図6は、本実施形態に係る圧電駆動装置1の全体的な動作の一例を示すフローチャートである。図示する通り、当該動作を大略的に区分すると、圧電駆動装置1が例えばユーザによる起動スイッチのON動作によって起動される起動ステップ(ステップS1)と、圧電駆動装置1の駆動系(例えば圧電アクチュエータ2や位置検出部31)の動作チェックが実施される動作チェックステップ(ステップS2)と、当該駆動系動作チェック後、駆動スタンバイ状態(待機状態)に移行する駆動スタンバイステップ(ステップS3)とからなる。
ここで、図6のステップS2に示す駆動系動作チェックの詳細について説明する。
図7は、図6に示すステップS2の動作の一例を示すフローチャートである。先ず、駆動周波数設定部12に通常駆動時の駆動周波数f2が設定される(ステップS11)。次に駆動速度判定部14によって圧電アクチュエータ2の駆動速度チェックが行われ(ステップS12)、ロッド部21に対するスライダ部22の移動速度Vdが、速度範囲の最小速度Vminより小さいと判別された場合には(ステップS13のYES)、当該移動速度が低速度である状態を解消して正常状態に復帰させるべく(速度範囲の速度値に戻すべく)低速度対策処理部15によって低速度対策処理が実施される(ステップS14)。この低速度対策処理が3回目である場合には(ステップS15のYES)、当該駆動系動作チェックの結果が例えば「動作系不良」といったメッセージ文で指示表示部32(モニター部)に表示されてユーザに報知される(ステップS16)。低速度対策処理が3回目でない場合には(ステップS15のNO)、上記ステップS12に戻り、再度、駆動速度チェックが実施される。なお、このステップS15における回数情報は駆動回数設定部153に設定されていてもよい。また、当該ステップS15での回数は、3回以外の任意の回数、例えば2回や5回といった回数でもよい。
上記ステップS13において、スライダ部22の移動速度Vdが、速度範囲の最小速度Vminより大きいと判別された場合(ステップS13のNO)、さらにこの移動速度Vdが速度範囲の最大速度Vmaxよりも大きいと判別されると(ステップS17のYES)、当該ステップS17の判別動作が2回目である場合(ステップS18のYES)、当該駆動系動作チェックの結果が、例えば位置検出系の不良(異常)を示す「位置センサ不良」といったメッセージ文で指示表示部32(モニター部)に表示されてユーザに報知される(ステップS19)。ステップS17の判別動作が2回目でない場合(ステップS18のNO)、上記ステップS12に戻り、再度、駆動速度チェックが実施される。上記ステップS17において、移動速度Vdが速度範囲の最大速度Vmaxよりも大きくないと判別されると(ステップS17のNO)、この場合は正常駆動状態であるとして上記図6におけるステップS2の直後に戻る。なお、圧電アクチュエータ2が動作不良状態や動作不能状態になった場合に上記ステップS14における低速度対策処理が実施され、その時点では完全に正常状態に復帰したとは言えないものの当該異常状態から一旦脱出されると、その後は安定した駆動動作が行なえるようになる。
次に、上記図7のステップS12に示す駆動速度チェック動作について詳述する。
図8は、図7に示すステップS12の動作の一例を示すフローチャートである。先ず、ウォームアップ駆動部141によって、スライダ部22のロッド部21に対するセンター位置へのセット動作が開始される(ステップS31)。この際、駆動速度判定部14によって、スライダ部22がロッド部21に固着されるなどしてロッド部21に対するスライダ部22の移動が不可能であり(ただし、スライダ部22はロッド部21に固着された状態で、ロッド部21と共に一体となって移動(振動)することは可能となっている)、センター位置へのセットが完了(実行)できないと判定された場合には(ステップS32のNO)、所定時間の経過を待って(ステップS48のYES)、スライダ部22の移動動作が不能であることを示す動作不能検出信号が低速度対策処理部15へ出力され(ステップS49)、その後、上記図7におけるステップS12の直後に戻る。
センター位置へのセットが完了したと判定された場合には(ステップS32のYES)、ウォームアップ駆動部141によってウォームアップ駆動が実行される(ステップS33)。ウォームアップ駆動終了後、目標位置設定部142によって上記センター位置を基準点とした正方向の目標位置(例えば+0.5mm)が設定される(ステップS34)。そして、デューティ設定部13に設定されている正方向駆動用のデューティ比(例えば3:7)と、上記図7のステップS11において設定されている駆動周波数f2とに基づいて圧電アクチュエータ2が駆動される(ステップS35)。スライダ部22が上記正方向の目標位置に到達したか否かが駆動時間計測部143によって判別され、目標位置に到達したと判別された場合には(ステップS36のYES)、圧電アクチュエータ2の駆動が停止される(ステップS37)。目標位置に到達したと判別されなければ(ステップS36のNO)、到達するまで駆動が継続される。そして、駆動時間計測部143によって、スライダ部22がセンター位置から正方向の目標位置に到達するまでの駆動時間tpが測定され(ステップS38)、速度算出部144によって、上記ステップS34で設定した正方向の目標位置(の絶対値)と当該駆動時間tpとの情報に基づいて、スライダ部22の正方向への移動速度Vpが算出される(例えばVp=0.5/tp)(ステップS39)。
次に、目標位置設定部142によって上記センター位置を基準点とした逆方向の目標位置(例えば−0.5mm)が設定される(ステップS40)。そして、デューティ設定部13に設定されている逆方向駆動用のデューティ比(例えば7:3)と、上記図7のステップS11において設定されている駆動周波数f2とに基づいて圧電アクチュエータ2が駆動される(ステップS41)。スライダ部22が上記逆方向の目標位置に到達したか否かが駆動時間計測部143によって判別され、目標位置に到達したと判別された場合には(ステップS42のYES)、圧電アクチュエータ2の駆動が停止される(ステップS43)。目標位置に到達したと判別されなければ(ステップS42のNO)、到達するまで駆動が継続される。そして、駆動時間計測部143によって、スライダ部22がセンター位置から逆方向の目標位置に到達するまでの駆動時間tmが測定され(ステップS44)、速度算出部144によって、上記ステップS40で設定した逆方向の目標位置(の絶対値)及び上記ステップS34で設定した正方向の目標位置(の絶対値)を加算した値(ここでは1.0)と、当該駆動時間tmとの情報に基づいて、スライダ部22の逆方向への移動速度Vmが算出される(例えばVm=1.0/tm)(ステップS45)。
上記移動速度Vmが算出されている間、或いは当該算出後、ウォームアップ駆動部141によってスライダ部22がセンター位置へ戻されるよう圧電アクチュエータ2の駆動が行われる(ステップS46)。そして、移動速度Vmの算出後、当該移動速度Vmと上記ステップS39において算出した移動速度Vpとの情報に基づいて、移動速度Vm及びVpの平均速度Vdが算出され(例えばVd=(Vp+Vm)/2)(ステップS47)、その後、上記図7におけるステップS12の直後に戻る。
なお、上記ステップS32において、実際にはセンター位置で固着してしまっているが、検出動作上、センター位置へのセット動作が完了したと判定されるような場合には、上記ステップS33に示すウォームアップ駆動を行うというステップにおいて、上記ステップS48、S49と同様に、ウォームアップ駆動動作が行えずに所定時間が経過すると動作不能検出信号を低速度対策処理部15へ出力するというフローとしてもよい。
次に、上記図7のステップS14に示す低速度対策処理動作について詳述する。
図9は、図7に示すステップS14の動作の一例を示すフローチャートである。低速度対策処理においては先ず、駆動周波数切替部151によって、駆動周波数設定部12に設定されている駆動周波数が、現在の通常駆動用の駆動周波数f2から完全共振周波数f3へと切り替えられて新たに設定される(ステップS61)。そして、低速度対策処理用の正方向駆動デューティ比がデューティ設定部13に設定され(ステップS62)(ただし、本実施形態におけるステップS62では、既にデューティ設定部13に設定されているデフォルト値としてのデューティ比3:7を用いている)、当該設定したデューティ比と上記駆動周波数f3とに基づいて圧電アクチュエータ2が所定時間(例えば0.1秒間)駆動される(ステップS63)。
また、同様にして、低速度対策処理用の逆方向駆動デューティ比がデューティ設定部13に設定され(ステップS64)(ただし、本実施形態におけるステップS64では、既にデューティ設定部13に設定されているデフォルト値としてのデューティ比7:3を用いている)、当該設定したデューティ比と上記駆動周波数f3とに基づいて圧電アクチュエータ2が所定時間(例えば0.1秒間)駆動される(ステップS65)。そして、上記ステップS62〜S65における正方向及び逆方向の駆動動作を1セットとすると、低速度対策処理部15によって、当該1セットの動作が3回目に行われたものであるか否かが駆動回数設定部153に設定されている回数情報を基に判別され、3回目でないと判別された場合には(ステップS66のNO)、上記ステップS62に戻って次回のセットの動作が行われ、3回目であると判別された場合には(ステップS66のYES)、上記図7におけるステップS14の直後に戻る。
上記低速度対策処理動作は、以下の図10に示すフローで行ってもよい。
図10は、図7のステップS14に示す低速度対策処理動作の変形態様を示すフローチャートである。この場合の低速度対策処理においては先ず、駆動周波数切替部151によって、駆動周波数設定部12に設定されている駆動周波数が、現在の通常駆動用の駆動周波数f2から完全共振周波数f3へと切り替えられて新たに設定され(ステップS71)、上記図9のステップS62〜S66に示す動作ループと同様、所定時間(0.1秒)毎に切り替わる正方向駆動(デューティ比3:7)及び逆方向駆動(デューティ比7:3)が3回実行される(ステップS72)。
次に、駆動周波数切替部151によって、駆動周波数設定部12に設定されている駆動周波数が、完全共振周波数f3から近傍共振周波数f3’へと切り替えられて新たに設定される(ステップS73)。そして、上記ステップS72と同様に、所定時間(0.1秒)毎に切り替わる正方向駆動(デューティ比3:7)及び逆方向駆動(デューティ比7:3)が3回実行される(ステップS74)。ただし、このステップS74では、ステップS72の場合と違い、近傍共振周波数f3’となる駆動周波数によって駆動される。
さらに、駆動周波数切替部151によって、駆動周波数設定部12に設定されている駆動周波数が、完全共振周波数f3から近傍共振周波数f3”へと切り替えられて新たに設定される(ステップS75)。そして、当該近傍共振周波数f3”となる駆動周波数によって、上記ステップS72と同様に、所定時間(0.1秒)毎に切り替わる正方向駆動(デューティ比3:7)及び逆方向駆動(デューティ比7:3)が3回実行され(ステップS76)、その後、上記図7におけるステップS14の直後に戻る。
なお、図10のフローチャートに示すように、低速度対策処理用の駆動周波数として、f3以外にf3+Δfやf3−Δfといった値をとるのは、環境変化(経時変化)等によって、完全共振点がシフトすることがあるため、すなわち、図3の変位曲線301における完全共振周波数f3に示すピーク点の位置が、その位置から前後に例えばΔf分だけ移動することがあるため、これらの場合の駆動周波数f3+Δf又はf3−Δfでの駆動も行える構成とすることで、異常状態(低速度状態)から脱出させる可能性(確率)をより高めることができることによる。
また、上記低速度対策処理動作は、以下の図11に示すフローで行ってもよい。
図11は、図7のステップS14に示す低速度対策処理動作の他の変形態様を示すフローチャートである。この場合の低速度対策処理においては先ず、駆動周波数切替部151によって、駆動周波数設定部12に設定されている駆動周波数が、現在の通常駆動用の駆動周波数f2から完全共振周波数f3へと切り替えられて新たに設定され(ステップS81)、上記図9のステップS62〜S66に示す動作ループと同様、所定時間(0.1秒)毎に切り替わる正方向駆動(デューティ比3:7)及び逆方向駆動(デューティ比7:3)が3回実行される(ステップS82)。
次に、駆動周波数設定部12に設定されている駆動周波数は完全共振周波数f3のままで、上記ステップS82における正方向又は逆方向駆動用のデューティ比(3:7、7:3)とは異なるデューティ比を用いて、当該ステップS82と同様の駆動動作が実行される。すなわち所定時間(0.1秒)毎に切り替わる正方向駆動(例えばデューティ比2:8)及び逆方向駆動(デューティ比8:2)が3回実行される(ステップS83)。ただし、本変形態様における上記デューティ比(3:7、7:3)と異なるデューティ比への変更(デューティ比切替指示)は低速対策処理部15によって行われ、当該変更されたデューティ比はデューティ設定部13に設定される。なお、デューティ比(3:7、7:3)と異なるデューティ比の情報は、デューティ設定部13に記憶されていてもよい。
さらに、駆動周波数設定部12に設定されている駆動周波数は完全共振周波数f3のままで、上記ステップS83における正方向又は逆方向駆動用のデューティ比(28、8:2)とは異なるデューティ比を用いて、当該ステップS83と同様の駆動動作が実行される。すなわち、所定時間(0.1秒)毎に切り替わる正方向駆動(例えばデューティ比4:6)及び逆方向駆動(デューティ比6:4)が3回実行される(ステップS84)。その後、上記図7におけるステップS14の直後に戻る。
なお、図11のフローチャートに示すように、低速度対策処理用のデューティ比として、デューティ比2:8(8:2)やデューティ比4:6(6:4)といったデューティ比3:7(7:3)以外のデューティ比を用いるのは、標準的(基本的)にはデューティ比3:7(7:3)が、最大速度を得るために最適なデューティ比ではあるが、この最大速度を得るために最適なデューティ比も環境変化等によって変化している可能性があるため、当該デューティ比3:7(7:3)以外でのデューティ比による駆動も行える構成とすることで、異常状態(低速度状態)から脱出させる可能性(確率)をより高めることができることによる。
以上のように本実施形態の圧電駆動装置1によれば、ロッド部21に対するスライダ部22の移動速度が所定の速度よりも小さくなった場合に、共振周波数(完全共振周波数f3)又は共振周波数近傍の周波数(f3±Δf)となる駆動周波数を用いて圧電アクチュエータ2の駆動が行われることで、(たとえ安定した駆動速度の制御が困難になったとしても)通常駆動時よりも大きなアクチュエータ発生力或いは圧電素子部23(ロッド部21)の変位量(振幅)を得ることができ(たとえスライダ部22がロッド部21に固着していたとしても、当該ロッド部21における大きなアクチュエータ発生力や変位量を有する振動により、そのロッド部21と共に振動されるスライダ部22に大きな慣性力が生じ)、移動速度が小さくなる(ゼロとなる)ような高い摩擦状態或いは固着状態に打ち勝って移動させることができるため、圧電アクチュエータ2が動作不良状態や動作不能状態に至った場合でも、当該異常状態からの脱出、すなわち動作不良状態の改善、或いは動作不能状態の解除を容易に且つ確実に行うことができるようになる。
また、完全共振周波数f3近傍の周波数が当該完全共振周波数f3から所定周波数分だけ大きい周波数(駆動周波数f3+Δf)又は所定周波数分だけ小さい周波数(駆動周波数f3−Δf)であるため、(環境変化等によって完全共振点の位置が完全共振周波数f3の位置から前後にシフトしている可能性があることに対応して)完全共振周波数f3だけでなく、さらに完全共振周波数f3近傍における、駆動周波数f3+Δfの場合と駆動周波数f3−Δfの場合との2つの場合の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、完全共振周波数f3だけを用いる場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
また、駆動部33によって、デューティ比変更手段(低速度対策処理部15)により変更された複数種類のデューティ比を有する駆動信号に基づいて圧電アクチュエータ2が駆動されるため、(環境変化等によって、標準的に用いられている最大速度を得るために最適なデューティ比、例えばデューティ比3:7(7:3)が、これと異なるデューティ比に変化(シフト)している可能性があることに対応して)デューティ比の異なる複数種類の駆動周波数を用いて動作不良状態の改善、或いは動作不能状態の解除を図ることができ、1種類のデューティ比による駆動周波数を用いた場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
また、駆動部33によって、駆動回数設定部153に設定された繰り返し回数に関する回数情報に基づいて、スライダ部22の、ロッド部21に対する正方向及び逆方向への移動からなる往復駆動が繰り返し実行されるため、往復駆動を複数回行うことによって、すなわち、例えば図9に示すステップS62〜S65の動作を1セット(1ループ)とすると、これを複数セット(複数回ループ)実行することで動作不良状態の改善、或いは動作不能状態の解除を図ることができ、往復駆動を1回だけ行う場合よりも当該異常状態から脱出させる可能性(確率)が高くなり、ひいては当該異常状態からの脱出をより確実に行うことができる。
さらに、駆動速度判定部14によってロッド部21に対するスライダ部22の移動速度が所定の速度範囲における最小速度Vminよりも小さいか否かが判別されるとともに、所定の速度範囲における最大速度Vmaxより大きいか否かについても判別されるため、最小速度Vminより小さいと判別される場合の動作不良状態や動作不能状態に関する動作チェックとともに、スライダ部22の移動速度の検出に用いる当該スライダ部22の位置を検出するための位置検出系の動作チェックを行うことができ、すなわち位置検出部31(位置検出素子部311)が異常(不良)でないか否かをチェックすることができ、圧電駆動装置1における、より精度の高い動作チェックを行うことが可能となる。
なお、本発明は以下の態様をとることができる。
(A)圧電駆動装置1の駆動系動作チェックを、必ずしも図6のステップS1、S2に示すように装置の起動後に実施せずともよく、例えば駆動中にスライダ部22がロッド部21の移動範囲の例えば端部位置に当接するなどにより動作不能状態に陥ってしまった場合において実施してもよい。
(B)図8におけるステップS35及びS41において用いるデューティ比は、デューティ設定部13に設定されているデフォルト値としてのデューティ比(3:7や7:3)でなくともよく、駆動速度チェック用に任意に設定したデューティ比であってもよい。同様に、図9、10、11に示すステップS62、S64、ステップS72、S74、S76、ステップS82等においても低速度対策処理用に任意に設定したデューティ比を用いてもよい。
(C)移動速度を検出するための目標位置は、図8におけるステップS34及びS40に示すようにセンター位置から正方向に+0.5mm、逆方向に−0.5mmでなくともよく、任意の目標位置に設定してもよい。この場合、例えば、ステップS34においてセンター位置から正方向に+0.5mmと設定し、ステップS40においてセンター位置(ゼロmm)つまり移動開始点の位置を設定し、往復を同じ距離としてVp、Vmを算出してもよい。また、駆動速度チェックにおいて所定の速度範囲(最小速度Vmin)と比較するための最終的な速度パラメータとして、ステップS47に示すようにVp及びVmの平均速度Vdを用いずともよく、例えばVp又はVm個々の速度パラメータを用いてもよい。
(D)図8に示す駆動速度チェック動作において、必ずしもセンター位置を基準点とせずともよく、すなわち駆動速度チェック開始時にスライダ部22を先ずセンター位置まで移動させる(セットする)必要はなく、任意の位置、例えばロッド部21の一端部やスライダ部22の所定の退避位置)を基準点(移動開始位置)として当該チェック動作を開始してもよい。
(E)図9において、ステップS62〜65を繰り返し動作(駆動)の1セットとせずともよく、例えば正方向に0.1秒間駆動、次に逆方向に0.2秒間駆動、さらに正方向に0.1秒間駆動するというような、正方向駆動及び逆方向駆動を任意に組み合わせてなる(異常状態からの脱出効果を高くすることが可能な)繰り返し動作を1セットとしてもよい。
(F)低速度対策処理における最初の動作ステップ(図9〜11におけるステップS61、S71、S81)で設定する駆動周波数として、完全共振周波数f3を用いずともよく、駆動周波数f3+Δfあるいは駆動周波数f3−Δfを用いてもよい。
(G)図10、11のフローを組み合わせてなる低速度対策処理動作を行なってもよい。この場合、例えば図10のステップS72、S74及び/又はS76の後に続けて、図11のステップS83やS84の動作を行なってもよいし、また例えば、図11のステップS82、S83の後に続けて、図10のステップS73やS75の動作を行なってもよい。このように組み合わせることで、復帰動作の繰り返し回数が増加し、異常状態から脱出する可能性がより一層高まる。
(H)図11において、ステップS82、S83、S84の場合に示すように3種類のデューティ比を用いずともよく、これ以外の種類、例えば2種類や5種類のデューティ比を用いてもよい。また、ステップS82とS84、又はステップS83とS84とのデューティ比の値を同じにするなど、必ずしも全てのステップにおいて異なるデューティ比を用いなくともよい。
(I)異常状態からの脱出を図るための復帰動作として、上記実施形態における駆動周波数を完全共振周波数f3やその近傍の周波数に変更したり、デューティ比の変更を行なう他に、例えば圧電アクチュエータ2(圧電素子部23)に印加する駆動信号の電圧(矩形波の振幅)や電流の大きさを変更してもよい。
(J)デューティ比Dt=b/(a+b)と定義してもよい。
(K)本発明の圧電駆動装置1(圧電アクチュエータ2)は、例えばカメラ(アナログカメラやデジタルカメラ、或いはビデオカメラ等)の手振れ等の振れを補正するための振れ補正駆動(ユニット)に適用されてもよい。この場合、具体的には、例えばスライダ部22にCCDやCMOS等の撮像センサを設け、カメラに発生した振れ量(振れ方向)に応じて、圧電アクチュエータ2を駆動させ、スライダ部22とともに撮像センサをスライド移動させることにより当該振れ補正を行うような構成とする。また、圧電駆動装置1は、振れ補正駆動に限らず、例えばズーム駆動やフォーカシング駆動等に用いてもよい。さらに、カメラだけでなく、例えば携帯電話、MDやDVDプレーヤ等のAV機器など、種々の機器に適用可能である。
本発明に係る圧電駆動装置の一構成例を示すブロック図である。 制御部の一構成例を示すブロック図である。 圧電アクチュエータの駆動周波数と該圧電アクチュエータの圧電素子部及びロッド部先端の位相及び変位との関係を示す圧電アクチュエータの周波数特性図である。 圧電アクチュエータに対する駆動電圧(駆動信号)波形と、その駆動電圧によって駆動される場合の圧電素子部及びロッド部の変位波形とを説明するための概念図であり、(a)は正方向駆動を行う場合を説明する図、(b)は逆方向駆動を行う場合を説明する図である。 圧電素子部及びロッド部にノコギリ波形を有した振動が発生した場合の、スライダ部の移動の様子を示す図である。 本実施形態に係る圧電駆動装置の全体的な動作の一例を示すフローチャートである。 図6に示すステップS2の動作の一例を示すフローチャートである。 図7に示すステップS12の動作の一例を示すフローチャートである。 図7に示すステップS14の動作の一例を示すフローチャートである。 図7のステップS14に示す低速度対策処理動作の変形態様を示すフローチャートである。 図7のステップS14に示す低速度対策処理動作の他の変形態様を示すフローチャートである。
符号の説明
1 圧電駆動装置
2 圧電アクチュエータ
3 駆動信号発生回路
11 動作モード設定部
12 駆動周波数設定部(駆動周波数設定手段)
13 デューティ設定部
14 駆動速度判定部(速度判別手段)
15 低速度対策処理部(デューティ比変更手段)
16 表示制御部
21 ロッド部(駆動部材)
22 スライダ部(被駆動部材)
23 圧電素子部(圧電素子)
30 信号発生回路
31 位置検出部
311 位置検出素子部
32 指示表示部
33 駆動部(駆動手段)
34 制御部
141 ウォームアップ駆動部
142 目標位置設定部
143 駆動時間計測部
144 速度算出部
151 駆動周波数切替部
152 駆動時間設定部
153 駆動回数設定部(回数設定手段)
301 変位曲線
302 位相曲線
411、431 矩形波
421、422、441、442 変位波形
423、443 ノコギリ波形
f2 駆動周波数
f3 駆動周波数、完全共振周波数(請求項1記載の共振周波数)

Claims (5)

  1. 被駆動部材を駆動部材に摩擦結合させて取り付けるとともに、当該駆動部材の一端に圧電素子を固着してなり、所定の駆動周波数で駆動される圧電アクチュエータと、
    前記駆動部材に対する被駆動部材の移動速度が所定の速度より小さいか否かを判別する速度判別手段と、
    前記速度判別手段によって前記移動速度が所定の速度より小さいと判別された場合に、前記圧電アクチュエータに対する駆動周波数として、該圧電アクチュエータの共振周波数又は共振周波数近傍の周波数を設定する駆動周波数設定手段と、
    前記駆動周波数設定手段に設定された駆動周波数に基づいて圧電アクチュエータを駆動する駆動手段とを備えることを特徴とする圧電駆動装置。
  2. 前記共振周波数近傍の周波数は、該共振周波数から所定周波数分だけ大きい周波数又は所定周波数分だけ小さい周波数であることを特徴とする請求項1記載の圧電駆動装置。
  3. 前記駆動周波数を有する駆動信号のデューティ比を変更するデューティ比変更手段をさらに備え、
    前記駆動手段は、当該デューティ比変更手段によって変更された複数種類のデューティ比を有する前記駆動信号に基づいて圧電アクチュエータを駆動することを特徴とする請求項1又は2記載の圧電駆動装置。
  4. 所定の繰り返し回数に関する回数情報を設定する回数設定手段をさらに備え、
    前記駆動手段は、当該回数設定手段に設定された回数情報に基づいて、被駆動部材の駆動部材に対する一方向及び他方向への移動からなる往復駆動を繰り返すことを特徴とする請求項1〜3のいずれかに記載の圧電駆動装置。
  5. 前記所定の速度は、所定の速度範囲における最小速度であって、
    前記速度判別手段は、駆動部材に対する被駆動部材の移動速度が当該速度範囲における最大速度より大きいか否かをさらに判別することを特徴とする請求項1〜4のいずれかに記載の圧電駆動装置。
JP2004301519A 2004-10-15 2004-10-15 圧電駆動装置 Pending JP2006115631A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004301519A JP2006115631A (ja) 2004-10-15 2004-10-15 圧電駆動装置
US11/246,737 US7408288B2 (en) 2004-10-15 2005-10-07 Driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301519A JP2006115631A (ja) 2004-10-15 2004-10-15 圧電駆動装置

Publications (1)

Publication Number Publication Date
JP2006115631A true JP2006115631A (ja) 2006-04-27

Family

ID=36180048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301519A Pending JP2006115631A (ja) 2004-10-15 2004-10-15 圧電駆動装置

Country Status (2)

Country Link
US (1) US7408288B2 (ja)
JP (1) JP2006115631A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306763A (ja) * 2006-05-15 2007-11-22 Sharp Corp 圧電アクチュエータ
JP4907738B1 (ja) * 2011-06-14 2012-04-04 株式会社根本杏林堂 注入機器及び超音波モータの制御方法
JP2013250580A (ja) * 2008-02-11 2013-12-12 Qualcomm Mems Technologies Inc 干渉変調器ディスプレイの調整方法
JP2016026628A (ja) * 2015-09-16 2016-02-18 株式会社根本杏林堂 注入機器及び超音波モータの制御方法

Families Citing this family (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
MX2007004151A (es) 2004-10-08 2007-09-11 Johnson & Johnson Instrumento quirurgico ultrasonico.
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
WO2007100296A1 (en) * 2006-03-02 2007-09-07 Nanofactory Instruments Ab Control signal for inertial slider
JP4894308B2 (ja) * 2006-03-13 2012-03-14 コニカミノルタオプト株式会社 駆動装置
JP4506704B2 (ja) * 2006-03-28 2010-07-21 セイコーエプソン株式会社 圧電アクチュエータ
JP2007274746A (ja) * 2006-03-30 2007-10-18 Fujinon Corp 駆動装置
US7898147B2 (en) * 2006-05-10 2011-03-01 Honeywell International, Inc. Wireless actuator interface
TWI360286B (en) * 2006-07-26 2012-03-11 Sanyo Electric Co Drive wave generating circuit
WO2008120454A1 (ja) * 2007-03-16 2008-10-09 Panasonic Corporation 振動型アクチュエータの制御装置
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US7701115B2 (en) * 2007-05-01 2010-04-20 Panasonic Corporation Drive unit
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8257377B2 (en) 2007-07-27 2012-09-04 Ethicon Endo-Surgery, Inc. Multiple end effectors ultrasonic surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
AU2008308606B2 (en) 2007-10-05 2014-12-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
JP2009153229A (ja) * 2007-12-18 2009-07-09 Sanyo Electric Co Ltd ピエゾアクチュエータ制御回路及び防振制御回路
JP2009153228A (ja) * 2007-12-18 2009-07-09 Sanyo Electric Co Ltd ピエゾアクチュエータ用駆動回路及び防振制御回路
US8487510B2 (en) * 2008-06-11 2013-07-16 Konica Minolta Opto, Inc. Driving device
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
JP2010051055A (ja) * 2008-08-19 2010-03-04 Fujinon Corp 駆動装置及び光学装置
JP5376115B2 (ja) * 2008-08-27 2013-12-25 ミツミ電機株式会社 駆動装置の駆動方法
JP2010259224A (ja) * 2009-04-24 2010-11-11 Sanyo Electric Co Ltd ピエゾアクチュエータ駆動方法、ピエゾアクチュエータ制御回路、及び防振制御回路
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8334635B2 (en) 2009-06-24 2012-12-18 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
JP2011027567A (ja) * 2009-07-27 2011-02-10 Konica Minolta Opto Inc 振動型駆動装置
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8466637B2 (en) * 2010-07-20 2013-06-18 New Scale Technologies, Inc. Methods for controlling one or more positioning actuators and devices thereof
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
DE102012202945A1 (de) * 2011-03-14 2012-12-13 Smaract Gmbh Verfahren zur Ansteuerung eines Trägheitsantriebs
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
USD700967S1 (en) 2011-08-23 2014-03-11 Covidien Ag Handle for portable surgical device
US20130123776A1 (en) 2011-10-24 2013-05-16 Ethicon Endo-Surgery, Inc. Battery shut-off algorithm in a battery powered device
USD687549S1 (en) 2011-10-24 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical instrument
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
JP6575743B2 (ja) * 2015-01-30 2019-09-18 セイコーエプソン株式会社 液体噴射ヘッドの駆動方法及び圧電素子並びに液体噴射ヘッド
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
EP3410504A1 (en) * 2017-06-02 2018-12-05 Koninklijke Philips N.V. Eap actuator and driving method
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
JP2021084074A (ja) * 2019-11-28 2021-06-03 太陽誘電株式会社 駆動装置、振動発生装置、電子機器及び駆動方法
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US20210196349A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with flexible wiring assemblies
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
CN113108682B (zh) * 2021-04-21 2022-01-28 吉林大学 结合磁场的压电驱动器位移测量系统和测量方法
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150786A (ja) 1996-11-19 1998-06-02 Nikon Corp 振動アクチュエータ及びその制御方法
US6249495B1 (en) * 1997-02-27 2001-06-19 Matsushita Electric Industrial Co., Ltd. Stepping motor control method and disk drive apparatus
JPH11206156A (ja) 1997-11-14 1999-07-30 Canon Inc 振動型モータのための制御装置
JPH11225488A (ja) 1998-02-05 1999-08-17 Nikon Corp 振動アクチュエータ駆動装置
JP3620317B2 (ja) 1998-11-17 2005-02-16 トヨタ自動車株式会社 車両に搭載された超音波モータのための電気制御装置
JP2000245177A (ja) 1999-02-23 2000-09-08 Canon Inc 振動波モータ駆動装置、駆動方法、及び記憶媒体
JP4277384B2 (ja) * 1999-09-30 2009-06-10 コニカミノルタホールディングス株式会社 圧電アクチュエータ
JP2002095272A (ja) * 2000-09-11 2002-03-29 Minolta Co Ltd 駆動装置
JP2002112562A (ja) * 2000-09-29 2002-04-12 Minolta Co Ltd 駆動装置
JP4834243B2 (ja) * 2001-06-01 2011-12-14 キヤノン株式会社 振動型アクチュエータの制御装置
JP4120278B2 (ja) 2002-06-04 2008-07-16 コニカミノルタホールディングス株式会社 リニアアクチュエータ
JP3832396B2 (ja) * 2002-07-17 2006-10-11 コニカミノルタフォトイメージング株式会社 駆動装置、位置制御装置およびカメラ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306763A (ja) * 2006-05-15 2007-11-22 Sharp Corp 圧電アクチュエータ
JP2013250580A (ja) * 2008-02-11 2013-12-12 Qualcomm Mems Technologies Inc 干渉変調器ディスプレイの調整方法
JP4907738B1 (ja) * 2011-06-14 2012-04-04 株式会社根本杏林堂 注入機器及び超音波モータの制御方法
WO2012172759A1 (en) * 2011-06-14 2012-12-20 Nemoto Kyorindo Co., Ltd. Injector and control method for an ultrasonic motor
US9545646B2 (en) 2011-06-14 2017-01-17 Nemoto Kyorindo Co., Ltd. Injector and control method for an ultrasonic motor
CN109316645A (zh) * 2011-06-14 2019-02-12 株式会社根本杏林堂 注射器和用于超声波马达的控制方法
CN109316645B (zh) * 2011-06-14 2021-04-27 株式会社根本杏林堂 注射器和用于超声波马达的控制方法
US11303227B2 (en) 2011-06-14 2022-04-12 Nemoto Kyorindo Co., Ltd. Injector and control method for an ultrasonic motor
JP2016026628A (ja) * 2015-09-16 2016-02-18 株式会社根本杏林堂 注入機器及び超音波モータの制御方法

Also Published As

Publication number Publication date
US20060082253A1 (en) 2006-04-20
US7408288B2 (en) 2008-08-05

Similar Documents

Publication Publication Date Title
JP2006115631A (ja) 圧電駆動装置
JP6098349B2 (ja) 発振装置、走査型スキャナ装置、情報端末、移相量調整装置、及び移相量調整方法
US20040013420A1 (en) Driving device, position controller provided with driving device, and camera provided with position controller
US20050276080A1 (en) Method of controlling the duty of a PWM signal, PWM signal generating circuit, and image forming apparatus using same
CN103840702B (zh) 振动型致动器的驱动装置、振动型致动器的驱动控制方法和图像拾取装置
JP2011055665A (ja) 振動アクチュエータ駆動装置、レンズ鏡筒、及び、光学装置
JP4277384B2 (ja) 圧電アクチュエータ
JP2016013018A (ja) 振動型アクチュエータの制御装置及び制御方法、撮像装置
JP6092620B2 (ja) スプリングリターン機構付きボイスコイルモータの駆動回路およびそれを用いたレンズモジュールおよび電子機器
JP2007133277A (ja) デジタルカメラ用自動合焦装置
JP6671883B2 (ja) 振動型アクチュエータの制御装置とその制御方法、振動装置、交換用レンズ、撮像装置、及び自動ステージ
JP2013090495A (ja) 振動体の温度を検出する電気−機械エネルギー変換素子を備えた振動体の制御装置、該制御装置を有する塵埃除去装置及び振動型アクチュエータ
JP4492756B2 (ja) 圧電アクチュエータ
JP6548408B2 (ja) 撮像装置及びその制御方法並びにコンピュータプログラム
JP2005077698A (ja) デジタルカメラ
CN114362589A (zh) 振动致动器控制装置、包括它的振动驱动装置和电子装置
JP2003033056A (ja) 超音波モータ制御回路
JP4781558B2 (ja) 超音波モータ制御回路
JP4492738B2 (ja) 圧電アクチュエータ
JPH06315283A (ja) 超音波モータの駆動回路
JP2006023555A (ja) アクチュエータ駆動装置及びそれを用いた撮像装置
JP6380571B2 (ja) 発振装置、走査型スキャナ装置、情報端末、移相量調整装置、及び移相量調整方法
JP2006109632A (ja) モータ制御回路及びその制御方法
US20210399654A1 (en) Vibration driving device, apparatus equipped with vibration driving device, control device and control method for vibration actuator
JP2018061418A (ja) 振動型アクチュエータの制御装置、振動型アクチュエータの制御方法、振動型駆動装置及び電子機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129