US20080308805A1 - Semiconductor Device and Manufacturing Method Thereof - Google Patents

Semiconductor Device and Manufacturing Method Thereof Download PDF

Info

Publication number
US20080308805A1
US20080308805A1 US12/184,432 US18443208A US2008308805A1 US 20080308805 A1 US20080308805 A1 US 20080308805A1 US 18443208 A US18443208 A US 18443208A US 2008308805 A1 US2008308805 A1 US 2008308805A1
Authority
US
United States
Prior art keywords
film
oxide semiconductor
semiconductor film
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/184,432
Inventor
Kengo Akimoto
Tatsuya Honda
Norihito Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to US12/184,432 priority Critical patent/US20080308805A1/en
Publication of US20080308805A1 publication Critical patent/US20080308805A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/428Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof and particularly relates to a semiconductor device using an oxide semiconductor.
  • the present invention also relates to an electronic appliance equipped with the semiconductor device.
  • FPD Flat panel displays
  • LCD liquid crystal displays
  • EL displays have attracted attention as the display device replacing conventional CRTs.
  • the development of large screen liquid crystal television mounted with an active matrix-driven large scale liquid crystal panel is particularly an important challenge which liquid crystal panel makers should focus on.
  • large screen EL television is also being developed.
  • a thin film transistor (hereinafter referred to as TFT) is used, which uses crystalline silicon or amorphous silicon as a semiconductor element driving each pixel.
  • a TFT using a crystalline silicon film has a higher mobility by two digits or more compared to a TFT using an amorphous silicon film, and has potential for high speed operation when it is used for a scanning line driver circuit for selecting a pixel of a light emitting display device, a signal line driver circuit for sending video signals to a selected pixel, or the like.
  • crystalline silicon for a semiconductor film complicates manufacturing steps because of crystallization of the semiconductor film compared to using amorphous silicon for the semiconductor film; therefore, there are drawbacks of yield decrease by that much and increase in cost.
  • a heating temperature for the crystallization is 550° C. or higher, and it is difficult to use a substrate made of a resin with low melting point, a plastic substrate, or the like.
  • the TFT using amorphous silicon for a semiconductor film can be manufactured at low cost, since it is not heated at a high temperature and a resin substrate or a plastic substrate can be used.
  • a mobility of only around 0.2 to 1.0 cm 2 /V ⁇ s at most can be obtained with a TFT of which a channel forming region is formed with a semiconductor film formed of amorphous silicon, and it also has high power consumption.
  • a plasma CVD method is commonly used when an amorphous silicon film is formed over a substrate. Film formation by a plasma CVD method requires heating under high vacuum, and damage to a plastic substrate or an organic resin film over a substrate is a concern. In addition to the concern in forming the amorphous silicon film by a plasma CVD method, there is also a concern in forming the film by a sputtering method which is that a thin insulating film might be formed over a surface of an amorphous silicon film when the amorphous silicon film is exposed to atmospheric air.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-150900
  • Non-Patent document 1 Elvira M. C. Fortunato, et al. Applied Physics Letters, Vol. 85, No. 13, P 2541 (2004). Since the oxide semiconductor has mobility equal to or higher than that of a TFT formed with a semiconductor including amorphous silicon, further characteristic improvement is demanded.
  • an object of the present invention is to provide a semiconductor device including a semiconductor element with improved characteristics and a manufacturing method thereof.
  • size increase in substrate has advanced for manufacturing a large-area device by a cheaper process, as in liquid crystal television.
  • size increase in substrate there is a problem of being easily effected by bending and warping.
  • a size of the substrate becomes distorted due to warping and shrinking, and there is a problem of a decrease in precision of alignment in a photolithography step.
  • an object of the present invention is to provide a technique that makes it possible to manufacture with good yield a semiconductor device over a large substrate, having for example a side longer than 1 meter, in a crystallization step of a semiconductor element used in a semiconductor device.
  • an object of the present invention is to provide a semiconductor device including a semiconductor element with characteristics that are further improved, which can be manufactured at lower cost and more favorable productivity than before.
  • a compound semiconductor more preferably an oxide semiconductor is used as a semiconductor.
  • oxide semiconductor for example, zinc oxide (ZnO), InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), cadmium oxide (CdO), an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO), or the like is used.
  • the gist of the present invention is that by heating a gate electrode that is near the compound semiconductor by lamp rapid thermal annealing (LRTA; also simply called lamp heating), crystallization of the compound semiconductor is selectively promoted, and a TFT using a compound semiconductor having the region in which crystallization is promoted at least in a channel region can be manufactured.
  • LRTA lamp rapid thermal annealing
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film.
  • the oxide semiconductor film includes a first oxide semiconductor region and a second oxide semiconductor region, and the first oxide semiconductor region that is formed in a position which overlaps with the gate electrode has higher crystallinity than the second semiconductor region.
  • crystallinity expresses a degree of regularity of atomic arrangement inside of crystal, and when manufacturing a TFT using an oxide semiconductor film with favorable crystallinity (also expressed as having high crystallinity or with improved crystallinity), an electrical characteristic thereof is favorable.
  • One feature of the present invention is to have a gate electrode and an oxide semiconductor film over a substrate. In a region of the oxide semiconductor film which overlaps with the gate electrode via an insulating film, a portion of the region is crystallized.
  • One feature of the present invention is to have a gate electrode, an oxide semiconductor film, and a conductive film over a substrate.
  • the conductive film is provided to be in contact with the oxide semiconductor film, and in a region of the oxide semiconductor film which overlaps with the gate electrode via an insulating film, a portion of the region is crystallized.
  • One feature of the present invention is to have a gate electrode over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film.
  • the oxide semiconductor film is crystallized in at least a region which overlaps with the gate electrode. Note that “crystallization” refers to generation of crystal nuclei from an amorphous state, or growth of crystal grains from a state in which crystal nuclei have been generated.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film.
  • the oxide semiconductor film is crystallized in at least a region which overlaps with the gate electrode.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film.
  • the gate electrode has lower reflectivity with respect to a light source used for crystallization than the conductive film. Note that reflectivity comparison is used when the conductive film is a metal film or the like having a light shielding property.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film.
  • the gate electrode has higher heat absorption rate than the conductive film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed over the gate electrode, and an oxide semiconductor film formed over the insulating film, and by performing LRTA on the gate electrode, a portion of the oxide semiconductor film that overlaps with the gate electrode is crystallized.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed over the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, an oxide semiconductor film formed over the insulating film, and a conductive film formed over the oxide semiconductor film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, an oxide semiconductor film formed over the insulating film, and a conductive film formed over the oxide semiconductor film.
  • the foregoing conductive film is formed with one element or a plurality of elements selected from Al, Ti, Cu, Au, Ag, Mo, Ni, Ta, Zr, and Co.
  • the foregoing oxide semiconductor film includes at least zinc oxide (ZnO).
  • ZnO zinc oxide
  • InGaO 3 (ZnO) 5 , Mg x Zn 1-x O, or Cd x Zn 1-x O is given.
  • the foregoing substrate is any one selected from an organic resin substrate, an inorganic resin substrate, a plastic substrate, and a glass substrate.
  • the foregoing oxide semiconductor film is formed by a sputtering method.
  • nitrogen may be added to the foregoing oxide semiconductor film.
  • nitrogen works as an acceptor impurity when the oxide semiconductor film shows an n-type semiconductor property. Consequently, a threshold voltage of a transistor manufactured using an oxide semiconductor film to which nitrogen is added, can be controlled.
  • One feature of the present invention is to use one of W, TaN, and Cr as a gate electrode, or an alloy including any one thereof
  • One feature of the present invention is to perform crystallization of an oxide semiconductor film by irradiation with lamp light of a halogen lamp.
  • One feature of the present invention is to use light in a wavelength region of 800 nm to 2400 nm as lamp light. Also, wavelength in the visible light region or the infrared light region is used.
  • One feature of the present invention is a liquid crystal television or an EL television including the foregoing semiconductor device.
  • a heating treatment may be performed by laser light irradiation instead of LRTA.
  • laser light irradiation may be performed using an infrared light laser, a visible light laser, an ultraviolet laser, or the like to selectively improve crystallinity of an oxide semiconductor film.
  • laser light irradiation may be performed at the same time as performing lamp heating to selectively improve crystallinity of the oxide semiconductor film.
  • CW laser beam continuous wave laser beam
  • pulsed laser beam pulsed laser beam
  • a laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , or GdVO 4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y 2 O 3 , YVO 4 , YAlO 3 , or GdVO 4 , doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser.
  • a gas laser such as an Ar laser, Kr laser, or an excimer laser
  • laser light having larger energy than a band gap of the oxide semiconductor film For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • a semiconductor device refers to a device having a circuit including a semiconductor element (such as a transistor or a diode), and as the semiconductor device, an integrated circuit including a semiconductor element, a display device, a wireless tag, an IC tag, and the like are given.
  • a liquid crystal display device a light emitting device, a DMD (digital micromirror device), a PDP (plasma display panel), an FED (field emission display), an electrophoresis display device (electronic paper), and the like are typically given.
  • a display device refers to a device using a display element, in other words, an image display device.
  • a module in which a connector for example an FPC (flexible printed circuit), a TAB (tape automated bonding) tape, or a TCP (tape carrier package), is attached to a display panel; a module provided with a printed wiring board at an end of the TAB tape or the TCP; and a module in which an IC (integrated circuit) or a CPU is directly mounted on a display element by COG (chip on glass) method are all included as the display device.
  • the present invention it is acceptable as long as crystallization of an oxide semiconductor film is caused or crystallinity is improved in at least a channel forming region. Further, the entire channel forming region is not required to be crystallized, and it is acceptable as long as at least a portion of the channel forming region on a gate electrode side is crystallized.
  • a nitride semiconductor or a carbide semiconductor may be used other than the oxide semiconductor.
  • a semiconductor having a light transmitting property with respect to visible light can also be used.
  • crystallinity of a channel forming region of an oxide semiconductor film is made to be favorable by heating a gate electrode by LRTA.
  • the oxide semiconductor film is only heated locally; consequently, most of a substrate is not heated, and a crystallization step can be performed as shrinking and bending of the substrate are controlled. Consequently, a semiconductor device including a semiconductor element with improved mobility characteristic can be manufactured as the step is simplified.
  • a gate electrode when forming a gate electrode over the substrate, forming an insulating film functioning as a gate insulating film over the gate electrode, forming a wiring having higher reflectivity with respect to a light source of LRTA than the gate electrode over the insulating film, and forming a oxide semiconductor film over the wiring, and then LRTA is performed towards a front surface or a rear surface of a substrate, the wiring is not heated as much as the gate electrode since it has higher reflectivity with respect to the light source of LRTA than the gate electrode. Therefore, a conductive film having a relatively low melting point such as copper, aluminum, or silver, which has low resistance, can be used for the wiring. As a result, an inexpensive semiconductor device can be provided.
  • an insulating film does not form over a surface of the oxide semiconductor film due to oxidation even if the surface is exposed to an atmosphere containing oxygen. Therefore, even if the oxide semiconductor film is exposed to atmospheric air after formation, there is little change to the film.
  • a heat treatment temperature in a crystallization step of the oxide semiconductor film can be around 350° C. or lower. This is because crystallization is sufficiently promoted for ZnO at a heat treatment temperature of around 350° C. or lower. As a result, even if a resin substrate is used, shrinking of the substrate can be suppressed. Also, lamp heating is performed on the gate electrode using a material having lower reflectivity with respect to light emitted from a lamp than a source wiring and a drain wiring.
  • the source wiring and the drain wiring are not easily heated; therefore, a material having a relatively low melting point can be used for the source wiring and the drain wiring. For example, since a heat treatment temperature of 350° C. or lower is sufficient when Al is used for the source wiring and the drain wiring, diffusion of Al to a semiconductor layer can be suppressed.
  • a semiconductor device can be manufactured by a low temperature heat treatment (around 350° C. or lower), it is inexpensive as a process.
  • the oxide semiconductor has a light transmitting property
  • zinc oxide is used as the oxide semiconductor
  • resource of zinc oxide is more abundant than that of indium tin oxide (ITO) and since zinc oxide has lower resistance, a more inexpensive semiconductor device can be obtained by using zinc oxide instead of ITO as the pixel electrode.
  • ITO indium tin oxide
  • silicon silicon is used for a semiconductor film, in order to prevent the channel forming region from being irradiated with light, it is necessary to provide a light shielding film so as to overlap the channel forming region.
  • FIGS. 1A and 1B are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention
  • FIG. 2 is a diagram describing temperature dependency of crystallization of an oxide semiconductor film of the present invention.
  • FIGS. 3A to 3C are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention.
  • FIGS. 4A to 4H are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention.
  • FIGS. 5A to 5C are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention.
  • FIGS. 6A to 6F are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention.
  • FIG. 7 is a cross sectional-view of a semiconductor device relating to the present invention.
  • FIGS. 8A to 8F are each a diagram showing a mode of a light emitting element relating to the present invention.
  • FIGS. 9A to 9F are each a diagram describing a pixel circuit of a display panel relating to the present invention and an operation configuration thereof;
  • FIGS. 10A to 10C are each a diagram describing mounting of a driver circuit relating to the present invention.
  • FIG. 11 is a diagram describing a display module relating to the present invention.
  • FIGS. 12A to 12F are each a diagram describing one example of an electronic appliance
  • FIGS. 13A and 13B are each a cross-sectional view of a semiconductor device relating to the present invention.
  • FIGS. 14A and 14B are each a circuit diagram and a cross-sectional view of a pixel in a semiconductor device of the present invention.
  • FIG. 15 is a cross-sectional view of a semiconductor device relating to the present invention.
  • FIG. 16 is a diagram showing one mode of an element substrate in a semiconductor device of the present invention.
  • FIGS. 17A and 17B are each a diagram showing one mode of an element substrate in a semiconductor device of the present invention.
  • FIGS. 18A and 18B are each a block diagram showing a structure of a semiconductor device of the present invention.
  • FIGS. 19A and 19B are each a diagram showing a structure of an LRTA device relating to the present invention.
  • FIG. 20 describes one example of an electronic appliance relating to the present invention
  • FIG. 21 describes one example of an electronic appliance relating to the present invention.
  • a manufacturing step of a TFT using a channel forming as a region of an oxide semiconductor film in which crystallinity is improved by LRTA is described with reference to FIGS. 1A and 1B .
  • a base film 102 is formed over a substrate 101 .
  • glass or plastic (synthetic resin) such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic, or polyimide can be used.
  • plastic synthetic resin
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • acrylic acrylic
  • polyimide polyimide
  • the base film 102 a single layer of an insulating film such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film (SiO x N y ) (x>y), or a silicon nitride oxide film (SiN x O y ) (x>y), or stacked layers thereof are used.
  • the base film 102 may be formed by a sputtering method or a CVD method. Note that the base film 102 is not always required to be provided, but it is preferable to form in the present invention. By forming the base film 102 , conduction of heat generated from an electrode or a wiring formed over the base film 102 to the substrate 101 can be suppressed.
  • a silicon nitride oxide film with a thickness of 10 to 400 nm can be used, for example.
  • a gate electrode 103 is formed over the base film 102 .
  • the gate electrode 103 with a thickness of 100 to 200 nm may be formed by a sputtering method.
  • the gate electrode 103 can be formed using an element selected from tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), niobium (Nb), or the like, or an alloy material or a compound material mainly containing such an element.
  • the gate electrode 103 can also be formed with a semiconductor material typified by polycrystalline silicon doped with an impurity element such as phosphorous.
  • a gate insulating film 104 with a thickness of about 50 to 500 nm is formed to cover the gate electrode 103 .
  • the gate insulating film 104 may be formed to have a single layer structure of a film containing an oxide of silicon or a nitride of silicon, or as a stacked layer structure thereof, by a sputtering method or a variety of CVD methods such as a plasma CVD method.
  • a film containing silicon oxide (SiO x ), a film containing silicon oxynitride (SiO x N y ), or a film containing silicon nitride oxide (SiN x O y ) is formed as a single layer structure, or these films are appropriately stacked to form the gate insulating film 104 .
  • the gate insulating film may be formed by performing high density plasma treatment on the gate electrode 103 under an atmosphere containing oxygen, nitrogen, or both oxygen and nitrogen and oxidizing or nitriding a surface of the gate electrode 103 .
  • the gate insulating film formed by a high density plasma treatment has excellent uniformity in its film thickness, film quality, and the like and the film can be formed to be dense.
  • a mixed gas of a noble gas, oxygen (O 2 ), and nitrogen dioxide (NO 2 ), or dinitrogen monoxide (N 2 O); or a mixed gas of a noble gas, hydrogen (H 2 ), and oxygen (O 2 ), nitrogen dioxide (NO 2 ), or dinitrogen monoxide (N 2 O), can be used.
  • a mixed gas of a noble gas and nitrogen (N 2 ) or ammonia (NH 3 ); or a mixed gas of a noble gas, hydrogen (H 2 ), and nitrogen (N 2 ) or ammonia (NH 3 ) can be used.
  • an oxygen radical may also include an OH radical
  • a nitrogen radical may also include a NH radical
  • the surface of the gate electrode 103 can be oxidized or nitrided.
  • the gate insulating film 104 When the gate insulating film 104 is formed by performing the high density plasma treatment, the insulating film with a thickness of 1 to 20 nm, preferably 5 to 10 nm, is formed covering the gate electrode 103 . Since a reaction in this case is a solid-phase reaction, interface state density of between the gate insulating film 104 and the gate electrode 103 can be made to be extremely low. Further, since the gate electrode 103 is oxidized or nitrided directly, a thickness of the gate insulating film 104 to be formed can be uniform. Consequently, by solid-phase oxidation of the surface of the electrode by the high density plasma treatment shown here, an insulating film with favorable uniformity and low interface state density can be formed.
  • an oxide of an element selected from tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), niobium (Nb), or the like; or an oxide of an alloy material or a compound material mainly containing the element functions as the gate insulating film 104 .
  • the gate insulating film 104 just an insulating film formed by the high density plasma treatment may be used, or at least one of an insulating film of silicon oxide, silicon nitride containing oxygen, silicon oxide containing nitrogen, and the like may be stacked in addition thereover by a CVD method utilizing plasma or heat reaction. Either way, transistors each of which a gate insulating film is partially or entirely an insulating film formed by high density plasma can be made to have little variations in characteristic.
  • the gate insulating film 104 may use the following which have favorable compatibility with the oxide semiconductor film: alumina (Al 2 O 3 ), aluminum nitride (AlN), titanium oxide (TiO 2 ), zirconia (ZrO 2 ), lithium oxide (Li 2 O), potassium oxide (K 2 O), sodium oxide (Na 2 O), indium oxide (In 2 O 3 ), yttrium oxide (Y 2 O 3 ), or calcium zirconate (CaZrO 3 ); or a material including at least two thereof.
  • the gate insulating film 104 may be formed as a single layer or as stacked layers of two or more layers.
  • a wiring 105 with a thickness of 50 to 200 nm is formed over the gate insulating film 104 .
  • a wiring material silver (Ag), aluminum (Al), gold (Au), copper (Cu), an alloy thereof, or the like is used. It is acceptable as long as the wiring material has higher reflectivity than that of the material used for the gate electrode 103 , and the wiring material is appropriately combined and used taking into consideration the gate electrode 103 .
  • the wiring may be formed to have a stacked layer structure. For example, aluminum and titanium may be stacked over the substrate in this order to form a wiring with a stacked layer structure. Titanium is effective in making an electrical contact property between the oxide semiconductor film and aluminum favorable.
  • Titanium also takes on a role of suppressing diffusion of aluminum to the oxide semiconductor film.
  • the wiring may be formed with a transparent conductive film, such as for example indium tin oxide (ITO), indium tin oxide containing silicon oxide (ITSO), indium zinc oxide (IZO), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), zinc oxide added with aluminum (AlZnO), zinc oxide added with gallium (GaZnO), or zinc oxide.
  • ITO indium tin oxide
  • ITSO indium zinc oxide
  • IZO indium oxide
  • In 2 O 3 tin oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • AlZnO zinc oxide added with gallium
  • GaZnO gallium
  • an oxide semiconductor film 106 is formed over the gate insulating film 104 and the wiring 105 .
  • zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist added with one type or a plurality of types of impurity elements selected from the following can be used: a Group 1 element (for example, lithium (I), sodium (Na), kalium (K), rubidium (Rb), or cesium (Cs)), a Group 13 element (for example, boron (B), gallium (Ga), indium (In), or thallium (Tl)), a Group 14 element (for example, carbon (C), silicon (Si), germanium (Ge), tin (Sn), or lead (Pb)), a Group 15 element (for example, nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), or bismuth (Bi)),
  • a Group 1 element for example,
  • zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, which is not added with any impurity element can also be used.
  • any of the following can also be used: InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO).
  • the oxide semiconductor film 106 does not need to be formed under high vacuum since there is no concern for oxidation, and is inexpensive as a process.
  • a plasma CVD (also called PCVD or PECVD) method may be used to form the film.
  • CVD methods the plasma CVD method in particular uses a simple device, and has favorable productivity.
  • LRTA is performed towards a rear surface of the substrate 101 ( FIG. 1A ).
  • LRTA is performed at 250° C. to 570° C. (preferably 300° C. to 400° C., more preferably 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes.
  • LRTA is performed with radiation from one type or a plurality types of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp.
  • a material with a relatively low melting point can be used if reflectivity or transmissivity of the wiring 105 is higher than that of the gate electrode 103 .
  • the LRTA method light of a wavelength in the infrared light region, the visible light region, the ultraviolet light region, or the like can be used.
  • a heating treatment may be performed by laser light irradiation, and for example, laser light of an infrared light laser, a visible light laser, an ultraviolet laser, or the like may be used.
  • LRTA and laser light irradiation may be combined to selectively improve crystallinity of the oxide semiconductor film.
  • a continuous wave laser beam (CW laser beam) or a pulsed laser beam can be used.
  • a laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , or GdVO 4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y 2 O 3 , YVO 4 , YAlO 3 , or GdVO 4 , doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a
  • laser light having larger energy than a band gap of the oxide semiconductor film For example, laser light emitted from a KrF, ArF, WeCl, or an XeF excimer laser oscillator may be used.
  • the gate electrode 103 is formed with a material that has lower reflectivity with respect to lamp light and that which absorbs more heat than that of the wiring 105 , the gate electrode 103 is heated to a higher temperature than the wiring 105 .
  • the oxide semiconductor film 106 in a periphery of the gate electrode 103 is heated; consequently, a second oxide semiconductor region 108 and a first oxide semiconductor region 107 with more favorable crystallinity than the second oxide semiconductor region 108 are formed (see FIG. 1B ).
  • the gate electrode 103 is irradiated with lamp light so as to be heated to around 300° C., and by that heat, the oxide semiconductor film 106 is crystallized to improve crystallinity.
  • a temperature of the wiring 105 is 300° C. or less even if the oxide semiconductor film 106 is crystallized.
  • FIG. 1A in a region in which the gate electrode 103 and the wiring 105 are not formed, in other words, in a region in which the substrate 101 , the base film 102 , the gate insulating film 104 , and the oxide semiconductor film 106 are stacked, lamp light is transmitted through compared to a region in which the wiring 105 and the gate electrode 103 are formed; consequently, heat is not easily absorbed and a heating temperature is lower than that of the wiring 105 . Consequently, since a large region of the substrate 101 is 350° C. or lower, shrinking does not occur easily. Note that the larger the region in which the gate electrode 103 is not formed, shrinking of the substrate 101 is suppressed.
  • a semiconductor device is manufactured by forming an interlayer insulating film, a source electrode, a drain electrode, a pixel electrode, a light emitting element, and the like over the oxide semiconductor film 106 .
  • crystallinity of a ZnO layer is improved with a heat treatment temperature of about 300° C.; therefore, compared to when a crystalline silicon film is used as a semiconductor film, the heat treatment temperature is suppressed. Also, since an oxide semiconductor film having a high light transmitting property is used and a gate electrode is selectively heated by LRTA, most of a substrate is not heated and shrinking of the substrate can be suppressed. Further, since a material used for a wiring has higher reflectivity with respect to lamp light than that of the gate electrode, crystallinity of the oxide semiconductor film can be improved even if a temperature to which the wiring is heated is suppressed to around 350° C.
  • an Al wiring which has a low melting point can be used. Also, formation of an insulating film due to diffusion of oxygen in the oxide semiconductor film to the Al can be prevented. Since the Al wiring is inexpensive and has low resistance, a semiconductor device with favorable performance can be manufactured at low cost and with favorable productivity.
  • steps of forming a base film 302 , a gate electrode 303 , and a gate insulating film 304 over a substrate 301 corresponds to the steps of forming the base film 102 , the gate electrode 103 , and the gate insulating film 104 over the substrate 101 of Embodiment Mode 1, respectively; therefore, refer to Embodiment Mode 1 for the steps.
  • a first oxide semiconductor film 305 is formed over the gate insulating film 304 .
  • zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist added with one type or a plurality of types of impurity elements selected from Group 1 elements, Group 13 elements, Group 14 elements, Group 15 elements, and Group 17 elements can be used.
  • zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, which is not added with any impurity element can also be used.
  • any of the following can also be used: InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO).
  • zinc oxide is formed to a thickness of 50 to 200 nm (preferably 100 to 150 nm) as the first oxide semiconductor film 305 by a sputtering method.
  • LRTA is performed towards a substrate surface to make crystallinity favorable ( FIG. 3A ).
  • LRTA may be performed at 250° C. to 570° C. (preferably at 300° C. to 400° C., and more preferably at 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes.
  • LRTA is performed with radiation from one type or a plurality of types of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp.
  • lamp heating is performed on the gate electrode 303 for 30 minutes in an oxygen atmosphere so that the gate electrode becomes about 300° C., in order to improve crystallinity of a region of the first oxide semiconductor film 305 which overlaps the gate electrode 303 with the gate insulating film therebetween. Since the first oxide semiconductor film 305 has a light transmitting property, the gate electrode 303 is heated with priority, and crystallinity of the first oxide semiconductor film 305 increases from a periphery of the gate electrode 303 towards the outside. Then, as shown in FIG. 3B , a second oxide semiconductor film including a second oxide semiconductor region 309 and a first oxide semiconductor region 308 with more favorable crystallinity than the second oxide semiconductor region 309 are formed. Note that in FIG.
  • LRTA may be performed towards a rear surface of the substrate. Since the oxide semiconductor film 305 has a light transmitting property, most region of the substrate is not easily heated even if LRTA is performed. Consequently, deformation such as shrinking of the substrate can be suppressed even if a resin with a low melting point or the like is used for the substrate. Note that crystallinity of a surface of the oxide semiconductor film and a periphery thereof may be improved directly by performing lamp heating towards the substrate surface with LRTA with increased output.
  • a surface of the oxide semiconductor film on a gate insulating layer 304 side and a periphery thereof may be crystallized with priority when performing lamp heating towards the substrate surface, by adjusting wavelength of lamp light, reflectivity of the gate electrode, and film thickness of the oxide semiconductor film, so that lamp light reflecting off of the gate electrode is absorbed by the surface of the oxide semiconductor film on the gate insulating layer 304 side and the periphery thereof.
  • lamp light used is of the visible light region to the infrared light region. Since light in these wavelength regions is not easily absorbed by the glass substrate, heating of the glass substrate can be suppressed to a minimum.
  • lamp heating may be performed a plurality of times. By performing lamp heating a plurality of times, heating time can be gained at the same time as suppressing a rise in a temperature of the substrate.
  • crystallinity of the oxide semiconductor film may be selectively improved by laser light irradiation, ultraviolet irradiation, or by a combination thereof.
  • laser irradiation a continuous wave laser beam (CW laser beam) or a pulsed laser beam (pulse laser beam) can be used.
  • a laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , or GdVO 4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y 2 O 3 , YVO 4 , YAlO 3 , or GdVO 4 , doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser.
  • a gas laser such as an Ar laser, Kr laser, or an excimer laser
  • laser light having larger energy than a band gap of the oxide semiconductor film For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • a wiring 306 and a wiring 307 are formed as a source wiring and a drain wiring by performing dry etching on the Ti layer and the Al layer using photolithography and Cl 2 gas ( FIG. 3C ).
  • the wirings 306 and 307 are each formed to have a thickness of 10 to 200 nm by using an acceleration voltage of 1.5 kw, a pressure of 0.4 Pa, and Ar (flow rate of 30 sccm).
  • the wirings 306 and 307 are formed as stacked layers, if materials used for the wiring 306 and 307 have favorable compatibility with the oxide semiconductor film 305 , the wirings 306 and 307 may be formed in a single layer.
  • a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used.
  • a material having a light transmitting property such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide containing silicon oxide (ITSO), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), zinc oxide added with aluminum (AlZnO), zinc oxide added with gallium (GaZnO), or the like can be appropriately used.
  • a semiconductor device is manufactured by forming an interlayer insulating film, a wiring, a pixel electrode, a light emitting element and the like over the oxide semiconductor film 305 , the wiring 306 and the wiring 307 .
  • a wiring is formed after performing LRTA on the oxide semiconductor film 305 to improve crystallinity. Therefore, a material having lower reflectivity with respect to lamp light than that of the gate electrode 303 may be used for the wiring 306 , and the material for the wiring is not limited to those mentioned in Embodiment Mode 1 as long as it has favorable compatibility with the oxide semiconductor film 305 .
  • heating by LRTA may be performed before or after processing the oxide semiconductor film 305 into a desirable shape.
  • the present invention when zinc oxide is used for a semiconductor film, since crystallinity of the semiconductor film improves at a heat treatment temperature of around 300° C., heat treatment temperature can be suppressed and a crystallization step can be performed at low cost compared to when a crystalline silicon film is used as the semiconductor film. Further, since a gate electrode is selectively heated by LRTA using an oxide semiconductor film having a high light transmitting property, most of a substrate is not heated and shrinking of the substrate can be suppressed.
  • This embodiment mode is described with reference to FIGS. 4A to 5C .
  • This embodiment mode is an example of a semiconductor device including a channel protective thin film transistor.
  • a glass substrate including barium borosilicate glass, alumino borosilicate glass, or the like; a silicon substrate; a plastic substrate having heat resistance; or a resin substrate is used.
  • a plastic substrate or the resin substrate polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic, polyimide, or the like can be used.
  • a surface of the substrate 400 may be polished by a CMP method so that the surface is planarized. Note that an insulating layer may be formed over the substrate 400 .
  • the insulating layer is formed to have a single layer structure or a stacked layer structure using at least one of an oxide material including silicon and a nitride material including silicon, by a known method such as a CVD method, a plasma CVD method, a sputtering method, or a spin coating method.
  • This insulating layer is not necessarily formed, but it has effects of blocking contaminants and the like from the substrate 400 , as well as suppressing conduction of heat to the substrate.
  • a conductive film 401 is formed over the substrate 400 .
  • the conductive film 401 is processed into a desired shape and becomes a gate electrode.
  • the conductive film 401 is preferably formed by a method such as a printing method, an electrolytic plating method, or an evaporation method, using a material having a low reflectivity with respect to a wavelength of a light source used for LRTA heating (a material which easily absorbs heat, in other words, that which is easily heated). By using the material having a low reflectivity, a subsequent heating step becomes possible.
  • a metal such as tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used.
  • the conductive film 401 may have a stacked layer structure of a plurality of these layers. Typically, a tantalum nitride film may be stacked over a substrate surface, and then a tungsten film may be stacked thereover.
  • silicon added with an impurity element imparting one conductivity type may also be used.
  • an n-type silicon film of an amorphous silicon film including an impurity element imparting n-type such as phosphorus (P) can be used.
  • the conductive film 401 is formed to have a thickness of 10 nm to 200 nm.
  • the conductive film 401 is formed to have a thickness of 150 nm by a sputtering method using tungsten (W).
  • a mask made of a resist is formed over the conductive film 401 using a photolithography step, and the conductive film 401 is processed into a desired shape using the mask to form a gate electrode 402 (see FIG. 4B ).
  • a gate insulating film 403 a and a gate insulating film 403 b are formed over the gate electrode 402 so as to have a stacked layer structure of two layers.
  • the stacked insulating films may be formed consecutively in the same chamber without breaking a vacuum and under the same temperature, by changing reaction gases. By forming the insulating films consecutively without breaking the vacuum, contamination of an interface between the stacked films can be prevented.
  • silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ) (x>y), silicon nitride oxide (SiN x O y ) (x>y), or the like can be appropriately used.
  • the gate electrode 402 may be oxidized to form an oxide film.
  • the gate insulating film 403 a is preferably formed using silicon nitride (SiN x ), silicon nitride oxide (SiN x O y ) (x>y), or the like. Further, the gate insulating film 403 b is desirably formed using silicon oxide (SiO x ), silicon oxynitride (SiO x N y ) (x>y), or the like.
  • the gate insulating film 403 a is formed using a silicon nitride film with a thickness of 50 nm to 140 nm that is formed with SiH 4 and NH 3 as reaction gases
  • the gate insulating film 403 b is formed using a silicon oxide film with a thickness of 100 nm that is formed with SiH 4 and N 2 O as reaction gases, and stacked thereover. Note that it is preferable that the gate insulating film 403 a and the gate insulating film 403 b each have a thickness of 50 nm to 100 nm.
  • the gate insulating film 403 b may be formed using alumina (Al 2 O 3 ) or aluminum nitride (AlN) each having favorable compatibility with an oxide semiconductor film to be subsequently formed.
  • alumina Al 2 O 3
  • AlN aluminum nitride
  • silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or the like having a high insulating property for the gate insulating film 403 a and using alumina or aluminum nitride having a favorable interface property with respect to the oxide semiconductor film for the gate insulating film 403 b , a high reliability gate insulating film can be formed.
  • the gate insulating film may have three layers, and the third layer may be a gate insulating film using alumina or aluminum nitride.
  • the oxide semiconductor film 404 is formed over the gate insulating film 403 b .
  • ZnO in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist added with one type or a plurality of types of impurity elements selected from Group 1 elements, Group 13 elements, Group 14 elements, Group 15 elements, and Group 17 elements can be used.
  • ZnO in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist which is not added with any impurity element can also be used.
  • any of the following can also be used: InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg x Zn 1-x O), cadmium zinc oxide (Cd x Zn 1-x O), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO).
  • ZnO magnesium zinc oxide
  • Cd x Zn 1-x O cadmium zinc oxide
  • CdO cadmium oxide
  • a-IGZO In—Ga—Zn—O based amorphous oxide semiconductor
  • ZnO when ZnO is used for the oxide semiconductor film 404 , it is favorable that ZnO is added (doped) with nitrogen. ZnO normally shows an n-type semiconductor property. By adding nitrogen, since nitrogen works as an acceptor with respect to ZnO, a threshold voltage can be suppressed as a result.
  • LRTA is performed with radiation from one or a plurality of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp.
  • LRTA is performed at 250° C. to 570° C. (preferably 300° C. to 400° C., more preferably 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes.
  • lamp heating is performed with a halogen lamp as a light source, and in an oxygen atmosphere at 300° C. for 30 minutes.
  • the gate electrode 402 is selectively heated in a short amount of time, and a first oxide semiconductor region with improved crystallinity is formed by heat thereof in a region 434 formed in a periphery of the gate electrode 402 , which is indicated by a dotted line.
  • a region 424 that is not the region 434 indicated by the dotted line is barely heated since there is little absorption of lamp light, and a second oxide semiconductor region having a different crystallinity from that of the first oxide semiconductor region (see FIG. 4E ). Consequently, since only a region in which the gate electrode 402 is formed is selectively heated and the other region is not heated, shrinking and bending of the substrate 400 can be suppressed.
  • crystallinity in a periphery of the surface of the oxide semiconductor film may be improved directly by performing lamp heating towards the substrate surface with LRTA with increased output.
  • a surface of the oxide semiconductor film on a gate insulating layer 403 b side and a periphery thereof may be crystallized with priority when performing lamp heating towards the substrate surface, by adjusting wavelength of lamp light, reflectivity of the gate electrode, and film thickness of the oxide semiconductor film, so that lamp light reflecting off of the gate electrode is absorbed by the surface of the oxide semiconductor film on the gate insulating layer 403 b side and the periphery thereof.
  • lamp light used is of the visible light region to the infrared light region. Since light in these wavelength regions is not easily absorbed by the glass substrate, heating of the glass substrate can be suppressed to a minimum. Note that lamp heating may be performed a plurality of times. By performing lamp heating a plurality of times, heating time can be gained at the same time as suppressing a rise in a temperature of the substrate.
  • crystallinity of the oxide semiconductor film may be selectively improved by laser light irradiation, ultraviolet irradiation, or by a combination thereof.
  • laser irradiation a continuous wave laser beam (CW laser beam) or a pulsed laser beam (pulse laser beam) can be used.
  • a laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO 4 , forsterite (Mg 2 SiO 4 ), YAlO 3 , or GdVO 4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y 2 O 3 , YVO 4 , YAlO 3 , or GdVO 4 , doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser.
  • a gas laser such as an Ar laser, Kr laser, or an excimer laser
  • laser light having larger energy than a band gap of the oxide semiconductor film For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • a protective film 405 is formed over the oxide semiconductor film 404 , and a resist 406 is formed over the protective film 405 (see FIG. 4F ).
  • the protective film 405 is processed into a desired shape to form a channel protective film 407 .
  • the channel protective film silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ) (x>y), silicon nitride oxide (SiN x O y ) (x>y), or the like can be appropriately used.
  • the channel protective film 407 By forming the channel protective film 407 , a semiconductor layer of a channel portion can be prevented from being etched when a source electrode and a drain electrode are formed.
  • silicon nitride is formed as the protective film 405 , and then the channel protective film 407 is formed (see FIG. 4G ).
  • a mask 408 is manufactured with a resist ( FIG. 4H ), and etching is performed on the oxide semiconductor film 404 to process into a desired shape by a photolithography step using the mask 408 , to form an oxide semiconductor film 409 (also called island-shaped oxide semiconductor film) ( FIG. 5A ). Note that diluted fluorinated acid is used for the etching. Subsequently, a first conductive film 411 and a second conductive film 412 are formed over the oxide semiconductor film 409 , and a mask 413 is formed by a photolithography step with a resist ( FIG. 5B ).
  • the first conductive film 411 and the second conductive film 412 are processed into desired shapes using the mask 413 , and first conductive films 414 a and 414 b , and second conductive films 415 a and 415 b each functioning as a source electrode or a drain electrode are formed ( FIG. 5C ).
  • a commercially available resist material including a photosensitizing agent may be used.
  • a typical positive type resist such as a novolac resin or a naphthoquinone diazide compound which is a photosensitizing agent
  • a negative type resist such as a base resin, diphenylsilanediol, or an acid generator may be used.
  • surface tension and viscosity thereof is appropriately adjusted by adjusting a concentration of a solvent, or by adding a surfactant or the like.
  • the conductive films can be processed into desired shapes by being subjected to direct laser light irradiation, exposure, and removal with an etchant, without forming a mask from resist. In this case, there is an advantage that a step is simplified since a mask is not required to be formed.
  • the conductive material including a photosensitive substance a material including a metal such as Ag, Au, Cu, Ni, Al, or Pt, or an alloy thereof; an organic high molecular compound resin; a photo polymerization initiator; a photopolymerization monomer; and a photosensitive resin made of a solvent or the like, may be used.
  • a novolac resin an acrylic copolymer, a methacrylic copolymer, a cellulose derivative, a cyclic rubber resin, or the like is used.
  • one more layer of a conductive film made of for example zinc oxide added with aluminum (AlZnO) or zinc oxide added with gallium (GaZnO) may be provided as an n-type semiconductor, over the oxide semiconductor film 404 .
  • AlZnO zinc oxide added with aluminum
  • GaZnO gallium
  • compatibility between the first conductive film 411 and the oxide semiconductor film 409 becomes favorable, and a contact resistance between the oxide semiconductor film 409 and a source electrode and a drain electrode can be reduced.
  • a stacked layer structure of forming Ti over GaZnO, or forming GaZnO over Ti may be provided.
  • a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), copper (Cu), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used.
  • the following combinations of the first conductive films 414 a , 414 b and the second conductive films 415 a , 415 b can be considered: Ti and Al; Ta and W; TaN and Al; and TaN and Cu; as the first conductive films and the second conductive films, respectively.
  • a combination of a third conductive film using Ti in addition to the first conductive films using Ti and the second conductive films using Al can be considered.
  • an AgPdCu alloy may be used for one of a first layer and a second layer.
  • a structure may be a three-layer stacked layer structure of sequentially stacking W, an alloy of Al and Si (Al—Si), and TiN.
  • tungsten nitride an alloy film of Al and Ti (Al—Ti), and Ti may be used instead of W, the alloy of Al and Si (Al—Si), and TiN, respectively.
  • an element such as titanium, silicon, scandium, neodymium, or copper may be added to aluminum at 0.5 to atomic %.
  • a material having a light transmitting property such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide containing silicon oxide (ITSO), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), or zinc oxide (ZnO), or an appropriate combination thereof may be used.
  • the first conductive film 411 and the second conductive film 412 are formed after LRTA is performed on the oxide semiconductor film 305 and crystallinity thereof is improved. Therefore, a material having lower reflectivity with respect to lamp light than that of the gate electrode 402 may be used for the first conductive film 411 and the second conductive film 412 , and a conductive material for a wiring or an electrode is not limited to those mentioned in Embodiment Mode 1 as long as it has favorable compatibility with the oxide semiconductor film 305 .
  • either plasma etching (dry etching) or wet etching may be employed for an etching process; however, plasma etching is suitable for treating a substrate with a large area.
  • a fluorinated acid based gas such as CF 4 , NF 3 , SF 6 , or CHF 3 ; a chlorine based gas typified by Cl 2 , BCl 3 , SiCl 4 , CCl 4 , or the like; or an O 2 gas may be used, to which an inert gas such as He or Ar may be appropriately added.
  • an etching process using atmospheric pressure discharge, electric discharge machining is possible locally, and a mask layer is not required to be formed on the an entire surface of the substrate.
  • an insulating film with a thickness of about several nm may be formed over a surface of the oxide semiconductor film.
  • a bottom gate type (also called reverse staggered type) thin film transistor in which a semiconductor layer of a channel portion is not etched can be manufactured.
  • a top gate type TFT may be formed as long as crystallinity of at least a channel forming region of an oxide semiconductor film can be improved by heating a gate electrode that is formed over an oxide semiconductor film formed over a substrate, with a gate insulating film therebetween.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 and 2.
  • FIGS. 6A to 6E An embodiment mode of the present invention is described with reference to FIGS. 6A to 6E
  • This embodiment mode is an example of a semiconductor device according to Embodiment Mode 3 having a channel etch type thin film transistor. Therefore, repeated description of the same portions or the portions having similar functions is omitted.
  • a gate electrode 602 is formed over a substrate 600 , and a gate insulating film 603 a and a gate insulating film 603 b are formed covering the gate electrode 602 ( FIG. 6A ).
  • An oxide semiconductor film 620 is formed over the gate insulating film 603 b , and LRTA is performed towards a substrate surface to form an oxide semiconductor film 620 including a first oxide semiconductor region 604 with improved crystallinity in a region indicated by a dotted line, and a second oxide semiconductor region 605 in which crystallization is not as progressed as the first oxide semiconductor region 604 (see FIG. 6B ).
  • a mask 608 is provided over the oxide semiconductor film ( FIG. 6C ), and the oxide semiconductor film is processed into a desired shape by a photolithography step to form an oxide semiconductor film 609 ( FIG. 6D ).
  • a first conductive film 611 and a second conductive film 612 are formed.
  • a mask 613 made of a resist is formed (see FIG. 6E ).
  • conductive films containing titanium and aluminum are formed by a sputtering method as each of the first conductive film 611 and the second conductive film 612 .
  • first conductive film 611 and the second conductive film 612 are processed into a desired shape using the mask 613 by a photolithography step, and first conductive films 615 a and 615 b , and second conductive films 616 a and 616 b each functioning as a source electrode or a drain electrode are formed ( FIG. 6F ).
  • a thin film transistor in which a semiconductor layer of a part pf a channel portion is etched can be manufactured.
  • one more layer of a conductive film made of for example zinc oxide added with aluminum (AlZnO) or zinc oxide added with gallium (GaZnO) may be provided as an n-type oxide semiconductor, between the oxide semiconductor film and the first conductive film 611 .
  • a stacked layer structure of forming Ti over GaZnO, or forming GaZnO over Ti may be provided.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 to 3.
  • a light emitting device which a bottom gate type thin film transistor formed in Embodiment Mode 3 or Embodiment Mode 4 is connected to a pixel electrode is described with reference to FIG. 7 .
  • a thin film transistor of this embodiment mode is a channel-etched type.
  • FIG. 7 shows a cross-sectional view of a TFT used in a driver circuit and a cross-sectional view of a TFT used in a pixel portion.
  • a reference numeral 701 denotes a cross-sectional view of a TFT used in a driver circuit
  • a reference numeral 702 denotes a cross-sectional view of a TFT used in a pixel portion
  • a reference numeral 703 denotes a cross-sectional view of a light emitting element provided with a current by the TFT 702 .
  • the TFTs 701 and 702 are bottom gate types.
  • the TFT 701 of the driver circuit includes a gate electrode 710 formed over a substrate 700 ; a gate insulating film 711 covering the gate electrode 710 ; and an oxide semiconductor film 712 containing zinc oxide which overlaps with the gate electrode 710 with the gate insulating film 711 interposed therebetween. Further, the TFT 701 includes first conductive films 713 each functioning as a source electrode or a drain electrode, and second conductive films 714 each functioning as a source electrode or a drain electrode. Note that the first conductive films 713 and the second conductive films 714 also function as wiring.
  • the gate insulating layer 711 is formed of two layers of insulating films; however, the present invention is not limited to this structure.
  • the gate insulating film 711 may be formed with a single layer of an insulating film or three or more layers of insulating films.
  • the second conductive films 714 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 714 that are a pair face each other with a channel forming region of the oxide semiconductor film 712 in therebetween.
  • the first conductive films 713 are formed with titanium.
  • the first conductive films 713 are not required to be provided; however, electrical contact property of the second conductive film 711 with the oxide semiconductor film 712 becomes favorable.
  • the first conductive films 713 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor film 712 to the second conductive films 714 . As a result, reliability of a TFT can be improved. Note that an oxide semiconductor film is known to show an n-type without performing anything thereto.
  • the first oxide semiconductor film in which a channel is formed may have its conductivity type controlled in advance so as to be close to an i-type (also called as an intrinsic-type that is defined as a conductivity type having an equal number of negative and positive charges) as much as possible, by adding an impurity imparting p-type conductivity.
  • an i-type also called as an intrinsic-type that is defined as a conductivity type having an equal number of negative and positive charges
  • the TFT 702 of the pixel portion includes a gate electrode 720 formed over the substrate 700 , the gate insulating film 711 covering the gate electrode 720 , and an oxide semiconductor film 722 which overlaps with the gate electrode 720 with the gate insulating film 711 interposed therebetween. Further, the TFT 702 includes first conductive films 723 each functioning as a source electrode or a drain electrode, and second conductive films 724 each functioning as a source electrode or a drain electrode.
  • the second conductive films 724 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 724 that are a pair face each other with a region in which a channel of the oxide semiconductor film 722 is formed in between.
  • the first conductive films 723 are formed with titanium.
  • the first conductive films 723 are not required to be provided; however, electrical contact property of the second conductive film 724 with the oxide semiconductor film 722 becomes favorable.
  • the first conductive films 723 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor film 722 to the second conductive films 724 . As a result, reliability of a TFT can be improved.
  • an oxide semiconductor film is known to show an n-type without performing anything thereto. Therefore, the first oxide semiconductor film in which a channel is formed may have its conductivity type controlled in advance so as to be close to an i-type as much as possible, by adding an impurity imparting p-type conductivity.
  • a first passivation film 740 and a second passivation film 741 each formed of an insulating film are formed covering the TFTs 701 and 702 .
  • the first passivation film 740 and the second passivation film 741 can be formed by a thin film formation method such as a plasma CVD method or a sputtering method, using an insulating material such as silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, aluminum oxynitride, aluminum oxide, diamond-like carbon (DLC), nitrogen-containing carbon (CN), or the like.
  • the passivation films covering the TFTs 701 and 702 is not limited to two layers, and a single layer or three or more layers may be provided.
  • the first passivation film 740 and the second passivation film 741 can be formed of silicon nitride and silicon oxide, respectively.
  • a passivation film of silicon nitride or silicon nitride oxide By forming a passivation film of silicon nitride or silicon nitride oxide, entering of impurities from outside into a semiconductor element can be prevented, and degradation of the TFTs 701 and 702 due to an effect of moisture or the like can be prevented.
  • the first passivation film 740 and the second passivation film 741 are consecutively formed in the same chamber by performing gas switching.
  • one of the second conductive films 724 is connected to a pixel electrode of a light emitting element 703 .
  • an insulating layer 729 (also called partition, or bank) is selectively formed.
  • the insulating layer 729 is formed so as to have an opening portion over the pixel electrode 730 and so as to cover the second passivation film 741 .
  • the insulating layer 729 is formed covering an entire surface, and then etched using a mask of a resist or the like to form into a desired shape.
  • the insulating layer 729 can be formed with an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, or aluminum oxynitride; an inorganic siloxane based insulating material having an Si—O—Si bond among compounds made of silicon, oxygen, and hydrogen, using a siloxane based material as a starting material; or an organic siloxane based material in which hydrogen bonded with silicon is substituted with an organic group such as methyl or phenyl.
  • the insulating layer 729 may be formed using a photosensitive or a non-photosensitive material such as an acrylic resin, or a polyimide resin.
  • the insulating layer 729 preferably has a form of which a curvature radius changes continuously, so that coatability of an electric field light emitting layer 731 and an opposing electrode 732 are improved.
  • the electric field light emitting layer 731 is formed over the pixel electrode 730 so as to be in contact therewith.
  • materials showing light emission of red (R), green (G), and blue (B), respectively are each selectively formed by an evaporation method or the like using an evaporation mask.
  • the materials showing light emission of red (R), green (G), and blue (B), respectively, are preferable since they can be formed by a droplet discharging method in a similar manner to a color filter (such as a low molecular compound or a high molecular compound), and in this case, RGB can be applied separately without using a mask.
  • a color filter such as a low molecular compound or a high molecular compound
  • RGB can be applied separately without using a mask.
  • the combination may be with four colors by adding emerald green.
  • vermilion may be added.
  • a pixel including an EL element that emits white light may be combined.
  • the opposing electrode 732 is formed so as to be in contact with the electric field light emitting layer 731 .
  • the light emitting element 703 includes an anode and a cathode, one is used as a pixel electrode, and the other is used as an opposing electrode. In this way, a light emitting device having a display function using a light emitting element is completed.
  • a channel forming region of an oxide semiconductor film includes at least a crystallized region, a TFT having higher mobility than that of a TFT using an amorphous silicon film can be obtained. Also, since a crystallization step is performed at a lower temperature than that of a TFT using a crystalline silicon film, it is inexpensive as a process.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 to 4.
  • Embodiment Mode 5 can be referred to regarding the formation up to the second passivation film 741 ; therefore, the same reference numerals are used as those of FIG. 7 , and descriptions thereof are omitted.
  • an insulating layer 1329 is formed so as to cover the second passivation film 741 .
  • wirings 1371 , 1372 , 1373 , and 1374 connected to the second conductive films 714 and 724 , respectively, are formed via contact holes.
  • the second conductive films 724 are electrically connected to a pixel electrode 1330 of a liquid crystal element 1303 via the wiring 1374 .
  • the pixel electrode 1330 in a case of manufacturing a transmissive type liquid crystal display panel, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, or the like can be used.
  • indium tin oxide ITO
  • indium zinc oxide IZO
  • indium tin oxide added with silicon oxide ITSO
  • a metal thin film having a reflective property a conductive film made of titanium, tungsten, nickel, gold, platinum, silver, aluminum, magnesium, calcium, lithium, an alloy thereof, or the like can be used.
  • the pixel electrode 1330 can be formed by an evaporation method, a sputtering method, a CVD method, a printing method, a droplet discharging method, or the like.
  • an orientation film 1331 is formed over the pixel electrode 1330 so as to be in contact therewith.
  • an opposing electrode 1341 and an orientation film 1342 are stacked in this order.
  • a liquid crystal 1343 is provided between the pixel electrode 1330 and the orientation film 1331 and between the opposing electrode 1341 and the orientation film 1342 , and a portion where the pixel electrode 1330 , the liquid crystal 1343 , and the opposing electrode 1341 overlap each other corresponds to a liquid crystal element 1303 .
  • the pixel electrode 1330 may be formed to extend over the TFT 702 , as shown in FIG. 13B .
  • an oxide semiconductor film has a light transmitting property with respect to visible light
  • a transparent conductive film including indium tin oxide (ITO), ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property an aperture ratio of a pixel portion can be improved.
  • a distance (cell gap) between the pixel electrode 1330 and the opposing electrode 1341 is controlled by a spacer 1361 .
  • the spacer 1361 is formed by processing an insulating film provided on a first substrate 700 side into a desired shape, spacers prepared separately may be dispersed over the orientation film 1331 to control the cell gap.
  • a reference numeral 1362 denotes a sealant, and by the sealant 1362 , the liquid crystal 1343 is sealed between the first substrate 700 and the second substrate 1340 .
  • a polarizing plate 1350 is provided on a surface of the first substrate 700 that is not the surface over which the TFT 701 and the TFT 702 are formed. Also, on a surface of the second substrate 1340 that is not the surface over which the opposing electrode 1341 is formed, a polarizing plate 1351 is provided. Note that the number of orientation films and polarizing plates, and positions thereof in a liquid crystal display device of the present invention are not limited to those shown in a structure of FIG. 13A .
  • the present invention since at least crystallization of a channel forming region of an oxide semiconductor film is improved, a TFT having higher mobility than that of a TFT using an amorphous silicon film can be obtained. Also, since a crystallization step is performed at a lower temperature than that of a TFT using a crystalline silicon film, it is inexpensive as a process. Further, since crystallinity of the oxide semiconductor film is selectively increased by lamp heating, the time it takes for crystallization can be shortened compared to when the entire oxide semiconductor film is crystallized. Therefore, yield can be increased.
  • the channel forming region does not absorb visible light, unnecessary phtocarriers are not generated. Therefore, a TFT with excellent light resistance can be formed.
  • FIG. 14A shows one mode of a circuit diagram of the pixel
  • FIG. 14B shows one mode of a cross-sectional structure of the pixel corresponding to FIG. 14A .
  • a reference numeral 1501 denotes a switching TFT for controlling input of video signal to the pixel
  • a reference numeral 1502 denotes a liquid crystal element.
  • potential of a video signal that is input to the pixel via the switching TFT 1501 is supplied to a pixel electrode of the liquid crystal element 1502 .
  • a reference numeral 1503 denotes a capacitor element for retaining voltage between the pixel electrode of the liquid crystal element 1502 and an opposing electrode when the switching TFT 1501 is turned off.
  • gate electrodes of the switching TFT 1501 are connected to a scanning line G, and one of a source region and a drain region is connected to a signal line S, and the other is connected to a pixel electrode 1504 of the liquid crystal element 1502 .
  • One of two electrodes included in the capacitor element 1503 is connected to the pixel electrode 1504 of the liquid crystal element 1502 , and the other is supplied with a constant potential, desirably a potential that is of the same level as that of the opposing electrode.
  • a structure is that of a multi-gate structure in which the switching TFT 1501 is serially connected and a plurality of TFTs to which gate electrodes 1510 are connected share an oxide semiconductor film 1512 .
  • an off current of the switching TFT 1501 can be reduced.
  • a structure of the switching TFT 1501 is that of two TFTs being serially connected to each other, it may be a multi-gate structure in which three or more TFTs are serially connected to each other, and in which the gate electrodes are also connected.
  • the switching TFT is not required to have a multi-gate structure, and it may be a TFT of a regular single-gate structure in which one gate electrode and one channel forming region are provided
  • FIG. 15 shows a cross-sectional view of a TFT used in a driver circuit, and a cross-sectional view of a TFT used in a pixel portion.
  • a reference numeral 2301 denotes the cross-sectional view of a TFT used in a driver circuit
  • a reference numeral 2302 denotes the cross-sectional view of a TFT used in a pixel portion
  • a reference numeral 2303 denotes a cross-sectional view of a liquid crystal element.
  • the TFT 2301 of the driver circuit includes a gate electrode 2310 formed over a substrate 2300 , a gate insulating film 2311 covering the gate electrode 2310 , and an oxide semiconductor film 2312 including a crystallized region in at least a channel forming region, that overlaps with the gate electrode 2310 with the gate insulating film 2311 therebetween.
  • the TFT 2302 of the pixel portion includes a gate electrode 2320 formed over the substrate 2300 , the gate insulating film 2311 covering the gate electrode 2320 , and an oxide semiconductor film 2322 including a crystallized region in at least a channel forming region, that overlaps with the gate electrode 2320 with the gate insulating film 2311 therebetween.
  • channel protective films 2390 and 2391 formed of insulating films are formed so as to cover the channel forming regions of the oxide semiconductor films 2312 and 2322 .
  • the channel protective films 2390 and 2391 are provided to prevent the channel forming regions of the oxide semiconductor films 2312 and 2322 from getting etched during manufacturing steps of the TFT 2301 and 2302 .
  • the TFT 2301 includes first conductive films 2313 each functioning as a source electrode or a drain electrode and, second conductive films 2314 each functioning as a source electrode of a drain electrode; and the TFT 2302 includes first conductive films 2323 each functioning as a source electrode or a drain electrode and second conductive films 2324 each functioning as a source electrode of a drain electrode. Note that the first conductive films 2313 and 2323 , and the second conductive films 2314 and 2324 function as wirings layers.
  • the gate insulating layer 2311 is formed of two layers of insulating films; however the present invention is not limited to this structure.
  • the gate insulating film 2311 may be formed with a single layer of an insulating film or three or more layers of insulating films.
  • the second conductive films 2314 and 2324 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 2314 that are a pair and the second conductive films 2324 that are a pair face each other with a region in which a channel of the oxide semiconductor film 2322 is formed in between.
  • the first conductive films 2313 and 2323 are formed with titanium.
  • the first conductive films 2313 and 2323 are not required to be provided; however, electrical contact property of the second conductive films 2314 and 2324 with the oxide semiconductor films 2312 and 2322 becomes favorable.
  • the first conductive films 2313 and 2323 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor films 2312 and 2322 to the second conductive films 2314 and 2324 . As a result, reliability of a TFT can be improved.
  • the oxide semiconductor films 2312 and 2322 are known to show an n-type without performing anything thereto. Therefore, the first oxide semiconductor films in which channels are formed may have their conductivity type controlled in advance so as to be close to an i-type as much as possible, by adding an impurity imparting p-type conductivity.
  • a first passivation film 2380 and a second passivation film 2381 each formed of an insulating film are formed covering the TFTs 2301 and 2302 .
  • the first passivation film 2380 and the second passivation film 2381 can be formed by a thin film formation method such as a plasma CVD method or a sputtering method, using an insulating material such as silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, aluminum oxynitride, aluminum oxide, diamond-like carbon (DLC), nitrogen-containing carbon (CN), etc.
  • the passivation films covering the TFTs 2301 and 2302 are not limited to two layers, and a single layer or three or more layers may be provided.
  • the first passivation film 2380 and the second passivation film 2381 can be formed with silicon nitride and silicon oxide, respectively.
  • a passivation film with silicon nitride or silicon nitride oxide By forming a passivation film with silicon nitride or silicon nitride oxide, entering of impurities from outside into a semiconductor element can be prevented, and degradation of the TFTs 2301 and 2302 due to an effect of moisture or the like can be prevented.
  • the first passivation film 2380 and the second passivation film 2381 are consecutively formed in the same chamber by performing gas switching.
  • an insulating layer 2329 is formed covering the second passivation films 2381 .
  • wirings 2371 , 2372 , 2373 , and 2374 connected to the second conductive films 2314 and 2324 , respectively, are formed via contact holes.
  • the conductive film 2324 is electrically connected to a pixel electrode 2330 of the liquid crystal element 2302 via the wiring 2374 .
  • An orientation film 2331 is formed over the pixel electrode 2330 so as to be in contact there with.
  • an opposing electrode 2341 and an orientation film 2342 are stacked in this order.
  • a liquid crystal 2343 is provided between the pixel electrode 2330 and the orientation film 2331 and between the opposing electrode 2341 and the orientation film 2342 , and a portion where the pixel electrode 2330 , the liquid crystal 2343 , and the opposing electrode 2341 overlap each other corresponds to a liquid crystal element 2303 .
  • the pixel electrode may be formed to extend over the TFT.
  • ITO indium tin oxide
  • ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property
  • an aperture ratio of a pixel portion can be improved.
  • a distance (cell gap) between the pixel electrode 2330 and the opposing electrode 2341 is controlled by a spacer 2361 .
  • the spacer 2361 is formed by processing an insulating film into a desired shape, spacers prepared separately may be dispersed over the orientation film 2331 to control the cell gap.
  • a reference numeral 2362 denotes a sealant, and by the sealant 2362 , the liquid crystal 2343 is sealed between the first substrate 2300 and the second substrate 2340 .
  • a polarizing plate 2350 is provided on a surface of the first substrate 2300 that is not the surface over which the TFT 2301 and the TFT 2302 are formed. Also, on a surface of the second substrate 2340 that is not the surface over which the opposing electrode 2341 is formed, a polarizing plate 2351 is provided. Note that the number of orientation films and polarizing plates, and positions thereof in a liquid crystal display device of the present invention are not limited to those shown in a structure of FIG. 15 .
  • FIG. 16 shows a mode of an element substrate in which a pixel portion 6012 formed over a first substrate 6011 is connected to a separately formed signal line driver circuit 6013 .
  • the pixel portion 6012 and the scanning line driver circuit 6014 are each formed using a TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region.
  • the signal line driver circuit 6013 may be a transistor using a monocrystalline silicon semiconductor, a TFT using a polycrystalline semiconductor, or a transistor using SOI.
  • the pixel portion 6012 , the signal line driver circuit 6013 , and the scanning line driver circuit 6014 are each supplied with potential of a power source, various signals, and the like via an FPC 6015 .
  • the signal driver circuit and the scanning line driver circuit may both be formed over the same substrate as that of the pixel portion.
  • FIG. 17A shows a mode of an element substrate in which a pixel portion 6022 formed over a first substrate 6021 is connected to a separately formed signal line driver circuit 6023 .
  • the pixel portion 6022 and the scanning line driver circuit 6024 are each formed with a TFT using an oxide semiconductor film including a crystallized region in at least a channel forming region.
  • the signal line driver circuit 6023 is connected to the pixel portion 6022 via an FPC 6025 .
  • the pixel portion 6022 , the signal line driver circuit 6023 , and the scanning line driver circuit 6024 are each supplied with potential of a power source a variety of signals, and the like via the FPC 6025 .
  • FIG. 17B shows a mode of an element substrate where an analog switch 6033 a included in the signal driver circuit is formed over a first substrate 6031 , which is the same substrate as that over which a pixel portion 6032 and a scanning line driver circuit 6034 are formed, and forming a shift resistor 6033 b included in the signal line driver circuit over a different substrate separately and then sticking it over the substrate 6031 .
  • the pixel portion 6032 and the scanning line driver circuit 6034 are each formed using the TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region.
  • the shift resistor 6033 b included in the signal line driver circuit is connected to the pixel portion 6032 via an FPC 6035 .
  • the pixel portion 6032 , the analog switch 6033 a and shift resistor 6033 b included in the signal line drive circuit, and the scanning line driver circuit 6034 are each supplied with potential of a power source, a variety of signals, and the like via the FPC 6035 .
  • an entire driver circuit or a portion thereof can be formed over the same substrate as that of a pixel portion, using the TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region.
  • connection method of a separately formed substrate is not particularly limited, and a COG (chip on glass) method, a wire bonding method, a TAB (tape automated bonding) method or the like can be used. Further, a connection position is not limited to the position shown in FIGS. 18A and 18B , as long as electrical connection is possible. Also, a controller, a CPU, a memory, or the like may be formed separately and connected.
  • a signal line driver circuit used in the present invention is not limited to a mode including only a shift resistor and an analog switch.
  • another circuit such as a buffer, a level shifter, or a source follower may be included.
  • the shift resistor and the analog switch is not always required to be provided, and for example a different circuit such as a decoder circuit by which selection of signal line is possible may be used instead of the shift resistor, and a latch or the like may be used instead of the analog switch.
  • FIG. 18A shows a block diagram of a liquid crystal display device to which the present invention is applied.
  • the liquid crystal display device shown in FIG. 18A includes a pixel portion 801 including a plurality of pixels and provided with a liquid crystal element; a scanning line driver circuit 802 that selects each pixel; and a signal line driver circuit 803 that controls video signal input to a selected pixel.
  • the signal line driver circuit 803 includes a shift resistor 804 and an analog switch 805 .
  • a clock signal (CLK) and a start pulse signal (SP) are input to the shift resistor 804 .
  • CLK clock signal
  • SP start pulse signal
  • the analog switch 805 is provided with video signals.
  • the analog switch 805 samples the video signals according to the timing signals and distributes the video signals to a signal line of a latter stage.
  • the scanning line driver circuit 802 includes a shift resistor 806 and a buffer 807 . Also, a level shifter may be included in some cases.
  • CLK clock signal
  • SP start pulse signal
  • a selection signal is generated.
  • the generated selection signal is buffer amplified in the buffer 807 , and then supplied to a corresponding scanning line.
  • gates of transistors in pixels of one line are connected. Further, since the transistors in the pixels of one line have to be turned on at the same time, a buffer to which a large current can be fed is used for the buffer 807 .
  • the number of terminals for connecting the shift resistor 804 and the analog switch 805 corresponds to about 1 ⁇ 3 of the number of terminals for connecting the analog switch 805 and the pixel portion 801 . Consequently, by forming the analog switch 805 and the pixel portion 801 over the same substrate, terminals used for connecting separately formed substrates are not required as in a case of forming the analog switch 805 and the pixel portion over different substrates, and occurrence probability of poor connection can be suppressed, and yield can be increased.
  • FIG. 18B shows a block diagram of a liquid crystal display device to which the present invention is applied that is different from that of FIG. 18A .
  • a pixel portion 811 a signal line driver circuit 813 includes a shift resistor 814 , a latch A 815 , a latch B 816 , and a D/A converter circuit (hereinafter referred to as a DAC 817 ).
  • a scanning line driver circuit 812 is to have the same structure as that of the scanning line driver circuit 802 in FIG. 18A
  • the clock signal (CLK) and the start pulse signal (SP) are input.
  • CLK clock signal
  • SP start pulse signal
  • timing signals are generated in the shift resistor 814 to be input in sequence to the latch A 815 of a first stage.
  • video signals are written to the latch A 815 in synchronism with the timing signals and retained.
  • FIG. 18B although it is assumed that the video signals are written to the latch A 815 in sequence, the present invention is not limited to this structure.
  • a so called division drive in which a plurality of stages of the latch A 815 are divided into several groups, and video signals are input in parallel for each group. Note that the number of the groups at this time is called a division number. For example, when the latches are divided into groups in each of four stages, this is called division driving with four divisions.
  • a line period The time it takes for a video signal writing to a latch of the latch A 815 in all of the stages to complete is called a line period.
  • a line period sometimes includes the line period to which a horizontal retrace line period is added.
  • latch signals are supplied to the latch B 816 of a second stage, and video signals retained in the latch A 815 are written all at once in synchronism with the latch signals, and retained.
  • video signals written and retained in the latch B 816 are input to DAC 817 .
  • the DAC 817 converts input video signals from digital to analog, and supplies the signals to a corresponding signal line.
  • FIGS. 18A and 18B are modes of a liquid crystal display device relating to this embodiment mode, and configurations of a signal line driver circuit and a scanning line driver circuit are not limited thereto.
  • FIGS. 16 to 18B is not used just for a liquid crystal display device relating to this embodiment mode, and can be used for a light emitting device or other display devices.
  • This embodiment describes a mode of a light emitting element used in the light emitting device described in Embodiment Mode 5, with reference to FIGS. 8A to 8F .
  • FIG. 8A shows an example of forming a first pixel electrode 11 by using a conductive film having a light transmitting property and a high work function and forming a second pixel electrode 17 by using a conductive film having a low work function.
  • the first pixel electrode 11 is formed of an oxide conductive material having a light transmitting property, typically, an oxide conductive material containing a silicon oxide at a concentration of 1 to 15 atomic %.
  • a layer containing a light emitting substance 16 composed of a hole injecting or transporting layer 41 , a light emitting layer 42 , an electron transporting or injecting layer 43 is formed over the first pixel electrode 11 .
  • the second pixel electrode 17 is composed of a first electrode layer 33 containing an alkali metal or an alkali earth metal such as LiF or MgAg and a second electrode layer 34 formed of a metal material such as aluminum.
  • the pixel having such the structure can emit light from the first pixel electrode 11 side as indicated by arrow in the drawing.
  • FIG. 8B shows an example of forming a first pixel electrode 11 by using a conductive film having a high work function and forming a second pixel electrode 17 by using a conductive film having a light transmitting property and a low work function.
  • the first pixel electrode 11 is composed of a first electrode layer 35 formed of a metal such as aluminum or titanium, or the metal and a metal material containing nitrogen at a concentration of a stoichiometric composition ratio or less, and a second electrode layer 32 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %.
  • a layer containing a light emitting substance 16 composed of a hole injecting or transporting layer 41 , a light emitting layer 42 , an electron transporting or injecting layer 43 is formed over the first pixel electrode 11 .
  • the second pixel electrode 17 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound or an alloy thereof, and a fourth electrode layer 34 formed of a metal material such as aluminum.
  • FIG. 8E shows an example of emitting light from both of a first electrode and a second electrode.
  • a first pixel electrode 11 is formed by a conductive film having a light transmitting property and a high work function and a second pixel electrode 17 is formed by a conductive film having a light transmitting property and a low work function.
  • the first pixel electrode 11 is formed of an oxide conductive material including a silicon oxide at a concentration of 1 to 15 atomic % and the second electrode 17 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound of an alloy thereof, with a thickness of 100 nm or less and a fourth electrode layer 34 formed of a metal material such as aluminum with a thickness of 100 nm or less. Accordingly, light can be emitted from both of the first pixel electrode 11 and the second electrode 17 as indicated by an arrow in the drawing.
  • FIG. 8C shows an example of forming a first pixel electrode 11 by using a conductive film having a light transmitting property and a low work function and forming a second pixel electrode 17 by a conductive film having a high work function.
  • a structure of a layer containing a light emitting substance is illustrated as a stacked layer structure formed by stacking sequentially an electron transporting or injecting layer 43 , a light emitting layer 42 , and a hole injecting or transporting layer 41 .
  • the second pixel electrode 17 is composed of a second electrode layer 32 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %, and a first electrode layer 35 formed of a metal such as aluminum or titanium, or a metal and a metal material containing nitrogen at a concentration of a stoichiometric composition ratio or less.
  • the first pixel electrode 11 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or MgAg or a compound of an alloy thereof, and a fourth electrode layer 34 formed of a metal material such as aluminum.
  • FIG. 8D shows an example of forming a first pixel electrode 11 by using a conductive film having a low work function and forming a second pixel electrode 17 by using a conductive film having a light transmitting property and a high work function.
  • a structure of a layer containing a light emitting substance is illustrated as a stacked layer structure formed by stacking sequentially an electron transporting or injecting layer 43 , a light emitting layer 42 , and a hole injecting or transporting layer 41 .
  • the first pixel electrode 11 is formed to have a similar structure to that illustrated in FIG. 8A and to have a thickness that enables it to reflect light generated in the layer containing a light emitting substance.
  • the second pixel electrode 17 is formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %.
  • a hole injecting layer by a metal oxide which is an inorganic material (typically, molybdenum oxide or vanadium oxide), oxygen which is introduced when forming the second electrode layer 32 is supplied and a hole injecting property is improved, accordingly, drive voltage can be reduced in this structure.
  • a conductive film having a light transmitting property light can be emitted from one side of the second electrode 17 as indicated by an arrow.
  • FIG. 8F shows an example of emitting light from both sides, that is, a first pixel electrode and a second pixel electrode.
  • a first pixel electrode 11 is formed by a conductive film having a light transmitting property and a low work function and a second pixel electrode 17 is formed by a conductive film having a light transmitting property and a high work function.
  • the first electrode 11 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound or an alloy thereof, with a thickness of 100 nm or less and a fourth electrode layer 34 formed of a metal material such as aluminum with a thickness of 100 nm or less.
  • the second pixel electrode 17 is formed of an oxide conductive material containing a silicon oxide at a concentration of 1 to 15 atomic %.
  • the layer containing a light emitting substance 16 can be formed by a charge injection transportation material and a light emitting material including an organic compound or an inorganic compound, can include one or a plurality types of layers selected from a low molecular organic compound, an intermolecular organic compound (which does not have a subliming property but have a molecular chain length of 10 ⁇ m or less as typified by dendrimer, oligomer, or the like), and a high molecular organic compound, and can be combined with an inorganic compound having an electron injecting transporting property or a hole injecting transporting property.
  • a low molecular organic compound an intermolecular organic compound (which does not have a subliming property but have a molecular chain length of 10 ⁇ m or less as typified by dendrimer, oligomer, or the like)
  • a high molecular organic compound and can be combined with an inorganic compound having an electron injecting transporting property or a hole injecting transporting property.
  • metal complexes having a quinoline skeleton or a benzoquinoline skeleton such as tris(8-quinolinolato)aluminum (abbreviation.: Alq 3 ), tris(4-methyl-8-quinolinolato)aluminum (abbreviation.: Almq 3 ), bis(10-hydroxybenzo[h]-quinolinato)beryllium (abbreviation.: BeBq 2 ), and bis(2-methyl-8-quinolinolato)-4-phenylphenolato-aluminum (abbreviation.: BAlq) can be given.
  • Alq 3 tris(8-quinolinolato)aluminum
  • Almq 3 tris(4-methyl-8-quinolinolato)aluminum
  • BeBq 2 bis(10-hydroxybenzo[h]-quinolinato)beryllium
  • BAlq bis(2-methyl-8-quinolinolato)-4-phenylphenol
  • aromatic amine based compounds i.e., one having a benzene ring-nitrogen bond
  • aromatic amine based compounds such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (abbreviation.: ⁇ -NPD), 4,4′-bis[N-(3-methylphenyl)-N-phenylamino]biphenyl (abbreviation.: TPD), 4,4′,4′-tris(N,N-diphenylamino)triphenylamine (abbreviation.: TDATA); and 4,4′,4′′-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (abbreviation.: MTDATA) can be given.
  • aromatic amine based compounds i.e., one having a benzene ring-nitrogen bond
  • TPD 4,4′-bis[N-(3-methylpheny
  • alkali metal or alkaline earth metal such as lithium fluoride (LiF), cesium fluoride (CsF), and calcium fluoride (CaF 2 ) can be given.
  • a mixture of a highly electron transporting material such as Alq 3 and alkaline earth metal such as magnesium (Mg) may be used.
  • a metal oxide such as molybdenum oxide (MoO x ), vanadium oxide (VO x ), ruthenium oxide (RuO x ), tungsten oxide (WO x ), or manganese oxide (MnO x ) can be given.
  • MoO x molybdenum oxide
  • VO x vanadium oxide
  • RuO x ruthenium oxide
  • WO x tungsten oxide
  • MnO x manganese oxide
  • phthalocyanine based compounds such as phthalocyanine (H 2 Pc) and copper phthalocyanine (CuPc) can be given.
  • Light emitting layers 42 having different light emission wavelength bands may be each formed in pixels so as to perform color display.
  • light emitting layers corresponding to respective luminescent colors of R (red), G (green), and B (blue) are formed.
  • color purity can be improved and specular reflection (glare) of a pixel portion can be prevented by providing a filter (coloring layer) that transmits light of a certain light emission wavelength band on a light emission side of the pixels.
  • a filter coloring layer
  • a circular polarizing plate or the like which has been conventionally thought to be required, can be omitted, thereby reducing loss of light emitted from the light emitting layers.
  • a change in hue which is caused in the case where a pixel portion (a display screen) is seen obliquely, can be reduced.
  • light emitting materials there are various kinds of light emitting materials that can be used for forming the light emitting layers 42 .
  • low molecular organic light emitting materials the following substances can be used: 4-dicyanomethylene-2-methyl-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (abbreviation: DCJT); 2-tert-butyl-4-dicyanomethylene-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (abbreviation: DCJTB); periflanthene; 2,5-dicyano-1,4-bis[2-(10-methoxy-1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]benzene, N,N′-dimethylquinacridone (abbreviation: DMQd); coumarin 6; coumarin 545T; tri
  • a high molecular organic light emitting material has higher physical strength than that of a low molecular organic light emitting material, and so a light emitting element formed of a high molecular organic material has high durability. Since a high molecular organic light emitting material can be formed into a film by coating manufacturing an element is relatively easy.
  • Alight emitting element structure using the high molecular organic light emitting material is basically the same as that formed by a low molecular organic light emitting material formed by stacking sequentially a cathode, a layer containing a light emitting substance, and an anode.
  • a stacked layer structure which is formed in the case of using a low molecular organic light emitting material is difficult to be formed as a stacked layer structure composed of a layer containing a light emitting substance formed of a high molecular organic light emitting material.
  • the layer containing a light emitting substance is formed to have two stacked layers. Specifically, a structure is composed sequentially of a substrate, a layer containing a light emitting substance, a hole transporting layer, and an anode.
  • emission color is determined by a material for forming the light emitting layer
  • a desired light emitting element exhibiting desired light emission can be formed by selecting the material.
  • a high molecular light emitting material which can be used for forming the light emitting layer polyparaphenylene vinylene based, polyparaphenylene based, polythiophene based, and polyfluorene based materials can be given.
  • poly(paraphenylenevinylene) a derivative of poly(paraphenylenevinylene) (PPV): poly(2,5-dialkoxy-1,4-phenylenevinylene) (RO-PPV); poly(2-(2′-ethyl-hexoxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV); poly(2-(dialkoxyphenyl)-1,4-phenylenevinylene) (ROPh-PPV); or the like can be given.
  • PPV poly(2,5-dialkoxy-1,4-phenylenevinylene)
  • RO-PPV poly(2-(2′-ethyl-hexoxy)-5-methoxy-1,4-phenylenevinylene)
  • ROPh-PPV poly(2-(dialkoxyphenyl)-1,4-phenylenevinylene)
  • polyparaphenylene based material a derivative of polyparaphenylene (PPP): poly(2,5-dialkoxy-1,4-phenylene) (RO-PPP); poly(2,5-dihexoxy-1,4-phenylene); or the like can be given.
  • PPP polyparaphenylene
  • polythiophene based material a derivative of polythiophene (PT): poly(3-alkylthiophene) (PAT); poly(3-hexylthiophene) (PHT); poly(3-cyclohexylthiophene) (PCHT); poly(3-cyclohexyl-4-methylthiophene) (PCHMT); poly(3,4-dicyclohexylthiophene) (PDCHT); poly[3-(4-octylphenyl)-thiophene] (POPT); poly[3-(4-octylphenyl)-2,2bithiophene) (PTOPT); or the like can be given.
  • PAT poly(3-alkylthiophene)
  • PHT poly(3-hexylthiophene)
  • PCHT poly(3-cyclohexyl-4-methylthiophene)
  • PCHMT poly(3,4-dicyclohexyl
  • PF polyfluorene based material
  • PDAF poly(9,9-dialkylfluorene)
  • PDOF poly(9,9-dioctylfluorene)
  • a hole injecting property of the anode can be improved.
  • the one which is dissolved with an acceptor material into water is applied by a spin coating method or the like. Since the high molecular organic light emitting material having the hole transporting property is insoluble in an organic solvent, the foregoing material can be stacked over the above mentioned light emitting material having a light emitting property.
  • a mixture of PEDOT and camphor sulfonic acid (CSA) as an acceptor material; a mixture of polyaniline (PANI) and polystyrenesulfonic acid (PSS) as an acceptor material; or the like can be given.
  • the light emitting layers 42 can be formed to have a structure exhibiting a single color emission or white emission.
  • color display can be realized by providing a filter (coloring layer) transmitting light at a specified wavelength at a light emission side of a pixel.
  • Alq 3 , Alq 3 doped partly with Nile red which is a red emission coloring matter, Alq 3 , p-EtTAZ, and TPD (aromatic diamine) are stacked sequentially by a vapor deposition method.
  • the foregoing material is preferably coated and baked by vacuum heating.
  • an aqueous solution of poly(ethylene dioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS) which functions as a hole injecting layer, may be applied over an entire surface of a substrate and baked.
  • PVK polyvinyl carbazole
  • a luminescence center pigment such as 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM1), Nile red, or coumarin 6
  • TPB 1,1,4,4-tetraphenyl-1,3-butadiene
  • DCM1 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran
  • Nile red or coumarin 6
  • the light emitting layer can be formed by a single layer.
  • 1,3,4-oxadiazole derivatives (PBD) having an electron transporting property can be dispersed to polyvinylcarbazole (PVK) having a hole transporting property.
  • PVK polyvinylcarbazole
  • white emission can be obtained by dispersing PBD of 30 wt % as an electron transporting agent and dispersing an appropriately amount of four kinds coloring matters (TPB, coumarin 6, DCM1, and Nile red).
  • TPB trifluorous carbonate
  • TPB coumarin 6, DCM1
  • Nile red coloring matters
  • Besides the light emitting element exhibiting white emission, light emitting elements exhibiting red emission, green emission, or blue emission can be manufactured by appropriately selecting a material of the light emitting layer.
  • a hole injecting property of the anode can be improved.
  • a high molecular organic material having a hole transporting property dissolved in water together with an acceptor material is coated by a spin coating method. Since the high molecular organic material, having a hole transporting property is insoluble in an organic solvent, the foregoing material can be stacked over the above mentioned light emitting material having a light emitting property.
  • a mixture of PEDOT and camphor sulfonic acid (CSA) as an acceptor material; a mixture of polyaniline (PANI) and polystyrenesulfonic acid (PSS) as an acceptor material; or the like can be given.
  • a triplet excited material including metal complexes can be used besides a singlet excited light emitting material.
  • a red luminescent pixel which has a relatively short half-brightness life is formed by a triplet excited light emitting material among the red luminescent pixel, a green luminescent pixel, and blue luminescent pixel; and the other pixels are formed by a singlet excited light emitting material. Since a triplet excited light emitting material has good emission efficiency, there is an advantage of obtaining luminescence which can be obtained in the case of using a singlet excited light emitting material at low power consumption.
  • a light emitting element can be operated at a small amount of current in the case of applying a triplet excited light emitting material for a red emission pixel.
  • a red luminescent pixel and a green luminescent pixel are formed by a triplet excited light emitting material, and a blue luminescent pixel can be formed by a singlet excited light emitting material.
  • a green luminescent pixel which is well visible for human by a triplet excited light emitting material, power consumption can be further reduced.
  • a material using metal complexes as a dopant can be nominated.
  • the following are known as the foregoing metal complexes: metal complexes having platinum which is the third transition series element as a central metal, metal complexes having iridium as a central metal, or the like. These compounds are not limited as a triplet excited light emitting material.
  • a compound having the foregoing structure and a compound having Group 8 to Group 10 elements as a central metal can be used.
  • a light emitting element can be formed by appropriately stacking functional each layer such as a hole injecting transporting layer, a hole transporting layer, an electron injecting transporting layer, an electron transporting layer, a light emitting layer, an electron blocking layer, or a hole blocking layer. Further, a mixed layer or mixed junction can be formed by combining each of the foregoing layers. A layer structure of the light emitting layer is variable.
  • a pixel circuit of a display panel of a light emitting device relating to the present invention and an operational configuration thereof is described with reference to FIGS. 9A to 9F .
  • the operational configuration of the display panel in a display device in which video signals are digital there is a configuration in which video signals to be input to a pixel is regulated by voltage, and a configuration in which they are regulated by current.
  • As the configuration in which video signals are regulated by voltage there is one where voltage applied to a light emitting element is constant (CVCV), and one where current applied to the light emitting element is constant (CVCC).
  • CCCV voltage applied to the light emitting element
  • CCCC current applied to the light emitting element
  • a signal line 3710 and a power source line 3711 are arranged in a column direction and a scanning line 3714 is arranged in a row direction. Also, a switching TFT 3701 , a driving TFT 3703 , a capacitor element 3702 , and a light emitting element 3705 are included.
  • the switching TFT 3701 and the driving TFT 3703 are operated in a linear region when they are turned on. Also, the driving TFT 3703 has a role of controlling whether voltage is applied to the light emitting element 3705 . It is favorable in terms of a manufacturing step if both TFTs have the same conductivity type.
  • the switching TFT 3701 is formed as an n-channel type TFT
  • the driving TFT 3703 is formed as a p-channel type TFT.
  • a depletion type TFT may be used in addition to an enhancement type TFT.
  • a ratio (W/L) of a channel width W and a channel length L of the driving TFT 3703 is preferably 1 to 1000, even though it depends on a mobility of the TFT. As W/L gets larger, an electrical property of the TFT is improved.
  • the switching TFT 3701 controls input of video signals to the pixel, and when the switching TFT 3701 is turned on, video signals are input inside the pixel. Then, voltage of the video signals is retained in the capacitor element 3702 .
  • FIG. 9A in a case where the power source line 3711 is Vss and an opposing electrode of the light emitting element 3705 is Vdd, as in FIGS. 8C and 8D , the opposing electrode of the light emitting element is an anode, and an electrode connected to the driving TFT 3703 is a cathode. In this case, luminance irregularity due to characteristic variation of the driving TFT 3703 can be suppressed.
  • FIG. 9A in a case where the power source line 3711 is Vdd and the opposing electrode of the light emitting element 3705 is Vss, as in FIGS. 8A and 8B , the opposing electrode of the light emitting element is a cathode, and the electrode connected to the driving TFT 3703 is an anode.
  • the opposing electrode of the light emitting element is a cathode
  • the electrode connected to the driving TFT 3703 is an anode.
  • the pixel shown in FIG. 9B has the same pixel configuration as that shown in FIG. 9A except that in FIG. 9B , a TFT 3706 and a scanning line 3715 are added.
  • Turning on or off of the TFT 3706 is controlled by the newly placed scanning line 3715 .
  • the TFT 3706 When the TFT 3706 is turned on, a charge retained in the capacitor element 3702 is discharged, and the driving TFT 3703 is turned off.
  • the TFT 3706 can be called an erasing TFT. Consequently, in the configuration in FIG. 9B , a duty ratio of light emission can be improved since a lighting period can be started at the same time as or right after a start of a writing period, without waiting for signals to be written to all pixels.
  • a current value of the light emitting element 3705 can be determined by the driving TFT 3703 which operates in the linear region.
  • FIG. 9C has a pixel configuration shown in FIG. 9A with a power source line 3712 and a current control TFT 3704 provided in addition.
  • the pixel shown in FIG. 9E has the same configuration as the pixel shown in FIG. 9C , except that a gate electrode of the driving TFT 3703 is connected to the power supply line 3712 arranged in a row direction.
  • both pixels shown in FIGS. 9 c and 9 E show the same equivalent circuit schematic.
  • the power supply line 3712 arranged in a column direction ( FIG. 9C ) is formed with a conductive film formed in a different layer from that of the power supply line 3712 arranged in a row direction ( FIG. 9E ).
  • wirings to which the gate electrode of the driving TFT 3703 are connected is given focus, and in order to show that layers for manufacturing the wirings are different, they are separately described in FIGS. 9C and 9E .
  • the switching TFT 3701 operates in the linear region
  • the driving TFT 3703 operates in a saturation region.
  • the driving TFT 3703 has a role of controlling a current value fed to the light emitting element 3705
  • the current control TFT 3704 operates in the saturation region has a role of controlling supply of current to the light emitting element 3705 .
  • the pixel shown in each of FIGS. 9D and 9F have the same pixel configuration as the pixel shown in each of FIGS. 9C and 9E , respectively, except that they are each provided with an erasing TFT 3706 and the scanning line 3715 in addition.
  • Vdd and Vss can be appropriately changed depending on a direction in which current of a light emitting element flows.
  • the current control TFT 3704 since the current control TFT 3704 operates in the linear region, a small shift in Vgs of the current control TFT 3704 does not have an effect on the current value of the light emitting element 3705 .
  • the current value of the light emitting element 3705 can be determined by the driving TFT 3703 which operated in the saturation region.
  • the present invention is not limited thereto, and in a case where a capacity for retaining video signals can be covered by a gate capacitance, the capacitor element 3702 is not required to be provided.
  • a driving method of a screen display is not particularly limited, and for example, a dot sequential driving method, a line sequential driving method, an area sequential driving method, or the like may be used.
  • the line sequential driving method is used, and a time division gray scale driving method or an area dray scale driving method may be appropriately used.
  • image signals input to a source line of the display device may be analog signals, or digital signals, and a driver circuit and the like may be designed appropriately according to the image signals.
  • FIGS. 10A to 10C mounting of a driver circuit relating to the present invention is described with reference to FIGS. 10A to 10C .
  • a signal line driver circuit 1402 and scanning line driver circuits 1403 a and 1403 b are mounted on a periphery of a pixel portion 1401 .
  • an IC chip 1405 is mounted on a substrate 1400 by a known mounting method such as a method using an anisotropic conductive adhesive or an anisotropic conductive film, a COG method, a wire bonding, a reflow treatment using a solder bump, or the like.
  • the IC chip 1405 is mounted by a COG method, and connected to an external circuit through an FPC (flexible printed circuit) 1406 .
  • the pixel portion 1401 , the scanning line driver circuits 1403 a and 1403 b , and the like may be integrated over the substrate while the signal line driver circuit 1402 and the like may be separately mounted as IC chips.
  • the IC chip 1405 as the signal line driver circuit 1402 is mounted on the substrate 1400 by a COG method.
  • the IC chip 1405 is connected to an external circuit through the FPC 1406 .
  • the signal line driver circuit 1402 and the like are mounted by a TAB method instead of a COG method.
  • the IC chip is connected to an external circuit through the FPC 1406 .
  • the signal line driver circuit is mounted by a TAB method in FIG. 10C
  • the scanning line driver circuit may be mounted by a TAB method.
  • the pixel portion can occupy a large area in the substrate, leading to a narrower frame.
  • an IC (hereinafter referred to as a driver IC) formed over a glass substrate may be provided. Since an IC chip is formed over a circular silicon wafer, the shape of a mother substrate is limited. Meanwhile, a driver IC is formed over a glass substrate whose shape is not limited, which results in increased productivity. Accordingly, the shape and size of a driver IC can be set freely. For example, when forming a driver IC with a long side of 15 to 80 mm, a smaller number of driver ICs are required as compared to the case of mounting IC chips. As a result, the number of connection terminals can be reduced and productive yield can be increased.
  • a driver IC can be formed using a crystalline semiconductor formed over a substrate, and the crystalline semiconductor may be formed by continuous wave laser light irradiation.
  • a semiconductor film obtained by continuous wave laser light irradiation has few crystal defects and large crystal grains. Accordingly, a transistor having such a semiconductor film is improved in mobility and response speed, capable of high speed driving, and suitable for a driver IC.
  • a driver IC may be formed using an oxide semiconductor film of the present invention in which crystallinity of at least a channel forming region is improved.
  • a display module relating to the present invention is described.
  • a liquid crystal module is described with reference to FIG. 11 .
  • a substrate 1601 and an opposing substrate 1602 are stuck together by a sealant 1600 , and a pixel portion 1603 and a liquid crystal layer 1604 are provided therebetween to form a display region.
  • a coloring layer 1605 is required in a case of performing color display, and in a case of an RGB method, a coloring layer corresponding to each of red, green and blue are provided corresponding to each pixel.
  • polarizing plates 1606 and 1607 are provided, respectively.
  • a protective film 1616 is formed, and alleviates impact from the exterior.
  • a wiring substrate 1610 is connected to a connection terminal 1608 provided over the substrate 1601 via an FPC 1609 .
  • External circuits 1612 such as a pixel driver circuit (an IC chip, a driver IC, or the like), a control circuit, a power source circuit or the like is incorporated to the wiring substrate 1610 .
  • a cold cathode tube 1613 , a reflecting plate 1614 , and an optical film 1615 are a backlight unit, and these become a light source to emit light to a liquid crystal display panel.
  • a liquid crystal panel, the light source, the wiring substrate, the FPC, and the like are retained and protected in a bezel 1617 .
  • a television device also simply called a TV, or a television receiving device
  • a digital camera also simply called a digital video camera
  • a mobile phone device also simply called a cellular phone device or a cellular phone
  • a mobile information terminal such as a PDA, a mobile game machine, a monitor for a computer, a computer, an audio reproducing device such as a car audio component, an image reproducing device such as a home-use game machine provided with a recording medium, or the like
  • an audio reproducing device such as a car audio component
  • an image reproducing device such as a home-use game machine provided with a recording medium, or the like
  • the mobile information terminal shown in FIG. 12A includes a main body 9201 , a display portion 9202 , and the like.
  • the mobile information terminal can be provided inexpensively.
  • the digital video camera shown in FIG. 12B includes a display portion 9701 , a display portion 9702 , and the like.
  • the digital video camera can be provided inexpensively.
  • the mobile terminal shown in FIG. 12C includes a main body 9101 , a display portion 9102 , and the like. Embodiment Modes 1 to 5, and embodiments 1 to 4 can be applied to the display portion 9102 . By using the display device that is one feature of the present invention, the mobile terminal can be provided inexpensively.
  • the mobile type television device shown in FIG. 12D includes a main body 9301 , a display portion 9302 , and the like.
  • the display device that is one feature of the present invention, the mobile type television device can be provided inexpensively.
  • the present invention can be widely applied to a small scale television device such as a television device mounted on a mobile terminal such as a cellular phone, a medium scale television device that can be carried around, and a large scale television device (for example, 40-inch or larger).
  • the mobile type computer shown in FIG. 12E includes a main body 9401 , a display portion 9402 , and the like.
  • the display device that is one feature of the present invention, the mobile type computer can be provided inexpensively.
  • the television device shown in FIG. 12F includes a main body 9501 , a display portion 9502 , and the like.
  • the television device can be provided inexpensively.
  • FIGS. 19A and 19B a structure of an LRTA device used in the present invention is described with reference to FIGS. 19A and 19B .
  • a gate electrode 1922 , a gate insulating films 1923 a and 1923 b , and an oxide semiconductor film 1902 are formed over a glass substrate 1901 .
  • an infrared light lamp 1903 and an ultraviolet light lamp 1904 are provided, respectively.
  • a first infrared light auxiliary lamp 1905 , and a second infrared light auxiliary lamp 1906 are provided in parallel with the ultraviolet light lamp 1904 . Note that the first infrared light auxiliary lamp 1905 and the second infrared light auxiliary lamp 1906 are not required to be provided.
  • this embodiment mode has a structure in which the first infrared light auxiliary lamp 1905 and the second infrared light auxiliary lamp 1906 are placed in front and in back (with respect to a moving direction of the substrate) of the ultraviolet light lamp 1904 , respectively.
  • the structure may be that both are placed in the front or in the back.
  • each lamp moves in a direction of an arrow in FIG. 19A , and scans a linear light.
  • a region 1908 shown by a dotted line in the oxide semiconductor film 1902 that overlaps with the gate electrode 1922 with the gate insulating films 1923 a and 1923 b therebetween is irradiated with infrared light from the first infrared light auxiliary lamp 1905 to be heated.
  • each lamp is moved when lamp irradiation is performed on the substrate; however, the glass substrate may be moved, or both the lamp and the substrate may be moved.
  • the upper surface side of the substrate is irradiated with ultraviolet light from the ultraviolet light lamp 1904 , as well as the lower surface side of the substrate is irradiated with infrared light from the infrared light lamp 1903 , and the region 1908 of the oxide semiconductor film 1902 that overlaps with the gate electrode 1922 is heated.
  • crystallization of the oxide semiconductor film 1902 is performed with this region 1908 having priority.
  • the region 1908 heated by irradiation with the ultraviolet light lamp 1904 and the infrared light lamp 1903 is heated with infrared light from the second infrared light auxiliary lamp 1906 that is placed in back of the ultraviolet light lamp 1904 .
  • Irradiation with infrared light from the second infrared light auxiliary lamp 1906 is provided to further heat the region 1908 in which crystallization is promoted.
  • the region 1908 of the oxide semiconductor film 1902 (the region that becomes a crystalline oxide semiconductor film by a crystallization step) that overlaps with the gate electrode 1922 appears to move to the front along with a movement of the substrate.
  • FIG. 19B shows a graph showing a relationship between time (Time) and temperature (Temp.) of the region 1908 of the oxide semiconductor film 1902 .
  • the region 1908 comes to a preheating state, then continues on to a main heating state, and a post heating state, with passing of time.
  • a temperature is raised to a certain degree so that a temperature gradient with the subsequent main heating state is alleviated. This is so that accumulation of warping energy and the like in the oxide semiconductor film due to being heated suddenly in the main heating state, is prevented.
  • output energy of the first infrared light auxiliary lamp 1905 is set to be smaller than output energy of the infrared light lamp 1903 .
  • a practitioner may decide how adjustment is to be made to form the appropriate temperature gradient.
  • infrared light irradiation is performed towards a lower surface side of the substrate, and the oxide semiconductor film 1902 is brought to the main heating state in which a film surface temperature is raised to 250° C. to 570° C.
  • crystallinity of the region 1908 in the oxide semiconductor film 1902 becomes favorable. Note that ultraviolet light emitted at the same time contributes to electron excitation; therefore, it does not contribute to change in terms of heat.
  • the region 1908 with improved crystallinity obtained in the main heating state is heated by the second infrared auxiliary lamp 1906 placed in back of the ultraviolet light lamp 1904 .
  • This post heating state has a role of preventing a completion of crystallization in a state where thermal equilibrium is deteriorated by sudden cooling in the main heating state.
  • This is a devise for obtaining the most stable bond state by providing allowance in a time period required for crystallization.
  • output energy of the second infrared light auxiliary lamp 1906 is also set to be smaller than that of infrared light lamp 1903 placed under a substrate surface, and adjusted so that a temperature gradient is formed in which the temperature is gradually lowered.
  • shrinking of a substrate can be suppressed since a portion of an oxide semiconductor film that overlaps with a gate electrode is heated. Also, by performing crystallization by moving each lamp or substrate, throughput can be increased. Also, occurrence of a crystal defect such as stress warping, a dangling bond, or the like that can occur due to sudden heating of an oxide semiconductor film or sudden cooling of a crystalline oxide semiconductor film can be suppressed, and the oxide semiconductor film including the region 1908 with excellent crystallinity can be obtained.
  • heating of the substrate may be suppressed.
  • the electrophoresis display device shown in FIG. 20 includes a main body 2010 , a pixel portion 2011 displaying an image, a driver IC 2012 , a receiving device 2013 , a film battery 2014 , and the like.
  • Each of the driver IC 2012 , the receiving device 2013 , and the like may be mounted with a semiconductor part.
  • the semiconductor device of the present invention can be used for the pixel portion 2011 and the driver IC 2012 .
  • the pixel portion 2011 has a structure where a display layer in which microcapsules, Gyricon beads, and the like are arranged and a driver layer controlling the display layer are stacked. The display layer and the driver layer are interposed between two plastic films.
  • Such an electrophoresis display device is also called an electronic paper, and it is extremely light weight, and since it has a flexible property, it can be rolled up in a tubular form; consequently, it is extremely advantageous in carrying around. Therefore, a display medium of a large screen can be freely carried around. Also, since the semiconductor of the present invention is used for the pixel portion 2011 and the like, an inexpensive display device can be provided.
  • the electrophoresis display device of this embodiment is a device in which a plurality of microcapsules each including first particles having a positive charge and second particles having a negative charge are dispersed in a solvent or a solute, and an electrical field is applied to the microcapsules so that the particles in the microcapsules move in opposite directions of each other, and only a color of the particles gathered on one side is displayed.
  • the first particles or the second particles includes a colorant, and does not move in a case where there is not electric field.
  • a color of the first particles is different from a color of the second particles (the particles may also be colorless). That which microcapsules are dispersed in a solvent is called an electronic ink, and this electronic ink can be printed on a surface such as glass, plastic, fabric, paper, and the like.
  • ITO indium tin oxide
  • ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property with respect to visible light for a source electrode, a drain electrode, and the like.
  • the semiconductor device of the present invention can be used as a means for displaying mainly still images for a navigation system, an audio reproducing device (such as a car audio component, or an audio component), a personal computer, a game machine, a mobile information terminal (such as a mobile computer, a cellular phone, a mobile game machine, or an electronic book), and in addition, the semiconductor device can be used for household appliances such as a refrigerator, a washing machine, a rice cooker, a fixed telephone, a vacuum cleaner, and a clinical thermometer, as well as for a hanging poster in a train, and a large-sized information display such as an arrival and departure guide board in a railroad station and an airport.
  • an audio reproducing device such as a car audio component, or an audio component
  • a personal computer such as a personal computer, a game machine, a mobile information terminal (such as a mobile computer, a cellular phone, a mobile game machine, or an electronic book)
  • the semiconductor device can be used for household appliances such as a refrigerator,
  • the digital audio player shown in FIG. 21 includes a main body 2110 , a display portion 2111 , a memory portion 2112 , an operation portion 2113 , a pair of earphones 2114 , and the like. Note that instead of the pair of earphones 2114 , a pair of headphones, or a wireless pair of earphones can be used.
  • the display portion 2111 liquid crystal, organic EL, or the like can be used.
  • the memory portion 2112 a flash memory with a recording capacity of 200 megabytes (MB) to 200 gigabytes (GB) is used, and by operating the operation portion 2113 , an image or a sound (music) can be recorded and reproduced.
  • a channel forming region of an oxide semiconductor film of a TFT included in a semiconductor device of the present invention includes at least a crystallized region, by providing the semiconductor device of the present invention to the display portion 2111 , an inexpensive digital audio player with good performance can be provided. Further, since the channel forming region of the oxide semiconductor film is transparent and does not absorb visible light, unnecessary light carriers are not generated. Therefore, since characteristic degradation of the channel forming region due to light irradiation does not occur, a highly reliable digital audio player can be provided.

Abstract

An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device and a manufacturing method thereof and particularly relates to a semiconductor device using an oxide semiconductor. The present invention also relates to an electronic appliance equipped with the semiconductor device.
  • 2. Description of the Related Art
  • Flat panel displays (FPD), typified by liquid crystal displays (LCD) and EL displays, have attracted attention as the display device replacing conventional CRTs. The development of large screen liquid crystal television mounted with an active matrix-driven large scale liquid crystal panel is particularly an important challenge which liquid crystal panel makers should focus on. In addition, large screen EL television is also being developed.
  • In the conventional liquid crystal device or electroluminescence display device (hereinafter referred to as a light emitting display device or an EL display device), a thin film transistor (hereinafter referred to as TFT) is used, which uses crystalline silicon or amorphous silicon as a semiconductor element driving each pixel.
  • A TFT using a crystalline silicon film has a higher mobility by two digits or more compared to a TFT using an amorphous silicon film, and has potential for high speed operation when it is used for a scanning line driver circuit for selecting a pixel of a light emitting display device, a signal line driver circuit for sending video signals to a selected pixel, or the like. However, using crystalline silicon for a semiconductor film complicates manufacturing steps because of crystallization of the semiconductor film compared to using amorphous silicon for the semiconductor film; therefore, there are drawbacks of yield decrease by that much and increase in cost. Further, a heating temperature for the crystallization is 550° C. or higher, and it is difficult to use a substrate made of a resin with low melting point, a plastic substrate, or the like.
  • On the other hand, the TFT using amorphous silicon for a semiconductor film can be manufactured at low cost, since it is not heated at a high temperature and a resin substrate or a plastic substrate can be used. However, a mobility of only around 0.2 to 1.0 cm2/V·s at most can be obtained with a TFT of which a channel forming region is formed with a semiconductor film formed of amorphous silicon, and it also has high power consumption.
  • A plasma CVD method is commonly used when an amorphous silicon film is formed over a substrate. Film formation by a plasma CVD method requires heating under high vacuum, and damage to a plastic substrate or an organic resin film over a substrate is a concern. In addition to the concern in forming the amorphous silicon film by a plasma CVD method, there is also a concern in forming the film by a sputtering method which is that a thin insulating film might be formed over a surface of an amorphous silicon film when the amorphous silicon film is exposed to atmospheric air.
  • As a material to replace a semiconductor made of such silicon, forming a TFT using an oxide semiconductor such as zinc oxide for a channel forming region has been reported in recent years (for example, refer to Patent Document 1: Japanese Patent Laid-Open No. 2000-150900, and Non-Patent document 1: Elvira M. C. Fortunato, et al. Applied Physics Letters, Vol. 85, No. 13, P 2541 (2004)). Since the oxide semiconductor has mobility equal to or higher than that of a TFT formed with a semiconductor including amorphous silicon, further characteristic improvement is demanded.
  • SUMMARY OF THE INVENTION
  • In view of the foregoing problems, an object of the present invention is to provide a semiconductor device including a semiconductor element with improved characteristics and a manufacturing method thereof.
  • On another front, size increase in substrate has advanced for manufacturing a large-area device by a cheaper process, as in liquid crystal television. However, with the size increase in substrate, there is a problem of being easily effected by bending and warping. Also, when a substrate is heated to a high temperature during a heat treatment step, a size of the substrate becomes distorted due to warping and shrinking, and there is a problem of a decrease in precision of alignment in a photolithography step.
  • Consequently, an object of the present invention is to provide a technique that makes it possible to manufacture with good yield a semiconductor device over a large substrate, having for example a side longer than 1 meter, in a crystallization step of a semiconductor element used in a semiconductor device.
  • As mentioned above, an object of the present invention is to provide a semiconductor device including a semiconductor element with characteristics that are further improved, which can be manufactured at lower cost and more favorable productivity than before.
  • In the present invention, a compound semiconductor, more preferably an oxide semiconductor is used as a semiconductor. As the oxide semiconductor, for example, zinc oxide (ZnO), InGaO3(ZnO)5, magnesium zinc oxide (MgxZn1-xO), cadmium zinc oxide (CdxZn1-xO), cadmium oxide (CdO), an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO), or the like is used. Also, the gist of the present invention is that by heating a gate electrode that is near the compound semiconductor by lamp rapid thermal annealing (LRTA; also simply called lamp heating), crystallization of the compound semiconductor is selectively promoted, and a TFT using a compound semiconductor having the region in which crystallization is promoted at least in a channel region can be manufactured.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film. The oxide semiconductor film includes a first oxide semiconductor region and a second oxide semiconductor region, and the first oxide semiconductor region that is formed in a position which overlaps with the gate electrode has higher crystallinity than the second semiconductor region. Note that “crystallinity” expresses a degree of regularity of atomic arrangement inside of crystal, and when manufacturing a TFT using an oxide semiconductor film with favorable crystallinity (also expressed as having high crystallinity or with improved crystallinity), an electrical characteristic thereof is favorable.
  • One feature of the present invention is to have a gate electrode and an oxide semiconductor film over a substrate. In a region of the oxide semiconductor film which overlaps with the gate electrode via an insulating film, a portion of the region is crystallized.
  • One feature of the present invention is to have a gate electrode, an oxide semiconductor film, and a conductive film over a substrate. The conductive film is provided to be in contact with the oxide semiconductor film, and in a region of the oxide semiconductor film which overlaps with the gate electrode via an insulating film, a portion of the region is crystallized.
  • One feature of the present invention is to have a gate electrode over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film. The oxide semiconductor film is crystallized in at least a region which overlaps with the gate electrode. Note that “crystallization” refers to generation of crystal nuclei from an amorphous state, or growth of crystal grains from a state in which crystal nuclei have been generated.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film. The oxide semiconductor film is crystallized in at least a region which overlaps with the gate electrode.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film. The gate electrode has lower reflectivity with respect to a light source used for crystallization than the conductive film. Note that reflectivity comparison is used when the conductive film is a metal film or the like having a light shielding property.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film. The gate electrode has higher heat absorption rate than the conductive film.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed over the gate electrode, and an oxide semiconductor film formed over the insulating film, and by performing LRTA on the gate electrode, a portion of the oxide semiconductor film that overlaps with the gate electrode is crystallized.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, and an oxide semiconductor film formed over the insulating film. By performing LRTA on the gate electrode, a first oxide semiconductor region and a second oxide semiconductor region are formed inside of the oxide semiconductor film, and the first oxide semiconductor region that is formed in a position which overlaps with the gate electrode has higher crystallinity than the second oxide semiconductor region.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed over the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film. By performing LRTA on the gate electrode, a portion of the oxide semiconductor film is selectively crystallized.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, an oxide semiconductor film formed over the insulating film, and a conductive film formed over the oxide semiconductor film. By performing LRTA on the gate electrode, a portion of the oxide semiconductor film is selectively crystallized.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, a conductive film formed over the insulating film, and an oxide semiconductor film formed over the insulating film and the conductive film. By performing LRTA on the gate electrode, a first oxide semiconductor region and a second oxide semiconductor region are formed inside of the oxide semiconductor film. At this time, the first oxide semiconductor region that is formed in a position which overlaps with the gate electrode has higher crystallinity than the second oxide semiconductor region.
  • One feature of the present invention is to have a gate electrode formed over a substrate, an insulating film formed covering the gate electrode, an oxide semiconductor film formed over the insulating film, and a conductive film formed over the oxide semiconductor film. By lamp heating the gate electrode, a first oxide semiconductor region and a second oxide semiconductor region are formed inside of the oxide semiconductor film. At this time, the first oxide conductive region that is formed in a position which overlaps with the gate electrode has higher crystallinity than the second oxide semiconductor region.
  • Note that the foregoing conductive film is formed with one element or a plurality of elements selected from Al, Ti, Cu, Au, Ag, Mo, Ni, Ta, Zr, and Co.
  • Note that it is favorable that the foregoing oxide semiconductor film includes at least zinc oxide (ZnO). For example, InGaO3(ZnO)5, MgxZn1-xO, or CdxZn1-xO is given.
  • Note that the foregoing substrate is any one selected from an organic resin substrate, an inorganic resin substrate, a plastic substrate, and a glass substrate.
  • Note that the foregoing oxide semiconductor film is formed by a sputtering method.
  • Note that nitrogen may be added to the foregoing oxide semiconductor film. When adding nitrogen, nitrogen works as an acceptor impurity when the oxide semiconductor film shows an n-type semiconductor property. Consequently, a threshold voltage of a transistor manufactured using an oxide semiconductor film to which nitrogen is added, can be controlled.
  • One feature of the present invention is to use one of W, TaN, and Cr as a gate electrode, or an alloy including any one thereof
  • One feature of the present invention is to perform crystallization of an oxide semiconductor film by irradiation with lamp light of a halogen lamp.
  • One feature of the present invention is to use light in a wavelength region of 800 nm to 2400 nm as lamp light. Also, wavelength in the visible light region or the infrared light region is used.
  • One feature of the present invention is a liquid crystal television or an EL television including the foregoing semiconductor device.
  • Also, in the present invention, a heating treatment may be performed by laser light irradiation instead of LRTA. For example, laser light irradiation may be performed using an infrared light laser, a visible light laser, an ultraviolet laser, or the like to selectively improve crystallinity of an oxide semiconductor film. Alternatively, laser light irradiation may be performed at the same time as performing lamp heating to selectively improve crystallinity of the oxide semiconductor film. When laser irradiation is used, a continuous wave laser beam (CW laser beam) or a pulsed laser beam (pulse laser beam) can be used. A laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO4, forsterite (Mg2SiO4), YAlO3, or GdVO4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y2O3, YVO4, YAlO3, or GdVO4, doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser. By emitting a laser beam from the second harmonic to the fourth harmonic of the fundamental harmonic of such a laser beam, crystallinity can be made to be favorable. Note that it is preferable to use laser light having larger energy than a band gap of the oxide semiconductor film. For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • In the present invention, a semiconductor device refers to a device having a circuit including a semiconductor element (such as a transistor or a diode), and as the semiconductor device, an integrated circuit including a semiconductor element, a display device, a wireless tag, an IC tag, and the like are given. As the display device, a liquid crystal display device, a light emitting device, a DMD (digital micromirror device), a PDP (plasma display panel), an FED (field emission display), an electrophoresis display device (electronic paper), and the like are typically given.
  • In the present invention, a display device refers to a device using a display element, in other words, an image display device. Further, a module in which a connector, for example an FPC (flexible printed circuit), a TAB (tape automated bonding) tape, or a TCP (tape carrier package), is attached to a display panel; a module provided with a printed wiring board at an end of the TAB tape or the TCP; and a module in which an IC (integrated circuit) or a CPU is directly mounted on a display element by COG (chip on glass) method are all included as the display device.
  • In the present invention, it is acceptable as long as crystallization of an oxide semiconductor film is caused or crystallinity is improved in at least a channel forming region. Further, the entire channel forming region is not required to be crystallized, and it is acceptable as long as at least a portion of the channel forming region on a gate electrode side is crystallized.
  • Note that as the compound semiconductor, a nitride semiconductor or a carbide semiconductor may be used other than the oxide semiconductor. Further, a semiconductor having a light transmitting property with respect to visible light can also be used.
  • In the present invention, crystallinity of a channel forming region of an oxide semiconductor film is made to be favorable by heating a gate electrode by LRTA. As a result, the oxide semiconductor film is only heated locally; consequently, most of a substrate is not heated, and a crystallization step can be performed as shrinking and bending of the substrate are controlled. Consequently, a semiconductor device including a semiconductor element with improved mobility characteristic can be manufactured as the step is simplified.
  • Also, when forming a gate electrode over the substrate, forming an insulating film functioning as a gate insulating film over the gate electrode, forming a wiring having higher reflectivity with respect to a light source of LRTA than the gate electrode over the insulating film, and forming a oxide semiconductor film over the wiring, and then LRTA is performed towards a front surface or a rear surface of a substrate, the wiring is not heated as much as the gate electrode since it has higher reflectivity with respect to the light source of LRTA than the gate electrode. Therefore, a conductive film having a relatively low melting point such as copper, aluminum, or silver, which has low resistance, can be used for the wiring. As a result, an inexpensive semiconductor device can be provided.
  • Also, unlike the amorphous silicon film, an insulating film does not form over a surface of the oxide semiconductor film due to oxidation even if the surface is exposed to an atmosphere containing oxygen. Therefore, even if the oxide semiconductor film is exposed to atmospheric air after formation, there is little change to the film.
  • Further, when ZnO is used as the oxide semiconductor film, a heat treatment temperature in a crystallization step of the oxide semiconductor film can be around 350° C. or lower. This is because crystallization is sufficiently promoted for ZnO at a heat treatment temperature of around 350° C. or lower. As a result, even if a resin substrate is used, shrinking of the substrate can be suppressed. Also, lamp heating is performed on the gate electrode using a material having lower reflectivity with respect to light emitted from a lamp than a source wiring and a drain wiring. Consequently, while crystallinity of at least a channel forming region of ZnO is improved due to heat conducted from the gate electrode, the source wiring and the drain wiring are not easily heated; therefore, a material having a relatively low melting point can be used for the source wiring and the drain wiring. For example, since a heat treatment temperature of 350° C. or lower is sufficient when Al is used for the source wiring and the drain wiring, diffusion of Al to a semiconductor layer can be suppressed.
  • As in the above, since a semiconductor device can be manufactured by a low temperature heat treatment (around 350° C. or lower), it is inexpensive as a process.
  • Further, since the oxide semiconductor has a light transmitting property, by forming the source electrode, the drain electrode, and the like with a conductive film having a light transmitting property and then forming a pixel electrode thereover, an aperture ratio of a pixel portion can be improved. When zinc oxide is used as the oxide semiconductor, since resource of zinc oxide is more abundant than that of indium tin oxide (ITO) and since zinc oxide has lower resistance, a more inexpensive semiconductor device can be obtained by using zinc oxide instead of ITO as the pixel electrode. When silicon is used for a semiconductor film, in order to prevent the channel forming region from being irradiated with light, it is necessary to provide a light shielding film so as to overlap the channel forming region. As a result, a decrease in aperture ratio of a pixel portion is unavoidable. On the other hand, when zinc oxide is used for an oxide semiconductor film, since resource of zinc oxide is relatively abundant and since zinc oxide has a light transmitting property, by forming each of a source electrode, a drain electrode, and a pixel electrode using a transparent conductive material including indium tin oxide (ITO), ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property, a large scale display with high aperture ratio in a transmissive type display panel can be obtained. Also, light from a backlight can be effectively used to save power. For example, by sticking a display panel over a window of a building or a windshield of an automobile, a train, an airplane, or the like, a head-up display in which an image or text information is directly displayed can be realized.
  • BRIEF DESCRIPTION OF DRAWINGS
  • In the accompanying drawings:
  • FIGS. 1A and 1B are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention;
  • FIG. 2 is a diagram describing temperature dependency of crystallization of an oxide semiconductor film of the present invention;
  • FIGS. 3A to 3C are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention;
  • FIGS. 4A to 4H are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention;
  • FIGS. 5A to 5C are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention;
  • FIGS. 6A to 6F are each a cross-sectional view describing a manufacturing step of a semiconductor device relating to the present invention;
  • FIG. 7 is a cross sectional-view of a semiconductor device relating to the present invention;
  • FIGS. 8A to 8F are each a diagram showing a mode of a light emitting element relating to the present invention;
  • FIGS. 9A to 9F are each a diagram describing a pixel circuit of a display panel relating to the present invention and an operation configuration thereof;
  • FIGS. 10A to 10C are each a diagram describing mounting of a driver circuit relating to the present invention;
  • FIG. 11 is a diagram describing a display module relating to the present invention;
  • FIGS. 12A to 12F are each a diagram describing one example of an electronic appliance;
  • FIGS. 13A and 13B are each a cross-sectional view of a semiconductor device relating to the present invention;
  • FIGS. 14A and 14B are each a circuit diagram and a cross-sectional view of a pixel in a semiconductor device of the present invention;
  • FIG. 15 is a cross-sectional view of a semiconductor device relating to the present invention;
  • FIG. 16 is a diagram showing one mode of an element substrate in a semiconductor device of the present invention;
  • FIGS. 17A and 17B are each a diagram showing one mode of an element substrate in a semiconductor device of the present invention;
  • FIGS. 18A and 18B are each a block diagram showing a structure of a semiconductor device of the present invention;
  • FIGS. 19A and 19B are each a diagram showing a structure of an LRTA device relating to the present invention;
  • FIG. 20 describes one example of an electronic appliance relating to the present invention;
  • FIG. 21 describes one example of an electronic appliance relating to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION Embodiment Mode
  • Embodiment modes of the present invention will hereinafter be described with reference to drawings. However, the invention is not limited to the following description, and it is easily understood by those skilled in the art that the modes and details can be changed in various ways without departing from the spirit and scope of the invention. Therefore, the invention is not interpreted limited to the following description of embodiment modes.
  • Embodiment Mode 1
  • In this embodiment mode, a manufacturing step of a TFT using a channel forming as a region of an oxide semiconductor film in which crystallinity is improved by LRTA, is described with reference to FIGS. 1A and 1B.
  • First, a base film 102 is formed over a substrate 101. For the substrate 101, glass, or plastic (synthetic resin) such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic, or polyimide can be used.
  • As the base film 102, a single layer of an insulating film such as a silicon oxide film, a silicon nitride film, a silicon oxynitride film (SiOxNy) (x>y), or a silicon nitride oxide film (SiNxOy) (x>y), or stacked layers thereof are used. The base film 102 may be formed by a sputtering method or a CVD method. Note that the base film 102 is not always required to be provided, but it is preferable to form in the present invention. By forming the base film 102, conduction of heat generated from an electrode or a wiring formed over the base film 102 to the substrate 101 can be suppressed. As the base film 102, a silicon nitride oxide film with a thickness of 10 to 400 nm can be used, for example.
  • Subsequently, a gate electrode 103 is formed over the base film 102. The gate electrode 103 with a thickness of 100 to 200 nm may be formed by a sputtering method. The gate electrode 103 can be formed using an element selected from tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), niobium (Nb), or the like, or an alloy material or a compound material mainly containing such an element. Further, the gate electrode 103 can also be formed with a semiconductor material typified by polycrystalline silicon doped with an impurity element such as phosphorous.
  • Subsequently, a gate insulating film 104 with a thickness of about 50 to 500 nm is formed to cover the gate electrode 103. The gate insulating film 104 may be formed to have a single layer structure of a film containing an oxide of silicon or a nitride of silicon, or as a stacked layer structure thereof, by a sputtering method or a variety of CVD methods such as a plasma CVD method. Specifically, a film containing silicon oxide (SiOx), a film containing silicon oxynitride (SiOxNy), or a film containing silicon nitride oxide (SiNxOy) is formed as a single layer structure, or these films are appropriately stacked to form the gate insulating film 104. Also, the gate insulating film may be formed by performing high density plasma treatment on the gate electrode 103 under an atmosphere containing oxygen, nitrogen, or both oxygen and nitrogen and oxidizing or nitriding a surface of the gate electrode 103. The gate insulating film formed by a high density plasma treatment has excellent uniformity in its film thickness, film quality, and the like and the film can be formed to be dense. As the atmosphere containing oxygen, a mixed gas of a noble gas, oxygen (O2), and nitrogen dioxide (NO2), or dinitrogen monoxide (N2O); or a mixed gas of a noble gas, hydrogen (H2), and oxygen (O2), nitrogen dioxide (NO2), or dinitrogen monoxide (N2O), can be used. Also, as the atmosphere containing nitrogen, a mixed gas of a noble gas and nitrogen (N2) or ammonia (NH3); or a mixed gas of a noble gas, hydrogen (H2), and nitrogen (N2) or ammonia (NH3), can be used. By an oxygen radical (may also include an OH radical) or a nitrogen radical (may also include a NH radical) generated by the high density plasma treatment, the surface of the gate electrode 103 can be oxidized or nitrided.
  • When the gate insulating film 104 is formed by performing the high density plasma treatment, the insulating film with a thickness of 1 to 20 nm, preferably 5 to 10 nm, is formed covering the gate electrode 103. Since a reaction in this case is a solid-phase reaction, interface state density of between the gate insulating film 104 and the gate electrode 103 can be made to be extremely low. Further, since the gate electrode 103 is oxidized or nitrided directly, a thickness of the gate insulating film 104 to be formed can be uniform. Consequently, by solid-phase oxidation of the surface of the electrode by the high density plasma treatment shown here, an insulating film with favorable uniformity and low interface state density can be formed. Here, an oxide of an element selected from tantalum (Ta), tungsten (W), titanium (Ti), molybdenum (Mo), chromium (Cr), niobium (Nb), or the like; or an oxide of an alloy material or a compound material mainly containing the element functions as the gate insulating film 104.
  • Note that for the gate insulating film 104, just an insulating film formed by the high density plasma treatment may be used, or at least one of an insulating film of silicon oxide, silicon nitride containing oxygen, silicon oxide containing nitrogen, and the like may be stacked in addition thereover by a CVD method utilizing plasma or heat reaction. Either way, transistors each of which a gate insulating film is partially or entirely an insulating film formed by high density plasma can be made to have little variations in characteristic.
  • The gate insulating film 104 may use the following which have favorable compatibility with the oxide semiconductor film: alumina (Al2O3), aluminum nitride (AlN), titanium oxide (TiO2), zirconia (ZrO2), lithium oxide (Li2O), potassium oxide (K2O), sodium oxide (Na2O), indium oxide (In2O3), yttrium oxide (Y2O3), or calcium zirconate (CaZrO3); or a material including at least two thereof. The gate insulating film 104 may be formed as a single layer or as stacked layers of two or more layers.
  • Subsequently, a wiring 105 with a thickness of 50 to 200 nm is formed over the gate insulating film 104. As a wiring material, silver (Ag), aluminum (Al), gold (Au), copper (Cu), an alloy thereof, or the like is used. It is acceptable as long as the wiring material has higher reflectivity than that of the material used for the gate electrode 103, and the wiring material is appropriately combined and used taking into consideration the gate electrode 103. Note that the wiring may be formed to have a stacked layer structure. For example, aluminum and titanium may be stacked over the substrate in this order to form a wiring with a stacked layer structure. Titanium is effective in making an electrical contact property between the oxide semiconductor film and aluminum favorable. Titanium also takes on a role of suppressing diffusion of aluminum to the oxide semiconductor film. Also, the wiring may be formed with a transparent conductive film, such as for example indium tin oxide (ITO), indium tin oxide containing silicon oxide (ITSO), indium zinc oxide (IZO), indium oxide (In2O3), tin oxide (SnO2), zinc oxide (ZnO), zinc oxide added with aluminum (AlZnO), zinc oxide added with gallium (GaZnO), or zinc oxide. Note that for the wiring 105, it is favorable to use a material having higher reflectivity or higher transmissivity (or lower heat absorption rate) with respect to lamp light than that of the gate electrode 103.
  • Next, an oxide semiconductor film 106 is formed over the gate insulating film 104 and the wiring 105. For the oxide semiconductor film 106, zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, added with one type or a plurality of types of impurity elements selected from the following can be used: a Group 1 element (for example, lithium (I), sodium (Na), kalium (K), rubidium (Rb), or cesium (Cs)), a Group 13 element (for example, boron (B), gallium (Ga), indium (In), or thallium (Tl)), a Group 14 element (for example, carbon (C), silicon (Si), germanium (Ge), tin (Sn), or lead (Pb)), a Group 15 element (for example, nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), or bismuth (Bi)), a Group 17 element (for example, fluorine (F), chlorine (Cl), bromine (Br), or iodine (I)), or the like. Alternatively, zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, which is not added with any impurity element can also be used. Further, any of the following can also be used: InGaO3(ZnO)5, magnesium zinc oxide (MgxZn1-xO), cadmium zinc oxide (CdxZn1-xO), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO). The oxide semiconductor film 106 is formed by forming a film with a thickness of 25 to 200 nm (preferably 30 to 150 nm) by a sputtering method under conditions of a pressure of 0.4 Pa and a flow rate of Ar(argon):O2=50:5 (sccm) to form into a desired pattern, then subsequently etching the film using fluorinated acid diluted to 0.05%. Compared to a semiconductor film using an amorphous silicon film, the oxide semiconductor film 106 does not need to be formed under high vacuum since there is no concern for oxidation, and is inexpensive as a process. Note that since an oxide semiconductor film containing zinc oxide is resistant against plasma, a plasma CVD (also called PCVD or PECVD) method may be used to form the film. Among CVD methods, the plasma CVD method in particular uses a simple device, and has favorable productivity.
  • Subsequently, LRTA is performed towards a rear surface of the substrate 101 (FIG. 1A). LRTA is performed at 250° C. to 570° C. (preferably 300° C. to 400° C., more preferably 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes. LRTA is performed with radiation from one type or a plurality types of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp. Since a heat treatment in a short amount of time is possible with an LRTA method, a material with a relatively low melting point can be used if reflectivity or transmissivity of the wiring 105 is higher than that of the gate electrode 103. For the LRTA method, light of a wavelength in the infrared light region, the visible light region, the ultraviolet light region, or the like can be used. Note that instead of LRTA, a heating treatment may be performed by laser light irradiation, and for example, laser light of an infrared light laser, a visible light laser, an ultraviolet laser, or the like may be used. Alternatively, LRTA and laser light irradiation may be combined to selectively improve crystallinity of the oxide semiconductor film. When laser irradiation is used, a continuous wave laser beam (CW laser beam) or a pulsed laser beam can be used. A laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO4, forsterite (Mg2SiO4), YAlO3, or GdVO4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y2O3, YVO4, YAlO3, or GdVO4, doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser. By emitting a laser beam from the second harmonic to the fourth harmonic of the fundamental harmonic of such a laser beam, crystallinity can be made to be favorable. Note that it is preferable to use laser light having larger energy than a band gap of the oxide semiconductor film. For example, laser light emitted from a KrF, ArF, WeCl, or an XeF excimer laser oscillator may be used.
  • At this time, since the gate electrode 103 is formed with a material that has lower reflectivity with respect to lamp light and that which absorbs more heat than that of the wiring 105, the gate electrode 103 is heated to a higher temperature than the wiring 105. For this reason, the oxide semiconductor film 106 in a periphery of the gate electrode 103 is heated; consequently, a second oxide semiconductor region 108 and a first oxide semiconductor region 107 with more favorable crystallinity than the second oxide semiconductor region 108 are formed (see FIG. 1B). Here, the gate electrode 103 is irradiated with lamp light so as to be heated to around 300° C., and by that heat, the oxide semiconductor film 106 is crystallized to improve crystallinity. At this time, since a material with higher reflectivity or transmissivity with respect to lamp light than that of the gate electrode 103 is used, a temperature of the wiring 105 is 300° C. or less even if the oxide semiconductor film 106 is crystallized.
  • Here, a heat treatment temperature dependency of a crystallinity of ZnO used as the oxide semiconductor film is shown in FIG. 2. FIG. 2 shows a result of measuring an X-ray intensity of a (002) surface in each of the following cases: a case where a deposition gas with a flow rate ratio of Ar:O2=50:5 (sccm) is sprayed (as-deposited); and cases when the deposition gas is sprayed and then heated for 1 hour at each temperature of 200° C., 300° C., and 350° C. As heat treatment temperature rises, an intensity peak of the (002) surface is greater. Consequently, at least up to 350° C., crystallinity of ZnO increases as the heat treatment temperature rises. Since mobility increases in general as crystallization progresses, it is desirable to perform the heat treatment at around 350° C. Note that if there is no problem such as shrinking of the substrate, a heat treatment in which ZnO is heated to around 400° C. may be performed.
  • On the other hand in FIG. 1A, in a region in which the gate electrode 103 and the wiring 105 are not formed, in other words, in a region in which the substrate 101, the base film 102, the gate insulating film 104, and the oxide semiconductor film 106 are stacked, lamp light is transmitted through compared to a region in which the wiring 105 and the gate electrode 103 are formed; consequently, heat is not easily absorbed and a heating temperature is lower than that of the wiring 105. Consequently, since a large region of the substrate 101 is 350° C. or lower, shrinking does not occur easily. Note that the larger the region in which the gate electrode 103 is not formed, shrinking of the substrate 101 is suppressed.
  • Next, a semiconductor device is manufactured by forming an interlayer insulating film, a source electrode, a drain electrode, a pixel electrode, a light emitting element, and the like over the oxide semiconductor film 106.
  • In the present invention, when ZnO is used as a semiconductor, crystallinity of a ZnO layer is improved with a heat treatment temperature of about 300° C.; therefore, compared to when a crystalline silicon film is used as a semiconductor film, the heat treatment temperature is suppressed. Also, since an oxide semiconductor film having a high light transmitting property is used and a gate electrode is selectively heated by LRTA, most of a substrate is not heated and shrinking of the substrate can be suppressed. Further, since a material used for a wiring has higher reflectivity with respect to lamp light than that of the gate electrode, crystallinity of the oxide semiconductor film can be improved even if a temperature to which the wiring is heated is suppressed to around 350° C. Therefore, an Al wiring which has a low melting point can be used. Also, formation of an insulating film due to diffusion of oxygen in the oxide semiconductor film to the Al can be prevented. Since the Al wiring is inexpensive and has low resistance, a semiconductor device with favorable performance can be manufactured at low cost and with favorable productivity.
  • Embodiment Mode 2
  • In this embodiment mode, a structure that is different from that in Embodiment Mode 1 is described with reference to FIGS. 3A to 3C. Note that steps of forming a base film 302, a gate electrode 303, and a gate insulating film 304 over a substrate 301 corresponds to the steps of forming the base film 102, the gate electrode 103, and the gate insulating film 104 over the substrate 101 of Embodiment Mode 1, respectively; therefore, refer to Embodiment Mode 1 for the steps.
  • A first oxide semiconductor film 305 is formed over the gate insulating film 304. For the oxide semiconductor film 305, zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, added with one type or a plurality of types of impurity elements selected from Group 1 elements, Group 13 elements, Group 14 elements, Group 15 elements, and Group 17 elements can be used. Alternatively, zinc oxide (ZnO) in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, which is not added with any impurity element can also be used. Further, any of the following can also be used: InGaO3(ZnO)5, magnesium zinc oxide (MgxZn1-xO), cadmium zinc oxide (CdxZn1-xO), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO). Here, zinc oxide is formed to a thickness of 50 to 200 nm (preferably 100 to 150 nm) as the first oxide semiconductor film 305 by a sputtering method.
  • Subsequently, LRTA is performed towards a substrate surface to make crystallinity favorable (FIG. 3A). LRTA may be performed at 250° C. to 570° C. (preferably at 300° C. to 400° C., and more preferably at 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes. LRTA is performed with radiation from one type or a plurality of types of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp. In this embodiment mode, lamp heating is performed on the gate electrode 303 for 30 minutes in an oxygen atmosphere so that the gate electrode becomes about 300° C., in order to improve crystallinity of a region of the first oxide semiconductor film 305 which overlaps the gate electrode 303 with the gate insulating film therebetween. Since the first oxide semiconductor film 305 has a light transmitting property, the gate electrode 303 is heated with priority, and crystallinity of the first oxide semiconductor film 305 increases from a periphery of the gate electrode 303 towards the outside. Then, as shown in FIG. 3B, a second oxide semiconductor film including a second oxide semiconductor region 309 and a first oxide semiconductor region 308 with more favorable crystallinity than the second oxide semiconductor region 309 are formed. Note that in FIG. 3A, although lamp heating is performed towards a front surface side of the substrate 301, LRTA may be performed towards a rear surface of the substrate. Since the oxide semiconductor film 305 has a light transmitting property, most region of the substrate is not easily heated even if LRTA is performed. Consequently, deformation such as shrinking of the substrate can be suppressed even if a resin with a low melting point or the like is used for the substrate. Note that crystallinity of a surface of the oxide semiconductor film and a periphery thereof may be improved directly by performing lamp heating towards the substrate surface with LRTA with increased output. Also, for the oxide semiconductor film overlapping with the gate electrode, a surface of the oxide semiconductor film on a gate insulating layer 304 side and a periphery thereof may be crystallized with priority when performing lamp heating towards the substrate surface, by adjusting wavelength of lamp light, reflectivity of the gate electrode, and film thickness of the oxide semiconductor film, so that lamp light reflecting off of the gate electrode is absorbed by the surface of the oxide semiconductor film on the gate insulating layer 304 side and the periphery thereof. Further, when a glass substrate is used for the substrate, lamp light used is of the visible light region to the infrared light region. Since light in these wavelength regions is not easily absorbed by the glass substrate, heating of the glass substrate can be suppressed to a minimum. Note that lamp heating may be performed a plurality of times. By performing lamp heating a plurality of times, heating time can be gained at the same time as suppressing a rise in a temperature of the substrate.
  • Note that instead of LRTA, crystallinity of the oxide semiconductor film may be selectively improved by laser light irradiation, ultraviolet irradiation, or by a combination thereof. When laser irradiation is used, a continuous wave laser beam (CW laser beam) or a pulsed laser beam (pulse laser beam) can be used. A laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO4, forsterite (Mg2SiO4), YAlO3, or GdVO4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y2O3, YVO4, YAlO3, or GdVO4, doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser. By emitting a laser beam from the second harmonic to the fourth harmonic of the fundamental harmonic of such a laser beam, crystallinity can be made to be favorable. Note that it is preferable to use laser light having larger energy than a band gap of the oxide semiconductor film. For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • Subsequently, over the first oxide semiconductor region 308 and the second oxide semiconductor region 309, Ti and Al are deposited by a sputtering method to form a Ti layer and an Al layer. After that, a wiring 306 and a wiring 307 are formed as a source wiring and a drain wiring by performing dry etching on the Ti layer and the Al layer using photolithography and Cl2 gas (FIG. 3C). The wirings 306 and 307 are each formed to have a thickness of 10 to 200 nm by using an acceleration voltage of 1.5 kw, a pressure of 0.4 Pa, and Ar (flow rate of 30 sccm). Note that although the wirings 306 and 307 are formed as stacked layers, if materials used for the wiring 306 and 307 have favorable compatibility with the oxide semiconductor film 305, the wirings 306 and 307 may be formed in a single layer. As the material for each of the wirings 306 and 307, a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used. Alternatively, a material having a light transmitting property such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide containing silicon oxide (ITSO), indium oxide (In2O3), tin oxide (SnO2), zinc oxide (ZnO), zinc oxide added with aluminum (AlZnO), zinc oxide added with gallium (GaZnO), or the like can be appropriately used.
  • Subsequently, a semiconductor device is manufactured by forming an interlayer insulating film, a wiring, a pixel electrode, a light emitting element and the like over the oxide semiconductor film 305, the wiring 306 and the wiring 307.
  • In this embodiment mode, a wiring is formed after performing LRTA on the oxide semiconductor film 305 to improve crystallinity. Therefore, a material having lower reflectivity with respect to lamp light than that of the gate electrode 303 may be used for the wiring 306, and the material for the wiring is not limited to those mentioned in Embodiment Mode 1 as long as it has favorable compatibility with the oxide semiconductor film 305.
  • Note that after the oxide semiconductor film 305 is formed, heating by LRTA may be performed before or after processing the oxide semiconductor film 305 into a desirable shape.
  • In the present invention, when zinc oxide is used for a semiconductor film, since crystallinity of the semiconductor film improves at a heat treatment temperature of around 300° C., heat treatment temperature can be suppressed and a crystallization step can be performed at low cost compared to when a crystalline silicon film is used as the semiconductor film. Further, since a gate electrode is selectively heated by LRTA using an oxide semiconductor film having a high light transmitting property, most of a substrate is not heated and shrinking of the substrate can be suppressed.
  • Embodiment Mode 3
  • An embodiment mode of the present invention is described with reference to FIGS. 4A to 5C. This embodiment mode is an example of a semiconductor device including a channel protective thin film transistor.
  • As a substrate 400, a glass substrate including barium borosilicate glass, alumino borosilicate glass, or the like; a silicon substrate; a plastic substrate having heat resistance; or a resin substrate is used. As the plastic substrate or the resin substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic, polyimide, or the like can be used. Also, a surface of the substrate 400 may be polished by a CMP method so that the surface is planarized. Note that an insulating layer may be formed over the substrate 400. The insulating layer is formed to have a single layer structure or a stacked layer structure using at least one of an oxide material including silicon and a nitride material including silicon, by a known method such as a CVD method, a plasma CVD method, a sputtering method, or a spin coating method. This insulating layer is not necessarily formed, but it has effects of blocking contaminants and the like from the substrate 400, as well as suppressing conduction of heat to the substrate.
  • A conductive film 401 is formed over the substrate 400. The conductive film 401 is processed into a desired shape and becomes a gate electrode. The conductive film 401 is preferably formed by a method such as a printing method, an electrolytic plating method, or an evaporation method, using a material having a low reflectivity with respect to a wavelength of a light source used for LRTA heating (a material which easily absorbs heat, in other words, that which is easily heated). By using the material having a low reflectivity, a subsequent heating step becomes possible. As the conductive film 401, a metal such as tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used. Further, the conductive film 401 may have a stacked layer structure of a plurality of these layers. Typically, a tantalum nitride film may be stacked over a substrate surface, and then a tungsten film may be stacked thereover. Further, silicon added with an impurity element imparting one conductivity type may also be used. For example, an n-type silicon film of an amorphous silicon film including an impurity element imparting n-type such as phosphorus (P) can be used. The conductive film 401 is formed to have a thickness of 10 nm to 200 nm.
  • In this embodiment mode, the conductive film 401 is formed to have a thickness of 150 nm by a sputtering method using tungsten (W).
  • A mask made of a resist is formed over the conductive film 401 using a photolithography step, and the conductive film 401 is processed into a desired shape using the mask to form a gate electrode 402 (see FIG. 4B).
  • Subsequently, a gate insulating film 403 a and a gate insulating film 403 b are formed over the gate electrode 402 so as to have a stacked layer structure of two layers. The stacked insulating films may be formed consecutively in the same chamber without breaking a vacuum and under the same temperature, by changing reaction gases. By forming the insulating films consecutively without breaking the vacuum, contamination of an interface between the stacked films can be prevented.
  • For the gate insulating film 403 a and the gate insulating film 403 b, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy) (x>y), silicon nitride oxide (SiNxOy) (x>y), or the like can be appropriately used. Also, instead of the gate insulating film 403 a, the gate electrode 402 may be oxidized to form an oxide film. Note that to prevent diffusion of impurities and the like from the substrate, the gate insulating film 403 a is preferably formed using silicon nitride (SiNx), silicon nitride oxide (SiNxOy) (x>y), or the like. Further, the gate insulating film 403 b is desirably formed using silicon oxide (SiOx), silicon oxynitride (SiOxNy) (x>y), or the like. Note that in order to form a derise insulating film with little gate leak current at a low deposition temperature, it is favorable to include a noble gas element such as argon in a reaction gas so that the noble gas element is incorporated in the insulating film to be formed. In this embodiment mode, the gate insulating film 403 a is formed using a silicon nitride film with a thickness of 50 nm to 140 nm that is formed with SiH4 and NH3 as reaction gases, and the gate insulating film 403 b is formed using a silicon oxide film with a thickness of 100 nm that is formed with SiH4 and N2O as reaction gases, and stacked thereover. Note that it is preferable that the gate insulating film 403 a and the gate insulating film 403 b each have a thickness of 50 nm to 100 nm.
  • Alternatively, the gate insulating film 403 b may be formed using alumina (Al2O3) or aluminum nitride (AlN) each having favorable compatibility with an oxide semiconductor film to be subsequently formed. In this case, by using silicon oxide, silicon nitride, silicon oxynitride, silicon nitride oxide, or the like having a high insulating property for the gate insulating film 403 a, and using alumina or aluminum nitride having a favorable interface property with respect to the oxide semiconductor film for the gate insulating film 403 b, a high reliability gate insulating film can be formed. The gate insulating film may have three layers, and the third layer may be a gate insulating film using alumina or aluminum nitride.
  • Subsequently, an oxide semiconductor film 404 is formed over the gate insulating film 403 b. The oxide semiconductor film 404 may be formed to have a thickness of 100 nm by a sputtering method under the following conditions: a flow rate of Ar:O2=50:5 (sccm), and a pressure of 0.4 Pa.
  • For the oxide semiconductor film 404, ZnO in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist, added with one type or a plurality of types of impurity elements selected from Group 1 elements, Group 13 elements, Group 14 elements, Group 15 elements, and Group 17 elements can be used. Alternatively, ZnO in an amorphous state, a polycrystalline state, or a microcrystalline state in which both amorphous and polycrystalline states exist which is not added with any impurity element can also be used. Further, any of the following can also be used: InGaO3(ZnO)5, magnesium zinc oxide (MgxZn1-xO), cadmium zinc oxide (CdxZn1-xO), cadmium oxide (CdO), or an In—Ga—Zn—O based amorphous oxide semiconductor (a-IGZO).
  • Note that when ZnO is used for the oxide semiconductor film 404, it is favorable that ZnO is added (doped) with nitrogen. ZnO normally shows an n-type semiconductor property. By adding nitrogen, since nitrogen works as an acceptor with respect to ZnO, a threshold voltage can be suppressed as a result.
  • Subsequently, heating of the oxide semiconductor film 404 is performed towards a front surface or a rear surface of the substrate 400 by an LRTA method (see FIG. 4D). LRTA is performed with radiation from one or a plurality of lamps selected from a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, and a high pressure mercury lamp. LRTA is performed at 250° C. to 570° C. (preferably 300° C. to 400° C., more preferably 300° C. to 350° C.) for 1 minute to 1 hour, preferably 10 minutes to 30 minutes. In this embodiment mode, lamp heating is performed with a halogen lamp as a light source, and in an oxygen atmosphere at 300° C. for 30 minutes.
  • By performing LRTA, the gate electrode 402 is selectively heated in a short amount of time, and a first oxide semiconductor region with improved crystallinity is formed by heat thereof in a region 434 formed in a periphery of the gate electrode 402, which is indicated by a dotted line. On the other hand, a region 424 that is not the region 434 indicated by the dotted line is barely heated since there is little absorption of lamp light, and a second oxide semiconductor region having a different crystallinity from that of the first oxide semiconductor region (see FIG. 4E). Consequently, since only a region in which the gate electrode 402 is formed is selectively heated and the other region is not heated, shrinking and bending of the substrate 400 can be suppressed. Note that crystallinity in a periphery of the surface of the oxide semiconductor film may be improved directly by performing lamp heating towards the substrate surface with LRTA with increased output. Also, for the oxide semiconductor film overlapping with the gate electrode, a surface of the oxide semiconductor film on a gate insulating layer 403 b side and a periphery thereof may be crystallized with priority when performing lamp heating towards the substrate surface, by adjusting wavelength of lamp light, reflectivity of the gate electrode, and film thickness of the oxide semiconductor film, so that lamp light reflecting off of the gate electrode is absorbed by the surface of the oxide semiconductor film on the gate insulating layer 403 b side and the periphery thereof. Further, when a glass substrate is used for the substrate, lamp light used is of the visible light region to the infrared light region. Since light in these wavelength regions is not easily absorbed by the glass substrate, heating of the glass substrate can be suppressed to a minimum. Note that lamp heating may be performed a plurality of times. By performing lamp heating a plurality of times, heating time can be gained at the same time as suppressing a rise in a temperature of the substrate.
  • Note that instead of LRTA, crystallinity of the oxide semiconductor film may be selectively improved by laser light irradiation, ultraviolet irradiation, or by a combination thereof. When laser irradiation is used, a continuous wave laser beam (CW laser beam) or a pulsed laser beam (pulse laser beam) can be used. A laser beam that can be used here is one or a plurality of that which oscillates from a gas laser such as an Ar laser, Kr laser, or an excimer laser; a laser of which a medium is a monocrystalline YAG, YVO4, forsterite (Mg2SiO4), YAlO3, or GdVO4 doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta, or polycrystalline (ceramic) YAG, Y2O3, YVO4, YAlO3, or GdVO4, doped with one or more of Nd, Yb, Cr, Ti, Ho, Er, Tm, and Ta; a glass laser; a ruby laser; an alexandrite laser; a Ti:sapphire laser; a copper vapor laser; and a gold vapor laser. By emitting a laser beam from the second harmonic to the fourth harmonic of the fundamental harmonic of such a laser beam, crystallinity can be made to be favorable. Note that it is preferable to use laser light having larger energy than a band gap of the oxide semiconductor film. For example, laser light emitted from a KrF, ArF, XeCl, or an XeF excimer laser oscillator may be used.
  • Subsequently, a protective film 405 is formed over the oxide semiconductor film 404, and a resist 406 is formed over the protective film 405 (see FIG. 4F). By a photolithography step using the resist 406 as a mask, the protective film 405 is processed into a desired shape to form a channel protective film 407. As the channel protective film, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy) (x>y), silicon nitride oxide (SiNxOy) (x>y), or the like can be appropriately used. By forming the channel protective film 407, a semiconductor layer of a channel portion can be prevented from being etched when a source electrode and a drain electrode are formed. In this embodiment mode, silicon nitride is formed as the protective film 405, and then the channel protective film 407 is formed (see FIG. 4G).
  • Subsequently, a mask 408 is manufactured with a resist (FIG. 4H), and etching is performed on the oxide semiconductor film 404 to process into a desired shape by a photolithography step using the mask 408, to form an oxide semiconductor film 409 (also called island-shaped oxide semiconductor film) (FIG. 5A). Note that diluted fluorinated acid is used for the etching. Subsequently, a first conductive film 411 and a second conductive film 412 are formed over the oxide semiconductor film 409, and a mask 413 is formed by a photolithography step with a resist (FIG. 5B). The first conductive film 411 and the second conductive film 412 are processed into desired shapes using the mask 413, and first conductive films 414 a and 414 b, and second conductive films 415 a and 415 b each functioning as a source electrode or a drain electrode are formed (FIG. 5C).
  • As the mask, a commercially available resist material including a photosensitizing agent may be used. For example, a typical positive type resist, such a novolac resin or a naphthoquinone diazide compound which is a photosensitizing agent; or a negative type resist, such as a base resin, diphenylsilanediol, or an acid generator may be used. In using any of the materials, surface tension and viscosity thereof is appropriately adjusted by adjusting a concentration of a solvent, or by adding a surfactant or the like. Also, when a conductive material including a photosensitive substance having photosensitivity is used for the conductive films, the conductive films can be processed into desired shapes by being subjected to direct laser light irradiation, exposure, and removal with an etchant, without forming a mask from resist. In this case, there is an advantage that a step is simplified since a mask is not required to be formed.
  • As the conductive material including a photosensitive substance, a material including a metal such as Ag, Au, Cu, Ni, Al, or Pt, or an alloy thereof; an organic high molecular compound resin; a photo polymerization initiator; a photopolymerization monomer; and a photosensitive resin made of a solvent or the like, may be used. As the organic high molecular resin, a novolac resin, an acrylic copolymer, a methacrylic copolymer, a cellulose derivative, a cyclic rubber resin, or the like is used.
  • Note that before forming the first conductive film 411, one more layer of a conductive film made of for example zinc oxide added with aluminum (AlZnO) or zinc oxide added with gallium (GaZnO) may be provided as an n-type semiconductor, over the oxide semiconductor film 404. By forming the conductive film made of AlZnO or GaZnO, compatibility between the first conductive film 411 and the oxide semiconductor film 409 becomes favorable, and a contact resistance between the oxide semiconductor film 409 and a source electrode and a drain electrode can be reduced. Alternatively, for example, a stacked layer structure of forming Ti over GaZnO, or forming GaZnO over Ti may be provided.
  • As the first conductive films 414 a and 414 b and the second conductive films 415 a and 415 b, a metal such as aluminum (Al), tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), copper (Cu), chromium (Cr), cobalt (Co), nickel (Ni), platinum (Pt), titanium (Ti), or neodymium (Nd), or an alloy or a metal nitride thereof can be appropriately used. For example, the following combinations of the first conductive films 414 a, 414 b and the second conductive films 415 a, 415 b can be considered: Ti and Al; Ta and W; TaN and Al; and TaN and Cu; as the first conductive films and the second conductive films, respectively. Also, a combination of a third conductive film using Ti in addition to the first conductive films using Ti and the second conductive films using Al can be considered. Further, an AgPdCu alloy may be used for one of a first layer and a second layer. Furthermore, a structure may be a three-layer stacked layer structure of sequentially stacking W, an alloy of Al and Si (Al—Si), and TiN. Note that tungsten nitride, an alloy film of Al and Ti (Al—Ti), and Ti may be used instead of W, the alloy of Al and Si (Al—Si), and TiN, respectively. In order to improve heat resistance, an element such as titanium, silicon, scandium, neodymium, or copper may be added to aluminum at 0.5 to atomic %.
  • As a conductive material to form the first conductive film 411 and the second conductive film 412, a material having a light transmitting property such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide containing silicon oxide (ITSO), indium oxide (In2O3), tin oxide (SnO2), or zinc oxide (ZnO), or an appropriate combination thereof may be used.
  • In this embodiment mode, the first conductive film 411 and the second conductive film 412 are formed after LRTA is performed on the oxide semiconductor film 305 and crystallinity thereof is improved. Therefore, a material having lower reflectivity with respect to lamp light than that of the gate electrode 402 may be used for the first conductive film 411 and the second conductive film 412, and a conductive material for a wiring or an electrode is not limited to those mentioned in Embodiment Mode 1 as long as it has favorable compatibility with the oxide semiconductor film 305.
  • In this embodiment mode, either plasma etching (dry etching) or wet etching may be employed for an etching process; however, plasma etching is suitable for treating a substrate with a large area. As an etching gas, a fluorinated acid based gas such as CF4, NF3, SF6, or CHF3; a chlorine based gas typified by Cl2, BCl3, SiCl4, CCl4, or the like; or an O2 gas may be used, to which an inert gas such as He or Ar may be appropriately added. Also, by applying an etching process using atmospheric pressure discharge, electric discharge machining is possible locally, and a mask layer is not required to be formed on the an entire surface of the substrate.
  • Before applying the resist in the photolithography step of this embodiment mode, an insulating film with a thickness of about several nm may be formed over a surface of the oxide semiconductor film. By this step, the oxide semiconductor film and the resist coming into direct contact with each other can be avoided, and entering of impurities included in the resist into the oxide semiconductor film can be prevented.
  • By the above steps, a bottom gate type (also called reverse staggered type) thin film transistor in which a semiconductor layer of a channel portion is not etched can be manufactured. Note that although a bottom gate type TFT is manufactured in this embodiment mode, a top gate type TFT may be formed as long as crystallinity of at least a channel forming region of an oxide semiconductor film can be improved by heating a gate electrode that is formed over an oxide semiconductor film formed over a substrate, with a gate insulating film therebetween.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 and 2.
  • Embodiment Mode 4
  • An embodiment mode of the present invention is described with reference to FIGS. 6A to 6E This embodiment mode is an example of a semiconductor device according to Embodiment Mode 3 having a channel etch type thin film transistor. Therefore, repeated description of the same portions or the portions having similar functions is omitted.
  • A gate electrode 602 is formed over a substrate 600, and a gate insulating film 603 a and a gate insulating film 603 b are formed covering the gate electrode 602 (FIG. 6A). An oxide semiconductor film 620 is formed over the gate insulating film 603 b, and LRTA is performed towards a substrate surface to form an oxide semiconductor film 620 including a first oxide semiconductor region 604 with improved crystallinity in a region indicated by a dotted line, and a second oxide semiconductor region 605 in which crystallization is not as progressed as the first oxide semiconductor region 604 (see FIG. 6B). A mask 608 is provided over the oxide semiconductor film (FIG. 6C), and the oxide semiconductor film is processed into a desired shape by a photolithography step to form an oxide semiconductor film 609 (FIG. 6D).
  • Next, a first conductive film 611 and a second conductive film 612 are formed. Then, a mask 613 made of a resist is formed (see FIG. 6E). In this embodiment mode, conductive films containing titanium and aluminum are formed by a sputtering method as each of the first conductive film 611 and the second conductive film 612.
  • Subsequently, the first conductive film 611 and the second conductive film 612 are processed into a desired shape using the mask 613 by a photolithography step, and first conductive films 615 a and 615 b, and second conductive films 616 a and 616 b each functioning as a source electrode or a drain electrode are formed (FIG. 6F).
  • By the above steps, a thin film transistor in which a semiconductor layer of a part pf a channel portion is etched can be manufactured.
  • Note that in this embodiment mode, one more layer of a conductive film made of for example zinc oxide added with aluminum (AlZnO) or zinc oxide added with gallium (GaZnO) may be provided as an n-type oxide semiconductor, between the oxide semiconductor film and the first conductive film 611. Alternatively, for example, a stacked layer structure of forming Ti over GaZnO, or forming GaZnO over Ti may be provided. By forming an n-type oxide semiconductor film, connection between the first conductive film 611 that becomes a source electrode or a drain electrode and the oxide semiconductor film can be made to be favorable, and a contact resistance can be reduced.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 to 3.
  • Embodiment Mode 5
  • In this embodiment mode, a light emitting device which a bottom gate type thin film transistor formed in Embodiment Mode 3 or Embodiment Mode 4 is connected to a pixel electrode is described with reference to FIG. 7. Note that a thin film transistor of this embodiment mode is a channel-etched type.
  • FIG. 7 shows a cross-sectional view of a TFT used in a driver circuit and a cross-sectional view of a TFT used in a pixel portion. A reference numeral 701 denotes a cross-sectional view of a TFT used in a driver circuit, a reference numeral 702 denotes a cross-sectional view of a TFT used in a pixel portion, and a reference numeral 703 denotes a cross-sectional view of a light emitting element provided with a current by the TFT 702. The TFTs 701 and 702 are bottom gate types.
  • The TFT 701 of the driver circuit includes a gate electrode 710 formed over a substrate 700; a gate insulating film 711 covering the gate electrode 710; and an oxide semiconductor film 712 containing zinc oxide which overlaps with the gate electrode 710 with the gate insulating film 711 interposed therebetween. Further, the TFT 701 includes first conductive films 713 each functioning as a source electrode or a drain electrode, and second conductive films 714 each functioning as a source electrode or a drain electrode. Note that the first conductive films 713 and the second conductive films 714 also function as wiring.
  • In FIG. 7, the gate insulating layer 711 is formed of two layers of insulating films; however, the present invention is not limited to this structure. The gate insulating film 711 may be formed with a single layer of an insulating film or three or more layers of insulating films.
  • The second conductive films 714 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 714 that are a pair face each other with a channel forming region of the oxide semiconductor film 712 in therebetween.
  • Further, the first conductive films 713 are formed with titanium. The first conductive films 713 are not required to be provided; however, electrical contact property of the second conductive film 711 with the oxide semiconductor film 712 becomes favorable. Also, the first conductive films 713 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor film 712 to the second conductive films 714. As a result, reliability of a TFT can be improved. Note that an oxide semiconductor film is known to show an n-type without performing anything thereto. Therefore, the first oxide semiconductor film in which a channel is formed may have its conductivity type controlled in advance so as to be close to an i-type (also called as an intrinsic-type that is defined as a conductivity type having an equal number of negative and positive charges) as much as possible, by adding an impurity imparting p-type conductivity.
  • The TFT 702 of the pixel portion includes a gate electrode 720 formed over the substrate 700, the gate insulating film 711 covering the gate electrode 720, and an oxide semiconductor film 722 which overlaps with the gate electrode 720 with the gate insulating film 711 interposed therebetween. Further, the TFT 702 includes first conductive films 723 each functioning as a source electrode or a drain electrode, and second conductive films 724 each functioning as a source electrode or a drain electrode.
  • The second conductive films 724 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 724 that are a pair face each other with a region in which a channel of the oxide semiconductor film 722 is formed in between.
  • Further, the first conductive films 723 are formed with titanium. The first conductive films 723 are not required to be provided; however, electrical contact property of the second conductive film 724 with the oxide semiconductor film 722 becomes favorable. Also, the first conductive films 723 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor film 722 to the second conductive films 724. As a result, reliability of a TFT can be improved. Note that an oxide semiconductor film is known to show an n-type without performing anything thereto. Therefore, the first oxide semiconductor film in which a channel is formed may have its conductivity type controlled in advance so as to be close to an i-type as much as possible, by adding an impurity imparting p-type conductivity.
  • Also, a first passivation film 740 and a second passivation film 741 each formed of an insulating film are formed covering the TFTs 701 and 702. The first passivation film 740 and the second passivation film 741 can be formed by a thin film formation method such as a plasma CVD method or a sputtering method, using an insulating material such as silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, aluminum oxynitride, aluminum oxide, diamond-like carbon (DLC), nitrogen-containing carbon (CN), or the like. The passivation films covering the TFTs 701 and 702 is not limited to two layers, and a single layer or three or more layers may be provided. For example, the first passivation film 740 and the second passivation film 741 can be formed of silicon nitride and silicon oxide, respectively. By forming a passivation film of silicon nitride or silicon nitride oxide, entering of impurities from outside into a semiconductor element can be prevented, and degradation of the TFTs 701 and 702 due to an effect of moisture or the like can be prevented. In this embodiment mode, the first passivation film 740 and the second passivation film 741 are consecutively formed in the same chamber by performing gas switching.
  • Next, one of the second conductive films 724 is connected to a pixel electrode of a light emitting element 703.
  • Subsequently, an insulating layer 729 (also called partition, or bank) is selectively formed. The insulating layer 729 is formed so as to have an opening portion over the pixel electrode 730 and so as to cover the second passivation film 741. In this embodiment mode, the insulating layer 729 is formed covering an entire surface, and then etched using a mask of a resist or the like to form into a desired shape.
  • The insulating layer 729 can be formed with an inorganic insulating material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, or aluminum oxynitride; an inorganic siloxane based insulating material having an Si—O—Si bond among compounds made of silicon, oxygen, and hydrogen, using a siloxane based material as a starting material; or an organic siloxane based material in which hydrogen bonded with silicon is substituted with an organic group such as methyl or phenyl. Also, the insulating layer 729 may be formed using a photosensitive or a non-photosensitive material such as an acrylic resin, or a polyimide resin. The insulating layer 729 preferably has a form of which a curvature radius changes continuously, so that coatability of an electric field light emitting layer 731 and an opposing electrode 732 are improved.
  • Subsequently, the electric field light emitting layer 731 is formed over the pixel electrode 730 so as to be in contact therewith. As the electric field light emitting layer 731, materials showing light emission of red (R), green (G), and blue (B), respectively, are each selectively formed by an evaporation method or the like using an evaporation mask. The materials showing light emission of red (R), green (G), and blue (B), respectively, are preferable since they can be formed by a droplet discharging method in a similar manner to a color filter (such as a low molecular compound or a high molecular compound), and in this case, RGB can be applied separately without using a mask. Note that other than a three-color combination of RGB, the combination may be with four colors by adding emerald green. Also, vermilion may be added. Further, a pixel including an EL element that emits white light may be combined.
  • The opposing electrode 732 is formed so as to be in contact with the electric field light emitting layer 731. Note that although the light emitting element 703 includes an anode and a cathode, one is used as a pixel electrode, and the other is used as an opposing electrode. In this way, a light emitting device having a display function using a light emitting element is completed.
  • In the present invention, since a channel forming region of an oxide semiconductor film includes at least a crystallized region, a TFT having higher mobility than that of a TFT using an amorphous silicon film can be obtained. Also, since a crystallization step is performed at a lower temperature than that of a TFT using a crystalline silicon film, it is inexpensive as a process.
  • This embodiment mode can be appropriately combined with Embodiment Modes 1 to 4.
  • Embodiment Mode 6
  • In this embodiment mode, a liquid crystal display device in which a semiconductor element made of the bottom gate type thin film transistor to which the present invention is applied and a pixel electrode are connected, is described with reference to FIGS. 13A to 18B. Note that Embodiment Mode 5 can be referred to regarding the formation up to the second passivation film 741; therefore, the same reference numerals are used as those of FIG. 7, and descriptions thereof are omitted.
  • As in FIG. 13A, after the second passivation film 741 is formed, an insulating layer 1329 is formed so as to cover the second passivation film 741.
  • Subsequently, wirings 1371, 1372, 1373, and 1374 connected to the second conductive films 714 and 724, respectively, are formed via contact holes. Then, the second conductive films 724 are electrically connected to a pixel electrode 1330 of a liquid crystal element 1303 via the wiring 1374. For the pixel electrode 1330, in a case of manufacturing a transmissive type liquid crystal display panel, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, or the like can be used. Of course, indium tin oxide (ITO), indium zinc oxide (IZO), indium tin oxide added with silicon oxide (ITSO), or the like can be used. Also, in a case of manufacturing a reflective type display panel, as a metal thin film having a reflective property, a conductive film made of titanium, tungsten, nickel, gold, platinum, silver, aluminum, magnesium, calcium, lithium, an alloy thereof, or the like can be used. The pixel electrode 1330 can be formed by an evaporation method, a sputtering method, a CVD method, a printing method, a droplet discharging method, or the like.
  • Further, an orientation film 1331 is formed over the pixel electrode 1330 so as to be in contact therewith. Under a second substrate 1340 facing the first substrate 700 with the pixel electrode 1330 therebetween, an opposing electrode 1341 and an orientation film 1342 are stacked in this order. Also, a liquid crystal 1343 is provided between the pixel electrode 1330 and the orientation film 1331 and between the opposing electrode 1341 and the orientation film 1342, and a portion where the pixel electrode 1330, the liquid crystal 1343, and the opposing electrode 1341 overlap each other corresponds to a liquid crystal element 1303. Note that the pixel electrode 1330 may be formed to extend over the TFT 702, as shown in FIG. 13B. Since an oxide semiconductor film has a light transmitting property with respect to visible light, when a transparent conductive film including indium tin oxide (ITO), ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property, an aperture ratio of a pixel portion can be improved.
  • Note that a distance (cell gap) between the pixel electrode 1330 and the opposing electrode 1341 is controlled by a spacer 1361. Although in FIG. 13A, the spacer 1361 is formed by processing an insulating film provided on a first substrate 700 side into a desired shape, spacers prepared separately may be dispersed over the orientation film 1331 to control the cell gap. A reference numeral 1362 denotes a sealant, and by the sealant 1362, the liquid crystal 1343 is sealed between the first substrate 700 and the second substrate 1340.
  • Further, on a surface of the first substrate 700 that is not the surface over which the TFT 701 and the TFT 702 are formed, a polarizing plate 1350 is provided. Also, on a surface of the second substrate 1340 that is not the surface over which the opposing electrode 1341 is formed, a polarizing plate 1351 is provided. Note that the number of orientation films and polarizing plates, and positions thereof in a liquid crystal display device of the present invention are not limited to those shown in a structure of FIG. 13A.
  • In the present invention, since at least crystallization of a channel forming region of an oxide semiconductor film is improved, a TFT having higher mobility than that of a TFT using an amorphous silicon film can be obtained. Also, since a crystallization step is performed at a lower temperature than that of a TFT using a crystalline silicon film, it is inexpensive as a process. Further, since crystallinity of the oxide semiconductor film is selectively increased by lamp heating, the time it takes for crystallization can be shortened compared to when the entire oxide semiconductor film is crystallized. Therefore, yield can be increased. Also, since crystallization is performed selectively and in a short amount of time, shrinking of a substrate does not occur easily, and a substrate having a relatively low melting point such as a resin substrate can be used. Consequently, a TFT can be manufactured at low cost.
  • Also, since the channel forming region does not absorb visible light, unnecessary phtocarriers are not generated. Therefore, a TFT with excellent light resistance can be formed.
  • Subsequently, a different structure of a pixel included in a liquid crystal display device of the present invention is described. FIG. 14A shows one mode of a circuit diagram of the pixel, and FIG. 14B shows one mode of a cross-sectional structure of the pixel corresponding to FIG. 14A.
  • In FIGS. 14A and 14B, a reference numeral 1501 denotes a switching TFT for controlling input of video signal to the pixel, and a reference numeral 1502 denotes a liquid crystal element. Specifically, potential of a video signal that is input to the pixel via the switching TFT 1501 is supplied to a pixel electrode of the liquid crystal element 1502. Note that a reference numeral 1503 denotes a capacitor element for retaining voltage between the pixel electrode of the liquid crystal element 1502 and an opposing electrode when the switching TFT 1501 is turned off.
  • Specifically, gate electrodes of the switching TFT 1501 are connected to a scanning line G, and one of a source region and a drain region is connected to a signal line S, and the other is connected to a pixel electrode 1504 of the liquid crystal element 1502. One of two electrodes included in the capacitor element 1503 is connected to the pixel electrode 1504 of the liquid crystal element 1502, and the other is supplied with a constant potential, desirably a potential that is of the same level as that of the opposing electrode.
  • Note that in FIGS. 14A and 14B, a structure is that of a multi-gate structure in which the switching TFT 1501 is serially connected and a plurality of TFTs to which gate electrodes 1510 are connected share an oxide semiconductor film 1512. By having the multi-gate structure, an off current of the switching TFT 1501 can be reduced. Specifically, although in FIGS. 14A and 14B, a structure of the switching TFT 1501 is that of two TFTs being serially connected to each other, it may be a multi-gate structure in which three or more TFTs are serially connected to each other, and in which the gate electrodes are also connected. Further, the switching TFT is not required to have a multi-gate structure, and it may be a TFT of a regular single-gate structure in which one gate electrode and one channel forming region are provided
  • Next, a mode of a TFT included in a liquid crystal display device of the present invention that is different form that of FIGS. 13A to 14B is described. FIG. 15 shows a cross-sectional view of a TFT used in a driver circuit, and a cross-sectional view of a TFT used in a pixel portion. A reference numeral 2301 denotes the cross-sectional view of a TFT used in a driver circuit, a reference numeral 2302 denotes the cross-sectional view of a TFT used in a pixel portion, and a reference numeral 2303 denotes a cross-sectional view of a liquid crystal element.
  • The TFT 2301 of the driver circuit includes a gate electrode 2310 formed over a substrate 2300, a gate insulating film 2311 covering the gate electrode 2310, and an oxide semiconductor film 2312 including a crystallized region in at least a channel forming region, that overlaps with the gate electrode 2310 with the gate insulating film 2311 therebetween. Also, the TFT 2302 of the pixel portion includes a gate electrode 2320 formed over the substrate 2300, the gate insulating film 2311 covering the gate electrode 2320, and an oxide semiconductor film 2322 including a crystallized region in at least a channel forming region, that overlaps with the gate electrode 2320 with the gate insulating film 2311 therebetween. Further, channel protective films 2390 and 2391 formed of insulating films are formed so as to cover the channel forming regions of the oxide semiconductor films 2312 and 2322. The channel protective films 2390 and 2391 are provided to prevent the channel forming regions of the oxide semiconductor films 2312 and 2322 from getting etched during manufacturing steps of the TFT 2301 and 2302. Furthermore, the TFT 2301 includes first conductive films 2313 each functioning as a source electrode or a drain electrode and, second conductive films 2314 each functioning as a source electrode of a drain electrode; and the TFT 2302 includes first conductive films 2323 each functioning as a source electrode or a drain electrode and second conductive films 2324 each functioning as a source electrode of a drain electrode. Note that the first conductive films 2313 and 2323, and the second conductive films 2314 and 2324 function as wirings layers.
  • In FIG. 15, the gate insulating layer 2311 is formed of two layers of insulating films; however the present invention is not limited to this structure. The gate insulating film 2311 may be formed with a single layer of an insulating film or three or more layers of insulating films.
  • The second conductive films 2314 and 2324 are formed with aluminum or an alloy containing aluminum. Also, the second conductive films 2314 that are a pair and the second conductive films 2324 that are a pair face each other with a region in which a channel of the oxide semiconductor film 2322 is formed in between.
  • Further, the first conductive films 2313 and 2323 are formed with titanium. The first conductive films 2313 and 2323 are not required to be provided; however, electrical contact property of the second conductive films 2314 and 2324 with the oxide semiconductor films 2312 and 2322 becomes favorable. Also, the first conductive films 2313 and 2323 have a function as barrier layers for preventing diffusion of oxygen in the oxide semiconductor films 2312 and 2322 to the second conductive films 2314 and 2324. As a result, reliability of a TFT can be improved. Note that the oxide semiconductor films 2312 and 2322 are known to show an n-type without performing anything thereto. Therefore, the first oxide semiconductor films in which channels are formed may have their conductivity type controlled in advance so as to be close to an i-type as much as possible, by adding an impurity imparting p-type conductivity.
  • Also, a first passivation film 2380 and a second passivation film 2381 each formed of an insulating film are formed covering the TFTs 2301 and 2302. The first passivation film 2380 and the second passivation film 2381 can be formed by a thin film formation method such as a plasma CVD method or a sputtering method, using an insulating material such as silicon nitride, silicon oxide, silicon nitride oxide, silicon oxynitride, aluminum oxynitride, aluminum oxide, diamond-like carbon (DLC), nitrogen-containing carbon (CN), etc. The passivation films covering the TFTs 2301 and 2302 are not limited to two layers, and a single layer or three or more layers may be provided. For example, the first passivation film 2380 and the second passivation film 2381 can be formed with silicon nitride and silicon oxide, respectively. By forming a passivation film with silicon nitride or silicon nitride oxide, entering of impurities from outside into a semiconductor element can be prevented, and degradation of the TFTs 2301 and 2302 due to an effect of moisture or the like can be prevented. In this embodiment mode, the first passivation film 2380 and the second passivation film 2381 are consecutively formed in the same chamber by performing gas switching.
  • Subsequently, an insulating layer 2329 is formed covering the second passivation films 2381. Next, wirings 2371, 2372, 2373, and 2374 connected to the second conductive films 2314 and 2324, respectively, are formed via contact holes. Then, the conductive film 2324 is electrically connected to a pixel electrode 2330 of the liquid crystal element 2302 via the wiring 2374.
  • An orientation film 2331 is formed over the pixel electrode 2330 so as to be in contact there with. Under a second substrate 2340 facing the first substrate 2300 with the pixel electrode 2330 therebetween, an opposing electrode 2341 and an orientation film 2342 are stacked in this order. Also, a liquid crystal 2343 is provided between the pixel electrode 2330 and the orientation film 2331 and between the opposing electrode 2341 and the orientation film 2342, and a portion where the pixel electrode 2330, the liquid crystal 2343, and the opposing electrode 2341 overlap each other corresponds to a liquid crystal element 2303. Note that the pixel electrode may be formed to extend over the TFT. When a transparent conductive film including indium tin oxide (ITO), ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property is used for the first conductive film and the second conducive film, an aperture ratio of a pixel portion can be improved.
  • Note that a distance (cell gap) between the pixel electrode 2330 and the opposing electrode 2341 is controlled by a spacer 2361. Although in FIG. 15, the spacer 2361 is formed by processing an insulating film into a desired shape, spacers prepared separately may be dispersed over the orientation film 2331 to control the cell gap. A reference numeral 2362 denotes a sealant, and by the sealant 2362, the liquid crystal 2343 is sealed between the first substrate 2300 and the second substrate 2340.
  • Further, on a surface of the first substrate 2300 that is not the surface over which the TFT 2301 and the TFT 2302 are formed, a polarizing plate 2350 is provided. Also, on a surface of the second substrate 2340 that is not the surface over which the opposing electrode 2341 is formed, a polarizing plate 2351 is provided. Note that the number of orientation films and polarizing plates, and positions thereof in a liquid crystal display device of the present invention are not limited to those shown in a structure of FIG. 15.
  • Next, a structure of an element substrate used in a liquid crystal display device of the present invention is shown.
  • FIG. 16 shows a mode of an element substrate in which a pixel portion 6012 formed over a first substrate 6011 is connected to a separately formed signal line driver circuit 6013. The pixel portion 6012 and the scanning line driver circuit 6014 are each formed using a TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region. By forming the signal line driver circuit with a transistor by which higher mobility can be obtained compared to that of a TFT using an amorphous silicon film, operation of the signal line driver circuit which demands higher driving frequency than that of the scanning line driver circuit can be stabilized. Note that the signal line driver circuit 6013 may be a transistor using a monocrystalline silicon semiconductor, a TFT using a polycrystalline semiconductor, or a transistor using SOI. The pixel portion 6012, the signal line driver circuit 6013, and the scanning line driver circuit 6014 are each supplied with potential of a power source, various signals, and the like via an FPC 6015.
  • Note that the signal driver circuit and the scanning line driver circuit may both be formed over the same substrate as that of the pixel portion.
  • Also, when the driver circuit is separately formed, a substrate over which the driver circuit is formed is not always required to be stuck over a substrate over which the pixel portion is formed, and may be stuck for example over the FPC. FIG. 17A shows a mode of an element substrate in which a pixel portion 6022 formed over a first substrate 6021 is connected to a separately formed signal line driver circuit 6023. The pixel portion 6022 and the scanning line driver circuit 6024 are each formed with a TFT using an oxide semiconductor film including a crystallized region in at least a channel forming region. The signal line driver circuit 6023 is connected to the pixel portion 6022 via an FPC 6025. The pixel portion 6022, the signal line driver circuit 6023, and the scanning line driver circuit 6024 are each supplied with potential of a power source a variety of signals, and the like via the FPC 6025.
  • Also, just a portion of the signal line driver circuit or just a portion of the scanning line driver circuit may be formed over the same substrate as that of the pixel portion using the TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region, and the rest may be formed separately to be electrically connected to the pixel portion. FIG. 17B shows a mode of an element substrate where an analog switch 6033 a included in the signal driver circuit is formed over a first substrate 6031, which is the same substrate as that over which a pixel portion 6032 and a scanning line driver circuit 6034 are formed, and forming a shift resistor 6033 b included in the signal line driver circuit over a different substrate separately and then sticking it over the substrate 6031. The pixel portion 6032 and the scanning line driver circuit 6034 are each formed using the TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region. The shift resistor 6033 b included in the signal line driver circuit is connected to the pixel portion 6032 via an FPC 6035. The pixel portion 6032, the analog switch 6033 a and shift resistor 6033 b included in the signal line drive circuit, and the scanning line driver circuit 6034 are each supplied with potential of a power source, a variety of signals, and the like via the FPC 6035.
  • As shown in FIG. 16 to FIG. 17B, in a liquid crystal display device of the present invention, an entire driver circuit or a portion thereof can be formed over the same substrate as that of a pixel portion, using the TFT including an oxide semiconductor film including a crystallized region in at least a channel forming region.
  • Note that a connection method of a separately formed substrate is not particularly limited, and a COG (chip on glass) method, a wire bonding method, a TAB (tape automated bonding) method or the like can be used. Further, a connection position is not limited to the position shown in FIGS. 18A and 18B, as long as electrical connection is possible. Also, a controller, a CPU, a memory, or the like may be formed separately and connected.
  • Note that a signal line driver circuit used in the present invention is not limited to a mode including only a shift resistor and an analog switch. In addition to the shift resistor and the analog switch, another circuit such as a buffer, a level shifter, or a source follower may be included. Also, the shift resistor and the analog switch is not always required to be provided, and for example a different circuit such as a decoder circuit by which selection of signal line is possible may be used instead of the shift resistor, and a latch or the like may be used instead of the analog switch.
  • FIG. 18A shows a block diagram of a liquid crystal display device to which the present invention is applied. The liquid crystal display device shown in FIG. 18A includes a pixel portion 801 including a plurality of pixels and provided with a liquid crystal element; a scanning line driver circuit 802 that selects each pixel; and a signal line driver circuit 803 that controls video signal input to a selected pixel.
  • In FIG. 18A, the signal line driver circuit 803 includes a shift resistor 804 and an analog switch 805. To the shift resistor 804, a clock signal (CLK) and a start pulse signal (SP) are input. When the clock signal (CLK) and the start pulse signal (SP) are input, timing signals are generated in the shift resistor 804, and the timing signals are input to the analog switch 805.
  • Also, the analog switch 805 is provided with video signals. The analog switch 805 samples the video signals according to the timing signals and distributes the video signals to a signal line of a latter stage.
  • Next, a structure of the scanning line driver circuit 802 is described. The scanning line driver circuit 802 includes a shift resistor 806 and a buffer 807. Also, a level shifter may be included in some cases. In the scanning line driver circuit 802, by inputting the clock signal (CLK) and the start pulse signal (SP), a selection signal is generated. The generated selection signal is buffer amplified in the buffer 807, and then supplied to a corresponding scanning line. To the scanning line, gates of transistors in pixels of one line are connected. Further, since the transistors in the pixels of one line have to be turned on at the same time, a buffer to which a large current can be fed is used for the buffer 807.
  • In a full color liquid crystal display device, when a video signal corresponding to each of R (red), G (green), and B (blue) are sampled in sequence and each are supplied to a corresponding signal line, the number of terminals for connecting the shift resistor 804 and the analog switch 805 corresponds to about ⅓ of the number of terminals for connecting the analog switch 805 and the pixel portion 801. Consequently, by forming the analog switch 805 and the pixel portion 801 over the same substrate, terminals used for connecting separately formed substrates are not required as in a case of forming the analog switch 805 and the pixel portion over different substrates, and occurrence probability of poor connection can be suppressed, and yield can be increased.
  • FIG. 18B shows a block diagram of a liquid crystal display device to which the present invention is applied that is different from that of FIG. 18A. In FIG. 18B, a pixel portion 811, a signal line driver circuit 813 includes a shift resistor 814, a latch A 815, a latch B 816, and a D/A converter circuit (hereinafter referred to as a DAC 817). A scanning line driver circuit 812 is to have the same structure as that of the scanning line driver circuit 802 in FIG. 18A
  • To the shift resistor 814, the clock signal (CLK) and the start pulse signal (SP) are input. When the clock signal (CLK) and the start pulse signal (SP) are input, timing signals are generated in the shift resistor 814 to be input in sequence to the latch A 815 of a first stage. When the timing signals are input to the latch A 815, video signals are written to the latch A 815 in synchronism with the timing signals and retained. Note that in FIG. 18B, although it is assumed that the video signals are written to the latch A 815 in sequence, the present invention is not limited to this structure. A so called division drive in which a plurality of stages of the latch A 815 are divided into several groups, and video signals are input in parallel for each group. Note that the number of the groups at this time is called a division number. For example, when the latches are divided into groups in each of four stages, this is called division driving with four divisions.
  • The time it takes for a video signal writing to a latch of the latch A 815 in all of the stages to complete is called a line period. In practice, a line period sometimes includes the line period to which a horizontal retrace line period is added.
  • When one line period is completed, latch signals are supplied to the latch B 816 of a second stage, and video signals retained in the latch A 815 are written all at once in synchronism with the latch signals, and retained. To the latch A 815 which have sent the video signals to the latch B 816, subsequent video signals are written in sequence in synchronism with timings signals from the shift resistor 814. In this second round of the one line period, video signals written and retained in the latch B 816 are input to DAC 817.
  • The DAC 817 converts input video signals from digital to analog, and supplies the signals to a corresponding signal line.
  • Note that the configurations shown in FIGS. 18A and 18B are modes of a liquid crystal display device relating to this embodiment mode, and configurations of a signal line driver circuit and a scanning line driver circuit are not limited thereto.
  • Note that FIGS. 16 to 18B is not used just for a liquid crystal display device relating to this embodiment mode, and can be used for a light emitting device or other display devices.
  • Note that this embodiment mode can be appropriately combined with Embodiment Modes 1 to 4.
  • Embodiment 1
  • This embodiment describes a mode of a light emitting element used in the light emitting device described in Embodiment Mode 5, with reference to FIGS. 8A to 8F.
  • FIG. 8A shows an example of forming a first pixel electrode 11 by using a conductive film having a light transmitting property and a high work function and forming a second pixel electrode 17 by using a conductive film having a low work function. The first pixel electrode 11 is formed of an oxide conductive material having a light transmitting property, typically, an oxide conductive material containing a silicon oxide at a concentration of 1 to 15 atomic %. A layer containing a light emitting substance 16 composed of a hole injecting or transporting layer 41, a light emitting layer 42, an electron transporting or injecting layer 43 is formed over the first pixel electrode 11. The second pixel electrode 17 is composed of a first electrode layer 33 containing an alkali metal or an alkali earth metal such as LiF or MgAg and a second electrode layer 34 formed of a metal material such as aluminum. The pixel having such the structure can emit light from the first pixel electrode 11 side as indicated by arrow in the drawing.
  • FIG. 8B shows an example of forming a first pixel electrode 11 by using a conductive film having a high work function and forming a second pixel electrode 17 by using a conductive film having a light transmitting property and a low work function. The first pixel electrode 11 is composed of a first electrode layer 35 formed of a metal such as aluminum or titanium, or the metal and a metal material containing nitrogen at a concentration of a stoichiometric composition ratio or less, and a second electrode layer 32 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %. A layer containing a light emitting substance 16 composed of a hole injecting or transporting layer 41, a light emitting layer 42, an electron transporting or injecting layer 43 is formed over the first pixel electrode 11. The second pixel electrode 17 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound or an alloy thereof, and a fourth electrode layer 34 formed of a metal material such as aluminum. By forming each the third electrode layer 33 and the fourth electrode layer 34 to have a thickness of 100 nm or less to make it possible to permeate light, light can be emitted from a second pixel electrode 17 side as indicated by arrow in the drawing.
  • FIG. 8E shows an example of emitting light from both of a first electrode and a second electrode. A first pixel electrode 11 is formed by a conductive film having a light transmitting property and a high work function and a second pixel electrode 17 is formed by a conductive film having a light transmitting property and a low work function. Typically, the first pixel electrode 11 is formed of an oxide conductive material including a silicon oxide at a concentration of 1 to 15 atomic % and the second electrode 17 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound of an alloy thereof, with a thickness of 100 nm or less and a fourth electrode layer 34 formed of a metal material such as aluminum with a thickness of 100 nm or less. Accordingly, light can be emitted from both of the first pixel electrode 11 and the second electrode 17 as indicated by an arrow in the drawing.
  • FIG. 8C shows an example of forming a first pixel electrode 11 by using a conductive film having a light transmitting property and a low work function and forming a second pixel electrode 17 by a conductive film having a high work function. A structure of a layer containing a light emitting substance is illustrated as a stacked layer structure formed by stacking sequentially an electron transporting or injecting layer 43, a light emitting layer 42, and a hole injecting or transporting layer 41. The second pixel electrode 17 is composed of a second electrode layer 32 formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %, and a first electrode layer 35 formed of a metal such as aluminum or titanium, or a metal and a metal material containing nitrogen at a concentration of a stoichiometric composition ratio or less. The first pixel electrode 11 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or MgAg or a compound of an alloy thereof, and a fourth electrode layer 34 formed of a metal material such as aluminum. By forming each the third electrode layer 33 and the fourth electrode layer 34 to have a thickness of 100 nm or less to make it possible to permeate light, light can be emitted from the first electrode 11 side as indicated by an arrow in the drawing.
  • FIG. 8D shows an example of forming a first pixel electrode 11 by using a conductive film having a low work function and forming a second pixel electrode 17 by using a conductive film having a light transmitting property and a high work function. A structure of a layer containing a light emitting substance is illustrated as a stacked layer structure formed by stacking sequentially an electron transporting or injecting layer 43, a light emitting layer 42, and a hole injecting or transporting layer 41. The first pixel electrode 11 is formed to have a similar structure to that illustrated in FIG. 8A and to have a thickness that enables it to reflect light generated in the layer containing a light emitting substance. The second pixel electrode 17 is formed of an oxide conductive material containing silicon oxide at a concentration of 1 to 15 atomic %. By forming a hole injecting layer by a metal oxide which is an inorganic material (typically, molybdenum oxide or vanadium oxide), oxygen which is introduced when forming the second electrode layer 32 is supplied and a hole injecting property is improved, accordingly, drive voltage can be reduced in this structure. By forming the second electrode 17 by a conductive film having a light transmitting property, light can be emitted from one side of the second electrode 17 as indicated by an arrow.
  • FIG. 8F shows an example of emitting light from both sides, that is, a first pixel electrode and a second pixel electrode. A first pixel electrode 11 is formed by a conductive film having a light transmitting property and a low work function and a second pixel electrode 17 is formed by a conductive film having a light transmitting property and a high work function. Typically, the first electrode 11 is composed of a third electrode layer 33 containing an elemental substance of an alkali metal or an alkali earth metal such as LiF or CaF or a compound or an alloy thereof, with a thickness of 100 nm or less and a fourth electrode layer 34 formed of a metal material such as aluminum with a thickness of 100 nm or less. The second pixel electrode 17 is formed of an oxide conductive material containing a silicon oxide at a concentration of 1 to 15 atomic %.
  • The layer containing a light emitting substance 16 can be formed by a charge injection transportation material and a light emitting material including an organic compound or an inorganic compound, can include one or a plurality types of layers selected from a low molecular organic compound, an intermolecular organic compound (which does not have a subliming property but have a molecular chain length of 10 μm or less as typified by dendrimer, oligomer, or the like), and a high molecular organic compound, and can be combined with an inorganic compound having an electron injecting transporting property or a hole injecting transporting property.
  • As a particularly high electron transporting material among charge injection transporting materials, for example, metal complexes having a quinoline skeleton or a benzoquinoline skeleton, such as tris(8-quinolinolato)aluminum (abbreviation.: Alq3), tris(4-methyl-8-quinolinolato)aluminum (abbreviation.: Almq3), bis(10-hydroxybenzo[h]-quinolinato)beryllium (abbreviation.: BeBq2), and bis(2-methyl-8-quinolinolato)-4-phenylphenolato-aluminum (abbreviation.: BAlq) can be given.
  • As a high hole transporting material, for example, aromatic amine based compounds (i.e., one having a benzene ring-nitrogen bond), such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (abbreviation.: α-NPD), 4,4′-bis[N-(3-methylphenyl)-N-phenylamino]biphenyl (abbreviation.: TPD), 4,4′,4′-tris(N,N-diphenylamino)triphenylamine (abbreviation.: TDATA); and 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (abbreviation.: MTDATA) can be given.
  • As a particularly high electron injecting material among charge injection transportation materials, compounds of alkali metal or alkaline earth metal such as lithium fluoride (LiF), cesium fluoride (CsF), and calcium fluoride (CaF2) can be given. In addition, a mixture of a highly electron transporting material such as Alq3 and alkaline earth metal such as magnesium (Mg) may be used.
  • As a highly hole injecting material among charge injection transportation materials, for example, a metal oxide such as molybdenum oxide (MoOx), vanadium oxide (VOx), ruthenium oxide (RuOx), tungsten oxide (WOx), or manganese oxide (MnOx) can be given. Besides these, phthalocyanine based compounds such as phthalocyanine (H2Pc) and copper phthalocyanine (CuPc) can be given.
  • Light emitting layers 42 having different light emission wavelength bands may be each formed in pixels so as to perform color display. Typically, light emitting layers corresponding to respective luminescent colors of R (red), G (green), and B (blue) are formed. In this case, color purity can be improved and specular reflection (glare) of a pixel portion can be prevented by providing a filter (coloring layer) that transmits light of a certain light emission wavelength band on a light emission side of the pixels. By providing the filter (coloring layer), a circular polarizing plate or the like, which has been conventionally thought to be required, can be omitted, thereby reducing loss of light emitted from the light emitting layers. In addition, a change in hue, which is caused in the case where a pixel portion (a display screen) is seen obliquely, can be reduced.
  • There are various kinds of light emitting materials that can be used for forming the light emitting layers 42. With respect to low molecular organic light emitting materials, the following substances can be used: 4-dicyanomethylene-2-methyl-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (abbreviation: DCJT); 2-tert-butyl-4-dicyanomethylene-6-[2-(1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]-4H-pyran (abbreviation: DCJTB); periflanthene; 2,5-dicyano-1,4-bis[2-(10-methoxy-1,1,7,7-tetramethyljulolidine-9-yl)ethenyl]benzene, N,N′-dimethylquinacridone (abbreviation: DMQd); coumarin 6; coumarin 545T; tris(8-quinolinolato)aluminum (abbreviation: Alq3); 9,9′-bianthryl; 9,10-diphenylanthracene (abbreviation: DPA); 9,10-bis(2-naphthyl)anthracene (abbreviation: DNA); and the like. Also, another substance may be used.
  • On the other hand, a high molecular organic light emitting material has higher physical strength than that of a low molecular organic light emitting material, and so a light emitting element formed of a high molecular organic material has high durability. Since a high molecular organic light emitting material can be formed into a film by coating manufacturing an element is relatively easy. Alight emitting element structure using the high molecular organic light emitting material is basically the same as that formed by a low molecular organic light emitting material formed by stacking sequentially a cathode, a layer containing a light emitting substance, and an anode. However, a stacked layer structure which is formed in the case of using a low molecular organic light emitting material is difficult to be formed as a stacked layer structure composed of a layer containing a light emitting substance formed of a high molecular organic light emitting material. Most cases, the layer containing a light emitting substance is formed to have two stacked layers. Specifically, a structure is composed sequentially of a substrate, a layer containing a light emitting substance, a hole transporting layer, and an anode.
  • Since emission color is determined by a material for forming the light emitting layer, a desired light emitting element exhibiting desired light emission can be formed by selecting the material. As a high molecular light emitting material which can be used for forming the light emitting layer, polyparaphenylene vinylene based, polyparaphenylene based, polythiophene based, and polyfluorene based materials can be given.
  • As the polyparaphenylene vinylene based material, a derivative of poly(paraphenylenevinylene) (PPV): poly(2,5-dialkoxy-1,4-phenylenevinylene) (RO-PPV); poly(2-(2′-ethyl-hexoxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV); poly(2-(dialkoxyphenyl)-1,4-phenylenevinylene) (ROPh-PPV); or the like can be given. As the polyparaphenylene based material, a derivative of polyparaphenylene (PPP): poly(2,5-dialkoxy-1,4-phenylene) (RO-PPP); poly(2,5-dihexoxy-1,4-phenylene); or the like can be given. As the polythiophene based material, a derivative of polythiophene (PT): poly(3-alkylthiophene) (PAT); poly(3-hexylthiophene) (PHT); poly(3-cyclohexylthiophene) (PCHT); poly(3-cyclohexyl-4-methylthiophene) (PCHMT); poly(3,4-dicyclohexylthiophene) (PDCHT); poly[3-(4-octylphenyl)-thiophene] (POPT); poly[3-(4-octylphenyl)-2,2bithiophene) (PTOPT); or the like can be given. As the polyfluorene based material, a derivative of polyfluorene (PF): poly(9,9-dialkylfluorene) (PDAF); poly(9,9-dioctylfluorene) (PDOF); or the like can be given.
  • In the case that a high molecular organic light emitting material having a hole transporting property is interposed between an anode and a high molecular organic light emitting material having a light emitting property, a hole injecting property of the anode can be improved. Generally, the one which is dissolved with an acceptor material into water is applied by a spin coating method or the like. Since the high molecular organic light emitting material having the hole transporting property is insoluble in an organic solvent, the foregoing material can be stacked over the above mentioned light emitting material having a light emitting property. As the high molecular organic light emitting material having a hole transporting property, a mixture of PEDOT and camphor sulfonic acid (CSA) as an acceptor material; a mixture of polyaniline (PANI) and polystyrenesulfonic acid (PSS) as an acceptor material; or the like can be given.
  • The light emitting layers 42 can be formed to have a structure exhibiting a single color emission or white emission. In the case of using a white light emitting material, color display can be realized by providing a filter (coloring layer) transmitting light at a specified wavelength at a light emission side of a pixel.
  • In order to form a light emitting layer emitting white emission, Alq3, Alq3 doped partly with Nile red which is a red emission coloring matter, Alq3, p-EtTAZ, and TPD (aromatic diamine) are stacked sequentially by a vapor deposition method. In the case of forming a light emitting layer by a coating method using spin coating, the foregoing material is preferably coated and baked by vacuum heating. For example, an aqueous solution of poly(ethylene dioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), which functions as a hole injecting layer, may be applied over an entire surface of a substrate and baked. Afterwards, a solution of polyvinyl carbazole (PVK) doped with a luminescence center pigment (such as 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM1), Nile red, or coumarin 6), which serves as a light emitting layer, may then be applied over the entire surface and baked.
  • The light emitting layer can be formed by a single layer. 1,3,4-oxadiazole derivatives (PBD) having an electron transporting property can be dispersed to polyvinylcarbazole (PVK) having a hole transporting property. Further, white emission can be obtained by dispersing PBD of 30 wt % as an electron transporting agent and dispersing an appropriately amount of four kinds coloring matters (TPB, coumarin 6, DCM1, and Nile red). Besides the light emitting element exhibiting white emission, light emitting elements exhibiting red emission, green emission, or blue emission can be manufactured by appropriately selecting a material of the light emitting layer.
  • In the case that a high molecular organic material having a hole transporting property is interposed between an anode and a high molecular organic material having a light emitting property, a hole injecting property of the anode can be improved. Generally, a high molecular organic material having a hole transporting property dissolved in water together with an acceptor material is coated by a spin coating method. Since the high molecular organic material, having a hole transporting property is insoluble in an organic solvent, the foregoing material can be stacked over the above mentioned light emitting material having a light emitting property. As the high molecular organic material having a hole transporting property, a mixture of PEDOT and camphor sulfonic acid (CSA) as an acceptor material; a mixture of polyaniline (PANI) and polystyrenesulfonic acid (PSS) as an acceptor material; or the like can be given.
  • As a material for the light emitting layers 42, a triplet excited material including metal complexes can be used besides a singlet excited light emitting material. For example, a red luminescent pixel which has a relatively short half-brightness life is formed by a triplet excited light emitting material among the red luminescent pixel, a green luminescent pixel, and blue luminescent pixel; and the other pixels are formed by a singlet excited light emitting material. Since a triplet excited light emitting material has good emission efficiency, there is an advantage of obtaining luminescence which can be obtained in the case of using a singlet excited light emitting material at low power consumption. That is, reliability can be improved since a light emitting element can be operated at a small amount of current in the case of applying a triplet excited light emitting material for a red emission pixel. In order to reduce power consumption, a red luminescent pixel and a green luminescent pixel are formed by a triplet excited light emitting material, and a blue luminescent pixel can be formed by a singlet excited light emitting material. By forming a green luminescent pixel which is well visible for human by a triplet excited light emitting material, power consumption can be further reduced.
  • As an example of a triplet excited light emitting material, a material using metal complexes as a dopant can be nominated. The following are known as the foregoing metal complexes: metal complexes having platinum which is the third transition series element as a central metal, metal complexes having iridium as a central metal, or the like. These compounds are not limited as a triplet excited light emitting material. A compound having the foregoing structure and a compound having Group 8 to Group 10 elements as a central metal can be used.
  • The following materials for forming the foregoing layer containing a light emitting substance are illustrative only. A light emitting element can be formed by appropriately stacking functional each layer such as a hole injecting transporting layer, a hole transporting layer, an electron injecting transporting layer, an electron transporting layer, a light emitting layer, an electron blocking layer, or a hole blocking layer. Further, a mixed layer or mixed junction can be formed by combining each of the foregoing layers. A layer structure of the light emitting layer is variable. Instead of not providing a specific electron injection region or light emitting region, various changes and modifications such as providing an electrode or a dispersed luminescent material for being used only for the electron injection region or the light emitting region are permissible unless otherwise such changes and modifications depart from the scope of the present invention.
  • Embodiment 2
  • In this embodiment, a pixel circuit of a display panel of a light emitting device relating to the present invention and an operational configuration thereof is described with reference to FIGS. 9A to 9F. For the operational configuration of the display panel in a display device in which video signals are digital, there is a configuration in which video signals to be input to a pixel is regulated by voltage, and a configuration in which they are regulated by current. As the configuration in which video signals are regulated by voltage, there is one where voltage applied to a light emitting element is constant (CVCV), and one where current applied to the light emitting element is constant (CVCC). Also, as the configuration in which video signals are regulated by current, there is one where voltage applied to the light emitting element is constant (CCCV), and one where current applied to the light emitting element is constant (CCCC). This embodiment describes a pixel of a CVCV operation with reference to FIGS. 9A and 9B. Further, a pixel of a CVCC operation is described with reference to FIGS. 9C to 9F.
  • In the pixel shown in each of FIGS. 9A and 9B, a signal line 3710 and a power source line 3711 are arranged in a column direction and a scanning line 3714 is arranged in a row direction. Also, a switching TFT 3701, a driving TFT 3703, a capacitor element 3702, and a light emitting element 3705 are included.
  • Note that the switching TFT 3701 and the driving TFT 3703 are operated in a linear region when they are turned on. Also, the driving TFT 3703 has a role of controlling whether voltage is applied to the light emitting element 3705. It is favorable in terms of a manufacturing step if both TFTs have the same conductivity type. In this embodiment, the switching TFT 3701 is formed as an n-channel type TFT, and the driving TFT 3703 is formed as a p-channel type TFT. Also, as the driving TFT 3703, a depletion type TFT may be used in addition to an enhancement type TFT. Further, a ratio (W/L) of a channel width W and a channel length L of the driving TFT 3703 is preferably 1 to 1000, even though it depends on a mobility of the TFT. As W/L gets larger, an electrical property of the TFT is improved.
  • In the pixel shown in each of FIGS. 9A and 9B, the switching TFT 3701 controls input of video signals to the pixel, and when the switching TFT 3701 is turned on, video signals are input inside the pixel. Then, voltage of the video signals is retained in the capacitor element 3702.
  • In FIG. 9A, in a case where the power source line 3711 is Vss and an opposing electrode of the light emitting element 3705 is Vdd, as in FIGS. 8C and 8D, the opposing electrode of the light emitting element is an anode, and an electrode connected to the driving TFT 3703 is a cathode. In this case, luminance irregularity due to characteristic variation of the driving TFT 3703 can be suppressed.
  • In FIG. 9A, in a case where the power source line 3711 is Vdd and the opposing electrode of the light emitting element 3705 is Vss, as in FIGS. 8A and 8B, the opposing electrode of the light emitting element is a cathode, and the electrode connected to the driving TFT 3703 is an anode. In this case, by inputting video signals having higher voltage than Vdd to the signal line 3710, voltage of the video signals are retained in the capacitor element 3702 and the driving TFT 3703 operated in the linear region; consequently, luminance irregularity due to variation of the TFT can be improved.
  • The pixel shown in FIG. 9B has the same pixel configuration as that shown in FIG. 9A except that in FIG. 9B, a TFT 3706 and a scanning line 3715 are added.
  • Turning on or off of the TFT 3706 is controlled by the newly placed scanning line 3715. When the TFT 3706 is turned on, a charge retained in the capacitor element 3702 is discharged, and the driving TFT 3703 is turned off. In other words, according to a placement of the TFT 3706, a state in which current is not fed to the light emitting element 3705 can be created forcefully. Therefore, the TFT 3706 can be called an erasing TFT. Consequently, in the configuration in FIG. 9B, a duty ratio of light emission can be improved since a lighting period can be started at the same time as or right after a start of a writing period, without waiting for signals to be written to all pixels.
  • In a pixel having the foregoing operational configuration, a current value of the light emitting element 3705 can be determined by the driving TFT 3703 which operates in the linear region. By the foregoing configuration, characteristic variation of TFTs can be suppressed, luminance irregularity of light emitting elements due to the characteristic variations of the TFTs can be improved, and a display device with improved image quality can be provided.
  • Next, a pixel of a CVCC operation is described with reference to FIGS. 9C to 9E The pixel shown in FIG. 9C has a pixel configuration shown in FIG. 9A with a power source line 3712 and a current control TFT 3704 provided in addition.
  • The pixel shown in FIG. 9E has the same configuration as the pixel shown in FIG. 9C, except that a gate electrode of the driving TFT 3703 is connected to the power supply line 3712 arranged in a row direction. In other words, both pixels shown in FIGS. 9 c and 9E show the same equivalent circuit schematic. However, the power supply line 3712 arranged in a column direction (FIG. 9C) is formed with a conductive film formed in a different layer from that of the power supply line 3712 arranged in a row direction (FIG. 9E). Here, wirings to which the gate electrode of the driving TFT 3703 are connected is given focus, and in order to show that layers for manufacturing the wirings are different, they are separately described in FIGS. 9C and 9E.
  • Note that the switching TFT 3701 operates in the linear region, and the driving TFT 3703 operates in a saturation region. Also, the driving TFT 3703 has a role of controlling a current value fed to the light emitting element 3705, and the current control TFT 3704 operates in the saturation region has a role of controlling supply of current to the light emitting element 3705.
  • The pixel shown in each of FIGS. 9D and 9F have the same pixel configuration as the pixel shown in each of FIGS. 9C and 9E, respectively, except that they are each provided with an erasing TFT 3706 and the scanning line 3715 in addition.
  • Note that in the pixels shown in FIGS. 9A and 9B, CVCC operations are also possible. Also, for pixels having the operational configurations shown in FIGS. 9C to 9F, respectively, similarly to FIGS. 9A and 9B, Vdd and Vss can be appropriately changed depending on a direction in which current of a light emitting element flows.
  • In a pixel having the foregoing configuration, since the current control TFT 3704 operates in the linear region, a small shift in Vgs of the current control TFT 3704 does not have an effect on the current value of the light emitting element 3705. In other words, the current value of the light emitting element 3705 can be determined by the driving TFT 3703 which operated in the saturation region. By the foregoing configuration, luminance irregularity of light emitting elements due to characteristic variations of TFTs can be improved, and a display device with improved image quality can be provided
  • Note that although a configuration in which the capacitor element 3702 is provided is shown, the present invention is not limited thereto, and in a case where a capacity for retaining video signals can be covered by a gate capacitance, the capacitor element 3702 is not required to be provided.
  • By such an active matrix type display device, in a case where pixel density is increased, low voltage drive is possible since a TFT is provided in each pixel, and this is considered to be advantageous.
  • Further, in a display device relating to the present invention, a driving method of a screen display is not particularly limited, and for example, a dot sequential driving method, a line sequential driving method, an area sequential driving method, or the like may be used. Typically, the line sequential driving method is used, and a time division gray scale driving method or an area dray scale driving method may be appropriately used. Further, image signals input to a source line of the display device may be analog signals, or digital signals, and a driver circuit and the like may be designed appropriately according to the image signals.
  • Embodiment 3
  • In this embodiment, mounting of a driver circuit relating to the present invention is described with reference to FIGS. 10A to 10C.
  • As shown in FIG. 10A, a signal line driver circuit 1402 and scanning line driver circuits 1403 a and 1403 b are mounted on a periphery of a pixel portion 1401. In FIG. 10A, as the signal line driver circuit 1402 and the scanning line driver circuits 1403 a and 1403 b, an IC chip 1405 is mounted on a substrate 1400 by a known mounting method such as a method using an anisotropic conductive adhesive or an anisotropic conductive film, a COG method, a wire bonding, a reflow treatment using a solder bump, or the like. Here, the IC chip 1405 is mounted by a COG method, and connected to an external circuit through an FPC (flexible printed circuit) 1406.
  • In a case where a semiconductor element typified by a TFT is formed with an oxide semiconductor as shown in FIG. 10B, the pixel portion 1401, the scanning line driver circuits 1403 a and 1403 b, and the like may be integrated over the substrate while the signal line driver circuit 1402 and the like may be separately mounted as IC chips. In FIG. 10B, the IC chip 1405 as the signal line driver circuit 1402 is mounted on the substrate 1400 by a COG method. The IC chip 1405 is connected to an external circuit through the FPC 1406.
  • Further, as shown in FIG. 10C, there is a caser where the signal line driver circuit 1402 and the like are mounted by a TAB method instead of a COG method. The IC chip is connected to an external circuit through the FPC 1406. Although the signal line driver circuit is mounted by a TAB method in FIG. 10C, the scanning line driver circuit may be mounted by a TAB method.
  • When the IC chip is mounted by a TAB method, the pixel portion can occupy a large area in the substrate, leading to a narrower frame.
  • Instead of an IC chip formed over a silicon wafer, an IC (hereinafter referred to as a driver IC) formed over a glass substrate may be provided. Since an IC chip is formed over a circular silicon wafer, the shape of a mother substrate is limited. Meanwhile, a driver IC is formed over a glass substrate whose shape is not limited, which results in increased productivity. Accordingly, the shape and size of a driver IC can be set freely. For example, when forming a driver IC with a long side of 15 to 80 mm, a smaller number of driver ICs are required as compared to the case of mounting IC chips. As a result, the number of connection terminals can be reduced and productive yield can be increased.
  • A driver IC can be formed using a crystalline semiconductor formed over a substrate, and the crystalline semiconductor may be formed by continuous wave laser light irradiation. A semiconductor film obtained by continuous wave laser light irradiation has few crystal defects and large crystal grains. Accordingly, a transistor having such a semiconductor film is improved in mobility and response speed, capable of high speed driving, and suitable for a driver IC. A driver IC may be formed using an oxide semiconductor film of the present invention in which crystallinity of at least a channel forming region is improved.
  • Embodiment 4
  • In this embodiment, a display module relating to the present invention is described. Here, as one example of the display module, a liquid crystal module is described with reference to FIG. 11.
  • A substrate 1601 and an opposing substrate 1602 are stuck together by a sealant 1600, and a pixel portion 1603 and a liquid crystal layer 1604 are provided therebetween to form a display region.
  • A coloring layer 1605 is required in a case of performing color display, and in a case of an RGB method, a coloring layer corresponding to each of red, green and blue are provided corresponding to each pixel. On the outsides of the substrate 1601 and the opposing substrate 1602, polarizing plates 1606 and 1607 are provided, respectively. Also, on a surface of the polarizing plate 1606, a protective film 1616 is formed, and alleviates impact from the exterior.
  • A wiring substrate 1610 is connected to a connection terminal 1608 provided over the substrate 1601 via an FPC 1609. External circuits 1612 such as a pixel driver circuit (an IC chip, a driver IC, or the like), a control circuit, a power source circuit or the like is incorporated to the wiring substrate 1610.
  • A cold cathode tube 1613, a reflecting plate 1614, and an optical film 1615 are a backlight unit, and these become a light source to emit light to a liquid crystal display panel. A liquid crystal panel, the light source, the wiring substrate, the FPC, and the like are retained and protected in a bezel 1617.
  • Embodiment 5
  • In this embodiment mode, as an electronic appliance relating to the present invention, a television device (also simply called a TV, or a television receiving device), a digital camera, a digital video camera, a mobile phone device (also simply called a cellular phone device or a cellular phone), a mobile information terminal such as a PDA, a mobile game machine, a monitor for a computer, a computer, an audio reproducing device such as a car audio component, an image reproducing device such as a home-use game machine provided with a recording medium, or the like, is described with reference to drawings.
  • The mobile information terminal shown in FIG. 12A includes a main body 9201, a display portion 9202, and the like. By using a display device that is one feature of the present invention, the mobile information terminal can be provided inexpensively.
  • The digital video camera shown in FIG. 12B includes a display portion 9701, a display portion 9702, and the like. By using the display device that is one feature of the present invention, the digital video camera can be provided inexpensively.
  • The mobile terminal shown in FIG. 12C includes a main body 9101, a display portion 9102, and the like. Embodiment Modes 1 to 5, and embodiments 1 to 4 can be applied to the display portion 9102. By using the display device that is one feature of the present invention, the mobile terminal can be provided inexpensively.
  • The mobile type television device shown in FIG. 12D includes a main body 9301, a display portion 9302, and the like. By using the display device that is one feature of the present invention, the mobile type television device can be provided inexpensively. The present invention can be widely applied to a small scale television device such as a television device mounted on a mobile terminal such as a cellular phone, a medium scale television device that can be carried around, and a large scale television device (for example, 40-inch or larger).
  • The mobile type computer shown in FIG. 12E includes a main body 9401, a display portion 9402, and the like. By using the display device that is one feature of the present invention, the mobile type computer can be provided inexpensively.
  • The television device shown in FIG. 12F includes a main body 9501, a display portion 9502, and the like. By using the display device that is one feature of the present invention, the television device can be provided inexpensively.
  • Among the foregoing electronic appliances, that which uses a secondary battery can have a longer operating time by how much power consumption is reduced, and a need for recharging the secondary battery can be cut out.
  • Embodiment 6
  • In this embodiment, a structure of an LRTA device used in the present invention is described with reference to FIGS. 19A and 19B.
  • In FIG. 19A, a gate electrode 1922, a gate insulating films 1923 a and 1923 b, and an oxide semiconductor film 1902 are formed over a glass substrate 1901. Also, on a lower surface side of the substrate and on an upper surface side of the substrate, an infrared light lamp 1903 and an ultraviolet light lamp 1904 are provided, respectively. And, a first infrared light auxiliary lamp 1905, and a second infrared light auxiliary lamp 1906 are provided in parallel with the ultraviolet light lamp 1904. Note that the first infrared light auxiliary lamp 1905 and the second infrared light auxiliary lamp 1906 are not required to be provided.
  • Also, this embodiment mode has a structure in which the first infrared light auxiliary lamp 1905 and the second infrared light auxiliary lamp 1906 are placed in front and in back (with respect to a moving direction of the substrate) of the ultraviolet light lamp 1904, respectively. However, the structure may be that both are placed in the front or in the back.
  • In a structure such as the above, each lamp (the infrared light lamp 1903, the ultraviolet light lamp 1904, the first infrared light auxiliary lamp 1905, and the second infrared light auxiliary lamp 1906) moves in a direction of an arrow in FIG. 19A, and scans a linear light. In the structure of this embodiment, a region 1908 shown by a dotted line in the oxide semiconductor film 1902 that overlaps with the gate electrode 1922 with the gate insulating films 1923 a and 1923 b therebetween is irradiated with infrared light from the first infrared light auxiliary lamp 1905 to be heated. Note that each lamp is moved when lamp irradiation is performed on the substrate; however, the glass substrate may be moved, or both the lamp and the substrate may be moved.
  • After irradiation is performed on the first infrared light auxiliary lamp 1905, the upper surface side of the substrate is irradiated with ultraviolet light from the ultraviolet light lamp 1904, as well as the lower surface side of the substrate is irradiated with infrared light from the infrared light lamp 1903, and the region 1908 of the oxide semiconductor film 1902 that overlaps with the gate electrode 1922 is heated. In this embodiment, crystallization of the oxide semiconductor film 1902 is performed with this region 1908 having priority.
  • The region 1908 heated by irradiation with the ultraviolet light lamp 1904 and the infrared light lamp 1903 is heated with infrared light from the second infrared light auxiliary lamp 1906 that is placed in back of the ultraviolet light lamp 1904. Irradiation with infrared light from the second infrared light auxiliary lamp 1906 is provided to further heat the region 1908 in which crystallization is promoted.
  • As in the foregoing, the region 1908 of the oxide semiconductor film 1902 (the region that becomes a crystalline oxide semiconductor film by a crystallization step) that overlaps with the gate electrode 1922 appears to move to the front along with a movement of the substrate.
  • FIG. 19B shows a graph showing a relationship between time (Time) and temperature (Temp.) of the region 1908 of the oxide semiconductor film 1902. As shown in FIG. 19B, the region 1908 comes to a preheating state, then continues on to a main heating state, and a post heating state, with passing of time.
  • As clear from FIG. 19B, in the preheating state, a temperature is raised to a certain degree so that a temperature gradient with the subsequent main heating state is alleviated. This is so that accumulation of warping energy and the like in the oxide semiconductor film due to being heated suddenly in the main heating state, is prevented.
  • Therefore, it is desirable that output energy of the first infrared light auxiliary lamp 1905 is set to be smaller than output energy of the infrared light lamp 1903. At this time, a practitioner may decide how adjustment is to be made to form the appropriate temperature gradient.
  • Next, after the preheating state, infrared light irradiation is performed towards a lower surface side of the substrate, and the oxide semiconductor film 1902 is brought to the main heating state in which a film surface temperature is raised to 250° C. to 570° C. At this state, crystallinity of the region 1908 in the oxide semiconductor film 1902 becomes favorable. Note that ultraviolet light emitted at the same time contributes to electron excitation; therefore, it does not contribute to change in terms of heat.
  • The region 1908 with improved crystallinity obtained in the main heating state is heated by the second infrared auxiliary lamp 1906 placed in back of the ultraviolet light lamp 1904. This post heating state has a role of preventing a completion of crystallization in a state where thermal equilibrium is deteriorated by sudden cooling in the main heating state. This is a devise for obtaining the most stable bond state by providing allowance in a time period required for crystallization.
  • Accordingly, it is desirable that output energy of the second infrared light auxiliary lamp 1906 is also set to be smaller than that of infrared light lamp 1903 placed under a substrate surface, and adjusted so that a temperature gradient is formed in which the temperature is gradually lowered.
  • By a structure as in the foregoing, shrinking of a substrate can be suppressed since a portion of an oxide semiconductor film that overlaps with a gate electrode is heated. Also, by performing crystallization by moving each lamp or substrate, throughput can be increased. Also, occurrence of a crystal defect such as stress warping, a dangling bond, or the like that can occur due to sudden heating of an oxide semiconductor film or sudden cooling of a crystalline oxide semiconductor film can be suppressed, and the oxide semiconductor film including the region 1908 with excellent crystallinity can be obtained.
  • Also, by performing irradiation heating without providing the first infrared light auxiliary lamp 1905 and the second infrared light auxiliary lamp 1906, heating of the substrate may be suppressed.
  • Note that in this embodiment, a structure of an LRTA device using a linear lamp is described; however, a planar lamp may be used to perform the crystallization step.
  • Embodiment 7
  • In this embodiment, an example of applying a semiconductor device relating to the present invention to an electrophoresis display device is described with reference to FIG. 20.
  • The electrophoresis display device shown in FIG. 20 includes a main body 2010, a pixel portion 2011 displaying an image, a driver IC 2012, a receiving device 2013, a film battery 2014, and the like. Each of the driver IC 2012, the receiving device 2013, and the like may be mounted with a semiconductor part. The semiconductor device of the present invention can be used for the pixel portion 2011 and the driver IC 2012. Note that the pixel portion 2011 has a structure where a display layer in which microcapsules, Gyricon beads, and the like are arranged and a driver layer controlling the display layer are stacked. The display layer and the driver layer are interposed between two plastic films.
  • Such an electrophoresis display device is also called an electronic paper, and it is extremely light weight, and since it has a flexible property, it can be rolled up in a tubular form; consequently, it is extremely advantageous in carrying around. Therefore, a display medium of a large screen can be freely carried around. Also, since the semiconductor of the present invention is used for the pixel portion 2011 and the like, an inexpensive display device can be provided.
  • A variety of modes can be considered as an electrophoresis display device of this embodiment, but the electrophoresis display device of this embodiment is a device in which a plurality of microcapsules each including first particles having a positive charge and second particles having a negative charge are dispersed in a solvent or a solute, and an electrical field is applied to the microcapsules so that the particles in the microcapsules move in opposite directions of each other, and only a color of the particles gathered on one side is displayed. Note that the first particles or the second particles includes a colorant, and does not move in a case where there is not electric field. Also, a color of the first particles is different from a color of the second particles (the particles may also be colorless). That which microcapsules are dispersed in a solvent is called an electronic ink, and this electronic ink can be printed on a surface such as glass, plastic, fabric, paper, and the like.
  • Also, in a semiconductor device of the present invention, in addition to an oxide semiconductor film having a light transmitting property with respect to visible light, a transparent conductive film including indium tin oxide (ITO), ITSO made of indium tin oxide and silicon oxide, organic indium, organic tin, zinc oxide, titanium nitride, or the like each having a light transmitting property with respect to visible light for a source electrode, a drain electrode, and the like. If a conventional amorphous silicon or polysilicon is used for a TFT used in a driver layer, to prevent a channel forming region from being irradiated with light, it is necessary that a light shielding film is provided to overlap the channel forming region. However, as in the present invention, by manufacturing the driver layer using the oxide semiconductor film, the source electrode, and the drain electrode each having a light transmitting property with respect to visible light, an electrophoresis display device of a double-sided display can be obtained.
  • Note that the semiconductor device of the present invention can be used as a means for displaying mainly still images for a navigation system, an audio reproducing device (such as a car audio component, or an audio component), a personal computer, a game machine, a mobile information terminal (such as a mobile computer, a cellular phone, a mobile game machine, or an electronic book), and in addition, the semiconductor device can be used for household appliances such as a refrigerator, a washing machine, a rice cooker, a fixed telephone, a vacuum cleaner, and a clinical thermometer, as well as for a hanging poster in a train, and a large-sized information display such as an arrival and departure guide board in a railroad station and an airport.
  • Embodiment 8
  • In this embodiment, a digital audio player relating to the present invention is described with reference to FIG. 21.
  • The digital audio player shown in FIG. 21 includes a main body 2110, a display portion 2111, a memory portion 2112, an operation portion 2113, a pair of earphones 2114, and the like. Note that instead of the pair of earphones 2114, a pair of headphones, or a wireless pair of earphones can be used. As the display portion 2111, liquid crystal, organic EL, or the like can be used. As the memory portion 2112, a flash memory with a recording capacity of 200 megabytes (MB) to 200 gigabytes (GB) is used, and by operating the operation portion 2113, an image or a sound (music) can be recorded and reproduced.
  • Since a channel forming region of an oxide semiconductor film of a TFT included in a semiconductor device of the present invention includes at least a crystallized region, by providing the semiconductor device of the present invention to the display portion 2111, an inexpensive digital audio player with good performance can be provided. Further, since the channel forming region of the oxide semiconductor film is transparent and does not absorb visible light, unnecessary light carriers are not generated. Therefore, since characteristic degradation of the channel forming region due to light irradiation does not occur, a highly reliable digital audio player can be provided.
  • This embodiment can be appropriately combined with Embodiment Modes 1 to 6 and Embodiments 1 to 4.
  • This application is based on Japanese Patent Application serial no. 2005-283782 filed in Japan Patent Office on Sep. 29, 2005, the entire contents of which are hereby incorporated by reference.

Claims (24)

1-38. (canceled)
39. A electrophoresis display device including a pixel portion and a driver IC, the pixel portion comprising:
a gate electrode over a substrate;
an insulating film over the gate electrode;
an oxide semiconductor film over the gate electrode with the insulating film interposed therebetween;
a channel protective film formed over the oxide semiconductor film;
a source electrode and a drain electrode formed over the oxide semiconductor film and the channel protective film; and
a passivation film comprising an insulating material formed over at least the source electrode, the drain electrode, the channel protective film and the oxide semiconductor film.
40. The electrophoresis display device according to claim 39 wherein the oxide semiconductor film comprises an In—Ga—Zn—O based amorphous oxide semiconductor.
41. The electrophoresis display device according to claim 39 wherein the oxide semiconductor film has a thickness of 50 to 200 nm.
42. The electrophoresis display device according to claim 39 wherein the passivation film comprises silicon oxide.
43. The electrophoresis display device according to claim 39 further comprising a receiving device.
44. The electrophoresis display device according to claim 39 wherein the driver IC comprises a thin film transistor using an oxide semiconductor film formed over the substrate.
45. A electrophoresis display device including a pixel portion and a driver IC, the pixel portion comprising:
a gate electrode over a substrate;
an insulating film over the gate electrode;
an oxide semiconductor film over the gate electrode with the insulating film interposed therebetween;
a channel protective film formed over the oxide semiconductor film;
a source electrode and a drain electrode formed over the oxide semiconductor film and the channel protective film wherein each of the source electrode and the drain electrode comprises a titanium film in contact with an upper surface of the oxide semiconductor film; and
a passivation film comprising an insulating material formed over at least the source electrode, the drain electrode, the channel protective film and the oxide semiconductor film.
46. The electrophoresis display device according to claim 45 wherein the oxide semiconductor film comprises an In—Ga—Zn—O based amorphous oxide semiconductor.
47. The electrophoresis display device according to claim 45 wherein the passivation film comprises silicon oxide.
48. The electrophoresis display device according claim 45 further comprising a second conductive film comprising aluminum or an alloy thereof on the titanium film in each of the source electrode and the drain electrode.
49. The electrophoresis display device according to claim 45 further comprising a receiving device.
50. The electrophoresis display device according to claim 45 wherein the driver IC comprises a thin film transistor using an oxide semiconductor film formed over the substrate.
51. A electrophoresis display device including a pixel portion and a driver IC, the pixel portion comprising:
a gate electrode over a substrate;
an insulating film over the gate electrode;
an oxide semiconductor film over the gate electrode with the insulating film interposed therebetween;
a source electrode and a drain electrode formed over the oxide semiconductor film; and
a passivation film comprising an insulating material formed over at least the source electrode, the drain electrode and the oxide semiconductor film,
wherein the passivation film is in direct contact with at least upper surfaces of the source electrode and the drain electrode and an upper surface of the oxide semiconductor film between the source electrode and the drain electrode.
52. The electrophoresis display device according to claim 51 wherein the oxide semiconductor film comprises an In—Ga—Zn—O based amorphous oxide semiconductor.
53. The electrophoresis display device according to claim 51 wherein the passivation film comprises silicon oxide.
54. The electrophoresis display device according to claim 51 further comprising a receiving device.
55. The electrophoresis display device according to claim 51 wherein the driver IC comprises a thin film transistor using an oxide semiconductor film formed over the substrate.
56. A electrophoresis display device including a pixel portion and a driver IC, the pixel portion comprising:
a gate electrode over a substrate;
an insulating film over the gate electrode;
an oxide semiconductor film over the gate electrode with the insulating film interposed therebetween;
a source electrode and a drain electrode formed over the oxide semiconductor film wherein each of the source electrode and the drain electrode comprises a titanium film in contact with an upper surface of the oxide semiconductor film; and
a passivation film comprising an insulating material formed over at least the source electrode, the drain electrode, and the oxide semiconductor film,
wherein the passivation film is in direct contact with at least upper surfaces of the source electrode and the drain electrode and an upper surface of the oxide semiconductor film between the source electrode and the drain electrode.
57. The electrophoresis display device according to claim 56 wherein the oxide semiconductor film comprises an In—Ga—Zn—O based amorphous oxide semiconductor.
58. The electrophoresis display device according to claim 56 wherein the passivation film comprises silicon oxide.
59. The electrophoresis display device according claim 56 further comprising a second conductive film comprising aluminum or an alloy thereof on the titanium film in each of the source electrode and the drain electrode.
60. The electrophoresis display device according to claim 56 further comprising a receiving device.
61. The electrophoresis display device according to claim 56 wherein the driver IC comprises a thin film transistor formed over using an oxide semiconductor film formed over the substrate.
US12/184,432 2005-09-29 2008-08-01 Semiconductor Device and Manufacturing Method Thereof Abandoned US20080308805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/184,432 US20080308805A1 (en) 2005-09-29 2008-08-01 Semiconductor Device and Manufacturing Method Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-283782 2005-09-29
JP2005283782 2005-09-29
US11/524,549 US7674650B2 (en) 2005-09-29 2006-09-21 Semiconductor device and manufacturing method thereof
US12/184,432 US20080308805A1 (en) 2005-09-29 2008-08-01 Semiconductor Device and Manufacturing Method Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/524,549 Continuation US7674650B2 (en) 2005-09-29 2006-09-21 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
US20080308805A1 true US20080308805A1 (en) 2008-12-18

Family

ID=37547581

Family Applications (18)

Application Number Title Priority Date Filing Date
US11/524,549 Active 2027-03-09 US7674650B2 (en) 2005-09-29 2006-09-21 Semiconductor device and manufacturing method thereof
US12/184,418 Active US7732819B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,401 Active US8629069B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,407 Active 2027-04-06 US7932521B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,443 Active US8274077B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,388 Active US8669550B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,432 Abandoned US20080308805A1 (en) 2005-09-29 2008-08-01 Semiconductor Device and Manufacturing Method Thereof
US12/432,403 Active US7910490B2 (en) 2005-09-29 2009-04-29 Semiconductor device and manufacturing method thereof
US12/542,068 Active US9099562B2 (en) 2005-09-29 2009-08-17 Semiconductor device and manufacturing method thereof
US12/699,240 Expired - Fee Related US8796069B2 (en) 2005-09-29 2010-02-03 Semiconductor device and manufacturing method thereof
US12/948,095 Active US8466463B2 (en) 2005-09-29 2010-11-17 Semiconductor device and manufacturing method thereof
US12/950,300 Abandoned US20110104851A1 (en) 2005-09-29 2010-11-19 Semiconductor Device and Manufacturing Method Thereof
US13/011,128 Abandoned US20110121290A1 (en) 2005-09-29 2011-01-21 Semiconductor Device and Manufacturing Method Thereof
US13/011,142 Active US8790959B2 (en) 2005-09-29 2011-01-21 Semiconductor device and manufacturing method thereof
US14/816,686 Active US10304962B2 (en) 2005-09-29 2015-08-03 Semiconductor device and manufacturing method thereof
US16/162,505 Abandoned US20190051759A1 (en) 2005-09-29 2018-10-17 Semiconductor device and manufacturing method thereof
US16/459,951 Abandoned US20190326444A1 (en) 2005-09-29 2019-07-02 Semiconductor device and manufacturing method thereof
US17/521,021 Pending US20220069137A1 (en) 2005-09-29 2021-11-08 Semiconductor device and manufacturing method thereof

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US11/524,549 Active 2027-03-09 US7674650B2 (en) 2005-09-29 2006-09-21 Semiconductor device and manufacturing method thereof
US12/184,418 Active US7732819B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,401 Active US8629069B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,407 Active 2027-04-06 US7932521B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,443 Active US8274077B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof
US12/184,388 Active US8669550B2 (en) 2005-09-29 2008-08-01 Semiconductor device and manufacturing method thereof

Family Applications After (11)

Application Number Title Priority Date Filing Date
US12/432,403 Active US7910490B2 (en) 2005-09-29 2009-04-29 Semiconductor device and manufacturing method thereof
US12/542,068 Active US9099562B2 (en) 2005-09-29 2009-08-17 Semiconductor device and manufacturing method thereof
US12/699,240 Expired - Fee Related US8796069B2 (en) 2005-09-29 2010-02-03 Semiconductor device and manufacturing method thereof
US12/948,095 Active US8466463B2 (en) 2005-09-29 2010-11-17 Semiconductor device and manufacturing method thereof
US12/950,300 Abandoned US20110104851A1 (en) 2005-09-29 2010-11-19 Semiconductor Device and Manufacturing Method Thereof
US13/011,128 Abandoned US20110121290A1 (en) 2005-09-29 2011-01-21 Semiconductor Device and Manufacturing Method Thereof
US13/011,142 Active US8790959B2 (en) 2005-09-29 2011-01-21 Semiconductor device and manufacturing method thereof
US14/816,686 Active US10304962B2 (en) 2005-09-29 2015-08-03 Semiconductor device and manufacturing method thereof
US16/162,505 Abandoned US20190051759A1 (en) 2005-09-29 2018-10-17 Semiconductor device and manufacturing method thereof
US16/459,951 Abandoned US20190326444A1 (en) 2005-09-29 2019-07-02 Semiconductor device and manufacturing method thereof
US17/521,021 Pending US20220069137A1 (en) 2005-09-29 2021-11-08 Semiconductor device and manufacturing method thereof

Country Status (4)

Country Link
US (18) US7674650B2 (en)
EP (6) EP1770788A3 (en)
JP (22) JP5020190B2 (en)
CN (19) CN102593187B (en)

Cited By (401)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163743A1 (en) * 2005-01-21 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20060170067A1 (en) * 2005-02-03 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US20070194334A1 (en) * 2006-02-21 2007-08-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20080299778A1 (en) * 2007-05-30 2008-12-04 Casio Computer Co., Ltd. Silicon film dry etching method
US20090261414A1 (en) * 2008-04-18 2009-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Method for Manufacturing the Same
US20100006845A1 (en) * 2008-07-10 2010-01-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US20100025677A1 (en) * 2008-07-31 2010-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100035379A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20100032668A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100032667A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100046137A1 (en) * 2008-03-13 2010-02-25 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic device
US20100051940A1 (en) * 2008-09-01 2010-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US7674650B2 (en) 2005-09-29 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100065839A1 (en) * 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100072471A1 (en) * 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100084651A1 (en) * 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100084648A1 (en) * 2007-04-09 2010-04-08 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
US20100084650A1 (en) * 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100102312A1 (en) * 2008-10-24 2010-04-29 Shunpei Yamazaki Oxide semiconductor, thin film transistor, and display device
US20100102314A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100102311A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US20100105162A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20100105163A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20100109708A1 (en) * 2008-10-31 2010-05-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US20100163868A1 (en) * 2008-12-26 2010-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100163865A1 (en) * 2008-12-25 2010-07-01 Semiconductor Energy Laboratory Co., Ltd Display device and manufacturing method thereof
US20100207119A1 (en) * 2009-02-13 2010-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100244021A1 (en) * 2009-03-27 2010-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US20100252826A1 (en) * 2008-10-03 2010-10-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US20110003427A1 (en) * 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110003430A1 (en) * 2009-07-03 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20110006302A1 (en) * 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
US20110037068A1 (en) * 2009-07-31 2011-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20110069047A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US20110069805A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US7915075B2 (en) 2008-10-22 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110084273A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110089419A1 (en) * 2009-10-21 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110101355A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device, and electronic device
US20110101333A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110101351A1 (en) * 2009-10-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110115839A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US20110115763A1 (en) * 2008-07-31 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20110114480A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for packaging target material and method for mounting target
US20110134680A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US20110157254A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US20110157253A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US20110157216A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US20110175874A1 (en) * 2010-01-20 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Display Device And Method For Driving The Same
US20110181560A1 (en) * 2010-01-24 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display device
US7989815B2 (en) 2008-10-03 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US20110193182A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and semiconductor device
US20110198594A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20110210324A1 (en) * 2009-09-04 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8021916B2 (en) 2008-09-01 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8021917B2 (en) 2008-11-07 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8030663B2 (en) 2008-08-08 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8049225B2 (en) 2008-08-08 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8058647B2 (en) 2008-11-13 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8067775B2 (en) 2008-10-24 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with two gate electrodes
US8114720B2 (en) 2008-12-25 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8134156B2 (en) 2005-11-15 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including zinc oxide containing semiconductor film
US20120060750A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
US8144389B2 (en) 2008-07-10 2012-03-27 Semiconductor Energy Laboratory Co., Ltd. Electronic paper
US8158975B2 (en) 2008-10-10 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8183099B2 (en) 2008-12-19 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US8188477B2 (en) 2008-11-21 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8207014B2 (en) 2009-06-30 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8216878B2 (en) 2009-06-30 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8236627B2 (en) 2009-09-04 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8241949B2 (en) 2009-07-17 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8242494B2 (en) 2008-10-24 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor using multi-tone mask
US8247812B2 (en) 2009-02-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8247276B2 (en) 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8278974B2 (en) 2010-04-09 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Divider circuit
US8294147B2 (en) 2009-07-10 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US8293595B2 (en) 2008-07-31 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8305109B2 (en) 2009-09-16 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
US8304300B2 (en) 2009-07-03 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device including transistor
US8304765B2 (en) 2008-09-19 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Display device
US8309961B2 (en) 2009-10-08 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US8319216B2 (en) 2008-11-07 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8318551B2 (en) 2008-12-01 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8329506B2 (en) 2008-11-20 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8338226B2 (en) 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8338827B2 (en) 2008-11-07 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8343799B2 (en) 2008-10-24 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8344387B2 (en) 2008-11-28 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8368066B2 (en) 2008-10-03 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US8369478B2 (en) 2010-03-02 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8373164B2 (en) 2008-11-07 2013-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8383470B2 (en) 2008-12-25 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor (TFT) having a protective layer and manufacturing method thereof
US8384079B2 (en) 2009-07-31 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US8389989B2 (en) 2009-09-04 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Transistor having oxide semiconductor layer and display utilizing the same
US8389988B2 (en) 2008-10-08 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US8395716B2 (en) 2008-12-03 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8395148B2 (en) * 2008-11-07 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8400187B2 (en) 2009-10-16 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8405092B2 (en) 2010-09-15 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device
US8415665B2 (en) 2009-12-11 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8421083B2 (en) 2009-07-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with two oxide semiconductor layers and manufacturing method thereof
US8421067B2 (en) 2009-07-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US8426868B2 (en) 2008-10-31 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8427595B2 (en) 2008-09-19 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Display device with pixel portion and common connection portion having oxide semiconductor layers
US8441010B2 (en) 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8442183B2 (en) 2010-03-02 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8441425B2 (en) 2008-11-28 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8450144B2 (en) 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8461582B2 (en) 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8471256B2 (en) 2009-11-27 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8476625B2 (en) 2008-12-05 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising gate electrode of one conductive layer and gate wiring of two conductive layers
US8492756B2 (en) 2009-01-23 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8492757B2 (en) 2009-03-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8492862B2 (en) 2009-11-13 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US8502225B2 (en) 2009-09-04 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8501555B2 (en) 2008-09-12 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8502216B2 (en) 2008-11-07 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
US8508561B2 (en) 2010-04-09 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8508967B2 (en) 2010-09-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
US8519990B2 (en) 2010-03-31 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8518739B2 (en) 2008-11-13 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8530892B2 (en) 2009-11-06 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8541780B2 (en) 2009-09-04 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
US8541266B2 (en) 2011-04-01 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8541781B2 (en) 2011-03-10 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8547771B2 (en) 2010-08-06 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US8547753B2 (en) 2010-01-20 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8546811B2 (en) 2010-02-05 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8547493B2 (en) 2009-10-09 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with indium or zinc layer in contact with oxide semiconductor layer and method for manufacturing the semiconductor device
US8546180B2 (en) 2009-07-31 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US8552425B2 (en) 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8557641B2 (en) 2009-06-30 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8563976B2 (en) 2009-12-11 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8575985B2 (en) 2011-01-05 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US8575960B2 (en) 2011-05-20 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8581625B2 (en) 2011-05-19 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US8592814B2 (en) 2009-09-24 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Device with oxide semiconductor thin film transistor
US8592261B2 (en) 2010-08-27 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for designing semiconductor device
US8624237B2 (en) 2008-07-31 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8629432B2 (en) 2009-01-16 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8633480B2 (en) 2009-11-06 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof
US8637354B2 (en) 2010-06-30 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8643018B2 (en) 2009-07-18 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a pixel portion and a driver circuit
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20140034947A1 (en) * 2011-04-18 2014-02-06 Sharp Kabushiki Kaisha Thin film transistor, display panel, and method for fabricating thin film transistor
US8664658B2 (en) 2010-05-14 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8664652B2 (en) 2009-12-25 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8669781B2 (en) 2011-05-31 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8703531B2 (en) 2010-03-05 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor film and manufacturing method of transistor
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8704219B2 (en) 2010-03-26 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8704267B2 (en) 2008-10-16 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device
US8710762B2 (en) 2010-06-10 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. DC/DC converter, power supply circuit, and semiconductor device
US8718224B2 (en) 2011-08-05 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8729550B2 (en) 2009-07-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8736315B2 (en) 2011-09-30 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8744038B2 (en) 2011-09-28 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Shift register circuit
US8748881B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8748215B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8748241B2 (en) 2011-12-23 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8759132B2 (en) 2009-08-07 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8766253B2 (en) 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8767159B2 (en) 2007-05-18 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8765522B2 (en) 2009-11-28 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8772094B2 (en) 2011-11-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8778730B2 (en) 2010-01-21 2014-07-15 Sharp Kabushiki Kaisha Process for production of circuit board
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US8779798B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
US8785266B2 (en) 2011-01-12 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8785241B2 (en) 2010-07-16 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8796078B2 (en) 2009-05-29 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8802515B2 (en) 2010-11-11 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8809992B2 (en) 2011-01-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809850B2 (en) 2009-12-11 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US8823893B2 (en) 2009-12-18 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device with transistor including oxide semiconductor layer and electronic device
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8841662B2 (en) 2009-11-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8841163B2 (en) 2009-12-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US8841661B2 (en) 2009-02-25 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Staggered oxide semiconductor TFT semiconductor device and manufacturing method thereof
US8847220B2 (en) 2011-07-15 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8853690B2 (en) 2009-04-16 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer
US8853697B2 (en) 2012-03-01 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8866984B2 (en) 2010-01-24 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8865555B2 (en) 2011-01-26 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8872299B2 (en) 2011-12-05 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8872179B2 (en) 2011-11-30 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
US8872171B2 (en) 2009-05-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8885115B2 (en) 2009-08-07 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state and is in contact with an insulating layer
US8883554B2 (en) 2008-12-19 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using an oxide semiconductor
US8890150B2 (en) 2011-01-27 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8900916B2 (en) 2009-07-10 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including oxide semiconductor film
US8906756B2 (en) 2010-05-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8912541B2 (en) 2009-08-07 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8923076B2 (en) 2011-03-31 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, memory unit, and signal processing circuit
US8927981B2 (en) 2009-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8927329B2 (en) 2011-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device with improved electronic properties
US8927982B2 (en) 2011-03-18 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
US8936963B2 (en) 2009-03-13 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8941790B2 (en) 2010-05-21 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8946700B2 (en) 2009-10-21 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method for the same
US8947337B2 (en) 2010-02-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Display device
US8946702B2 (en) 2012-04-13 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8951899B2 (en) 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
US8956944B2 (en) 2011-03-25 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8981369B2 (en) 2007-12-13 2015-03-17 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semiconductor and method for manufacturing the same
US8988625B2 (en) 2011-11-11 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8993386B2 (en) 2009-03-12 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8994400B2 (en) 2009-12-11 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US9001549B2 (en) 2012-05-11 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9000438B2 (en) 2010-02-26 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9012904B2 (en) 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9012918B2 (en) 2009-03-27 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor
US9023684B2 (en) 2011-03-04 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9024311B2 (en) 2009-06-24 2015-05-05 Sharp Kabushiki Kaisha Thin film transistor, method for manufacturing same, active matrix substrate, display panel and display device
US9036767B2 (en) 2008-06-17 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US9040980B2 (en) 2010-03-26 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Transistor with an oxide semiconductor layer
US9042161B2 (en) 2010-09-13 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9048325B2 (en) 2010-02-26 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US9048320B2 (en) 2008-09-19 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device including oxide semiconductor layer
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9054201B2 (en) 2009-12-25 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9058889B2 (en) 2012-07-20 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit, display device, and electronic device
US9057918B2 (en) 2010-02-05 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising first and second pixel electrodes that overlap each other with an insulating layer interposed therebetween
US9064574B2 (en) 2012-11-06 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9064596B2 (en) 2013-02-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9070778B2 (en) 2011-12-20 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9076505B2 (en) 2011-12-09 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9099499B2 (en) 2010-04-23 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9099560B2 (en) 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9130044B2 (en) 2011-07-01 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9171640B2 (en) 2009-10-09 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device
US9171957B2 (en) 2012-01-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9184245B2 (en) 2012-08-10 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9202546B2 (en) 2009-10-29 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9202827B2 (en) 2008-12-24 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
US9202822B2 (en) 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9202851B2 (en) 2009-08-07 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9209267B2 (en) 2011-11-30 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US9224838B2 (en) 2009-09-24 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
US9225329B2 (en) 2014-03-07 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driving method thereof, and electronic appliance
US9240492B2 (en) 2012-08-10 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9245589B2 (en) 2013-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having Schmitt trigger NAND circuit and Schmitt trigger inverter
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9245484B2 (en) 2009-10-21 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. E-book reader
US9257594B2 (en) 2008-09-12 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with an oxide semiconductor layer
US9257082B2 (en) 2009-09-04 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9263472B2 (en) 2009-07-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9276128B2 (en) 2013-10-22 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and etchant used for the same
US9281237B2 (en) 2011-10-13 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Transistor having reduced channel length
US9287390B2 (en) 2010-08-16 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9287258B2 (en) 2010-02-19 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293602B2 (en) 2012-08-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9299432B2 (en) 2012-05-11 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
US9299708B2 (en) 2011-04-15 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9299813B2 (en) 2010-08-06 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9304523B2 (en) 2012-01-30 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and method for driving the same
US9306072B2 (en) 2009-10-08 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
US9324810B2 (en) 2012-11-30 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film
US9331206B2 (en) 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9337343B2 (en) 2013-02-27 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9337191B2 (en) 2010-02-18 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9344090B2 (en) 2011-05-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9361853B2 (en) 2009-05-02 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US9368633B2 (en) 2010-12-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9379192B2 (en) 2013-12-20 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9397224B2 (en) 2010-10-20 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9412764B2 (en) 2012-11-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
US9412762B2 (en) 2013-07-31 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device
US9419020B2 (en) 2009-10-21 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US9419146B2 (en) 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9419143B2 (en) 2013-11-07 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9419113B2 (en) 2009-05-29 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9424921B2 (en) 2010-08-26 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving the same
US9425322B2 (en) 2011-03-28 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including exposure of oxide semiconductor to reducing atmosphere
US9431545B2 (en) 2011-09-23 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9431541B2 (en) 2013-08-22 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9437747B2 (en) 2012-06-15 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US9448433B2 (en) 2009-12-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US9450104B2 (en) 2011-03-11 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9450080B2 (en) 2013-12-20 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9450133B2 (en) 2008-11-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Photosensor and display device
US9466756B2 (en) 2009-08-07 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9472676B2 (en) 2011-03-25 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9478597B2 (en) 2008-09-19 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9490350B2 (en) 2010-09-10 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device
US9494829B2 (en) 2011-01-28 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device containing the same
US9508301B2 (en) 2011-05-13 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9553202B2 (en) 2014-05-30 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US9576982B2 (en) 2011-11-11 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, EL display device, and manufacturing method thereof
US9595435B2 (en) 2012-10-19 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming multilayer film including oxide semiconductor film and method for manufacturing semiconductor device
US9601178B2 (en) 2011-01-26 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US9608005B2 (en) 2013-08-19 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Memory circuit including oxide semiconductor devices
US9627198B2 (en) 2009-10-05 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film semiconductor device
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
US9634048B2 (en) 2015-03-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9647132B2 (en) 2015-01-30 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US9646521B2 (en) 2010-03-31 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9666719B2 (en) 2008-07-31 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9673336B2 (en) 2011-01-12 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9679768B2 (en) 2009-10-21 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for removing hydrogen from oxide semiconductor layer having insulating layer containing halogen element formed thereover
US9685560B2 (en) 2015-03-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Transistor, method for manufacturing transistor, semiconductor device, and electronic device
US9685476B2 (en) 2015-04-03 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9692421B2 (en) 2009-12-18 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
US9704976B2 (en) 2009-04-02 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9722090B2 (en) 2014-06-23 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first gate oxide semiconductor film, and second gate
US9734780B2 (en) 2010-07-01 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US9741866B2 (en) 2011-10-24 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9768199B2 (en) 2010-04-09 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9768317B2 (en) 2014-12-08 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of semiconductor device, and electronic device
US9779679B2 (en) 2009-07-24 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9780093B2 (en) 2010-07-02 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9780225B2 (en) 2010-12-28 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9805641B2 (en) 2009-09-04 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US9816173B2 (en) 2011-10-28 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9830878B2 (en) 2009-09-16 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US9829533B2 (en) 2013-03-06 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film and semiconductor device
US9842859B2 (en) 2008-10-31 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and display device
US9853066B2 (en) 2009-11-06 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9876946B2 (en) 2015-08-03 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9882064B2 (en) 2016-03-10 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Transistor and electronic device
US9887276B2 (en) 2009-07-03 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having oxide semiconductor
US9911625B2 (en) 2010-02-26 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9922685B2 (en) 2009-11-13 2018-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9929281B2 (en) 2009-10-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Transisitor comprising oxide semiconductor
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
US9941308B2 (en) 2008-11-28 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US9959822B2 (en) 2009-10-16 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
US10008502B2 (en) 2016-05-04 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10014068B2 (en) 2011-10-07 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10014415B2 (en) 2009-12-04 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a C-axis aligned crystal
US10019924B2 (en) 2009-09-16 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10056494B2 (en) 2009-11-13 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10061172B2 (en) 2009-10-16 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic apparatus having the same
US10065808B2 (en) 2013-08-30 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Support supply apparatus and method for supplying support
US10074646B2 (en) 2008-09-12 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US10096720B2 (en) 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
US10121904B2 (en) 2009-11-20 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10147681B2 (en) 2016-12-09 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20190012960A1 (en) 2009-10-21 2019-01-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including display device
US10205452B2 (en) 2014-09-30 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
US10217736B2 (en) 2013-09-23 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
US10236287B2 (en) 2013-09-23 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor electrically surrounded by electric field of conductive film
US10241373B2 (en) 2017-01-16 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising first and second transistors wherein gates of the first and second transistors are supplied with a same selection signal
US10249651B2 (en) 2011-04-27 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10297332B2 (en) 2012-02-29 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10347769B2 (en) 2013-03-25 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multi-layer source/drain electrodes
US10373843B2 (en) 2009-08-27 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10374184B2 (en) 2009-09-16 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US10411158B2 (en) 2009-10-09 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device having oxide semiconductor layer overlapping with adjacent pixel electrode
US10429704B2 (en) 2015-03-26 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US10455174B2 (en) 2016-12-27 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic appliance
US10503018B2 (en) 2013-06-05 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10505051B2 (en) 2015-05-04 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US10514579B2 (en) 2012-07-20 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US10536657B2 (en) 2016-03-18 2020-01-14 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10558092B2 (en) 2016-03-15 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Display device, module, and electronic device
US10559667B2 (en) 2014-08-25 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for measuring current of semiconductor device
US10566459B2 (en) 2009-10-30 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a first region comprising silicon, oxygen and at least one metal element formed between an oxide semiconductor layer and an insulating layer
US10573621B2 (en) 2016-02-25 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Imaging system and manufacturing apparatus
US10600875B2 (en) 2016-07-01 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10607575B2 (en) 2016-09-30 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Display system and electronic device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10714630B2 (en) 2009-03-27 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10756118B2 (en) 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10797054B2 (en) 2009-12-28 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US10847116B2 (en) 2009-11-30 2020-11-24 Semiconductor Energy Laboratory Co., Ltd. Reducing pixel refresh rate for still images using oxide transistors
US11067841B2 (en) 2016-10-03 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a display device comprising polymerizing a monomer contained in a second liquid crystal layer in a region not overlapping with a coloring layer by light irradiation
US11075255B2 (en) 2016-12-27 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, and data processing device
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11183597B2 (en) 2009-09-16 2021-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11189642B2 (en) 2010-09-10 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and light-emitting device
US11222906B2 (en) 2010-02-23 2022-01-11 Semiconductor Energy Laboratory Co., Ltd. Display device, semiconductor device, and driving method thereof
US11430817B2 (en) 2013-11-29 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11513405B2 (en) 2018-04-26 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11699068B2 (en) 2016-08-03 2023-07-11 Semiconductor Energy Laboratory Co., Ltd. Imaging device, imaging module, electronic device, and imaging system
US11728349B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US11726376B2 (en) 2016-11-23 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11756966B2 (en) 2009-10-16 2023-09-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US11923204B2 (en) 2009-12-04 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor

Families Citing this family (1871)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219038B1 (en) 2004-10-26 2013-01-07 삼성디스플레이 주식회사 Thin film transistor array panel and manufacturing method thereof
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI505473B (en) * 2005-01-28 2015-10-21 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
TWI475667B (en) * 2005-03-28 2015-03-01 Semiconductor Energy Lab Memory device and manufacturing method the same
US7928938B2 (en) 2005-04-19 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory circuit, display device and electronic apparatus
CN1858839B (en) 2005-05-02 2012-01-11 株式会社半导体能源研究所 Driving method of display device
EP1724751B1 (en) * 2005-05-20 2013-04-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic apparatus
US8059109B2 (en) 2005-05-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
US8629819B2 (en) 2005-07-14 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
EP1758072A3 (en) * 2005-08-24 2007-05-02 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
KR101362954B1 (en) * 2006-03-10 2014-02-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for operating the same
EP2924498A1 (en) 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
WO2007118204A2 (en) * 2006-04-06 2007-10-18 Applied Materials, Inc. Reactive sputtering zinc oxide transparent conductive oxides onto large area substrates
KR100785038B1 (en) * 2006-04-17 2007-12-12 삼성전자주식회사 Amorphous ZnO based Thin Film Transistor
US7692223B2 (en) * 2006-04-28 2010-04-06 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and method for manufacturing the same
EP1895545B1 (en) 2006-08-31 2014-04-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
KR100829570B1 (en) * 2006-10-20 2008-05-14 삼성전자주식회사 Thin film transistor for cross-point memory and manufacturing method for the same
US7646015B2 (en) * 2006-10-31 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
US8044813B1 (en) * 2006-11-16 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Radio field intensity measurement device, and radio field intensity detector and game console using the same
US8275080B2 (en) * 2006-11-17 2012-09-25 Comtech Mobile Datacom Corporation Self-supporting simplex packets
KR101146574B1 (en) * 2006-12-05 2012-05-16 캐논 가부시끼가이샤 Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
JP5105842B2 (en) * 2006-12-05 2012-12-26 キヤノン株式会社 Display device using oxide semiconductor and manufacturing method thereof
KR101363555B1 (en) * 2006-12-14 2014-02-19 삼성디스플레이 주식회사 Thin film transistor substrate and method of manufacturig the same
JP5412034B2 (en) * 2006-12-26 2014-02-12 株式会社半導体エネルギー研究所 Semiconductor device
KR101303578B1 (en) * 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
KR101509663B1 (en) 2007-02-16 2015-04-06 삼성전자주식회사 Method of forming oxide semiconductor layer and method of manufacturing semiconductor device using the same
JP5121254B2 (en) * 2007-02-28 2013-01-16 キヤノン株式会社 Thin film transistor and display device
JP5320746B2 (en) * 2007-03-28 2013-10-23 凸版印刷株式会社 Thin film transistor
JP2008276212A (en) * 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device
WO2008126879A1 (en) * 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
KR20080094300A (en) * 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) * 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
JP2009194351A (en) * 2007-04-27 2009-08-27 Canon Inc Thin film transistor and its manufacturing method
US7927713B2 (en) 2007-04-27 2011-04-19 Applied Materials, Inc. Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
WO2008136505A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Semiconductor device, thin film transistor and methods for manufacturing the semiconductor device and the thin film transistor
KR20080099541A (en) * 2007-05-09 2008-11-13 삼성전자주식회사 Display device and manufacturing method thereof
KR101345378B1 (en) * 2007-05-17 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
JP5542296B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
JP5542297B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
US8803781B2 (en) * 2007-05-18 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US8513678B2 (en) 2007-05-18 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
KR101334182B1 (en) * 2007-05-28 2013-11-28 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
WO2008149873A1 (en) * 2007-05-31 2008-12-11 Canon Kabushiki Kaisha Manufacturing method of thin film transistor using oxide semiconductor
US7897482B2 (en) * 2007-05-31 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101376073B1 (en) * 2007-06-14 2014-03-21 삼성디스플레이 주식회사 Thin film transistor, array substrate having the transistor, and method of manufacturing the array substrate
EP2158608A4 (en) * 2007-06-19 2010-07-14 Samsung Electronics Co Ltd Oxide semiconductors and thin film transistors comprising the same
US7935964B2 (en) * 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
US7682882B2 (en) * 2007-06-20 2010-03-23 Samsung Electronics Co., Ltd. Method of manufacturing ZnO-based thin film transistor
KR101402189B1 (en) * 2007-06-22 2014-06-02 삼성전자주식회사 Oxide thin film transistor and etchant of Zn oxide
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
KR101329791B1 (en) * 2007-07-16 2013-11-15 삼성디스플레이 주식회사 Liquid crystal display
JP2009049384A (en) 2007-07-20 2009-03-05 Semiconductor Energy Lab Co Ltd Light emitting device
WO2009014155A1 (en) 2007-07-25 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
US7633089B2 (en) * 2007-07-26 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device provided with the same
TWI434420B (en) * 2007-08-02 2014-04-11 Applied Materials Inc Thin film transistors using thin film semiconductor materials
KR101270172B1 (en) * 2007-08-29 2013-05-31 삼성전자주식회사 Oxide thin film transistor and manufacturing method for the same
JP5205012B2 (en) * 2007-08-29 2013-06-05 株式会社半導体エネルギー研究所 Display device and electronic apparatus including the display device
KR101484297B1 (en) 2007-08-31 2015-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method of the same
JP5395384B2 (en) * 2007-09-07 2014-01-22 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
TW200921226A (en) * 2007-11-06 2009-05-16 Wintek Corp Panel structure and manufacture method thereof
JP5512078B2 (en) * 2007-11-22 2014-06-04 富士フイルム株式会社 Image forming apparatus
KR20100098409A (en) * 2007-11-22 2010-09-06 간또 가가꾸 가부시끼가이샤 Ething solution composition
JP5213421B2 (en) * 2007-12-04 2013-06-19 キヤノン株式会社 Oxide semiconductor thin film transistor
JP5213422B2 (en) 2007-12-04 2013-06-19 キヤノン株式会社 Oxide semiconductor element having insulating layer and display device using the same
KR101418586B1 (en) * 2007-12-18 2014-07-14 삼성디스플레이 주식회사 Thin film transistor, method for manufacturing the thin film transistor, thin film transistor substrate having the thin film transistor and display apparatus having the thin film transistor substrate
JP5527966B2 (en) * 2007-12-28 2014-06-25 株式会社半導体エネルギー研究所 Thin film transistor
TWI467761B (en) * 2008-01-17 2015-01-01 Idemitsu Kosan Co Field effect transistor, semiconductor device and manufacturing method thereof
US20100295042A1 (en) * 2008-01-23 2010-11-25 Idemitsu Kosan Co., Ltd. Field-effect transistor, method for manufacturing field-effect transistor, display device using field-effect transistor, and semiconductor device
NO332409B1 (en) * 2008-01-24 2012-09-17 Well Technology As Apparatus and method for isolating a section of a wellbore
US20090202935A1 (en) * 2008-02-13 2009-08-13 Yoshihiro Moriya Carrier, two-component developer containing carrier and toner, and image forming method
US8980066B2 (en) * 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8247315B2 (en) * 2008-03-17 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method for manufacturing semiconductor device
US8143093B2 (en) * 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
CN102067281B (en) 2008-04-25 2013-06-12 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
KR101461127B1 (en) 2008-05-13 2014-11-14 삼성디스플레이 주식회사 Semiconductor device and method for manufacturing the same
KR101496148B1 (en) * 2008-05-15 2015-02-27 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US9041202B2 (en) * 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US20090289301A1 (en) * 2008-05-21 2009-11-26 Chan-Long Shieh Laser annealing of metal oxide semiconductoron temperature sensitive substrate formations
KR101468591B1 (en) * 2008-05-29 2014-12-04 삼성전자주식회사 Oxide semiconductor and thin film transistor comprising the same
JPWO2009147880A1 (en) * 2008-06-03 2011-10-27 三菱電機株式会社 In-vehicle information providing service system, in-vehicle information providing method, and passenger vehicle information display device
KR101651224B1 (en) * 2008-06-04 2016-09-06 삼성디스플레이 주식회사 Organic light emitting diode display and method for manufacturing the same
KR20090126766A (en) * 2008-06-05 2009-12-09 삼성전자주식회사 Thin film transistor panel
TWI387109B (en) 2008-06-10 2013-02-21 Taiwan Tft Lcd Ass Method for fabricating thin film transistor
JP4618337B2 (en) 2008-06-17 2011-01-26 ソニー株式会社 Display device and manufacturing method thereof, and semiconductor device and manufacturing method thereof
KR100958006B1 (en) * 2008-06-18 2010-05-17 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963027B1 (en) * 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
JP5183336B2 (en) * 2008-07-15 2013-04-17 富士フイルム株式会社 Display device
US8822995B2 (en) * 2008-07-24 2014-09-02 Samsung Display Co., Ltd. Display substrate and method of manufacturing the same
KR100975204B1 (en) * 2008-08-04 2010-08-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
US9000441B2 (en) * 2008-08-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US20100043117A1 (en) * 2008-08-19 2010-02-25 Mary Elizabeth Hildebrandt Convertible Head And Neck Supporting Apparel
KR101497425B1 (en) * 2008-08-28 2015-03-03 삼성디스플레이 주식회사 Liquid crystal display and method of manufacturing the same
US9306078B2 (en) * 2008-09-08 2016-04-05 Cbrite Inc. Stable amorphous metal oxide semiconductor
JP2010066331A (en) * 2008-09-09 2010-03-25 Fujifilm Corp Display apparatus
KR101681483B1 (en) 2008-09-12 2016-12-02 삼성디스플레이 주식회사 Thin film transistor array substrate and method of manufacturing the same
WO2010032603A1 (en) 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and wireless tag using the same
WO2010038599A1 (en) * 2008-10-01 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20110069831A (en) * 2008-10-03 2011-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Modulation circuit and semiconductor device including the same
JP5552753B2 (en) * 2008-10-08 2014-07-16 ソニー株式会社 Thin film transistor and display device
JP5430113B2 (en) 2008-10-08 2014-02-26 キヤノン株式会社 Field effect transistor and manufacturing method thereof
KR101603303B1 (en) * 2008-10-31 2016-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Conductive oxynitride and method for manufacturing conductive oxynitride film
US8232947B2 (en) 2008-11-14 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2010123595A (en) * 2008-11-17 2010-06-03 Sony Corp Thin film transistor and display
JP2010153813A (en) 2008-11-18 2010-07-08 Semiconductor Energy Lab Co Ltd Light-emitting device, method of manufacturing the same, and portable telephone
JP2010123758A (en) * 2008-11-19 2010-06-03 Nec Corp Thin film device and method of manufacturing the same
JP5515281B2 (en) * 2008-12-03 2014-06-11 ソニー株式会社 THIN FILM TRANSISTOR, DISPLAY DEVICE, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
TWI443629B (en) * 2008-12-11 2014-07-01 Sony Corp Display device, method for driving the same, and electronic apparatus
KR101719350B1 (en) * 2008-12-25 2017-03-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5590877B2 (en) * 2008-12-26 2014-09-17 株式会社半導体エネルギー研究所 Semiconductor device
US8436350B2 (en) * 2009-01-30 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device using an oxide semiconductor with a plurality of metal clusters
JP2010182819A (en) * 2009-02-04 2010-08-19 Sony Corp Thin-film transistor, and display device
US8686528B2 (en) * 2009-02-04 2014-04-01 Sharp Kabushiki Kaisha Semiconductor device
US8367486B2 (en) 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
US8174021B2 (en) 2009-02-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
JP4752927B2 (en) * 2009-02-09 2011-08-17 ソニー株式会社 Thin film transistor and display device
US8749930B2 (en) * 2009-02-09 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Protection circuit, semiconductor device, photoelectric conversion device, and electronic device
JP5154665B2 (en) * 2009-02-10 2013-02-27 シャープ株式会社 Connection terminal and display device having the connection terminal
KR101022651B1 (en) * 2009-02-11 2011-03-22 삼성모바일디스플레이주식회사 Photo sensor, the photo sensor apparatus comprising the photosensor, and the display apparatus comprising the same
CN101478005B (en) * 2009-02-13 2010-06-09 北京大学深圳研究生院 Metal oxide thin-film transistor and manufacturing process thereof
US8278657B2 (en) 2009-02-13 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
JP5736114B2 (en) 2009-02-27 2015-06-17 株式会社半導体エネルギー研究所 Semiconductor device driving method and electronic device driving method
JP2010205987A (en) * 2009-03-04 2010-09-16 Sony Corp Thin film transistor, method for manufacturing the same, and display
US20100224880A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5202395B2 (en) * 2009-03-09 2013-06-05 株式会社半導体エネルギー研究所 Touch panel, electronic equipment
TW201106069A (en) * 2009-03-11 2011-02-16 Semiconductor Energy Lab Liquid crystal display device
KR101613865B1 (en) * 2009-03-26 2016-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and method for manufacturing the same
US8441047B2 (en) 2009-04-10 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7977151B2 (en) * 2009-04-21 2011-07-12 Cbrite Inc. Double self-aligned metal oxide TFT
CN102422426B (en) * 2009-05-01 2016-06-01 株式会社半导体能源研究所 The manufacture method of semiconductor device
CN104133314B (en) 2009-05-02 2019-07-12 株式会社半导体能源研究所 Show equipment
JP5751762B2 (en) 2009-05-21 2015-07-22 株式会社半導体エネルギー研究所 Semiconductor device
JP5396335B2 (en) * 2009-05-28 2014-01-22 株式会社半導体エネルギー研究所 Touch panel
US8314421B2 (en) * 2009-06-01 2012-11-20 Qiu Cindy X Thin film transistors and circuits with metal oxynitride active channel layers
KR101213708B1 (en) * 2009-06-03 2012-12-18 엘지디스플레이 주식회사 Array substrate and method of fabricating the same
JP5528727B2 (en) * 2009-06-19 2014-06-25 富士フイルム株式会社 Thin film transistor manufacturing apparatus, oxide semiconductor thin film manufacturing method, thin film transistor manufacturing method, oxide semiconductor thin film, thin film transistor, and light emitting device
WO2010151600A1 (en) 2009-06-27 2010-12-29 Michael Tischler High efficiency leds and led lamps
US8865516B2 (en) 2009-06-29 2014-10-21 Sharp Kabushiki Kaisha Oxide semiconductor, thin film transistor array substrate and production method thereof, and display device
US20110000175A1 (en) * 2009-07-01 2011-01-06 Husqvarna Consumer Outdoor Products N.A. Inc. Variable speed controller
US8576209B2 (en) 2009-07-07 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5640478B2 (en) 2009-07-09 2014-12-17 株式会社リコー Method for manufacturing field effect transistor and field effect transistor
KR101073301B1 (en) * 2009-07-15 2011-10-12 삼성모바일디스플레이주식회사 Organic Light emitting Display device and fabrication method thereof
WO2011007675A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011007677A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010545A1 (en) * 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010542A1 (en) * 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5663231B2 (en) * 2009-08-07 2015-02-04 株式会社半導体エネルギー研究所 Light emitting device
JP5642447B2 (en) 2009-08-07 2014-12-17 株式会社半導体エネルギー研究所 Semiconductor device
TWI498786B (en) * 2009-08-24 2015-09-01 Semiconductor Energy Lab Touch sensor and method for driving the same and display device
WO2011027649A1 (en) 2009-09-02 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of semiconductor device
WO2011027664A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
WO2011027702A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027676A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101460869B1 (en) * 2009-09-04 2014-11-11 가부시끼가이샤 도시바 Thin-film transistor and method for manufacturing the thin-film transistor
EP2478563B1 (en) * 2009-09-16 2021-04-07 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing a samesemiconductor device
WO2011033909A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic device including the display device
WO2011033911A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011033914A1 (en) 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device and display device
WO2011037829A2 (en) * 2009-09-24 2011-03-31 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride tfts using wet process for source-drain metal etch
KR102321565B1 (en) 2009-09-24 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
WO2011037010A1 (en) * 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and method for manufacturing the same
KR20220122778A (en) 2009-09-24 2022-09-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
TWI512997B (en) 2009-09-24 2015-12-11 Semiconductor Energy Lab Semiconductor device, power circuit, and manufacturing method of semiconductor device
KR20120071393A (en) * 2009-09-24 2012-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2011091386A (en) * 2009-09-24 2011-05-06 Semiconductor Energy Lab Co Ltd Heat treatment apparatus, heat treatment method and method for manufacturing semiconductor device
US8840763B2 (en) * 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target
JP5613508B2 (en) * 2009-09-30 2014-10-22 株式会社半導体エネルギー研究所 Redox capacitor
CN102033379B (en) * 2009-09-30 2012-08-15 群康科技(深圳)有限公司 Liquid crystal display and manufacturing method thereof
KR101767035B1 (en) 2009-10-01 2017-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011043182A1 (en) * 2009-10-05 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for removing electricity and method for manufacturing semiconductor device
KR102142835B1 (en) * 2009-10-09 2020-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011043175A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and display device having the same
EP2486593B1 (en) 2009-10-09 2017-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011043162A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2011043195A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011043215A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device and driving method thereof
WO2011043194A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20120083341A (en) * 2009-10-09 2012-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device including the same
KR101832698B1 (en) * 2009-10-14 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011046048A1 (en) 2009-10-16 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8546797B2 (en) * 2009-10-20 2013-10-01 Stanley Electric Co., Ltd. Zinc oxide based compound semiconductor device
KR20170130641A (en) * 2009-10-21 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device including the same
WO2011048929A1 (en) * 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011052409A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
EP2494599B1 (en) 2009-10-30 2020-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011052437A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
CN102687400B (en) 2009-10-30 2016-08-24 株式会社半导体能源研究所 Logic circuit and semiconductor device
WO2011052344A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, driving method of the same, and electronic appliance including the same
KR101712340B1 (en) * 2009-10-30 2017-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driver circuit, display device including the driver circuit, and electronic device including the display device
WO2011052410A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Power diode, rectifier, and semiconductor device including the same
WO2011052385A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101751712B1 (en) * 2009-10-30 2017-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Voltage regulator circuit
WO2011052382A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101293262B1 (en) * 2009-10-30 2013-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011052411A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
WO2011055638A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011055769A1 (en) * 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor element and semiconductor device, and deposition apparatus
JP5539846B2 (en) 2009-11-06 2014-07-02 株式会社半導体エネルギー研究所 Evaluation method, manufacturing method of semiconductor device
CN104600074A (en) 2009-11-06 2015-05-06 株式会社半导体能源研究所 Semiconductor device
WO2011055660A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101747158B1 (en) * 2009-11-06 2017-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011055626A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011055625A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method thereof
WO2011055474A1 (en) 2009-11-09 2011-05-12 シャープ株式会社 Active matrix substrate, liquid crystal display panel provided with same, and method for manufacturing active matrix substrate
KR101248459B1 (en) 2009-11-10 2013-03-28 엘지디스플레이 주식회사 Liquid crystal display device and method of fabricating the same
WO2011058865A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devi ce
KR101738996B1 (en) * 2009-11-13 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Device including nonvolatile memory element
KR20170076818A (en) * 2009-11-13 2017-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target and method for manufacturing the same, and transistor
WO2011058852A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011058913A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011062029A1 (en) 2009-11-18 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
JP5866089B2 (en) * 2009-11-20 2016-02-17 株式会社半導体エネルギー研究所 Electronics
KR102026212B1 (en) 2009-11-20 2019-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
KR101700154B1 (en) 2009-11-20 2017-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Latch circuit and circuit
WO2011062068A1 (en) * 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101448908B1 (en) * 2009-11-20 2014-10-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI507934B (en) * 2009-11-20 2015-11-11 Semiconductor Energy Lab Display device
KR101800854B1 (en) 2009-11-20 2017-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
JP5762723B2 (en) 2009-11-20 2015-08-12 株式会社半導体エネルギー研究所 Modulation circuit and semiconductor device having the same
WO2011062057A1 (en) 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101928723B1 (en) 2009-11-20 2018-12-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101074803B1 (en) * 2009-11-24 2011-10-19 삼성모바일디스플레이주식회사 Organic light emitting display apparatus and method of manufacturing thereof
WO2011065183A1 (en) * 2009-11-24 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory cell
KR101082174B1 (en) * 2009-11-27 2011-11-09 삼성모바일디스플레이주식회사 Organic light emitting display device and method of manufacturing the same
WO2011065209A1 (en) * 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
KR101911382B1 (en) 2009-11-27 2018-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20180059577A (en) 2009-11-27 2018-06-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101803553B1 (en) 2009-11-28 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011068025A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Dc converter circuit and power supply circuit
KR20120103676A (en) * 2009-12-04 2012-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101840623B1 (en) * 2009-12-04 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device including the same
WO2011068032A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011068028A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
JP5584103B2 (en) 2009-12-04 2014-09-03 株式会社半導体エネルギー研究所 Semiconductor device
CN104795323B (en) * 2009-12-04 2017-12-29 株式会社半导体能源研究所 Semiconductor device and its manufacture method
KR101501420B1 (en) * 2009-12-04 2015-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20120107107A (en) * 2009-12-04 2012-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101835300B1 (en) * 2009-12-08 2018-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101511076B1 (en) * 2009-12-08 2015-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
EP2511896B1 (en) 2009-12-09 2019-05-08 Sharp Kabushiki Kaisha Semiconductor device and method for producing same
KR20170061194A (en) 2009-12-10 2017-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method thereof
KR20170116239A (en) 2009-12-11 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor
JP5727204B2 (en) 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5185357B2 (en) 2009-12-17 2013-04-17 株式会社半導体エネルギー研究所 Semiconductor device
KR101830195B1 (en) * 2009-12-18 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011074407A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011074392A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101887837B1 (en) 2009-12-18 2018-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including optical sensor and driving method thereof
WO2011073044A1 (en) * 2009-12-18 2011-06-23 Basf Se Metal oxide field effect transistors on a mechanically flexible polymer substrate having a dielectric that can be processed from solution at low temperatures
US9057758B2 (en) 2009-12-18 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for measuring current, method for inspecting semiconductor device, semiconductor device, and test element group
KR101763660B1 (en) * 2009-12-18 2017-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and driving method thereof
EP2513894B1 (en) 2009-12-18 2018-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
KR101768433B1 (en) * 2009-12-18 2017-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
TWI422035B (en) * 2009-12-22 2014-01-01 Au Optronics Corp Semiconductor device structure and method for manufacturing the same
WO2011077908A1 (en) * 2009-12-23 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011077916A1 (en) * 2009-12-24 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20120101716A (en) 2009-12-24 2012-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
WO2011077978A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR101971851B1 (en) 2009-12-25 2019-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and electronic device
WO2011077925A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for driving liquid crystal display device
US8441009B2 (en) * 2009-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101870119B1 (en) 2009-12-25 2018-06-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101762316B1 (en) 2009-12-28 2017-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101760537B1 (en) 2009-12-28 2017-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8653539B2 (en) 2010-01-04 2014-02-18 Cooledge Lighting, Inc. Failure mitigation in arrays of light-emitting devices
US9480133B2 (en) 2010-01-04 2016-10-25 Cooledge Lighting Inc. Light-emitting element repair in array-based lighting devices
KR101084242B1 (en) * 2010-01-14 2011-11-16 삼성모바일디스플레이주식회사 Organic light emitting diode display and method for manufacturing the same
CN102714208B (en) * 2010-01-15 2015-05-20 株式会社半导体能源研究所 Semiconductor device
KR101698537B1 (en) 2010-01-15 2017-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101748763B1 (en) * 2010-01-15 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
KR101791279B1 (en) * 2010-01-15 2017-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101701208B1 (en) * 2010-01-15 2017-02-02 삼성디스플레이 주식회사 Display substrate
CN102742003B (en) 2010-01-15 2015-01-28 株式会社半导体能源研究所 Semiconductor device
KR102114011B1 (en) 2010-01-15 2020-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
US8780629B2 (en) * 2010-01-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR101861991B1 (en) * 2010-01-20 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Signal processing circuit and method for driving the same
WO2011089848A1 (en) * 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic system
US8415731B2 (en) 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
KR102323314B1 (en) 2010-01-20 2021-11-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and mobile phone
WO2011089832A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for driving display device and liquid crystal display device
CN105761688B (en) * 2010-01-20 2019-01-01 株式会社半导体能源研究所 The driving method of liquid crystal display
KR101842860B1 (en) 2010-01-20 2018-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving display device
KR101787734B1 (en) * 2010-01-20 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
KR101816505B1 (en) * 2010-01-20 2018-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display method of display device
KR102248998B1 (en) * 2010-01-20 2021-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device
US9984617B2 (en) * 2010-01-20 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device including light emitting element
CN102714209B (en) 2010-01-22 2015-09-16 株式会社半导体能源研究所 Semiconductor storage unit and driving method thereof
KR102364878B1 (en) * 2010-01-22 2022-02-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
KR101773641B1 (en) 2010-01-22 2017-09-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8879010B2 (en) 2010-01-24 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011093150A1 (en) 2010-01-29 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI508183B (en) * 2010-01-29 2015-11-11 Prime View Int Co Ltd Method for forming oxide thin film transistor
CN102714001B (en) 2010-01-29 2015-11-25 株式会社半导体能源研究所 Semiconductor device and the electronic installation comprising semiconductor device
WO2011093003A1 (en) * 2010-01-29 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP5688223B2 (en) * 2010-02-03 2015-03-25 三菱電機株式会社 THIN FILM TRANSISTOR, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR
JP2011159908A (en) * 2010-02-03 2011-08-18 Sony Corp Thin film transistor and method of manufacturing the same, and display device
KR101819197B1 (en) 2010-02-05 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011096264A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
WO2011096153A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011096277A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
WO2011096271A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR101822962B1 (en) 2010-02-05 2018-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI530045B (en) * 2010-02-05 2016-04-11 半導體能源研究所股份有限公司 Moving object, wireless power feeding system, power receiving device and wireless power feeding method
WO2011096262A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8436403B2 (en) 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor provided with sidewall and electronic appliance
KR101810261B1 (en) 2010-02-10 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor
KR101775180B1 (en) * 2010-02-12 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
WO2011099389A1 (en) 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
KR101830196B1 (en) 2010-02-12 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
CN105336744B (en) 2010-02-12 2018-12-21 株式会社半导体能源研究所 Semiconductor device and its driving method
KR101817054B1 (en) * 2010-02-12 2018-01-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
KR101636998B1 (en) * 2010-02-12 2016-07-08 삼성디스플레이 주식회사 Thin Film Transistor and Method to Fabricate the Same
US9887568B2 (en) * 2010-02-12 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Moving object, wireless power feeding system, and wireless power feeding method
KR102197415B1 (en) * 2010-02-12 2020-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method
WO2011099376A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
WO2011099335A1 (en) 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011102190A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Demodulation circuit and rfid tag including the demodulation circuit
WO2011102248A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR102015762B1 (en) 2010-02-19 2019-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device, driving method thereof, and method for manufacturing semiconductor device
KR101906151B1 (en) 2010-02-19 2018-10-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and display device using the same
KR101832119B1 (en) 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20180031075A (en) * 2010-02-19 2018-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8928644B2 (en) 2010-02-19 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for driving display device
WO2011102233A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5740169B2 (en) * 2010-02-19 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing transistor
WO2011102228A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
KR20130009978A (en) * 2010-02-26 2013-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor element and deposition apparatus
WO2011105198A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102770902B (en) * 2010-02-26 2016-11-23 株式会社半导体能源研究所 Display device and driving method thereof
WO2011105310A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101803552B1 (en) * 2010-02-26 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and e-book reader provided therewith
KR20180001562A (en) 2010-02-26 2018-01-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN105245218B (en) 2010-03-02 2019-01-22 株式会社半导体能源研究所 Output of pulse signal circuit and shift register
KR101817926B1 (en) 2010-03-02 2018-01-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Boosting circuit and rfid tag including boosting circuit
WO2011108475A1 (en) * 2010-03-04 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and semiconductor device
KR20130008037A (en) * 2010-03-05 2013-01-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR102341927B1 (en) * 2010-03-05 2021-12-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2011108374A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2011111522A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI594173B (en) * 2010-03-08 2017-08-01 半導體能源研究所股份有限公司 Electronic device and electronic system
CN102782746B (en) * 2010-03-08 2015-06-17 株式会社半导体能源研究所 Display device
CN106449649B (en) * 2010-03-08 2019-09-27 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
WO2011111504A1 (en) 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device and electronic system
WO2011111490A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR20130007597A (en) * 2010-03-08 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
CN102792677B (en) 2010-03-08 2015-08-05 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
KR101097341B1 (en) * 2010-03-09 2011-12-23 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
WO2011111506A1 (en) 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for driving circuit and method for driving display device
KR101769970B1 (en) 2010-03-12 2017-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101823853B1 (en) * 2010-03-12 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011111521A1 (en) * 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device
KR101761558B1 (en) * 2010-03-12 2017-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving input circuit and method for driving input-output device
US8900362B2 (en) * 2010-03-12 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of gallium oxide single crystal
KR101600879B1 (en) * 2010-03-16 2016-03-09 삼성디스플레이 주식회사 Thin film transistor, manufacturing method thereof and display substrate using the thin film transistor
WO2011114866A1 (en) * 2010-03-17 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
WO2011114919A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110227082A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011114905A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2011114867A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
WO2011114868A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5864875B2 (en) * 2010-03-22 2016-02-17 三星電子株式会社Samsung Electronics Co.,Ltd. THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE INCLUDING THE SAME
WO2011118351A1 (en) 2010-03-25 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101799757B1 (en) 2010-03-26 2017-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011118741A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5731244B2 (en) * 2010-03-26 2015-06-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2011122271A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Field-sequential display device
WO2011122514A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
WO2011122312A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
US9196739B2 (en) 2010-04-02 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film and metal oxide film
KR20130014562A (en) 2010-04-02 2013-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
US8884282B2 (en) 2010-04-02 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102196259B1 (en) 2010-04-02 2020-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TW201136435A (en) * 2010-04-06 2011-10-16 Au Optronics Corp Pixel structure of electroluminescent display panel and method of making the same
KR101810592B1 (en) 2010-04-07 2017-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
KR101884031B1 (en) 2010-04-07 2018-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
KR20110112992A (en) * 2010-04-08 2011-10-14 삼성모바일디스플레이주식회사 Organic light emitting device and the method for preparing the same
WO2011125806A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8207025B2 (en) 2010-04-09 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR20130036739A (en) 2010-04-09 2013-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor memory device
WO2011125456A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102834861B (en) 2010-04-09 2016-02-10 株式会社半导体能源研究所 The method of liquid crystal display and this liquid crystal display of driving
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5744366B2 (en) 2010-04-12 2015-07-08 株式会社半導体エネルギー研究所 Liquid crystal display
US8854583B2 (en) 2010-04-12 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device
KR101881729B1 (en) 2010-04-16 2018-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Deposition method and method for manufacturing semiconductor device
WO2011129209A1 (en) 2010-04-16 2011-10-20 Semiconductor Energy Laboratory Co., Ltd. Power source circuit
JP2011237418A (en) 2010-04-16 2011-11-24 Semiconductor Energy Lab Co Ltd Current measurement method, semiconductor device inspection method, semiconductor device and characteristic evaluation circuit
KR101904445B1 (en) 2010-04-16 2018-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8692243B2 (en) 2010-04-20 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20180054919A (en) * 2010-04-23 2018-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
DE112011101396T5 (en) 2010-04-23 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method for the same
US8836906B2 (en) 2010-04-23 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Display device with light receiving element under transparent spacer and manufacturing method therefor
KR101877377B1 (en) 2010-04-23 2018-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
US9537043B2 (en) 2010-04-23 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101826831B1 (en) 2010-04-23 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN105390402B (en) * 2010-04-23 2018-09-07 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
WO2011135999A1 (en) 2010-04-27 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2011135987A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8890555B2 (en) 2010-04-28 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for measuring transistor
KR101879570B1 (en) 2010-04-28 2018-07-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and manufacturing method the same
WO2011136018A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
US9697788B2 (en) 2010-04-28 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8512917B2 (en) 2010-04-28 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Photomask
US9349325B2 (en) 2010-04-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR20110120661A (en) * 2010-04-29 2011-11-04 주식회사 하이닉스반도체 Non-volatile memory device and method for fabricating the same
US9478185B2 (en) 2010-05-12 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
US9064473B2 (en) 2010-05-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
JP5797449B2 (en) 2010-05-13 2015-10-21 株式会社半導体エネルギー研究所 Semiconductor device evaluation method
KR101806271B1 (en) 2010-05-14 2017-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011142371A1 (en) * 2010-05-14 2011-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI511236B (en) 2010-05-14 2015-12-01 Semiconductor Energy Lab Semiconductor device
CN101872787A (en) * 2010-05-19 2010-10-27 华南理工大学 Metal oxide thin film transistor and preparation method thereof
WO2011145738A1 (en) 2010-05-20 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device
US9496405B2 (en) 2010-05-20 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including step of adding cation to oxide semiconductor layer
US9490368B2 (en) * 2010-05-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US8624239B2 (en) 2010-05-20 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8416622B2 (en) 2010-05-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011145537A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2011145467A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5714973B2 (en) 2010-05-21 2015-05-07 株式会社半導体エネルギー研究所 Semiconductor device
WO2011145634A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145468A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
CN102906882B (en) 2010-05-21 2015-11-25 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
WO2011145538A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101872188B1 (en) 2010-05-21 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device
WO2011145484A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145707A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP5766012B2 (en) 2010-05-21 2015-08-19 株式会社半導体エネルギー研究所 Liquid crystal display
WO2011145633A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5749975B2 (en) 2010-05-28 2015-07-15 株式会社半導体エネルギー研究所 Photodetector and touch panel
WO2011151955A1 (en) * 2010-05-31 2011-12-08 シャープ株式会社 Semiconductor element, thin film transistor substrate, and display device
US8895375B2 (en) 2010-06-01 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and method for manufacturing the same
JP5149464B2 (en) 2010-06-02 2013-02-20 シャープ株式会社 Contact structure, substrate, display device, and contact structure and method of manufacturing substrate
WO2011152233A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011152286A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8779433B2 (en) 2010-06-04 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20110133251A (en) * 2010-06-04 2011-12-12 삼성전자주식회사 Thin film transistor array panel and manufacturing method of the same
WO2011152254A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102593184A (en) * 2010-06-10 2012-07-18 友达光电股份有限公司 Film transistor and manufacturing method thereof
US8610180B2 (en) 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
WO2011155302A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102939659B (en) 2010-06-11 2016-08-17 株式会社半导体能源研究所 Semiconductor device and the manufacture method of semiconductor device
JP5797471B2 (en) 2010-06-16 2015-10-21 株式会社半導体エネルギー研究所 I / O device
JP5823740B2 (en) 2010-06-16 2015-11-25 株式会社半導体エネルギー研究所 I / O device
JP5766519B2 (en) 2010-06-16 2015-08-19 株式会社半導体エネルギー研究所 I / O device
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
WO2011158704A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8637802B2 (en) 2010-06-18 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
WO2011158703A1 (en) * 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011162147A1 (en) 2010-06-23 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8912016B2 (en) 2010-06-25 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method and test method of semiconductor device
KR20120000499A (en) 2010-06-25 2012-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and semiconductor device
JP5779415B2 (en) 2010-06-25 2015-09-16 株式会社半導体エネルギー研究所 Driving method of electronic device
WO2011162104A1 (en) 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
WO2012002236A1 (en) 2010-06-29 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Wiring board, semiconductor device, and manufacturing methods thereof
JP2012015200A (en) * 2010-06-29 2012-01-19 Kobe Steel Ltd Thin film transistor substrate and display device including thin film transistor substrate
CN105870312B (en) * 2010-06-29 2020-01-31 柯立芝照明有限公司 Electronic device with flexible substrate
JP5512888B2 (en) 2010-06-29 2014-06-04 クーレッジ ライティング インコーポレイテッド Electronic device with flexible substrate
JP5771079B2 (en) 2010-07-01 2015-08-26 株式会社半導体エネルギー研究所 Imaging device
US8605059B2 (en) 2010-07-02 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Input/output device and driving method thereof
JP5792524B2 (en) 2010-07-02 2015-10-14 株式会社半導体エネルギー研究所 apparatus
CN102959713B (en) 2010-07-02 2017-05-10 株式会社半导体能源研究所 Semiconductor device
TWI541782B (en) 2010-07-02 2016-07-11 半導體能源研究所股份有限公司 Liquid crystal display device
WO2012002197A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2012002471A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8642380B2 (en) * 2010-07-02 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2012008304A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012008390A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012008286A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8519387B2 (en) 2010-07-26 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
JP5735872B2 (en) 2010-07-27 2015-06-17 株式会社半導体エネルギー研究所 Semiconductor device
JP5836680B2 (en) 2010-07-27 2015-12-24 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
TWI565001B (en) 2010-07-28 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving the same
JP5846789B2 (en) 2010-07-29 2016-01-20 株式会社半導体エネルギー研究所 Semiconductor device
WO2012014786A1 (en) 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
US8537600B2 (en) 2010-08-04 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Low off-state leakage current semiconductor memory device
US8928466B2 (en) 2010-08-04 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101842181B1 (en) 2010-08-04 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5739257B2 (en) 2010-08-05 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8792284B2 (en) 2010-08-06 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor memory device
TWI605549B (en) * 2010-08-06 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device
JP5832181B2 (en) 2010-08-06 2015-12-16 株式会社半導体エネルギー研究所 Liquid crystal display
JP5948025B2 (en) 2010-08-06 2016-07-06 株式会社半導体エネルギー研究所 Liquid crystal display
TWI524347B (en) * 2010-08-06 2016-03-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8803164B2 (en) 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
WO2012017844A1 (en) 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8467231B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8467232B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI555128B (en) 2010-08-06 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and driving method thereof
JP5671418B2 (en) 2010-08-06 2015-02-18 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP5743790B2 (en) 2010-08-06 2015-07-01 株式会社半導体エネルギー研究所 Semiconductor device
US9343480B2 (en) 2010-08-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5848912B2 (en) 2010-08-16 2016-01-27 株式会社半導体エネルギー研究所 Control circuit for liquid crystal display device, liquid crystal display device, and electronic apparatus including the liquid crystal display device
US9129703B2 (en) 2010-08-16 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor memory device
TWI508294B (en) 2010-08-19 2015-11-11 Semiconductor Energy Lab Semiconductor device
US8759820B2 (en) 2010-08-20 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5727892B2 (en) 2010-08-26 2015-06-03 株式会社半導体エネルギー研究所 Semiconductor device
US9058047B2 (en) 2010-08-26 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103081092B (en) 2010-08-27 2016-11-09 株式会社半导体能源研究所 Memory device and semiconductor devices
JP5763474B2 (en) 2010-08-27 2015-08-12 株式会社半導体エネルギー研究所 Optical sensor
JP5674594B2 (en) 2010-08-27 2015-02-25 株式会社半導体エネルギー研究所 Semiconductor device and driving method of semiconductor device
US8450123B2 (en) 2010-08-27 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Oxygen diffusion evaluation method of oxide film stacked body
US8603841B2 (en) 2010-08-27 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor device and light-emitting display device
JP5806043B2 (en) 2010-08-27 2015-11-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8593858B2 (en) 2010-08-31 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8575610B2 (en) 2010-09-02 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US8634228B2 (en) 2010-09-02 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
KR20180105252A (en) 2010-09-03 2018-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor and method for manufacturing semiconductor device
WO2012029612A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
JP5848918B2 (en) * 2010-09-03 2016-01-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2012029596A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8487844B2 (en) 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
JP2012256819A (en) 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US8520426B2 (en) 2010-09-08 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
KR101824125B1 (en) 2010-09-10 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9142568B2 (en) 2010-09-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting display device
US8647919B2 (en) 2010-09-13 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device and method for manufacturing the same
JP5827520B2 (en) 2010-09-13 2015-12-02 株式会社半導体エネルギー研究所 Semiconductor memory device
JP5815337B2 (en) 2010-09-13 2015-11-17 株式会社半導体エネルギー研究所 Semiconductor device
KR101952235B1 (en) 2010-09-13 2019-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101932576B1 (en) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8592879B2 (en) 2010-09-13 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8546161B2 (en) 2010-09-13 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor and liquid crystal display device
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
KR101872926B1 (en) 2010-09-13 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI405335B (en) 2010-09-13 2013-08-11 Au Optronics Corp Semiconductor structure and fabricating method thereof
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI543166B (en) 2010-09-13 2016-07-21 半導體能源研究所股份有限公司 Semiconductor device
US8558960B2 (en) 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
TWI539453B (en) 2010-09-14 2016-06-21 半導體能源研究所股份有限公司 Memory device and semiconductor device
US9230994B2 (en) 2010-09-15 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2012035975A1 (en) 2010-09-15 2012-03-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
JP2012256012A (en) 2010-09-15 2012-12-27 Semiconductor Energy Lab Co Ltd Display device
TWI440172B (en) * 2010-09-17 2014-06-01 E Ink Holdings Inc Organic light-emitting display device and method for manufacturing the same
US8767443B2 (en) 2010-09-22 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for inspecting the same
KR101856722B1 (en) 2010-09-22 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power-insulated-gate field-effect transistor
US8792260B2 (en) 2010-09-27 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Rectifier circuit and semiconductor device using the same
JP2012068597A (en) * 2010-09-27 2012-04-05 Toshiba Corp Active matrix organic el display device and driving method therefor
TWI574259B (en) 2010-09-29 2017-03-11 半導體能源研究所股份有限公司 Semiconductor memory device and method for driving the same
JP5386643B2 (en) * 2010-09-29 2014-01-15 パナソニック株式会社 Thin film semiconductor device for display device, method for manufacturing thin film semiconductor device for display device, EL display panel, and EL display device
TWI539456B (en) 2010-10-05 2016-06-21 半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
JP5275521B2 (en) * 2010-10-07 2013-08-28 シャープ株式会社 Semiconductor device, display device, and semiconductor device and display device manufacturing method
TWI556317B (en) 2010-10-07 2016-11-01 半導體能源研究所股份有限公司 Thin film element, semiconductor device, and method for manufacturing the same
JP6081694B2 (en) 2010-10-07 2017-02-15 株式会社半導体エネルギー研究所 Photodetector
US8716646B2 (en) 2010-10-08 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for operating the same
KR20120037838A (en) * 2010-10-12 2012-04-20 삼성전자주식회사 Transistor and electronic device including the same
US8679986B2 (en) 2010-10-14 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8546892B2 (en) 2010-10-20 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI543158B (en) 2010-10-25 2016-07-21 半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
JP5771505B2 (en) 2010-10-29 2015-09-02 株式会社半導体エネルギー研究所 Receiver circuit
WO2012057296A1 (en) 2010-10-29 2012-05-03 Semiconductor Energy Laboratory Co., Ltd. Storage device
KR101924231B1 (en) 2010-10-29 2018-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
EP2636674B1 (en) 2010-11-02 2016-04-06 Ube Industries, Ltd. (amide amino alkane) metal compound and method of producing metal-containing thin film using said metal compound
US9087744B2 (en) 2010-11-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving transistor
JP6010291B2 (en) 2010-11-05 2016-10-19 株式会社半導体エネルギー研究所 Driving method of display device
US8957468B2 (en) 2010-11-05 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Variable capacitor and liquid crystal display device
TWI555205B (en) 2010-11-05 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
CN103201831B (en) 2010-11-05 2015-08-05 株式会社半导体能源研究所 Semiconductor device
WO2012060253A1 (en) 2010-11-05 2012-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8902637B2 (en) 2010-11-08 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device comprising inverting amplifier circuit and driving method thereof
KR101820372B1 (en) 2010-11-09 2018-01-22 삼성디스플레이 주식회사 Display substrate, display device comprising the same and method of manufacturing the same
TWI541981B (en) 2010-11-12 2016-07-11 半導體能源研究所股份有限公司 Semiconductor device
US8854865B2 (en) 2010-11-24 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8936965B2 (en) 2010-11-26 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9103724B2 (en) 2010-11-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photosensor comprising oxide semiconductor, method for driving the semiconductor device, method for driving the photosensor, and electronic device
TWI562379B (en) 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8823092B2 (en) 2010-11-30 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629496B2 (en) 2010-11-30 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US8816425B2 (en) 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8461630B2 (en) 2010-12-01 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5908263B2 (en) * 2010-12-03 2016-04-26 株式会社半導体エネルギー研究所 DC-DC converter
KR101763052B1 (en) 2010-12-03 2017-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI590249B (en) 2010-12-03 2017-07-01 半導體能源研究所股份有限公司 Integrated circuit, method for driving the same, and semiconductor device
KR101631984B1 (en) * 2010-12-06 2016-06-21 삼성전자주식회사 Light sensing circuit, method of fabricating the light sensing circuit, and optical touch panel including the light sensing circuit
US8957462B2 (en) 2010-12-09 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an N-type transistor with an N-type semiconductor containing nitrogen as a gate
TWI534905B (en) 2010-12-10 2016-05-21 半導體能源研究所股份有限公司 Display device and method for manufacturing the same
JP2012256020A (en) 2010-12-15 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method for the same
US8730416B2 (en) 2010-12-17 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2012142562A (en) 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Semiconductor memory device
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
JP5284544B2 (en) * 2010-12-20 2013-09-11 シャープ株式会社 Semiconductor device and display device
US20130264568A1 (en) * 2010-12-22 2013-10-10 Sharp Kabushiki Kaisha Semiconductor device, color filter substrate, display device provided with color filter substrate, and method for manufacturing semiconductor device
JP5774974B2 (en) 2010-12-22 2015-09-09 株式会社半導体エネルギー研究所 Driving method of semiconductor device
US9024317B2 (en) 2010-12-24 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device
JP6030298B2 (en) 2010-12-28 2016-11-24 株式会社半導体エネルギー研究所 Buffer storage device and signal processing circuit
WO2012090799A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8735892B2 (en) 2010-12-28 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device using oxide semiconductor
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012090974A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5993141B2 (en) 2010-12-28 2016-09-14 株式会社半導体エネルギー研究所 Storage device
JP5975635B2 (en) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
JP5864054B2 (en) 2010-12-28 2016-02-17 株式会社半導体エネルギー研究所 Semiconductor device
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5852874B2 (en) 2010-12-28 2016-02-03 株式会社半導体エネルギー研究所 Semiconductor device
JP2012151453A (en) 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method of the same
JP5982125B2 (en) 2011-01-12 2016-08-31 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8575678B2 (en) 2011-01-13 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device with floating gate
US8421071B2 (en) 2011-01-13 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
TWI487108B (en) * 2011-01-13 2015-06-01 Prime View Int Co Ltd Metal oxide semiconductor structure and manufacturing method thereof
TWI619230B (en) 2011-01-14 2018-03-21 半導體能源研究所股份有限公司 Semiconductor memory device
JP5859839B2 (en) 2011-01-14 2016-02-16 株式会社半導体エネルギー研究所 Storage element driving method and storage element
KR102026718B1 (en) 2011-01-14 2019-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and detecting method
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
JP5872912B2 (en) 2011-01-21 2016-03-01 株式会社半導体エネルギー研究所 Light emitting device
WO2012102182A1 (en) 2011-01-26 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103348464B (en) 2011-01-26 2016-01-13 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
TWI602303B (en) 2011-01-26 2017-10-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP5798933B2 (en) 2011-01-26 2015-10-21 株式会社半導体エネルギー研究所 Signal processing circuit
TWI525619B (en) 2011-01-27 2016-03-11 半導體能源研究所股份有限公司 Memory circuit
WO2012102281A1 (en) 2011-01-28 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012102314A1 (en) 2011-01-28 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and semiconductor device
US8634230B2 (en) 2011-01-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US9177500B2 (en) * 2011-01-31 2015-11-03 Global Oled Technology Llc Display with secure decryption of image signals
US9799773B2 (en) 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US8513773B2 (en) 2011-02-02 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Capacitor and semiconductor device including dielectric and N-type semiconductor
TWI520273B (en) 2011-02-02 2016-02-01 半導體能源研究所股份有限公司 Semiconductor memory device
US8780614B2 (en) 2011-02-02 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
EP2674981A4 (en) * 2011-02-07 2017-08-30 Sharp Kabushiki Kaisha Active matrix substrate, display panel, and display device
US9431400B2 (en) 2011-02-08 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for manufacturing the same
US8787083B2 (en) 2011-02-10 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Memory circuit
US9167234B2 (en) 2011-02-14 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101899880B1 (en) 2011-02-17 2018-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable lsi
US8975680B2 (en) 2011-02-17 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method manufacturing semiconductor memory device
JP5743064B2 (en) * 2011-02-17 2015-07-01 株式会社Joled THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
US8643007B2 (en) 2011-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8709920B2 (en) * 2011-02-24 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8928010B2 (en) 2011-02-25 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device
US9443455B2 (en) 2011-02-25 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Display device having a plurality of pixels
KR102109009B1 (en) * 2011-02-25 2020-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using light-emitting device
KR101844953B1 (en) * 2011-03-02 2018-04-04 삼성디스플레이 주식회사 Thin film transistor display panel and the method thereof
US9691772B2 (en) 2011-03-03 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including memory cell which includes transistor and capacitor
US8841664B2 (en) 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9646829B2 (en) * 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5898527B2 (en) 2011-03-04 2016-04-06 株式会社半導体エネルギー研究所 Semiconductor device
US8659015B2 (en) 2011-03-04 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8785933B2 (en) 2011-03-04 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8659957B2 (en) 2011-03-07 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9099437B2 (en) 2011-03-08 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5827145B2 (en) 2011-03-08 2015-12-02 株式会社半導体エネルギー研究所 Signal processing circuit
US8625085B2 (en) 2011-03-08 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Defect evaluation method for semiconductor
US8772849B2 (en) 2011-03-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP2012191008A (en) * 2011-03-10 2012-10-04 Sony Corp Display device and electronic apparatus
WO2012121265A1 (en) 2011-03-10 2012-09-13 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for manufacturing the same
TW201237967A (en) * 2011-03-10 2012-09-16 Chunghwa Picture Tubes Ltd Manufacturing method of thin film transistor
TWI521612B (en) * 2011-03-11 2016-02-11 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
TWI624878B (en) 2011-03-11 2018-05-21 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
US8760903B2 (en) 2011-03-11 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
JP5933300B2 (en) 2011-03-16 2016-06-08 株式会社半導体エネルギー研究所 Semiconductor device
JP5933897B2 (en) 2011-03-18 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device
US8859330B2 (en) 2011-03-23 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5725337B2 (en) * 2011-03-24 2015-05-27 ソニー株式会社 Display device, display device manufacturing method, and electronic apparatus
JP2012204548A (en) * 2011-03-24 2012-10-22 Sony Corp Display device and manufacturing method therefor
JP5839474B2 (en) 2011-03-24 2016-01-06 株式会社半導体エネルギー研究所 Signal processing circuit
TWI565078B (en) 2011-03-25 2017-01-01 半導體能源研究所股份有限公司 Field-effect transistor, and memory and semiconductor circuit including the same
US8686416B2 (en) 2011-03-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8987728B2 (en) 2011-03-25 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP5879165B2 (en) 2011-03-30 2016-03-08 株式会社半導体エネルギー研究所 Semiconductor device
GB2489682B (en) * 2011-03-30 2015-11-04 Pragmatic Printing Ltd Electronic device and its method of manufacture
US8686486B2 (en) 2011-03-31 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9082860B2 (en) 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5982147B2 (en) 2011-04-01 2016-08-31 株式会社半導体エネルギー研究所 Light emitting device
US9960278B2 (en) 2011-04-06 2018-05-01 Yuhei Sato Manufacturing method of semiconductor device
TWI567736B (en) 2011-04-08 2017-01-21 半導體能源研究所股份有限公司 Memory element and signal processing circuit
US9012905B2 (en) 2011-04-08 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor comprising oxide semiconductor and method for manufacturing the same
US9093538B2 (en) 2011-04-08 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8743590B2 (en) 2011-04-08 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device using the same
US9478668B2 (en) 2011-04-13 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP5883699B2 (en) 2011-04-13 2016-03-15 株式会社半導体エネルギー研究所 Programmable LSI
US8854867B2 (en) 2011-04-13 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Memory device and driving method of the memory device
JP6045176B2 (en) 2011-04-15 2016-12-14 株式会社半導体エネルギー研究所 Semiconductor device
US8878174B2 (en) 2011-04-15 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, memory circuit, integrated circuit, and driving method of the integrated circuit
US9070776B2 (en) 2011-04-15 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP6001900B2 (en) 2011-04-21 2016-10-05 株式会社半導体エネルギー研究所 Signal processing circuit
US8878288B2 (en) 2011-04-22 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8932913B2 (en) 2011-04-22 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9006803B2 (en) 2011-04-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
US8797788B2 (en) 2011-04-22 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916868B2 (en) * 2011-04-22 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI548057B (en) 2011-04-22 2016-09-01 半導體能源研究所股份有限公司 Semiconductor device
US10079053B2 (en) 2011-04-22 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Memory element and memory device
KR101919056B1 (en) 2011-04-28 2018-11-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor circuit
US8681533B2 (en) 2011-04-28 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, signal processing circuit, and electronic device
US8729545B2 (en) 2011-04-28 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9935622B2 (en) 2011-04-28 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Comparator and semiconductor device including comparator
US8476927B2 (en) 2011-04-29 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9111795B2 (en) 2011-04-29 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor connected to memory element through oxide semiconductor film
KR101963457B1 (en) 2011-04-29 2019-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
US8848464B2 (en) 2011-04-29 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9614094B2 (en) 2011-04-29 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer and method for driving the same
TWI525615B (en) 2011-04-29 2016-03-11 半導體能源研究所股份有限公司 Semiconductor storage device
US8446171B2 (en) 2011-04-29 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing unit
US8785923B2 (en) 2011-04-29 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI639237B (en) 2011-05-05 2018-10-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US8809928B2 (en) 2011-05-06 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and method for manufacturing the semiconductor device
US8709922B2 (en) 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI568181B (en) 2011-05-06 2017-01-21 半導體能源研究所股份有限公司 Logic circuit and semiconductor device
WO2012153473A1 (en) 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101874144B1 (en) 2011-05-06 2018-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
US9117701B2 (en) 2011-05-06 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102692771B (en) * 2011-05-09 2014-12-17 京东方科技集团股份有限公司 Liquid crystal display, thin-film transistor array substrate and manufacturing method thereof
US9443844B2 (en) 2011-05-10 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Gain cell semiconductor memory device and driving method thereof
TWI541978B (en) 2011-05-11 2016-07-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8946066B2 (en) 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8922464B2 (en) 2011-05-11 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device and driving method thereof
KR101854197B1 (en) * 2011-05-12 2018-06-21 삼성디스플레이 주식회사 Array substrate and method of manufacturing the same
TWI557711B (en) 2011-05-12 2016-11-11 半導體能源研究所股份有限公司 Method for driving display device
US8847233B2 (en) 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
US9048788B2 (en) 2011-05-13 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photoelectric conversion portion
US9105749B2 (en) 2011-05-13 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9466618B2 (en) 2011-05-13 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including two thin film transistors and method of manufacturing the same
JP6110075B2 (en) 2011-05-13 2017-04-05 株式会社半導体エネルギー研究所 Display device
JP5886128B2 (en) 2011-05-13 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
CN103548263B (en) 2011-05-13 2016-12-07 株式会社半导体能源研究所 Semiconductor device
WO2012157472A1 (en) 2011-05-13 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8897049B2 (en) 2011-05-13 2014-11-25 Semiconductor Energy Laboratories Co., Ltd. Semiconductor device and memory device including semiconductor device
US9954110B2 (en) 2011-05-13 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
US9093539B2 (en) 2011-05-13 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2012157463A1 (en) 2011-05-13 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI536502B (en) 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 Memory circuit and electronic device
TWI570891B (en) 2011-05-17 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device
TWI571058B (en) 2011-05-18 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and method of driving semiconductor device
TWI552150B (en) 2011-05-18 2016-10-01 半導體能源研究所股份有限公司 Semiconductor storage device
JP6014362B2 (en) 2011-05-19 2016-10-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8837203B2 (en) 2011-05-19 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6006975B2 (en) 2011-05-19 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102093909B1 (en) 2011-05-19 2020-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Circuit and method of driving the same
KR101991735B1 (en) 2011-05-19 2019-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor integrated circuit
JP6013682B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
TWI570719B (en) 2011-05-20 2017-02-11 半導體能源研究所股份有限公司 Memory device and signal processing circuit
US8508256B2 (en) 2011-05-20 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
JP5820336B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
WO2012161059A1 (en) 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP5951351B2 (en) 2011-05-20 2016-07-13 株式会社半導体エネルギー研究所 Adder and full adder
JP6091083B2 (en) 2011-05-20 2017-03-08 株式会社半導体エネルギー研究所 Storage device
JP6030334B2 (en) 2011-05-20 2016-11-24 株式会社半導体エネルギー研究所 Storage device
JP6082189B2 (en) 2011-05-20 2017-02-15 株式会社半導体エネルギー研究所 Storage device and signal processing circuit
TWI559683B (en) 2011-05-20 2016-11-21 半導體能源研究所股份有限公司 Semiconductor integrated circuit
JP5820335B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
JP5947099B2 (en) 2011-05-20 2016-07-06 株式会社半導体エネルギー研究所 Semiconductor device
JP5936908B2 (en) 2011-05-20 2016-06-22 株式会社半導体エネルギー研究所 Parity bit output circuit and parity check circuit
TWI570730B (en) 2011-05-20 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device
JP5886496B2 (en) 2011-05-20 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
KR101922397B1 (en) 2011-05-20 2018-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI557739B (en) 2011-05-20 2016-11-11 半導體能源研究所股份有限公司 Semiconductor integrated circuit
TWI614995B (en) 2011-05-20 2018-02-11 半導體能源研究所股份有限公司 Phase locked loop and semiconductor device using the same
TWI501226B (en) 2011-05-20 2015-09-21 Semiconductor Energy Lab Memory device and method for driving memory device
JP6013680B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
JP5319816B2 (en) * 2011-05-21 2013-10-16 双葉電子工業株式会社 Thin film semiconductor device and display device using thin film semiconductor device
US20120298998A1 (en) 2011-05-25 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film, semiconductor device, and method for manufacturing semiconductor device
JP5731904B2 (en) 2011-05-25 2015-06-10 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
KR101912971B1 (en) 2011-05-26 2018-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Divider circuit and semiconductor device using the same
US9171840B2 (en) 2011-05-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8610482B2 (en) 2011-05-27 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Trimming circuit and method for driving trimming circuit
JP5912844B2 (en) 2011-05-31 2016-04-27 株式会社半導体エネルギー研究所 Programmable logic device
US9467047B2 (en) 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
JP5890251B2 (en) 2011-06-08 2016-03-22 株式会社半導体エネルギー研究所 Communication method
DE112012007295B3 (en) 2011-06-08 2022-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a sputtering target and method of manufacturing a semiconductor device
KR101415748B1 (en) * 2011-06-09 2014-08-06 연세대학교 산학협력단 A composition for oxide semiconductor, preparation methods thereof, methods of forming the oxide semiconductor thin film, methods of fomring an electrical device and an electrical device formed thereby
WO2012169142A1 (en) 2011-06-09 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Cache memory and method for driving the same
JP2013016243A (en) 2011-06-09 2013-01-24 Semiconductor Energy Lab Co Ltd Memory device
JP6012263B2 (en) 2011-06-09 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor memory device
JP6009226B2 (en) 2011-06-10 2016-10-19 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8891285B2 (en) 2011-06-10 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
JP6104522B2 (en) 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 Semiconductor device
JP6005401B2 (en) 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8958263B2 (en) 2011-06-10 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20120138074A (en) * 2011-06-14 2012-12-24 삼성디스플레이 주식회사 Thin film transistor, thin film transistor display panel and method of manufacturing the same
US9299852B2 (en) 2011-06-16 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8804405B2 (en) 2011-06-16 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
TWI557910B (en) 2011-06-16 2016-11-11 半導體能源研究所股份有限公司 Semiconductor device and a method for manufacturing the same
US9166055B2 (en) 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9099885B2 (en) 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
WO2012172746A1 (en) 2011-06-17 2012-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8901554B2 (en) * 2011-06-17 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including channel formation region including oxide semiconductor
KR20130007426A (en) 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8673426B2 (en) 2011-06-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US9553195B2 (en) 2011-06-30 2017-01-24 Applied Materials, Inc. Method of IGZO and ZNO TFT fabrication with PECVD SiO2 passivation
US8878589B2 (en) 2011-06-30 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN103081078A (en) * 2011-07-05 2013-05-01 松下电器产业株式会社 Thin-film transistor, method of manufacturing thereof, and display apparatus
JP2013021034A (en) * 2011-07-07 2013-01-31 Ulvac Japan Ltd Laser annealing method and semiconductor device manufacturing method
KR102014876B1 (en) 2011-07-08 2019-08-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI565067B (en) 2011-07-08 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9490241B2 (en) 2011-07-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a first inverter and a second inverter
US9385238B2 (en) 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8836626B2 (en) 2011-07-15 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP2013042117A (en) 2011-07-15 2013-02-28 Semiconductor Energy Lab Co Ltd Semiconductor device
US9200952B2 (en) 2011-07-15 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photodetector and an analog arithmetic circuit
US8946812B2 (en) 2011-07-21 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8716073B2 (en) 2011-07-22 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor film and method for manufacturing semiconductor device
JP6013685B2 (en) 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
KR20140051268A (en) 2011-07-22 2014-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
US9012993B2 (en) 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8994019B2 (en) 2011-08-05 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8710505B2 (en) 2011-08-05 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6004308B2 (en) 2011-08-12 2016-10-05 Nltテクノロジー株式会社 Thin film device
JP6023994B2 (en) 2011-08-15 2016-11-09 Nltテクノロジー株式会社 Thin film device and manufacturing method thereof
JP6006572B2 (en) 2011-08-18 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device
JP6128775B2 (en) 2011-08-19 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
TWI575494B (en) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 Method for driving semiconductor device
JP6116149B2 (en) 2011-08-24 2017-04-19 株式会社半導体エネルギー研究所 Semiconductor device
TWI659523B (en) 2011-08-29 2019-05-11 日商半導體能源研究所股份有限公司 Semiconductor device
US9252279B2 (en) * 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660092B2 (en) 2011-08-31 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor including oxygen release layer
JP6016532B2 (en) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 Semiconductor device
JP6050054B2 (en) 2011-09-09 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
US8802493B2 (en) 2011-09-13 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor device
CN103000692A (en) * 2011-09-14 2013-03-27 鸿富锦精密工业(深圳)有限公司 Thin-film transistor structure and manufacturing method thereof
JP6099336B2 (en) 2011-09-14 2017-03-22 株式会社半導体エネルギー研究所 Light emitting device
JP5825744B2 (en) 2011-09-15 2015-12-02 株式会社半導体エネルギー研究所 Power insulated gate field effect transistor
US8952379B2 (en) 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5832399B2 (en) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 Light emitting device
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN103022012B (en) 2011-09-21 2017-03-01 株式会社半导体能源研究所 Semiconductor storage
WO2013042562A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013042643A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Photodetector and method for driving photodetector
US8841675B2 (en) 2011-09-23 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Minute transistor
TWI450397B (en) * 2011-09-23 2014-08-21 Hon Hai Prec Ind Co Ltd Thin film transistor
KR102108572B1 (en) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI605590B (en) 2011-09-29 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
CN105702741B (en) 2011-09-29 2019-01-01 株式会社半导体能源研究所 Semiconductor devices
KR101506303B1 (en) * 2011-09-29 2015-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8982607B2 (en) 2011-09-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Memory element and signal processing circuit
JP5806905B2 (en) 2011-09-30 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
US20130087784A1 (en) 2011-10-05 2013-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2013083758A (en) 2011-10-07 2013-05-09 Sony Corp Display device, method of manufacturing the same, and electronic unit
JP2013093561A (en) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd Oxide semiconductor film and semiconductor device
JP6022880B2 (en) 2011-10-07 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US9117916B2 (en) 2011-10-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
US9287405B2 (en) 2011-10-13 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
JP6026839B2 (en) 2011-10-13 2016-11-16 株式会社半導体エネルギー研究所 Semiconductor device
US9018629B2 (en) 2011-10-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20130040706A (en) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing semiconductor device
SG10201601757UA (en) 2011-10-14 2016-04-28 Semiconductor Energy Lab Semiconductor device
KR20130043063A (en) 2011-10-19 2013-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TW201317695A (en) * 2011-10-19 2013-05-01 Au Optronics Corp Liquid crystal display device having a high aperture ratio
TWI567985B (en) 2011-10-21 2017-01-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
KR101976212B1 (en) 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP6045285B2 (en) 2011-10-24 2016-12-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6082562B2 (en) 2011-10-27 2017-02-15 株式会社半導体エネルギー研究所 Semiconductor device
KR20130046357A (en) 2011-10-27 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102012981B1 (en) 2011-11-09 2019-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5933895B2 (en) 2011-11-10 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US8796682B2 (en) 2011-11-11 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
WO2013069548A1 (en) 2011-11-11 2013-05-16 Semiconductor Energy Laboratory Co., Ltd. Signal line driver circuit and liquid crystal display device
US9082861B2 (en) 2011-11-11 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with oxide semiconductor channel having protective layer
US8878177B2 (en) 2011-11-11 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20130055521A (en) 2011-11-18 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor element, method for manufacturing semiconductor element, and semiconductor device including semiconductor element
US8969130B2 (en) 2011-11-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
US8962386B2 (en) 2011-11-25 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6099368B2 (en) 2011-11-25 2017-03-22 株式会社半導体エネルギー研究所 Storage device
JP6059968B2 (en) 2011-11-25 2017-01-11 株式会社半導体エネルギー研究所 Semiconductor device and liquid crystal display device
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
KR102072244B1 (en) 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI556319B (en) 2011-11-30 2016-11-01 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
TWI639150B (en) 2011-11-30 2018-10-21 日商半導體能源研究所股份有限公司 Semiconductor display device
TWI621183B (en) * 2011-12-01 2018-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US8981367B2 (en) 2011-12-01 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6050662B2 (en) 2011-12-02 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP2013137853A (en) 2011-12-02 2013-07-11 Semiconductor Energy Lab Co Ltd Storage device and driving method thereof
WO2013080900A1 (en) 2011-12-02 2013-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9257422B2 (en) 2011-12-06 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving signal processing circuit
US10002968B2 (en) 2011-12-14 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
JP6105266B2 (en) 2011-12-15 2017-03-29 株式会社半導体エネルギー研究所 Storage device
WO2013089115A1 (en) 2011-12-15 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8785258B2 (en) 2011-12-20 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2013130802A (en) 2011-12-22 2013-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device, image display device, storage device, and electronic apparatus
US8907392B2 (en) 2011-12-22 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including stacked sub memory cells
US8748240B2 (en) 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2013094547A1 (en) 2011-12-23 2013-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI613824B (en) 2011-12-23 2018-02-01 半導體能源研究所股份有限公司 Semiconductor device
TWI569446B (en) 2011-12-23 2017-02-01 半導體能源研究所股份有限公司 Semiconductor element, method for manufacturing the semiconductor element, and semiconductor device including the semiconductor element
US8704221B2 (en) 2011-12-23 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI580189B (en) 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 Level-shift circuit and semiconductor integrated circuit
JP6012450B2 (en) 2011-12-23 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP6033071B2 (en) 2011-12-23 2016-11-30 株式会社半導体エネルギー研究所 Semiconductor device
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
KR102100425B1 (en) * 2011-12-27 2020-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI584383B (en) 2011-12-27 2017-05-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
TWI441198B (en) * 2011-12-30 2014-06-11 Au Optronics Corp Panel and method for fabricating the same
KR102103913B1 (en) 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US8981368B2 (en) * 2012-01-11 2015-03-17 Sony Corporation Thin film transistor, method of manufacturing thin film transistor, display, and electronic apparatus
US8969867B2 (en) 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013168926A (en) 2012-01-18 2013-08-29 Semiconductor Energy Lab Co Ltd Circuit, sensor circuit, and semiconductor device using the sensor circuit
US9040981B2 (en) 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102433736B1 (en) 2012-01-23 2022-08-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9653614B2 (en) 2012-01-23 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8896010B2 (en) 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
WO2013112435A1 (en) 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
JP5656888B2 (en) * 2012-01-24 2015-01-21 株式会社日立製作所 Graphene transistor
US8907362B2 (en) 2012-01-24 2014-12-09 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
KR102083380B1 (en) 2012-01-25 2020-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US8956912B2 (en) 2012-01-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6091905B2 (en) 2012-01-26 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US9006733B2 (en) 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI562361B (en) 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US9196741B2 (en) 2012-02-03 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9362417B2 (en) 2012-02-03 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102101167B1 (en) 2012-02-03 2020-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI445181B (en) * 2012-02-08 2014-07-11 E Ink Holdings Inc Thin film transistor
US9859114B2 (en) 2012-02-08 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device with an oxygen-controlling insulating layer
US20130207111A1 (en) 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
US9112037B2 (en) 2012-02-09 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6125850B2 (en) 2012-02-09 2017-05-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5981157B2 (en) 2012-02-09 2016-08-31 株式会社半導体エネルギー研究所 Semiconductor device
TWI474409B (en) * 2012-02-14 2015-02-21 Innocom Tech Shenzhen Co Ltd Thin film transistor and manufacturing method thereof and display
US8817516B2 (en) 2012-02-17 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Memory circuit and semiconductor device
JP6108858B2 (en) 2012-02-17 2017-04-05 株式会社半導体エネルギー研究所 P-type semiconductor material and semiconductor device
GB2532895B (en) * 2012-02-21 2016-07-13 Pragmatic Printing Ltd Substantially planar electronic devices and circuits
JP2014063557A (en) 2012-02-24 2014-04-10 Semiconductor Energy Lab Co Ltd Storage element and semiconductor element
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9312257B2 (en) 2012-02-29 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8988152B2 (en) 2012-02-29 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6220526B2 (en) 2012-02-29 2017-10-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6151530B2 (en) 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 Image sensor, camera, and surveillance system
US8975917B2 (en) 2012-03-01 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6046514B2 (en) 2012-03-01 2016-12-14 株式会社半導体エネルギー研究所 Semiconductor device
US9287370B2 (en) 2012-03-02 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Memory device comprising a transistor including an oxide semiconductor and semiconductor device including the same
US9176571B2 (en) 2012-03-02 2015-11-03 Semiconductor Energy Laboratories Co., Ltd. Microprocessor and method for driving microprocessor
US8754693B2 (en) 2012-03-05 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Latch circuit and semiconductor device
JP6100559B2 (en) 2012-03-05 2017-03-22 株式会社半導体エネルギー研究所 Semiconductor memory device
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981370B2 (en) 2012-03-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013133143A1 (en) 2012-03-09 2013-09-12 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
CN104170001B (en) 2012-03-13 2017-03-01 株式会社半导体能源研究所 Light-emitting device and its driving method
JP6168795B2 (en) 2012-03-14 2017-07-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9117409B2 (en) 2012-03-14 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device with transistor and capacitor discharging gate of driving electrode and oxide semiconductor layer
US9058892B2 (en) 2012-03-14 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and shift register
KR102108248B1 (en) 2012-03-14 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film, transistor, and semiconductor device
US9541386B2 (en) 2012-03-21 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Distance measurement device and distance measurement system
US10043794B2 (en) 2012-03-22 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9324449B2 (en) 2012-03-28 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, signal processing unit having the driver circuit, method for manufacturing the signal processing unit, and display device
US9349849B2 (en) 2012-03-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
JP6169376B2 (en) 2012-03-28 2017-07-26 株式会社半導体エネルギー研究所 Battery management unit, protection circuit, power storage device
JP2013229013A (en) 2012-03-29 2013-11-07 Semiconductor Energy Lab Co Ltd Array controller and storage system
JP6139187B2 (en) 2012-03-29 2017-05-31 株式会社半導体エネルギー研究所 Semiconductor device
KR102044725B1 (en) 2012-03-29 2019-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power supply control device
US9786793B2 (en) 2012-03-29 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer including regions with different concentrations of resistance-reducing elements
US8941113B2 (en) 2012-03-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and manufacturing method of semiconductor element
KR20130111873A (en) 2012-04-02 2013-10-11 단국대학교 산학협력단 Manufacturing method for a thin film transistor array panel
US10861978B2 (en) 2012-04-02 2020-12-08 Samsung Display Co., Ltd. Display device
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
US8901556B2 (en) 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
JP2013232885A (en) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd Semiconductor relay
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
US9793444B2 (en) 2012-04-06 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP5975907B2 (en) 2012-04-11 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
US9208849B2 (en) 2012-04-12 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device, and electronic device
JP2013236068A (en) 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
US9030232B2 (en) 2012-04-13 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Isolator circuit and semiconductor device
JP6128906B2 (en) 2012-04-13 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
JP6059566B2 (en) 2012-04-13 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6143423B2 (en) 2012-04-16 2017-06-07 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
JP6001308B2 (en) 2012-04-17 2016-10-05 株式会社半導体エネルギー研究所 Semiconductor device
JP6076612B2 (en) 2012-04-17 2017-02-08 株式会社半導体エネルギー研究所 Semiconductor device
US9029863B2 (en) 2012-04-20 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9219164B2 (en) 2012-04-20 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor channel
JP5838119B2 (en) * 2012-04-24 2015-12-24 株式会社ジャパンディスプレイ THIN FILM TRANSISTOR AND DISPLAY DEVICE USING THE SAME
US9230683B2 (en) 2012-04-25 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
US9006024B2 (en) 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9285848B2 (en) 2012-04-27 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Power reception control device, power reception device, power transmission and reception system, and electronic device
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP6199583B2 (en) 2012-04-27 2017-09-20 株式会社半導体エネルギー研究所 Semiconductor device
US9654107B2 (en) 2012-04-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Programmable LSI
US9331689B2 (en) 2012-04-27 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and semiconductor device including the same
CN102683424B (en) * 2012-04-28 2013-08-07 京东方科技集团股份有限公司 Display device and array substrate as well as thin film transistor and manufacturing method thereof
JP6228381B2 (en) 2012-04-30 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6100071B2 (en) 2012-04-30 2017-03-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9048323B2 (en) 2012-04-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6035195B2 (en) 2012-05-01 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9007090B2 (en) 2012-05-01 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of driving semiconductor device
US9703704B2 (en) 2012-05-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8975918B2 (en) 2012-05-01 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Lookup table and programmable logic device including lookup table
DE112013002281T5 (en) 2012-05-02 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6100076B2 (en) 2012-05-02 2017-03-22 株式会社半導体エネルギー研究所 Processor
US8866510B2 (en) 2012-05-02 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6243136B2 (en) 2012-05-02 2017-12-06 株式会社半導体エネルギー研究所 Switching converter
US9261943B2 (en) 2012-05-02 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP6227890B2 (en) 2012-05-02 2017-11-08 株式会社半導体エネルギー研究所 Signal processing circuit and control circuit
KR102025722B1 (en) 2012-05-02 2019-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Temperature sensor circuit and semiconductor device including temperature sensor circuit
JP2013251255A (en) 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
KR20130125717A (en) 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
CN104285302B (en) 2012-05-10 2017-08-22 株式会社半导体能源研究所 Semiconductor device
KR102069158B1 (en) 2012-05-10 2020-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming wiring, semiconductor device, and method for manufacturing semiconductor device
KR102082793B1 (en) 2012-05-10 2020-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
KR102380379B1 (en) 2012-05-10 2022-04-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8994891B2 (en) 2012-05-16 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
US8929128B2 (en) 2012-05-17 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Storage device and writing method of the same
TWI595502B (en) 2012-05-18 2017-08-11 半導體能源研究所股份有限公司 Memory device and method for driving memory device
US9817032B2 (en) 2012-05-23 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Measurement device
JP6250955B2 (en) 2012-05-25 2017-12-20 株式会社半導体エネルギー研究所 Driving method of semiconductor device
WO2013176199A1 (en) 2012-05-25 2013-11-28 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9571103B2 (en) 2012-05-25 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Lookup table and programmable logic device including lookup table
KR102164990B1 (en) 2012-05-25 2020-10-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving memory element
JP2014003594A (en) 2012-05-25 2014-01-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
JP6050721B2 (en) 2012-05-25 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
US9147706B2 (en) 2012-05-29 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having sensor circuit having amplifier circuit
JP6377317B2 (en) 2012-05-30 2018-08-22 株式会社半導体エネルギー研究所 Programmable logic device
US8995607B2 (en) 2012-05-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
KR102316107B1 (en) 2012-05-31 2021-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8785928B2 (en) 2012-05-31 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9048265B2 (en) 2012-05-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising oxide semiconductor layer
JP6158588B2 (en) 2012-05-31 2017-07-05 株式会社半導体エネルギー研究所 Light emitting device
KR102119914B1 (en) 2012-05-31 2020-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP6228753B2 (en) 2012-06-01 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device, display device, display module, and electronic device
WO2013180016A1 (en) 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and alarm device
US9343120B2 (en) 2012-06-01 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. High speed processing unit with non-volatile register
US9135182B2 (en) 2012-06-01 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Central processing unit and driving method thereof
US8872174B2 (en) 2012-06-01 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
TWI587261B (en) 2012-06-01 2017-06-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US20130320335A1 (en) * 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9916793B2 (en) 2012-06-01 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving the same
CN102779783B (en) * 2012-06-04 2014-09-17 北京京东方光电科技有限公司 Pixel structure, as well as manufacturing method and display device thereof
KR20130139438A (en) * 2012-06-05 2013-12-23 삼성디스플레이 주식회사 Thin film transistor array panel
US9231178B2 (en) 2012-06-07 2016-01-05 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102315695B1 (en) 2012-06-29 2021-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102082794B1 (en) 2012-06-29 2020-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of driving display device, and display device
US9742378B2 (en) 2012-06-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit and semiconductor device
KR102161077B1 (en) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102099445B1 (en) 2012-06-29 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US9312390B2 (en) 2012-07-05 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Remote control system
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9083327B2 (en) 2012-07-06 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
JP6310194B2 (en) 2012-07-06 2018-04-11 株式会社半導体エネルギー研究所 Semiconductor device
KR102099262B1 (en) 2012-07-11 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and method for driving the same
JP2014032399A (en) 2012-07-13 2014-02-20 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP6006558B2 (en) 2012-07-17 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9160195B2 (en) 2012-07-17 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Charging device
JP6185311B2 (en) 2012-07-20 2017-08-23 株式会社半導体エネルギー研究所 Power supply control circuit and signal processing circuit
KR102343715B1 (en) 2012-07-20 2021-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
CN104508548B (en) 2012-07-20 2017-11-07 株式会社半导体能源研究所 Display device
KR20140013931A (en) 2012-07-26 2014-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP2014042004A (en) 2012-07-26 2014-03-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP6224931B2 (en) 2012-07-27 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
JP6134598B2 (en) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 Semiconductor device
JP2014045175A (en) 2012-08-02 2014-03-13 Semiconductor Energy Lab Co Ltd Semiconductor device
KR102243843B1 (en) 2012-08-03 2021-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor stacked film and semiconductor device
CN104508549B (en) 2012-08-03 2018-02-06 株式会社半导体能源研究所 Semiconductor device
US10557192B2 (en) 2012-08-07 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for forming oxide film
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2014057296A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
JP2014057298A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
JP2014199899A (en) 2012-08-10 2014-10-23 株式会社半導体エネルギー研究所 Semiconductor device
US8937307B2 (en) 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI581404B (en) 2012-08-10 2017-05-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8872120B2 (en) 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
KR20140026257A (en) * 2012-08-23 2014-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102069683B1 (en) 2012-08-24 2020-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Radiation detection panel, radiation imaging device, and diagnostic imaging device
KR20140029202A (en) * 2012-08-28 2014-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102161078B1 (en) 2012-08-28 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method thereof
US9625764B2 (en) 2012-08-28 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
DE102013216824A1 (en) 2012-08-28 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI474516B (en) * 2012-08-30 2015-02-21 Lextar Electronics Corp Flip-chip light-emitting diode structure and manufacturing method thereof
TWI611511B (en) 2012-08-31 2018-01-11 半導體能源研究所股份有限公司 Semiconductor device
US8947158B2 (en) 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2014034820A1 (en) 2012-09-03 2014-03-06 Semiconductor Energy Laboratory Co., Ltd. Microcontroller
DE102013217278B4 (en) 2012-09-12 2017-03-30 Semiconductor Energy Laboratory Co., Ltd. A photodetector circuit, an imaging device, and a method of driving a photodetector circuit
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
KR102331652B1 (en) 2012-09-13 2021-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI761605B (en) 2012-09-14 2022-04-21 日商半導體能源研究所股份有限公司 Semiconductor device and method for fabricating the same
US8927985B2 (en) 2012-09-20 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI821777B (en) 2012-09-24 2023-11-11 日商半導體能源研究所股份有限公司 Semiconductor device
US9626889B2 (en) 2012-09-24 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method and program for driving information processing device
JP6351947B2 (en) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
KR102226090B1 (en) 2012-10-12 2021-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device and manufacturing apparatus of semiconductor device
TWI681233B (en) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 Liquid crystal display device, touch panel and method for manufacturing liquid crystal display device
JP6290576B2 (en) 2012-10-12 2018-03-07 株式会社半導体エネルギー研究所 Liquid crystal display device and driving method thereof
WO2014061762A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
DE112013005029T5 (en) 2012-10-17 2015-07-30 Semiconductor Energy Laboratory Co., Ltd. Microcontroller and manufacturing process for it
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6283191B2 (en) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
JP6021586B2 (en) 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device
JP5951442B2 (en) 2012-10-17 2016-07-13 株式会社半導体エネルギー研究所 Semiconductor device
WO2014061567A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
WO2014061535A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6059501B2 (en) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2014082388A (en) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
TWI591966B (en) 2012-10-17 2017-07-11 半導體能源研究所股份有限公司 Programmable logic device and method for driving programmable logic device
JP6204145B2 (en) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 Semiconductor device
TWI637517B (en) 2012-10-24 2018-10-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP6300489B2 (en) 2012-10-24 2018-03-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102279459B1 (en) 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102130184B1 (en) 2012-10-24 2020-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2014065389A1 (en) 2012-10-25 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Central control system
CN103077943B (en) * 2012-10-26 2016-04-06 京东方科技集团股份有限公司 Array base palte and preparation method thereof, display unit
JP6219562B2 (en) 2012-10-30 2017-10-25 株式会社半導体エネルギー研究所 Display device and electronic device
KR102001057B1 (en) * 2012-10-31 2019-07-18 엘지디스플레이 주식회사 Method of fabricating array substrate
DE112013005331T5 (en) 2012-11-08 2015-11-19 Semiconductor Energy Laboratory Co., Ltd. Metal oxide film and method of forming a metal oxide film
TWI605593B (en) 2012-11-15 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device
JP6220641B2 (en) 2012-11-15 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
TWI608616B (en) 2012-11-15 2017-12-11 半導體能源研究所股份有限公司 Semiconductor device
JP6317059B2 (en) 2012-11-16 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
TWI620323B (en) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
TWI661553B (en) 2012-11-16 2019-06-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6285150B2 (en) 2012-11-16 2018-02-28 株式会社半導体エネルギー研究所 Semiconductor device
WO2014084153A1 (en) 2012-11-28 2014-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20140068588A (en) * 2012-11-28 2014-06-09 코닝정밀소재 주식회사 Method of fabricating zinc oxide thin film
TWI613759B (en) 2012-11-28 2018-02-01 半導體能源研究所股份有限公司 Display device
TWI627483B (en) 2012-11-28 2018-06-21 半導體能源研究所股份有限公司 Display device and television receiver
US9263531B2 (en) 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
KR102050438B1 (en) * 2012-11-29 2020-01-09 엘지디스플레이 주식회사 Method for fabricating oxide thin film transistor
KR102526635B1 (en) 2012-11-30 2023-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2014130336A (en) 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
KR102144992B1 (en) * 2012-11-30 2020-08-18 삼성전자주식회사 Semiconductor material, transistor including semiconductor material and electronic device including transistor
EP2738815B1 (en) * 2012-11-30 2016-02-10 Samsung Electronics Co., Ltd Semiconductor materials, transistors including the same, and electronic devices including transistors
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9594281B2 (en) 2012-11-30 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR102207028B1 (en) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9349593B2 (en) 2012-12-03 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2014135478A (en) 2012-12-03 2014-07-24 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
KR102112364B1 (en) 2012-12-06 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102207063B1 (en) * 2012-12-12 2021-01-25 엘지디스플레이 주식회사 Thin film transistor, method for manufacturing the same and display device comprising the same
US9577446B2 (en) 2012-12-13 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device storing data for the identifying power storage device
CN103050412B (en) * 2012-12-20 2015-10-21 深圳丹邦投资集团有限公司 The manufacture method of oxide thin film transistor
KR20140081412A (en) * 2012-12-21 2014-07-01 삼성디스플레이 주식회사 Thin film transistor array panel and method for manufacturing the same
TWI611419B (en) 2012-12-24 2018-01-11 半導體能源研究所股份有限公司 Programmable logic device and semiconductor device
US9905585B2 (en) 2012-12-25 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising capacitor
DE112013006219T5 (en) 2012-12-25 2015-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
KR102241249B1 (en) 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Resistor, display device, and electronic device
DE112013006214T5 (en) 2012-12-25 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014142986A (en) 2012-12-26 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device
US9316695B2 (en) 2012-12-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6329762B2 (en) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
TWI607510B (en) 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method of the same
JP6223171B2 (en) 2012-12-28 2017-11-01 株式会社半導体エネルギー研究所 Power storage device control system, power storage system, and electrical device
JP2014143410A (en) 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
WO2014104267A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014104265A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI614813B (en) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9190172B2 (en) 2013-01-24 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9466725B2 (en) 2013-01-24 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5807076B2 (en) 2013-01-24 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
JP6223198B2 (en) 2013-01-24 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
TWI619010B (en) 2013-01-24 2018-03-21 半導體能源研究所股份有限公司 Semiconductor device
US9105658B2 (en) 2013-01-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor layer
US9076825B2 (en) 2013-01-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI618252B (en) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
KR102125593B1 (en) 2013-02-13 2020-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable logic device and semiconductor device
US8952723B2 (en) 2013-02-13 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9190527B2 (en) 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US9318484B2 (en) 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI611566B (en) 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 Display device and electronic device
US9293544B2 (en) 2013-02-26 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having buried channel structure
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20140106977A (en) * 2013-02-27 2014-09-04 삼성전자주식회사 Metal oxide semiconductor Thin Film Transistors having high performance and methods of manufacturing the same
TWI612321B (en) 2013-02-27 2018-01-21 半導體能源研究所股份有限公司 Imaging device
KR102238682B1 (en) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2014195241A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2014195243A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
FR3002768B1 (en) * 2013-03-01 2015-02-20 Saint Gobain PROCESS FOR THERMALLY TREATING A COATING
JP2014195060A (en) 2013-03-01 2014-10-09 Semiconductor Energy Lab Co Ltd Sensor circuit and semiconductor device using sensor circuit
US9276125B2 (en) 2013-03-01 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9269315B2 (en) 2013-03-08 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8947121B2 (en) 2013-03-12 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
TWI644433B (en) 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device
KR102290247B1 (en) 2013-03-14 2021-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9294075B2 (en) 2013-03-14 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6298662B2 (en) 2013-03-14 2018-03-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2014199708A (en) 2013-03-14 2014-10-23 株式会社半導体エネルギー研究所 Method for driving semiconductor device
WO2014142043A1 (en) 2013-03-14 2014-09-18 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device and semiconductor device
JP2014199709A (en) 2013-03-14 2014-10-23 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP6283237B2 (en) 2013-03-14 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
TWI677193B (en) 2013-03-15 2019-11-11 日商半導體能源研究所股份有限公司 Semiconductor device
US9786350B2 (en) 2013-03-18 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9577107B2 (en) 2013-03-19 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and method for forming oxide semiconductor film
US9153650B2 (en) 2013-03-19 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor
JP6355374B2 (en) 2013-03-22 2018-07-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6093726B2 (en) 2013-03-22 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US9007092B2 (en) 2013-03-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6272713B2 (en) 2013-03-25 2018-01-31 株式会社半導体エネルギー研究所 Programmable logic device and semiconductor device
JP6376788B2 (en) 2013-03-26 2018-08-22 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP6316630B2 (en) 2013-03-26 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device
JP6395409B2 (en) 2013-03-27 2018-09-26 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
KR102082995B1 (en) 2013-03-27 2020-03-02 삼성전자주식회사 Solution composition for forming oxide semiconductor and oxide semiconductor and electronic device including the oxide semiconductor
JP2014209209A (en) 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Display device
US9368636B2 (en) 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
JP6300589B2 (en) 2013-04-04 2018-03-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9112460B2 (en) 2013-04-05 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Signal processing device
JP6198434B2 (en) 2013-04-11 2017-09-20 株式会社半導体エネルギー研究所 Display device and electronic device
JP6224338B2 (en) 2013-04-11 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device, display device, and method for manufacturing semiconductor device
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
TWI620324B (en) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
JP6280794B2 (en) 2013-04-12 2018-02-14 株式会社半導体エネルギー研究所 Semiconductor device and driving method thereof
JP6456598B2 (en) 2013-04-19 2019-01-23 株式会社半導体エネルギー研究所 Display device
JP6333028B2 (en) 2013-04-19 2018-05-30 株式会社半導体エネルギー研究所 Memory device and semiconductor device
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI647559B (en) 2013-04-24 2019-01-11 日商半導體能源研究所股份有限公司 Display device
JP6401483B2 (en) 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6396671B2 (en) 2013-04-26 2018-09-26 株式会社半導体エネルギー研究所 Semiconductor device
TWI644434B (en) 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI631711B (en) 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 Semiconductor device
KR102222344B1 (en) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9231002B2 (en) 2013-05-03 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9882058B2 (en) 2013-05-03 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN105190902B (en) 2013-05-09 2019-01-29 株式会社半导体能源研究所 Semiconductor device and its manufacturing method
KR102179972B1 (en) * 2013-05-10 2020-11-18 삼성디스플레이 주식회사 Manufacturing method of metal line and thin transistor array panel, and organic light emitting diode display
US9246476B2 (en) 2013-05-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
TWI621337B (en) 2013-05-14 2018-04-11 半導體能源研究所股份有限公司 Signal processing device
TWI669824B (en) 2013-05-16 2019-08-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI639235B (en) 2013-05-16 2018-10-21 半導體能源研究所股份有限公司 Semiconductor device
TWI618058B (en) 2013-05-16 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
US9312392B2 (en) 2013-05-16 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI638519B (en) 2013-05-17 2018-10-11 半導體能源研究所股份有限公司 Programmable logic device and semiconductor device
JP6298353B2 (en) 2013-05-17 2018-03-20 株式会社半導体エネルギー研究所 Semiconductor device
US9209795B2 (en) 2013-05-17 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Signal processing device and measuring method
US10032872B2 (en) 2013-05-17 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and apparatus for manufacturing semiconductor device
US9754971B2 (en) 2013-05-18 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
SG10201601511RA (en) 2013-05-20 2016-03-30 Semiconductor Energy Lab Semiconductor device
US9293599B2 (en) 2013-05-20 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014188982A1 (en) 2013-05-20 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9647125B2 (en) 2013-05-20 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
DE102014208859B4 (en) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI664731B (en) 2013-05-20 2019-07-01 半導體能源研究所股份有限公司 Semiconductor device
US10416504B2 (en) 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2014188983A1 (en) 2013-05-21 2014-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and formation method thereof
WO2014192210A1 (en) 2013-05-29 2014-12-04 パナソニック株式会社 Thin film transistor device, method for manufacturing same and display device
TWI624936B (en) 2013-06-05 2018-05-21 半導體能源研究所股份有限公司 Display device
JP2015195327A (en) 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 semiconductor device
JP6400336B2 (en) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 Semiconductor device
US9806198B2 (en) 2013-06-05 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9773915B2 (en) 2013-06-11 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102282108B1 (en) 2013-06-13 2021-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6368155B2 (en) 2013-06-18 2018-08-01 株式会社半導体エネルギー研究所 Programmable logic device
TWI652822B (en) 2013-06-19 2019-03-01 日商半導體能源研究所股份有限公司 Oxide semiconductor film and formation method thereof
US9035301B2 (en) 2013-06-19 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device
TWI633650B (en) 2013-06-21 2018-08-21 半導體能源研究所股份有限公司 Semiconductor device
JP6357363B2 (en) 2013-06-26 2018-07-11 株式会社半導体エネルギー研究所 Storage device
KR102269460B1 (en) 2013-06-27 2021-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TW201513128A (en) 2013-07-05 2015-04-01 Semiconductor Energy Lab Semiconductor device
JP6435124B2 (en) 2013-07-08 2018-12-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9666697B2 (en) 2013-07-08 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device including an electron trap layer
TWI654614B (en) 2013-07-10 2019-03-21 日商半導體能源研究所股份有限公司 Semiconductor device
US9293480B2 (en) 2013-07-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9818763B2 (en) 2013-07-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US9006736B2 (en) 2013-07-12 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6322503B2 (en) 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 Semiconductor device
JP6516978B2 (en) 2013-07-17 2019-05-22 株式会社半導体エネルギー研究所 Semiconductor device
US9443592B2 (en) 2013-07-18 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9395070B2 (en) 2013-07-19 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Support of flexible component and light-emitting device
US9379138B2 (en) 2013-07-19 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device with drive voltage dependent on external light intensity
TWI608523B (en) 2013-07-19 2017-12-11 半導體能源研究所股份有限公司 Oxide semiconductor film, method of manufacturing oxide semiconductor film, and semiconductor device
US10529740B2 (en) 2013-07-25 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor layer and conductive layer
TWI636309B (en) 2013-07-25 2018-09-21 日商半導體能源研究所股份有限公司 Liquid crystal display device and electronic device
TWI632688B (en) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
TWI641208B (en) 2013-07-26 2018-11-11 日商半導體能源研究所股份有限公司 Dcdc converter
US9343288B2 (en) 2013-07-31 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20150015071A (en) * 2013-07-31 2015-02-10 삼성디스플레이 주식회사 Thin film transistor substrate, display device having the same and method of manufacturing the same
JP6410496B2 (en) 2013-07-31 2018-10-24 株式会社半導体エネルギー研究所 Multi-gate transistor
TWI635750B (en) 2013-08-02 2018-09-11 半導體能源研究所股份有限公司 Imaging device and operation method thereof
US9496330B2 (en) 2013-08-02 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP2015053477A (en) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing the same
JP6345023B2 (en) 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9601591B2 (en) 2013-08-09 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299855B2 (en) 2013-08-09 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having dual gate insulating layers
KR102099865B1 (en) * 2013-08-12 2020-04-13 삼성디스플레이 주식회사 Display device
US9374048B2 (en) 2013-08-20 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing device, and driving method and program thereof
TWI663820B (en) 2013-08-21 2019-06-21 日商半導體能源研究所股份有限公司 Charge pump circuit and semiconductor device including the same
KR102244553B1 (en) 2013-08-23 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Capacitor and semiconductor device
US9443987B2 (en) 2013-08-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW202334724A (en) 2013-08-28 2023-09-01 日商半導體能源研究所股份有限公司 Display device
KR20150025621A (en) * 2013-08-29 2015-03-11 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device including transistor
US9552767B2 (en) 2013-08-30 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9590109B2 (en) 2013-08-30 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2015030150A1 (en) 2013-08-30 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Storage circuit and semiconductor device
JP6426402B2 (en) 2013-08-30 2018-11-21 株式会社半導体エネルギー研究所 Display device
US9360564B2 (en) 2013-08-30 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP6406926B2 (en) 2013-09-04 2018-10-17 株式会社半導体エネルギー研究所 Semiconductor device
US9449853B2 (en) 2013-09-04 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising electron trap layer
US10008513B2 (en) 2013-09-05 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9607991B2 (en) 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6345544B2 (en) 2013-09-05 2018-06-20 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102294507B1 (en) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6401977B2 (en) 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
US9590110B2 (en) 2013-09-10 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Ultraviolet light sensor circuit
TWI640014B (en) 2013-09-11 2018-11-01 半導體能源研究所股份有限公司 Memory device, semiconductor device, and electronic device
US9893194B2 (en) 2013-09-12 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9269822B2 (en) 2013-09-12 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9583063B2 (en) 2013-09-12 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6429540B2 (en) 2013-09-13 2018-11-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102307142B1 (en) 2013-09-13 2021-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI646690B (en) 2013-09-13 2019-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9461126B2 (en) 2013-09-13 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Transistor, clocked inverter circuit, sequential circuit, and semiconductor device including sequential circuit
US9716003B2 (en) 2013-09-13 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP6467171B2 (en) 2013-09-17 2019-02-06 株式会社半導体エネルギー研究所 Semiconductor device
US9859439B2 (en) 2013-09-18 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9269915B2 (en) 2013-09-18 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI677989B (en) 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9425217B2 (en) 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI678740B (en) 2013-09-23 2019-12-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6383616B2 (en) 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 Semiconductor device
CN103489826B (en) * 2013-09-26 2015-08-05 京东方科技集团股份有限公司 Array base palte, preparation method and display unit
KR102213515B1 (en) 2013-09-26 2021-02-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Switch circuit, semiconductor device, and system
JP6392603B2 (en) 2013-09-27 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6581765B2 (en) 2013-10-02 2019-09-25 株式会社半導体エネルギー研究所 Bootstrap circuit and semiconductor device having bootstrap circuit
JP6386323B2 (en) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 Semiconductor device
JP6101357B2 (en) * 2013-10-09 2017-03-22 シャープ株式会社 Semiconductor device and manufacturing method thereof
TW202203465A (en) 2013-10-10 2022-01-16 日商半導體能源研究所股份有限公司 Liquid crystal display device
US9293592B2 (en) 2013-10-11 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102211966B1 (en) * 2013-10-14 2021-02-15 삼성디스플레이 주식회사 Substrate formed thin film transistor array and organic light emitting display
KR102275031B1 (en) 2013-10-16 2021-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving arithmetic processing unit
TWI642170B (en) 2013-10-18 2018-11-21 半導體能源研究所股份有限公司 Display device and electronic device
TWI621127B (en) 2013-10-18 2018-04-11 半導體能源研究所股份有限公司 Arithmetic processing unit and driving method thereof
US9455349B2 (en) 2013-10-22 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor with reduced impurity diffusion
DE102014220672A1 (en) 2013-10-22 2015-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN105659369B (en) 2013-10-22 2019-10-22 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
JP2015179247A (en) 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 display device
WO2015060203A1 (en) 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102244460B1 (en) 2013-10-22 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6625796B2 (en) 2013-10-25 2019-12-25 株式会社半導体エネルギー研究所 Display device
JP6457239B2 (en) 2013-10-31 2019-01-23 株式会社半導体エネルギー研究所 Semiconductor device
US9590111B2 (en) 2013-11-06 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP6478562B2 (en) 2013-11-07 2019-03-06 株式会社半導体エネルギー研究所 Semiconductor device
US9385054B2 (en) 2013-11-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device and manufacturing method thereof
JP2015118724A (en) 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and method for driving the semiconductor device
KR102232539B1 (en) * 2013-11-13 2021-03-29 삼성디스플레이 주식회사 Thin film transistor, display substrate having the same and method of manufacturing a thin film transistor
US9430180B2 (en) 2013-11-15 2016-08-30 Semiconductor Energy Laboratory Co., Ltd Display panel and electronic device
JP6426437B2 (en) 2013-11-22 2018-11-21 株式会社半導体エネルギー研究所 Semiconductor device
JP6393590B2 (en) 2013-11-22 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6486660B2 (en) 2013-11-27 2019-03-20 株式会社半導体エネルギー研究所 Display device
JP2016001712A (en) 2013-11-29 2016-01-07 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
KR102386362B1 (en) 2013-12-02 2022-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9601634B2 (en) 2013-12-02 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102215364B1 (en) 2013-12-02 2021-02-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
US9991392B2 (en) 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016027597A (en) 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 Semiconductor device
US9806098B2 (en) 2013-12-10 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6570825B2 (en) 2013-12-12 2019-09-04 株式会社半導体エネルギー研究所 Electronics
JP6537264B2 (en) 2013-12-12 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
TWI642186B (en) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI721409B (en) 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 Semiconductor device
CN103730346B (en) * 2013-12-24 2016-08-31 京东方科技集团股份有限公司 A kind of thin film transistor (TFT) and preparation method thereof, array base palte, display device
WO2015097586A1 (en) 2013-12-25 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20160102295A (en) 2013-12-26 2016-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9406348B2 (en) 2013-12-26 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Memory cell including transistor and capacitor
WO2015097596A1 (en) 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9960280B2 (en) 2013-12-26 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI637484B (en) 2013-12-26 2018-10-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6402017B2 (en) 2013-12-26 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
KR102381859B1 (en) 2013-12-27 2022-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
JP6506545B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Semiconductor device
US9577110B2 (en) 2013-12-27 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor and the display device including the semiconductor device
JP6506961B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Liquid crystal display
JP6488124B2 (en) 2013-12-27 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor device
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6446258B2 (en) 2013-12-27 2018-12-26 株式会社半導体エネルギー研究所 Transistor
WO2015097593A1 (en) 2013-12-27 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
KR102230653B1 (en) * 2013-12-31 2021-03-23 삼성전자주식회사 Thin Film Transistor and Method of manufacturing the same
JP6444723B2 (en) 2014-01-09 2018-12-26 株式会社半導体エネルギー研究所 apparatus
US9300292B2 (en) 2014-01-10 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Circuit including transistor
US9401432B2 (en) 2014-01-16 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9379713B2 (en) 2014-01-17 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Data processing device and driving method thereof
KR102306200B1 (en) 2014-01-24 2021-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2015114476A1 (en) 2014-01-28 2015-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9929044B2 (en) 2014-01-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
WO2015119858A1 (en) 2014-02-05 2015-08-13 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9443876B2 (en) 2014-02-05 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, and the display module
TWI665778B (en) 2014-02-05 2019-07-11 日商半導體能源研究所股份有限公司 Semiconductor device, module, and electronic device
US9653487B2 (en) 2014-02-05 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, module, and electronic device
JP6473626B2 (en) 2014-02-06 2019-02-20 株式会社半導体エネルギー研究所 Semiconductor device
JP6420165B2 (en) 2014-02-07 2018-11-07 株式会社半導体エネルギー研究所 Semiconductor device
JP2015165226A (en) 2014-02-07 2015-09-17 株式会社半導体エネルギー研究所 Device
CN105960633B (en) 2014-02-07 2020-06-19 株式会社半导体能源研究所 Semiconductor device, device and electronic apparatus
TWI658597B (en) 2014-02-07 2019-05-01 日商半導體能源研究所股份有限公司 Semiconductor device
US9479175B2 (en) 2014-02-07 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6545970B2 (en) 2014-02-07 2019-07-17 株式会社半導体エネルギー研究所 apparatus
TWI779298B (en) 2014-02-11 2022-10-01 日商半導體能源研究所股份有限公司 Display device and electronic device
WO2015125042A1 (en) 2014-02-19 2015-08-27 Semiconductor Energy Laboratory Co., Ltd. Oxide, semiconductor device, module, and electronic device
JP6506566B2 (en) 2014-02-21 2019-04-24 株式会社半導体エネルギー研究所 Current measurement method
JP2015172991A (en) 2014-02-21 2015-10-01 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic device
TWI770954B (en) 2014-02-21 2022-07-11 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
TWI675004B (en) 2014-02-21 2019-10-21 日商半導體能源研究所股份有限公司 Semiconductor film, transistor, semiconductor device, display device, and electronic appliance
US9294096B2 (en) 2014-02-28 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9564535B2 (en) 2014-02-28 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
JP6542542B2 (en) 2014-02-28 2019-07-10 株式会社半導体エネルギー研究所 Semiconductor device
US10074576B2 (en) 2014-02-28 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
CN106104772B (en) 2014-02-28 2020-11-10 株式会社半导体能源研究所 Semiconductor device and display device having the same
KR20150104518A (en) 2014-03-05 2015-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Level shifter circuit
JP6474280B2 (en) 2014-03-05 2019-02-27 株式会社半導体エネルギー研究所 Semiconductor device
US10096489B2 (en) 2014-03-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9537478B2 (en) 2014-03-06 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9397637B2 (en) 2014-03-06 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Voltage controlled oscillator, semiconductor device, and electronic device
JP6625328B2 (en) 2014-03-06 2019-12-25 株式会社半導体エネルギー研究所 Method for driving semiconductor device
WO2015132697A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9653611B2 (en) 2014-03-07 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6585354B2 (en) 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 Semiconductor device
US9443872B2 (en) 2014-03-07 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9419622B2 (en) 2014-03-07 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015132694A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, touch panel, and manufacturing method of touch panel
US9711536B2 (en) 2014-03-07 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
KR102267237B1 (en) * 2014-03-07 2021-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
WO2015136413A1 (en) 2014-03-12 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6677449B2 (en) 2014-03-13 2020-04-08 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP6560508B2 (en) 2014-03-13 2019-08-14 株式会社半導体エネルギー研究所 Semiconductor device
JP6525421B2 (en) 2014-03-13 2019-06-05 株式会社半導体エネルギー研究所 Semiconductor device
WO2015136418A1 (en) 2014-03-13 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9324747B2 (en) 2014-03-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9640669B2 (en) 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
JP6541376B2 (en) 2014-03-13 2019-07-10 株式会社半導体エネルギー研究所 Method of operating programmable logic device
KR102252213B1 (en) 2014-03-14 2021-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Circuit system
US9299848B2 (en) 2014-03-14 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, RF tag, and electronic device
JP2015188071A (en) 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 semiconductor device
JP2016027608A (en) 2014-03-14 2016-02-18 株式会社半導体エネルギー研究所 Semiconductor device
US9887212B2 (en) 2014-03-14 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP6559444B2 (en) 2014-03-14 2019-08-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6509596B2 (en) 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 Semiconductor device
WO2015140656A1 (en) 2014-03-18 2015-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9842842B2 (en) 2014-03-19 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and semiconductor device and electronic device having the same
US9887291B2 (en) 2014-03-19 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
JP6495698B2 (en) 2014-03-20 2019-04-03 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic device
TWI657488B (en) 2014-03-20 2019-04-21 日商半導體能源研究所股份有限公司 Semiconductor device, display device including semiconductor device, display module including display device, and electronic device including semiconductor device, display device, and display module
CN111048509B (en) 2014-03-28 2023-12-01 株式会社半导体能源研究所 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2015197543A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Packaging substrate and electronic apparatus
JP6128046B2 (en) 2014-03-31 2017-05-17 ソニー株式会社 Mounting board and electronic equipment
JP2015197544A (en) 2014-03-31 2015-11-09 ソニー株式会社 Mounting board and electronic apparatus
JP6487738B2 (en) 2014-03-31 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor devices, electronic components
TWI735206B (en) 2014-04-10 2021-08-01 日商半導體能源研究所股份有限公司 Memory device and semiconductor device
US9147607B1 (en) * 2014-04-10 2015-09-29 The United States Of America As Represented By The Secretary Of The Air Force Method of fabricating ultra short gate length thin film transistors using optical lithography
JP6635670B2 (en) 2014-04-11 2020-01-29 株式会社半導体エネルギー研究所 Semiconductor device
US9674470B2 (en) 2014-04-11 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and method for driving electronic device
JP6541398B2 (en) 2014-04-11 2019-07-10 株式会社半導体エネルギー研究所 Semiconductor device
TWI646782B (en) 2014-04-11 2019-01-01 日商半導體能源研究所股份有限公司 Holding circuit, driving method of holding circuit, and semiconductor device including holding circuit
KR20160144492A (en) 2014-04-18 2016-12-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
WO2015159183A2 (en) 2014-04-18 2015-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device having the same
KR102511325B1 (en) 2014-04-18 2023-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and operation method thereof
JP2015215606A (en) 2014-04-22 2015-12-03 株式会社半導体エネルギー研究所 Liquid crystal display device and electronic device including the same
JP6613044B2 (en) 2014-04-22 2019-11-27 株式会社半導体エネルギー研究所 Display device, display module, and electronic device
KR102380829B1 (en) 2014-04-23 2022-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device
US9780226B2 (en) 2014-04-25 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI643457B (en) 2014-04-25 2018-12-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6468686B2 (en) 2014-04-25 2019-02-13 株式会社半導体エネルギー研究所 I / O device
KR102330412B1 (en) 2014-04-25 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, electronic component, and electronic device
US10043913B2 (en) 2014-04-30 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, display device, module, and electronic device
TWI679624B (en) 2014-05-02 2019-12-11 日商半導體能源研究所股份有限公司 Semiconductor device
US10656799B2 (en) 2014-05-02 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and operation method thereof
JP6537341B2 (en) 2014-05-07 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
WO2015170220A1 (en) 2014-05-09 2015-11-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
JP6653997B2 (en) 2014-05-09 2020-02-26 株式会社半導体エネルギー研究所 Display correction circuit and display device
KR102333604B1 (en) 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
JP6612056B2 (en) 2014-05-16 2019-11-27 株式会社半導体エネルギー研究所 Imaging device and monitoring device
JP2015233130A (en) 2014-05-16 2015-12-24 株式会社半導体エネルギー研究所 Semiconductor substrate and semiconductor device manufacturing method
JP6580863B2 (en) 2014-05-22 2019-09-25 株式会社半導体エネルギー研究所 Semiconductor devices, health management systems
TWI672804B (en) 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
JP6616102B2 (en) 2014-05-23 2019-12-04 株式会社半導体エネルギー研究所 Storage device and electronic device
US10020403B2 (en) 2014-05-27 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE112015002491T5 (en) * 2014-05-27 2017-03-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
KR20150137214A (en) * 2014-05-28 2015-12-09 삼성디스플레이 주식회사 Organic light-emitting display apparatus and manufacturing the same
US9874775B2 (en) 2014-05-28 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP6615490B2 (en) 2014-05-29 2019-12-04 株式会社半導体エネルギー研究所 Semiconductor device and electronic equipment
KR102418666B1 (en) 2014-05-29 2022-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging element, electronic appliance, method for driving imaging device, and method for driving electronic appliance
JP6653129B2 (en) 2014-05-29 2020-02-26 株式会社半導体エネルギー研究所 Storage device
KR20150138026A (en) 2014-05-29 2015-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6525722B2 (en) 2014-05-29 2019-06-05 株式会社半導体エネルギー研究所 Memory device, electronic component, and electronic device
SG10201912585TA (en) 2014-05-30 2020-02-27 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US9831238B2 (en) 2014-05-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including insulating film having opening portion and conductive film in the opening portion
JP6538426B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
TWI663726B (en) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
TWI646658B (en) 2014-05-30 2019-01-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6537892B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
US9881954B2 (en) 2014-06-11 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Imaging device
WO2015189731A1 (en) 2014-06-13 2015-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
KR102344782B1 (en) 2014-06-13 2021-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Input device and input/output device
JP2016015475A (en) 2014-06-13 2016-01-28 株式会社半導体エネルギー研究所 Semiconductor device and electronic apparatus
TWI663733B (en) 2014-06-18 2019-06-21 日商半導體能源研究所股份有限公司 Transistor and semiconductor device
TWI666776B (en) 2014-06-20 2019-07-21 日商半導體能源研究所股份有限公司 Semiconductor device and display device having the same
KR20150146409A (en) 2014-06-20 2015-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, input/output device, and electronic device
JP6545541B2 (en) 2014-06-25 2019-07-17 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
US10002971B2 (en) 2014-07-03 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9647129B2 (en) 2014-07-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9461179B2 (en) 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
CN106537604B (en) 2014-07-15 2020-09-11 株式会社半导体能源研究所 Semiconductor device, method of manufacturing the same, and display device including the same
JP6581825B2 (en) 2014-07-18 2019-09-25 株式会社半導体エネルギー研究所 Display system
KR102422059B1 (en) 2014-07-18 2022-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, imaging device, and electronic device
WO2016012893A1 (en) 2014-07-25 2016-01-28 Semiconductor Energy Laboratory Co., Ltd. Oscillator circuit and semiconductor device including the same
US9312280B2 (en) 2014-07-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6527416B2 (en) 2014-07-29 2019-06-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR102533396B1 (en) 2014-07-31 2023-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
JP6555956B2 (en) 2014-07-31 2019-08-07 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
US9705004B2 (en) 2014-08-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014111140B4 (en) * 2014-08-05 2019-08-14 Infineon Technologies Austria Ag Semiconductor device with field effect structures with different gate materials and method for the production thereof
JP6652342B2 (en) 2014-08-08 2020-02-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6553444B2 (en) 2014-08-08 2019-07-31 株式会社半導体エネルギー研究所 Semiconductor device
US9595955B2 (en) 2014-08-08 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including power storage elements and switches
US10147747B2 (en) 2014-08-21 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US10032888B2 (en) 2014-08-22 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and electronic appliance having semiconductor device
KR102509203B1 (en) 2014-08-29 2023-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
KR102441803B1 (en) 2014-09-02 2022-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
KR102329498B1 (en) 2014-09-04 2021-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9766517B2 (en) 2014-09-05 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Display device and display module
TW201614626A (en) 2014-09-05 2016-04-16 Semiconductor Energy Lab Display device and electronic device
JP6676316B2 (en) 2014-09-12 2020-04-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299853B1 (en) * 2014-09-16 2016-03-29 Eastman Kodak Company Bottom gate TFT with multilayer passivation
US9401364B2 (en) 2014-09-19 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
KR20160034200A (en) 2014-09-19 2016-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR102513878B1 (en) 2014-09-19 2023-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP2016066788A (en) 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 Method of evaluating semiconductor film, and method of manufacturing semiconductor device
US9431244B2 (en) * 2014-09-24 2016-08-30 Qualcomm Mems Technologies, Inc. Laser annealing technique for metal oxide TFT
US10071904B2 (en) 2014-09-25 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
US10141342B2 (en) 2014-09-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP2016111677A (en) 2014-09-26 2016-06-20 株式会社半導体エネルギー研究所 Semiconductor device, wireless sensor and electronic device
US10170055B2 (en) 2014-09-26 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
WO2016055894A1 (en) 2014-10-06 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9698170B2 (en) 2014-10-07 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
KR20170069207A (en) 2014-10-10 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, circuit board, and electronic device
KR102433326B1 (en) 2014-10-10 2022-08-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit, processing unit, electronic component, and electronic device
KR20160043576A (en) 2014-10-13 2016-04-22 삼성디스플레이 주식회사 Liquid crystal display and manufacturing method thereof
KR101624695B1 (en) * 2014-10-14 2016-05-26 서종현 Manufacturing method of thin film transistor and thin film transistor
US9991393B2 (en) 2014-10-16 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6645793B2 (en) 2014-10-17 2020-02-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2016063159A1 (en) 2014-10-20 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, module, and electronic device
US10068927B2 (en) 2014-10-23 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP6615565B2 (en) 2014-10-24 2019-12-04 株式会社半導体エネルギー研究所 Semiconductor device
KR102396288B1 (en) 2014-10-27 2022-05-10 삼성디스플레이 주식회사 Organic light emitting diode display device
CN107111972B (en) 2014-10-28 2020-04-28 株式会社半导体能源研究所 Function panel, method for manufacturing function panel, module, and data processing device
US9704704B2 (en) 2014-10-28 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
TWI652362B (en) 2014-10-28 2019-03-01 日商半導體能源研究所股份有限公司 Oxide and manufacturing method thereof
WO2016067144A1 (en) 2014-10-28 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Display device, manufacturing method of display device, and electronic device
US9761730B2 (en) 2014-10-29 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9793905B2 (en) 2014-10-31 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
US9584707B2 (en) 2014-11-10 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9548327B2 (en) 2014-11-10 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device having a selenium containing photoelectric conversion layer
CN104319262B (en) * 2014-11-13 2017-02-01 京东方科技集团股份有限公司 Polycrystalline oxide thin film transistor array substrate and manufacturing method of polycrystalline oxide thin film transistor array substrate
TWI581317B (en) 2014-11-14 2017-05-01 群創光電股份有限公司 Thin film transistor substrate and displaypanel having the thin film transistor substrate
TWI699897B (en) 2014-11-21 2020-07-21 日商半導體能源研究所股份有限公司 Semiconductor device
US9438234B2 (en) 2014-11-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device including logic circuit
TWI711165B (en) 2014-11-21 2020-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
JP6563313B2 (en) 2014-11-21 2019-08-21 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
KR102456654B1 (en) 2014-11-26 2022-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
WO2016083952A1 (en) 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6647841B2 (en) 2014-12-01 2020-02-14 株式会社半導体エネルギー研究所 Preparation method of oxide
JP6667267B2 (en) 2014-12-08 2020-03-18 株式会社半導体エネルギー研究所 Semiconductor device
CN113793872A (en) 2014-12-10 2021-12-14 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
JP6833315B2 (en) 2014-12-10 2021-02-24 株式会社半導体エネルギー研究所 Semiconductor devices and electronic devices
JP6689062B2 (en) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 Semiconductor device
US9773832B2 (en) 2014-12-10 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2016092416A1 (en) 2014-12-11 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and electronic device
JP2016116220A (en) 2014-12-16 2016-06-23 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
JP6676354B2 (en) 2014-12-16 2020-04-08 株式会社半導体エネルギー研究所 Semiconductor device
TWI687657B (en) 2014-12-18 2020-03-11 日商半導體能源研究所股份有限公司 Semiconductor device, sensor device, and electronic device
KR20170101233A (en) 2014-12-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for producing sputtering target
US10396210B2 (en) 2014-12-26 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device
TWI686874B (en) 2014-12-26 2020-03-01 日商半導體能源研究所股份有限公司 Semiconductor device, display device, display module, electronic evice, oxide, and manufacturing method of oxide
CN107111985B (en) 2014-12-29 2020-09-18 株式会社半导体能源研究所 Semiconductor device and display device including the same
US10522693B2 (en) 2015-01-16 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6857447B2 (en) 2015-01-26 2021-04-14 株式会社半導体エネルギー研究所 Semiconductor device
US9443564B2 (en) 2015-01-26 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
TWI792065B (en) 2015-01-30 2023-02-11 日商半導體能源研究所股份有限公司 Imaging device and electronic device
KR20170109231A (en) 2015-02-02 2017-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxides and methods for making them
KR20170109237A (en) 2015-02-04 2017-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method of manufacturing semiconductor device, or display device including semiconductor device
TWI732383B (en) 2015-02-06 2021-07-01 日商半導體能源研究所股份有限公司 Device, manufacturing method thereof, and electronic device
US9660100B2 (en) 2015-02-06 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6674269B2 (en) 2015-02-09 2020-04-01 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
JP6717604B2 (en) 2015-02-09 2020-07-01 株式会社半導体エネルギー研究所 Semiconductor device, central processing unit and electronic equipment
WO2016128859A1 (en) 2015-02-11 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9818880B2 (en) 2015-02-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP2016154225A (en) 2015-02-12 2016-08-25 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of the same
CN114512547A (en) 2015-02-12 2022-05-17 株式会社半导体能源研究所 Oxide semiconductor film and semiconductor device
US10249644B2 (en) 2015-02-13 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
TWI696108B (en) 2015-02-13 2020-06-11 日商半導體能源研究所股份有限公司 Functional panel, functional module, light-emitting module, display module, location data input module, light-emitting device, lighting device, display device, data processing device, and manufacturing method of functional panel
US9489988B2 (en) 2015-02-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9991394B2 (en) 2015-02-20 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US10403646B2 (en) 2015-02-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6711642B2 (en) 2015-02-25 2020-06-17 株式会社半導体エネルギー研究所 Semiconductor device
JP6739185B2 (en) 2015-02-26 2020-08-12 株式会社半導体エネルギー研究所 Storage system and storage control circuit
US9653613B2 (en) 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2016139560A1 (en) 2015-03-03 2016-09-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device including the oxide semiconductor film, and display device including the semiconductor device
JPWO2016139828A1 (en) * 2015-03-03 2017-04-27 株式会社東芝 Semiconductor device
KR20230036170A (en) 2015-03-03 2023-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the same, or display device including the same
TWI718125B (en) 2015-03-03 2021-02-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP6681117B2 (en) 2015-03-13 2020-04-15 株式会社半導体エネルギー研究所 Semiconductor device
US9964799B2 (en) 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
JP6765199B2 (en) 2015-03-17 2020-10-07 株式会社半導体エネルギー研究所 Touch panel
US9882061B2 (en) 2015-03-17 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN114546158A (en) 2015-03-17 2022-05-27 株式会社半导体能源研究所 Touch screen
US10134332B2 (en) 2015-03-18 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and driving method of display device
US10147823B2 (en) 2015-03-19 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102582523B1 (en) 2015-03-19 2023-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
JP6662665B2 (en) 2015-03-19 2020-03-11 株式会社半導体エネルギー研究所 Liquid crystal display device and electronic equipment using the liquid crystal display device
CN104752441B (en) * 2015-03-20 2018-03-16 京东方科技集团股份有限公司 A kind of array base palte and preparation method thereof, display panel and display device
US9842938B2 (en) 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
KR20160114511A (en) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
TWI695513B (en) 2015-03-27 2020-06-01 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
JP6736321B2 (en) 2015-03-27 2020-08-05 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI765634B (en) 2015-03-27 2022-05-21 日商半導體能源研究所股份有限公司 Touch panel
TWI695415B (en) 2015-03-30 2020-06-01 日商半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9716852B2 (en) 2015-04-03 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Broadcast system
US10389961B2 (en) 2015-04-09 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10372274B2 (en) 2015-04-13 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
DE112016001703T5 (en) 2015-04-13 2017-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2017010000A (en) 2015-04-13 2017-01-12 株式会社半導体エネルギー研究所 Display device
US10056497B2 (en) 2015-04-15 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10460984B2 (en) 2015-04-15 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
US9916791B2 (en) 2015-04-16 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and method for driving display device
KR101627815B1 (en) * 2015-04-21 2016-06-08 인천대학교 산학협력단 An manufacturing method of a amorphous IGZO TFT-based transient semiconductor
US9848146B2 (en) 2015-04-23 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10192995B2 (en) 2015-04-28 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9613803B2 (en) 2015-04-30 2017-04-04 International Business Machines Corporation Low defect relaxed SiGe/strained Si structures on implant anneal buffer/strain relaxed buffer layers with epitaxial rare earth oxide interlayers and methods to fabricate same
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
JP6777421B2 (en) 2015-05-04 2020-10-28 株式会社半導体エネルギー研究所 Semiconductor device
US10671204B2 (en) 2015-05-04 2020-06-02 Semiconductor Energy Laboratory Co., Ltd. Touch panel and data processor
US9666655B2 (en) 2015-05-05 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6681780B2 (en) 2015-05-07 2020-04-15 株式会社半導体エネルギー研究所 Display systems and electronic devices
DE102016206922A1 (en) 2015-05-08 2016-11-10 Semiconductor Energy Laboratory Co., Ltd. touchscreen
DE102016207737A1 (en) 2015-05-11 2016-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the semiconductor device, tire and moving object
TWI693719B (en) 2015-05-11 2020-05-11 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US9912897B2 (en) 2015-05-11 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US11728356B2 (en) 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
JP6935171B2 (en) 2015-05-14 2021-09-15 株式会社半導体エネルギー研究所 Semiconductor device
US9627034B2 (en) 2015-05-15 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
KR20240014632A (en) 2015-05-22 2024-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the semiconductor device
US9837547B2 (en) 2015-05-22 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide conductor and display device including the semiconductor device
JP6773453B2 (en) 2015-05-26 2020-10-21 株式会社半導体エネルギー研究所 Storage devices and electronic devices
JP6901831B2 (en) 2015-05-26 2021-07-14 株式会社半導体エネルギー研究所 Memory system and information processing system
US10684500B2 (en) 2015-05-27 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Touch panel
US10139663B2 (en) 2015-05-29 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and electronic device
KR102553553B1 (en) 2015-06-12 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device, method for operating the same, and electronic device
CN105097942A (en) 2015-06-12 2015-11-25 京东方科技集团股份有限公司 Thin-film transistor and manufacturing method thereof, oxide backboard and display device
KR102619052B1 (en) 2015-06-15 2023-12-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102593883B1 (en) 2015-06-19 2023-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, manufacturing method thereof, and electronic device
US9860465B2 (en) 2015-06-23 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9935633B2 (en) 2015-06-30 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
US10290573B2 (en) 2015-07-02 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9917209B2 (en) 2015-07-03 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including step of forming trench over semiconductor
WO2017006419A1 (en) 2015-07-06 2017-01-12 堺ディスプレイプロダクト株式会社 Display device
TWI713367B (en) 2015-07-07 2020-12-11 日商半導體能源研究所股份有限公司 Imaging device and operating method thereof
US10181531B2 (en) 2015-07-08 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor having low parasitic capacitance
JP2017022377A (en) 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 Semiconductor device
US9887218B2 (en) 2015-07-16 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device
US10501003B2 (en) 2015-07-17 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, lighting device, and vehicle
US10985278B2 (en) 2015-07-21 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10163948B2 (en) 2015-07-23 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US11024725B2 (en) 2015-07-24 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including metal oxide film
US10978489B2 (en) 2015-07-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, method for manufacturing semiconductor device, method for manufacturing display panel, and information processing device
US11189736B2 (en) 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10424671B2 (en) 2015-07-29 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, circuit board, and electronic device
CN106409919A (en) 2015-07-30 2017-02-15 株式会社半导体能源研究所 Semiconductor device and display device including the semiconductor device
US10019025B2 (en) 2015-07-30 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10585506B2 (en) 2015-07-30 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device with high visibility regardless of illuminance of external light
EP3125296B1 (en) * 2015-07-30 2020-06-10 Ricoh Company, Ltd. Field-effect transistor, display element, image display device, and system
US9825177B2 (en) 2015-07-30 2017-11-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor device using multiple etching mask
US9911861B2 (en) 2015-08-03 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, and electronic device
US10553690B2 (en) 2015-08-04 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6791661B2 (en) 2015-08-07 2020-11-25 株式会社半導体エネルギー研究所 Display panel
US10389922B2 (en) * 2015-08-15 2019-08-20 Nikon Corporation Multi-wavelength detector
US10373991B2 (en) 2015-08-19 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device
WO2017029576A1 (en) * 2015-08-19 2017-02-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9666606B2 (en) 2015-08-21 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2017041877A (en) 2015-08-21 2017-02-23 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic apparatus
US9773919B2 (en) 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017037564A1 (en) 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device
US9911756B2 (en) 2015-08-31 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and electronic device surrounded by layer having assigned band gap to prevent electrostatic discharge damage
JP2017050537A (en) 2015-08-31 2017-03-09 株式会社半導体エネルギー研究所 Semiconductor device
US10090344B2 (en) 2015-09-07 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device, method for operating the same, module, and electronic device
KR102618850B1 (en) 2015-09-10 2023-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device, module, electronic device, and method of operating the imaging device
JP6807683B2 (en) 2015-09-11 2021-01-06 株式会社半導体エネルギー研究所 Input / output panel
SG10201607278TA (en) 2015-09-18 2017-04-27 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic device
JP2017063420A (en) 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 Semiconductor device
CN108140657A (en) 2015-09-30 2018-06-08 株式会社半导体能源研究所 Semiconductor device and electronic equipment
US10109667B2 (en) 2015-10-09 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device, module, and electronic device
WO2017064590A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2017064587A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Display panel, input/output device, data processor, and method for manufacturing display panel
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
US20170118479A1 (en) 2015-10-23 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20230169441A (en) 2015-10-23 2023-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Module and electronic device
US10007161B2 (en) 2015-10-26 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device
SG10201608814YA (en) 2015-10-29 2017-05-30 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the semiconductor device
US9773787B2 (en) 2015-11-03 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, or method for driving the semiconductor device
US9741400B2 (en) 2015-11-05 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, and method for operating the semiconductor device
US10312373B2 (en) 2015-11-17 2019-06-04 Ricoh Company, Ltd. Field-effect transistor (FET) having oxide insulating layer disposed on gate insulating film and between source and drain electrodes, and display element, display and system including said FET, and method of manufacturing said FET
JP6796461B2 (en) 2015-11-18 2020-12-09 株式会社半導体エネルギー研究所 Semiconductor devices, computers and electronic devices
KR20170061602A (en) 2015-11-26 2017-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
US10868045B2 (en) 2015-12-11 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
JP2018032839A (en) 2015-12-11 2018-03-01 株式会社半導体エネルギー研究所 Transistor, circuit, semiconductor device, display device, and electronic apparatus
JP6907512B2 (en) * 2015-12-15 2021-07-21 株式会社リコー Manufacturing method of field effect transistor
US10050152B2 (en) 2015-12-16 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
CN106887436B (en) * 2015-12-16 2019-10-25 鸿富锦精密工业(深圳)有限公司 Thin-film transistor array base-plate and preparation method thereof
KR20180095836A (en) 2015-12-18 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the semiconductor device
US10114263B2 (en) * 2015-12-18 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device
CN105514211B (en) * 2015-12-18 2017-08-25 河南大学 A kind of transparent field effect ultraviolet detector of grid voltage control and preparation method thereof
US10177142B2 (en) 2015-12-25 2019-01-08 Semiconductor Energy Laboratory Co., Ltd. Circuit, logic circuit, processor, electronic component, and electronic device
KR102595042B1 (en) 2015-12-28 2023-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor devices and display devices including semiconductor devices
US10020336B2 (en) 2015-12-28 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device using three dimentional (3D) integration
WO2017115225A2 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Flexible device, display device, and manufacturing methods thereof
JP6851814B2 (en) 2015-12-29 2021-03-31 株式会社半導体エネルギー研究所 Transistor
CN108473334B (en) 2015-12-29 2021-03-12 株式会社半导体能源研究所 Metal oxide film and semiconductor device
JP2017135698A (en) 2015-12-29 2017-08-03 株式会社半導体エネルギー研究所 Semiconductor device, computer, and electronic device
US9576984B1 (en) * 2016-01-14 2017-02-21 Hon Hai Precision Industry Co., Ltd. Thin film transistor array panel and conducting structure
JP6827328B2 (en) 2016-01-15 2021-02-10 株式会社半導体エネルギー研究所 Semiconductor devices and electronic devices
US10027896B2 (en) 2016-01-15 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Image display system, operation method of the same, and electronic device
CN113224171A (en) 2016-01-18 2021-08-06 株式会社半导体能源研究所 Metal oxide film, semiconductor device, and display device
US9905657B2 (en) 2016-01-20 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9887010B2 (en) 2016-01-21 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and driving method thereof
US10411013B2 (en) 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US10334196B2 (en) 2016-01-25 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10700212B2 (en) 2016-01-28 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
US9947700B2 (en) 2016-02-03 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10115741B2 (en) 2016-02-05 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10250247B2 (en) 2016-02-10 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
JP6970511B2 (en) 2016-02-12 2021-11-24 株式会社半導体エネルギー研究所 Transistor
WO2017137869A1 (en) 2016-02-12 2017-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9954003B2 (en) 2016-02-17 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
TWI585954B (en) * 2016-03-02 2017-06-01 群創光電股份有限公司 Transistor array substrate and display panel using the same
WO2017149413A1 (en) 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN108780818B (en) 2016-03-04 2023-01-31 株式会社半导体能源研究所 Semiconductor device, method of manufacturing the same, and display device including the same
US10263114B2 (en) 2016-03-04 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
JP6904730B2 (en) 2016-03-08 2021-07-21 株式会社半導体エネルギー研究所 Imaging device
US10014325B2 (en) 2016-03-10 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
SG10201701689UA (en) 2016-03-18 2017-10-30 Semiconductor Energy Lab Semiconductor device, semiconductor wafer, and electronic device
US10333004B2 (en) 2016-03-18 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module and electronic device
JP6668455B2 (en) 2016-04-01 2020-03-18 株式会社半導体エネルギー研究所 Method for manufacturing oxide semiconductor film
WO2017175095A1 (en) * 2016-04-08 2017-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10236875B2 (en) 2016-04-15 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for operating the semiconductor device
WO2017178923A1 (en) 2016-04-15 2017-10-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US10032918B2 (en) 2016-04-22 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6968567B2 (en) 2016-04-22 2021-11-17 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
KR20230019215A (en) 2016-05-19 2023-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite oxide semiconductor and transistor
US10043659B2 (en) 2016-05-20 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device including the same
WO2017199128A1 (en) 2016-05-20 2017-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device including the same
US9998119B2 (en) 2016-05-20 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
JP7109887B2 (en) 2016-05-20 2022-08-01 株式会社半導体エネルギー研究所 display system
US10242617B2 (en) 2016-06-03 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and driving method
US10078243B2 (en) 2016-06-03 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2017208119A1 (en) 2016-06-03 2017-12-07 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and field-effect transistor
CN106094300B (en) * 2016-06-03 2019-04-09 京东方科技集团股份有限公司 A kind of display panel and preparation method thereof, display device
TWI722048B (en) 2016-06-10 2021-03-21 日商半導體能源研究所股份有限公司 Display device and electronic device
TW201809828A (en) * 2016-06-17 2018-03-16 半導體能源研究所股份有限公司 Display device
KR102330605B1 (en) 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI718208B (en) 2016-06-30 2021-02-11 日商半導體能源研究所股份有限公司 Display device, working method thereof and electronic device
TWI709952B (en) 2016-07-01 2020-11-11 日商半導體能源研究所股份有限公司 Electronic device and driving method of electronic device
CN109478514A (en) 2016-07-26 2019-03-15 株式会社半导体能源研究所 Semiconductor device
KR102446134B1 (en) 2016-07-29 2022-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display system, and electronic device
US10205008B2 (en) 2016-08-03 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR102458660B1 (en) 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR20180016271A (en) 2016-08-05 2018-02-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US10678078B2 (en) 2016-08-05 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the display device
US10141544B2 (en) 2016-08-10 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent display device and manufacturing method thereof
KR102465645B1 (en) 2016-08-17 2022-11-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
JP2018032018A (en) 2016-08-17 2018-03-01 株式会社半導体エネルギー研究所 Semiconductor device, display module, and electronic apparatus
CN109565280B (en) 2016-08-19 2023-02-17 株式会社半导体能源研究所 Power supply control method for semiconductor device
TW202129783A (en) 2016-08-24 2021-08-01 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
WO2018042285A1 (en) 2016-08-30 2018-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
WO2018042284A1 (en) * 2016-08-31 2018-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9978879B2 (en) 2016-08-31 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10411003B2 (en) 2016-10-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN109791950A (en) 2016-10-21 2019-05-21 株式会社半导体能源研究所 Semiconductor device
CN109906405B (en) 2016-11-09 2022-04-26 株式会社半导体能源研究所 Display device, display module, electronic apparatus, and method for manufacturing display device
JP7082976B2 (en) * 2016-11-14 2022-06-09 アルマ マータ ストゥディオルム-ウニベルシータ ディ ボローニャ Sensitive field effect device and its manufacturing method
KR20180055701A (en) 2016-11-17 2018-05-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the same
US10790318B2 (en) 2016-11-22 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing the same, and electronic device
JP7050460B2 (en) 2016-11-22 2022-04-08 株式会社半導体エネルギー研究所 Display device
US20180145096A1 (en) 2016-11-23 2018-05-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN114115609A (en) 2016-11-25 2022-03-01 株式会社半导体能源研究所 Display device and working method thereof
JP7085491B2 (en) 2016-12-02 2022-06-16 株式会社半導体エネルギー研究所 Semiconductor equipment
US10748479B2 (en) 2016-12-07 2020-08-18 Semiconductor Energy Laboratories Co., Ltd. Semiconductor device, display system, and electronic device
TWI651848B (en) * 2016-12-13 2019-02-21 友達光電股份有限公司 Crystallization method of metal oxide semiconductor layer, semiconductor structure, active array substrate, and indium gallium zinc oxide crystal
US10319743B2 (en) 2016-12-16 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display system, and electronic device
JP7126823B2 (en) 2016-12-23 2022-08-29 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
CN116203768A (en) 2017-01-11 2023-06-02 株式会社半导体能源研究所 Display device
WO2018130954A1 (en) 2017-01-16 2018-07-19 株式会社半導体エネルギー研究所 Semiconductor device
TWI748035B (en) 2017-01-20 2021-12-01 日商半導體能源硏究所股份有限公司 Display system and electronic device
WO2018138590A1 (en) 2017-01-24 2018-08-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11380688B2 (en) 2017-01-27 2022-07-05 Semiconductor Energy Laboratory Co., Ltd. Capacitor, semiconductor device, and manufacturing method of semiconductor device
WO2018138619A1 (en) 2017-01-30 2018-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102575531B1 (en) * 2017-01-31 2023-09-06 삼성디스플레이 주식회사 Display panel and display device having the smae
US10608017B2 (en) 2017-01-31 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10504470B2 (en) 2017-02-07 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device
KR102608086B1 (en) 2017-03-29 2023-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method of manufacturing semiconductor device
US11545581B2 (en) * 2019-08-02 2023-01-03 South China University Of Technology Metal oxide (MO) semiconductor and thin-film transistor and application thereof
CN107146816B (en) * 2017-04-10 2020-05-15 华南理工大学 Oxide semiconductor film and thin film transistor prepared from same
KR20190142344A (en) 2017-04-28 2019-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method of semiconductor device
CN110785804A (en) 2017-06-27 2020-02-11 株式会社半导体能源研究所 Display system and data processing method
KR102496132B1 (en) 2017-06-27 2023-02-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 store
CN107393830A (en) * 2017-07-21 2017-11-24 京东方科技集团股份有限公司 The preparation method of thin film transistor (TFT)
US11101300B2 (en) 2017-07-26 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US11022823B2 (en) * 2017-08-08 2021-06-01 University Of North Texas Switchable optical filter for imaging and optical beam modulation
CN107425120B (en) * 2017-08-09 2021-01-12 上海幂方电子科技有限公司 Method for rapidly preparing organic electronic component
CN109384801B (en) 2017-08-10 2022-08-09 松下知识产权经营株式会社 Photoelectric conversion material and photoelectric conversion element
US11054710B2 (en) 2017-08-11 2021-07-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11296231B2 (en) 2017-08-25 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11574573B2 (en) 2017-09-05 2023-02-07 Semiconductor Energy Laboratory Co., Ltd. Display system
JP6782211B2 (en) * 2017-09-08 2020-11-11 株式会社東芝 Transparent electrodes, devices using them, and methods for manufacturing devices
USD842257S1 (en) 2017-09-14 2019-03-05 Eaton Intelligent Power Limited Three phase bus mounted surge protection device
KR102614815B1 (en) * 2017-09-15 2023-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display devices and electronic devices
KR102597945B1 (en) 2017-09-15 2023-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the same
CN107731924A (en) * 2017-09-26 2018-02-23 复旦大学 A kind of black phosphorus field-effect transistor and preparation method thereof
US11094360B2 (en) 2017-10-13 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Storage device, electronic component, and electronic device
TWI659254B (en) * 2017-10-24 2019-05-11 元太科技工業股份有限公司 Driving substrate and display apparatus
US11189643B2 (en) 2017-11-02 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10957720B2 (en) 2017-11-09 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
KR102579125B1 (en) 2017-11-09 2023-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display devices, methods of operation, and electronic devices
US11049887B2 (en) 2017-11-10 2021-06-29 Applied Materials, Inc. Layer stack for display applications
US11545580B2 (en) * 2017-11-15 2023-01-03 South China University Of Technology Metal oxide (MO semiconductor and thin-film transistor and application thereof
CN107968097B (en) * 2017-11-24 2020-11-06 深圳市华星光电半导体显示技术有限公司 Display device, display substrate and manufacturing method thereof
WO2019111105A1 (en) 2017-12-06 2019-06-13 株式会社半導体エネルギー研究所 Semiconductor device, and manufacturing method for semiconductor device
KR20240013863A (en) 2017-12-07 2024-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, and manufacturing method for semiconductor device
JP7278962B2 (en) 2017-12-22 2023-05-22 株式会社半導体エネルギー研究所 Displays and electronics
CN117539095A (en) 2018-01-05 2024-02-09 株式会社半导体能源研究所 Display device, display module and electronic equipment
CN107958656B (en) * 2018-01-08 2019-07-02 武汉华星光电技术有限公司 GOA circuit
JP7022592B2 (en) * 2018-01-11 2022-02-18 株式会社ジャパンディスプレイ Display device
WO2019145803A1 (en) 2018-01-24 2019-08-01 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic apparatus
CN111656430B (en) * 2018-02-01 2022-07-26 株式会社半导体能源研究所 Display device and electronic apparatus
KR20200126408A (en) 2018-03-06 2020-11-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display devices and electronic devices
JP7228564B2 (en) 2018-03-12 2023-02-24 株式会社半導体エネルギー研究所 metal oxide
WO2019175704A1 (en) 2018-03-16 2019-09-19 株式会社半導体エネルギー研究所 Electrical module, display panel, display device, input/output device, information processing device, and production method for electrical module
JP2019169660A (en) * 2018-03-26 2019-10-03 三菱電機株式会社 Thin-film transistor substrate, display device, and method for manufacturing thin-film transistor substrate
CN112136173A (en) 2018-05-25 2020-12-25 株式会社半导体能源研究所 Display device and electronic apparatus
WO2019234543A1 (en) 2018-06-06 2019-12-12 株式会社半導体エネルギー研究所 Display device, display module, and electronic device
CN112313736B (en) 2018-07-05 2022-12-02 株式会社半导体能源研究所 Display device and electronic apparatus
CN109166801A (en) * 2018-07-27 2019-01-08 深圳市华星光电半导体显示技术有限公司 Thin film transistor and its manufacturing method, array substrate
CN109346411A (en) * 2018-09-21 2019-02-15 深圳市华星光电技术有限公司 A kind of preparation method of TFT
TWI689014B (en) * 2018-10-17 2020-03-21 進化光學有限公司 Manufacturing method of active device array substrate and display panel using the same
US11774816B2 (en) 2018-11-02 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
JP7441176B2 (en) 2018-11-09 2024-02-29 株式会社半導体エネルギー研究所 Display devices and electronic equipment
KR102308189B1 (en) * 2018-12-18 2021-10-01 삼성디스플레이 주식회사 Thin film transistor, thin film transistor array panel including the same and manufacturing method thereof
US11436993B2 (en) 2018-12-19 2022-09-06 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and electronic device
US11107929B2 (en) 2018-12-21 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN113228327A (en) 2018-12-26 2021-08-06 株式会社半导体能源研究所 Display device and electronic apparatus
US11289475B2 (en) 2019-01-25 2022-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US11735134B2 (en) 2019-02-05 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Display apparatus and electronic device
JP7231487B2 (en) * 2019-05-30 2023-03-01 株式会社神戸製鋼所 Reflective anode electrode and manufacturing method thereof, thin film transistor substrate, organic EL display, and sputtering target
TWI726348B (en) 2019-07-03 2021-05-01 友達光電股份有限公司 Semiconductor substrate
US11711922B2 (en) 2019-07-12 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Memory device with memory cells comprising multiple transistors
KR20210009000A (en) 2019-07-16 2021-01-26 삼성전자주식회사 Semiconductor device
CN110600553A (en) * 2019-08-09 2019-12-20 深圳市华星光电半导体显示技术有限公司 Thin film transistor and method of manufacturing the same
KR20210111396A (en) 2020-03-02 2021-09-13 삼성전자주식회사 Semiconductor device and method for manufacturing the same
US11653500B2 (en) * 2020-06-25 2023-05-16 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array contact structures
WO2022040702A2 (en) * 2020-08-21 2022-02-24 Rutgers, The State University Of New Jersey Multifunctional mzo-based negative capacitance thin film transistor on glass or flexible substrates
US11621337B2 (en) * 2021-01-27 2023-04-04 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device, ferroelectric capacitor and laminated structure
US11716856B2 (en) 2021-03-05 2023-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
KR102564866B1 (en) * 2021-07-27 2023-08-07 충북대학교 산학협력단 Double-oxide based IGZO memtransistor and manufacturing method thereof

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492610A (en) * 1980-12-11 1985-01-08 Tokyo Shibaura Denki Kabushiki Kaisha Dry Etching method and device therefor
US5094978A (en) * 1989-07-31 1992-03-10 Fujitsu Limited Method of patterning a transparent conductor
US5625199A (en) * 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US5723366A (en) * 1994-09-28 1998-03-03 Sanyo Electric Co. Ltd. Dry etching method, method of fabricating semiconductor device, and method of fabricating liquid crystal display device
US5731856A (en) * 1995-12-30 1998-03-24 Samsung Electronics Co., Ltd. Methods for forming liquid crystal displays including thin film transistors and gate pads having a particular structure
US6022801A (en) * 1998-02-18 2000-02-08 International Business Machines Corporation Method for forming an atomically flat interface for a highly disordered metal-silicon barrier film
US6050827A (en) * 1982-12-29 2000-04-18 Sharp Kabushiki Kaishi Method of manufacturing a thin-film transistor with reinforced drain and source electrodes
US6218219B1 (en) * 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US20010008227A1 (en) * 1997-08-08 2001-07-19 Mitsuru Sadamoto Dry etching method of metal oxide/photoresist film laminate
US20020020875A1 (en) * 2000-05-12 2002-02-21 Tatsuya Arao Semiconductor device and manufacturing method therefor
US20020034861A1 (en) * 2000-09-13 2002-03-21 Kakuya Iwata Method of growing p-type ZnO based oxide semiconductor layer and method of manufacturing semiconductor light emitting device
US20020056838A1 (en) * 2000-11-15 2002-05-16 Matsushita Electric Industrial Co., Ltd. Thin film transistor array, method of producing the same, and display panel using the same
US20020068372A1 (en) * 2000-08-10 2002-06-06 Masafumi Kunii Thin-film semiconductor device
US20020086471A1 (en) * 1998-07-16 2002-07-04 Masashi Maekawa Single crystal TFT from continuous transition metal delivery method
US20020089490A1 (en) * 2001-01-11 2002-07-11 Xerox Corporation Rotating element sheet material and stylus with gradient field addressing
US20030027407A1 (en) * 2001-07-23 2003-02-06 Masayoshi Koike Method for producing group III nitride compound semiconductor
US6529251B2 (en) * 1999-02-23 2003-03-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same
US6532045B2 (en) * 1999-12-28 2003-03-11 Lg. Philips Lcd Co. Ltd. Transflective liquid crystal display device and method of manufacturing the same
US6569716B1 (en) * 1997-02-24 2003-05-27 Sanyo Electric Co., Ltd. Method of manufacturing a polycrystalline silicon film and thin film transistor using lamp and laser anneal
US6580405B1 (en) * 1998-02-09 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US20030113957A1 (en) * 2001-12-19 2003-06-19 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20030143784A1 (en) * 2000-04-04 2003-07-31 Mikihiko Nishitani Thin film manufacturing method and manufacturing apparatus, and thin-film transistor and manufacturing method
US20030164498A1 (en) * 1999-03-16 2003-09-04 Sung Chae Gee Thin-film transistor substrate and liquid crystal display
US6674136B1 (en) * 1999-03-04 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having driver circuit and pixel section provided over same substrate
US6680242B2 (en) * 2001-03-19 2004-01-20 Fuji Xerox Co., Ltd. Method of forming crystalline semiconductor thin film on base substrate, lamination formed with crystalline semiconductor thin film and color filter
US20040038446A1 (en) * 2002-03-15 2004-02-26 Sanyo Electric Co., Ltd.- Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
US6713748B1 (en) * 1998-06-22 2004-03-30 Kabushiki Kaisha Toshiba Image detection device
US20040099926A1 (en) * 2002-11-22 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and light-emitting device, and methods of manufacturing the same
US20040108505A1 (en) * 2002-09-16 2004-06-10 Tuller Harry L. Method for p-type doping wide band gap oxide semiconductors
US20050017302A1 (en) * 2003-07-25 2005-01-27 Randy Hoffman Transistor including a deposited channel region having a doped portion
US6855957B1 (en) * 2000-03-13 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20050039670A1 (en) * 2001-11-05 2005-02-24 Hideo Hosono Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US20050062134A1 (en) * 2003-09-18 2005-03-24 Industrial Technology Research Institute Compound semiconductor material and method for forming an active layer of a thin film transistor device
US20050074930A1 (en) * 2003-10-07 2005-04-07 Chi-Lin Chen Method of forming poly-silicon thin film transistors
US6900461B2 (en) * 2001-06-14 2005-05-31 Idemitsu Kosan Co., Ltd. Conductive thin film for semiconductor device, semiconductor device, and method of manufacturing the same
US20050133917A1 (en) * 2003-12-17 2005-06-23 Randy Hoffman Transistor device
US20050139836A1 (en) * 2003-12-29 2005-06-30 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device using two masks
US20050162591A1 (en) * 2003-11-21 2005-07-28 Shunichi Hashimoto Liquid crystal display element, and liquid crystal display device
US20060012737A1 (en) * 2004-07-19 2006-01-19 Akira Hirai Phase delay element for transmissive and reflective type liquid crystal display
US20060035452A1 (en) * 2002-10-11 2006-02-16 Carcia Peter F Transparent oxide semiconductor thin film transistor
US20060043380A1 (en) * 2002-02-19 2006-03-02 Kawazoe Hiroshi Light-emitting device of field-effect transistor type
US7012658B2 (en) * 2003-03-28 2006-03-14 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display utilizing the same
US20060054888A1 (en) * 2002-06-13 2006-03-16 Yoshihiro Ito Semiconductor device and method for manufacturing semiconductor device
US20060079037A1 (en) * 2004-10-07 2006-04-13 Hewlett-Packard Development Company, L.P. Thin-film transistor and methods
US20060079034A1 (en) * 2004-10-12 2006-04-13 Randy Hoffman Method to form a passivation layer
US20060086933A1 (en) * 2002-05-31 2006-04-27 Hiroyuki Iechi Vertical organic transistor
US20060086936A1 (en) * 2004-10-22 2006-04-27 Randy Hoffman Method of forming a transistor having a dual layer dielectric
US20060091793A1 (en) * 2004-11-02 2006-05-04 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US20060108636A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20060108529A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Sensor and image pickup device
US7064346B2 (en) * 1998-11-17 2006-06-20 Japan Science And Technology Agency Transistor and semiconductor device
US20060141136A1 (en) * 2001-09-14 2006-06-29 Seiko Epson Corporation System and methods for manufacturing an organic electroluminescent element
US7075614B2 (en) * 2000-06-02 2006-07-11 Sharp Kabushiki Kaisha Method of making active matrix substrate with pixel electrodes of photosensitive conductive material
US20060220023A1 (en) * 2005-03-03 2006-10-05 Randy Hoffman Thin-film device
US7161173B2 (en) * 2003-05-20 2007-01-09 Burgener Ii Robert H P-type group II-VI semiconductor compounds
US20070018163A1 (en) * 2004-03-12 2007-01-25 Chiang Hai Q Semiconductor device
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
US7205640B2 (en) * 2002-05-22 2007-04-17 Masashi Kawasaki Semiconductor device and display comprising same
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US20070152217A1 (en) * 2005-12-29 2007-07-05 Chih-Ming Lai Pixel structure of active matrix organic light-emitting diode and method for fabricating the same
US20080006877A1 (en) * 2004-09-17 2008-01-10 Peter Mardilovich Method of Forming a Solution Processed Device
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
US20080118777A1 (en) * 2001-08-17 2008-05-22 Midwest Research Institute Method for Producing High Carrier Concentration P-Type Transparent Conducting Oxides
US20080176349A1 (en) * 2004-02-26 2008-07-24 Suh Min-Chul TFT, flat panel display device having the same, method of manufacturing TFT, method of manufacturing flat panel display device, and method of manufacturing donor sheet
US20090073325A1 (en) * 2005-01-21 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20090114911A1 (en) * 2005-02-03 2009-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device semiconductor device and manufacturing method thereof
US20090134399A1 (en) * 2005-02-18 2009-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Method for Manufacturing the Same
US20090155940A1 (en) * 2007-12-18 2009-06-18 Samsung Mobile Display Co., Ltd. Method of manufacturing thin film transistor and method of manufacturing organic light emitting display having thin film transistor
US20090186437A1 (en) * 2005-11-15 2009-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7642573B2 (en) * 2004-03-12 2010-01-05 Hewlett-Packard Development Company, L.P. Semiconductor device
US7674650B2 (en) * 2005-09-29 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7691353B2 (en) * 2004-06-17 2010-04-06 Burgener Ii Robert H Low dielectric constant group II-VI insulator
US7872259B2 (en) * 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
US8088652B2 (en) * 2007-05-23 2012-01-03 Canon Kabushiki Kaisha Electron device using oxide semiconductor and method of manufacturing the same

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US622801A (en) * 1899-04-11 Rolling-mill
US152217A (en) * 1874-06-23 Improvement in the means of attaching rudders to vessels
US68773A (en) * 1867-09-10 Improvement in machines toe dewing spokes in wagon-wheels
JPS5913591B2 (en) 1976-12-24 1984-03-30 株式会社東芝 Dry etching method
JPS5913591Y2 (en) 1978-09-01 1984-04-21 株式会社東芝 refrigerator
JPS6011109Y2 (en) 1979-12-11 1985-04-13 綱夫 渡辺 Handloom with open frame
JPS56134739U (en) 1980-03-11 1981-10-13
JPS56134739A (en) * 1980-03-26 1981-10-21 Nec Corp Manufacture of semiconductor device
JPS6011109B2 (en) 1980-12-11 1985-03-23 株式会社東芝 Dry etching method and device
JPS59124162U (en) 1983-02-10 1984-08-21 太陽発酵株式会社 Seal with symbol mark
JPS6083373A (en) 1983-10-14 1985-05-11 Nec Corp Thin film transistor array and manufacture thereof
JPS6083373U (en) 1983-11-08 1985-06-08 新沢 安博 bottom of hanging
JPS60170972A (en) 1984-02-15 1985-09-04 Sony Corp Thin film semiconductor device
JPS60170972U (en) 1984-04-20 1985-11-13 住友電装株式会社 clamp
US4701008A (en) 1984-08-10 1987-10-20 Motorola, Inc. Optical waveguide including superstrate of niobium or silicon oxynitride and method of making same
JPS6298774A (en) * 1985-10-25 1987-05-08 Ricoh Co Ltd Manufacture of thin-film transistor
JPS6298774U (en) 1985-12-13 1987-06-23
JPH02179615A (en) 1988-12-29 1990-07-12 Oki Electric Ind Co Ltd Liquid crystal display device
JP2844342B2 (en) 1989-02-28 1999-01-06 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
FR2647785B1 (en) 1989-05-31 1991-09-06 Adir NOVEL PYRROLIDONE DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
JPH03252164A (en) 1990-02-28 1991-11-11 Sanyo Electric Co Ltd Thin-film transistor
US5389806A (en) * 1990-09-04 1995-02-14 Motorola, Inc. Apparatus for reducing heterostructure acoustic charge transport device saw drive power requirements
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
EP0493113B1 (en) * 1990-12-28 1997-03-19 Sharp Kabushiki Kaisha A method for producing a thin film transistor and an active matrix substrate for liquid crystal display devices
KR940008227B1 (en) * 1991-08-27 1994-09-08 주식회사 금성사 Manufacturing method of thin film transistor
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP3173854B2 (en) * 1992-03-25 2001-06-04 株式会社半導体エネルギー研究所 Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
JP3338481B2 (en) 1992-09-08 2002-10-28 ソニー株式会社 Liquid crystal display
JPH0697193A (en) 1992-09-11 1994-04-08 Hitachi Ltd Semiconductor device and manufacture thereof
JP2530990B2 (en) * 1992-10-15 1996-09-04 富士通株式会社 Method of manufacturing thin film transistor matrix
JPH06281956A (en) 1993-03-29 1994-10-07 Sharp Corp Active matrix wiring board
JP3173926B2 (en) * 1993-08-12 2001-06-04 株式会社半導体エネルギー研究所 Method of manufacturing thin-film insulated gate semiconductor device and semiconductor device thereof
US5382457A (en) 1993-09-30 1995-01-17 Colorado Seminary Near-resonant laser sputtering method
DE69424190T2 (en) * 1994-09-12 2000-11-23 Ibm ELECTROMECHANICAL CONVERTER
JP3054584B2 (en) * 1994-09-28 2000-06-19 三洋電機株式会社 Dry etching method, semiconductor device manufacturing method, and liquid crystal display device manufacturing method
JP3115775B2 (en) 1994-11-16 2000-12-11 三菱電機株式会社 Manufacturing method of semiconductor laser
US5640067A (en) * 1995-03-24 1997-06-17 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6287663B1 (en) 1995-10-31 2001-09-11 Kabushiki Kaisha Ohara Glass-ceramic substrate for a magnetic information storage medium
US5817548A (en) * 1995-11-10 1998-10-06 Sony Corporation Method for fabricating thin film transistor device
JP3402030B2 (en) 1995-11-10 2003-04-28 ソニー株式会社 Thin-film semiconductor device manufacturing method
JPH09186335A (en) 1995-12-27 1997-07-15 Casio Comput Co Ltd Thin film transistor and its manufacturing method
JPH09172186A (en) * 1996-12-02 1997-06-30 Casio Comput Co Ltd Manufacture of thin film transistor
KR100399291B1 (en) * 1997-01-27 2004-01-24 가부시키가이샤 아드반스트 디스프레이 Liquid crystal display device using semiconductor thin film transistor, manufacturing method thereof, semiconductor thin film transistor array substrate and corresponding semiconductor thin film transistor array substrate
JP4326604B2 (en) 1997-09-29 2009-09-09 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3369957B2 (en) * 1998-03-25 2003-01-20 三洋電機株式会社 Method for manufacturing semiconductor device
US6554972B1 (en) 1998-06-26 2003-04-29 Kabushiki Kaisha Toshiba Information recording medium and its manufacturing method
JP2000029068A (en) 1998-07-08 2000-01-28 Sony Corp Liquid crystal display device
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000067657A (en) 1998-08-26 2000-03-03 Internatl Business Mach Corp <Ibm> Transparent conductive film excellent in infrared transmission and its manufacture
JP4366732B2 (en) * 1998-09-30 2009-11-18 ソニー株式会社 Method for manufacturing electro-optical device and method for manufacturing drive substrate for electro-optical device
JP2000150861A (en) * 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3916334B2 (en) 1999-01-13 2007-05-16 シャープ株式会社 Thin film transistor
JP4656685B2 (en) 1999-01-14 2011-03-23 株式会社半導体エネルギー研究所 Semiconductor device
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2000228516A (en) * 1999-02-08 2000-08-15 Tdk Corp Semiconductor laminated thin film, electronic device and diode
US6890766B2 (en) 1999-03-17 2005-05-10 International Business Machines Corporation Dual-type thin-film field-effect transistors and applications
JP3423896B2 (en) 1999-03-25 2003-07-07 科学技術振興事業団 Semiconductor devices
JP4397511B2 (en) 1999-07-16 2010-01-13 Hoya株式会社 Low resistance ITO thin film and manufacturing method thereof
JP4015321B2 (en) 1999-07-26 2007-11-28 松下電器産業株式会社 Dry etching method
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4700156B2 (en) * 1999-09-27 2011-06-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2001188255A (en) * 1999-10-19 2001-07-10 Sharp Corp Liquid crystal display element and manufacturing method therefor
JP3961172B2 (en) * 1999-11-26 2007-08-22 アルプス電気株式会社 Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
KR100381054B1 (en) * 1999-12-28 2003-04-18 엘지.필립스 엘시디 주식회사 Transparent Electrode Composed of Indium-Zinc-Oxide and Etchant For Etching The Same
JP3617800B2 (en) * 1999-12-28 2005-02-09 松下電器産業株式会社 TFT array substrate and its manufacturing method Liquid crystal display device using the same
JP4493779B2 (en) 2000-01-31 2010-06-30 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP2001223365A (en) * 2000-02-10 2001-08-17 Fujitsu Ltd Thin film transistor and its manufacturing method
TW507258B (en) * 2000-02-29 2002-10-21 Semiconductor Systems Corp Display device and method for fabricating the same
JP2001308374A (en) * 2000-03-04 2001-11-02 Joryoku Kooria Kk Forming method of quantum hole, semiconductor light- emitting element to use quantum hole thereof and manufacturing method thereof
US7419903B2 (en) 2000-03-07 2008-09-02 Asm International N.V. Thin films
JP2001257350A (en) * 2000-03-08 2001-09-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its preparation method
TW513753B (en) * 2000-03-27 2002-12-11 Semiconductor Energy Lab Semiconductor display device and manufacturing method thereof
JP4356854B2 (en) * 2000-03-31 2009-11-04 富士フイルム株式会社 Image signal reading system and image detector
JP4531923B2 (en) 2000-04-25 2010-08-25 株式会社半導体エネルギー研究所 Semiconductor device
US6500701B2 (en) * 2000-04-28 2002-12-31 Casio Computer Co., Ltd. Method of manufacturing thin film transistor panel having protective film of channel region
JP3645184B2 (en) 2000-05-31 2005-05-11 シャープ株式会社 Liquid crystal display device and defect correcting method thereof
JP4649706B2 (en) * 2000-06-08 2011-03-16 ソニー株式会社 Display device and portable terminal using the same
JP4777500B2 (en) * 2000-06-19 2011-09-21 三菱電機株式会社 Array substrate, display device using the same, and method of manufacturing array substrate
JP2002042379A (en) * 2000-07-19 2002-02-08 Sony Corp Multilayered optical recording medium and its manufacturing method
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
JP4083379B2 (en) 2000-11-09 2008-04-30 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP2003050405A (en) 2000-11-15 2003-02-21 Matsushita Electric Ind Co Ltd Thin film transistor array, its manufacturing method and display panel using the same array
FR2818009B1 (en) 2000-12-07 2003-03-28 Teherani Ferechteh Hosseini PROCESS FOR PRODUCING A PROHIBITED BROADBAND SEMICONDUCTOR
JP3522216B2 (en) * 2000-12-19 2004-04-26 シャープ株式会社 Thin film transistor, method of manufacturing the same, and liquid crystal display
US6495437B1 (en) 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
US6757031B2 (en) * 2001-02-09 2004-06-29 Prime View International Co., Ltd. Metal contact structure and method for thin film transistor array in liquid crystal display
JP2002289859A (en) * 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
JP2002299627A (en) 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd Method for manufacturing thin film transistor and liquid crystal display device using the same
KR100433209B1 (en) 2001-06-25 2004-05-27 엘지.필립스 엘시디 주식회사 Array Substrate of Liquid Crystal Display Device and Fabricating Method Thereof
JP2003037268A (en) 2001-07-24 2003-02-07 Minolta Co Ltd Semiconductor element and manufacturing method therefor
TWI237142B (en) * 2001-07-27 2005-08-01 Sanyo Electric Co Active matrix type display device
JP4785300B2 (en) 2001-09-07 2011-10-05 株式会社半導体エネルギー研究所 Electrophoretic display device, display device, and electronic device
JP4090716B2 (en) * 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP2003107523A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Liquid crystal display device
JP4164562B2 (en) * 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
JP2003179233A (en) * 2001-12-13 2003-06-27 Fuji Xerox Co Ltd Thin film transistor and indication element equipped therewith
KR100494703B1 (en) * 2001-12-31 2005-06-13 비오이 하이디스 테크놀로지 주식회사 A method for manufacturing of thin film transistor liquid crystal display
US6624441B2 (en) 2002-02-07 2003-09-23 Eagle-Picher Technologies, Llc Homoepitaxial layers of p-type zinc oxide and the fabrication thereof
JP4083486B2 (en) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
US6885146B2 (en) 2002-03-14 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising substrates, contrast medium and barrier layers between contrast medium and each of substrates
JP4515035B2 (en) 2002-03-14 2010-07-28 株式会社半導体エネルギー研究所 Display device and manufacturing method thereof
JP2004006686A (en) 2002-03-26 2004-01-08 Sanyo Electric Co Ltd Method of forming zinc oxide semiconductor layer, method of manufacturing semiconductor device, and semiconductor device
JP2003298062A (en) 2002-03-29 2003-10-17 Sharp Corp Thin film transistor and its manufacturing method
KR100494709B1 (en) * 2002-04-19 2005-06-13 비오이 하이디스 테크놀로지 주식회사 Liquid Crystal Display having self-aligned electrode
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP4136531B2 (en) 2002-08-19 2008-08-20 大倉工業株式会社 Transparent conductive film and method for producing the same
JP2004083094A (en) * 2002-08-28 2004-03-18 Dainippon Ink & Chem Inc Lid material of container and resealable packaging container
JP4627961B2 (en) * 2002-09-20 2011-02-09 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4328515B2 (en) 2002-11-19 2009-09-09 Nec液晶テクノロジー株式会社 Liquid crystal display device and manufacturing method thereof
JP2003248240A (en) 2002-12-16 2003-09-05 Sharp Corp Active matrix substrate
JP2004235180A (en) 2003-01-28 2004-08-19 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
US7250930B2 (en) * 2003-02-07 2007-07-31 Hewlett-Packard Development Company, L.P. Transparent active-matrix display
JP4574118B2 (en) * 2003-02-12 2010-11-04 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP4118706B2 (en) 2003-02-25 2008-07-16 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4138672B2 (en) * 2003-03-27 2008-08-27 セイコーエプソン株式会社 Manufacturing method of electro-optical device
JP2004311702A (en) 2003-04-07 2004-11-04 Sumitomo Heavy Ind Ltd Thin film transistor and manufacturing method thereof
GB2401217B (en) 2003-05-02 2005-11-09 Transitive Ltd Improved architecture for generating intermediate representations for program code conversion
JP4239873B2 (en) 2003-05-19 2009-03-18 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP2004349583A (en) 2003-05-23 2004-12-09 Sharp Corp Manufacturing method of transistor
JP4108633B2 (en) * 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
CN101483180B (en) 2003-07-14 2011-11-16 株式会社半导体能源研究所 Liquid crystal display device
JP4112527B2 (en) 2003-07-14 2008-07-02 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device of system on panel type
TWI395996B (en) 2003-07-14 2013-05-11 Semiconductor Energy Lab Semiconductor device and display device
JP4748954B2 (en) * 2003-07-14 2011-08-17 株式会社半導体エネルギー研究所 Liquid crystal display
JP4207691B2 (en) 2003-07-23 2009-01-14 セイコーエプソン株式会社 Thin film semiconductor device manufacturing method
JP4483235B2 (en) 2003-09-01 2010-06-16 カシオ計算機株式会社 Transistor array substrate manufacturing method and transistor array substrate
TWI230462B (en) * 2003-09-15 2005-04-01 Toppoly Optoelectronics Corp Thin film transistor structure with self-aligned intra-gate
JP2005088726A (en) 2003-09-17 2005-04-07 Advics:Kk Tire pressure alarm, tire monitored by the alarm, and method for controlling characteristic value of tire
JP2005108931A (en) 2003-09-29 2005-04-21 Sony Corp Display and manufacturing method therefor
JP2005136330A (en) 2003-10-31 2005-05-26 Canon Inc Imaging device and radiation imaging system
JP4671681B2 (en) 2003-12-19 2011-04-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US7727854B2 (en) 2003-12-19 2010-06-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP4969041B2 (en) * 2004-01-26 2012-07-04 株式会社半導体エネルギー研究所 Method for manufacturing display device
CN100533808C (en) * 2004-01-26 2009-08-26 株式会社半导体能源研究所 Display device, method for manufacturing thereof, and television device
JP4386747B2 (en) 2004-01-28 2009-12-16 三洋電機株式会社 P-type ZnO semiconductor film and manufacturing method thereof
JP4540355B2 (en) * 2004-02-02 2010-09-08 富士通株式会社 Liquid crystal display device and manufacturing method thereof
JP4578826B2 (en) 2004-02-26 2010-11-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
FR2867606B1 (en) 2004-03-10 2006-06-02 Soitec Silicon On Insulator METHOD AND DEVICE FOR PROCESSING THE USEFUL LAYER OF A MULTILAYER STRUCTURE
US7242039B2 (en) * 2004-03-12 2007-07-10 Hewlett-Packard Development Company, L.P. Semiconductor device
US20070194379A1 (en) 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US7250627B2 (en) * 2004-03-12 2007-07-31 Hewlett-Packard Development Company, L.P. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
JP2005258266A (en) * 2004-03-15 2005-09-22 Sumitomo Metal Mining Co Ltd Method for manufacturing metal coated optical fiber
JP2005268724A (en) 2004-03-22 2005-09-29 Sony Corp Electronic element and method for manufacturing same
JP2005283782A (en) 2004-03-29 2005-10-13 Kashii:Kk Sign board
US20050253803A1 (en) 2004-05-13 2005-11-17 Xerox Corporation Electric paper display with a thin film transistor active matrix and integrated addressing logic
KR100603835B1 (en) * 2004-05-24 2006-07-24 엘지.필립스 엘시디 주식회사 An array substrate for In-Plane switching mode LCD
JP2005347599A (en) * 2004-06-04 2005-12-15 Fuji Photo Film Co Ltd Color photo detector and imaging device
TWI238679B (en) * 2004-06-30 2005-08-21 Ind Tech Res Inst Organic electroluminescent stereoscopic image display apparatus
JP4541787B2 (en) * 2004-07-06 2010-09-08 株式会社神戸製鋼所 Display device
JP4463639B2 (en) * 2004-08-06 2010-05-19 本田技研工業株式会社 Cooling structure for electric vehicles
JP2006100760A (en) * 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7265063B2 (en) * 2004-10-22 2007-09-04 Hewlett-Packard Development Company, L.P. Method of forming a component having dielectric sub-layers
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
KR100889796B1 (en) * 2004-11-10 2009-03-20 캐논 가부시끼가이샤 Field effect transistor employing an amorphous oxide
US7309895B2 (en) * 2005-01-25 2007-12-18 Hewlett-Packard Development Company, L.P. Semiconductor device
US7608531B2 (en) * 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI505473B (en) * 2005-01-28 2015-10-21 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
JP2006210854A (en) * 2005-01-31 2006-08-10 Toshiba Corp Semiconductor device and its manufacturing method
US20060189456A1 (en) * 2005-02-08 2006-08-24 Ford Sean P Apparatus to redistribute vertical load forces horizontally
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
JP2006262991A (en) * 2005-03-22 2006-10-05 Toyo Tire & Rubber Co Ltd Seat pad and method of manufacturing the same
WO2006105077A2 (en) * 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) * 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP4850457B2 (en) * 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
JP2007073698A (en) 2005-09-06 2007-03-22 Canon Inc Transistor
JP5116225B2 (en) * 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP2007073705A (en) * 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP2007073704A (en) 2005-09-06 2007-03-22 Canon Inc Semiconductor thin-film
JP4280736B2 (en) * 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP5064747B2 (en) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
JP5037808B2 (en) * 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
KR101229280B1 (en) * 2005-12-28 2013-02-04 삼성디스플레이 주식회사 Display substrate, method of manufacturing the same and display panel having the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (en) * 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
US7754509B2 (en) 2006-03-29 2010-07-13 Chunghua Picture Tubes, Ltd. Manufacturing method for thin film transistor
KR20070101595A (en) * 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4609797B2 (en) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
JP4999400B2 (en) * 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4332545B2 (en) * 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
KR100822802B1 (en) * 2006-09-21 2008-04-18 삼성전자주식회사 Sim card embedding antenna and system including thereof
JP4274219B2 (en) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
JP5164357B2 (en) * 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (en) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) * 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (en) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) * 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) * 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US8704216B2 (en) * 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5251705B2 (en) 2009-04-27 2013-07-31 株式会社島津製作所 Analyzer control system
US7829376B1 (en) 2010-04-07 2010-11-09 Lumenz, Inc. Methods of forming zinc oxide based II-VI compound semiconductor layers with shallow acceptor conductivities

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492610A (en) * 1980-12-11 1985-01-08 Tokyo Shibaura Denki Kabushiki Kaisha Dry Etching method and device therefor
US6050827A (en) * 1982-12-29 2000-04-18 Sharp Kabushiki Kaishi Method of manufacturing a thin-film transistor with reinforced drain and source electrodes
US5094978A (en) * 1989-07-31 1992-03-10 Fujitsu Limited Method of patterning a transparent conductor
US5723366A (en) * 1994-09-28 1998-03-03 Sanyo Electric Co. Ltd. Dry etching method, method of fabricating semiconductor device, and method of fabricating liquid crystal display device
US5731856A (en) * 1995-12-30 1998-03-24 Samsung Electronics Co., Ltd. Methods for forming liquid crystal displays including thin film transistors and gate pads having a particular structure
US5625199A (en) * 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US6569716B1 (en) * 1997-02-24 2003-05-27 Sanyo Electric Co., Ltd. Method of manufacturing a polycrystalline silicon film and thin film transistor using lamp and laser anneal
US20010008227A1 (en) * 1997-08-08 2001-07-19 Mitsuru Sadamoto Dry etching method of metal oxide/photoresist film laminate
US6218219B1 (en) * 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6407431B2 (en) * 1997-09-29 2002-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6573564B2 (en) * 1997-09-29 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6580405B1 (en) * 1998-02-09 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Information processing device
US6022801A (en) * 1998-02-18 2000-02-08 International Business Machines Corporation Method for forming an atomically flat interface for a highly disordered metal-silicon barrier film
US6713748B1 (en) * 1998-06-22 2004-03-30 Kabushiki Kaisha Toshiba Image detection device
US20020086471A1 (en) * 1998-07-16 2002-07-04 Masashi Maekawa Single crystal TFT from continuous transition metal delivery method
US7064346B2 (en) * 1998-11-17 2006-06-20 Japan Science And Technology Agency Transistor and semiconductor device
US6529251B2 (en) * 1999-02-23 2003-03-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same
US6674136B1 (en) * 1999-03-04 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having driver circuit and pixel section provided over same substrate
US20030164498A1 (en) * 1999-03-16 2003-09-04 Sung Chae Gee Thin-film transistor substrate and liquid crystal display
US6532045B2 (en) * 1999-12-28 2003-03-11 Lg. Philips Lcd Co. Ltd. Transflective liquid crystal display device and method of manufacturing the same
US6855957B1 (en) * 2000-03-13 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7687325B2 (en) * 2000-03-13 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20030143784A1 (en) * 2000-04-04 2003-07-31 Mikihiko Nishitani Thin film manufacturing method and manufacturing apparatus, and thin-film transistor and manufacturing method
US20020020875A1 (en) * 2000-05-12 2002-02-21 Tatsuya Arao Semiconductor device and manufacturing method therefor
US7075614B2 (en) * 2000-06-02 2006-07-11 Sharp Kabushiki Kaisha Method of making active matrix substrate with pixel electrodes of photosensitive conductive material
US20020068372A1 (en) * 2000-08-10 2002-06-06 Masafumi Kunii Thin-film semiconductor device
US20020034861A1 (en) * 2000-09-13 2002-03-21 Kakuya Iwata Method of growing p-type ZnO based oxide semiconductor layer and method of manufacturing semiconductor light emitting device
US20020056838A1 (en) * 2000-11-15 2002-05-16 Matsushita Electric Industrial Co., Ltd. Thin film transistor array, method of producing the same, and display panel using the same
US20020089490A1 (en) * 2001-01-11 2002-07-11 Xerox Corporation Rotating element sheet material and stylus with gradient field addressing
US6680242B2 (en) * 2001-03-19 2004-01-20 Fuji Xerox Co., Ltd. Method of forming crystalline semiconductor thin film on base substrate, lamination formed with crystalline semiconductor thin film and color filter
US6900461B2 (en) * 2001-06-14 2005-05-31 Idemitsu Kosan Co., Ltd. Conductive thin film for semiconductor device, semiconductor device, and method of manufacturing the same
US20030027407A1 (en) * 2001-07-23 2003-02-06 Masayoshi Koike Method for producing group III nitride compound semiconductor
US20080118777A1 (en) * 2001-08-17 2008-05-22 Midwest Research Institute Method for Producing High Carrier Concentration P-Type Transparent Conducting Oxides
US20060141136A1 (en) * 2001-09-14 2006-06-29 Seiko Epson Corporation System and methods for manufacturing an organic electroluminescent element
US20050039670A1 (en) * 2001-11-05 2005-02-24 Hideo Hosono Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US20050095753A1 (en) * 2001-12-19 2005-05-05 Woo-Young So Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20050093065A1 (en) * 2001-12-19 2005-05-05 Woo-Young So Method for fabricating thin film transistor with multiple gates using metal induced lateral crystallization
US20030113957A1 (en) * 2001-12-19 2003-06-19 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US20050158928A1 (en) * 2001-12-19 2005-07-21 Woo-Young So Method of fabricating thin film transistor with multiple gates using super grain silicon crystallization
US20050158920A1 (en) * 2001-12-19 2005-07-21 Woo-Young So Thin film transistor with multiple gates using super grain silicon crystallization
US20060043380A1 (en) * 2002-02-19 2006-03-02 Kawazoe Hiroshi Light-emitting device of field-effect transistor type
US20040038446A1 (en) * 2002-03-15 2004-02-26 Sanyo Electric Co., Ltd.- Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
US20080108198A1 (en) * 2002-05-21 2008-05-08 State of Oregon acting by & through the Oregon State Board of Higher Education on behalf of Transistor structures and methods for making the same
US7189992B2 (en) * 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
US7888207B2 (en) * 2002-05-21 2011-02-15 State of Oregon Acting by and through the Oregon State Board of Higher Eduacation on behalf of Oregon State University Transistor structures and methods for making the same
US7205640B2 (en) * 2002-05-22 2007-04-17 Masashi Kawasaki Semiconductor device and display comprising same
US20060086933A1 (en) * 2002-05-31 2006-04-27 Hiroyuki Iechi Vertical organic transistor
US7501293B2 (en) * 2002-06-13 2009-03-10 Murata Manufacturing Co., Ltd. Semiconductor device in which zinc oxide is used as a semiconductor material and method for manufacturing the semiconductor device
US20060054888A1 (en) * 2002-06-13 2006-03-16 Yoshihiro Ito Semiconductor device and method for manufacturing semiconductor device
US20040108505A1 (en) * 2002-09-16 2004-06-10 Tuller Harry L. Method for p-type doping wide band gap oxide semiconductors
US20060035452A1 (en) * 2002-10-11 2006-02-16 Carcia Peter F Transparent oxide semiconductor thin film transistor
US20040099926A1 (en) * 2002-11-22 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and light-emitting device, and methods of manufacturing the same
US7012658B2 (en) * 2003-03-28 2006-03-14 Sharp Kabushiki Kaisha Substrate for liquid crystal display and liquid crystal display utilizing the same
US7172813B2 (en) * 2003-05-20 2007-02-06 Burgener Ii Robert H Zinc oxide crystal growth substrate
US7161173B2 (en) * 2003-05-20 2007-01-09 Burgener Ii Robert H P-type group II-VI semiconductor compounds
US7473925B2 (en) * 2003-05-20 2009-01-06 On International, Inc. P-type group II-VI semiconductor compounds
US20050017302A1 (en) * 2003-07-25 2005-01-27 Randy Hoffman Transistor including a deposited channel region having a doped portion
US20050062134A1 (en) * 2003-09-18 2005-03-24 Industrial Technology Research Institute Compound semiconductor material and method for forming an active layer of a thin film transistor device
US7666764B2 (en) * 2003-09-18 2010-02-23 Industrial Technology Research Institute Compound semiconductor material and method for forming an active layer of a thin film transistor device
US20050074930A1 (en) * 2003-10-07 2005-04-07 Chi-Lin Chen Method of forming poly-silicon thin film transistors
US20050162591A1 (en) * 2003-11-21 2005-07-28 Shunichi Hashimoto Liquid crystal display element, and liquid crystal display device
US20050133917A1 (en) * 2003-12-17 2005-06-23 Randy Hoffman Transistor device
US20050139836A1 (en) * 2003-12-29 2005-06-30 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device using two masks
US20080176349A1 (en) * 2004-02-26 2008-07-24 Suh Min-Chul TFT, flat panel display device having the same, method of manufacturing TFT, method of manufacturing flat panel display device, and method of manufacturing donor sheet
US20070018163A1 (en) * 2004-03-12 2007-01-25 Chiang Hai Q Semiconductor device
US7642573B2 (en) * 2004-03-12 2010-01-05 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US7935616B2 (en) * 2004-06-17 2011-05-03 Burgener Ii Robert H Dynamic p-n junction growth
US7691353B2 (en) * 2004-06-17 2010-04-06 Burgener Ii Robert H Low dielectric constant group II-VI insulator
US20060012737A1 (en) * 2004-07-19 2006-01-19 Akira Hirai Phase delay element for transmissive and reflective type liquid crystal display
US20080006877A1 (en) * 2004-09-17 2008-01-10 Peter Mardilovich Method of Forming a Solution Processed Device
US20060079037A1 (en) * 2004-10-07 2006-04-13 Hewlett-Packard Development Company, L.P. Thin-film transistor and methods
US20060079034A1 (en) * 2004-10-12 2006-04-13 Randy Hoffman Method to form a passivation layer
US20060086936A1 (en) * 2004-10-22 2006-04-27 Randy Hoffman Method of forming a transistor having a dual layer dielectric
US20060091793A1 (en) * 2004-11-02 2006-05-04 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7872259B2 (en) * 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
US20060108529A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Sensor and image pickup device
US20060108636A1 (en) * 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20110017996A1 (en) * 2004-11-10 2011-01-27 Canon Kabushiki Kaisha Light-emitting device
US20090073325A1 (en) * 2005-01-21 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20090153762A1 (en) * 2005-01-21 2009-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US20090114911A1 (en) * 2005-02-03 2009-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device semiconductor device and manufacturing method thereof
US20090152541A1 (en) * 2005-02-03 2009-06-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US20090134399A1 (en) * 2005-02-18 2009-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Method for Manufacturing the Same
US20060220023A1 (en) * 2005-03-03 2006-10-05 Randy Hoffman Thin-film device
US7674650B2 (en) * 2005-09-29 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7910490B2 (en) * 2005-09-29 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110121290A1 (en) * 2005-09-29 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20110117697A1 (en) * 2005-09-29 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20100136743A1 (en) * 2005-09-29 2010-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US7732819B2 (en) * 2005-09-29 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110104851A1 (en) * 2005-09-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US20090186437A1 (en) * 2005-11-15 2009-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20090186445A1 (en) * 2005-11-15 2009-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20090189155A1 (en) * 2005-11-15 2009-07-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20090189156A1 (en) * 2005-11-15 2009-07-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070152217A1 (en) * 2005-12-29 2007-07-05 Chih-Ming Lai Pixel structure of active matrix organic light-emitting diode and method for fabricating the same
US20090068773A1 (en) * 2005-12-29 2009-03-12 Industrial Technology Research Institute Method for fabricating pixel structure of active matrix organic light-emitting diode
US8088652B2 (en) * 2007-05-23 2012-01-03 Canon Kabushiki Kaisha Electron device using oxide semiconductor and method of manufacturing the same
US20090155940A1 (en) * 2007-12-18 2009-06-18 Samsung Mobile Display Co., Ltd. Method of manufacturing thin film transistor and method of manufacturing organic light emitting display having thin film transistor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Okumura et al , Translation of JP2 2002-289859 (October 2002), 24 pages (provided by applicant). *
R. Martins et al "Transport in high mobility amorphous wide band gap indium zinc oxide films" Phys. Stat. Sol. (a) 202, No.9 (2005) , pp. R95-R97 (published online 10 June 2005). *

Cited By (1124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163743A1 (en) * 2005-01-21 2006-07-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, and electric device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US8575618B2 (en) 2005-02-03 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US20060170067A1 (en) * 2005-02-03 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US8207533B2 (en) 2005-02-03 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US20090152541A1 (en) * 2005-02-03 2009-06-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US8247814B2 (en) 2005-02-03 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a metal oxide semiconductor film
US7939822B2 (en) 2005-02-03 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US8790959B2 (en) 2005-09-29 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8669550B2 (en) 2005-09-29 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8466463B2 (en) 2005-09-29 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8796069B2 (en) 2005-09-29 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7732819B2 (en) 2005-09-29 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7674650B2 (en) 2005-09-29 2010-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7932521B2 (en) 2005-09-29 2011-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10304962B2 (en) 2005-09-29 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9099562B2 (en) 2005-09-29 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629069B2 (en) 2005-09-29 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8274077B2 (en) 2005-09-29 2012-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7910490B2 (en) 2005-09-29 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8525165B2 (en) 2005-11-15 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device with bottom gate zinc oxide thin film transistor
US8134156B2 (en) 2005-11-15 2012-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including zinc oxide containing semiconductor film
US8158464B2 (en) 2005-11-15 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a liquid crystal display device with a semiconductor film including zinc oxide
US8368079B2 (en) 2005-11-15 2013-02-05 Semicondutor Energy Laboratory Co., Ltd. Semiconductor device including common potential line
US20070194334A1 (en) * 2006-02-21 2007-08-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8008670B2 (en) 2006-02-21 2011-08-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20100084648A1 (en) * 2007-04-09 2010-04-08 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
US8785240B2 (en) 2007-04-09 2014-07-22 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
US10012880B2 (en) 2007-05-18 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9645461B2 (en) 2007-05-18 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11300841B2 (en) 2007-05-18 2022-04-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8767159B2 (en) 2007-05-18 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9360722B2 (en) 2007-05-18 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US20080299778A1 (en) * 2007-05-30 2008-12-04 Casio Computer Co., Ltd. Silicon film dry etching method
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
US8981369B2 (en) 2007-12-13 2015-03-17 Idemitsu Kosan Co., Ltd Field effect transistor using oxide semiconductor and method for manufacturing the same
US20100046137A1 (en) * 2008-03-13 2010-02-25 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic device
US20090261414A1 (en) * 2008-04-18 2009-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Method for Manufacturing the Same
US9246009B2 (en) 2008-04-18 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006051B2 (en) 2008-04-18 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9036767B2 (en) 2008-06-17 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US11620962B2 (en) 2008-06-17 2023-04-04 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US11455968B2 (en) 2008-06-17 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US10121435B2 (en) 2008-06-17 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US9311876B2 (en) 2008-06-17 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US10665195B2 (en) 2008-06-17 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US10971103B2 (en) 2008-06-17 2021-04-06 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US11837189B2 (en) 2008-06-17 2023-12-05 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
US10483288B2 (en) 2008-07-10 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US10529741B2 (en) 2008-07-10 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US8144389B2 (en) 2008-07-10 2012-03-27 Semiconductor Energy Laboratory Co., Ltd. Electronic paper
US8760046B2 (en) 2008-07-10 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US20100006845A1 (en) * 2008-07-10 2010-01-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US9006965B2 (en) 2008-07-10 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US11631702B2 (en) 2008-07-10 2023-04-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US10916567B2 (en) 2008-07-10 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the same
US9087745B2 (en) 2008-07-31 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10326025B2 (en) 2008-07-31 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9666719B2 (en) 2008-07-31 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8293595B2 (en) 2008-07-31 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11296121B2 (en) 2008-07-31 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9859441B2 (en) 2008-07-31 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100025677A1 (en) * 2008-07-31 2010-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9412798B2 (en) 2008-07-31 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10937897B2 (en) 2008-07-31 2021-03-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10559695B2 (en) 2008-07-31 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10930792B2 (en) 2008-07-31 2021-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9496406B2 (en) 2008-07-31 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8841710B2 (en) 2008-07-31 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9111804B2 (en) 2008-07-31 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8729544B2 (en) * 2008-07-31 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8945981B2 (en) 2008-07-31 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110115763A1 (en) * 2008-07-31 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8129717B2 (en) 2008-07-31 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8624237B2 (en) 2008-07-31 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9793416B2 (en) 2008-08-08 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9105659B2 (en) 2008-08-08 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8946703B2 (en) 2008-08-08 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8115201B2 (en) 2008-08-08 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor formed within
US9236456B2 (en) 2008-08-08 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8729547B2 (en) 2008-08-08 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8343817B2 (en) 2008-08-08 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20100032667A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8900917B2 (en) 2008-08-08 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100035379A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8492760B2 (en) 2008-08-08 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8471252B2 (en) 2008-08-08 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9437748B2 (en) 2008-08-08 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9166058B2 (en) 2008-08-08 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8785242B2 (en) 2008-08-08 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100032668A1 (en) * 2008-08-08 2010-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8049225B2 (en) 2008-08-08 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10205030B2 (en) 2008-08-08 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8030663B2 (en) 2008-08-08 2011-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8481363B2 (en) 2008-08-08 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809115B2 (en) 2008-09-01 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10734530B2 (en) 2008-09-01 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US8021916B2 (en) 2008-09-01 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8129719B2 (en) 2008-09-01 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
US10256349B2 (en) 2008-09-01 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US9397194B2 (en) 2008-09-01 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with oxide semiconductor ohmic conatct layers
US9911865B2 (en) 2008-09-01 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US11201249B2 (en) 2008-09-01 2021-12-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising an oxide semiconductor
US8822264B2 (en) 2008-09-01 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US10128381B2 (en) 2008-09-01 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxygen rich gate insulating layer
US9224839B2 (en) 2008-09-01 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11824124B2 (en) 2008-09-01 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device including transistor comprising oxide semiconductor
US9196713B2 (en) 2008-09-01 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device having oxide semiconductor layer
US20100051940A1 (en) * 2008-09-01 2010-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US10181545B2 (en) 2008-09-12 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9257594B2 (en) 2008-09-12 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with an oxide semiconductor layer
US11024763B2 (en) 2008-09-12 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8941114B2 (en) 2008-09-12 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Display device including protective circuit
US10236303B2 (en) 2008-09-12 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
US20100065839A1 (en) * 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
US8501555B2 (en) 2008-09-12 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10074646B2 (en) 2008-09-12 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US10229904B2 (en) 2008-09-19 2019-03-12 Semiconductor Energy Laboratory Co., Ltd. Display device including oxide semiconductor layer
US11152397B2 (en) 2008-09-19 2021-10-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US11139359B2 (en) 2008-09-19 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100072471A1 (en) * 2008-09-19 2010-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US11646321B2 (en) 2008-09-19 2023-05-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US9196633B2 (en) 2008-09-19 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US8427595B2 (en) 2008-09-19 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Display device with pixel portion and common connection portion having oxide semiconductor layers
US9478597B2 (en) 2008-09-19 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9343517B2 (en) 2008-09-19 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Display device
US8304765B2 (en) 2008-09-19 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Display device
US10756080B2 (en) 2008-09-19 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including protection circuit
US10032796B2 (en) 2008-09-19 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US10559598B2 (en) 2008-09-19 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US9048320B2 (en) 2008-09-19 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device including oxide semiconductor layer
US11610918B2 (en) 2008-09-19 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Display device
US10559599B2 (en) 2008-09-19 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US10685985B2 (en) 2008-10-03 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Display device
US9659969B2 (en) 2008-10-03 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US9570470B2 (en) 2008-10-03 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device
US10910408B2 (en) 2008-10-03 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100252826A1 (en) * 2008-10-03 2010-10-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US9082688B2 (en) 2008-10-03 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Display device
US10367006B2 (en) 2008-10-03 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Display Device
US9048144B2 (en) 2008-10-03 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US8674371B2 (en) 2008-10-03 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device
US8907335B2 (en) 2008-10-03 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10573665B2 (en) 2008-10-03 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100084650A1 (en) * 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US7989815B2 (en) 2008-10-03 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Display device
US20100084651A1 (en) * 2008-10-03 2010-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US8368066B2 (en) 2008-10-03 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US9589988B2 (en) 2008-10-03 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US9978776B2 (en) 2008-10-03 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US8344372B2 (en) 2008-10-03 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11574932B2 (en) 2008-10-03 2023-02-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US8334540B2 (en) 2008-10-03 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Display device
US8319215B2 (en) 2008-10-03 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Display device
US9324874B2 (en) 2008-10-03 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising an oxide semiconductor
US10254607B2 (en) 2008-10-08 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Display device
US9915843B2 (en) 2008-10-08 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device with pixel including capacitor
US8389988B2 (en) 2008-10-08 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US9703157B2 (en) 2008-10-08 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US9130067B2 (en) 2008-10-08 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Display device
US8313980B2 (en) 2008-10-10 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8158975B2 (en) 2008-10-10 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8704267B2 (en) 2008-10-16 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device
US10211240B2 (en) 2008-10-22 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8912040B2 (en) 2008-10-22 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9373525B2 (en) 2008-10-22 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7915075B2 (en) 2008-10-22 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9691789B2 (en) 2008-10-22 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8236635B2 (en) 2008-10-24 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8729546B2 (en) 2008-10-24 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8242494B2 (en) 2008-10-24 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor using multi-tone mask
US11594555B2 (en) 2008-10-24 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US10153380B2 (en) 2008-10-24 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8343799B2 (en) 2008-10-24 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20100102314A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9029851B2 (en) 2008-10-24 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
US20100102311A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US20100105162A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11563124B2 (en) 2008-10-24 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including flip-flop circuit which includes transistors
US20100105163A1 (en) * 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10978490B2 (en) 2008-10-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US9000431B2 (en) 2008-10-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9219158B2 (en) 2008-10-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8980685B2 (en) 2008-10-24 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor using multi-tone mask
US9318512B2 (en) 2008-10-24 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9136389B2 (en) 2008-10-24 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US9601603B2 (en) 2008-10-24 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10141343B2 (en) 2008-10-24 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US9123751B2 (en) 2008-10-24 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9647137B2 (en) 2008-10-24 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US20100102312A1 (en) * 2008-10-24 2010-04-29 Shunpei Yamazaki Oxide semiconductor, thin film transistor, and display device
US10763372B2 (en) 2008-10-24 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with dual and single gate structure transistors
US8106400B2 (en) 2008-10-24 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8686417B2 (en) 2008-10-24 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device formed by using multi-tone mask
US8878178B2 (en) 2008-10-24 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8878172B2 (en) 2008-10-24 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US8067775B2 (en) 2008-10-24 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with two gate electrodes
US9111806B2 (en) 2008-10-24 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US10170632B2 (en) 2008-10-24 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
US10692894B2 (en) 2008-10-24 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, thin film transistor, and display device
US8633492B2 (en) 2008-10-31 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20100109708A1 (en) * 2008-10-31 2010-05-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US9349874B2 (en) 2008-10-31 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8373443B2 (en) 2008-10-31 2013-02-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US9083334B2 (en) 2008-10-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US10269978B2 (en) 2008-10-31 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9842859B2 (en) 2008-10-31 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and display device
US8759167B2 (en) 2008-10-31 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8426868B2 (en) 2008-10-31 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7952392B2 (en) 2008-10-31 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US11107928B2 (en) 2008-10-31 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11594643B2 (en) 2008-10-31 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9911860B2 (en) 2008-10-31 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8440502B2 (en) 2008-11-07 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US10411102B2 (en) 2008-11-07 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8803146B2 (en) 2008-11-07 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10665684B2 (en) 2008-11-07 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9293545B2 (en) 2008-11-07 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9847396B2 (en) 2008-11-07 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10158005B2 (en) 2008-11-07 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9231110B2 (en) 2008-11-07 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11239332B2 (en) 2008-11-07 2022-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8395148B2 (en) * 2008-11-07 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8338827B2 (en) 2008-11-07 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8021917B2 (en) 2008-11-07 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8373164B2 (en) 2008-11-07 2013-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8319216B2 (en) 2008-11-07 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8980665B2 (en) 2008-11-07 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8502216B2 (en) 2008-11-07 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8716061B2 (en) 2008-11-07 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9054203B2 (en) 2008-11-13 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8298858B2 (en) 2008-11-13 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9559212B2 (en) 2008-11-13 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8058647B2 (en) 2008-11-13 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8748887B2 (en) 2008-11-13 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9112038B2 (en) 2008-11-13 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8518739B2 (en) 2008-11-13 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8643011B2 (en) 2008-11-20 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10403763B2 (en) 2008-11-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9893200B2 (en) 2008-11-20 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8329506B2 (en) 2008-11-20 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9252288B2 (en) 2008-11-20 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11374028B2 (en) 2008-11-21 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11776967B2 (en) 2008-11-21 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10622381B2 (en) 2008-11-21 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9570619B2 (en) 2008-11-21 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8188477B2 (en) 2008-11-21 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10243006B2 (en) 2008-11-21 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9893089B2 (en) 2008-11-21 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8907348B2 (en) 2008-11-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11250785B2 (en) 2008-11-28 2022-02-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US9722054B2 (en) 2008-11-28 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11776483B2 (en) 2008-11-28 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10008519B1 (en) 2008-11-28 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8344387B2 (en) 2008-11-28 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9941308B2 (en) 2008-11-28 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10629134B2 (en) 2008-11-28 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10424674B2 (en) 2008-11-28 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10008608B2 (en) 2008-11-28 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10985282B2 (en) 2008-11-28 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11869978B2 (en) 2008-11-28 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9450133B2 (en) 2008-11-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Photosensor and display device
US8546182B2 (en) 2008-11-28 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10304873B2 (en) 2008-11-28 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8441425B2 (en) 2008-11-28 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10971075B2 (en) 2008-11-28 2021-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US11527208B2 (en) 2008-11-28 2022-12-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8552434B2 (en) 2008-11-28 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8318551B2 (en) 2008-12-01 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11175542B2 (en) 2008-12-03 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8395716B2 (en) 2008-12-03 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10095071B2 (en) 2008-12-03 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device including transistor which includes oxide semiconductor
US9348189B2 (en) 2008-12-03 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10838264B2 (en) 2008-12-03 2020-11-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9201280B2 (en) 2008-12-05 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8476625B2 (en) 2008-12-05 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising gate electrode of one conductive layer and gate wiring of two conductive layers
US8999750B2 (en) 2008-12-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10439050B2 (en) 2008-12-19 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US9601601B2 (en) 2008-12-19 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US8803149B2 (en) 2008-12-19 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor device including a hydrogen barrier layer selectively formed over an oxide semiconductor layer
US8883554B2 (en) 2008-12-19 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using an oxide semiconductor
US8183099B2 (en) 2008-12-19 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
US9941310B2 (en) 2008-12-24 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Driver circuit with oxide semiconductor layers having varying hydrogen concentrations
US9202827B2 (en) 2008-12-24 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
US9443888B2 (en) 2008-12-24 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device including transistor and resistor incorporating hydrogen in oxide semiconductor
US8237167B2 (en) 2008-12-25 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100163865A1 (en) * 2008-12-25 2010-07-01 Semiconductor Energy Laboratory Co., Ltd Display device and manufacturing method thereof
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8629434B2 (en) 2008-12-25 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8878175B2 (en) 2008-12-25 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11158654B2 (en) 2008-12-25 2021-10-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8772784B2 (en) 2008-12-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including pair of electrodes and oxide semiconductor film with films of low conductivity therebetween
US9768280B2 (en) 2008-12-25 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10483290B2 (en) 2008-12-25 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10720451B2 (en) 2008-12-25 2020-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9112043B2 (en) 2008-12-25 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8114720B2 (en) 2008-12-25 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8383470B2 (en) 2008-12-25 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor (TFT) having a protective layer and manufacturing method thereof
US11817506B2 (en) 2008-12-26 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100163868A1 (en) * 2008-12-26 2010-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8222092B2 (en) 2008-12-26 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9136390B2 (en) 2008-12-26 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9711651B2 (en) 2008-12-26 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8884287B2 (en) 2009-01-16 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629432B2 (en) 2009-01-16 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8785929B2 (en) 2009-01-23 2014-07-22 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and method for manufacturing the same
US9040985B2 (en) 2009-01-23 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8492756B2 (en) 2009-01-23 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8247812B2 (en) 2009-02-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US20100207119A1 (en) * 2009-02-13 2010-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US8350261B2 (en) 2009-02-13 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US11011549B2 (en) 2009-02-20 2021-05-18 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US9859306B2 (en) 2009-02-20 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8247276B2 (en) 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US10586811B2 (en) 2009-02-20 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US10096623B2 (en) 2009-02-20 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8629000B2 (en) 2009-02-20 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8362563B2 (en) 2009-02-20 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8987822B2 (en) 2009-02-20 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US9209283B2 (en) 2009-02-20 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US9443981B2 (en) 2009-02-20 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US11824062B2 (en) 2009-02-20 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8841661B2 (en) 2009-02-25 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Staggered oxide semiconductor TFT semiconductor device and manufacturing method thereof
US9997638B2 (en) 2009-02-27 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9064899B2 (en) 2009-02-27 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660102B2 (en) 2009-02-27 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100224878A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9941393B2 (en) 2009-03-05 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8461582B2 (en) 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10326008B2 (en) 2009-03-05 2019-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8759206B2 (en) 2009-03-05 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10686061B2 (en) 2009-03-05 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11233132B2 (en) 2009-03-05 2022-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9496414B2 (en) 2009-03-06 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11309430B2 (en) 2009-03-06 2022-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10236391B2 (en) 2009-03-06 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8492757B2 (en) 2009-03-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8916870B2 (en) 2009-03-06 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9991396B2 (en) 2009-03-06 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11715801B2 (en) 2009-03-06 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10700213B2 (en) 2009-03-06 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9324878B2 (en) 2009-03-06 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8872175B2 (en) 2009-03-06 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8993386B2 (en) 2009-03-12 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9768281B2 (en) 2009-03-12 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8936963B2 (en) 2009-03-13 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US8450144B2 (en) 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9012918B2 (en) 2009-03-27 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor
US8253135B2 (en) 2009-03-27 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US11127858B2 (en) 2009-03-27 2021-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10714630B2 (en) 2009-03-27 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11916150B2 (en) 2009-03-27 2024-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8759829B2 (en) 2009-03-27 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer as channel formation layer
US9184189B2 (en) 2009-03-27 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US11575049B2 (en) 2009-03-27 2023-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9705003B2 (en) 2009-03-27 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first and second gate electrodes and stack of insulating layers
US20100244021A1 (en) * 2009-03-27 2010-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US8927981B2 (en) 2009-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8338226B2 (en) 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9704976B2 (en) 2009-04-02 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8853690B2 (en) 2009-04-16 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer
US9190528B2 (en) 2009-04-16 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10915145B2 (en) 2009-05-02 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US9361853B2 (en) 2009-05-02 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US9996115B2 (en) 2009-05-02 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US11803213B2 (en) 2009-05-02 2023-10-31 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US11513562B2 (en) 2009-05-02 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Electronic book
US9419113B2 (en) 2009-05-29 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8796078B2 (en) 2009-05-29 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9947797B2 (en) 2009-05-29 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8872171B2 (en) 2009-05-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10283627B2 (en) 2009-05-29 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9024311B2 (en) 2009-06-24 2015-05-05 Sharp Kabushiki Kaisha Thin film transistor, method for manufacturing same, active matrix substrate, display panel and display device
US8846460B2 (en) 2009-06-30 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9412768B2 (en) 2009-06-30 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110003427A1 (en) * 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10418467B2 (en) 2009-06-30 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8697488B2 (en) 2009-06-30 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9054137B2 (en) 2009-06-30 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10090171B2 (en) 2009-06-30 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9576795B2 (en) 2009-06-30 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015109454A (en) * 2009-06-30 2015-06-11 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
US10062570B2 (en) 2009-06-30 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20180233589A1 (en) 2009-06-30 2018-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8623698B2 (en) 2009-06-30 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8207014B2 (en) 2009-06-30 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10332743B2 (en) 2009-06-30 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8609478B2 (en) 2009-06-30 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8216878B2 (en) 2009-06-30 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11417754B2 (en) 2009-06-30 2022-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9293566B2 (en) 2009-06-30 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8557641B2 (en) 2009-06-30 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9985118B2 (en) 2009-06-30 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299807B2 (en) 2009-06-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8513054B2 (en) 2009-06-30 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9136115B2 (en) 2009-06-30 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10796908B2 (en) 2009-06-30 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10790383B2 (en) 2009-06-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9852906B2 (en) 2009-06-30 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8394671B2 (en) 2009-06-30 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8389326B2 (en) 2009-06-30 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9831101B2 (en) 2009-06-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9130046B2 (en) 2009-07-03 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US8304300B2 (en) 2009-07-03 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device including transistor
US11257847B2 (en) 2009-07-03 2022-02-22 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US8735884B2 (en) 2009-07-03 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor
US9812465B2 (en) 2009-07-03 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US20110003430A1 (en) * 2009-07-03 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10714503B2 (en) 2009-07-03 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US10297679B2 (en) 2009-07-03 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10211231B2 (en) 2009-07-03 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US8518740B2 (en) 2009-07-03 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9837441B2 (en) 2009-07-03 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US11637130B2 (en) 2009-07-03 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US9887276B2 (en) 2009-07-03 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device having oxide semiconductor
US10916566B2 (en) 2009-07-10 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10157936B2 (en) 2009-07-10 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9754974B2 (en) 2009-07-10 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9054138B2 (en) 2009-07-10 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8900916B2 (en) 2009-07-10 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including oxide semiconductor film
US8324027B2 (en) 2009-07-10 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8441011B2 (en) 2009-07-10 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8835920B2 (en) 2009-07-10 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8513053B2 (en) 2009-07-10 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US11374029B2 (en) 2009-07-10 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11152493B2 (en) 2009-07-10 2021-10-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110006302A1 (en) * 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8294147B2 (en) 2009-07-10 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US9379141B2 (en) 2009-07-10 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US8395153B2 (en) 2009-07-10 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US9490277B2 (en) 2009-07-10 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10522568B2 (en) 2009-07-10 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11855194B2 (en) 2009-07-10 2023-12-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9269794B2 (en) 2009-07-10 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
US8952378B2 (en) 2009-07-17 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US10256291B2 (en) 2009-07-17 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8241949B2 (en) 2009-07-17 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US11177289B2 (en) 2009-07-18 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10461098B2 (en) 2009-07-18 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9184185B2 (en) 2009-07-18 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8987048B2 (en) 2009-07-18 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8643018B2 (en) 2009-07-18 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a pixel portion and a driver circuit
US8729550B2 (en) 2009-07-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9263472B2 (en) 2009-07-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11715741B2 (en) 2009-07-18 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9875713B2 (en) 2009-07-24 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9779679B2 (en) 2009-07-24 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11373615B2 (en) 2009-07-24 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10810961B2 (en) 2009-07-24 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11663989B2 (en) 2009-07-24 2023-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8822990B2 (en) 2009-07-31 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10854638B2 (en) 2009-07-31 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US9224870B2 (en) 2009-07-31 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US8937306B2 (en) 2009-07-31 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor
US9786689B2 (en) 2009-07-31 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Display device
US11728350B2 (en) 2009-07-31 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor
US10680111B2 (en) 2009-07-31 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US8546180B2 (en) 2009-07-31 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US8384079B2 (en) 2009-07-31 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US20180138211A1 (en) 2009-07-31 2018-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US8809856B2 (en) 2009-07-31 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10079306B2 (en) 2009-07-31 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10396097B2 (en) 2009-07-31 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US9741779B2 (en) 2009-07-31 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US11106101B2 (en) 2009-07-31 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Display device
US11348949B2 (en) 2009-07-31 2022-05-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9515192B2 (en) 2009-07-31 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293601B2 (en) 2009-07-31 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US20110037068A1 (en) * 2009-07-31 2011-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8772093B2 (en) 2009-07-31 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9142570B2 (en) 2009-07-31 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9024313B2 (en) 2009-07-31 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8421083B2 (en) 2009-07-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with two oxide semiconductor layers and manufacturing method thereof
US9362416B2 (en) 2009-07-31 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor wearable device
US8421067B2 (en) 2009-07-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device
US8420441B2 (en) 2009-07-31 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US9837442B2 (en) 2009-08-07 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a plurality of N-channel transistors wherein the oxide semiconductor layer comprises a portion being in an oxygen-excess state
US9202851B2 (en) 2009-08-07 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8912541B2 (en) 2009-08-07 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9466756B2 (en) 2009-08-07 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10243005B2 (en) 2009-08-07 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8885115B2 (en) 2009-08-07 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state and is in contact with an insulating layer
US9954005B2 (en) 2009-08-07 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer
US9153602B2 (en) 2009-08-07 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein an oxide semiconductor layer comprises a crystal and has a degree of crystallization of 80% or more
US9583509B2 (en) 2009-08-07 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein an oxide semiconductor layer has a degree of crystallization of 80% or more
US9171867B2 (en) 2009-08-07 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8759132B2 (en) 2009-08-07 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11532488B2 (en) 2009-08-27 2022-12-20 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11923206B2 (en) 2009-08-27 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11024516B2 (en) 2009-08-27 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10373843B2 (en) 2009-08-27 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11024747B2 (en) 2009-09-04 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US11652174B2 (en) 2009-09-04 2023-05-16 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9954007B2 (en) 2009-09-04 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9431465B2 (en) 2009-09-04 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8710499B2 (en) 2009-09-04 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US10134912B2 (en) 2009-09-04 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8541780B2 (en) 2009-09-04 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
US8378344B2 (en) 2009-09-04 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with plural kinds of thin film transistors and circuits over one substrate
US20110210324A1 (en) * 2009-09-04 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US9805641B2 (en) 2009-09-04 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10665615B2 (en) 2009-09-04 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US10672915B2 (en) 2009-09-04 2020-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8502225B2 (en) 2009-09-04 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US11626521B2 (en) 2009-09-04 2023-04-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8466014B2 (en) 2009-09-04 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9640670B2 (en) 2009-09-04 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Transistors in display device
US10418384B2 (en) 2009-09-04 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US8389989B2 (en) 2009-09-04 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Transistor having oxide semiconductor layer and display utilizing the same
US8236627B2 (en) 2009-09-04 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US11430899B2 (en) 2009-09-04 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11094717B2 (en) 2009-09-04 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9105735B2 (en) 2009-09-04 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9530806B2 (en) 2009-09-04 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9368641B2 (en) 2009-09-04 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9768207B2 (en) 2009-09-04 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US11862643B2 (en) 2009-09-04 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9130041B2 (en) 2009-09-04 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9257082B2 (en) 2009-09-04 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9537012B2 (en) 2009-09-04 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor layer
US8957411B2 (en) 2009-09-04 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US11069817B2 (en) 2009-09-04 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10700215B2 (en) 2009-09-04 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8889496B2 (en) 2009-09-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10019924B2 (en) 2009-09-16 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10977977B2 (en) 2009-09-16 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10181304B2 (en) 2009-09-16 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US10374184B2 (en) 2009-09-16 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8305109B2 (en) 2009-09-16 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
US11171298B2 (en) 2009-09-16 2021-11-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US10902814B2 (en) 2009-09-16 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US11211499B2 (en) 2009-09-16 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
US9830878B2 (en) 2009-09-16 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US9934747B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US10446103B2 (en) 2009-09-16 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US11791417B2 (en) 2009-09-16 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11545105B2 (en) 2009-09-16 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic appliance
US11183597B2 (en) 2009-09-16 2021-11-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11469387B2 (en) 2009-09-16 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US10360831B2 (en) 2009-09-16 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10181481B2 (en) 2009-09-24 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US8791458B2 (en) 2009-09-24 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9305481B2 (en) 2009-09-24 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US8592814B2 (en) 2009-09-24 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Device with oxide semiconductor thin film transistor
US20110069805A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US8582716B2 (en) 2009-09-24 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US9406398B2 (en) 2009-09-24 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US9224838B2 (en) 2009-09-24 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
US8243873B2 (en) 2009-09-24 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US8363778B2 (en) 2009-09-24 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US9991890B2 (en) 2009-09-24 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic appliance including the display device
US20110069047A1 (en) * 2009-09-24 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US9627198B2 (en) 2009-10-05 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film semiconductor device
US9754784B2 (en) 2009-10-05 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US9406808B2 (en) 2009-10-08 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US8309961B2 (en) 2009-10-08 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
US9306072B2 (en) 2009-10-08 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
US10115831B2 (en) 2009-10-08 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor layer comprising a nanocrystal
US9171640B2 (en) 2009-10-09 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device
US9911856B2 (en) 2009-10-09 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8547493B2 (en) 2009-10-09 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with indium or zinc layer in contact with oxide semiconductor layer and method for manufacturing the semiconductor device
US11355669B2 (en) 2009-10-09 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device and electronic device including an oxide semiconductor layer
US10566497B2 (en) 2009-10-09 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device including a first pixel and a second pixel
US11901485B2 (en) 2009-10-09 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device having a first pixel and a second pixel and an oxide semiconductor layer having a region overlapping a light-emitting region of the second pixel
US10181359B2 (en) 2009-10-09 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Shift register and display device
US20110084273A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10411158B2 (en) 2009-10-09 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device having oxide semiconductor layer overlapping with adjacent pixel electrode
US10310348B2 (en) 2009-10-16 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic apparatus having the same
US10770597B2 (en) 2009-10-16 2020-09-08 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US10490671B2 (en) 2009-10-16 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US9959822B2 (en) 2009-10-16 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
US11742432B2 (en) 2009-10-16 2023-08-29 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8400187B2 (en) 2009-10-16 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US10211344B2 (en) 2009-10-16 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US10565946B2 (en) 2009-10-16 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device including the liquid crystal display device
US11756966B2 (en) 2009-10-16 2023-09-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US10061172B2 (en) 2009-10-16 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic apparatus having the same
US11302824B2 (en) 2009-10-16 2022-04-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US10593810B2 (en) 2009-10-16 2020-03-17 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US9478564B2 (en) 2009-10-21 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8946700B2 (en) 2009-10-21 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method for the same
US10079307B2 (en) 2009-10-21 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method for the same
US20110089419A1 (en) * 2009-10-21 2011-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20190012960A1 (en) 2009-10-21 2019-01-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including display device
US9419020B2 (en) 2009-10-21 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US9679768B2 (en) 2009-10-21 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for removing hydrogen from oxide semiconductor layer having insulating layer containing halogen element formed thereover
US10553726B2 (en) 2009-10-21 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10319744B2 (en) 2009-10-21 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US9245484B2 (en) 2009-10-21 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. E-book reader
US10115743B2 (en) 2009-10-21 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US11107396B2 (en) 2009-10-21 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including thin film transistor including top-gate
US11004983B2 (en) 2009-10-21 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10957714B2 (en) 2009-10-21 2021-03-23 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US8803142B2 (en) 2009-10-21 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9929281B2 (en) 2009-10-21 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Transisitor comprising oxide semiconductor
US9735285B2 (en) 2009-10-21 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9716109B2 (en) 2009-10-21 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Analog circuit and semiconductor device
US10657882B2 (en) 2009-10-21 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including display device
US9236385B2 (en) 2009-10-21 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10720433B2 (en) 2009-10-29 2020-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110101351A1 (en) * 2009-10-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9806079B2 (en) 2009-10-29 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9202546B2 (en) 2009-10-29 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10490553B2 (en) 2009-10-29 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110101333A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10566459B2 (en) 2009-10-30 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a first region comprising silicon, oxygen and at least one metal element formed between an oxide semiconductor layer and an insulating layer
US20110101355A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device, and electronic device
US9105609B2 (en) 2009-10-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode
US9093544B2 (en) 2009-11-06 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8530892B2 (en) 2009-11-06 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20210288079A1 (en) 2009-11-06 2021-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11107838B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor comprising an oxide semiconductor
US11107840B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device comprising an oxide semiconductor
US10079251B2 (en) 2009-11-06 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9853066B2 (en) 2009-11-06 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11710745B2 (en) 2009-11-06 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11315954B2 (en) 2009-11-06 2022-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11776968B2 (en) 2009-11-06 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer
US8633480B2 (en) 2009-11-06 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof
US8841662B2 (en) 2009-11-06 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10868046B2 (en) 2009-11-06 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device applying an oxide semiconductor
US10249647B2 (en) 2009-11-06 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device comprising oxide semiconductor layer
US10002949B2 (en) 2009-11-06 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9922685B2 (en) 2009-11-13 2018-03-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US10332912B2 (en) 2009-11-13 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8492862B2 (en) 2009-11-13 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US20110114480A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for packaging target material and method for mounting target
US10944010B2 (en) 2009-11-13 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10516055B2 (en) 2009-11-13 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8753491B2 (en) 2009-11-13 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Method for packaging target material and method for mounting target
US8937020B2 (en) 2009-11-13 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US11456385B2 (en) 2009-11-13 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10083823B2 (en) 2009-11-13 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US9520411B2 (en) 2009-11-13 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US20110115839A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10056494B2 (en) 2009-11-13 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9093262B2 (en) 2009-11-20 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10186619B2 (en) 2009-11-20 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10121904B2 (en) 2009-11-20 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9461181B2 (en) 2009-11-20 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8471256B2 (en) 2009-11-27 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20190109259A1 (en) 2009-11-27 2019-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9748436B2 (en) 2009-11-27 2017-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10396236B2 (en) 2009-11-27 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US11894486B2 (en) 2009-11-27 2024-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8765522B2 (en) 2009-11-28 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US10263120B2 (en) 2009-11-28 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and method for manufacturing liquid crystal display panel
US8779420B2 (en) 2009-11-28 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9887298B2 (en) 2009-11-28 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11710795B2 (en) 2009-11-28 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor with c-axis-aligned crystals
US11133419B2 (en) 2009-11-28 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10079310B2 (en) 2009-11-28 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including stacked oxide semiconductor material
US8748881B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10347771B2 (en) 2009-11-28 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8748215B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US9520287B2 (en) 2009-11-28 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having stacked oxide semiconductor layers
US10608118B2 (en) 2009-11-28 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9214520B2 (en) 2009-11-28 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10847116B2 (en) 2009-11-30 2020-11-24 Semiconductor Energy Laboratory Co., Ltd. Reducing pixel refresh rate for still images using oxide transistors
US11636825B2 (en) 2009-11-30 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, method for driving the same, and electronic device including the same
US11282477B2 (en) 2009-11-30 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, method for driving the same, and electronic device including the same
US10490420B2 (en) 2009-12-04 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20110134680A1 (en) * 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US11923204B2 (en) 2009-12-04 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US8841163B2 (en) 2009-12-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US10014415B2 (en) 2009-12-04 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a C-axis aligned crystal
US9153338B2 (en) 2009-12-04 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US10109500B2 (en) 2009-12-04 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10861983B2 (en) 2009-12-04 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
US9240467B2 (en) 2009-12-04 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11728349B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10714358B2 (en) 2009-12-04 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10505049B2 (en) 2009-12-04 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a c-axis aligned crystal
US8432718B2 (en) 2009-12-04 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8957414B2 (en) 2009-12-04 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising both amorphous and crystalline semiconductor oxide
US11456187B2 (en) 2009-12-04 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor-device
US9721811B2 (en) 2009-12-04 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device having an oxide semiconductor layer
US11342464B2 (en) 2009-12-04 2022-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first and second insulating layer each has a tapered shape
US11728437B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
US8994400B2 (en) 2009-12-11 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8889499B2 (en) 2009-12-11 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9508742B2 (en) 2009-12-11 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US10002888B2 (en) 2009-12-11 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10312267B2 (en) 2009-12-11 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8901559B2 (en) 2009-12-11 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having inverter circuit with terminal electrically connected to transistor that includes oxide semiconductor material
US8890146B2 (en) 2009-12-11 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8809850B2 (en) 2009-12-11 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US9893204B2 (en) 2009-12-11 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transistor including two oxide semiconductor layers having different lattice constants
US10600818B2 (en) 2009-12-11 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10382016B2 (en) 2009-12-11 2019-08-13 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US10854641B2 (en) 2009-12-11 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9349757B2 (en) 2009-12-11 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8415665B2 (en) 2009-12-11 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9142683B2 (en) 2009-12-11 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9209251B2 (en) 2009-12-11 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US9171868B2 (en) 2009-12-11 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9735180B2 (en) 2009-12-11 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8563976B2 (en) 2009-12-11 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10256254B2 (en) 2009-12-18 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9620525B2 (en) 2009-12-18 2017-04-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11282864B2 (en) 2009-12-18 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9244323B2 (en) 2009-12-18 2016-01-26 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device and electronic device
US9692421B2 (en) 2009-12-18 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
US11798952B2 (en) 2009-12-18 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US8823893B2 (en) 2009-12-18 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device with transistor including oxide semiconductor layer and electronic device
US9006025B2 (en) 2009-12-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8664652B2 (en) 2009-12-25 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11676975B2 (en) 2009-12-25 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9054201B2 (en) 2009-12-25 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9543445B2 (en) 2009-12-25 2017-01-10 Semiconductor Energy Laborartory Co., Ltd. Semiconductor device with oxide semiconductor layer
US10083996B2 (en) 2009-12-25 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10600372B2 (en) 2009-12-28 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Transreflective liquid crystal display device
US10141425B2 (en) 2009-12-28 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9298035B2 (en) 2009-12-28 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US10861401B2 (en) 2009-12-28 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device configured to operate at two different refresh ratees
US10242629B2 (en) 2009-12-28 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device with a transistor having an oxide semiconductor
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110157216A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US11424246B2 (en) 2009-12-28 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US20110157254A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US10347197B2 (en) 2009-12-28 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US10797054B2 (en) 2009-12-28 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8866725B2 (en) 2009-12-28 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device viewable in dim ambient light
US20110157253A1 (en) * 2009-12-28 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US9448433B2 (en) 2009-12-28 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US9859401B2 (en) 2009-12-28 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20110175874A1 (en) * 2010-01-20 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Display Device And Method For Driving The Same
US10454475B2 (en) 2010-01-20 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9614097B2 (en) 2010-01-20 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8760931B2 (en) 2010-01-20 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8547753B2 (en) 2010-01-20 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8778730B2 (en) 2010-01-21 2014-07-15 Sharp Kabushiki Kaisha Process for production of circuit board
US11362112B2 (en) 2010-01-24 2022-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US9117732B2 (en) 2010-01-24 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US20110181560A1 (en) * 2010-01-24 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Display device
US10211230B2 (en) 2010-01-24 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Display device
US9269725B2 (en) * 2010-01-24 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Display device
US8866984B2 (en) 2010-01-24 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8436431B2 (en) 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including gate and three conductor electrodes
US9057918B2 (en) 2010-02-05 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising first and second pixel electrodes that overlap each other with an insulating layer interposed therebetween
US9541803B2 (en) 2010-02-05 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising first and second reflective pixel electrodes that overlap each other with an insulating layer having a tapered first end portion interposed therebetween
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8791529B2 (en) 2010-02-05 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including gate and conductor electrodes
US8546811B2 (en) 2010-02-05 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110193182A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and semiconductor device
US8947337B2 (en) 2010-02-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Display device
US10718986B2 (en) 2010-02-11 2020-07-21 Semiconductor Energy Laboratory Co., Ltd. Display device
US9465271B2 (en) 2010-02-11 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US11143925B2 (en) 2010-02-11 2021-10-12 Semiconductor Energy Laboratory Co., Ltd. Display device
US11500254B2 (en) 2010-02-11 2022-11-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US9798211B2 (en) 2010-02-11 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Display device
US10007160B2 (en) 2010-02-11 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device
US20110198594A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device and Manufacturing Method Thereof
US8617920B2 (en) 2010-02-12 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11455969B2 (en) 2010-02-18 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11769462B2 (en) 2010-02-18 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10586505B2 (en) 2010-02-18 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10153303B2 (en) 2010-02-18 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9337191B2 (en) 2010-02-18 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11170728B2 (en) 2010-02-18 2021-11-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10020309B2 (en) 2010-02-19 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10424582B2 (en) 2010-02-19 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9287258B2 (en) 2010-02-19 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9799666B2 (en) 2010-02-19 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11222906B2 (en) 2010-02-23 2022-01-11 Semiconductor Energy Laboratory Co., Ltd. Display device, semiconductor device, and driving method thereof
US11749685B2 (en) 2010-02-23 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Display device, semiconductor device, and driving method thereof
US9927654B2 (en) 2010-02-26 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20200054337A (en) * 2010-02-26 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9911625B2 (en) 2010-02-26 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11682562B2 (en) 2010-02-26 2023-06-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR102219398B1 (en) 2010-02-26 2021-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10304696B2 (en) 2010-02-26 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9048325B2 (en) 2010-02-26 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US10983407B2 (en) 2010-02-26 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US11927862B2 (en) 2010-02-26 2024-03-12 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US10539845B2 (en) 2010-02-26 2020-01-21 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US9000438B2 (en) 2010-02-26 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9658506B2 (en) 2010-02-26 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Display device having an oxide semiconductor transistor
US11049733B2 (en) 2010-02-26 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9396812B2 (en) 2010-03-02 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US10340021B2 (en) 2010-03-02 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8442183B2 (en) 2010-03-02 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8369478B2 (en) 2010-03-02 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8693617B2 (en) 2010-03-02 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8923471B2 (en) 2010-03-02 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US11348653B2 (en) 2010-03-02 2022-05-31 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US8703531B2 (en) 2010-03-05 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor film and manufacturing method of transistor
US9040980B2 (en) 2010-03-26 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Transistor with an oxide semiconductor layer
US8704219B2 (en) 2010-03-26 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10043424B2 (en) 2010-03-31 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device having an oxide semiconductor switching transistor
US8519990B2 (en) 2010-03-31 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9646521B2 (en) 2010-03-31 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US10879274B2 (en) 2010-04-09 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9768199B2 (en) 2010-04-09 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8508561B2 (en) 2010-04-09 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
US10510777B2 (en) 2010-04-09 2019-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10008515B2 (en) 2010-04-09 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8278974B2 (en) 2010-04-09 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Divider circuit
US9099499B2 (en) 2010-04-23 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9245983B2 (en) 2010-04-23 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8664658B2 (en) 2010-05-14 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9275875B2 (en) 2010-05-21 2016-03-01 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing semiconductor device
US8941790B2 (en) 2010-05-21 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US8906756B2 (en) 2010-05-21 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8710762B2 (en) 2010-06-10 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. DC/DC converter, power supply circuit, and semiconductor device
US9543835B2 (en) 2010-06-10 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. DC/DC converter, power supply circuit, and semiconductor device
US9349820B2 (en) 2010-06-18 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9685561B2 (en) 2010-06-18 2017-06-20 Semiconductor Energy Laboratories Co., Ltd. Method for manufacturing a semiconductor device
US8552425B2 (en) 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9076876B2 (en) 2010-06-18 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8637354B2 (en) 2010-06-30 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10008169B2 (en) 2010-07-01 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US9734780B2 (en) 2010-07-01 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US8441010B2 (en) 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9780093B2 (en) 2010-07-02 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11233055B2 (en) 2010-07-02 2022-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US10319723B2 (en) 2010-07-02 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9640642B2 (en) 2010-07-16 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8785241B2 (en) 2010-07-16 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9837513B2 (en) 2010-07-16 2017-12-05 Semicinductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9379136B2 (en) 2010-07-16 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9825037B2 (en) 2010-08-06 2017-11-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8995174B2 (en) 2010-08-06 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US9525051B2 (en) 2010-08-06 2016-12-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9299813B2 (en) 2010-08-06 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8547771B2 (en) 2010-08-06 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
US11677384B2 (en) 2010-08-06 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit with semiconductor layer having indium, zinc, and oxygen
US11177792B2 (en) 2010-08-06 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Power supply semiconductor integrated memory control circuit
US9287390B2 (en) 2010-08-16 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9793383B2 (en) 2010-08-16 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
TWI587405B (en) * 2010-08-16 2017-06-11 半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
TWI621184B (en) * 2010-08-16 2018-04-11 半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
US9424921B2 (en) 2010-08-26 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving the same
US8592261B2 (en) 2010-08-27 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for designing semiconductor device
US8508967B2 (en) 2010-09-03 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
US8766253B2 (en) 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10170500B2 (en) 2010-09-10 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
US11189642B2 (en) 2010-09-10 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and light-emitting device
US11043509B2 (en) 2010-09-10 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
US9490350B2 (en) 2010-09-10 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
US11715800B2 (en) 2010-09-13 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9324877B2 (en) 2010-09-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9546416B2 (en) * 2010-09-13 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
US9263116B2 (en) 2010-09-13 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9040396B2 (en) 2010-09-13 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9042161B2 (en) 2010-09-13 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10910499B2 (en) 2010-09-13 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9252248B2 (en) 2010-09-13 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor layer
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9685562B2 (en) 2010-09-13 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US10615283B2 (en) 2010-09-13 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US20120060750A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
US8405092B2 (en) 2010-09-15 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device
US8884302B2 (en) 2010-09-15 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US9397224B2 (en) 2010-10-20 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9054205B2 (en) 2010-11-05 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8802515B2 (en) 2010-11-11 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10811522B2 (en) 2010-11-11 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9673305B2 (en) 2010-11-11 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10153360B2 (en) 2010-11-11 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11631756B2 (en) 2010-11-11 2023-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11049977B2 (en) 2010-12-17 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9812544B2 (en) 2010-12-17 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10079309B2 (en) 2010-12-17 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US11217702B2 (en) 2010-12-17 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US11688810B2 (en) 2010-12-17 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9368633B2 (en) 2010-12-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9202822B2 (en) 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9780225B2 (en) 2010-12-28 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9818749B2 (en) 2011-01-05 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US8575985B2 (en) 2011-01-05 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US9330759B2 (en) 2011-01-05 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US9024669B2 (en) 2011-01-05 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Storage element, storage device, and signal processing circuit
US9882062B2 (en) 2011-01-12 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9166026B2 (en) 2011-01-12 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9349752B2 (en) 2011-01-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9673336B2 (en) 2011-01-12 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9570484B2 (en) 2011-01-12 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8785266B2 (en) 2011-01-12 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10170633B2 (en) 2011-01-12 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8865555B2 (en) 2011-01-26 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10008587B2 (en) 2011-01-26 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809992B2 (en) 2011-01-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10069014B2 (en) 2011-01-26 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9601178B2 (en) 2011-01-26 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8890150B2 (en) 2011-01-27 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9082864B2 (en) 2011-01-27 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10134766B2 (en) 2011-01-28 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9494829B2 (en) 2011-01-28 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device containing the same
US9023684B2 (en) 2011-03-04 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8841165B2 (en) 2011-03-10 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8541781B2 (en) 2011-03-10 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9450104B2 (en) 2011-03-11 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9379223B2 (en) 2011-03-18 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
US8927982B2 (en) 2011-03-18 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
US10109743B2 (en) 2011-03-18 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US9012904B2 (en) 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9472676B2 (en) 2011-03-25 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8956944B2 (en) 2011-03-25 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9397225B2 (en) 2011-03-25 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9929280B2 (en) 2011-03-28 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film containing indium
US10192997B2 (en) 2011-03-28 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US9425322B2 (en) 2011-03-28 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including exposure of oxide semiconductor to reducing atmosphere
US10008588B2 (en) 2011-03-30 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device
US8927329B2 (en) 2011-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device with improved electronic properties
US8923076B2 (en) 2011-03-31 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, memory unit, and signal processing circuit
US8541266B2 (en) 2011-04-01 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299708B2 (en) 2011-04-15 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US20140034947A1 (en) * 2011-04-18 2014-02-06 Sharp Kabushiki Kaisha Thin film transistor, display panel, and method for fabricating thin film transistor
US9190526B2 (en) * 2011-04-18 2015-11-17 Sharp Kabushiki Kaisha Thin film transistor, display panel, and method for fabricating thin film transistor
KR101597886B1 (en) 2011-04-18 2016-02-26 샤프 가부시키가이샤 Thin-film transistor, display panel, and method for producing thin-film transistor
KR20140018950A (en) * 2011-04-18 2014-02-13 샤프 가부시키가이샤 Thin-film transistor, display panel, and method for producing thin-film transistor
US9818820B2 (en) 2011-04-22 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9331206B2 (en) 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US10249651B2 (en) 2011-04-27 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10062717B2 (en) 2011-05-13 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9508301B2 (en) 2011-05-13 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11295649B2 (en) 2011-05-13 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11682332B2 (en) 2011-05-13 2023-06-20 Semionductor Energy Laboratory Co., Ltd. Semiconductor device
US10559606B2 (en) 2011-05-13 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing N-channel type transistors
US9344090B2 (en) 2011-05-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US8779798B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
US9900007B2 (en) 2011-05-19 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
US8581625B2 (en) 2011-05-19 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US10090333B2 (en) 2011-05-19 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Arithmetic circuit and method of driving the same
US9397664B2 (en) 2011-05-19 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Programmable logic circuit
US9595964B2 (en) 2011-05-19 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US8575960B2 (en) 2011-05-20 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101486036B1 (en) 2011-05-20 2015-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101808746B1 (en) 2011-05-20 2017-12-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8786311B2 (en) 2011-05-20 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8669781B2 (en) 2011-05-31 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9077333B2 (en) 2011-05-31 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9490806B2 (en) 2011-05-31 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9130044B2 (en) 2011-07-01 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
US8847220B2 (en) 2011-07-15 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9472677B2 (en) 2011-07-15 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8718224B2 (en) 2011-08-05 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
US9431545B2 (en) 2011-09-23 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9548133B2 (en) 2011-09-28 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Shift register circuit
US8744038B2 (en) 2011-09-28 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Shift register circuit
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11257853B2 (en) 2011-09-30 2022-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10916571B2 (en) 2011-09-30 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8736315B2 (en) 2011-09-30 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10497723B2 (en) 2011-09-30 2019-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9806107B2 (en) 2011-09-30 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11901377B2 (en) 2011-09-30 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8941416B2 (en) 2011-09-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11557613B2 (en) 2011-09-30 2023-01-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10304872B2 (en) 2011-09-30 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9432016B2 (en) 2011-09-30 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11749365B2 (en) 2011-10-07 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10014068B2 (en) 2011-10-07 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11133078B2 (en) 2011-10-07 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10431318B2 (en) 2011-10-07 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10580508B2 (en) 2011-10-07 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9281237B2 (en) 2011-10-13 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Transistor having reduced channel length
US9166019B2 (en) 2011-10-13 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9741866B2 (en) 2011-10-24 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9816173B2 (en) 2011-10-28 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8988625B2 (en) 2011-11-11 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US9576982B2 (en) 2011-11-11 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, EL display device, and manufacturing method thereof
US9219163B2 (en) 2011-11-11 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US8772094B2 (en) 2011-11-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8951899B2 (en) 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
US9171943B2 (en) 2011-11-25 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9209267B2 (en) 2011-11-30 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US8872179B2 (en) 2011-11-30 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9093543B2 (en) 2011-11-30 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8872299B2 (en) 2011-12-05 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9245909B2 (en) 2011-12-05 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9076505B2 (en) 2011-12-09 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9070778B2 (en) 2011-12-20 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8748241B2 (en) 2011-12-23 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9871059B2 (en) 2011-12-23 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9252286B2 (en) 2011-12-23 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9099560B2 (en) 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11682677B2 (en) 2012-01-26 2023-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11081502B2 (en) 2012-01-26 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10243064B2 (en) 2012-01-26 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9419146B2 (en) 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9171957B2 (en) 2012-01-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9304523B2 (en) 2012-01-30 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and method for driving the same
US11600348B2 (en) 2012-02-29 2023-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10777290B2 (en) 2012-02-29 2020-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10297332B2 (en) 2012-02-29 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11017871B2 (en) 2012-02-29 2021-05-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11538542B2 (en) 2012-02-29 2022-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8853697B2 (en) 2012-03-01 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US9978855B2 (en) 2012-03-02 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US9472679B2 (en) 2012-04-13 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8946702B2 (en) 2012-04-13 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11355645B2 (en) 2012-04-13 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising stacked oxide semiconductor layers
US10158026B2 (en) 2012-04-13 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor stacked layers
US10559699B2 (en) 2012-04-13 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10872981B2 (en) 2012-04-13 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor
US11929437B2 (en) 2012-04-13 2024-03-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising various thin-film transistors
US9299432B2 (en) 2012-05-11 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
US9640255B2 (en) 2012-05-11 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device
US9001549B2 (en) 2012-05-11 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9437747B2 (en) 2012-06-15 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US10032926B2 (en) 2012-06-15 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor
US10483404B2 (en) 2012-06-15 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US11424368B2 (en) 2012-06-15 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor
US10741695B2 (en) 2012-06-15 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
US11899328B2 (en) 2012-07-20 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US10514579B2 (en) 2012-07-20 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US11209710B2 (en) 2012-07-20 2021-12-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US11531243B2 (en) 2012-07-20 2022-12-20 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US10514580B2 (en) 2012-07-20 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US9058889B2 (en) 2012-07-20 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit, display device, and electronic device
US9437749B2 (en) 2012-08-10 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9502580B2 (en) 2012-08-10 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9240492B2 (en) 2012-08-10 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9293602B2 (en) 2012-08-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660104B2 (en) 2012-08-10 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9184245B2 (en) 2012-08-10 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US10446668B2 (en) 2012-08-10 2019-10-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9595435B2 (en) 2012-10-19 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Method for forming multilayer film including oxide semiconductor film and method for manufacturing semiconductor device
US9064574B2 (en) 2012-11-06 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9412764B2 (en) 2012-11-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
US10032428B2 (en) 2012-11-28 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
US9865746B2 (en) 2012-11-30 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9324810B2 (en) 2012-11-30 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film
US9064596B2 (en) 2013-02-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9553205B2 (en) 2013-02-27 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US10304555B2 (en) 2013-02-27 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US9337343B2 (en) 2013-02-27 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver circuit, and display device
US9829533B2 (en) 2013-03-06 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film and semiconductor device
US10347769B2 (en) 2013-03-25 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multi-layer source/drain electrodes
US9245589B2 (en) 2013-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having Schmitt trigger NAND circuit and Schmitt trigger inverter
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9939692B2 (en) 2013-06-05 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device
US9494830B2 (en) 2013-06-05 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Sequential circuit and semiconductor device
US10503018B2 (en) 2013-06-05 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10008929B2 (en) 2013-07-31 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device
US9412762B2 (en) 2013-07-31 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device
US9608005B2 (en) 2013-08-19 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Memory circuit including oxide semiconductor devices
US9431541B2 (en) 2013-08-22 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10065808B2 (en) 2013-08-30 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Support supply apparatus and method for supplying support
US10236287B2 (en) 2013-09-23 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor electrically surrounded by electric field of conductive film
US10217736B2 (en) 2013-09-23 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
US9276128B2 (en) 2013-10-22 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and etchant used for the same
US9722055B2 (en) 2013-11-07 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9419143B2 (en) 2013-11-07 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11430817B2 (en) 2013-11-29 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9450080B2 (en) 2013-12-20 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9379192B2 (en) 2013-12-20 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10680116B2 (en) 2014-02-05 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including oxide semiconductor
US11640996B2 (en) 2014-02-05 2023-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11011648B2 (en) 2014-02-05 2021-05-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9225329B2 (en) 2014-03-07 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driving method thereof, and electronic appliance
US10658389B2 (en) 2014-05-30 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US9553202B2 (en) 2014-05-30 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US11282860B2 (en) 2014-05-30 2022-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US9722090B2 (en) 2014-06-23 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first gate oxide semiconductor film, and second gate
US11600705B2 (en) 2014-08-25 2023-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for measuring current of semiconductor device
US10559667B2 (en) 2014-08-25 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for measuring current of semiconductor device
US10205452B2 (en) 2014-09-30 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
US9768317B2 (en) 2014-12-08 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of semiconductor device, and electronic device
US9972389B2 (en) 2015-01-23 2018-05-15 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
US9647132B2 (en) 2015-01-30 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US9685560B2 (en) 2015-03-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Transistor, method for manufacturing transistor, semiconductor device, and electronic device
US9947800B2 (en) 2015-03-02 2018-04-17 Semiconductor Energy Laboratory Co., Ltd. Transistor, method for manufacturing transistor, semiconductor device, and electronic device
US10079253B2 (en) 2015-03-24 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9634048B2 (en) 2015-03-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10996524B2 (en) 2015-03-26 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US10429704B2 (en) 2015-03-26 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
US9685476B2 (en) 2015-04-03 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10505051B2 (en) 2015-05-04 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US10797180B2 (en) 2015-05-04 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US9876946B2 (en) 2015-08-03 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10573621B2 (en) 2016-02-25 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Imaging system and manufacturing apparatus
US9882064B2 (en) 2016-03-10 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Transistor and electronic device
US11719980B2 (en) 2016-03-15 2023-08-08 Semiconductor Energy Laboratory Co., Ltd. Display device, module, and electronic device
US10558092B2 (en) 2016-03-15 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Display device, module, and electronic device
US11330213B2 (en) 2016-03-18 2022-05-10 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10536657B2 (en) 2016-03-18 2020-01-14 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10096720B2 (en) 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
US10008502B2 (en) 2016-05-04 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10964787B2 (en) 2016-07-01 2021-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10600875B2 (en) 2016-07-01 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11735403B2 (en) 2016-07-11 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11081326B2 (en) 2016-07-11 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same
US11699068B2 (en) 2016-08-03 2023-07-11 Semiconductor Energy Laboratory Co., Ltd. Imaging device, imaging module, electronic device, and imaging system
US10607575B2 (en) 2016-09-30 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Display system and electronic device
US11067841B2 (en) 2016-10-03 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a display device comprising polymerizing a monomer contained in a second liquid crystal layer in a region not overlapping with a coloring layer by light irradiation
US11726376B2 (en) 2016-11-23 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10756118B2 (en) 2016-11-30 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11456320B2 (en) 2016-11-30 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11837607B2 (en) 2016-11-30 2023-12-05 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10147681B2 (en) 2016-12-09 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10455174B2 (en) 2016-12-27 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic appliance
US11075255B2 (en) 2016-12-27 2021-07-27 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, and data processing device
US10241373B2 (en) 2017-01-16 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Display device comprising first and second transistors wherein gates of the first and second transistors are supplied with a same selection signal
US11762250B2 (en) 2018-04-26 2023-09-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11513405B2 (en) 2018-04-26 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Also Published As

Publication number Publication date
JP6314179B2 (en) 2018-04-18
CN101552210B (en) 2013-04-24
EP1998374A2 (en) 2008-12-03
JP5640045B2 (en) 2014-12-10
CN101335212A (en) 2008-12-31
US20190051759A1 (en) 2019-02-14
US20080308796A1 (en) 2008-12-18
JP5645996B2 (en) 2014-12-24
CN101887857B (en) 2013-03-27
JP2010267975A (en) 2010-11-25
CN101651105B (en) 2011-11-23
CN110660642A (en) 2020-01-07
JP2022186818A (en) 2022-12-15
US7674650B2 (en) 2010-03-09
US20080308797A1 (en) 2008-12-18
JP5978285B2 (en) 2016-08-24
US20070072439A1 (en) 2007-03-29
CN101335304B (en) 2011-05-18
EP1770788A2 (en) 2007-04-04
JP5137912B2 (en) 2013-02-06
CN1941299A (en) 2007-04-04
US7910490B2 (en) 2011-03-22
CN101887919A (en) 2010-11-17
JP5448280B2 (en) 2014-03-19
US20110117697A1 (en) 2011-05-19
JP2016131247A (en) 2016-07-21
JP2012248861A (en) 2012-12-13
US8466463B2 (en) 2013-06-18
EP1998374A3 (en) 2012-01-18
JP2017073563A (en) 2017-04-13
JP2019201212A (en) 2019-11-21
JP2011119751A (en) 2011-06-16
EP1998375A2 (en) 2008-12-03
CN102593187A (en) 2012-07-18
US20090008639A1 (en) 2009-01-08
JP2013191852A (en) 2013-09-26
US20110104851A1 (en) 2011-05-05
US8629069B2 (en) 2014-01-14
CN1941299B (en) 2010-08-04
JP2020074480A (en) 2020-05-14
CN101651105A (en) 2010-02-17
JP5478676B2 (en) 2014-04-23
CN101335275A (en) 2008-12-31
JP5116804B2 (en) 2013-01-09
JP2009260378A (en) 2009-11-05
US8796069B2 (en) 2014-08-05
US20110163311A1 (en) 2011-07-07
CN101335276B (en) 2010-09-01
JP5723952B2 (en) 2015-05-27
EP1995787A2 (en) 2008-11-26
JP5031109B2 (en) 2012-09-19
JP2012156521A (en) 2012-08-16
JP2014082503A (en) 2014-05-08
US20110121290A1 (en) 2011-05-26
JP2015111680A (en) 2015-06-18
JP5020190B2 (en) 2012-09-05
US20150340513A1 (en) 2015-11-26
JP2021073723A (en) 2021-05-13
JP2012248862A (en) 2012-12-13
EP1998373A3 (en) 2012-10-31
US20190326444A1 (en) 2019-10-24
JP6990263B2 (en) 2022-01-12
EP1770788A3 (en) 2011-09-21
CN101887918B (en) 2013-12-25
CN101335276A (en) 2008-12-31
US20090239335A1 (en) 2009-09-24
CN101887919B (en) 2013-04-24
JP2012248863A (en) 2012-12-13
CN101887918A (en) 2010-11-17
CN101887856B (en) 2014-03-26
EP1998375A3 (en) 2012-01-18
CN101887704A (en) 2010-11-17
EP3614442A2 (en) 2020-02-26
US8274077B2 (en) 2012-09-25
JP5848311B2 (en) 2016-01-27
JP2014075591A (en) 2014-04-24
JP6360141B2 (en) 2018-07-18
US20080308804A1 (en) 2008-12-18
CN101335274A (en) 2008-12-31
US20100136743A1 (en) 2010-06-03
JP5674905B2 (en) 2015-02-25
JP2009021612A (en) 2009-01-29
US7932521B2 (en) 2011-04-26
CN102593187B (en) 2015-05-20
JP2017201717A (en) 2017-11-09
CN103560085A (en) 2014-02-05
EP3614442A3 (en) 2020-03-25
US8669550B2 (en) 2014-03-11
US20090305461A1 (en) 2009-12-10
US10304962B2 (en) 2019-05-28
EP1998373A2 (en) 2008-12-03
JP2019087756A (en) 2019-06-06
CN105428418A (en) 2016-03-23
CN101887857A (en) 2010-11-17
US7732819B2 (en) 2010-06-08
CN101335275B (en) 2012-02-08
JP6903094B2 (en) 2021-07-14
CN101335304A (en) 2008-12-31
CN101335293A (en) 2008-12-31
US20080308806A1 (en) 2008-12-18
CN101887858A (en) 2010-11-17
JP2016195277A (en) 2016-11-17
CN101335274B (en) 2013-03-27
US20220069137A1 (en) 2022-03-03
CN101887704B (en) 2014-08-06
JP2014075592A (en) 2014-04-24
CN101887856A (en) 2010-11-17
EP1995787A3 (en) 2012-01-18
JP6539597B2 (en) 2019-07-03
CN101552210A (en) 2009-10-07
US8790959B2 (en) 2014-07-29
JP5640032B2 (en) 2014-12-10
US9099562B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
US20220069137A1 (en) Semiconductor device and manufacturing method thereof
JP5064747B2 (en) Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION