WO2006016442A1 - 結晶粒が微細化された銅基合金鋳物 - Google Patents

結晶粒が微細化された銅基合金鋳物 Download PDF

Info

Publication number
WO2006016442A1
WO2006016442A1 PCT/JP2005/008662 JP2005008662W WO2006016442A1 WO 2006016442 A1 WO2006016442 A1 WO 2006016442A1 JP 2005008662 W JP2005008662 W JP 2005008662W WO 2006016442 A1 WO2006016442 A1 WO 2006016442A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
copper
solidification
grain size
based alloy
Prior art date
Application number
PCT/JP2005/008662
Other languages
English (en)
French (fr)
Inventor
Keiichiro Oishi
Original Assignee
Sanbo Shindo Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanbo Shindo Kogyo Kabushiki Kaisha filed Critical Sanbo Shindo Kogyo Kabushiki Kaisha
Priority to EP05738890A priority Critical patent/EP1777305B1/en
Priority to CA2563094A priority patent/CA2563094C/en
Priority to AT05738890T priority patent/ATE482294T1/de
Priority to DK05738890.2T priority patent/DK1777305T3/da
Priority to JP2006531272A priority patent/JP3964930B2/ja
Priority to MXPA06010613A priority patent/MXPA06010613A/es
Priority to US10/596,849 priority patent/US20070169854A1/en
Priority to DE602005023737T priority patent/DE602005023737D1/de
Publication of WO2006016442A1 publication Critical patent/WO2006016442A1/ja
Priority to US16/033,689 priority patent/US10570483B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/022Casting heavy metals, with exceedingly high melting points, i.e. more than 1600 degrees C, e.g. W 3380 degrees C, Ta 3000 degrees C, Mo 2620 degrees C, Zr 1860 degrees C, Cr 1765 degrees C, V 1715 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a copper-based alloy ceramic in which crystal grains are refined after melting and solidification, and particularly to a Cu-Zn-Si-based copper-based alloy ceramic.
  • Copper-based alloys are known to have improved yield strength by refining crystal grains, just like ordinary metal materials.
  • the strength is 1Z 2 which is the reciprocal of the crystal grain size, based on the Hallbeck's law. It is said to improve in proportion to the power.
  • the basic mode of making the crystal grain size of copper-based alloys finer is as follows: (A) when crystal grains become finer when the copper-base alloy is melted and solidified; (Forgings such as ingots, die castings, and melt-forged products), deformation and heat treatment such as rolling may cause the stored grains such as strain energy to become the driving force, resulting in finer crystal grains .
  • Zr is known as an element that effectively acts on the refinement of crystal grains.
  • the method (B) is widely used, and the crystal grains are refined by heat-treating the melted and solidified lumps, forged products, etc., and applying distortion. Has been done.
  • Patent Document 1 Japanese Patent Publication No. 38-20467
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-100041
  • Japanese Patent Publication No. 38-20467 performs solution treatment on copper alloys containing Zr, P and Ni. Next, the average grain size after 75% cold working was examined. From 28 0 m without Z r, 1 7 0 ⁇ m (Z r: 0. 0 5%), 50 m (Zr: 0.13% contained), 2 9 ⁇ ( ⁇ r: 0.22% contained), 6 m (Zr: 0.89% contained) As described above, it is described that the material is refined in proportion to the increase in the Zr content. In this publication, in order to avoid an adverse effect due to excessive Zr content, the content of Zr is proposed to be 0.05 to 0.3%.
  • the crystal grains are refined by the method (A) when the copper-based alloy is melted and solidified.
  • an object of the present invention is to provide a copper-based alloy whose crystal grain size is refined in the melt-solidification process. More specifically, the average crystal grain size after melt-solidification is about 100 m or less. It is to provide a Cu-Zn-Si-based copper-based alloy ceramic refined to a minimum.
  • the first copper-based alloy product according to the present invention is, in mass%, Cu: 69 to 88%, Si: 2 to 5%, Zr: 0.0005 to 0.00. 04%, P: 0.001 to 0.25% and 3.5 XS i—3 XP ⁇ 71 Satisfied, the balance is composed of Zn and inevitable impurities, the average crystal grain size after melting and solidification is about 100 trn or less, and the phase structure is the sum of the area ratio of ⁇ phase, / C phase and phase a 80% or more.
  • the second copper-based alloy ceramic according to the present invention has the composition of the first copper-based alloy ceramic as a crystal grain refining element, Mg: 0.001 to 0.2%, B: 0.00. At least one selected from the group consisting of 003 to 0.1%, C: 0.0002 to 0.01%, Ti: 0.001-0. 2%, and rare earth elements: 0.01 to 0.3%
  • Mg and B is [i]
  • C 0.0002 to 0.01%
  • Ti 0.001-0. 2%
  • rare earth elements 0.01 to 0.3%
  • the group consisting of Mg and B is [i]
  • Ti and rare earth elements is [ii]
  • 60 ⁇ C u-3.5 XS i-3 XP-0.5 X [i] + 0.5 X [ii] ⁇ 71 is satisfied.
  • the first to fourth copper-based alloy products according to the present invention may have Sn: 0.1 to 2.5% and Sb: 0.02 to 0.25% as corrosion resistance improving elements, if desired. And As: 0.02-0 At least one selected from the group consisting of 25%, and as an element for improving machinability, P b: 0.004 to 0.45%, B i: 0.004 to 0.45%, S e: 0.03 to 0.45 % And Ding 6: It may further contain at least one selected from the group consisting of 0.01-0.45%.
  • the term “average crystal grain size after melting and solidifying” means that after the copper-based alloy of a predetermined component is melted and solidified, deformation processing such as rolling or heat treatment is performed at all. It means the average grain size measured in the absence.
  • the copper-based alloy product of the present invention has the above-described component composition and phase structure, and the average crystal grain size after melting and solidification is refined to about 100 m or less.
  • the crystal grains are refined in the melt-solidification stage, it can withstand the shrinkage during solidification, and the occurrence of forged cracks can be reduced.
  • the hole and porosity generated during the solidification process can easily escape to the outside, making it possible to produce healthy porridges with no flaws such as a nest and a shrinkage nest.
  • dendrites that crystallize during the solidification process are not typical dendritic forms unique to the sculptured structure, but are divided into arms, preferably circular, elliptical, polygonal, or cruciform. It is. For this reason, the fluidity of the molten metal is improved, and even in the case of a thin and complex mold, the molten metal can be distributed to every corner.
  • the crystal grains are refined, they have excellent mechanical and other mechanical properties, corrosion resistance, and machinability, so they have a complicated shape, such as valves, fittings, mixing plugs, and faucet fittings. This is particularly effective for the as-cast product.
  • FIG. 1 is a micrograph (350 ⁇ ) showing the phase structure of Sample No. 9 of the inventive example.
  • FIG. 2 is a photomicrograph (350 times) showing the phase structure of sample No. 103 of the comparative example.
  • Fig. 3 is a macro photograph and a micrograph (75 times) of the cross-sectional metal structure of Sample No. 9 of the inventive example.
  • Figure 4 is a macro and micrograph (75x magnification) of the cross-sectional metallographic structure of specimen No. 10 of the inventive example.
  • FIG. 5 shows a macrograph and a micrograph (75 ⁇ ) of the cross-sectional metallographic structure of specimen No. 6 of the inventive example.
  • Fig. 6 shows a macrograph and a micrograph (75x magnification) of the cross-sectional metallographic structure of specimen No. 112 of the comparative example.
  • FIG. 7 is a macrophotograph and micrograph (75 ⁇ ) of the cross-sectional metallographic structure of specimen No. 110 as a comparative example.
  • FIG. 8 is a macro photograph and a micrograph (75 times) of the cross-sectional metallographic structure of specimen No. 103 of the comparative example.
  • Fig. 9A is a graph showing the relationship between the Zr content and the average grain size within the range of 64 ⁇ Cu_3.5 XS i—3 XP ⁇ 67.
  • Figure 9B is a logarithmic scale of the Zr content of Figure 9A.
  • FIG. 10 is a photomicrograph (75x magnification) showing the form of the dendrite of Sample No. 8 of the inventive example.
  • FIG. 11 is a photomicrograph (magnified 75 times) showing the form of the dendrite of test sample No. 115 of the comparative example.
  • FIG. 12 is a photomicrograph (75 ⁇ ) showing the morphology of the dendrite of test sample No. 110, which is a comparative example.
  • Fig. 13 A to Fig. 13 C are diagrams schematically showing the final solidified part in the evening test.
  • Fig. 13 A is evaluated as "good” and Fig. 13 C is evaluated as "bad”.
  • Figure 13B is the middle.
  • FIG. 14A to 14C are cross-sectional views of the main part of the inner surface of specimen No. 9 of the invention example, FIG. 14A is a macroscopic photograph, FIG. 148 is 3.5 times, and FIG. 14C is 18 times. This is an enlarged photo.
  • Fig. 15A to Fig. 15C are cross-sectional views of the main part of the inner surface of test sample No. 109 of the comparative example.
  • Fig. 15 A is a macroscopic photograph
  • Fig. 15 B is 3.5 times
  • Equation (2) Cu-3.5XS1-3XP 0.5X [i] + 0.5X [ii]
  • the first copper base alloy according to the present invention has Cu: 69 to 88%, Si: 2 to 5%, Zr: 0.0005 to 0.04%, P: 0.0 1-0. Containing 25%, it consists of the balance Zn and inevitable impurities.
  • C11 is the main element of the alloy.
  • the addition of Zr and P does not refine the crystal grains of all the copper alloys. As described later, the present inventor has found that when there is a predetermined relationship with the contents of Si and P, a remarkable effect of improving the grain refinement can be achieved by adding a small amount of Zr.
  • Cu should be contained at 69% or more.
  • the content exceeds 88%, the effect of crystal grain refinement is impaired. Therefore, the upper limit is 88%, preferably 70 to 84%, more preferably 71 to 79.5%, and most preferably 72 to 79%.
  • Si When Si is contained together with Zr, P, Cu, and Zn, it is an element that lowers the stacking fault energy of the alloy and exhibits a remarkable grain refinement effect. The effect is effective when the added amount is 2% or more. However, when it exceeds 5%, the addition of Cu and Zn tends to saturate or conversely reduce the refining effect, and further reduce ductility. Also, heat transfer The conductivity is lowered and the solidification temperature range is widened. Si also has the effect of improving the fluidity of the molten metal, preventing the molten metal from being oxidized, and lowering the melting point. It also has the effect of improving corrosion resistance, especially dezincification corrosion resistance and stress corrosion cracking resistance.
  • the Si content is preferably 2.2 to 4.8%, more preferably 2.5% to 4.5%, and most preferably 2.7 to 3.7%.
  • Zr is an important element for refining the crystal grains of the porcelain. As will be described later, when the contents of Cu, Si and P are in a predetermined relationship, an excellent crystal grain refining effect is exhibited at 0.0005% or more, and 0.0008% or more is more preferable. 0010% or more is most preferable, and the effect is almost saturated at a content of 0.0053%.
  • Zr has a very strong affinity with oxygen and sulfur, and in view of the fact that copper alloy products are usually manufactured using recycled materials and scrap materials in the atmosphere, It is difficult to add to a narrow composition range, and it must be added to some extent.
  • the upper limit of Zr is specified as 0.04%.
  • zirconium oxide is easily formed in the porcelain, and it becomes difficult to obtain a healthy porridge.
  • Zr is an expensive metal, the use of a large amount is also economically disadvantageous.
  • the content is preferably 0.0290% or less, more preferably 0.0190%, and as described above, 0.005% at which the effect is saturated is most preferable. That is, when considering these influences in addition to the grain refining action of Zr, the Zr content is most preferably 0.0001 to 0.0095%.
  • P is an important element for refining the crystal grains of porcelain. Excellent crystal grain refining effect in the presence of Zr. Also, increase the fluidity of the molten metal, It works to disperse and precipitate the ⁇ , r , and j3 phases, which will be described later, and to improve the corrosion resistance. The effect is exhibited when the content is 0.01%. However, if the content is too high, an intermetallic compound with a low melting point is formed and becomes brittle. For this reason, the upper limit is set to 0.25%, taking into account the ease of manufacturing the garment.
  • Zn is a main element that constitutes the copper-based alloy case of the present invention, lowers the stacking fault energy of the alloy, refines the crystal grain of the case, improves the fluidity of the melt, and In addition to lowering the melting point, preventing Zr oxidation loss, improving corrosion resistance, and improving machinability, it also works to improve mechanical strength such as tensile strength, resistance, impact strength, and fatigue strength. is there. For this reason, Zn is defined as the balance of each of the aforementioned constituent elements.
  • relational expression (1) Cu-3.5 XS i-3 It is necessary to adjust so that the value of XP satisfies 60-71.
  • This relational expression is obtained experimentally based on the measurement results of the crystal grains after melting and solidification, and the copper-based alloy cake is refined to an average crystal grain size of about 100 m or less. It is defined as a condition for The significance of this relational expression (1) will be described in detail later.
  • the value is preferably 62.5 to 68.5, and most preferably 64 to 67.
  • the copper-based alloy product of the present invention achieves the desired grain refining action.
  • P, Zr, and Si, P and Zr, Si and Zr, Si and P It is preferable that P / Zr satisfy the relationship of 0.8 to 2500, S i / Zr ⁇ S80 to 6200, and 31 satisfy 12 to 220, respectively.
  • PZZ r 1.5 to 15 is preferable, 2 to 100 is more preferable, and 4 to 50 is most preferable.
  • S i / Z r 1 0 0 to 5 0 0 0 is preferable, 120 to 3500 is more preferable, and 300 to 1500 is most preferable.
  • S i / P is more preferably 16 to 160, further preferably 20 to 120, and most preferably 25 to 80.
  • Zr is based on the assumption that Cu, Zn, Si, P, P / Zr, Si / Zr, Si / P, relational expression (1), and phase structure are within the scope of the claims.
  • P by co-addition with P, it has the function of increasing the stacking fault density of the melt-solidified material, and crystal nucleation is much higher than crystal growth.
  • the ultra-fine grain size is realized.
  • the second copper-based alloy alloy according to the present invention includes, as an element that promotes the refinement of crystal grains, the constituent elements of the first copper-based alloy alloy, Mg: 0.001 to 0.2%, B : Selected from the group consisting of 0.003 to 0.1%, C: 0.002 to 0.01%, T i: 0.001 to 0.22%, and rare earth elements: 0.01 to 0.3% In addition, at least one of the above can be further contained.
  • Mg is consumed due to sulfur and oxygen mixed from scrap materials such as defective products, waste products, scraps of pressed wires, pressed copper alloy scraps, scraps, wastewater generated in the process, wastewater, weirs, scraps, etc.
  • scrap materials such as defective products, waste products, scraps of pressed wires, pressed copper alloy scraps, scraps, wastewater generated in the process, wastewater, weirs, scraps, etc.
  • Mg immediately before the addition of Zr is a preferable element for reducing the amount of sulfur and oxygen in the molten metal in the form of MgS and MgO and utilizing Zr. For this reason, it is preferable to contain Mg at least 0.001%.
  • B, C, T i and rare earth elements have the effect of grain refinement, so at least B is 0.003%, C is 0.0002%, and T i is 0 in order to effectively exert the effect. It is preferable to contain 0.001% and 0.01% of the rare earth element.
  • the rare earth element (REM) means 14 kinds of lanthanide elements including La, Ce, etc. in addition to S c and Y.
  • Mg, B, C, Ti, and rare earth elements are saturated even if they are added too much, and on the contrary, the molten metal flow properties are hindered. Therefore, the upper limit of these elements For Mg, 0.2%, B is 0.1%, C is 0.01%, Ti is 0.2%, and rare earth elements are 0.3%.
  • the third copper-base alloy case according to the present invention has a composition of A 1: It may further contain at least one selected from the group consisting of 0.02 to 1.5%, Mn: 0.2 to 4.0%, and Cr: 0.01-0.2%.
  • the alloy with fine crystal grains is further improved in strength and wear resistance.
  • a 1 improves strength and wear resistance by strengthening the matrix. Therefore, it is desirable to contain at least 0.02% or more, preferably 0.1% or more. However, if the content is too high, the elongation decreases. For this reason, the upper limit is 1.5%.
  • Mn combines with S i to form an Mn—S i intermetallic compound, which contributes to improved wear resistance. Therefore, it is preferable to contain at least 0.2% or more, preferably 0.5% or more. However, the content exceeding 4.0% not only saturates the effect, but also reduces the fluidity of the molten metal, and the formation of an Mn-Si intermetallic compound makes S effective for refinement. i is consumed. For this reason, the upper limit of Mn is specified as 4.0%. In addition, it is preferable to make it 3.5% or less.
  • the Si content In order to reduce the consumption of Si, which is effective for miniaturization, the Si content must satisfy the relationship 2.3 + 1/3 Mn ⁇ S i ⁇ 3.5 + 1/3 M n Preferably, it is more preferable to satisfy the relationship 2.6 + 1 / 3M n ⁇ S i ⁇ 3.4 + l / 3Mn.
  • Cr is partly dissolved in the matrix, and partly contains Si and fine intermetallic compounds. Form and improve wear resistance. For this reason, it is preferable to contain 0.01% or more. However, if the content is too large, the Cr 1 Si compound becomes coarse and the effect is saturated. For this reason, the upper limit is defined as 0.2%.
  • the fourth copper-based alloy container according to the present invention has a composition of A 1: 0 02 to 1.5%, Mn: 0.2 to 4.0%, and Cr: 0.0 1-0. At least one selected from the group consisting of 0.2% can further be contained. .
  • the first to fourth copper-based alloy alloys include Sn: 0.1 to 2.5%, Sb: 0.02 to 0.25%, and A s: 0.02-0 as corrosion resistance improving elements. . It may further contain at least one selected from the group consisting of 5%.
  • the alloy with finer crystal grains is further improved in corrosion resistance.
  • Sn has the effect of improving erosion resistance and corrosion resistance.
  • a protective film rich in Si and Sn is formed in corrosive solutions. And exhibits excellent corrosion resistance.
  • addition of 0.1% or more is preferable.
  • it exceeds 2.5% it is easy to bend, and since it is a low melting point metal, it is easy to cause forging cracks, and the ductility is lowered, so the upper limit is made 2.5%.
  • a more preferable range is 0.2 to 0.9%.
  • Sb and As have the effect of improving dezincification corrosion resistance.
  • the content is increased, segregation is likely to occur, and since it is a low melting point metal, there is a problem of causing forging cracks.
  • the ductility may be reduced. For this reason, the upper limit is 0.25%.
  • the copper base alloy porcelain of the present invention has Pb: 0.004 to 0.45%, B i: 0.004 to 0.45%, Se: 0.03 to 0.45% and Te: It may further contain at least one selected from the group consisting of 0.01 to 0.45%.
  • an alloy with finer crystal grains is further improved in machinability.
  • the machinability can be improved.
  • Pb, Bi, Se, and Te have a negative effect on the human body, and Bi, Se, and Te are not resource-rich elements. 3 is 0.45%, Bi is 0.45%, Se is 0.45%, and Te is 0.45%.
  • the upper limit of these elements is preferably 0.2% or less.
  • the inclusion of impurity elements inevitably included in the melting of the alloy is allowed.
  • Fe and Ni as impurity elements, if there is a large content, Zr and P, which are useful for crystal grain refinement, are consumed by Fe and Ni, and grain refinement There is an inconvenience of inhibiting the action. Therefore, when Fe and / or Ni are contained as impurities, their content is Fe: 0.5% or less, N i: Specified to 0.5% or less.
  • the content of Fe and Ni is preferably 0.25% or less, more preferably 0.15% or less for Fe, and 0.2% or less for Ni.
  • the phase structure of the copper-based alloy product of the present invention is adjusted so that the total area ratio of the ⁇ phase, the c phase, and the phase is 80% or more. Adjusted to account for%. Note that the ⁇ phase and the a phase are higher in Si concentration than the phase. When these three phases do not reach 100%, the remainder generally consists of the i3 phase, the phase, and the ⁇ 5 phase. At least one of these phases is included.
  • phase structure in which the total area ratio of this phase, ⁇ phase and phase is 80% or more, it is necessary to optimize the forging conditions such as the pouring temperature and cooling rate. This is also a condition necessary for reducing the average crystal grain size to about 100 m or less.
  • the proportion of the ⁇ + phase is preferably 5 to 85%. More preferably, it is 10 to 80%.
  • the proportion of the other phases and the proportion of the other phases exceed 20%, the primary crystal becomes a phase other than the ⁇ phase and the grain refinement cannot be achieved, and machinability and corrosion resistance are not achieved. Property, elongation and impact strength are reduced.
  • the ⁇ phase is preferably 10% or less.
  • the primary crystal is in phase.
  • miniaturization is further promoted if the solid phase is a phase in the formation of crystal nuclei. This corresponds to the value 62.5 in the above formulas ⁇ ) to (4).
  • the amount of the primary crystal phase is 20 to 30% or more, which corresponds to the value 64 in the formulas (1) to (4).
  • at least a solid phase can exist at the time of solidification. This is the condition for miniaturization, and corresponds to the value 62.5 in equations (1) to (4). Even if the composition is slightly away from the value 62.5, the average grain size is large. However, it is still miniaturized, and its lower limit corresponds to the value 60 in equations (1) to (4).
  • the value 71 in Equations (1) to (4) shows that it is difficult to make crystal grains ultrafine by reducing the amount of Zn added, and that there is a practical non-equilibrium in the solidification process. This is because it is not subject to the peritectic reaction in the state and the machinability is impaired.
  • the solidification temperature range is widened. As the solidification temperature range becomes wider, coalescence of granular solid phases tends to occur, and dendrites are eventually in a dendritic form. In addition, no matter how fine the crystal grains are, cracks and nests are likely to occur, and the solid phase coalescence increases the number and size of blowholes and sinkholes.
  • the most refinement of the crystal grains is achieved when the solidification phase is completed or a phase other than the ⁇ phase, mainly 3), or ⁇ , a phase is crystallized or precipitated.
  • a phase is crystallized or precipitated.
  • the non-phase, ⁇ , R, and ⁇ phases crystallize or precipitate, and if they exist, the growth of ⁇ crystal grains during the solidification stage and the cooling stage from high temperature is suppressed, and ultrafine processing is realized.
  • the values of equations (1) to (4) are preferably 68.5 or less, Is most desirable.
  • the values of equations (1) to (4) are: 60 or more is necessary, more preferably 62.5 or more, and most preferably 64 or more.
  • the values of equations (1) to (4) need to be 71 or less, more preferably 68.5. In order to obtain industrially satisfactory machinability without containing Pb, 67 or less is most preferable.
  • the copper-based alloy product of the present invention having a phase structure containing a total of 80% or more of the ⁇ phase, the / c phase and the a phase can be obtained by the following fabrication conditions.
  • the upper limit of the pouring temperature is generally a temperature of 1 1550 ° C or lower or a liquidus temperature + 2500 ° C or lower, preferably 1100 ° C or lower, Preferably, it is performed at 1 0 5 0 or less.
  • the lower limit of the pouring temperature is not particularly limited as long as the molten metal fills every corner of the mold, but is generally 90 ° to 95 ° C. just above the liquidus temperature. It should be understood that these temperature conditions vary depending on the alloy content.
  • phase structure As described above, there is a close relationship between the phase structure and the above equation, and the temperature range of 500 ° C. immediately after the completion of solidification has the greatest influence on the phase transformation.
  • value of the above formula is 62.5 or less, when cooling at an average cooling rate of 25 ° C./sec or more, a phase structure containing a total of 80% or more of ⁇ phase, ⁇ phase, and a phase is obtained. It becomes difficult.
  • the alloy of the present invention can be crystallized by performing a general method and means for refining the porcelain, that is, by reducing the squeezing temperature, increasing the cooling rate, stirring in the solidification process, etc. Needless to say, the grains become finer.
  • the term “containment” means a product that is completely or partially melted and solidified, including ingots, slabs, billets for rolling and extrusion, For example, sand casting, mold casting, low pressure casting, die casting, loss casting, semi-solid casting (eg thixocasting, rheocasting), squeeze, centrifugal casting, continuous casting (eg horizontal casting) Continuous forging, thermal spraying, overlaying and upwards, up-cast bars, hollow bars, deformed bars, deformed hollow bars, coiled materials, wire rods, etc.), melt forging (direct forging), spraying, meat Examples of such items include assortment, lining, and overlay. Furthermore, since welding also involves melting, solidifying, and joining a part of the base metal, it should be understood that it is included in the porcelain in a broad sense.
  • the alloy materials having the compositions shown in Tables 1 to 3 were melted in an electric furnace and placed in a mold to obtain test materials.
  • the filling temperature is 100 ° C.
  • the preheating temperature of the mold is 200 ° C.
  • the obtained specimen is a cylinder with a diameter of 40 mm and a length of 2880 mm.
  • the area ratio of each phase constituting the phase structure was measured.
  • the cylindrical specimen is cut parallel to the bottom surface at a position about 100 mm in the axial direction from the bottom surface, and the average grain size is determined at a position about 10 mm away from the center of the circle of the cut surface. It was measured.
  • the measurement is performed based on the comparison method of the grain size test for wrought copper products of JISHO 5001, and after etching the cut surface with nitric acid, the crystal grain size of about 0.5 mm or more is magnified by the naked eye or 5x magnification.
  • the crystal grain size smaller than about 0.5 mm was etched with a mixture of hydrogen peroxide and aqueous ammonia and observed with an optical microscope.
  • the measurement position is about 1 O mm from the axis of the cut surface and about 10 O mm away from the bottom surface.
  • test materials No. 1 to No. 4 4 shown in Table 1 and Table 2 are examples of the present invention, and the test materials No. 1 0 1 to No. 1 2 2 shown in Table 3 are comparisons. It is an example. In the comparative examples, the data shown in bold represents that the data deviates from the conditions defined by the copper base alloy product of the present invention.
  • FIGS. 1 and 2 The phase structures of Invention Example No. 9 and Comparative Example No. 103 are shown in FIGS. 1 and 2, respectively.
  • Fig. 1 shows a phase structure in which the ⁇ phase, ⁇ phase, and a phase are 100% in total, and the average crystal grain size is 15 m.
  • FIG. 2 shows a phase structure in which the total of ⁇ ; phase, ⁇ phase, and a phase is 60%, ⁇ phase is present, and the average crystal grain size is 800 m.
  • Comparative Examples No. 1 0 1 to No. 1 0 4 are examples in which the value of the relational expression is smaller than 60, and the total area ratio of the three phases is less than 80%, and the average crystal grain size is extremely low. It has become a big thing.
  • Comparative Examples No. 1 0 5 to ⁇ ⁇ 1 0 8 are examples in which the value of the relational expression is larger than 71, and even if other conditions are within the specified range of the present invention, the average grain size The diameter is larger than 200 / m.
  • Comparative Examples No. 1 2 0 and No. 1 2 1 are examples in which the total area ratio of the three phases is less than 80%, and the value of the relational expression is close to the lower limit specified in the present invention. However, the average crystal grain size is larger than 400 m.
  • Comparative Example No. 1 0 9 does not contain Zr and P, and No. 1 1 0 and No. 1 1 1 1 are examples in which the content of Zr is less than that of the present invention. Since No. 1 1 0 and No. 1 1 1 have low Zr content, are the values of Si / Zr and P / Zr within the preferred range of the present invention? As a result, the average grain size is becoming very large.
  • Comparative Examples No. 1 1 3 to No. 1 1 5 are examples in which the Zr content is higher than that of the present invention, and if the Zr content exceeds 0.05%, the crystal grain fineness It is shown that the result will be disturbed.
  • FIG. 9A and FIG. 9B plot the relationship between the average crystal grain size and the Zr content.
  • the value of the relational expression was limited to this range, as in No. 1 to No. 4 and No. 15 to No. 20 This is because the value has a great influence on the average crystal grain size, so that the influence is excluded.
  • Comparative Example No. 1 1 5 is an example in which the P content is less than that of the present invention.
  • Comparative Examples No. 1 1 6 and No. 1 1 7 are examples in which the Si content deviates from the provisions of the present invention. These have an average crystal grain size of 200 zm or more.
  • Comparative Examples No. 1 1 8 and No. 1 1 9 indicate that the average grain size increases when Fe and Ni as impurities exceed the specified range of the present invention, respectively.
  • Sample No. 8 of the invention example (average crystal grain size 25 xm), Test sample No. 1 1 5 of the comparative example (average crystal grain size 3 5 0 m), No. 1 1 0 (average crystal grain)
  • Figure 5 shows the metal structures after etching a sample cooled with water from a solidification process (semi-molten state) with a solid phase ratio of 40% and a liquid phase ratio of 60%. As shown in FIG.
  • specimen No. 8 In the solidification process (during melting and solidification), specimen No. 8 has no dendrite arm and is in the form of a circle or ellipse, whereas dendrites No. 1 1 5 and No. 1 1 0 Is a tooth-like form. Thus, No. 8 shows that crystal nucleation exceeded crystal grain growth (dendritic arm growth) and that crystal grain refinement was achieved (the matrix was semi-molten in a liquid state). A phase).
  • the copper-based alloy of the present invention is particularly suitable for semi-molten (semi-solid) fabrication. If the solid phase is granular, the solid-liquid phase is not subjected to great resistance to every corner of the mold. It shows that it crosses over.
  • Specimens No. 110, 111, and 112 were further heated to 750 ° C and subjected to hot extrusion at an extrusion ratio of 9 and a processing rate of 89% to obtain round bars with a diameter of 13.3 mm. Above, the average grain size and mechanical properties were measured.
  • the specimens after hot extrusion of these specimens are shown as No. 1 10a, No. 1 1 1a and No. 1 12a, respectively.
  • the mechanical property test was conducted by taking a No. 10 test piece specified in JISZ 2201 from the test material and conducting a tensile test with an Amsla type universal testing machine. Tensile strength, resistance (0.2%), Elongation and fatigue strength were measured. Table 5 shows the test results.
  • No. 1 10 to No. 112 show that the crystal grain size is large at the stage after melting and solidification, but the crystal grain is refined to 30 / zm or less by hot extrusion.
  • the mechanical properties after the crystal grains are refined by hot extrusion are almost the same as or rather inferior to those of the inventive examples after melting and solidification. From these results, it is clear that the mechanical properties depend on the average grain size. Therefore, the copper-based alloy product of the present invention in which the crystal grains are refined in the melt-solidification stage can have the same level of mechanical properties as those subjected to hot working without hot working. I understand.
  • the dezincification corrosion test is based on ISO 6509. A sample collected from a test material is embedded in a phenol resin material, and the sample surface is polished to # 1200 with emiri paper, and then this is removed in pure water. Ultrasonic cleaning and drying. The corrosion test sample thus obtained was immersed in an aqueous solution (12.7 g, l) of 1.0% cupric chloride dihydrate (CuC 12 2H 2 0). After holding at 75 ° C for 24 hours, the sample was taken out from the aqueous solution and the maximum value of the dezincification corrosion depth (maximum dezincification corrosion depth) was measured. The results are shown in Table 7.
  • the stress corrosion cracking test conforms to JISH 3250 and is a plate-shaped sample taken from the specimen.
  • a sample (width 10 mm, length 60 mm, thickness 5 mm) is bent into a 45 degree V-shape (bending radius 5 mm) (adding residual tensile stress), degreased, After drying, it was kept in an ammonia atmosphere (25 ° C) in a dessert overnight containing 12.5% ammonia water (a solution of ammonia diluted with an equal amount of pure water). After holding (exposure) for a predetermined time as described below, the sample was taken out from Desike overnight, washed with 10% sulfuric acid, and then observed for cracking with a magnifier (10x magnification). Table 6 shows the observation results.
  • the outer peripheral surface of the test material shown in Table 7 is a serious tool (rake angle: 1-6 °, nose radius: 0.4 With a lathe attached, the cutting speed was 100 m / min, the cutting depth was 1.5 mm, the feed was 0.1 lmm / re v., and the cutting was measured with a 3-component dynamometer attached to the cutting tool. Converted to main component. In addition, chips generated by cutting were collected, and the quality of the machinability was judged from the shape. In other words, the chips that are sheared into a fan-shaped piece or an arc-shaped piece with a half or less winding are the best in chip disposal and are indicated by ⁇ .
  • Fine needle-shaped chips are indicated with a circle because they are easy to handle, but there are dangers such as obstacles to machine tools such as lathes and piercing workers' fingers.
  • a spiral shape with more than 3 turns of chips has an adverse effect on the cutting processability, and there are inconveniences such as entanglement of the chips with the cutting tool and damage to the cut surface.
  • chip processing is inferior, bite entanglement during continuous cutting, surface damage Since it may cause scratches, it is indicated by ⁇ .
  • Ry is ideally close to the theoretical surface roughness, and less than 7.5 m is indicated by ⁇ . In order to obtain an industrially satisfactory cutting surface, Ry is 7.5 to 12 im, and X is the case where Ry exceeds 12 xm.
  • the copper-based alloy of the present invention in which the crystal grains are refined at the time of melting and solidification can be suitably used, for example, as the following constituent member.
  • Valves that require pressure resistance, wear resistance, machinability, and forgeability pump bodies, impellers, water supply taps, mixing taps, water supply valves, fittings, sprinklers, cocks, water meters, stopcocks, Sensor parts, scroll compressor parts, high pressure valves, sleeves pressure vessels;
  • Bonding strength, overlaying, lining, overlay, corrosion resistance, forging are required Welding pipes for desalination equipment, water supply pipes, heat exchanger pipes, heat exchanger pipe plates, gas piping pipes, ELPO, marine structural materials, welding members, welding materials;
  • Valve shoe, bag nut, header faucet parts that are required to have excellent pressure resistance, wear resistance, and machinability;

Abstract

 質量%で、Cu:69~88%、Si:2~5%、Zr:0.0005~0.04%、P:0.01~0.25%を含有すると共に、60≦Cu−3.5×Si−3×P≦71を満足し、残部がZn及び不可避の不純物からなり、溶融固化後の平均結晶粒径が100μm以下であって、相組織は、α相、κ相及びγ相の面積率が合計で80%以上である。Mg:0.001~0.2%、B:0.003~0.1%、C:0.0002~0.01%、Ti:0.001~0.2%及び希土類元素:0.01~0.3%からなる群から選択される少なくとも1種をさらに含むことができる。

Description

明細書
結晶粒が微細化された銅基合金铸物
【技術分野】
【0001】
本発明は、 溶融固化後に結晶粒が微細化している銅基合金铸物、 特に Cu— Z n— S i系の銅基合金铸物に関する。
【背景技術】
【0002】
銅基合金は、 一般の金属材料と同様、 結晶粒の微細化によって耐力が向上する ことは知られており、 その強度は、 ホールべツチの法則に基づくと、 結晶粒径の 逆数の 1Z 2乗に比例して向上すると言われている。
【0003】
銅基合金の結晶粒径が微細化する基本形態として、 (A)銅基合金の溶融固化時 に結晶粒が微細化する場合と、 (B)溶融固化後の銅合金 (インゴット、 スラブ等の 铸塊、 ダイキャスト等の铸造品、 溶融鍛造品等)に圧延等の変形加工又は加熱処理 を施すことにより、 歪エネルギー等の蓄積エネルギーが駆動力となって結晶粒が 微細化する場合がある。
(A) (B)の各場合とも、 Z rは、 結晶粒の微細化に有効に作用する元素として 知られている。
しかしながら、 (A)の場合、 溶融固化段階における Z rの結晶粒微細化作用は、 他の元素及びそれらの含有量による影響を大きく受けるため、 所望レベルの結晶 粒微細化が達成されていないのが実情である。
このため、 一般的には、 (B)の手法が広く用いられており、 溶融固化後の铸塊、 铸造品等に熱処理を施し、 さらに歪を与えることにより、 結晶粒の微細化を図る ことが行われている。
【特許文献 1】 特公昭 38— 20467号公報
【特許文献 2】 特開 2004— 100041号公報
【0004】
特公昭 38— 20467号は、 Z r、 P、 N iを含む銅合金に溶体化処理を行 ない、 次に 7 5 %冷間加工を施した後の平均結晶粒径を調べたもので、 Z rを含 有しないときの 2 8 0 mから、 1 7 0 ^m(Z r : 0. 0 5 %含有)、 5 0 m (Z r : 0. 1 3 %含有)、 2 9 βπι(Ζ r : 0. 2 2 %含有)、 6 m(Z r : 0. 8 9 %含有)の如く、 Z rの含有量の増加に比例して微細化されることを記載してい る。 なお、 この公報では、 Z rの含有過多による悪影響を回避するために、 Z r の含有量としては、 0. 0 5〜0. 3 %が提案されている。
また、 特開 2 0 04 - 2 3 3 9 5 2を参照すると、 0. 1 5〜 0. 5 %の Z rが 添加された Cu合金を、 铸造後、 溶体化処理及び歪付加のための変形加工を施す と、 平均結晶粒径は、 約 2 0 以下のレベルにまで微細化されることが開示さ れている。
【発明の開示】
【発明が解決しょうとする課題】
【0 0 0 5】
しかし、 前記(B)の手法のように、 結晶粒径を微細化させるために、 铸造後に これら処理及び加工を行なうことは、 コスト高を招く。 また、 铸物製品の形状に よっては、 歪付加のための変形加工を施すことができないものもある。
【0 0 0 6】
このため、 結晶粒は、 前記(A)の手法により、 銅基合金が溶融固化した時点で 微細化されていることが好ましい。
ところが、 (A)の手法の場合、 前述したように、 溶融固化段階での Z rは、 他 の元素及びそれらの含有量による影響を大きく受けるため、 Z rの含有量を増や したとしても、 その増量に対応した結晶粒微細化効果を得られるとは限らない。 また、 Z rは、 酸素との親和力が非常に強いため、 Z rを大気溶解で添加すると、 酸化物となり易く、 歩留まりが非常に悪い。 このため、 铸造後の製品に含まれる 量はたとえ僅かな量であっても、 铸込み段階では、 相当量の原料を投入する必要 がある。
一方、 溶解中での酸化物の生成量があまり多くなると、 铸込み時に酸化物が巻 き込まれ易くなり、 铸造欠陥を生じる虞れがある。 酸化物の生成を回避するため に、 真空中又は不活性ガス雰囲気中で溶解、 铸造を行なうことは可能であるが、 コスト高を招く。
また、 Z rは高価な元素であるから、 経済的観点より、 添加量はできるだけ少 なく抑えることが好ましい。
このため、 Z rの含有量をできるだけ少なくすると共に、 铸造工程の溶融固化 後の段階で、 平均結晶粒径が微細化された銅基合金铸物が要請されている。
【0007】
また、 Cu-Zn-S i系の銅基合金の場合、 S iは機械的特性等の向上に寄 与するが、 一方では、 溶融固化時に割れやざく巣が発生し易くなり、 引け巣が大 きく、 ブローホール等の铸物欠陥が発生し易くなる問題があった。 この主な原因 は、 S iの含有量が多くなるにつれて、 液相線温度と固相線温度の凝固温度範囲 が広くなり、 また熱伝導性が悪くなることによる。 また、 従来の Cu— Zn— S i系の銅基合金の凝固組織を観察すると、 デンドライトが樹枝状に生成されてお り、 このデンドライトのアームが、 発生する気泡を大気中に開放され難くし、 ブ ローホールの残留の原因、 局部的な大きな引け巣の発生の原因になっている。 本発明者は、 溶融固化過程で結晶粒が微細化されれば、 最終の凝固段階で発生 する収縮応力は小さくなつて、 固相間に働く応力が分散されるため、 割れやざく 巣が発生し難くなり、 また、 デンドライトのアームが分断されて、 気泡は大気中 に開放され易くなり、 引け巣も滑らかに行われるため、 铸造欠陥のない铸物が得 られることを見出した。
【0008】
それゆえ、 本発明の目的は、 溶融固化過程で結晶粒径が微細化された銅基合金 を提供することであり、 より具体的には、 溶融固化後の平均結晶粒径が約 100 m以下にまで微細化された C u— Z n— S i系銅基合金铸物を提供することで ある。
【0009】
【課題を解決するための手段】
上記課題を解決するために、 本発明に係る第 1の銅基合金铸物は、 質量%で、 Cu : 69〜88%、 S i : 2〜5%、 Z r : 0. 0005〜 0. 04%、 P : 0. 0 1〜0. 25%を含有すると共に、 3. 5 X S i— 3 XP≤71を 満足し、 残部が Z n及び不可避の不純物からなり、 溶融固化後の平均結晶粒径が 約 100 trn以下であって、 相組織は、 α相、 /C相及びァ相の面積率が合計で 8 0 %以上である。
【0010】
本発明に係る第 2の銅基合金鍀物は、 第 1の銅基合金铸物の組成に、 結晶粒微 細化元素として、 Mg : 0. 00 1〜0. 2 %、 B : 0. 003〜0. 1 %、 C : 0. 0002〜 0. 01 %、 T i : 0.001-0. 2 %及び希土類元素: 0. 01〜0. 3 %からなる群から選択される少なくとも 1種をさらに含有したもので、 ここで、 Mg及び Bからなる群を [i]、 C、 T i及び希土類元素からなる群を [i i]とし たとき、 60≤C u - 3. 5 X S i - 3 X P - 0. 5 X [ i ] + 0. 5 X [ i i ]≤ 71 を満足するようにしている。
【001 1】
本発明に係る第 3の銅基合金铸物は、 第 1の銅基合金铸物の組成に、 強度及ぴ 耐摩耗性向上元素として、 A 1 : 0. 02〜; L. 5 %、 Mn : 0. 2〜 4 · 0 %及び C r : 0. 01〜0. 2 %からなる群から選択される少なくとも 1種をさらに含有 したもので、 60≤C u - 3. 5 X S i - 3 X P- 1. 8 X A 1 + a XMn + 0. 5 C r≤ 71 (但し、 Mnが 0. 5 %以上で、 且つ 0. 2 X S i≤Mn≤ 2. 0 X S i のときは a = 2であり、 それ以外のときは a=0. 5)を満足するようにしている。
【0012】
本発明に係る第 4の銅基合金铸物は、 第 2の銅基合金铸物の組成に、 強度及び 耐摩耗性向上元素として、 A 1 : 0. 02〜: L. 5 %、 Mn : 0. 2〜4. 0 %及び C r : 0. 01〜0. 2%からなる群から選択される少なくとも 1種をさらに含有 したもので、 60≤Cu— 3. 5 X S i - 3 XP- 0. 5 X [ i] + 0. 5 X [ i i]— 1. 8 XA l + aXMn+ 0. 5 C r≤71 (但し、 Mnが0. 5 %以上で、 且つ 0. 2 X S i≤Mn≤ 2. 0 X S iのときは a = 2であり、 それ以外のときは a = 0. 5)を満足するようにしている。
【0013】
本発明に係る第 1乃至第 4の銅基合金铸物は、 所望により、 耐食性向上元素と して、 S n : 0. 1〜2. 5%、 S b : 0. 02-0. 25%及び As : 0. 02〜0 25 %からなる群から選択される少なくとも 1種と、 切削性向上元素として、 P b : 0. 004〜 0.45%、 B i : 0. 004〜 0.45%、 S e : 0. 03〜0. 45%及び丁6 : 0. 01-0.45 %からなる群から選択される少なくとも 1種 をさらに含有することができる。
【0014】
なお、 この明細書の中で使用する 「溶融固化後の平均結晶粒径」 という語は、 所定成分の銅基合金を溶融固化させた後、 圧延等の変形加工又は加熱処理が一切 施されていない状態で測定された平均結晶粒径を意味する。
【001 5】
【発明の効果】
本発明の銅基合金铸物は、 前述の成分組成と相組織を有しており、 溶融固化後 の平均結晶粒径は約 100 m以下に微細化されている。
溶融固化段階で結晶粒が微細化されるため、 凝固の際の収縮に耐えることがで き、 錡造割れの発生を少なくすることができる。 また、 凝固の過程で発生するホー ル、 ポロシティ一についても、 外部へ抜け易いため、 ざく巣、 引け巣等の铸造欠陥 のない健全な铸物を作ることができる。
また、 凝固の過程で晶出するデンドライトは、 铸造組織特有の典型的な樹枝状の形 態ではなく、 アームが分断された形態、 好ましくは、 円形、 楕円形、 多角形、 十字 形の如き形態である。 このため、 溶湯の流動性が向上し、 薄肉で複雑な形状のモ一 ルドの場合でも、 その隅々にまで溶湯を行き渡らせることができる。
結晶粒が微細化された铸物は、 耐カその他の機械的性質、 耐食性、 切削性等に もすぐれるので、 バルブ、 継手、 混合栓、 給水栓金具等のように、.複雑な形状を 有するァズキャスト製品に対して特に有効である。
【図面の簡単な説明】
【0016】
図 1は、 発明例の供試材 No. 9の相組織を示す顕微鏡写真(350倍)である。 図 2は、 比較例の供試材 No. 103の相組織を示す顕微鏡写真(350倍)である。 図 3は、 発明例の供試材 No. 9の横断面金属組織のマクロ写真と顕微鏡写真(7 5倍)である。 図 4は、 発明例の供試材 No. 10の横断面金属組織のマクロ写真と顕微鏡写真 (75倍)である。
図 5は、 発明例の供試材 No. 6の横断面金属組織のマクロ写真と顕微鏡写真(7 5倍)である。
図 6は、 比較例の供試材 No. 1 12の横断面金属組織のマクロ写真と顕微鏡写真 (75倍)である。
図 7は、 比較例の供試材 No. 1 10の横断面金属組織のマクロ写真と顕微鏡写真 (75倍)である。
図 8は、 比較例の供試材 No. 103の横断面金属組織のマクロ写真と顕微鏡写真 (75倍)である。
図 9Aは、 64≤Cu_3. 5 XS i— 3 XP≤67の範囲内で、 Z rの含有量 と平均結晶粒径の関係を示すグラフである。 , 図 9 Bは、 図 9 Aの Z r含有量を対数目盛で表したグラフである。
図 10は、 発明例の供試材 No. 8のデンドライトの形態を示す顕微鏡写真(75 倍)である。
図 1 1は、 比較例の供試材 No. 1 15のデンドライトの形態を示す顕微鏡写真 (75倍)である。
図 12は、 比較例の供試材 No. 1 10のデンドライトの形態を示す顕微鏡写真 (75倍)である。
図 1 3 A乃至図 13 Cは、 夕一夕一テストにおける最終凝固部を模式的に示し た図で、 図 13 Aは 「良」 、 図 13 Cは 「不良」 と評価されるもので、 図 13 B は、 その中間である。
図 14A乃至図 14Cは、 発明例の供試材 No. 9の内面要部の断面図であり、 図 14 Aは肉眼観察の写真、 図148は3. 5倍、 図 14 Cは 18倍の拡大写真であ る。
図 15 A乃至図 15 Cは、 比較例の供試材 No. 109の内面要部の断面図であり、 図 1 5 Aは肉眼観察の写真、 図 15 Bは 3. 5倍、 図 15 Cは 18倍の拡大写真で ある。
【0017】 【発明を実施するための最良の形態】
まず、 以下において、 本発明の銅基合金铸物を構成する各合金成分の限定理由 及び該成分の関係式について説明する。
以下の記載において、 合金成分の 「%」 は、 全て質量%である。
また、 上記関係式については、 次のとおり、 式(1)〜式(4)とする。
式(1) : Cu-3.5XSi-3XP
式(2) : Cu-3.5XS1-3XP一 0.5X [i]+0.5X [ii]
式(3) : Cu-3.5XSi-3XP — 1.8XAl+aXMn + 0.5XCr
式(4) : Cu-3.5XSi-3XP -0.5X [i] +0.5X [ii] -1.8XAl + aXMn+0.5XCr 【0018】
本発明に係る第 1の銅基合金铸物は、 Cu : 69〜88%、 S i : 2〜5%、 Z r : 0. 0005〜 0. 04%、 P : 0. 0 1-0. 25 %を含有し、 残部 Z n及 び不可避の不純物からなる。
【001 9】
Cu : 69〜88%
C 11は合金の主要元素である。 Z rと Pを添加してもすべての銅合金において铸物 の結晶粒が微細化されるわけでもない。 本発明者は、 後述の如く、 S i、 Pの含有量 と所定の関係を有するときに、 Z rの微量添加によって、 顕著な結晶粒微細化向上効 果を達成できることを見出した。
なお、 工業用材料としての機械的特性、 耐食性等の諸特性を確保するために、 Cu は、 69%以上含有させる。 一方、 88%を越えて含有すると、 結晶粒微細化作用が 損なわれる。 このため、 上限は 88%とし、 70〜84%が好ましく、 71〜79. 5%がより好ましく、 72〜 79 %が最も好ましい。
【0020】
S i : 2〜5 %
S iは、 Z r、 P、 Cu及び Znと共に含有させると、 合金の積層欠陥エネルギー を下げ、 顕著な結晶粒微細化効果を発揮する元素である。 その添加量は 2%以上で効 果を発揮する。 しかし、 5%を超えると Cu、 Znと共に添加してもその微細化作用 は飽和するか、 逆に低下する傾向にあり、 さらには延性の低下をきたす。 また、 熱伝 導性が低下し、 凝固温度範囲が広くなつて、 铸造性が悪くなる。 また、 S iには溶湯 の流動性を向上させ、 溶湯の酸化を防ぎ、 融点を下げる作用がある。 また、 耐食性、 特に耐脱亜鉛腐食性及び耐応力腐食割れ性を向上させる作用がある。 さらには、 被削 性の向上と、 引張り強さ、 耐カ、 衝撃強さ、 疲労強度などの機械的強度の向上に寄与 する。 それらの作用が、 鍀物の結晶粒の微細化について相乗効果を生み出す。 それら の効果を発揮するには、 S iの含有量は、 2. 2〜4. 8 %が好ましく、 2. 5%〜4. 5%がさらに好ましく、 2. 7〜3.7%が最も好ましい。
【0021】
Z r : 0. 0005〜0. 04%
Z rは、 铸物の結晶粒を微細化させるために重要な元素である。 後記するように、 Cu、 S i及び Pの含有量が所定の関係にあるとき、 0. 0005 %以上ですぐれた 結晶粒微細化効果を発揮し、 0. 0008%以上がさらに好ましく、 0. 0010%以 上が最も好ましく、 その効果は、 0. 0095 %の含有でほぼ飽和する。
一方、 Z rは、 酸素および硫黄との親和力が非常に強く、 通常銅合金铸物が大気下 で、 リサイクル材およびスクラップ材を用いて製造されることが多いことに鑑みると、 Z rを目的とする狭い組成範囲に添加することが困難であり、 ある程度過剰に加えな ければならない。 一方、 Cu— Zn— S i系銅基合金において、 Z rが 0. 05%以 上含まれると、 溶融固化段階での結晶粒微細化作用は却つて低下することもわかった。 そこで、 Z rの上限を 0. 04%に規定する。 なお、 Z rは、 その含有量が増すにつ れて、 铸物内に酸化ジルコニウムが形成され易く、 健全な铸物が得られ難くなる。 さ らに Z rは高価な金属であるので、 多量の使用は経済的にも不利である。 従って、 0. 0290%以下が好ましく、 0. 0190%がより好ましく、 前記のとおり、 効果が 飽和する 0. 0095 %が最も好ましい。 即ち、 Z rの結晶粒微細化作用の他にこれ らの影響についても考慮すると、 Z rの含有量は、 0. 0010〜0.0095 %が最 も好ましい。
【0022】
P : 0. 0 1〜0. 25%
Pは、 Z rと同様、 铸物の結晶粒を微細化させるために重要な元素である。 Z r の存在下で、 すぐれた結晶粒微細化作用を発揮する。 また、 溶湯の流動性を高めて、 後述の κ、 r、 j3相をより微細に分散析出させる働きがあり、 耐食性を向上させる効 果がある。 その作用は、 0. 0 1 %の含有で効果を発揮する。 しかし、 含有量があま り多くなると、 低融点の金属間化合物を形成し、 脆くなる。 このため、 錡物製造上の 容易性も考慮し、 上限は 0. 2 5 %に規定する。 なお、 Z rの添加量との配合比およ びマトリックスの Cu、 Z n、 S iの配合量または配合比にもよるが、 0. 0 2〜0. 2 0 %が好ましく、 0. 0 3〜0. 1 6%がより好ましく、 0. 04〜0. 1 2%が最も 好ましい。
[0 02 3]
Z n:残部
Z nは、 Cu、 S iと共に、 本発明の銅基合金铸物を構成する主要元素であり、 合 金の積層欠陥エネルギーを下げ、 铸物の結晶粒微細化作用、 溶湯の流動性向上及び融 点低下作用、 Z rの酸化損失の防止作用、 耐食性向上作用、 被削性向上作用を有する 他、 引張強さ、 耐カ、 衝撃強さ、 疲労強度などの機械的強度を向上させる働きがある。 このため、 Znを、 前述の各構成元素の残部と規定する。
【0 0 2 4】
なお、 本発明の銅基合金铸物の構成元素中、 C u、 S i及び Pについては、 夫 々の上記各規定に加えて、 関係式(1) : Cu- 3. 5 X S i - 3 X Pの値が 6 0〜 7 1を満たすように調整する必要がある。
この関係式は、 溶融固化後の結晶粒の測定結果に基づいて実験的に求められた ものであり、 銅基合金铸物が、 平均結晶粒径約 1 0 0 m以下に微細化されるた めの条件として規定される。 この関係式(1)の意義については、 後で詳しく説明す るが、 その値は、 6 2. 5〜6 8. 5が好ましく、 64〜6 7が最も好ましい。
【0 0 2 5】
また、 本発明の銅基合金铸物は、 所望の結晶粒微細化作用を達成する上で、 P、 Z r及び S iについては、 Pと Z r、 S iと Z r、 S iと Pの間で、 夫々、 P/ Z rが 0. 8〜2 5 0、 S i /Z r^S8 0〜6 0 0 0、 3 1 が1 2〜2 2 0の 関係を満たすことが好ましい。
PZZ rについては、 1. 5〜 1 5 0が好ましく、 2〜 1 0 0がより好ましく、 4〜 5 0が最も好ましい。 S i /Z rについては、 1 0 0〜 5 0 0 0が好ましく、 120〜3500がより好ましく、 300〜1500が最も好ましい。 S i /P については、 16〜160がより好ましく、 20〜120がさらに好ましく、 2 5〜80が最も好ましい。
なお、 Z rは、 Cu、 Zn、 S i、 P、 P/Z r、 S i /Z r、 S i/P、 関 係式(1)及び相組織が請求の範囲にあることを前提に、 特に、 Pとの共添加によつ て、 溶融固化材の積層欠陥密度を高くする機能を有し、 結晶成長よりはるかに結 晶核生成が上回り、 溶融固化材、 具体的には铸物の結晶粒の超微細化が実現する。
【0026】
本発明に係る第 2の銅基合金铸物は、 結晶粒の微細化を促進する元素として、 前記第 1の銅基合金铸物の上記構成元素に、 Mg : 0. 001〜0.2%、 B : 0. 003〜 0. 1 %、 C : 0. 0002〜 0. 01 %、 T i : 0. 00 1-0. 2 %及び 希土類元素: 0. 01〜0. 3 %からなる群から選択される少なくとも 1種をさら に含有することができる。
【0027】
Mgは、 不良製品、 廃棄製品、 電線屑、 プレス銅合金屑、 切屑、 工程で発生する湯 道、 押湯、 堰、 端材などの屑等のリサイクル材ゃスクラップから混入する硫黄および 酸素によって消費される Z rのロスを大幅に少なくし、 かつ硫化ロス、 酸化ロスだけ でなく、 溶湯中に硫化物、 酸化物の形態で存在することにより、 微細化に寄与しない Z rの生成を避けるために必要であり、 結果的に結晶粒の微細化作用に寄与する。 す なわち、 Z rの添加直前に Mgを添加することにより、 MgS、 MgOの形態で溶湯 中の硫黄、 酸素を少なくし、 Z rを活用させるために好ましい元素である。 このため、 Mgは少なくとも 0. 001 %含有させることが好ましい。
B、 C、 T i及び希土類元素は、 結晶粒微細化作用を有するので、 その効果を 有効に発揮させるために、 少なくとも、 Bは 0. 003 %、 Cは 0. 0002 %、 T iは 0. 001 %、 希土類元素は 0. 0 1 %を夫々含有させることが好ましい。 なお、 希土類元素(REM)とは、 S c、 Yの他に、 L a、 C e等を含む 14種類 のランタノィド元素を意味する。
一方、 Mg、 B、 C、 T i及び希土類元素は、 あまり多く添加してもその効果 は飽和し、 また却って合金の湯流れ性を阻害する。 このため、 これら元素の上限 について、 Mgは 0. 2%、 Bは 0. 1 %、 Cは 0. 01 %、 T iは 0. 2%、 希土 類元素は 0. 3 %に夫々規定する。
また、 これらの元素は、 Z rの結晶粒微細化作用に関連し、 前記第 1の銅基合 金铸物の関係式(1)に影響を及ぼす。 そこで、 Mg、 B、 C、 T i及び希土類元素 の各作用を考慮し、 Mg及び Bからなる群を [i]、 C、 T i及び希土類元素から なる群を [i i ]としたとき、 関係式(2) : Cu- 3. 5 X S 卜 3 XP— 0. 5 X [i] + 0. 5 X [ i i]の値が 60〜71を満足するように調整する。
【0028】
本発明に係る第 3の銅基合金鍀物は、 前記第 1の銅基合金铸物の強度及び耐摩 耗性をさらに高めるために、 第 1の銅基合金铸物の組成に、 A 1 : 0. 02〜1. 5 %、 Mn : 0. 2〜4. 0 %及び C r : 0. 01-0. 2 %からなる群から選択さ れる少なくとも 1種をさらに含有することができる。
これら成分を含むことにより、 結晶粒が微細化された合金は、 強度及び耐摩耗 性がさらにすぐれたものとなる。
【0029】
A 1はマトリックスを強化することにより、 強度と耐摩耗性を向上させる。 こ のため、 少なくとも 0. 02 %以上、 好ましくは 0. 1 %以上含有させることが望 ましい。 しかし、 含有量があまり多くなると伸びが低下する。 このため、 上限は 1. 5 %とする。
Mnは、 S iと結合して Mn— S iの金属間化合物を形成し、 耐摩耗性の向上に寄 与する。 このため、 少なくとも 0.2 %以上、 好ましくは 0. 5%以上含有させること が好ましい。 しかし、 4. 0%を越えて含有しても、 その効果は飽和するだけでなく、 却って溶湯の流動性を低下させ、 Mn— S iの金属間化合物の形成により、 微細化に 有効な S iが消費される。 このため、 Mnの上限は、 4. 0%に規定する。 なお、 3. 5%以下にすることが好ましい。
なお、 微細化に有効な S iの消費を抑えるために、 S iの含有量は、 2. 3+ 1/3 Mn≤S i≤ 3. 5 + 1 / 3 M nを関係を満たすことが好ましく、 2. 6 + 1/3M n≤S i≤ 3.4 + l/3Mnの関係を満たすことがより好ましい。
C rは、 一部はマトリックスに固溶し、 又一部は S iと微細な金属間化合物を 形成して、 耐摩耗性を向上させる。 このため、 0. 0 1 %以上含有させることが好 ましい。 しかし、 含有量があまり多くなると、 C r一 S i化合物が粗大化して、 その効果が飽和する。 このため、 上限は 0. 2 %に規定する。
また、 Aし Mn及び C rは、 Z rの結晶粒微細化作用に関連し、 前記第 1の 銅基合金鍀物の関係式(1)に影響を及ぼす。 そこで、 A l、 Mn及び C rの作用を 考慮し、 関係式(3) : C u - 3. 5 X S i 一 3 X P— 1. 8 X A 1 + a XMn + 0. 5 C rの値が 60〜7 1を満足するように調整する。 但し、 Mnが 0. 5 %以上で、 且つ 0. 2 X S i≤Mn≤ 2. 0 X S iのときは a = 2であり、 それ以外のときは a = 0. 5である。
【003 0】
本発明に係る第 4の銅基合金錶物は、 前記第 2の銅基合金铸物の強度及び耐摩 耗性を高めるために、 第 2の銅基合金铸物の組成に、 A 1 : 0. 02〜 1. 5 %、 Mn : 0. 2〜4. 0 %及び C r : 0. 0 1-0. 2 %からなる群から選択される少 なくとも 1種をさらに含有することができる。
前述の如く、 これらの元素は、 Z rの結晶粒微細化作用に関連し、 前記第 2の 銅基合金関係式(2)に影響を及ぼす。 そこで、 A l、 Mn及び C rの作用を考慮し、 関係式 (4) : C u - 3. 5 X S i一 3 X P— 0. 5 X [ i] + 0. 5 X [ i i ]一 1. 8 X A 1 + a XMnの値が 60〜7 1を満足するように調整する。 但し、 Mnが 0. 5 %以上で、 且つ 0. 2 XS i≤Mn≤2. 0 X S iのときは a=2であり、 それ以 外のときは a= 0. 5である。
【003 1】
前記第 1乃至第 4の銅基合金铸物は、 耐食性向上元素として、 Sn : 0. 1〜2. 5%、 S b : 0. 02〜0. 25 %及び A s : 0. 02-0. 2 5 %からなる群から 選択される少なくとも 1種をさらに含有することができる。
これら成分を含むことにより、 結晶粒が微細化された合金は、 耐食性がさらに すぐれたものとなる。
【0032】
S nは耐ェロージヨン 'コロージョン性、 耐海水性を向上させる作用を有する。 特に S iとの相乗作用により、 腐食性溶液中で、 S iと Snリッチの保護皮膜を形成 し、 すぐれた耐食性を発揮する。 そのためには 0. 1%以上の添加が好ましい。 一方、 2. 5%を超えると、 偏折し易く、 低融点金属であることから铸造割れを起こしやす く、 また延性の低下を招くので、 上限は 2. 5%とする。 なお、 より好ましい範囲は、 0.2〜0. 9 %の範囲である。
Sbと Asは、 耐脱亜鉛腐食性を向上させる作用を有する。 そのためには、 夫々、 0. 02%以上含有することが好ましい。 しかし、 含有量が多くなると、 偏析し易く、 低融点金属であることから铸造割れを起こす問題がある。 また、 延性の低下を招く虞 れがある。 このため、 上限は、 夫々、 0.25 %とする。
【0033】
• また、 本発明の銅基合金铸物は、 切削性向上元素として、 Pb : 0. 004〜0. 45%、 B i : 0. 004〜 0.45%、 S e : 0. 03〜 0.45 %及び T e : 0. 01〜0.45 %からなる群から選択される少なくとも 1種をさらに含有すること ができる。
これら成分を含むことにより、 結晶粒が微細化された合金は、 切削性がさらに すぐれたものとなる。
【0034】
Pbは 0. 004%、 B iは 0. 004%、 S eは 0. 03%、 Teは 0. 01 % を夫々含有することにより、 切削性の向上を図ることができる。
一方、 P b、 B i、 S e、 T eは人体への悪影響があり、 また、 B i、 S e、 T eは資源的に豊富な元素でないので、 これら各元素の上限について、 ? 3は0. 45%、 B iは 0.45%、 S eは 0.45%、 T eは 0.45 %に夫々規定する。 なお、 本発明の铸物を、 飲料水用のバルブ、 給水金具等に使用する場合は、 これ ら各元素の上限は 0. 2%以下にすることが好ましい。
【0035】
本発明の銅基合金铸物においては、 合金の溶製上不可避的に含まれる不純物元 素の含有は許容される。 しかし、 不純物元素としての F eと N iについては、 含 有量が多いと、 結晶粒の微細化に有用な Z r及び Pが、 F e及び N iによって消 費され、 結晶粒の微細化作用を阻害する不都合がある。 そのため、 不純物として F e及び 又は N iが含まれる場合、 それらの含有量は、 F e : 0. 5 %以下、 N i : 0. 5 %以下に規定する。 なお、 F eと N iの含有量は、 0. 2 5 %以下が好 ましく、 F eについては 0. 1 5 %以下、 N iについては 0 . 2 %以下がより好ま しい。 "
【0 0 3 6】
本発明の銅基合金铸物の相組織は、 α相、 c相及びァ相の面積率が合計で 8 0 %以上となるように調整され、 より好適には、 これら 3相で 1 0 0 %を占めるよ うに調整される。 なお、 κ相、 ァ相は 相より S i濃度が高い相であり、 これら 3相で 1 0 0 %に達しないときは、 残部は、 一般的には、 i3相、 相及び <5相の うちの少なくとも 1つの相が含まれる。
このひ相、 κ相及びァ相の面積率が合計で 8 0 %以上でとなる相組織を得るに は、 铸込み温度、 冷却速度等の铸造条件を適正化する必要があり、 溶融固化後の 平均結晶粒径を約 1 0 0 m以下にまで微細化させるのに必要な条件でもある。
【0 0 3 7】
この相組織は、 P bを添加せずに工業的に満足しうる被削性を具備する為には、 κ +ァ相の占める割合が 5〜8 5 %であることが好ましい。 さらに好ましくは、 1 0〜 8 0 %である。 一方、 それら以外の相の占める割合、 その他の相の割合が 2 0 %を超 えると、 初晶が α相以外の相になり結晶粒微細化が達成できず、 また、 被削性、 耐食 性、 伸び、 衝撃強さが低下する。 特に優れた耐脱亜鉛腐食性、 伸び及び被削性を確保 するためには、 ^相は 1 0 %以下であることが望ましい。
【0 0 3 8】
また、 溶融凝固時の相組織の変態については、 前記関係式(1)〜(4)とも密接な 関連性を有しているので、 以下に詳しく説明する。
凝固の過程では、 初晶が 相であることが望ましい。 すなわち、 結晶核が生成する 中でその固相が 相であると微細化が一層促進する。 前記式 α)〜(4)の値 6 2. 5に 相当する。 さらに、 初晶ひ相の量が 2 0〜3 0 %以上であるのが最も好ましく、 それ が式(1)〜(4)の値 6 4に相当する。 そして、 実際の凝固過程において包晶反応或いは 共晶反応に与れれば、 C u— Z n _ S i系合金の場合、 実用上、 凝固完了時に少なく とも 固相が存在することができるので、 それが微細化の条件になり、 式(1)〜(4)の 値 6 2. 5に相当する。 値 6 2. 5からわずかに離れる組成でも平均結晶粒径は大きく なるが、 まだ微細化しており、 その最下限が、 式(1)〜(4)の値 6 0に相当する。
一方、 式(1)〜(4)の値 7 1は、 Z nの添加量が少なくなることによつて結晶粒超微 細化が困難になることと、 凝固過程で、 実用上の非平衡状態において包晶反応に与れ なくなること、 及び被削性が損なわれることによる。 また、 凝固温度範囲が広くなる。 凝固温度範囲が広くなると、 粒状の固相の合体が生じ易くなり、 デンドライトは、 結 果的に樹枝状に近い形態となる。 また、 いくら結晶粒を微細化しても、 割れ、 ざく巣 が発生し易くなり、 固相の合体により、 ブローホール、 ひけ巣も多く且つ大きくなる。 最も結晶粒の微細化が達成されるのは、 凝固終了時に α相以外の相、 主に) 3相、 或 いは κ、 ァ相が晶出あるいは析出すると良い。 つまり、 多数の初晶 α相が形成される が、 それらが多くなると結晶粒同志の合体が行われ、 結果的に、 デンドライトアーム が成長したものと同様になる。 それを避けるために、 相以外の相、 β、 了、 κ相が 晶出あるいは析出し、 存在すると、 凝固段階および高温からの冷却段階での α結晶粒 の成長を抑制し超微細化が実現する。 例えば、 凝固段階で包晶反応に与るとより結晶 粒の超微細化が実現する。 そして、 凝固段階で、 第 2相が存在する為には、 α相との バランスと凝固温度範囲を考慮すると、 式(1)〜(4)の値は 6 8. 5以下が望ましく、 6 7が最も望ましい。
なお、 機械的性質等との関係において、 延性、 衝撃強さ、 耐脱亜鉛腐食性、 耐応力 腐食割れ性、 被削性を得るためには、 式 (1)〜(4)の値は、 6 0以上必要であり、 より 好ましくは 6 2. 5以上であり、 6 4以上が最も好ましい。 一方、 高い強度と耐摩耗 性を得て、 良好な被削性を得るためには、 式(1)〜(4)の値は 7 1以下が必要であり、 より好ましくは、 6 8. 5以下であり、 P bを含まなくとも工業的に満足できる被削 性を得るためには、 6 7以下が最も好ましい。
【0 0 3 9】
α相、 /c相及びァ相を合計で 8 0 %以上含む相組織を有する本発明の銅基合金 铸物は、 次の铸造条件によって得ることができる。
まず、 铸込み温度は、 上限が、 一般的には、 1 1 5 0 °C以下又は液相線温度 + 2 5 0 °C以下の温度であり、 好ましくは 1 1 0 0 °C以下、 更に好ましくは 1 0 5 0 以下で行なう。 铸込み温度の下限は、 溶湯がモールドの隅々に充填される限 り、 特に規定はないが、 一般的には、 液相線温度直上の 9 0 0〜9 5 0 °Cである。 なお、 これらの温度条件は、 合金の配合量によって異なることは理解されるべき である。
前述したように、 相組織と前記式との間には密接な関係があり、 凝固完了直後 から 5 0 0 °Cの温度範囲が相変態に最も大きな影響を及ぼす。 前記式の値が 6 2. 5以下の場合、 2 5 0 °C/秒以上の平均冷却速度で冷却すると、 α相、 κ相及び ァ相を合計で 8 0 %以上含む相組織を得ることが困難となる。 前記式の値が 6 2. 5以下の合金の場合、 1 0 0 °C/秒以下の速度で冷却することが好ましい。 一方、 a相、 κ相及びァ相を合計で 8 0 %以上有していても、 前記式の値が 6 8 . 5以上 の合金の場合、 7 0 0〜8 0 0 °Cの温度範囲において、 0 . 5 ノ秒以下の平均冷 却速度で冷却すると、 κ相とァ相の析出が妨げられ、 α相の粒成長が起こり、 結 晶粒径の微細化を達成することが困難になることがある。 このため、 前記式の値 が 6 8. 5以上の合金の場合、 少なくとも 7 0 0〜 8 0 0 °Cの温度域を 1 °Cノ分以 上の速度で冷却することが好ましい。
なお、 本発明合金は、 铸物を微細化する一般的な方法、 手段、 すなわち、 铸込 み温度を低くする、 冷却速度を速くする、 凝固過程で撹拌する等の処置を行なう ことによって、 結晶粒がより微細化することは言うまでもない。
【0 0 4 0】
なお、 この明細書の中で使用される 「踌物」 という語は、 完全に、 又は一部が溶 解して凝固した物を意味し、 圧延や押出用のインゴット、 スラブ、 ビレットを始め、 例えば、 砂型铸物、 金型铸物、 低圧铸造铸物、 ダイキャスト、 ロス卜ワックス、 セミ ソリッド铸造 (例えば、 チクソ一キャスティング、 レオキャスティング)、 スクイズ、 遠心铸造、 連続铸造铸物 (例えば、 横型連続铸造、 溶射、 肉盛やアップワード、 アツ プキャストで作られた棒材、 中空棒材、 異形棒材、 異形中空棒材、 コイル材、 線材 等)、 溶融鍛造 (直接鍛造)、 溶射、 肉盛、 ライニング、 オーバレイによる铸物を挙げ ることができる。 さらに、 溶接についても、 母材の一部を溶かし、 凝固させて、 繋ぎ 合わせるものであるから、 広義において、 铸物に含まれるものと理解されるべきであ る。
【実施例】
【0 0 4 1】 表 1〜表 3に示す組成の合金材料を電気炉で溶解し、 金型に铸込んで、 供試材 を得た。 鍀込み温度は 1 0 0 0 °C、 金型の予熱温度は 2 0 0 °C、 得られた供試材 は、 直径 4 0 mm、 長さ 2 8 0 mmの円柱状である。
得られた全ての供試材について、 相組織を構成する各相の面積率を測定した。 また、 円柱状の供試材を、 底面から軸心方向約 1 0 0 mmの位置で、 底面と平行 に切断し、 切断面の円中心から約 1 0 mm離れた位置で平均結晶粒径を測定した。 測定は、 J I S H O 5 0 1の伸銅品結晶粒度試験の比較法に基づいて行ない、 切 断面を硝酸でエッチングした後、 約 0 . 5 mm以上の結晶粒径は肉眼又は倍率 5倍 の拡大鏡を用いて観察し、 約 0. 5 mmよりも小さな結晶粒径については、 過酸化 水素とアンモニア水の混合液でエッチングし、 光学顕微鏡で観察した。 なお、 測 定位置は、 切断面の軸線から約 1 O mm、 底面から約 1 0 O mm離れた位置であ る。
これらの測定結果を表 1〜表 3に併せて示している。 なお、 表 1及び表 2に示 される供試材 No. l〜No. 4 4は本発明の実施例、 表 3に示される供試材 No. 1 0 1 〜No. 1 2 2は比較例である。 なお、 比較例中、 太字で示すデータは、 本発明の銅 基合金铸物で規定する条件から逸脱していることを表している。
合金匕学成分 (残部 Zn及び不可避の不純 ί勿) (mass%) 相組織 平均結
No. Cu Si Zr Ρ Mg, B, C, Al, Mn, Sn, Sb, Pb, Bi, P/Zr Si/Zr Si/P 関係式 * 面積率(%) 晶粒径 o
Ti, REM Cr As Se, Te 種類 値 + κ + r その他 (jjm)
1 71.0 2.93 0.0150 0.10 —― —― —― —- 6.7 195 29 (1) 60.4 85 15 100 t
2 74.2 3.73 0.0160 0.10 —一 ― —― —- 6.3 495 78 (1) 60.8 85 15 90
3 70.3 2.50 0.0120 0.12 —― ― —- —- 10.0 208 21 (1) 61.2 90 10 80
4 72.0 2.54 0.0155 0.07 —― —- ― ― 4.5 164 36 (1) 62.9 95 5 65
5 74.7 3.50 .0.0180 0.09 ―— —- —- 5.0 194 39 (1) 63.9 100 0 30
6 75.3 2.98 0.0007 0.09 —- ― ― ― 129 4257 33 (1) 64.6 100 0 85
7 75.8 3.10 0.0190 0.08 ―— —- —- 4.2 163 39 (1) 64.7 100 0 30
8 75.9 3.08 0.0053 0.06 ― —- —- —― 11.3 , 581 51 (1) 64.9 100 0 25
9 75.8 3.00 0.0100 0.10 —一 ― ——- ― 10 300 30 (1) 65.0 100 0 15
10 76.1 3.10 0.0290 0.07 —- —- ― —― 2.4 107 44 (1) 65.0 100 0 35
11 76.2 3.10 0.0017 0.07 —- —- —一 58 2583 44 (1) 65.1 100 0 50
12 76.3 3.09 0.0185 0.07 ― —― ― 3.8 167 44 (1) 65.3 100 0 25
13 76.1 3.00 0.0038 0.13 —― —- —- —- 3.4 79 23 (1) 65.2 100 0 80
14 76.6 3.07 0.0040 0.08 —- ― —- 20 768 38 (1) 65.6 100 0 20
15 81.0 3.80 0.0170 0.06 —- —- —- 3.5 224 63 (1) 67.5 100 0 50
16 75.8 2.27 0.0280 0.08 —- —- ― —- 2.9 81 28 (1) 67.6 100 0 65
17 83.1 4.21 0.0230 0.03 -— ― —一 ― 1.3 183 140 (1) 68.3 100 0 70
18 79.2 2.76 0.0210 0.16 —― ― —- —― 7.6 131 17 (1) 69.1 100 0 75
19 80.2 2.70 0.0230 0.07 —- —- —- ― 3.0 117 39 (1) 70.5 100 0 80
20 79.4 2.30 0.0160 0.11 —― —― —- 6.9 144 21 (1) 71.0 100 0 90
21 76.9 3.20 0.0009 0.08 Mg: 0.004 —- —- —- 88.9 3556 40 (2) 65.5 100 0 40
22 75.8 2.98 0.0032 0.07 Mg: 0.11 —- ― ― 21.9 931 43 (2) 65.2 100 0 20
23 73.8 2.76 0.0075 0.12 B: 0.011 —- —- —- 16.0 368 23 (2) 63.8 100 0 20
24 77.3 3.41 0.0110 0.09 C: 0.001 —- —- —一 8.2 310 38 (2) 65.1 100 0 15
25 75.9 3.00 0.0130 0.11 Ti: 0.012 —- —- ― 8.5 231 27 (2) 65.1 100 0 15
備考: * 関係式の種類 (1) Cu - 3.5 X Si - 3 X P
(2) Cu - 3.5 X Si - 3 X P - 0.5 X [i] + 0.5 X [ii]
(3) Cu - 3.5 X Si - 3 X P - 1.8 X Al + a X Mn + 0.5 X Cr
(4) Cu - 3.5 X Si - 3 X P - 0.5 X [i] + 0.5 X [ii] - 1.8 X Al + a X Mn 4- 0.5 X Cr
合金ィ匕学成分 (残部 Zn及び不可避の不純 ί勿) (mass%) 相組織 平均結
No. Cu Si Zr Ρ Mg, B, C, Al, Mn, Sn, Sb, Pb, Bi, P/Zr Si/Zr Si/P 関係式 * 面積率(%) 晶粒径 Ti, REM Cr As Se, Te 種類 値 α + κ + r その他 (f )
26 76.6 3.12 0.0150 0.08 REM: 0.05 5.3 208 39 (2) 65.4 100 0 20
27 75.2 3.12 0.0035 0.09 ― Mn: 0.4 ― —- 26 891 35 (3) 64.2 100 0 30
28 70.9 4.53 0.0085 0.17 —- Mn: 3.6 —- -一- 20 533 27 (3) 61.7 95 5 40
29 73.3 4.02 0.0120 0.15 Al: 0.5 ― ― 13 335 27 (3) 63.3 100 0 25
Mn: 2.7
30 75.3 3.65 0.0160 0.10 — Al: 0.9 6 228 37 (3) 62.4 100 0 35
Mn: 0.9
31 75.6 3.13 0.0240 0.10 C: 0,0006 Cr: 0.2 —- —- 4 130 31 (4) 64.4 100 0 30
32 74.9 2.89 0.0035 0.11 -— —― Sn: 0.15 —― 31 826 26 (1) 64.5 100 0 25
33 78.4 3.12 0.0140 0.08 ― —― Sn: 1.4 —- 6 223 39 (1) 67.2 100 0 15
34 78.8 3.76 0.0035 0.13 一一一 —- Sb: 0.03 —― 37 1074 29 (1) 65.2 100 0 30
35 76.5 3.11 0.0015 0.03 —- ― As: 0.13 —- 20 2073 104 (1) 65.5 100 0 50
36 76.8 3.12 0.0230 0.08 ― —- —- Pb: 0.08 3 136 39 (1) 65.7 100 0 30
37 76.2 3.08 0.0125 0.07 —- Bi: 0.06 6 246 44 (1) 65.2 100 0 25
38 75.6 2.99 0.0180 0.05 ― ― ― Bi: 0.3 3 166 60 (2) 65.0 100 0 25
Se: 0.3
39 76.7 3.06 0.0180 0.12 —一 —― Sn: 0.6 Pb: 0.015 6 170 28 (1) 65.7 100 0 20
40 82.3 3.80 0.0150 0.04 —- A1: 1.2 —- Bi: 0.25 3 253 95 (3) 66.7 100 0 25
41 73.2 3.82 0.0095 0.12 Mg: 0.008 Mn: 1.9 —- Pb: 0.19 (4) 66.3 100 0 20
42 74.5 3.98 0.0055 0.09 Mg: 0.032 Al: 0.04 Sn: 0.8 -— 15 727 44 (4) 66.0 100 0 15
Mn: 2.9
43 78.8 3.22 0.0110 0.08 —一 Al: 1.2 Sb: 0.09 7 293 40 (3) 65.1 100 0 15
44 74.7 3.50 0.0180 0.09 — Al: 0.2 : Pb: 0.15 5 194 39 (3) 64.0 100 0 30
Mn: 1.1
備考: * 関係式の種類 (1) Cu - 3.5 X Si - 3 X P
(2) Cu - 3.5 X Si - 3 X P - 0.5 X [i] + 0.5 X [ii]
(3) Cu - 3.5 X Si - 3 X P - 1.8 X Al + a X Mn + 0.5 X Cr
(4) Cu - 3.5 X Si - 3 X P - 0.5 X [i + 0.5 X [ii] - 1.8 X Al + a X Mn + 0.5 X Cr
】 ¾2 合金 1匕学成分 (残部 Zn及び不可避の不制 ί物) mass%) 相組織 平均結
No. Cu Si Zr P Mg, B, C, Al, Mn, Sn, Sb, Pb, Bi, Fe, Ni P/Zr Si/Zr Si/P 関係式 * 面積率(%) 晶粒径
Ti, REM Cr As Se, Te 種類 値 + κ, + γ その他 τη)
.101 70.2 4.45 0.0100 0.08 —― —- —- ― ― 8.0 445 56 (1) 54.4 60 40 1500
102 73.0 3.98 0.0150 0.10 ― —― —- —― —一 6.7 265 40 (1) 58.8 65 35 . 800
103 70.3 3.08 0.0310 0.10 —- —- ——- —- —- 3.2 99 31 (1) 59.2 60 40 800
104 69.3 2.64 0.0170 0.11 ― ― —- ― -—— 6.5 155 24 (1) 59.7 70 30 600
105 79.5 2.10 0.0030 0.07 —- ——- —- —- —― 23.3 700 30 (1) 71.9 95 5 300
106 86.0 4.12 0.0290 0.09 —- —― ― —- ― 3.1 142 46 (1) 71.3 100 0 200
107 82.5 2.56 0.0120 0.08 —一 —- -— —- —- 6.7 213 32 (1) 73.3 100 0 250
108 82.7 2.25 0.0055 0.10 -— ― —- ― 4.2 93 22 (1) 74.5 100 0 300
109 79.8 4.05 ― —- —- —- —- ― -— —― —- (1) 65.6 100 0 2000
110 76.2 3.12 0.0003 0.09 —- —- ― —- ——- 300 10400 35 (1) 65.0 100 0 500
111 76.1 3.07 0.0002 0.07 —- ― —- —― 350 15350 44 (1) 65.1 100 0 600
112 74.7 2.95 0.0500 0.09 —- —- —一 ― 1.8 59 33 (1) 64.1 100 0 150
113 72.8 2.35 0.1500 0.08 —- ― —- —― 0.5 16 29 (1) 65.5 100 0 200
114 79.3 4.05 0.3000 0.03 —- ——― —- ― 0.1 14 135 (1) 66.4 100 0 200
115 75.6 3.18 0.0050 0.005 ― —- —- ―— 1.0 636 64 (1) 64.5 100 0 350
116 70.2 1.70 0.0060 0.08 —- —- —- —一 —- 13.3 283 21 (1) 64.0 95 5 200
117 85.8 5.50 0.0110 0.10 —- - —- ― —- ― 9.1 500 55 (1) 66.3 100 10 200
118 76.6 3.11 0.0180 0.09 ― —- —- —― Fe:0.55 5.0 173 35 (1) 65.4 100 0 400
119 75.8 3.05 0.0170 0.09 ― ― • ―— —- 動.6 5.3 179 34 (1) 64.9 100 0 600
120 70.1 2.77 0.0180 0.08 —- —- —- —- ― 4.4 154 35 (1) 60.2 75 25 500
121 72.9 3.45 0.0150 0.15 —一 -— —- —- -一- 10.0 230 23 (1) 60.4 75 25 400
122 76.5 3.05 ― 0.08 —- ― Sn: 0.6 Pb: 0.015 ― —- —- (2) 65.6 100 0 1500
* 関係式の種類 (1) Cu - 3.5 X Si - 3 X Ρ
(2) Cu - 3.5 X Si - 3 X P - 0.5 X [i] + 0.5 X [ii]
(3) Cu - 3.5 Si - 3 X P - 1.8 X Al + a X Mn + 0.5 X Cr
(4) Cu - 3.5 X Si - 3 X P - 0.5 [i] + 0.5 X [ii]— 1.8 X Al + a X Mn + 0.5 X Cr
¾3 ^^ 0 0 [ 0 0 4 5 ]
まず、 相組織について考察する。
発明例 No. l〜No. 3及び比較例 No. 1 2 0及び No. 1 2 1は、 関係式の値がほぼ 同じであり、 これらの結果を比較検討すると、 α相、 κ相及びァ相の合計の面積 率が多くなるほど、 平均結晶粒径は小さくなる傾向を示している。 本発明の目標 である平均結晶粒径約 1 0 0 m以下の微細化を達成するには、 これら 3相の合 計の面積率を 8 0 %以上にする必要があることがわかる。
また、 発明例 No. 9と比較例 No. 1 0 3について、 夫々の相組織を、 図 1と図 2 に示している。 図 1は、 α相、 κ相及びァ相が合計で 1 0 0 %で、 平均結晶粒径 が 1 5 mの相組織である。 図 2は、 α;相、 κ相及びァ相の合計が 6 0 %で、 β 相が存在し、 平均結晶粒径が 8 0 0 mの相組織である。
【0 0 4 6】
平均結晶粒径については、 表 1及び表 2を参照すると明らかなように、 Z rの 含有量、 関係式の値、 ひ、 κ及びァ相の合計の面積率が本発明で規定する条件を 充足すれば、 溶融固化後に、 平均結晶粒径が 1 0 0 以下に微細化された铸物 が得られることを示している。
【0 0 4 7】
比較例 No. 1 0 1〜No. 1 0 4は、 関係式の値が 6 0より小さく、 また前記 3相 の合計の面積率が 8 0 %より少ない例であり、 平均結晶粒径は非常に大きなもの となっている。
比較例 No. 1 0 5〜Νο· 1 0 8は、 関係式の値が 7 1よりも大きい例であり、 そ の他の条件は本発明の規定の範囲内にあっても、 平均結晶粒径は 2 0 0 / mより も大きくなつている。
比較例 No. 1 2 0及び No. 1 2 1は、 前記 3相の合計の面積率が 8 0 %よりも少 ない例であり、 関係式の値が本発明で規定の下限値に近いこともあるが、 平均結 晶粒径の値は 4 0 0 mよりも大きなものとなっている。
比較例 No. 1 0 9は、 Z rと Pを含まず、 No. 1 1 0及び No. 1 1 1は、 Z rの含 有量が本発明の規定よりも少ない例である。 なお、 No. 1 1 0と No. 1 1 1は、 Z rの含有量が少ないため、 S i / Z r及び P /Z rの値が本発明の好ましい範囲か ら逸脱する結果ともなり、 平均結晶粒径は非常に大きくなつている。
比較例 No. 1 1 3〜No. 1 1 5は、 Z rの含有量が本発明の規定よりも多い例で あり、 Z rの含有量が 0 . 0 5 %を超えると、 結晶粒微細化をかえって妨げる結果 となることを示している。
なお、 関係式の好ましい範囲である 6 4〜6 7に含まれる発明例(C u、 S i、 Z r、 P及び残部 Z n )と、 比較例 No. 1 1 0〜No. 1 1 5の平均結晶粒径について、 Z rの含有量との関係をプロットしたものを図 9 A及び図 9 Bに示す。 なお、 プ ロットするに際し、 関係式の値をこの範囲に限定したのは、 No. l〜No. 4及び No. 1 5〜No. 2 0の如く、 これらの範囲を逸脱すると、 関係式の値が平均結晶粒径に 及ぼす影響が大きいため、 その影響を排除して評価するためである。
比較例 No. 1 1 5は、 Pの含有量が本発明の規定より少ない例である。 また、 比 較例 No. 1 1 6と No. 1 1 7は S iの含有量が本発明の規定を逸脱する例である。 これらは、 平均結晶粒径は 2 0 0 z m以上である。
比較例 No. 1 1 8と No. 1 1 9は、 夫々、 不純物としての F eと N iが本発明の 規定の範囲を超えると、 平均結晶粒径が大きくなることを示している。
【0 0 4 8】
発明例の供試材 No. 8 (平均結晶粒径 2 5 x m)、 比較例の供試材 No. 1 1 5 (平均 結晶粒径 3 5 0 m) , No. 1 1 0 (平均結晶粒径 5 0 0 i m)について、 夫々、 固 相率が 4 0 %、 液相率が 6 0 %の凝固過程(半溶融状態)から水冷した試料をエツ チングした後の金属組織を、 夫々、 図 1 0〜図 1 2に示す。
凝固の過程(溶融固化時)で供試材 No. 8は、 デンドライトのアームが生じず、 円 形乃至楕円形の形態であるのに対し、 No. 1 1 5と No. 1 1 0のデンドライトは榭 枝状の形態である。 このように、 No. 8は、 結晶核生成が結晶粒成長(デンドライ トのアーム成長)を上回り、 結晶粒の微細化が達成されたことを示すものである (母地は半溶融状態で液相であつた)。
これは、 本発明の銅基合金は、 特に半溶融(セミソリッド)铸造に好適であり、 固相が粒状であれば、 固 ·液相が金型の隅々まで大きな抵抗を受けることなく行 き渡ることを示すものである。
【0 0 4 9】 結晶粒が微細化された本発明の銅基合金铸物の铸造性を評価するために、 表 4 に示す供試材について夕一夕一テスト(Tatur Shr i nkage Tes t)を行ない、 内びけ 部分の形態及びその近傍におけるポロシティ、 ホール、 ざく巣等の欠陥の有無を 調べた。 铸造性の評価は、 図 1 3 Aに示す如く、 内ぴけ部分の形態が滑らかで、 その最終凝固部においてポロシティ等の欠陥が生じていないものを 「良好」 、 同 図 Bの如く、 内びけ部分が滑らかではなく、 その最終凝固部において僅かである がポロシティ等の欠陥が生じているものを 「やや不良」 、 同図 Cに示す如く、 内 びけ部分の凹凸形状が顕著で、 最終凝固部においてポロシティ等の欠陥が明瞭に 生じたものを 「不良」 とした。 テスト結果を表 4に示す。
【0 0 5 0】
【表 4】
Figure imgf000025_0001
【0 0 5 1】
表 4に示されるように、 発明例 No. 6及び No. 9は良好な铸造性を示すのに対し、 平均結晶粒径が 2 0 0 以上になると、 铸造性はやや不良又は不良という結果 を示している。
なお、 No. 9と No. 1 0 9の試料の観察結果を、 夫々、 図 1 4と図 1 5に示して いる。 図 1 4 B、 Cと、 図 1 5 B、 Cの比較から明らかなように、 結晶粒が微細 化された No. 9は铸造欠陥が殆んど認められないのに対し、 No. 1 0 9は、 内部に までデンドライトのアームの隙間に、 割れ、 ざく巣、 多数のホールが観察され、 引け巣が大きく、 最終凝固部の凹凸が大きく、 铸造欠陥が含まれることを示して いる。
[0052]
次に、 結晶粒が微細化された本発明の銅基合金铸物の特性を評価するために、 供試材 No. 8、 9、 12、 29、 39、 44、 122、 1 10、 1 1 1及び 1 12 について機械的性質(引張強さ、 耐カ、 伸び、 疲労強度)を測定した。
なお、 供試材 No. 110、 1 11及び 112については、 さらに 750°Cに加熱 し、 押出比 9、 加工率 89%で熱間押出加工を行ない、 直径 13. 3 mmの丸棒と した上で、 平均結晶粒径と機械的性質を測定した。 なお、 これら供試材の熱間押 出加工後の供試片を、 夫々、 No. 1 10 a、 No. 1 1 1 a及び No. 1 12 aとして示 す。
機械的性質の試験は、 供試材から、 J I S Z 2201に規定する 10号試験 片を採取し、 アムスラ一型万能試験機による引張試験を行ない、 引張強さ、 耐カ (0. 2%)、 伸び及び疲労強度を測定した。 試験結果を表 5に示す。
【0053】
【表 5】
供試材 平均結晶粒径 引張強さ 0.2%耐カ 伸び 疲労強度
No. ( m) (N/删 2) (M /匪2) (%) (N/mm2)
8 25 (溶融固化後) 5 1 6 257 42 255
9 1 5 (溶融固化後) 526 274 42 26 1
1 2 25 (溶融固化後) 520 263 40 257
29 25 (溶融固化後) 652 345 24 330
39 20 (溶融固化後) 525 27 1 30 25 2
44 30 (溶融固化後) 605 3 1 0 26 285
1 22 1 500 (溶融固化後) 388 1 84 1 5 1 59
1 1 0 500 (溶融固化後) 436 1 8 1 26 1 69
1 1 0 a 30 (熱間加工後) 500 254 37 250
1 1 1 600 (溶融固化後) 433 1 74 24 1 55
1 1 1 a 30 (熱間加工後) 498 25 1 36 248
1 1 2 1 50 (溶融固化後) 452 1 99 30 1 86
1 1 2 a 20 (熱間加工後) 524 272 36 258 【0054】
表 5を参照すると、 結晶粒が微細化された発明例 No. 8、 9、 12、 29、 39 及び 44は、 比較例 No. 122、 110、 1 1 1及び 1 12よりも機械的性質にす ぐれている。 なお、 No. 29と No.44は、 A 1、 Mnを含むため、 他の発明例よ りも機械的性質にさらにすぐれている。
低融点金属 S nを 0. 6 %含む No. 39と No. 122を比較すると、 機械的性質は、 Z r、 P添加による結晶粒微細化の効果によって強度、 特に伸びにおいて著しく 改善していることがわかる。
No. 1 10〜No. 1 12は、 溶融固化後の段階では、 結晶粒径が大きいが、 熱間 押出加工によって結晶粒が 30 /zm以下まで微細化されることを示している。 ま た、 熱間押出加工によって結晶粒が微細化された後の機械的特性は、 溶融固化後 の発明例のものとほぼ同程度かむしろまだ劣っている。 これらの結果から、 前記 の機械的特性は、 平均結晶粒径に依存することは明らかである。 従って、 溶融固 化段階で結晶粒が微細化された本発明の銅基合金铸物は、 熱間加工を施さなくて も、 熱間加工を施したものと同レベルの機械的性質を具備できることがわかる。
【0055】
表 6に示す供試材について耐食性(エロージョン ·コロ一ジョンテスト、 脱亜鉛 腐食試験及び応力腐食割れ試験)を調べた。
エロージョン ·コロ一ジョンテストは、 供試材から切り出した試料に、 口径 2 mmのノズルを使用して、 30°Cの 3 %食塩水を 1 lm/sの流速に当てて、 4 8時間経過した後の腐食減量を測定した。 その結果を表 7に示す。
脱亜鉛腐食試験は、 I SO 6509に準拠し、 供試材から採取した試料を、 フ ェノール樹脂材に埋め込み、 試料表面をエミリ一紙により 1200番まで研磨し た後、 これを純水中で超音波洗浄して乾燥した。 このようにして得られた腐食試 験用試料を、 1. 0%の塩化第 2銅 2水和塩(CuC 12■ 2H2〇)の水溶液(12. 7 g, l)中に浸漬し、 75°Cで 24時間保持した後、 水溶液中から取り出して、 その脱亜鉛腐食深さの最大値 (最大脱亜鉛腐食深さ)を測定した。 その結果を表 7 に示す。
応力腐食割れ試験は、 J I S H 3250に準拠し、 供試材から採取した板状の 試料(幅 1 0 mm、 長さ 6 0 mm、 厚さ 5 mm)を、 4 5度の V字状(屈曲部半径 5 mm)に折曲する(引張残留応力を付加する)と共に、 脱脂、 乾燥処理を施した上で、 1 2 . 5 %のアンモニア水(ァンモニァを等量の純水で薄めたもの)を入れたデシケ 一夕内のアンモニア雰囲気(2 5 °C)中に保持した。 以下に述べる所定時間保持 (暴 露)した後、 デシケ一夕から試料を取り出し、 1 0 %の硫酸で洗浄した後、 試料の 割れの有無を拡大鏡(1 0倍)で観察した。 観察結果を表 6に示す。 表 6中、 アン モニァ雰囲気中での保持時間が 2時間経過時点で割れは認められなかったが、 8 時間経過時に割れが認められたものは 「X」 、 8時間経過時に割れは認められな かったが、 2 4時間経過時に割れが認められたものは 「△」 、 2 4時間経過時に 割れが認められなかったものは 「〇」 で示してある。
【0 0 5 6】
【表 6】
Figure imgf000028_0001
【0 0 5 7】
表 6を参照すると、 結晶粒が微細化された発明例 No. 8、 9、 1 5、 4 2及び 3 3は、 比較例 No. 1 0 3及び 1 1 5よりも耐食性にすぐれている。 なお、 No. 4 2 と No. 3 3は、 耐食性向上元素を含むため、 他の発明例よりも、 特に腐食減量の点 ですぐれている。
【0 0 5 8】
表 7に示す供試材の外周面を、 真剣バイト(すくい角: 一 6 °、 ノーズ R: 0 . 4 mm)を取り付けた旋盤により、 切削速度 100m/分、 切込み深さ 1. 5mm、 送り 0. 1 lmm/r e v. の条件で切削し、 バイトに取り付けた 3分力動力計で 測定し、 切削主分力に換算した。 また、 切削により生成した切屑を採取し、 その 形状から被削性の良否を判定した。 すなわち、 切屑が扇形状片又は半巻き以下の 円弧状片に剪断された切屑は最も切屑の処理性が良く、 これを◎で示す。 微細な 針形状の切屑は、 処理性は良いが旋盤等の工作機械への障害や作業者の手指に刺 さる等の危険があるので、 〇で示す。 一方、 切屑が 3巻きを超えるような螺旋形 状のものは、 切削処理性に支障をきたし、 また切屑がバイトに絡みついたり、 切 削表面を損傷させる等の不都合があるので、 Xで示す。 なお、 半巻きを超え、 1 巻きに近い円弧形状から 3巻き以下の螺旋形状をなす場合、 大きなトラブルは生 じないものの、 切屑の処理性に劣り、 連続切削時のバイトへの絡みつき、 表面損 傷を生じる虞れがあるので、 △で示す。
また、 表面粗さに関しては、 Ryが理論表面粗さに近いのが理想であり、 7. 5 m未満を〇で示す。 なお、 工業的に満足し得る切削面を得るために、 Ryが 7. 5〜 12 imを△、 Ryが 12 xmを超える場合を Xで示す。
【0059】
【表 7】
Figure imgf000029_0001
【0060】
表 7を参照すると、 結晶粒が微細化された発明例 No. 8、 36及び 39は、 比較 例 No. 103、 107、 1 10及び 1 13よりも切削性にすぐれている。 なお、 N o. 3 6と No. 3 9は、 切削性向上元素を含むため、 No. 8よりも、 切削主分力が小 さくなつている。
【産業上の利用可能性】
【0 0 5 7】
溶融固化時に結晶粒が微細化されている本発明の銅基合金は、 例えば、 次のよ うな構成部材として好適に使用することができる。
•錡造性、 導電性、 熱伝導性、 高機械的性質が要求される一般的機械部品; •高度の導電性, 熱伝導性が要求される電気用ターミナル, コネクタ、 ロウ付 け、 溶接を容易に行い得ることが要求される電気部品;
•铸造が容易であることが要求される計器部品;
,機械的性質に優れることが要求される給排水金具, 建築用金具, 日用品 ·雑 fc on;
•強度, 硬度が高いこと及び耐食性, じん性に優れることが要求される船用プ 口ペラ, シャフト、 軸受, 弁座, 弁棒, 締付金具, クランプ、 接続金具、 ドアノ ブ、 パイプ留具、 カム;
•高度の強度, 硬度, 耐摩耗性が要求されるバルブ, ステム, ブッシュ, ゥォ ームギヤ、 アーム、 シリンダー部品、 バルブシート、 ステンレス用軸受、 ポンプ ィンペラ;
•耐圧性, 耐摩耗性, 被削性, 铸造性が要求されるバルブ, ポンプ胴体, 羽根 車, 給水栓, 混合水栓、 水道用弁, 継手, スプリンクラー, コック, 水道メータ, 止水栓, センサ部品、 スクロール型コンプレッサー部品、 高圧バルブ、 スリーブ 圧力容器;
•硬度及び耐摩耗性に優れることが要求される摺動部品, 油圧シリンダ, シリ ンダ, 歯車, 釣り用リール、 航空機の留め具;
•強度, 耐食性, 耐摩耗性に優れることが要求されるポルト, ナット、 配管用 コネクター;
•単純形状の大型铸物に適し且つ高い強度と耐食性, 耐摩耗性に優れることが 要求される化学用機械部品、 工業用バルブ;
' ·接合強度、 肉盛、 ライニング、 オーバーレイ、 耐食性、 铸造性が要求される 淡水化装置等の溶接管、 給水管、 熱交換器用管、 熱交換器管板、 ガス配管用管、 ェルポ、 海洋構造材、 溶接部材、 溶接用材;
•耐圧性, 耐摩耗性, 被削性に優れることが要求されるバルブシユー, 袋ナツ ト、 ヘッダー給水栓部品;
-展延性, 耐疲労性, 耐食性が要求される摺動片軸受、 耐食性, 耐海水性が要 求される熱交換器, 熱交換器用管板, 船舶用部品;
•被削性, 展延性に優れることが要求されるスピンドル等として又はその構成 材。

Claims

― 」 請求の範囲
【請求項 1】
質量%で、 C u : 6 9〜8 8 %、 S i : 2〜5 %、 Z r : 0. 0 0 0 5〜 0. 0 4 %、 P : 0. 0 1 -0. 2 5 %を含有すると共に、 6 0≤C u- 3. 5 X S i 一 3 X P≤ 7 1を満足し、 残部が Z n及び不可避の不純物からなり、 溶融固化後の平 均結晶粒径が 1 0 0 /zm以下であって、 相組織は、 α相、 κ相及びァ相の面積率 が合計で 8 0 %以上である銅基合金铸物。
【請求項 2】
質量%で、 C u : 6 9〜8 8 %、 S i : 2〜 5 %、 Z r : 0. 0 0 0 5〜 0. 0 4%、 P : 0. 0 1 ~ 0. 2 5 %を含有すると共に、 Mg : 0. 0 0 1〜0. 2 %、 B : 0. 0 0 3〜0. 1 %、 C : 0. 0 0 0 2〜 0. 0 1 %、 T i : 0. 0 0 1〜0. 2 %及び希土類元素: 0. 0 1〜0. 3 %からなる群から選択される少なくとも 1 種を含有し、 Mg及び Bからなる群を [ i ]、 C、 T i及び希土類元素からなる群 を [ i i ]としたとき、 6 0≤C u- 3. 5 X S i 一 3 X P— 0. 5 X [ i ] + 0· 5 X [ i i ]≤ 7 1を満足し、 残部が Z n及び不可避の不純物からなり、 溶融固化後の 平均結晶粒径が 1 0 0 im以下であって、 相組織は、 α相、 κ相及びァ相の面積 率が合計で 8 0 %以上である銅基合金铸物。
【請求項 3】
質量%で、 C u : 6 9〜8 8 %、 S i : 2〜 5 %、 Z r : 0. 0 0 0 5〜 0. 0 4%、 P : 0. 0 1〜0. 2 5 %を含有すると共に、 A 1 : 0. 0 2〜 1. 5 %、 M n : 0. 2〜4. 0 %及び C r : 0. 0 1〜0. 2 %からなる群から選択される少な くとも 1種をさらに含有し、 6 0≤C u— 3. 5 X S i - 3 X P- 1. 8 X A 1 + a XMn + 0. 5 C r≤ 7 1 (但し、 Mnが 0. 5 %以上で、 且つ 0. 2 X S i≤M n≤ 2. 0 X S iのときは a== 2であり、 それ以外のときは a = 0. 5)を満足し、 残部が Z n及び不可避の不純物からなり、 溶融固化後の平均結晶粒径が 1 0 0 β m以下であって、 相組織は、 α相、 κ相及び" 相の面積率が合計で 8 0 %以上で ある銅基合金铸物。
【請求項 4】
質量%で、 C u : 6 9〜8 8 %、 S i : 2〜5 %、 Z r : 0. 0 0 0 5〜 0. 0 4%、 P : 0. 01〜0. 25 %を含有すると共に、 Mg : 0. 001〜0. 2 %、 B : 0. 003〜0. 1 %、 C : 0. 0002〜 0. 01 %、 T i : 0. 00 1〜0. 2 %及び希土類元素 : 0. 01-0. 3 %からなる群から選択される少なくとも 1 種と、 A l : 0. 02〜1. 5%、 Mn : 0. 2〜4. 0 %及び C r : 0. 0 1〜0.
2%からなる群から選択される少なくとも 1種をさらに含有し、 Mg及び Bから なる群を [i]、 C、 T i及び希土類元素からなる群を [i i]としたとき、 60≤ C u - 3. 5 X S 卜 3 XP— 0. 5 X [ i ] + 0. 5 X [ i i ] - 1. 8 X A 1 + a X Mn + 0. 5 C r≤ 7 1 (但し、 M nが 0. 5 %以上で、 且つ 0. 2 X S i≤Mn≤ 2. 0 XS iのときは a=2であり、 それ以外のときは a = 0. 5)を満足し、 残部 が Zn及び不可避の不純物からなり、 溶融固化後の平均結晶粒径が 100 im以 下であって、 相組織は、 相、 κ相及びァ相の面積率が合計で 80%以上である 銅基合金铸物。
【請求項 5】
質量%で、 S n : 0. 1〜2. 5 %、 S b : 0. 02-0. 25 %及び A s : 0. 0 2-0. 25 %からなる群から選択される少なくとも 1種をさらに含有する請求項 1乃至請求項 4の何れかに記載の銅基合金铸物。
【請求項 6】
質量%で、 P b : 0.004〜 0.45%、 B i : 0.004〜 0.45%、 S e : 0. 03-0.45 %及び丁6 : 0. 01-0.45 %からなる群から選択される 少なくとも 1種をさらに含有する請求項 1乃至請求項 5の何れかに記載の銅基合 金铸物。
【請求項 7】
質量比で、 PZZ rが 0. 8〜250、 3 1 21"が80〜6000、 及び S i ZPが 12〜220である請求項 1乃至請求項 6の何れかに記載の銅基合金铸物。
【請求項 8】
前記銅基合金铸物には、 デンドライトが晶出しており、 該デンドライトは、 ァ 一ムが分断された形態である請求項 1乃至請求項 7の何れかに記載の銅基合金铸 物。
【請求項 9】 不純物として含まれる F e及び/又は N iは、 質量%で、 F e : 0. 5 %以下、 N i : 0. 5 %以下である請求項 1乃至請求項 7の何れかに記載の銅基合金铸物。
【請求項 10】
Z rは、 0. 00 10〜 0. 0095 %である請求項 1乃至請求項 7の何かに記 載の銅基合金铸物。
PCT/JP2005/008662 2004-08-10 2005-05-02 結晶粒が微細化された銅基合金鋳物 WO2006016442A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP05738890A EP1777305B1 (en) 2004-08-10 2005-05-02 Copper-base alloy casting with refined crystal grains
CA2563094A CA2563094C (en) 2004-08-10 2005-05-02 Copper-based alloy casting in which grains are refined
AT05738890T ATE482294T1 (de) 2004-08-10 2005-05-02 Gussteil aus kupferbasislegierung mit raffinierten kristallkörnern
DK05738890.2T DK1777305T3 (da) 2004-08-10 2005-05-02 Støbning af kobberbaselegering med raffinerede krystalkorn
JP2006531272A JP3964930B2 (ja) 2004-08-10 2005-05-02 結晶粒が微細化された銅基合金鋳物
MXPA06010613A MXPA06010613A (es) 2004-08-10 2005-05-02 Fundicion de aleacion basada en cobre con granos de cristal refinados.
US10/596,849 US20070169854A1 (en) 2004-08-10 2005-05-02 Copper-based alloy casting in which grains are refined
DE602005023737T DE602005023737D1 (de) 2004-08-10 2005-05-02 Gussteil aus kupferbasislegierung mit raffinierten kristallkörnern
US16/033,689 US10570483B2 (en) 2004-08-10 2018-07-12 Copper-based alloy casting in which grains are refined

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-233952 2004-08-10
JP2004233952 2004-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/596,849 A-371-Of-International US20070169854A1 (en) 2004-08-10 2005-05-02 Copper-based alloy casting in which grains are refined
US16/033,689 Continuation US10570483B2 (en) 2004-08-10 2018-07-12 Copper-based alloy casting in which grains are refined

Publications (1)

Publication Number Publication Date
WO2006016442A1 true WO2006016442A1 (ja) 2006-02-16

Family

ID=35839218

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/JP2005/008662 WO2006016442A1 (ja) 2004-08-10 2005-05-02 結晶粒が微細化された銅基合金鋳物
PCT/JP2005/014687 WO2006016621A1 (ja) 2004-08-10 2005-08-10 海水用構造物並びにこれを構成する線状若しくは棒状の銅合金材及びその製造方法
PCT/JP2005/014678 WO2006016614A1 (ja) 2004-08-10 2005-08-10 銅合金改質用マスターアロイおよびそれを用いる鋳造方法
PCT/JP2005/014699 WO2006016631A1 (ja) 2004-08-10 2005-08-10 Sn含有銅合金及びその製造方法
PCT/JP2005/014691 WO2006016624A1 (ja) 2004-08-10 2005-08-10 銅合金
PCT/JP2005/014697 WO2006016629A1 (ja) 2004-08-10 2005-08-10 被削性、強度、耐摩耗性及び耐蝕性に優れた銅合金鋳物及びその鋳造方法
PCT/JP2005/014698 WO2006016630A1 (ja) 2004-08-10 2005-08-10 銅合金鋳物及びその鋳造方法

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/JP2005/014687 WO2006016621A1 (ja) 2004-08-10 2005-08-10 海水用構造物並びにこれを構成する線状若しくは棒状の銅合金材及びその製造方法
PCT/JP2005/014678 WO2006016614A1 (ja) 2004-08-10 2005-08-10 銅合金改質用マスターアロイおよびそれを用いる鋳造方法
PCT/JP2005/014699 WO2006016631A1 (ja) 2004-08-10 2005-08-10 Sn含有銅合金及びその製造方法
PCT/JP2005/014691 WO2006016624A1 (ja) 2004-08-10 2005-08-10 銅合金
PCT/JP2005/014697 WO2006016629A1 (ja) 2004-08-10 2005-08-10 被削性、強度、耐摩耗性及び耐蝕性に優れた銅合金鋳物及びその鋳造方法
PCT/JP2005/014698 WO2006016630A1 (ja) 2004-08-10 2005-08-10 銅合金鋳物及びその鋳造方法

Country Status (19)

Country Link
US (10) US20070169854A1 (ja)
EP (9) EP1777305B1 (ja)
JP (8) JP3964930B2 (ja)
KR (2) KR100863374B1 (ja)
CN (7) CN100487148C (ja)
AT (7) ATE482294T1 (ja)
AU (3) AU2005256111B2 (ja)
BR (1) BRPI0509025B1 (ja)
CA (5) CA2563094C (ja)
CL (1) CL2012003194A1 (ja)
DE (3) DE602005023737D1 (ja)
DK (1) DK1777305T3 (ja)
ES (2) ES2379365T3 (ja)
MX (2) MXPA06010613A (ja)
NO (1) NO344238B1 (ja)
NZ (2) NZ552015A (ja)
PT (1) PT1777308E (ja)
RU (1) RU2383641C2 (ja)
WO (7) WO2006016442A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211310A (ja) * 2006-02-10 2007-08-23 Sanbo Copper Alloy Co Ltd 半融合金鋳造用原料黄銅合金
JP2008516081A (ja) * 2004-10-11 2008-05-15 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト 銅/亜鉛/ケイ素の合金、その使用方法およびその製造方法
JP2011021273A (ja) * 2009-06-17 2011-02-03 San-Etsu Metals Co Ltd 鋳造用銅基合金
JP2013067824A (ja) * 2011-09-20 2013-04-18 Mitsubishi Materials Corp 銅合金及び鋳造品
JP2013067821A (ja) * 2011-09-20 2013-04-18 Mitsubishi Materials Corp 銅合金及び鋳造品
WO2013065830A1 (ja) * 2011-11-04 2013-05-10 三菱伸銅株式会社 銅合金熱間鍛造品
JP2014531516A (ja) * 2011-09-30 2014-11-27 プンサン コーポレイション 快削性無鉛銅合金及びその製造方法
WO2018034282A1 (ja) 2016-08-15 2018-02-22 三菱伸銅株式会社 快削性銅合金鋳物、及び、快削性銅合金鋳物の製造方法
WO2020261603A1 (ja) 2019-06-25 2020-12-30 三菱マテリアル株式会社 快削性銅合金、及び、快削性銅合金の製造方法
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
WO2021225165A1 (ja) * 2020-05-08 2021-11-11 三菱マテリアル株式会社 Cu-Zn-Si系合金の上方引上連続鋳造線材
KR20210148347A (ko) 2019-06-25 2021-12-07 미쓰비시 마테리알 가부시키가이샤 쾌삭성 구리 합금 주물, 및 쾌삭성 구리 합금 주물의 제조 방법

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06010613A (es) * 2004-08-10 2006-12-15 Sanbo Shindo Kogyo Kabushiki K Fundicion de aleacion basada en cobre con granos de cristal refinados.
JP5306591B2 (ja) * 2005-12-07 2013-10-02 古河電気工業株式会社 配線用電線導体、配線用電線、及びそれらの製造方法
JP2007211324A (ja) * 2006-02-13 2007-08-23 Sanbo Copper Alloy Co Ltd 半融合金鋳造用原料りん青銅合金
JP4349640B2 (ja) * 2006-10-04 2009-10-21 住友軽金属工業株式会社 継目無管
CN101573462B (zh) * 2006-12-28 2012-10-10 株式会社开滋 耐应力腐蚀开裂性优异的无铅黄铜合金
WO2009047919A1 (ja) * 2007-10-10 2009-04-16 Toto Ltd. 鋳造性に優れた無鉛快削性黄銅
EP2196549B1 (en) 2007-10-10 2019-03-13 Toto Ltd. Lead-free, free-machining brass having excellent castability
TWI452153B (zh) * 2008-01-09 2014-09-11 Toto Ltd Excellent lead-free quick-brushed brass
EP2252143A1 (en) * 2008-03-19 2010-11-24 NV Bekaert SA Aquaculture net with polygonal bottom
CN102017175B (zh) * 2008-04-25 2014-06-25 三菱综合材料株式会社 太阳能电池用连接器用材料及太阳能电池用连接器
US20090286083A1 (en) * 2008-05-13 2009-11-19 Hitachi Cable, Ltd. Copper wire for a magnet wire, magnet wire using same, and method for fabricating copper wire for a magnet wire
CL2008001565A1 (es) * 2008-05-29 2008-08-29 Ochoa Disselkoen Jose Alberto Dispositivo flotante sumergible, para la limpieza biologica de redes utilizadas en el cultivo de peces que permite destruir los microorganismos del agua, conformado por medios soportantes, un medio de filtracion de particulas y un medio de desinfecci
CN101440444B (zh) * 2008-12-02 2010-05-12 路达(厦门)工业有限公司 无铅易切削高锌硅黄铜合金及其制造方法
CN101440445B (zh) 2008-12-23 2010-07-07 路达(厦门)工业有限公司 无铅易切削铝黄铜合金及其制造方法
BRPI0919605A2 (pt) * 2009-01-09 2015-12-08 Mitsubishi Shindo Kk folha laminada de liga de cobre de alta resistência e alta condutividade elétrica e método de fabricação da mesma
JP5356974B2 (ja) * 2009-02-03 2013-12-04 日立電線株式会社 鋳造材、その製造方法及びこれを用いたマグネットワイヤ用銅線並びにマグネットワイヤ及びその製造方法
JP5373422B2 (ja) * 2009-02-09 2013-12-18 Dowaメタルテック株式会社 銅合金の鋳造方法
JP5663500B2 (ja) * 2009-03-03 2015-02-04 ケステック イノベーションズ エルエルシー 無鉛高強度高潤滑性銅合金
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
JP4871380B2 (ja) * 2009-03-18 2012-02-08 株式会社Lixil 鋳造用銅基合金
DE102009002894A1 (de) * 2009-05-07 2010-11-18 Federal-Mogul Wiesbaden Gmbh Gleitlagermaterial
CN101919357A (zh) * 2009-06-16 2010-12-22 铜联商务咨询(上海)有限公司 一种铜合金材料的应用
MY173128A (en) * 2009-07-10 2019-12-30 Virtus Prec Tube Llc Copper alloy for heat exchanger tube
US20110123643A1 (en) * 2009-11-24 2011-05-26 Biersteker Robert A Copper alloy enclosures
WO2011065939A1 (en) * 2009-11-24 2011-06-03 Luvata Appleton Llc Copper alloy enclosures
CN101775509B (zh) * 2010-01-28 2011-04-13 吉林大学 通过添加氧族合金元素提高铜抗腐蚀能力的方法
CN102206772A (zh) * 2010-03-30 2011-10-05 Lclip有限公司 黄铜合金
CA2807637C (en) * 2010-08-24 2018-09-11 Tomoyuki Ozasa Method for preventing elution of bi from copper alloy
WO2012057055A1 (ja) 2010-10-25 2012-05-03 三菱伸銅株式会社 耐圧耐食性銅合金、ろう付け構造体、及びろう付け構造体の製造方法
KR101260912B1 (ko) 2011-02-01 2013-05-06 주식회사 풍산 해수용 동합금재 및 이의 제조 방법
CN102230105A (zh) * 2011-04-08 2011-11-02 菏泽广源铜带股份有限公司 一种高强度锡黄铜
JP5484634B2 (ja) * 2011-04-13 2014-05-07 サンエツ金属株式会社 鍛造性、耐応力腐食割れ性及び耐脱亜鉛腐食性に優れた銅基合金
US9050651B2 (en) * 2011-06-14 2015-06-09 Ingot Metal Company Limited Method for producing lead-free copper—bismuth alloys and ingots useful for same
DE102012002450A1 (de) 2011-08-13 2013-02-14 Wieland-Werke Ag Verwendung einer Kupferlegierung
US8211250B1 (en) 2011-08-26 2012-07-03 Brasscraft Manufacturing Company Method of processing a bismuth brass article
US8465003B2 (en) 2011-08-26 2013-06-18 Brasscraft Manufacturing Company Plumbing fixture made of bismuth brass alloy
KR20130054022A (ko) * 2011-11-16 2013-05-24 주식회사 대창 양식 어망용 동합금
CN103131887B (zh) * 2011-11-21 2016-07-06 宁波三旺洁具有限公司 一种耐腐蚀硼铜合金
CN102578008B (zh) * 2012-02-16 2014-01-01 中国水产科学研究院东海水产研究所 刚柔结合装配的锥体网箱箱体构建方法
JP5522582B2 (ja) * 2012-03-30 2014-06-18 株式会社栗本鐵工所 水道部材用黄銅合金
CN102703740A (zh) * 2012-06-20 2012-10-03 河南平高电气股份有限公司 一种Cu-Cr-Zr合金的制备方法
DE102012013817A1 (de) 2012-07-12 2014-01-16 Wieland-Werke Ag Formteile aus korrosionsbeständigen Kupferlegierungen
US9581255B2 (en) 2012-07-23 2017-02-28 Henning, Inc. Multiple proportion delivery systems and methods
US8991787B2 (en) * 2012-10-02 2015-03-31 Nibco Inc. Lead-free high temperature/pressure piping components and methods of use
KR101781183B1 (ko) * 2012-10-31 2017-09-22 가부시키가이샤 기츠 황동 합금과 가공 부품 및 접액 부품
CN103509967B (zh) * 2013-01-22 2016-04-27 阮媛清 一种重力铸造专用dzr环保黄铜合金锭及其制作工艺
US10287653B2 (en) 2013-03-15 2019-05-14 Garrett Transportation I Inc. Brass alloys for use in turbocharger bearing applications
CN105264101B (zh) * 2013-06-05 2017-11-14 三越金属株式会社 铜基合金
JP5406405B1 (ja) * 2013-06-12 2014-02-05 株式会社栗本鐵工所 水道部材用銅合金
JP2015016501A (ja) * 2013-07-12 2015-01-29 株式会社ブリヂストン 鋳物の鋳造方法、鋳物及びタイヤ成形用金型
DE102013012288A1 (de) 2013-07-24 2015-01-29 Wieland-Werke Ag Korngefeinte Kupfer-Gusslegierung
US9970081B2 (en) 2013-09-26 2018-05-15 Mitsubishi Shindoh Co., Ltd. Copper alloy and copper alloy sheet
TWI521075B (zh) * 2013-09-26 2016-02-11 三菱伸銅股份有限公司 銅合金
CN103526067B (zh) * 2013-10-13 2015-07-08 蒋荣 一种高强度稀土掺杂铜合金的制备方法
KR102181051B1 (ko) * 2013-10-21 2020-11-19 주식회사 대창 내구성이 향상된 죽방렴 구조물
CN103555991B (zh) * 2013-11-20 2016-01-20 苏州天兼金属新材料有限公司 一种无铅环保铜基合金管及其制造方法
US20150203940A1 (en) * 2014-01-22 2015-07-23 Metal Industries Research&Development Centre Brass alloy and method for manufacturing the same
US10358696B1 (en) 2014-02-07 2019-07-23 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
US9951400B1 (en) 2014-02-07 2018-04-24 Chase Brass And Copper Company, Llc Wrought machinable brass alloy
CN103849794B (zh) * 2014-03-07 2016-05-25 镇江金鑫有色合金有限公司 一种环保自润滑耐磨铜合金
JP2015175008A (ja) * 2014-03-13 2015-10-05 株式会社Lixil 鉛レス黄銅材料および水道用器具
JP5656138B1 (ja) * 2014-05-08 2015-01-21 株式会社原田伸銅所 抗菌性を有するリン青銅合金及びそれを用いた物品
CN103938021B (zh) * 2014-05-09 2016-04-13 邵建洪 一种海洋围殖渔网专用编织铜合金线材及其制备方法
CN104032176B (zh) * 2014-06-23 2015-03-11 江西鸥迪铜业有限公司 低铅黄铜合金
JP6354391B2 (ja) * 2014-07-03 2018-07-11 三菱マテリアル株式会社 Cu−Zn−Sn系合金の連続鋳造方法
RU2587110C9 (ru) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелО, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН
RU2587112C9 (ru) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелТ, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН
RU2587108C9 (ru) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелМ, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН
CN104388749B (zh) * 2014-12-17 2016-07-06 湖南科技大学 一种高强减摩耐磨锰铝青铜合金
CN104451244B (zh) * 2014-12-17 2016-08-17 湖南科技大学 一种高性能减摩耐磨锰铝青铜合金
CN104593637B (zh) * 2015-01-27 2017-01-18 苏州金仓合金新材料有限公司 一种高速铁路用新型铜基合金管及其制备方法
CN104630549A (zh) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 一种连铸连轧的环保无铅新型合金材料棒及其制备方法
JP6477127B2 (ja) * 2015-03-26 2019-03-06 三菱伸銅株式会社 銅合金棒および銅合金部材
ES2856029T3 (es) * 2015-03-31 2021-09-27 Kurimoto Ltd Aleación de cobre para uso en un miembro para obras hidráulicas
CN104711450A (zh) * 2015-04-03 2015-06-17 北京金鹏振兴铜业有限公司 高强度高延展性镁黄铜合金
CN104858364B (zh) * 2015-04-27 2017-09-15 海安铸鑫金属制品有限公司 覆砂壳型锡青铜复合铸造阀板的制备方法
CN104895903A (zh) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 一种跑车轮毂的防盗螺丝
CN104889687A (zh) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 一种跑车轮毂防盗螺丝的制备方法
CN104911390A (zh) * 2015-06-13 2015-09-16 陈新棠 一种抗菌耐腐蚀的热交换器铜管
DE102015116314A1 (de) * 2015-09-25 2017-03-30 Berkenhoff Gmbh Verwendung eines aus einer Kupfer-Zink-Mangan-Legierung ausgebildeten metallischen Elements als elektrisches Heizelement
EP3375007A4 (en) * 2015-11-12 2019-07-31 Honeywell International Inc. CARRIER PLATE ASSEMBLY WITH COOLING STRUCTURE FOR SPUTTER TARGETS
CN105506358A (zh) * 2015-12-03 2016-04-20 中铝洛阳铜业有限公司 一种海洋养殖用环保耐蚀黄铜材料的制备工艺
CN105387965A (zh) * 2015-12-24 2016-03-09 常熟市易安达电器有限公司 巷道用压力传感器
CN105671360B (zh) * 2016-04-05 2017-07-18 上海理工大学 一种含有锆的耐海水腐蚀的铜合金及其制备方法
DE202016102696U1 (de) * 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Sondermessinglegierung sowie Sondermessinglegierungsprodukt
CN108495942B (zh) * 2016-05-25 2019-06-07 三菱伸铜株式会社 黄铜合金热加工品及黄铜合金热加工品的制造方法
CN105908014B (zh) * 2016-06-08 2017-08-25 上海理工大学 一种耐海水腐蚀的铜合金及其制备方法
CN106148755B (zh) * 2016-08-09 2018-04-24 苏州天兼新材料科技有限公司 一种核动力汽轮机耐磨泵块用铸造材料及其制作方法
CN108085531A (zh) * 2016-11-21 2018-05-29 宜兴市帝洲新能源科技有限公司 一种地暖设备的弯头材料
US10568304B2 (en) * 2016-11-23 2020-02-25 Graduate School At Shenzhen, Tsinghua University Steel structure cage for marine crustacean aquaculture and integration thereof into vertical fish-crustacean aquaculture system
RU2629402C1 (ru) * 2016-12-06 2017-08-29 Юлия Алексеевна Щепочкина Спеченный сплав на основе меди
CN107620769A (zh) * 2016-12-30 2018-01-23 合肥美诚机械有限公司 一种车用新材料轴承
KR101796191B1 (ko) * 2017-01-17 2017-11-09 주식회사 풍산 항균성, 내변색성 및 성형성이 우수한 동합금재 및 이의 제조방법
CN107217172A (zh) * 2017-06-28 2017-09-29 安徽华飞机械铸锻有限公司 一种铜合金铸造工艺
DE102017007138B3 (de) 2017-07-27 2018-09-27 Wieland-Werke Ag Drahtmaterial, Netz und Zuchtkäfig für Aquakultur
US20190033020A1 (en) * 2017-07-27 2019-01-31 United Technologies Corporation Thin-walled heat exchanger with improved thermal transfer features
CN107354507B (zh) * 2017-07-31 2019-07-19 江苏裕铭铜业有限公司 一种单晶导电铜杆上引连铸法生产工艺
CN107381337A (zh) * 2017-09-22 2017-11-24 张家港沙工科技服务有限公司 一种起重机用吊钩
CN108300891A (zh) * 2017-12-13 2018-07-20 浙江灿根智能科技有限公司 一种多路连续铜及铜合金板材铸造方法
CN108384986B (zh) * 2018-05-07 2020-02-21 宁波博威合金材料股份有限公司 一种铜合金材料及其应用
CN108950272B (zh) * 2018-08-02 2020-02-18 济南大学 一种锌-铜合金的含锑变质剂及变质处理方法
US20200406365A1 (en) * 2018-10-10 2020-12-31 Sumitomo Electric Hardmetal Corp. Cutting tool and method for manufacturing same
KR101969010B1 (ko) 2018-12-19 2019-04-15 주식회사 풍산 납과 비스무트가 첨가되지 않은 쾌삭성 무연 구리합금
CN109865804B (zh) * 2019-03-13 2021-08-03 北京首钢吉泰安新材料有限公司 一种圆珠笔头用易切削不锈钢的铋碲合金化方法
CN110000344B (zh) * 2019-03-14 2021-02-02 昆明理工大学 一种抑制ZCuSn10P1合金锡元素偏析的连续制备半固态浆料的装置和方法
DE202019101597U1 (de) * 2019-03-20 2019-04-23 Otto Fuchs - Kommanditgesellschaft - Cu-Zn-Legierung
CN110117736B (zh) * 2019-06-17 2021-11-19 上海理工大学 一种塑性好耐腐蚀的铋黄铜合金
US11450516B2 (en) 2019-08-14 2022-09-20 Honeywell International Inc. Large-grain tin sputtering target
CN111014623B (zh) * 2019-12-09 2021-09-10 宁波兴业盛泰集团有限公司 一种铜镁合金大规格扁锭半连续铸造方法
CN110952019B (zh) * 2019-12-24 2021-09-14 宁波博威合金材料股份有限公司 一种易切削锌白铜及其制备方法和应用
CN110951989B (zh) * 2019-12-25 2020-11-06 鸣浩高新材料科技(江苏盐城)有限公司 一种高强韧铜锌铝形状记忆合金及其制备方法
CN111607714B (zh) * 2020-07-03 2021-08-20 贵溪骏达特种铜材有限公司 一种铝青铜的熔炼工艺
CN112030033A (zh) * 2020-09-14 2020-12-04 江西省科学院应用物理研究所 一种高强高导接触线用稀土铜合金
CN112404889B (zh) * 2020-10-10 2022-03-01 厦门格欧博新材料科技有限公司 一种锌包铜工艺
DE102020127317A1 (de) 2020-10-16 2022-04-21 Diehl Metall Stiftung & Co. Kg Bleifreie Kupferlegierung sowie Verwendung der bleifreien Kupferlegierung
KR102265115B1 (ko) * 2021-02-24 2021-06-15 주식회사 풍산 내식성 및 내변색성이 우수한 Cu-Zn계 합금 및 이의 제조 방법
CN113223629B (zh) * 2021-05-13 2023-04-28 中南大学 一种Al-Mg-Si-Mn-Fe合金设计方法
CN115261665B (zh) * 2022-06-22 2023-04-28 昆明冶金研究院有限公司北京分公司 铜铁磷系合金用变质剂、其制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170954A (ja) * 1988-12-22 1990-07-02 Nippon Mining Co Ltd 曲げ加工性の良好な銅合金の製造方法
JPH0324244A (ja) 1989-06-22 1991-02-01 Kobe Steel Ltd フレキシブルプリント用銅合金圧延箔
JPH04224645A (ja) * 1990-12-26 1992-08-13 Nikko Kyodo Co Ltd 電子部品用銅合金
JP2001247923A (ja) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd 耐孔食性銅基合金管材
JP2002030364A (ja) * 2000-07-19 2002-01-31 Sumitomo Light Metal Ind Ltd 高強度快削黄銅
US20020069942A1 (en) 1998-10-12 2002-06-13 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys
JP2004183056A (ja) 2002-12-04 2004-07-02 Sanbo Copper Alloy Co Ltd 鉛低減快削性銅合金

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL90795C (ja) * 1947-11-04
US3676083A (en) * 1969-01-21 1972-07-11 Sylvania Electric Prod Molybdenum base alloys
US3912552A (en) * 1972-05-17 1975-10-14 Int Nickel Co Oxidation resistant dispersion strengthened alloy
JPS517617B2 (ja) 1972-08-25 1976-03-09
JPS5078519A (ja) 1973-11-14 1975-06-26
US3928028A (en) * 1974-04-05 1975-12-23 Olin Corp Grain refinement of copper alloys by phosphide inoculation
US4055445A (en) * 1974-09-20 1977-10-25 Essex International, Inc. Method for fabrication of brass alloy
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys
JPS52107227A (en) * 1976-02-27 1977-09-08 Furukawa Electric Co Ltd:The Heat resisting cu alloy with excellent electro- and heat conductivity
JPS52134811A (en) * 1976-05-07 1977-11-11 Osamu Hayashi Golden copper alloy for dental use
US4110132A (en) * 1976-09-29 1978-08-29 Olin Corporation Improved copper base alloys
JPS5839900B2 (ja) 1977-12-29 1983-09-02 三菱マテリアル株式会社 継目無し管製造用Cu合金
DE2758822A1 (de) * 1977-12-30 1979-07-05 Diehl Gmbh & Co Verfahren zur herstellung eines kupfer-zink-werkstoffs
JPS5570494A (en) 1978-11-18 1980-05-27 Futoshi Matsumura Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance
GB2054830B (en) * 1979-07-30 1984-03-14 Atomic Energy Authority Uk Heat pipes and thermal siphons
JPS5690944A (en) 1979-12-24 1981-07-23 Furukawa Kinzoku Kogyo Kk Alloy for wire cut electrospark machining electrode
JPS5837143A (ja) * 1981-08-27 1983-03-04 Furukawa Electric Co Ltd:The 高強度耐食銅合金
JPS5839900A (ja) 1981-09-01 1983-03-08 Nippon Kokan Kk <Nkk> 海底パイプラインの緊急漏洩油量制限装置
JPS58197243A (ja) * 1982-05-12 1983-11-16 Sumitomo Electric Ind Ltd ワイアカツト放電加工電極線用合金線
JPS5920811A (ja) * 1982-07-28 1984-02-02 Yokogawa Hokushin Electric Corp 光式変位変換器
JPS5920811U (ja) * 1982-07-30 1984-02-08 三宝伸銅工業株式会社 海水取水口用スクリ−ン
SE445181B (sv) * 1982-12-15 1986-06-09 Nippon Light Metal Co Sett vid kontinuerlig metallgjutning
JPS59136439A (ja) * 1983-01-26 1984-08-06 Sanpo Shindo Kogyo Kk 銅基合金
US4515132A (en) * 1983-12-22 1985-05-07 Ford Motor Company Ionization probe interface circuit with high bias voltage source
JPS61542A (ja) * 1984-06-12 1986-01-06 Nippon Mining Co Ltd ラジエ−タ−プレ−ト用銅合金
JPS6148547A (ja) 1984-08-14 1986-03-10 Mitsui Mining & Smelting Co Ltd 海洋用耐食銅合金
JPS61133357A (ja) * 1984-12-03 1986-06-20 Showa Alum Ind Kk 加工性および耐焼付性にすぐれた軸受用Cu合金
US4826736A (en) * 1985-06-14 1989-05-02 Sumitomo Special Metals Co., Ltd. Clad sheets
GB2179673A (en) * 1985-08-23 1987-03-11 London Scandinavian Metall Grain refining copper alloys
GB2181156A (en) * 1985-10-04 1987-04-15 London Scandinavian Metall Grain refining copper-bowed metals
US4822560A (en) * 1985-10-10 1989-04-18 The Furukawa Electric Co., Ltd. Copper alloy and method of manufacturing the same
JPS62218533A (ja) * 1986-03-18 1987-09-25 Sumitomo Metal Mining Co Ltd 高導電性銅合金
JP2516623B2 (ja) * 1986-04-10 1996-07-24 古河電気工業株式会社 電子電気機器用銅合金とその製造法
JPS62274036A (ja) * 1986-05-23 1987-11-28 Nippon Mining Co Ltd 耐磨耗性及び耐食性に優れた銅合金
JPS62297429A (ja) 1986-06-17 1987-12-24 Nippon Mining Co Ltd 耐食性に優れた銅合金
US4874439A (en) * 1987-02-24 1989-10-17 Mitsubishi Kinzoku Kabushiki Kaisha Synchronizer ring in speed variator made of wear-resistant copper alloy having high strength and toughness
JPH0622332B2 (ja) * 1987-10-14 1994-03-23 日本電気株式会社 入力回路
US4770718A (en) * 1987-10-23 1988-09-13 Iowa State University Research Foundation, Inc. Method of preparing copper-dendritic composite alloys for mechanical reduction
JPH01162737A (ja) * 1987-12-18 1989-06-27 Nippon Mining Co Ltd 電子部品用銅合金
KR910003882B1 (ko) * 1988-12-21 1991-06-15 풍산금속공업주식회사 전기 및 전자부품용 동합금과 그 제조방법
JPH02179857A (ja) * 1988-12-28 1990-07-12 Furukawa Electric Co Ltd:The ワイヤ放電加工用電極線
JPH03291344A (ja) 1990-04-09 1991-12-20 Furukawa Electric Co Ltd:The 熱交換器ヘッダープレート用銅合金
JPH0499837A (ja) * 1990-08-14 1992-03-31 Nikko Kyodo Co Ltd 通電材料
US5288458A (en) * 1991-03-01 1994-02-22 Olin Corporation Machinable copper alloys having reduced lead content
CN1021890C (zh) * 1991-05-12 1993-08-25 冯金陵 代银焊料及其制造方法
JPH0533087A (ja) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The 小型導電性部材用銅合金
JP2758536B2 (ja) 1992-08-11 1998-05-28 三菱伸銅株式会社 内面溝付溶接銅合金管
JP3374398B2 (ja) 1992-10-27 2003-02-04 三菱マテリアル株式会社 給水給湯用耐孔食性銅合金配管
JPH06184669A (ja) * 1992-12-18 1994-07-05 Mitsubishi Materials Corp 給水給湯用耐孔食性銅合金配管
US5486244A (en) * 1992-11-04 1996-01-23 Olin Corporation Process for improving the bend formability of copper alloys
US5370840A (en) * 1992-11-04 1994-12-06 Olin Corporation Copper alloy having high strength and high electrical conductivity
JPH06184674A (ja) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk 高導電性銅合金
JP3319482B2 (ja) * 1993-12-30 2002-09-03 三宝伸銅工業株式会社 耐蝕性銅基合金材
JPH07282841A (ja) * 1994-04-05 1995-10-27 Mitsubishi Chem Corp リチウムイオン二次電池
JPH08127830A (ja) * 1994-11-01 1996-05-21 Fujikura Ltd 電線導体用銅合金及び電線導体の製造方法
DE19548124C2 (de) * 1995-12-21 2002-08-29 Euroflamm Gmbh Reibkörper und Verfahren zum Herstellen eines solchen
JP3956322B2 (ja) * 1996-05-30 2007-08-08 中越合金鋳工株式会社 ワンウェイクラッチ用エンドベアリング及びその他の摺動部品
JPH1046270A (ja) * 1996-08-01 1998-02-17 Sumitomo Light Metal Ind Ltd 耐中間温度脆性、耐焼鈍脆性および耐食性に優れた銅合金並びに伝熱管
JP3280250B2 (ja) 1996-11-26 2002-04-30 三宝伸銅工業株式会社 魚類用養殖網及び魚類養殖用生簀
JP2898627B2 (ja) * 1997-03-27 1999-06-02 日鉱金属株式会社 銅合金箔
US6132528A (en) * 1997-04-18 2000-10-17 Olin Corporation Iron modified tin brass
US5853505A (en) * 1997-04-18 1998-12-29 Olin Corporation Iron modified tin brass
JPH10337132A (ja) 1997-06-05 1998-12-22 Kuraray Co Ltd 魚介類養殖網
JPH111736A (ja) * 1997-06-09 1999-01-06 Chuetsu Gokin Chuko Kk 加熱装置用黄銅合金材料
JP3820467B2 (ja) 1997-07-25 2006-09-13 独立行政法人土木研究所 土工事用流動化処理土の製造方法及び装置
DE19734780C1 (de) * 1997-08-06 1998-12-10 Mannesmann Ag Verfahren zur Herstellung von geschweißten Rohren aus Cu und Cu-Legierungen
JP4100583B2 (ja) * 1997-08-25 2008-06-11 中越合金鋳工株式会社 鉄系材料と高力黄銅合金を接合する方法
JPH11140677A (ja) 1997-11-14 1999-05-25 Nakabohtec Corrosion Protecting Co Ltd 銅又は銅合金製金網の防汚及び局部腐食防止の方法及び装置
JP2000087158A (ja) * 1998-09-11 2000-03-28 Furukawa Electric Co Ltd:The 半導体リードフレーム用銅合金
US7056396B2 (en) * 1998-10-09 2006-06-06 Sambo Copper Alloy Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP3734372B2 (ja) 1998-10-12 2006-01-11 三宝伸銅工業株式会社 無鉛快削性銅合金
JP3414294B2 (ja) 1999-01-07 2003-06-09 三菱マテリアル株式会社 0.2%耐力および疲労強度の優れた熱交換器用電縫溶接銅合金管
JP4129807B2 (ja) 1999-10-01 2008-08-06 Dowaホールディングス株式会社 コネクタ用銅合金およびその製造法
JP4294196B2 (ja) * 2000-04-14 2009-07-08 Dowaメタルテック株式会社 コネクタ用銅合金およびその製造法
KR100513947B1 (ko) * 2002-03-29 2005-09-09 닛코 킨조쿠 가부시키가이샤 프레스성이 양호한 구리 합금 소재 및 그 제조방법
CN1327016C (zh) * 2002-05-14 2007-07-18 同和矿业株式会社 具有改善的冲压冲制性能的铜基合金及其制备方法
JP4014542B2 (ja) 2002-07-18 2007-11-28 本田技研工業株式会社 銅合金素材の製造方法
JP2004100041A (ja) 2002-07-18 2004-04-02 Honda Motor Co Ltd 銅合金
EP1538229A4 (en) * 2002-09-09 2005-08-03 Sambo Copper Alloy Co Ltd EXTREMELY RESISTANT COPPER ALLOY
JP2004113003A (ja) 2002-09-24 2004-04-15 Baba Shoten:Kk 生け簀装置及び生け簀養殖方法
JP4043342B2 (ja) 2002-10-25 2008-02-06 株式会社神戸製鋼所 リン青銅
JP4371257B2 (ja) 2002-12-02 2009-11-25 株式会社リコー 画像形成装置
JP3999676B2 (ja) * 2003-01-22 2007-10-31 Dowaホールディングス株式会社 銅基合金およびその製造方法
US20060065327A1 (en) * 2003-02-07 2006-03-30 Advance Steel Technology Fine-grained martensitic stainless steel and method thereof
DE10308779B8 (de) * 2003-02-28 2012-07-05 Wieland-Werke Ag Bleifreie Kupferlegierung und deren Verwendung
US20050039827A1 (en) * 2003-08-20 2005-02-24 Yoshinori Yamagishi Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
JP3731600B2 (ja) 2003-09-19 2006-01-05 住友金属工業株式会社 銅合金およびその製造方法
MXPA06010613A (es) * 2004-08-10 2006-12-15 Sanbo Shindo Kogyo Kabushiki K Fundicion de aleacion basada en cobre con granos de cristal refinados.
US8066938B2 (en) * 2004-09-03 2011-11-29 Haynes International, Inc. Ni-Cr-Co alloy for advanced gas turbine engines
ATE498699T1 (de) * 2005-09-30 2011-03-15 Mitsubishi Shindo Kk Aufgeschmolzene und erstarrte kupferlegierung die phosphor und zirkon enthält

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170954A (ja) * 1988-12-22 1990-07-02 Nippon Mining Co Ltd 曲げ加工性の良好な銅合金の製造方法
JPH0324244A (ja) 1989-06-22 1991-02-01 Kobe Steel Ltd フレキシブルプリント用銅合金圧延箔
JPH04224645A (ja) * 1990-12-26 1992-08-13 Nikko Kyodo Co Ltd 電子部品用銅合金
US20020069942A1 (en) 1998-10-12 2002-06-13 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys
JP2001247923A (ja) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd 耐孔食性銅基合金管材
JP2002030364A (ja) * 2000-07-19 2002-01-31 Sumitomo Light Metal Ind Ltd 高強度快削黄銅
JP2004183056A (ja) 2002-12-04 2004-07-02 Sanbo Copper Alloy Co Ltd 鉛低減快削性銅合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. ROMANKIEWICZ ET AL.: "Kornfeinung von Kupferlegierungen", METALLWISSENSCHAFT UND TECHNIK, vol. 48, no. 11, 1994, pages 865 - 871, XP009115894

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516081A (ja) * 2004-10-11 2008-05-15 ディール、メタル、シュティフトゥング、ウント、コンパニー、コマンディトゲゼルシャフト 銅/亜鉛/ケイ素の合金、その使用方法およびその製造方法
JP2007211310A (ja) * 2006-02-10 2007-08-23 Sanbo Copper Alloy Co Ltd 半融合金鋳造用原料黄銅合金
JP2011021273A (ja) * 2009-06-17 2011-02-03 San-Etsu Metals Co Ltd 鋳造用銅基合金
JP2013067824A (ja) * 2011-09-20 2013-04-18 Mitsubishi Materials Corp 銅合金及び鋳造品
JP2013067821A (ja) * 2011-09-20 2013-04-18 Mitsubishi Materials Corp 銅合金及び鋳造品
JP2014531516A (ja) * 2011-09-30 2014-11-27 プンサン コーポレイション 快削性無鉛銅合金及びその製造方法
US9840758B2 (en) 2011-09-30 2017-12-12 Poongsan Corporation Leadless free-cutting copper alloy and method for producing the same
WO2013065830A1 (ja) * 2011-11-04 2013-05-10 三菱伸銅株式会社 銅合金熱間鍛造品
US9017491B2 (en) 2011-11-04 2015-04-28 Mitsubishi Shindoh Co., Ltd. Hot-forged copper alloy part
US10538828B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11434548B2 (en) 2016-08-15 2022-09-06 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2018034280A1 (ja) 2016-08-15 2018-02-22 三菱伸銅株式会社 快削性銅合金、及び、快削性銅合金の製造方法
WO2019035225A1 (ja) 2016-08-15 2019-02-21 三菱伸銅株式会社 高強度快削性銅合金、及び、高強度快削性銅合金の製造方法
KR20190018534A (ko) 2016-08-15 2019-02-22 미쓰비시 신도 가부시키가이샤 쾌삭성 구리 합금, 및, 쾌삭성 구리 합금의 제조 방법
KR20190100418A (ko) 2016-08-15 2019-08-28 미쓰비시 신도 가부시키가이샤 고강도 쾌삭성 구리 합금, 및 고강도 쾌삭성 구리 합금의 제조 방법
US10538827B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2018034282A1 (ja) 2016-08-15 2018-02-22 三菱伸銅株式会社 快削性銅合金鋳物、及び、快削性銅合金鋳物の製造方法
US10557185B2 (en) 2016-08-15 2020-02-11 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
WO2018034281A1 (ja) 2016-08-15 2018-02-22 三菱伸銅株式会社 快削性銅合金、及び、快削性銅合金の製造方法
US11421302B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11131009B2 (en) 2016-08-15 2021-09-28 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
US11136648B2 (en) 2016-08-15 2021-10-05 Mitsubishi Materials Corporation Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11421301B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
US11313013B2 (en) 2016-08-15 2022-04-26 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR20210148347A (ko) 2019-06-25 2021-12-07 미쓰비시 마테리알 가부시키가이샤 쾌삭성 구리 합금 주물, 및 쾌삭성 구리 합금 주물의 제조 방법
KR20210080590A (ko) 2019-06-25 2021-06-30 미쓰비시 마테리알 가부시키가이샤 쾌삭성 구리 합금, 및 쾌삭성 구리 합금의 제조 방법
WO2020261603A1 (ja) 2019-06-25 2020-12-30 三菱マテリアル株式会社 快削性銅合金、及び、快削性銅合金の製造方法
US11479834B2 (en) 2019-06-25 2022-10-25 Mitsubishi Materials Corporation Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11788173B2 (en) 2019-06-25 2023-10-17 Mitsubishi Materials Corporation Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy
US11814712B2 (en) 2019-06-25 2023-11-14 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2021225165A1 (ja) * 2020-05-08 2021-11-11 三菱マテリアル株式会社 Cu-Zn-Si系合金の上方引上連続鋳造線材
JP7347321B2 (ja) 2020-05-08 2023-09-20 三菱マテリアル株式会社 Cu-Zn-Si系合金の上方引上連続鋳造線材

Also Published As

Publication number Publication date
DE602005024006D1 (de) 2010-11-18
EP1777306A4 (en) 2008-11-05
ATE483826T1 (de) 2010-10-15
JP4095666B2 (ja) 2008-06-04
ES2379365T3 (es) 2012-04-25
EP1777310A1 (en) 2007-04-25
MXPA06011720A (es) 2007-01-25
EP1777311A1 (en) 2007-04-25
CN1969052A (zh) 2007-05-23
JPWO2006016624A1 (ja) 2008-05-01
EP1777311A4 (en) 2008-11-05
DE602005023737D1 (de) 2010-11-04
CL2012003194A1 (es) 2013-02-22
EP2333124A2 (en) 2011-06-15
RU2006136408A (ru) 2008-04-27
US9328401B2 (en) 2016-05-03
EP1777309A1 (en) 2007-04-25
EP1777308A1 (en) 2007-04-25
WO2006016630A1 (ja) 2006-02-16
NO344238B1 (no) 2019-10-14
NO20061782L (no) 2006-12-22
EP1777311B1 (en) 2011-12-21
CA2561295C (en) 2014-04-08
DE602005026397D1 (de) 2011-03-31
NZ552015A (en) 2011-01-28
JPWO2006016631A1 (ja) 2008-05-01
WO2006016629A1 (ja) 2006-02-16
WO2006016624A1 (ja) 2006-02-16
US7909946B2 (en) 2011-03-22
CN1969050A (zh) 2007-05-23
EP1777305A1 (en) 2007-04-25
AU2005272376A1 (en) 2006-02-16
CA2561295A1 (en) 2006-02-16
CN1969051B (zh) 2012-05-23
CA2563094C (en) 2012-03-27
US20080253924A1 (en) 2008-10-16
ATE543919T1 (de) 2012-02-15
US8171886B2 (en) 2012-05-08
JP4951343B2 (ja) 2012-06-13
US20150132179A1 (en) 2015-05-14
WO2006016621A1 (ja) 2006-02-16
CA2686478A1 (en) 2006-02-16
CN1993485A (zh) 2007-07-04
CN100535144C (zh) 2009-09-02
AU2005256111A1 (en) 2006-03-30
EP1777307B1 (en) 2012-02-01
EP1777309A4 (en) 2008-11-05
CN101001967A (zh) 2007-07-18
JPWO2006016442A1 (ja) 2008-05-01
MXPA06010613A (es) 2006-12-15
CN100545280C (zh) 2009-09-30
EP1777306A1 (en) 2007-04-25
JP3964930B2 (ja) 2007-08-22
CN100487148C (zh) 2009-05-13
EP2333124A3 (en) 2011-09-14
CA2563094A1 (en) 2006-02-16
US10570483B2 (en) 2020-02-25
JPWO2006016629A1 (ja) 2008-05-01
CA2563096C (en) 2011-10-25
JPWO2006016630A1 (ja) 2008-05-01
EP1777310B1 (en) 2011-02-16
EP1777305B1 (en) 2010-09-22
EP1777306B1 (en) 2012-01-04
EP1777308B1 (en) 2011-12-14
ATE538222T1 (de) 2012-01-15
AU2005272376B2 (en) 2010-08-12
CA2686478C (en) 2012-02-21
CA2563097A1 (en) 2006-02-16
CN100545281C (zh) 2009-09-30
EP1777309B1 (en) 2010-10-06
CN100543162C (zh) 2009-09-23
US20090260727A1 (en) 2009-10-22
US20070169855A1 (en) 2007-07-26
CN1969051A (zh) 2007-05-23
CN1993487A (zh) 2007-07-04
ES2378874T3 (es) 2012-04-18
JP5111853B2 (ja) 2013-01-09
JPWO2006016621A1 (ja) 2008-05-01
ATE537275T1 (de) 2011-12-15
CA2563096A1 (en) 2006-02-16
US20200190630A1 (en) 2020-06-18
US20070158002A1 (en) 2007-07-12
EP1777308A4 (en) 2008-11-05
EP1777307A4 (en) 2008-11-05
EP1777305A4 (en) 2008-11-12
JP2007332466A (ja) 2007-12-27
CA2563097C (en) 2012-05-01
EP2333124B1 (en) 2013-05-01
ATE498698T1 (de) 2011-03-15
EP2333125A2 (en) 2011-06-15
KR100921311B1 (ko) 2009-10-13
JPWO2006016614A1 (ja) 2008-05-01
JP4094044B2 (ja) 2008-06-04
CN1993486A (zh) 2007-07-04
WO2006016631A9 (ja) 2006-04-20
EP2333125A3 (en) 2011-09-14
AU2005256111A8 (en) 2008-09-25
ATE482294T1 (de) 2010-10-15
AU2005256111B2 (en) 2010-07-01
KR100863374B1 (ko) 2008-10-13
AU2005272455A1 (en) 2006-02-16
US20080216759A1 (en) 2008-09-11
WO2006016631A1 (ja) 2006-02-16
AU2005272455B2 (en) 2009-06-11
RU2383641C2 (ru) 2010-03-10
BRPI0509025A (pt) 2007-08-07
BRPI0509025B1 (pt) 2015-07-28
NZ587764A (en) 2011-11-25
EP2333125B1 (en) 2013-10-02
JP4951342B2 (ja) 2012-06-13
US20090014097A1 (en) 2009-01-15
US20190040498A1 (en) 2019-02-07
KR20070040749A (ko) 2007-04-17
EP1777310A4 (en) 2008-11-12
EP1777307A1 (en) 2007-04-25
WO2006016614A1 (ja) 2006-02-16
EP1777308B9 (en) 2012-05-23
ATE540131T1 (de) 2012-01-15
JP4814183B2 (ja) 2011-11-16
US20070169854A1 (en) 2007-07-26
JP4486966B2 (ja) 2010-06-23
CN100543160C (zh) 2009-09-23
PT1777308E (pt) 2012-01-12
US10017841B2 (en) 2018-07-10
KR20070058436A (ko) 2007-06-08
DK1777305T3 (da) 2011-01-03

Similar Documents

Publication Publication Date Title
JP3964930B2 (ja) 結晶粒が微細化された銅基合金鋳物
JP4951517B2 (ja) 溶融固化処理物並びに溶融固化処理用銅合金材及びその製造方法
JP5399818B2 (ja) 鉛を含まない快削性ケイ素真鍮合金
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP2004244672A (ja) 耐脱亜鉛性に優れた銅基合金
JP2011140713A (ja) 優れた応力腐食耐性を有する黄銅合金およびその製造方法
CN108315595A (zh) 一种可铸造且可变形用的环保锌合金
JP5566622B2 (ja) 鋳造合金とその合金を用いた接液部品
TWI316555B (ja)
KR100834201B1 (ko) 결정립이 미세화된 구리기합금주물
JPS59159957A (ja) 耐海水腐食性および熱間加工性にすぐれた高強度Cu合金
JPS59133341A (ja) 耐食性および熱間加工性にすぐれた高強度Cu合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580019411.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006531272

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005738890

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017164

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/010613

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2563094

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007169854

Country of ref document: US

Ref document number: 10596849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020067017164

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005738890

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10596849

Country of ref document: US