TWI525818B - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
TWI525818B
TWI525818B TW100141658A TW100141658A TWI525818B TW I525818 B TWI525818 B TW I525818B TW 100141658 A TW100141658 A TW 100141658A TW 100141658 A TW100141658 A TW 100141658A TW I525818 B TWI525818 B TW I525818B
Authority
TW
Taiwan
Prior art keywords
oxide semiconductor
semiconductor film
film
crystal structure
oxide
Prior art date
Application number
TW100141658A
Other languages
Chinese (zh)
Other versions
TW201236155A (en
Inventor
山崎舜平
高橋正弘
丸山哲紀
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201236155A publication Critical patent/TW201236155A/en
Application granted granted Critical
Publication of TWI525818B publication Critical patent/TWI525818B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體裝置及半導體裝置之製造方法Semiconductor device and method of manufacturing the same [相關申請案][Related application]

此申請案係依據在2010年11月30日向日本專利局申請的日本專利申請案序號2010-267901及在2010年11月30日向日本專利局申請的日本專利申請案序號2010-267896,其全部內容以引用方式併於此。This application is based on the Japanese Patent Application No. 2010-267901 filed on Sep. 30, 2010, and the Japanese Patent Application Serial No. 2010-267896, filed on November 30, 2010. By reference, this is here.

本發明有關於半導體裝置,其包括一包括半導體元件(比如電晶體)的電路,和製造該半導體裝置之方法。例如,本發明有關於安裝在電力供應電路上的電力裝置;包括記憶體、閘流體、轉換器、影像感測器、或之類的半導體積體電路;及有典型為液晶顯示面板、包括發光元件之發光顯示裝置、或之類的光電裝置安裝於上之電子裝置。The present invention relates to a semiconductor device including a circuit including a semiconductor element such as a transistor, and a method of fabricating the same. For example, the present invention relates to a power device mounted on a power supply circuit; a semiconductor integrated circuit including a memory, a thyristor, a converter, an image sensor, or the like; and a typical liquid crystal display panel including illumination A light-emitting display device of the element or an optoelectronic device such as the above is mounted on the upper electronic device.

在此說明書中,半導體裝置意指可藉由利用半導體特性而作用的所有類型之裝置,且光電裝置、發光顯示裝置、半導體電路、及電子裝置皆為半導體裝置。In this specification, a semiconductor device means all types of devices that can function by utilizing semiconductor characteristics, and the photovoltaic device, the light-emitting display device, the semiconductor circuit, and the electronic device are all semiconductor devices.

使用非晶矽、多晶矽、或之類來製造形成在玻璃基板或之類上方的電晶體,這在液晶顯示裝置中很常見。雖然包括非晶矽之電晶體具有低場效遷移率,可以在較大的玻璃基板上方形成其。另一方面,雖然包括多晶矽之電晶體具有高場效遷移率,其不適合形成在較大玻璃基板上方。Amorphous germanium, polycrystalline germanium, or the like is used to fabricate a crystal formed on a glass substrate or the like, which is common in liquid crystal display devices. Although a crystal comprising an amorphous germanium has a low field effect mobility, it can be formed over a larger glass substrate. On the other hand, although a transistor including polycrystalline germanium has high field-effect mobility, it is not suitable to be formed over a large glass substrate.

相較於包括矽之電晶體,有開始注意到一種技術,藉此使用氧化物半導體來製造電晶體,且應用於電子裝置或光學裝置。例如,專利文獻1及專利文獻2揭露一種技術,藉此使用氧化鋅或In-Ga-Zn-O為基之氧化物作為氧化物半導體來製造電晶體,並用作顯示裝置之畫素或之類的切換元件。Compared to a transistor including germanium, there has been a notice of a technique whereby an oxide semiconductor is used to fabricate a transistor, and is applied to an electronic device or an optical device. For example, Patent Document 1 and Patent Document 2 disclose a technique of manufacturing a transistor using an oxide based on zinc oxide or In-Ga-Zn-O as an oxide semiconductor, and using it as a pixel of a display device or the like. Switching components.

[引用][reference] [專利文獻][Patent Literature]

[專利文獻1]日本公開專利申請案號2007-123861[Patent Document 1] Japanese Laid-Open Patent Application No. 2007-123861

[專利文獻2]日本公開專利申請案號2007-96055[Patent Document 2] Japanese Laid-Open Patent Application No. 2007-96055

電晶體的電氣特性很容易受到充當主動層之氧化物半導體膜與接觸氧化物半導體膜的閘極絕緣膜之間的界面條件影響。在電晶體製造期間或之後,若其中閘極絕緣膜接觸氧化物半導體膜的界面,亦即,氧化物半導體膜之閘極電極側界面係在非晶態中,在製程中結構條件很容易受到溫度或之類的影響而變,且電晶體的電氣特性很有可能不穩定。The electrical characteristics of the transistor are easily affected by the interface conditions between the oxide semiconductor film serving as the active layer and the gate insulating film contacting the oxide semiconductor film. During or after the manufacture of the transistor, if the gate insulating film contacts the interface of the oxide semiconductor film, that is, the gate electrode side interface of the oxide semiconductor film is in an amorphous state, the structural conditions are easily accepted in the process. The temperature or the like changes, and the electrical characteristics of the transistor are likely to be unstable.

此外,可藉由以可見光或紫外線光的照射來改變其中氧化物半導體膜用作通道之電晶體的電氣特性。Further, the electrical characteristics of the transistor in which the oxide semiconductor film is used as a channel can be changed by irradiation with visible light or ultraviolet light.

有鑑於這種問題,本發明的一實施例之一目的在於提供包括電晶體的半導體裝置,其中氧化物半導體膜與接觸氧化物半導體膜的閘極絕緣膜之間的界面條件為合宜,且提供製造該半導體裝置之方法。此外,本發明的一實施例之一目的在於藉由給予其中氧化物半導體膜用作通道的電晶體穩定電氣特性來製造高度穩定的半導體裝置。此外,本發明的一實施例之一目的在於提供半導體裝置的製程,俾使用比如母玻璃之大型基板來量產高度可靠半導體裝置。In view of such a problem, an object of an embodiment of the present invention is to provide a semiconductor device including a transistor in which an interface condition between an oxide semiconductor film and a gate insulating film contacting the oxide semiconductor film is suitable and provided A method of manufacturing the semiconductor device. Further, it is an object of an embodiment of the present invention to manufacture a highly stable semiconductor device by imparting stable electrical characteristics to a transistor in which an oxide semiconductor film is used as a channel. Further, it is an object of an embodiment of the present invention to provide a process for a semiconductor device in which a highly reliable semiconductor device is mass-produced using a large substrate such as mother glass.

在本發明的一實施例中,為了使氧化物半導體膜與接觸氧化物半導體膜的絕緣膜(閘極絕緣膜)之間的界面條件變為合宜,至少在氧化物半導體膜的界面附近形成具有高結晶度之區域。據此,可製造具有穩定電氣特性的高度可靠半導體裝置。In an embodiment of the present invention, in order to make the interface condition between the oxide semiconductor film and the insulating film (gate insulating film) contacting the oxide semiconductor film, it is preferable to form at least in the vicinity of the interface of the oxide semiconductor film. Area of high crystallinity. According to this, a highly reliable semiconductor device having stable electrical characteristics can be manufactured.

此外,作為改善氧化物半導體膜之結晶度的一種方法,可提供具有第二晶體結構的氧化物半導體膜作為該氧化物半導體膜的一部分。第二晶體結構為纖鋅礦晶體結構。可具有第二晶體結構的氧化物半導體膜可藉由熱處理輕易結晶,且相較於可具有第一晶體結構之氧化物半導體膜具有高結晶度,第一晶體結構選自非纖鋅礦結構、YbFe2O4結構、Yb2Fe3O7結構、及前述結構的變形結構。Further, as one method of improving the crystallinity of the oxide semiconductor film, an oxide semiconductor film having a second crystal structure can be provided as a part of the oxide semiconductor film. The second crystal structure is a wurtzite crystal structure. The oxide semiconductor film which may have the second crystal structure may be easily crystallized by heat treatment, and has a high crystallinity compared to the oxide semiconductor film which may have the first crystal structure, and the first crystal structure is selected from the non-wurtzite structure, YbFe 2 O 4 structure, Yb 2 Fe 3 O 7 structure, and deformed structure of the foregoing structure.

形成可藉由熱處理具有第一晶體結構之氧化物半導體膜及可藉由熱處理具有第二晶體結構之氧化物半導體膜而加以堆疊,並接著履行熱處理;據此,藉由使用具有第二晶體結構的氧化物半導體膜作為晶種而在可藉由熱處理具有第一晶體結構之氧化物半導體膜之中發生晶體生長,而形成具有第一晶體結構的氧化物半導體膜。Forming can be performed by heat-treating an oxide semiconductor film having a first crystal structure and by heat-treating an oxide semiconductor film having a second crystal structure, and then performing heat treatment; accordingly, by using a second crystal structure The oxide semiconductor film as a seed crystal is formed by crystal growth in an oxide semiconductor film having a first crystal structure by heat treatment, thereby forming an oxide semiconductor film having a first crystal structure.

在高於或等於150℃且低於或等於650℃的溫度履行熱處理,較佳高於或等於200℃且低於或等於500℃。The heat treatment is performed at a temperature higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and lower than or equal to 500 ° C.

取代履行用於結晶之熱處理,可在加熱的同時藉由濺鍍法形成該氧化物半導體膜。Instead of performing the heat treatment for crystallization, the oxide semiconductor film can be formed by sputtering while heating.

依照此方式,例如,包括至少一第二氧化物半導體膜的層係設置在其中堆疊有氧化物半導體膜的氧化物半導體堆疊之中,並對氧化物半導體堆疊履行熱處理,藉此可獲得具有高結晶度的氧化物半導體膜。In this manner, for example, a layer including at least one second oxide semiconductor film is disposed in an oxide semiconductor stack in which an oxide semiconductor film is stacked, and heat treatment is performed on the oxide semiconductor stack, whereby high can be obtained An oxide semiconductor film having crystallinity.

另外,第二氧化物半導體膜的厚度大於或等於一原子層之後度並小於或等於10 nm,較佳大於或等於2 nm並小於或等於5 nm。Further, the thickness of the second oxide semiconductor film is greater than or equal to a degree after the atomic layer and is less than or equal to 10 nm, preferably greater than or equal to 2 nm and less than or equal to 5 nm.

在上述結構中,氧化物半導體膜為非單晶,為並非全部在非晶態中,且至少包括具有c軸對準之晶體。In the above structure, the oxide semiconductor film is a non-single crystal, not all of which are in an amorphous state, and at least includes a crystal having c-axis alignment.

本發明之一實施例為一種製造包括電晶體的半導體裝置之方法。在該方法中,在一絕緣表面上方形成第一氧化物半導體膜,並接著形成第二氧化物半導體膜;之後,履行第一熱處理,以形成具有第一晶體結構的氧化物半導體膜和具有第二晶體結構的氧化物半導體膜。接下來,在具有第二晶體結構的氧化物半導體膜上方形成第三氧化物半導體膜,並接著履行第二熱處理,以形成具有第三晶體結構的氧化物半導體膜。使用具有第一晶體結構的氧化物半導體膜、具有第二晶體結構的氧化物半導體膜、及具有第三晶體結構的氧化物半導體膜之堆疊為電晶體的通道區域。One embodiment of the present invention is a method of fabricating a semiconductor device including a transistor. In the method, a first oxide semiconductor film is formed over an insulating surface, and then a second oxide semiconductor film is formed; thereafter, a first heat treatment is performed to form an oxide semiconductor film having a first crystal structure and having a first An oxide semiconductor film of a two crystal structure. Next, a third oxide semiconductor film is formed over the oxide semiconductor film having the second crystal structure, and then a second heat treatment is performed to form an oxide semiconductor film having a third crystal structure. The stack of the oxide semiconductor film having the first crystal structure, the oxide semiconductor film having the second crystal structure, and the oxide semiconductor film having the third crystal structure is a channel region of the transistor.

具有第一晶體結構的氧化物半導體膜及具有第三晶體結構的氧化物半導體膜之晶體結構各為YbFe2O4結構、Yb2Fe3O7結構、及非纖鋅礦結構的任一者。具有第二晶體結構的氧化物半導體膜之晶體結構為纖鋅礦結構。The crystal structure of the oxide semiconductor film having the first crystal structure and the oxide semiconductor film having the third crystal structure is each of a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and a non-wurtzite structure. . The crystal structure of the oxide semiconductor film having the second crystal structure is a wurtzite structure.

第一熱處理及第二熱處理的溫度各高於或等於150℃並低於或等於650℃,較佳高於或等於200℃並低於或等於500℃。因此,可使用為大型基板之母玻璃作為基板。The temperatures of the first heat treatment and the second heat treatment are each higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and lower than or equal to 500 ° C. Therefore, mother glass which is a large substrate can be used as the substrate.

具有第一晶體結構的氧化物半導體膜、具有第二晶體結構的氧化物半導體膜、及具有第三晶體結構的氧化物半導體膜的各者為非單晶,非全部在非晶態中,並包括c軸對準的晶體區域。亦即,諸氧化物半導體膜的各者具有非晶區域及c軸對準晶體區域。Each of the oxide semiconductor film having the first crystal structure, the oxide semiconductor film having the second crystal structure, and the oxide semiconductor film having the third crystal structure is non-single crystal, not all in an amorphous state, and Includes crystal regions aligned with the c-axis. That is, each of the oxide semiconductor films has an amorphous region and a c-axis aligned crystal region.

具有第二晶體結構的氧化物半導體膜,其具有纖鋅礦結構,很容易藉由熱處理而結晶並相較於具有第一晶體結構的氧化物半導體膜和具有第三晶體結構的氧化物半導體膜具有高結晶度。此外,具有第二晶體結構的氧化物半導體膜包括在a-b面中的一平面中形成六角形之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。因此,當藉由使用具有第二晶體結構的氧化物半導體膜(其為纖鋅礦結構)作為晶種之加熱而在第一氧化物半導體膜和第三氧化物半導體膜之中造成晶體生長時,可形成具有第一晶體結構的氧化物半導體膜和具有第三晶體結構的氧化物半導體膜,使得其之晶軸和具有第二晶體結構的氧化物半導體膜(其為纖鋅礦結構)的晶軸大致上對準。如同在具有第二晶體結構的氧化物半導體膜的情況中般,具有第一晶體結構的氧化物半導體膜和具有第三晶體結構的氧化物半導體膜各包括在a-b面中的一平面中形成六角形之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。An oxide semiconductor film having a second crystal structure having a wurtzite structure, which is easily crystallized by heat treatment and compared to an oxide semiconductor film having a first crystal structure and an oxide semiconductor film having a third crystal structure Has a high degree of crystallinity. Further, the oxide semiconductor film having the second crystal structure includes a hexagonal bond formed in a plane in the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment. Therefore, when crystal growth is caused in the first oxide semiconductor film and the third oxide semiconductor film by using the oxide semiconductor film having the second crystal structure which is a wurtzite structure as the seed crystal An oxide semiconductor film having a first crystal structure and an oxide semiconductor film having a third crystal structure such that a crystal axis thereof and an oxide semiconductor film having a second crystal structure which is a wurtzite structure are formed The crystal axes are substantially aligned. As in the case of the oxide semiconductor film having the second crystal structure, the oxide semiconductor film having the first crystal structure and the oxide semiconductor film having the third crystal structure each include six in one plane in the ab plane Corner key. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment.

藉由在上述氧化物半導體堆疊上方形成閘極絕緣膜並在閘極絕緣膜上方形成閘極電極,可製造電晶體。結果,氧化物半導體堆疊在和閘極絕緣膜的界面具有高結晶度及均勻度,並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。A transistor can be fabricated by forming a gate insulating film over the above-described oxide semiconductor stack and forming a gate electrode over the gate insulating film. As a result, the oxide semiconductor stack has high crystallinity and uniformity at the interface with the gate insulating film, and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained.

藉由在閘極電極上方形成閘極絕緣膜並在閘極絕緣膜上方形成上述氧化物半導體堆疊,可製造電晶體。結果,氧化物半導體堆疊在和閘極絕緣膜的界面具有高結晶度及均勻度,並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。A transistor can be fabricated by forming a gate insulating film over the gate electrode and forming the above-described oxide semiconductor stack over the gate insulating film. As a result, the oxide semiconductor stack has high crystallinity and uniformity at the interface with the gate insulating film, and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained.

各包括在a-b面中具有六角形鍵之c軸對準區域之氧化物半導體膜的堆疊係用作電晶體的通道區域,藉此可製造一種電晶體,其中在光照射或在電晶體上履行之偏壓溫度應力(BT)測試前與後之間的臨限電壓之改變量很小,且具有穩定的電氣特性。A stack of oxide semiconductor films each including a c-axis alignment region having a hexagonal bond in the ab plane serves as a channel region of the transistor, whereby a transistor can be fabricated in which light is irradiated or performed on the transistor The threshold voltage change between before and after the bias temperature stress (BT) test is small and has stable electrical characteristics.

根據本發明之一實施例,可製造其中氧化物半導體膜與接觸氧化物半導體膜的閘極絕緣膜之間的界面條件為合宜之電晶體。此外,可製造具有穩定電氣特性之半導體裝置。此外,可藉由使用比如母玻璃的大型基板來實現高度可靠的半導體裝置之量產。According to an embodiment of the present invention, a transistor in which an interface condition between an oxide semiconductor film and a gate insulating film contacting the oxide semiconductor film is suitable can be manufactured. In addition, semiconductor devices having stable electrical characteristics can be fabricated. In addition, mass production of highly reliable semiconductor devices can be achieved by using large substrates such as mother glass.

將參考附圖詳細敘述本發明之實施例。注意到本發明不限於下列說明,且熟悉此技藝人士將輕易了解到可以各種方式修改本發明的模式和細節而不背離本發明之精神與範疇。因此,本發明不應解釋成限於下列實施例中的說明。注意到在此後所述的本發明之結構中,在不同圖中以相同參考符號標示相同部件或具有類似功能之部件,且不重複其之說明。Embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the invention is not to be construed as being limited by the scope of the present invention. Therefore, the invention should not be construed as being limited to the description in the following examples. It is noted that in the structures of the present invention described hereinafter, the same components or components having similar functions are denoted by the same reference numerals in the different drawings, and the description thereof will not be repeated.

注意到在此說明書中所述的每一個圖中,每一個構件之大小、層厚度、或區域在某些情況中為了清楚而加以放大。因此,本發明之實施例不限於這種比例。It is noted that in each of the figures described in this specification, the size, layer thickness, or area of each member is enlarged in some cases for clarity. Therefore, embodiments of the invention are not limited to this ratio.

注意到此說明書中之諸如「第一」、「第二」、及「第三」之術語係用來避免構件之間的混淆,且這些術語不數值性限制構件。因此,例如,可適當地以術語「第二」、「第三」、或之類取代術語「第一」。It is noted that terms such as "first", "second", and "third" in this specification are used to avoid confusion between components, and these terms are not numerically limiting components. Therefore, for example, the term "first" may be replaced by the terms "second", "third", or the like as appropriate.

(實施例1)(Example 1)

在此實施例中,將參照第1A及1B圖和第2A至2C圖敘述其中在絕緣表面上方的氧化物半導體膜係用為通道的電晶體及其之製造方法。第1B圖為繪示作為半導體裝置之結構的一實施例之電晶體的結構之剖面圖,並相應於沿第1A圖(其為上視圖)中之點虛線A-B的剖面圖。注意到在第1A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜107、及絕緣膜109。第2A至2C圖為繪示第1B圖中所示之電晶體的製程之剖面圖。In this embodiment, a transistor in which an oxide semiconductor film over an insulating surface is used as a channel and a method of manufacturing the same will be described with reference to FIGS. 1A and 1B and FIGS. 2A to 2C. 1B is a cross-sectional view showing the structure of a transistor as an embodiment of a structure of a semiconductor device, and corresponds to a cross-sectional view taken along a dotted line A-B in FIG. 1A (which is a top view). Note that in the first FIG. 1A, the substrate 101, the oxide insulating film 102, the gate insulating film 107, and the insulating film 109 are not shown. 2A to 2C are cross-sectional views showing the process of the transistor shown in Fig. 1B.

第1B圖中所示之電晶體包括形成在基板101上方之氧化物絕緣膜102;形成在氧化物絕緣膜102上方的氧化物半導體堆疊105、形成在氧化物半導體堆疊105上方並作用為源極電極和汲極電極的一對電極106;形成在氧化物絕緣膜102、氧化物半導體堆疊105、及該對電極106上方之閘極絕緣膜107;及重疊氧化物半導體堆疊105和設置其間的閘極絕緣膜107之閘極電極108。此外,可設置覆蓋閘極絕緣膜107和閘極電極108的絕緣膜109。The transistor shown in FIG. 1B includes an oxide insulating film 102 formed over the substrate 101; an oxide semiconductor stack 105 formed over the oxide insulating film 102, formed over the oxide semiconductor stack 105 and functioning as a source a pair of electrodes 106 of an electrode and a drain electrode; a gate insulating film 107 formed over the oxide insulating film 102, the oxide semiconductor stack 105, and the pair of electrodes 106; and a stacked oxide semiconductor stack 105 and a gate therebetween The gate electrode 108 of the pole insulating film 107. Further, an insulating film 109 covering the gate insulating film 107 and the gate electrode 108 may be provided.

氧化物半導體堆疊105的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜105a,其接觸氧化物絕緣膜102,及具有第二晶體結構之氧化物半導體膜105b,其接觸具有第一晶體結構之氧化物半導體膜105a。The oxide semiconductor stack 105 is characterized by being stacked with an oxide semiconductor film 105a having a first crystal structure, which contacts the oxide insulating film 102, and an oxide semiconductor film 105b having a second crystal structure, the contact having the first crystal structure The oxide semiconductor film 105a.

此外,氧化物半導體堆疊105的特徵在於使用具有第二晶體結構之氧化物半導體膜105b作為種晶而在具有第一晶體結構之氧化物半導體膜105a中發生晶體生長。Further, the oxide semiconductor stack 105 is characterized in that crystal growth occurs in the oxide semiconductor film 105a having the first crystal structure using the oxide semiconductor film 105b having the second crystal structure as a seed crystal.

具有第二晶體結構之氧化物半導體膜105b包括三角及/或六角形晶體。The oxide semiconductor film 105b having the second crystal structure includes triangular and/or hexagonal crystals.

換言之,具有第二晶體結構之氧化物半導體膜和具有第一晶體結構之氧化物半導體膜兩者皆包括三角及/或六角形晶體;因此,可從c軸方向觀察到六角形晶格影像。In other words, both the oxide semiconductor film having the second crystal structure and the oxide semiconductor film having the first crystal structure include triangular and/or hexagonal crystals; therefore, a hexagonal lattice image can be observed from the c-axis direction.

注意到具有第一晶體結構之氧化物半導體膜105a及具有第二晶體結構之氧化物半導體膜105b的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體區域。It is noted that each of the oxide semiconductor film 105a having the first crystal structure and the oxide semiconductor film 105b having the second crystal structure is non-single crystal, not all in an amorphous state, and includes a c-axis aligned crystal region.

接下來,將參照第2A至2C圖敘述製造第1B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 1B will be described with reference to Figs. 2A to 2C.

如第2A圖中所示,在於基板101上方形成氧化物絕緣膜102之後,在氧化物絕緣膜102上方形成第一氧化物半導體膜103a,並在第一氧化物半導體膜103a上方形成第二氧化物半導體膜103b。As shown in FIG. 2A, after the oxide insulating film 102 is formed over the substrate 101, the first oxide semiconductor film 103a is formed over the oxide insulating film 102, and the second oxide is formed over the first oxide semiconductor film 103a. The semiconductor film 103b.

基板101必須至少具有夠高而足以承受後續之熱處理的耐熱性。在使用玻璃基板作為基板101的情況中,較佳使用具有高於或等於730℃的應變點之基板。作為玻璃基板的材料,例如,使用如鋁矽酸玻璃、鋁硼矽酸鹽玻璃、或鋇硼矽酸鹽玻璃。注意到較佳使用含有BaO及B2O3的玻璃基板,其中BaO的量大於B2O3的量。針對量產,較佳使用第八世代(2160 mm×2460mm)、第九世代(2400 mm×2800mm或2450 mm×3050 mm)、第十世代(2950 mm×3400 mm)、或之類的母玻璃作為基板101。當處理溫度很高且處理時間很長時,母玻璃大幅收縮。因此,在使用母玻璃來履行量產的情況中,在製程中之較佳加熱溫度低於或等於600℃,更佳地,低於或等於450℃。The substrate 101 must have at least a heat resistance high enough to withstand the subsequent heat treatment. In the case of using a glass substrate as the substrate 101, it is preferred to use a substrate having a strain point higher than or equal to 730 °C. As a material of the glass substrate, for example, an aluminosilicate glass, an aluminoborosilicate glass, or a bismuth borate glass is used. It is noted that a glass substrate containing BaO and B 2 O 3 is preferably used, wherein the amount of BaO is larger than the amount of B 2 O 3 . For mass production, it is preferred to use the eighth generation (2160 mm × 2460 mm), the ninth generation (2400 mm × 2800 mm or 2450 mm × 3050 mm), the tenth generation (2950 mm × 3400 mm), or the like. As the substrate 101. When the processing temperature is high and the processing time is long, the mother glass shrinks significantly. Therefore, in the case where the mother glass is used to perform mass production, the preferred heating temperature in the process is lower than or equal to 600 ° C, and more preferably lower than or equal to 450 ° C.

取代玻璃基板,可使用以絕緣體所形成之基板,如陶瓷基板、石英基板、或藍寶石基板。或者,可使用結晶玻璃或之類。又或者,可使用藉由在諸如矽晶圓之半導體基板之表面或以金屬材料製成的導電基板之表面上方形成絕緣膜所得之基板。Instead of the glass substrate, a substrate formed of an insulator such as a ceramic substrate, a quartz substrate, or a sapphire substrate may be used. Alternatively, crystallized glass or the like can be used. Alternatively, a substrate obtained by forming an insulating film over a surface of a semiconductor substrate such as a germanium wafer or a surface of a conductive substrate made of a metal material may be used.

注意到在使用包括雜質(如鹼土金屬)的玻璃基板為基板101之情況中,可在基板101和氧化物絕緣膜102之間形成諸如氮化矽或氮化鋁的氮化物絕緣膜以防止鹼土金屬的進入。可藉由CVD法、濺鍍法、或之類形成氮化物絕緣膜。由於諸如鋰、鈉、或鉀的鹼土金屬為後續將形成之氧化物半導體膜的雜質,這種鹼土金屬之含量較佳為小。Note that in the case where a glass substrate including an impurity such as an alkaline earth metal is used as the substrate 101, a nitride insulating film such as tantalum nitride or aluminum nitride may be formed between the substrate 101 and the oxide insulating film 102 to prevent alkaline earth The entry of metal. A nitride insulating film can be formed by a CVD method, a sputtering method, or the like. Since the alkaline earth metal such as lithium, sodium or potassium is an impurity of the oxide semiconductor film to be formed later, the content of the alkaline earth metal is preferably small.

使用氧化物絕緣膜(自其透過加熱釋放出一部分所含的氧)來形成氧化物絕緣膜102。自其透過加熱釋放出一部分所含的氧之氧化物絕緣膜較佳為含有量超過其之化學劑量組成中的氧量之氧的氧化物絕緣膜。藉由自其透過加熱釋放出一部分所含的氧之氧化物絕緣膜,可透過加熱將氧擴散到第一氧化物半導體膜103a及第二氧化物半導體膜103b之中。氧化物絕緣膜102的典型範例包括氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧氮化鋁、氧化鎵、氧化鉿、及氧化釔。The oxide insulating film 102 is formed using an oxide insulating film from which a part of the contained oxygen is released by heating. The oxide insulating film which releases a part of oxygen contained therein by heating is preferably an oxide insulating film containing oxygen in an amount exceeding the amount of oxygen in the chemical composition. Oxygen is diffused into the first oxide semiconductor film 103a and the second oxide semiconductor film 103b by heating by releasing a part of the oxide oxide film contained therein by heat. Typical examples of the oxide insulating film 102 include cerium oxide, cerium oxynitride, cerium oxynitride, aluminum oxide, aluminum oxynitride, gallium oxide, cerium oxide, and cerium oxide.

從含有量超過其之化學劑量組成中的氧量之氧的氧化物絕緣膜,透過加熱釋放出一部分的氧。在熱脫附譜(TDS)分析中,此時所釋放且被轉換成氧原子的氧量大於或等於1.0×1018 atoms/cm3;較佳大於或等於1.0×1020 atoms/cm3;更佳大於或等於3.0×1020 atoms/cm3An oxide insulating film containing oxygen in an amount exceeding the amount of oxygen in its chemical composition releases a part of oxygen by heating. In the thermal desorption spectrum (TDS) analysis, the amount of oxygen released at this time and converted into oxygen atoms is greater than or equal to 1.0 × 10 18 atoms / cm 3 ; preferably greater than or equal to 1.0 × 10 20 atoms / cm 3 ; More preferably, it is greater than or equal to 3.0 × 10 20 atoms/cm 3 .

在此,茲將敘述使用TDS分析來測量被轉換成氧原子之釋放氧量的方法。Here, a method of measuring the amount of released oxygen converted into an oxygen atom using TDS analysis will be described.

在TDS分析中之釋放氣體的量與波譜的積分值成正比。因此,可從氧化物絕緣膜之波譜的積分值對標準取樣的參考值的比來計算釋放氣體的量。標準取樣的參考值是指取樣中所含之預定原子的密度對波譜之積分值的比。The amount of released gas in the TDS analysis is proportional to the integrated value of the spectrum. Therefore, the amount of released gas can be calculated from the ratio of the integrated value of the spectrum of the oxide insulating film to the reference value of the standard sample. The reference value of the standard sample refers to the ratio of the density of a predetermined atom contained in the sample to the integrated value of the spectrum.

例如,可根據數值表達式1藉由含有在預定密度之氫的矽晶圓(其為標準取樣)之TDS分析結果及氧化物絕緣膜之TDS分析結果找出從氧化物絕緣膜釋放的氧分子量(N(O2))。在此,具有由TDS分析所得之32的質量數之所有波譜都假設成源自氧分子。在假設CH3OH不大可能存在的假設下,不將提供為具有32的質量數之氣體的CH3OH納入考量。此外,也不將包括具有17或18的質量數之氧原子的氧分子(其為氧原子之同位素)納入考量,因為在自然世界中這種分子的比例很小。For example, the molecular weight of oxygen released from the oxide insulating film can be found by the TDS analysis result of the tantalum wafer containing hydrogen at a predetermined density (which is a standard sampling) and the TDS analysis result of the oxide insulating film according to Numerical Expression 1. (N(O 2 )). Here, all spectra having a mass number of 32 obtained by TDS analysis are assumed to originate from oxygen molecules. Assuming the presence of CH 3 OH unlikely hypothesis under consideration does not provide for the CH 3 OH into a gas having a mass number of 32. Further, an oxygen molecule including an oxygen atom having a mass number of 17 or 18, which is an isotope of an oxygen atom, is not taken into consideration because the proportion of such a molecule is small in the natural world.

N(O2)=N(H2)/S(H2)×S(O2)×α (數值表達式1)N(O 2 )=N(H 2 )/S(H 2 )×S(O 2 )×α (numerical expression 1)

N(H2)為藉由將從標準取樣釋放之氫分子數量轉換成密度所得的值。S(H2)為當由TDS分析標準取樣時的波譜之積分值。在此,標準取樣的參考值係設定成N(H2)/S(H2)。S(O2)為當藉由TDS分析氧化物絕緣膜時之波譜的積分值。α為影響TDS分析中之波譜強度的係數。數值表達式1的細節可參照日本專利公開申請案號H6-275697。注意到以由ESCo Ltd.,EMD-WA1000S/W產生之熱脫附譜設備使用含有在1×1016 atoms/cm3之氫原子的矽晶圓作為標準取樣來測量從氧化物絕緣膜所釋放出的氧量。N(H 2 ) is a value obtained by converting the number of hydrogen molecules released from a standard sample into a density. S(H 2 ) is the integrated value of the spectrum when sampled by the TDS analysis standard. Here, the reference value of the standard sample is set to N(H 2 )/S(H 2 ). S(O 2 ) is an integrated value of the spectrum when the oxide insulating film is analyzed by TDS. α is a coefficient that affects the intensity of the spectrum in the TDS analysis. The details of Numerical Expression 1 can be referred to Japanese Patent Laid-Open Publication No. H6-275697. It is noted that the thermal desorption spectrum device produced by ESCo Ltd., EMD-WA1000S/W is used to measure the release from the oxide insulating film using a germanium wafer containing hydrogen atoms at 1 × 10 16 atoms/cm 3 as a standard sample. The amount of oxygen produced.

此外,在TDS分析中,檢測一部分的氧量為氧原子。可從氧分子之離子化速率計算氧分子與氧原子之間的比。注意到由於上述α包括氧分子的離子化速率,亦可透過釋放的氧分子數量之評估來估計釋放的氧原子之數量。Further, in the TDS analysis, a part of the amount of oxygen is detected as an oxygen atom. The ratio between the oxygen molecule and the oxygen atom can be calculated from the ionization rate of the oxygen molecule. It is noted that since the above α includes the ionization rate of the oxygen molecules, the amount of oxygen atoms released can also be estimated by the evaluation of the amount of oxygen molecules released.

注意到N(O2)為釋放的氧分子之數量。針對氧化物絕緣膜,在轉換成氧原子之情況中的釋放之氧量為釋放的氧原子之數量的兩倍。Note that N(O 2 ) is the amount of oxygen molecules released. For the oxide insulating film, the amount of oxygen released in the case of conversion into an oxygen atom is twice the amount of oxygen atoms released.

氧化物絕緣膜102的厚度大於或等於50 nm,較佳大於或等於200 nm並小於或等於500 nm。藉由使用厚的氧化物絕緣膜102,可增加從氧化物絕緣膜102釋放出之氧的量,並且可減少在氧化物絕緣膜102與後續形成之氧化物半導體膜之間的界面之缺陷。The thickness of the oxide insulating film 102 is greater than or equal to 50 nm, preferably greater than or equal to 200 nm and less than or equal to 500 nm. By using the thick oxide insulating film 102, the amount of oxygen released from the oxide insulating film 102 can be increased, and the defect of the interface between the oxide insulating film 102 and the subsequently formed oxide semiconductor film can be reduced.

藉由濺鍍法、CVD法、或之類來形成氧化物絕緣膜102。較佳地,藉由濺鍍法輕易形成藉由熱處理從其釋放一部分的所含氧之氧化物絕緣膜。The oxide insulating film 102 is formed by a sputtering method, a CVD method, or the like. Preferably, a portion of the oxygen-containing oxide insulating film is released therefrom by heat treatment by sputtering.

當藉由濺鍍法形成藉由熱處理從其釋放一部分的所含氧之氧化物絕緣膜時,在沈積氣體中之氧的量較佳很大,且可使用氧、氧及稀有氣體之混合氣體、或之類。典型上,沈積氣體中的氧濃度較佳高於或等於6%並低於或等於100%。When a portion of the oxygen-containing oxide insulating film is released therefrom by heat treatment by sputtering, the amount of oxygen in the deposited gas is preferably large, and a mixed gas of oxygen, oxygen, and a rare gas can be used. , or the like. Typically, the concentration of oxygen in the deposition gas is preferably greater than or equal to 6% and less than or equal to 100%.

使用透過加熱可包括三角及/或六角形晶體並具有第一晶體結構的氧化物半導體膜來形成第一氧化物半導體膜103a。The first oxide semiconductor film 103a is formed using an oxide semiconductor film which can include a triangular and/or hexagonal crystal and has a first crystal structure by heating.

作為第一氧化物半導體膜103a,可使用諸如In-Sn-Ga-Zn-O膜的四成分金屬氧化物;諸如In-Ga-Zn-O膜、In-Sn-Zn-O膜、In-Al-Zn-O膜、Sn-Ga-Zn-O膜、Al-Ga-Zn-O膜、或Sn-Al-Zn-O膜的三成分金屬氧化物;諸如In-Zn-O膜、Sn-Zn-O膜、Al-Zn-O膜、或In-Ga-O膜的兩成分金屬氧化物;或之類。此外,SiO2可包含在上述氧化物半導體中。在此說明書中,例如,In-Ga-Zn-O膜意指含有銦(In)、鎵(Ga)、及鋅(Zn)之氧化物膜。As the first oxide semiconductor film 103a, a four-component metal oxide such as an In-Sn-Ga-Zn-O film can be used; such as an In-Ga-Zn-O film, an In-Sn-Zn-O film, In- Three-component metal oxide of Al-Zn-O film, Sn-Ga-Zn-O film, Al-Ga-Zn-O film, or Sn-Al-Zn-O film; such as In-Zn-O film, Sn a two-component metal oxide of a -Zn-O film, an Al-Zn-O film, or an In-Ga-O film; or the like. Further, SiO 2 may be included in the above oxide semiconductor. In this specification, for example, an In-Ga-Zn-O film means an oxide film containing indium (In), gallium (Ga), and zinc (Zn).

使用可包括三角及/或六角形晶體並透過加熱具有非纖鋅礦結構、YbFe2O4結構、Yb2Fe3O7結構、及前述結構的變形結構的任一晶體結構之氧化物半導體膜來形成第一氧化物半導體膜103a。An oxide semiconductor film of any crystal structure including a triangular and/or hexagonal crystal and having a deformed structure having a non-wurtzite structure, a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and the foregoing structure can be used by heating The first oxide semiconductor film 103a is formed.

作為具有第一晶體結構的氧化物半導體膜的一個範例,為三成分金屬氧化物之In-Ga-Zn-O膜包括三角及/或六角形非纖鋅礦晶體。另外,為三成分金屬氧化物之In-Ga-Zn-O膜的範例包括具有YbFe2O4結構之InGaZnO4及具有Yb2Fe3O7結構之In2Ga2ZnO7,且In-Ga-Zn-O膜可具有前述結構的變形結構之任一者(M. Nakamura,N. Kimizuka,and T. Mohri,“The Phase Relations in the In2O3-Ga2ZnO4-ZnO System at 1350℃”,J. Solid State Chem.,1991,Vol. 93,pp. 298-315)。注意到於下含有Yb的層以A層標示且含有Fe的層以B層標示。YbFe2O4結構為ABB|ABB|ABB的重複結構。作為YbFe2O4結構之變形結構的一個範例,可提出ABBB|ABBB的重複結構。此外,Yb2Fe3O7結構為ABB|AB|ABB|AB的重複結構。作為Yb2Fe3O7結構之變形結構的一個範例,可提出ABBB|ABB|ABBB|ABB|ABBB|ABB的重複結構。As an example of the oxide semiconductor film having the first crystal structure, the In-Ga-Zn-O film which is a three-component metal oxide includes triangular and/or hexagonal non-wurtzite crystals. Further, examples of the In-Ga-Zn-O film which is a three-component metal oxide include InGaZnO 4 having a YbFe 2 O 4 structure and In 2 Ga 2 ZnO 7 having a Yb 2 Fe 3 O 7 structure, and In-Ga The -Zn-O film may have any of the above-described structurally deformed structures (M. Nakamura, N. Kimizuka, and T. Mohri, "The Phase Relations in the In 2 O 3 -Ga 2 ZnO 4 -ZnO System at 1350 °C", J. Solid State Chem. , 1991, Vol. 93, pp. 298-315). It is noted that the layer containing Yb is labeled with layer A and the layer containing Fe is indicated by layer B. The YbFe 2 O 4 structure is a repeating structure of ABB|ABB|ABB. As an example of the deformed structure of the YbFe 2 O 4 structure, a repeating structure of ABBB|ABBB can be proposed. Further, the Yb 2 Fe 3 O 7 structure is a repeating structure of ABB|AB|ABB|AB. As an example of the deformed structure of the Yb 2 Fe 3 O 7 structure, a repeating structure of ABBB|ABB|ABBB|ABB|ABBB|ABB can be proposed.

注意到可使用含有在高於或等於1×1017/cm3並低於或等於5×1019/cm3的濃度之氮的上述金屬氧化物作為第一氧化物半導體膜103a。Note that the above-described metal oxide containing nitrogen at a concentration higher than or equal to 1 × 10 17 /cm 3 and lower than or equal to 5 × 10 19 /cm 3 can be used as the first oxide semiconductor film 103a.

注意到可形成第一氧化物半導體膜103a的金屬氧化物之能隙為2 eV或更多;較佳2.5 eV或更多;更佳3 eV或更多。依照此方式,可藉由使用具有寬能隙之氧化物半導體來減少電晶體之關閉狀態電流。Note that the metal oxide which can form the first oxide semiconductor film 103a has an energy gap of 2 eV or more; preferably 2.5 eV or more; more preferably 3 eV or more. In this manner, the off-state current of the transistor can be reduced by using an oxide semiconductor having a wide energy gap.

使用可透過加熱具有第二晶體結構的氧化物半導體膜來形成第二氧化物半導體膜103b。透過熱處理輕易結晶可具有第二晶體結構的氧化物半導體膜,並且相較於可具有三角及/或六角形第一晶體結構之氧化物半導體膜具有高結晶度。The second oxide semiconductor film 103b is formed by heating an oxide semiconductor film having a second crystal structure. The oxide semiconductor film which may have the second crystal structure is easily crystallized by heat treatment, and has high crystallinity as compared with the oxide semiconductor film which may have a triangular and/or hexagonal first crystal structure.

可使用氧化鋅、氮氧化物半導體、或之類來形成第二氧化物半導體膜103b。可藉由在高於或等於5×1019/cm3並低於7 at.%的濃度添加氮至針對第一氧化物半導體膜103a所列之任何金屬氧化物來獲得氮氧化物半導體。The second oxide semiconductor film 103b can be formed using zinc oxide, an oxynitride semiconductor, or the like. The oxynitride semiconductor can be obtained by adding nitrogen to any metal oxide listed for the first oxide semiconductor film 103a at a concentration higher than or equal to 5 × 10 19 /cm 3 and lower than 7 at. %.

使用第二氧化物半導體膜103b作為第一氧化物半導體膜103a的晶體生長之晶種。因此,第二氧化物半導體膜103b可具有能夠允許晶體生長的厚度,典型大於或等於一原子層的厚度並小於或等於10 nm,較佳大於或等於2 nm並小於或等於5 nm。當第二氧化物半導體膜103b為薄時,可改善沈積處理及熱處理中的通量。The second oxide semiconductor film 103b is used as a seed crystal for crystal growth of the first oxide semiconductor film 103a. Therefore, the second oxide semiconductor film 103b may have a thickness capable of allowing crystal growth, typically greater than or equal to the thickness of one atomic layer and less than or equal to 10 nm, preferably greater than or equal to 2 nm and less than or equal to 5 nm. When the second oxide semiconductor film 103b is thin, the flux in the deposition process and the heat treatment can be improved.

第一氧化物半導體膜103a及第二氧化物半導體膜103b各可藉由濺鍍法、塗覆法、印刷法、脈衝雷射蒸發法、或之類加以形成。當藉由濺鍍法形成第一氧化物半導體膜103a及第二氧化物半導體膜103b時,使用AC濺鍍設備、DC濺鍍設備、及RF濺鍍設備之一。Each of the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be formed by a sputtering method, a coating method, a printing method, a pulsed laser evaporation method, or the like. When the first oxide semiconductor film 103a and the second oxide semiconductor film 103b are formed by sputtering, one of an AC sputtering device, a DC sputtering device, and an RF sputtering device is used.

當藉由使用氮氧化物半導體的濺鍍法來形成第二氧化物半導體膜103b時,可藉由改變引進濺鍍設備之氣體的種類,亦即,藉由在形成第一氧化物半導體膜103a之後引進氮,來沈積氮氧化物半導體。換言之,可接續地形成第一氧化物半導體膜103a及第二氧化物半導體膜103b,此具有高生產力。When the second oxide semiconductor film 103b is formed by a sputtering method using an oxynitride semiconductor, the kind of the gas introduced into the sputtering apparatus can be changed, that is, by forming the first oxide semiconductor film 103a. Nitrogen is then introduced to deposit the NOx semiconductor. In other words, the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be formed successively, which is highly productive.

接下來,履行第一熱處理。第一熱處理的溫度高於或等於150℃並低於或等於650℃,較佳高於或等於200℃並低於或等於500℃。另外,第一熱處理的加熱時間長於或等於1分鐘並短於或等於24小時。在逐漸增加第一熱處理的溫度後,可將溫度設為恆定。當從高於或等於500℃的溫度升高溫度的速率高於或等於0.5℃/h並低於或等於3℃/h時,逐漸進行第二氧化物半導體膜103b的晶體生長;因此,可進一步增進結晶度。Next, the first heat treatment is performed. The temperature of the first heat treatment is higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and lower than or equal to 500 ° C. Further, the heating time of the first heat treatment is longer than or equal to 1 minute and shorter than or equal to 24 hours. After gradually increasing the temperature of the first heat treatment, the temperature can be made constant. When the rate of temperature increase from a temperature higher than or equal to 500 ° C is higher than or equal to 0.5 ° C / h and lower than or equal to 3 ° C / h, crystal growth of the second oxide semiconductor film 103b is gradually performed; Further increase the crystallinity.

較佳在稀有氣體(典型為氬)周圍環境、氧周圍環境、氮周圍環境、乾空氣周圍環境、稀有氣體(典型為氬)及氧之混合周圍環境、或稀有氣體及氮之混合周圍環境中履行第一熱處理。具體來說,較佳使用高純度氣體周圍環境,其中諸如氫的雜質之濃度減少至大約百萬分之數個(ppm)或十億分之數個(ppb)。It is preferably in a surrounding environment of a rare gas (typically argon), an environment surrounding oxygen, a surrounding environment of nitrogen, a surrounding environment of dry air, a mixed environment of rare gas (typically argon) and oxygen, or a mixed environment of rare gas and nitrogen. Perform the first heat treatment. In particular, it is preferred to use a high purity gas surrounding environment in which the concentration of impurities such as hydrogen is reduced to about parts per million (ppm) or parts per billion (ppb).

用於第一熱處理的熱處理設備不限於特定設備,且可提供用於透過來自加熱元件(如電阻式加熱元件)之熱輻射或熱傳導加熱待處理物體之裝置作為該設備。例如,可使用電爐,或諸如氣體迅速熱退火(GRTA)設備或燈迅速熱退火(LRTA)設備的迅速熱退火(RTA)設備。LRTA設備為以從諸如鹵素燈、金屬鹵化物、氙弧燈、碳弧燈、高壓鈉燈、或高壓汞燈的燈所發射之光的輻射(電磁波)加熱待處理物體之設備。GRTA設備為使用高溫氣體之熱處理的設備。The heat treatment apparatus for the first heat treatment is not limited to a specific apparatus, and a device for heating an object to be processed through heat radiation or heat conduction from a heating element such as a resistive heating element may be provided as the apparatus. For example, an electric furnace, or a rapid thermal annealing (RTA) device such as a gas rapid thermal annealing (GRTA) device or a lamp rapid thermal annealing (LRTA) device can be used. The LRTA device is a device that heats an object to be treated with radiation (electromagnetic waves) of light emitted from a lamp such as a halogen lamp, a metal halide, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. The GRTA device is a device that uses a heat treatment of a high temperature gas.

第一熱處理允許晶體生長從第二氧化物半導體膜103b的表面朝第一氧化物半導體膜103a開始。由於輕易結晶第二氧化物半導體膜103b,結晶整個第二氧化物半導體膜103b成為具有第二晶體結構的氧化物半導體膜104b。此外,由於晶體生長從第二氧化物半導體膜103b的表面朝第一氧化物半導體膜103a進行,形成c軸對準之晶體區域。亦即,具有第二晶體結構的氧化物半導體膜104b包括在a-b面的一上平面中形成六角形形狀之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。The first heat treatment allows crystal growth to start from the surface of the second oxide semiconductor film 103b toward the first oxide semiconductor film 103a. Since the second oxide semiconductor film 103b is easily crystallized, the entire second oxide semiconductor film 103b is crystallized into the oxide semiconductor film 104b having the second crystal structure. Further, since crystal growth proceeds from the surface of the second oxide semiconductor film 103b toward the first oxide semiconductor film 103a, a crystal region in which c-axis is aligned is formed. That is, the oxide semiconductor film 104b having the second crystal structure includes a key which forms a hexagonal shape in an upper plane of the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment.

當繼續第一熱處理時,以具有第二晶體結構的氧化物半導體膜104b作為晶種,第一氧化物半導體膜103a的晶體生長從與具有第二晶體結構的氧化物半導體膜104b之界面朝氧化物絕緣膜102繼續進行。具有第二晶體結構的氧化物半導體膜104b在c軸方向中對準,藉由使用具有第二晶體結構的氧化物半導體膜104b作為晶種,第一氧化物半導體膜103a中的晶體可生長而變成與具有第二晶體結構的氧化物半導體膜104b的晶軸大致上對準。亦即,第一氧化物半導體膜103a中的晶體可在對準c軸的同時生長。亦即,具有第一晶體結構的氧化物半導體膜104a包括在a-b面的一上平面中形成六角形形狀之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。透過上述步驟,可形成具有c軸對準之第一晶體結構的氧化物半導體膜104a(參見第2B圖)。When the first heat treatment is continued, the oxide semiconductor film 104b having the second crystal structure is seeded, and the crystal growth of the first oxide semiconductor film 103a is oxidized from the interface with the oxide semiconductor film 104b having the second crystal structure. The insulating film 102 continues. The oxide semiconductor film 104b having the second crystal structure is aligned in the c-axis direction, and the crystal in the first oxide semiconductor film 103a can be grown by using the oxide semiconductor film 104b having the second crystal structure as a seed crystal. It becomes substantially aligned with the crystal axis of the oxide semiconductor film 104b having the second crystal structure. That is, the crystals in the first oxide semiconductor film 103a can be grown while being aligned with the c-axis. That is, the oxide semiconductor film 104a having the first crystal structure includes a key which forms a hexagonal shape in an upper plane of the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment. Through the above steps, the oxide semiconductor film 104a having the c-axis aligned first crystal structure can be formed (see FIG. 2B).

在透過第一熱處理晶體生長從第二氧化物半導體膜103b之表面垂直進行的情況中,具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b的c軸與該表面大致上垂直。In the case where the crystal growth by the first heat treatment is performed vertically from the surface of the second oxide semiconductor film 103b, the c-axis of the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure The surface is substantially vertical.

另外,透過第一熱處理,釋放出在第一氧化物半導體膜103a及第二氧化物半導體膜103b中所含的氫(亦即,發生脫氫或脫水)且氧化物絕緣膜102中所含的一部分氧擴散到第一氧化物半導體膜103a、第二氧化物半導體膜103b、及氧化物絕緣膜102的一區域(其係與第一氧化物半導體膜103a之界面附近)。藉由此步驟,可減少第一氧化物半導體膜103a及第二氧化物半導體膜103b中所包括的氧缺陷;此外,氧擴散到在第一氧化物半導體膜103a附近的氧化物絕緣膜102之區域允許減少在氧化物絕緣膜102與第一氧化物半導體膜103a之間的界面的缺陷。結果,可形成其中氫濃度及氧缺陷已減少之具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b。In addition, hydrogen contained in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b (that is, dehydrogenation or dehydration occurs) is transmitted through the first heat treatment and is contained in the oxide insulating film 102. A part of oxygen diffuses into a region of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the oxide insulating film 102 (which is in the vicinity of the interface with the first oxide semiconductor film 103a). By this step, oxygen defects included in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be reduced; further, oxygen is diffused to the oxide insulating film 102 in the vicinity of the first oxide semiconductor film 103a. The region allows the reduction of the interface at the interface between the oxide insulating film 102 and the first oxide semiconductor film 103a. As a result, the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure in which the hydrogen concentration and the oxygen deficiency have been reduced can be formed.

藉由在以濺鍍法形成第一氧化物半導體膜103a和第二氧化物半導體膜103b時將濺鍍設備之處理室的洩漏率設定成1×10-10 Pa‧m3/s或更低,可在濺鍍法之形成期間抑制如鹼金屬或氫之雜質進入到第一氧化物半導體膜103a及第二氧化物半導體膜103b之中。此外,使用捕集真空泵(例如,低溫泵)作為抽空系統,可減少來自抽空系統之如鹼金屬或氫之雜質的逆流。The leak rate of the processing chamber of the sputtering apparatus is set to 1 × 10 -10 Pa ‧ m 3 /s or lower by forming the first oxide semiconductor film 103a and the second oxide semiconductor film 103b by sputtering. It is possible to suppress impurities such as an alkali metal or hydrogen from entering the first oxide semiconductor film 103a and the second oxide semiconductor film 103b during the formation of the sputtering method. In addition, the use of a trapping vacuum pump (e.g., a cryopump) as an evacuation system can reduce backflow of impurities such as alkali metals or hydrogen from the evacuation system.

此外,可在加熱引進濺鍍設備之處理室內之氣體(諸如氮氣、氧氣、或氬氣)的狀態中形成第一氧化物半導體膜103a及第二氧化物半導體膜103b。因此,可減少第一氧化物半導體膜103a及第二氧化物半導體膜103b中之氫含量。Further, the first oxide semiconductor film 103a and the second oxide semiconductor film 103b may be formed in a state of heating a gas (such as nitrogen, oxygen, or argon) introduced into the processing chamber of the sputtering apparatus. Therefore, the hydrogen content in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be reduced.

此外,在藉由濺鍍法形成第一氧化物半導體膜103a及第二氧化物半導體膜103b之前,履行預熱處理以移除濺鍍設備或靶材表面或內部所含之濕氣或氫。因此,可減少第一氧化物半導體膜103a及第二氧化物半導體膜103b中之氫含量。Further, before the first oxide semiconductor film 103a and the second oxide semiconductor film 103b are formed by a sputtering method, a pre-heat treatment is performed to remove moisture or hydrogen contained in the surface or inside the sputtering apparatus or the target. Therefore, the hydrogen content in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be reduced.

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b。若氫包含在氧化物半導體中,其之部分充當施子而產生電子作為載子。另外,氧化物半導體中之氧缺陷也充當施子而產生電子作為載子。因此,當在具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b中減少氫濃度及氧缺陷時,可減少氧化物半導體中之載子濃度,並可抑制後續將製造之電晶體的臨限電壓之負位移。Through the above steps, the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure can be formed. If hydrogen is contained in an oxide semiconductor, a part thereof acts as a donor to generate electrons as a carrier. In addition, oxygen defects in the oxide semiconductor also act as a donor to generate electrons as carriers. Therefore, when the hydrogen concentration and the oxygen deficiency are reduced in the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure, the carrier concentration in the oxide semiconductor can be reduced and can be suppressed The negative displacement of the threshold voltage of the transistor to be fabricated.

<六角形晶體結構><hexagonal crystal structure>

在此,將於下敘述六角形晶體結構。Here, the hexagonal crystal structure will be described below.

首先,將參照第3A及3B圖敘述c軸對準的第二晶體結構。針對c軸對準的第二晶體結構,第3A圖顯示從c軸方向看到的a-b面中之結構,且第3B圖顯示其中c軸方向為垂直方向之結構。First, the second crystal structure in which the c-axis is aligned will be described with reference to FIGS. 3A and 3B. For the second crystal structure in which the c-axis is aligned, FIG. 3A shows the structure in the a-b plane seen from the c-axis direction, and FIG. 3B shows the structure in which the c-axis direction is the vertical direction.

具有第二晶體結構之晶體的範例包括氧化鋅、氮化銦、及氮化鎵。此外,含氮的氧化物半導體,亦即,氧氮化物半導體,在某些情況中可以為具有c軸對準的第二晶體結構之膜。Examples of crystals having a second crystal structure include zinc oxide, indium nitride, and gallium nitride. Further, the nitrogen-containing oxide semiconductor, that is, the oxynitride semiconductor, may be a film having a second crystal structure with c-axis alignment in some cases.

具體來說,含有在高於或等於5×1019 /cm3、較佳高於或等於1×1020 /cm3、並低於20 at.%之濃度的氮之In-Ga-Zn-O膜變成具有c軸對準的第二晶體結構之膜,且具有在In-O晶面(含有銦及氧的晶面)與另一個In-O晶面(含有銦及氧的晶面)之間含有Ga及Zn之一層。Specifically, In-Ga-Zn-containing nitrogen at a concentration higher than or equal to 5 × 10 19 /cm 3 , preferably higher than or equal to 1 × 10 20 /cm 3 and lower than 20 at.% The O film becomes a film having a second crystal structure in which c-axis is aligned, and has an In-O crystal plane (a crystal plane containing indium and oxygen) and another In-O crystal plane (a crystal plane containing indium and oxygen) There is one layer of Ga and Zn between them.

接下來,將敘述c軸對準的六角形第一晶體結構。Next, a hexagonal first crystal structure in which c-axis is aligned will be described.

例如,含有在高於或等於1×1017/cm3並低於5×1019/cm3之濃度的氮之In-Ga-Zn-O膜變成具有c軸對準的六角形第一晶體結構之膜。具有c軸對準的六角形第一晶體結構之In-Ga-Zn-O膜在a-b面中具有In-O晶面(含有銦及氧的晶面)及在In-O晶面之間含有Ga及Zn的兩層。注意到針對含有Ga及Zn的兩層,對Ga及Zn的位置並無限制,只要Ga及Zn的至少一者包含在每一層之中。For example, an In-Ga-Zn-O film containing nitrogen at a concentration higher than or equal to 1 × 10 17 /cm 3 and lower than 5 × 10 19 /cm 3 becomes a hexagonal first crystal having c-axis alignment Membrane of structure. The In-Ga-Zn-O film having a hexagonal first crystal structure with c-axis alignment has an In-O crystal plane (crystal plane containing indium and oxygen) in the ab plane and is contained between the In-O crystal planes Two layers of Ga and Zn. Note that for the two layers containing Ga and Zn, the positions of Ga and Zn are not limited as long as at least one of Ga and Zn is included in each layer.

第二晶體結構及第一晶體結構兩者皆為六角形晶體結構,其中原子配置在a-b面中的六角形形狀中。此外,六角形第一晶體結構接觸第二晶體結構,且六角形第一晶體結構與第二晶體結構對準。Both the second crystal structure and the first crystal structure are hexagonal crystal structures in which atoms are arranged in a hexagonal shape in the a-b plane. Further, the hexagonal first crystal structure contacts the second crystal structure, and the hexagonal first crystal structure is aligned with the second crystal structure.

第4A至4C圖顯示其中c軸對準的六角形第二晶體結構在具有相同晶格常數之c軸對準的第一晶體結構上對準之方式。第4A圖顯示c軸對準的六角形第二晶體結構2000,且第4B圖顯示c軸對準的第一晶體結構2001。另外,第4C圖為顯示其中六角形第二晶體結構2000接觸第一晶體結構2001且六角形第一晶體結構2001與第二晶體結構2000對準之方式的示意圖。Figures 4A through 4C show the manner in which the c-axis aligned hexagonal second crystal structure is aligned on a first crystal structure with c-axis alignment of the same lattice constant. Figure 4A shows a c-axis aligned hexagonal second crystal structure 2000, and Figure 4B shows a c-axis aligned first crystal structure 2001. In addition, FIG. 4C is a schematic view showing a manner in which the hexagonal second crystal structure 2000 contacts the first crystal structure 2001 and the hexagonal first crystal structure 2001 is aligned with the second crystal structure 2000.

依照此方式,六角形第一晶體結構2001接觸第二晶體結構2000且六角形第一晶體結構2001與第二晶體結構2000對準。亦即,形成包括c軸對準的第二晶體結構2000(其具有高結晶度且輕易加以結晶)之層作為種晶層,並形成接觸種晶層之氧化物半導體膜,藉此包括在種晶層中之第二晶體結構2000促進氧化物半導體膜的結晶。In this manner, the hexagonal first crystal structure 2001 contacts the second crystal structure 2000 and the hexagonal first crystal structure 2001 is aligned with the second crystal structure 2000. That is, a layer including a second crystal structure 2000 having a c-axis alignment (which has high crystallinity and easily crystallized) is formed as a seed layer, and an oxide semiconductor film contacting the seed layer is formed, thereby including The second crystal structure 2000 in the crystal layer promotes crystallization of the oxide semiconductor film.

<種晶層><seed layer>

接下來,將敘述種晶層。種晶層包括c軸對準的第二晶體結構。尤其,使用相較於氧化物半導體膜具有高結晶度且輕易加以結晶的材料來形成種晶層。Next, the seed layer will be described. The seed layer includes a c-axis aligned second crystal structure. In particular, a seed layer is formed using a material which has high crystallinity and is easily crystallized as compared with the oxide semiconductor film.

將於下敘述可應用至種晶層之c軸對準的第二晶體結構。A second crystal structure that can be applied to the c-axis alignment of the seed layer will be described below.

作為具有c軸對準的第二晶體結構並可用為種晶層的化合物之範例,可提出氧化鋅、氮化銦、及氮化鎵。含有在高於或等於5×1019 /cm3(較佳高於或等於1×1020 /cm3並低於7 at.%)之濃度的氮之氧化物半導體可在某些情況中為包括c軸對準的第二晶體結構的膜。As an example of a compound having a second crystal structure aligned with c-axis and which can be used as a seed layer, zinc oxide, indium nitride, and gallium nitride can be proposed. A nitrogen oxide semiconductor containing a concentration higher than or equal to 5 × 10 19 /cm 3 (preferably higher than or equal to 1 × 10 20 /cm 3 and lower than 7 at. %) may be in some cases A film comprising a second crystal structure aligned with the c-axis.

在使用含氮之氧化物半導體作為種晶層的情況中,故意包含氮使氮濃度變成高於或等於5×1019 /cm3,較佳高於或等於1×1020 /cm3並低於7 at.%。故意含有在此範圍中之氮的氧化物半導體膜比故意不含有氮之氧化物半導體膜具有更小能隙,並因此載子較容易在其中流動。In the case where a nitrogen-containing oxide semiconductor is used as the seed layer, nitrogen is intentionally included to make the nitrogen concentration higher than or equal to 5 × 10 19 /cm 3 , preferably higher than or equal to 1 × 10 20 /cm 3 and low. At 7 at.%. The oxide semiconductor film deliberately containing nitrogen in this range has a smaller energy gap than the oxide semiconductor film intentionally containing no nitrogen, and thus the carrier is more likely to flow therein.

注意到可在c軸對準的第二晶體結構之觀察影像中觀察到亮點交替出現的衍射影像,該觀察影像係使用高角度環形暗場(HAADF)-STEM而得。It is noted that a diffraction image in which bright spots alternately appear can be observed in the observed image of the second crystal structure aligned with the c-axis, which is obtained using a high angle annular dark field (HAADF)-STEM.

第5A圖顯示藉由基於c軸對準的第二晶體結構之計算而得的HAADF-STEM觀察影像。Figure 5A shows a HAADF-STEM observation image obtained by calculation of a second crystal structure based on c-axis alignment.

第5B圖顯示使用僅含有氮之沈積氣體所形成的In-Ga-Zn-O膜之HAADF-STEM觀察影像。Fig. 5B shows a HAADF-STEM observation image of an In-Ga-Zn-O film formed using a deposition gas containing only nitrogen.

從第5A及5B圖中之各個HAADF-STEM觀察影像,可證實c軸對準的第二晶體結構具有兩週期層結構。From the HAADF-STEM images observed in Figures 5A and 5B, it was confirmed that the c-axis aligned second crystal structure has a two-period layer structure.

注意到藉由濺鍍法在石英基板上方形成含有氮之In-Ga-Zn-O膜至300 nm的厚度。在下列條件下履行沈積:使用含有在1:1:1[原子比]的In、Ga、及Zn之靶材;基板與靶材之間的距離為60 mm;使用DC電源;功率為0.5 kW;且壓力為0.4 Pa。另外,在沈積期間的基板溫度為400℃,且以40 sccm的流速僅引進氮作為濺鍍氣體到沈積室之中。It was noted that a nitrogen-containing In-Ga-Zn-O film was formed over the quartz substrate by sputtering to a thickness of 300 nm. Performing deposition under the following conditions: using a target containing In, Ga, and Zn at 1:1:1 [atomic ratio]; the distance between the substrate and the target is 60 mm; using a DC power supply; power is 0.5 kW And the pressure is 0.4 Pa. Further, the substrate temperature during deposition was 400 ° C, and only nitrogen was introduced as a sputtering gas into the deposition chamber at a flow rate of 40 sccm.

<氧化物半導體膜><Oxide semiconductor film>

接下來,將敘述氧化物半導體膜。氧化物半導體膜為非單晶且非全部在非晶態中。氧化物半導體膜包括至少c軸對準六角形第一晶體結構和從種晶層各向異性生長的晶體。由於氧化物半導體膜並非全部在非晶態中,抑制非晶部分(其之特性不穩定)的形成。Next, an oxide semiconductor film will be described. The oxide semiconductor film is non-single crystal and not all in an amorphous state. The oxide semiconductor film includes at least a c-axis aligned with the hexagonal first crystal structure and crystals anisotropically grown from the seed layer. Since the oxide semiconductor film is not all in an amorphous state, the formation of an amorphous portion (which is unstable in characteristics) is suppressed.

將敘述可應用到氧化物半導體膜之具有各向異性現象的c軸對準第一晶體結構。The c-axis having an anisotropy phenomenon applicable to the oxide semiconductor film will be described as being aligned with the first crystal structure.

作為六角形第一晶體結構之範例,可提出YbFe2O4結構、Yb2Fe3O7結構、及前述結構之變形結構。例如,為三成分金屬氧化物的In-Ga-Zn-O具有六角形第一晶體結構並可用於氧化物半導體膜。注意到可用為氧化物半導體膜之In-Ga-Zn-O膜可含有在高於或等於1×1017 /cm3並低於或等於5×1019/cm3的濃度之氮。As an example of the hexagonal first crystal structure, a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and a deformed structure of the foregoing structure can be proposed. For example, In-Ga-Zn-O which is a three-component metal oxide has a hexagonal first crystal structure and can be used for an oxide semiconductor film. It is noted that the In-Ga-Zn-O film which can be used as the oxide semiconductor film may contain nitrogen at a concentration higher than or equal to 1 × 10 17 /cm 3 and lower than or equal to 5 × 10 19 /cm 3 .

為三成分金屬氧化物的In-Ga-Zn-O之範例包括具有YbFe2O4結構之InGaZnO4及具有Yb2Fe3O7結構之In2Ga2ZnO7,且In-Ga-Zn-O可具有前述結構的變形結構之任一者,其揭露在下列文獻中:M. Nakamura,N. Kimizuka,and T. Mohri,“The Phase Relations in the In2O3-Ga2ZnO4-ZnO System at 1350℃”,J. Solid State Chem.,1991,Vol. 93,pp. 298-315。Examples of the In-Ga-Zn-O which is a three-component metal oxide include InGaZnO 4 having a YbFe 2 O 4 structure and In 2 Ga 2 ZnO 7 having a Yb 2 Fe 3 O 7 structure, and In-Ga-Zn- O may have any of the above-described structurally deformed structures, which are disclosed in the following documents: M. Nakamura, N. Kimizuka, and T. Mohri, "The Phase Relations in the In 2 O 3 -Ga 2 ZnO 4 -ZnO System at 1350 ° C", J. Solid State Chem ., 1991, Vol. 93, pp. 298-315.

此外,作為氧化物半導體膜,可使用諸如In-Sn-Ga-Zn-O膜的四成分金屬氧化物;諸如In-Ga-Zn-O膜、In-Sn-Zn-O膜、In-Al-Zn-O膜、Sn-Ga-Zn-O膜、Al-Ga-Zn-O膜、或Sn-Al-Zn-O膜的三成分金屬氧化物;諸如In-Zn-O膜、Sn-Zn-O膜、Al-Zn-O膜、或In-Ga-O膜的兩成分金屬氧化物;或之類。此外,矽可包含在上述氧化物半導體膜中。在此說明書中,例如,In-Ga-Zn-O膜意指含有銦(In)、鎵(Ga)、及鋅(Zn)之氧化物膜。Further, as the oxide semiconductor film, a four-component metal oxide such as an In-Sn-Ga-Zn-O film; such as an In-Ga-Zn-O film, an In-Sn-Zn-O film, In-Al, or the like can be used. a three-component metal oxide of a -Zn-O film, a Sn-Ga-Zn-O film, an Al-Ga-Zn-O film, or a Sn-Al-Zn-O film; such as an In-Zn-O film, Sn- a two-component metal oxide of a Zn-O film, an Al-Zn-O film, or an In-Ga-O film; or the like. Further, ruthenium may be contained in the above oxide semiconductor film. In this specification, for example, an In-Ga-Zn-O film means an oxide film containing indium (In), gallium (Ga), and zinc (Zn).

在該氧化物半導體膜中的晶體從種晶層各向異性生長。據此,具有異質結構之半導體膜的高度結晶區域可接觸絕緣表面,並可減少因懸掛鍵導致的界面狀態,所以可提供具有異質結構及合意的界面條件之半導體膜。The crystal in the oxide semiconductor film is anisotropically grown from the seed layer. According to this, the highly crystalline region of the semiconductor film having the heterostructure can contact the insulating surface, and the interface state due to the dangling bonds can be reduced, so that a semiconductor film having a heterostructure and a desired interface condition can be provided.

注意到在c軸對準的六角形第一晶體結構的觀察影像中可觀察到每三個點出現一個亮點的衍射圖案,其係用高角度環形暗場(HAADF)-STEM而得。It is noted that a diffraction pattern of a bright spot appears every three points in the observed image of the c-axis aligned hexagonal first crystal structure, which is obtained by high angle annular dark field (HAADF)-STEM.

第6A圖顯示藉由基於c軸對準的六角形第一晶體結構之計算而得的HAADF-STEM觀察影像。Figure 6A shows a HAADF-STEM observation image obtained by calculation of a hexagonal first crystal structure based on c-axis alignment.

第6B圖顯示In-Ga-Zn-O膜之HAADF-STEM觀察影像。Fig. 6B shows the HAADF-STEM observation image of the In-Ga-Zn-O film.

從第6A及6B圖中之各個HAADF-STEM觀察影像,可證實每三個點出現一個亮點且c軸對準的六角形第一晶體結構具有九週期層結構。From the HAADF-STEM observation images in Figs. 6A and 6B, it was confirmed that a hexagonal first crystal structure having a bright spot at every three points and having c-axis alignment has a nine-period layer structure.

注意到藉由濺鍍法在石英基板上方形成In-Ga-Zn-O膜至300 nm的厚度。在下列條件下履行沈積:使用含有在1:1:1[原子比]的In、Ga、及Zn之靶材;基板與靶材之間的距離為60 mm;使用DC電源;功率為0.5 kW;且壓力為0.4 Pa。另外,在沈積期間的基板溫度為400℃,且以40 sccm的流速僅引進氧作為濺鍍氣體到沈積室之中。It was noted that an In-Ga-Zn-O film was formed over the quartz substrate by sputtering to a thickness of 300 nm. Performing deposition under the following conditions: using a target containing In, Ga, and Zn at 1:1:1 [atomic ratio]; the distance between the substrate and the target is 60 mm; using a DC power supply; power is 0.5 kW And the pressure is 0.4 Pa. Further, the substrate temperature during the deposition was 400 ° C, and only oxygen was introduced as a sputtering gas into the deposition chamber at a flow rate of 40 sccm.

接下來,在具有第二晶體結構的氧化物半導體膜104b上方形成遮罩,並接著使用遮罩選擇性蝕刻具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b,以形成具有第一晶體結構之氧化物半導體膜105a及具有第二晶體結構之氧化物半導體膜105b。注意到具有第一晶體結構之氧化物半導體膜105a及具有第二晶體結構之氧化物半導體膜105b統稱為氧化物半導體堆疊105。之後,移除遮罩。Next, a mask is formed over the oxide semiconductor film 104b having the second crystal structure, and then the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film having the second crystal structure are selectively etched using the mask. 104b to form an oxide semiconductor film 105a having a first crystal structure and an oxide semiconductor film 105b having a second crystal structure. It is noted that the oxide semiconductor film 105a having the first crystal structure and the oxide semiconductor film 105b having the second crystal structure are collectively referred to as the oxide semiconductor stack 105. After that, remove the mask.

可適當地透過光刻程序或藉由噴墨法、印刷法、或之類形成用於蝕刻具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b之遮罩。另外,可適當地藉由濕蝕刻或乾蝕刻蝕刻具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b。A mask for etching the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure may be suitably formed by a photolithography process or by an inkjet method, a printing method, or the like. . In addition, the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure may be appropriately etched by wet etching or dry etching.

接下來,形成接觸氧化物半導體堆疊105的該對電極106。接著,在氧化物絕緣膜102、氧化物半導體堆疊105、及該對電極106上方形成閘極絕緣膜107。之後,在閘極絕緣膜107上方形成閘極電極108。可在閘極絕緣膜107及閘極電極108上方形成絕緣膜109(參見第2C圖)。Next, the pair of electrodes 106 contacting the oxide semiconductor stack 105 are formed. Next, a gate insulating film 107 is formed over the oxide insulating film 102, the oxide semiconductor stack 105, and the pair of electrodes 106. Thereafter, a gate electrode 108 is formed over the gate insulating film 107. An insulating film 109 can be formed over the gate insulating film 107 and the gate electrode 108 (see FIG. 2C).

該對電極106作用為源極電極及汲極電極。The pair of electrodes 106 function as a source electrode and a drain electrode.

可使用選自鋁、鉻、銅、鉭、鈦、鉬、及鎢之的金屬元素;含有任何這些金屬元素作為成分之合金;含有這些金屬元素的組合之合金;或之類來形成該對電極106。此外,可使用選自錳、鎂、鋯、及鈹的一或更多金屬元素。另外,該對電極106可具有單層結構或具有兩或更多層之堆疊結構。例如,可提出含矽之鋁膜的單層結構、其中鈦膜堆疊於鋁膜上方之兩層結構、其中鈦膜堆疊於氮化鈦上方之兩層結構、其中鎢膜堆疊於氮化鈦上方之兩層結構、其中鎢膜堆疊於氮化鉭上方之兩層結構、或其中鈦膜、鋁膜、及鈦膜以此順序堆疊之三層結構。或者,可使用含有鋁及選自鈦、鉭、鎢、鉬、鉻、釹、及鈧的一或更多個元素之膜、合金膜、或氮化物膜。在使用銅作為該對電極106的材料之情況中,可提供接觸氧化物半導體堆疊105的銅-鎂-鋁合金層,並可堆疊接觸該銅-鎂-鋁合金層之銅層。A metal element selected from the group consisting of aluminum, chromium, copper, ruthenium, titanium, molybdenum, and tungsten; an alloy containing any of these metal elements as a component; an alloy containing a combination of these metal elements; or the like to form the pair of electrodes 106. Further, one or more metal elements selected from the group consisting of manganese, magnesium, zirconium, and hafnium may be used. In addition, the pair of electrodes 106 may have a single layer structure or a stacked structure having two or more layers. For example, a single layer structure of a bismuth-containing aluminum film, a two-layer structure in which a titanium film is stacked over an aluminum film, a two-layer structure in which a titanium film is stacked over titanium nitride, in which a tungsten film is stacked over titanium nitride, may be proposed. The two-layer structure, a two-layer structure in which a tungsten film is stacked over tantalum nitride, or a three-layer structure in which a titanium film, an aluminum film, and a titanium film are stacked in this order. Alternatively, a film, an alloy film, or a nitride film containing aluminum and one or more elements selected from the group consisting of titanium, tantalum, tungsten, molybdenum, chromium, niobium, and tantalum may be used. In the case where copper is used as the material of the pair of electrodes 106, a copper-magnesium-aluminum alloy layer contacting the oxide semiconductor stack 105 may be provided, and a copper layer contacting the copper-magnesium-aluminum alloy layer may be stacked.

可使用諸如氧化銦錫、含氧化鎢的氧化銦、含氧化鎢的氧化銦鋅、含氧化鈦的氧化銦、含氧化鈦的氧化銦錫、氧化銦鋅、或添加氧化矽至其之氧化銦錫的透光導電材料來形成該對電極106。亦可採用使用上述透光導電材料及上述金屬元素所形成的堆疊層結構。For example, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium oxide added thereto The pair of electrodes 106 are formed of a light-transmissive conductive material of tin. A stacked layer structure formed using the above-described light-transmitting conductive material and the above metal elements may also be employed.

可藉由印刷法或噴墨法來形成該對電極106。或者,在藉由濺鍍法、CVD法、蒸發法、或之類形成導電膜之後,在導電膜上方形成遮罩並蝕刻導電膜,並藉此形成該對電極106。可藉由印刷法、噴墨法、或光刻法適當地形成在導電膜上方所形成之遮罩。The pair of electrodes 106 can be formed by a printing method or an inkjet method. Alternatively, after the conductive film is formed by a sputtering method, a CVD method, an evaporation method, or the like, a mask is formed over the conductive film and the conductive film is etched, and the pair of electrodes 106 are thereby formed. The mask formed over the conductive film can be suitably formed by a printing method, an inkjet method, or a photolithography method.

注意到可以下列方式形成氧化物半導體堆疊105及該對電極106。在具有第二晶體結構的氧化物半導體膜104b上方形成導電膜之後,使用多色調光罩來形成凹凸形狀的遮罩。使用該遮罩來蝕刻具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及導電膜。接著,藉由灰化分隔該凹凸形狀的遮罩。使用該分隔的遮罩來選擇性蝕刻導電膜。在此程序中,可減少光罩數量及光刻程序中之步驟數量。It is noted that the oxide semiconductor stack 105 and the pair of electrodes 106 can be formed in the following manner. After the conductive film is formed over the oxide semiconductor film 104b having the second crystal structure, a multi-tone mask is used to form a mask of the uneven shape. The mask is used to etch the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, and the conductive film. Next, the mask of the uneven shape is separated by ashing. The separated mask is used to selectively etch the conductive film. In this procedure, the number of masks and the number of steps in the lithography procedure can be reduced.

可使用氧化矽膜、氧氮化矽膜、氮化矽膜、氮氧化矽膜、氧化鋁膜、氧氮化鋁膜、及氧化鎵膜的任何者來形成具有單層結構或堆疊層結構的閘極絕緣膜107。較佳閘極絕緣膜107中接觸氧化物半導體堆疊105的一部分含有氧。更佳使用透過加熱從其釋放所含的氧之氧化物絕緣膜來形成閘極絕緣膜107,這與氧化物絕緣膜102類似。使用氧化矽膜可使氧擴散至氧化物半導體堆疊105;因此,可獲得合意之特性。Any of a ruthenium oxide film, a yttrium oxynitride film, a tantalum nitride film, a hafnium oxynitride film, an aluminum oxide film, an aluminum oxynitride film, and a gallium oxide film can be used to form a single layer structure or a stacked layer structure. Gate insulating film 107. A portion of the preferred gate insulating film 107 contacting the oxide semiconductor stack 105 contains oxygen. It is more preferable to form the gate insulating film 107 by using an oxide insulating film from which oxygen is contained by heating, which is similar to the oxide insulating film 102. Oxygen is diffused to the oxide semiconductor stack 105 using a hafnium oxide film; therefore, desirable characteristics can be obtained.

當使用高k材料膜(諸如矽酸鉿膜(HfSiO x )、添加氮至其之矽酸鉿膜(HfSi x O y N z )、添加氮至其之鋁酸鉿膜(HfAl x O y N z )、氧化鉿膜、或氧化釔膜)來形成閘極絕緣膜107時,可減少閘極漏電流。此外,可使用一種堆疊結構,其中堆疊有高k材料膜及之氧化矽、氧氮化矽、氮化矽、氮氧化矽、氧化鋁、氧氮化鋁、及氧化鎵之一或更多者。閘極絕緣膜107的厚度較佳大於或等於1 nm並小於或等於300 nm,更佳大於或等於5 nm並小於或等於50 nm。When a high-k material film (such as HfSiO x ), a niobium tantalate film (HfSi x O y N z ) to which nitrogen is added, and a hafnium aluminate film to which nitrogen is added (HfAl x O y N) When the gate insulating film 107 is formed by z ), a hafnium oxide film, or a hafnium oxide film), the gate leakage current can be reduced. In addition, a stacked structure in which a high-k material film and one or more of a ruthenium oxide, hafnium oxynitride, hafnium nitride, hafnium oxynitride, aluminum oxide, aluminum oxynitride, and gallium oxide are stacked may be used. . The thickness of the gate insulating film 107 is preferably greater than or equal to 1 nm and less than or equal to 300 nm, more preferably greater than or equal to 5 nm and less than or equal to 50 nm.

可藉由濺鍍法、CVD法、或之類形成閘極絕緣膜107。The gate insulating film 107 can be formed by a sputtering method, a CVD method, or the like.

在形成閘極絕緣膜107之前,可暴露氧化物半導體堆疊105的表面至諸如氧、臭氧、或二氮一氧化碳的氧化氣體之電漿以加以氧化,藉此減少氧缺陷。Before the formation of the gate insulating film 107, the surface of the oxide semiconductor stack 105 may be exposed to a plasma of an oxidizing gas such as oxygen, ozone, or dinitrogen monoxide to be oxidized, thereby reducing oxygen defects.

可使用選自鋁、鉻、銅、鉭、鈦、鉬、及鎢之金屬元素;含有任何這些金屬元素作為成分之合金;含有這些金屬元素的組合之合金;及之類來形成閘極電極108。此外,可使用選自錳、鎂、鋯、及鈹的一或更多金屬元素。另外,閘極電極108可具有單層結構或具有兩或更多層之堆疊結構。例如,可提出含矽之鋁膜的單層結構、其中鈦膜堆疊於鋁膜上方之兩層結構、其中鈦膜堆疊於氮化鈦上方之兩層結構、其中鎢膜堆疊於氮化鈦上方之兩層結構、其中鎢膜堆疊於氮化鉭上方之兩層結構、或其中鈦膜、鋁膜、及鈦膜以此順序堆疊之三層結構。或者,可使用含有鋁及選自鈦、鉭、鎢、鉬、鉻、釹、及鈧的一或更多個元素之膜、合金膜、或氮化物膜。A metal element selected from the group consisting of aluminum, chromium, copper, ruthenium, titanium, molybdenum, and tungsten; an alloy containing any of these metal elements as a component; an alloy containing a combination of these metal elements; and the like to form the gate electrode 108 . Further, one or more metal elements selected from the group consisting of manganese, magnesium, zirconium, and hafnium may be used. In addition, the gate electrode 108 may have a single layer structure or a stacked structure having two or more layers. For example, a single layer structure of a bismuth-containing aluminum film, a two-layer structure in which a titanium film is stacked over an aluminum film, a two-layer structure in which a titanium film is stacked over titanium nitride, in which a tungsten film is stacked over titanium nitride, may be proposed. The two-layer structure, a two-layer structure in which a tungsten film is stacked over tantalum nitride, or a three-layer structure in which a titanium film, an aluminum film, and a titanium film are stacked in this order. Alternatively, a film, an alloy film, or a nitride film containing aluminum and one or more elements selected from the group consisting of titanium, tantalum, tungsten, molybdenum, chromium, niobium, and tantalum may be used.

可使用諸如氧化銦錫、含氧化鎢的氧化銦、含氧化鎢的氧化銦鋅、含氧化鈦的氧化銦、含氧化鈦的氧化銦錫、氧化銦鋅、或添加氧化矽至其之氧化銦錫的透光導電材料來形成閘極電極108。亦可採用使用上述透光導電材料及上述金屬元素所形成的堆疊層結構。For example, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium oxide added thereto The light-transmissive conductive material of tin forms the gate electrode 108. A stacked layer structure formed using the above-described light-transmitting conductive material and the above metal elements may also be employed.

作為接觸閘極絕緣膜之材料層,含氮之In-Ga-Zn-O膜、含氮之In-Sn-O膜、含氮之In-Ga-O膜、含氮之In-Zn-O膜、含氮之Sn-O膜、含氮之In-O膜、或金屬氮化物的膜(諸如InN或ZnN)較佳設置在閘極電極108與閘極絕緣膜之間。這些膜各具有5 eV或更高的工作函數,較佳5.5 eV或更高;因此,電晶體的電氣特性之臨限電壓可為正。據此,可實現所謂的常關型切換元件。例如,在使用含氮之In-Ga-Zn-O膜的情況中,使用具有在至少高於氧化物半導體堆疊105的氮濃度之In-Ga-Zn-O膜;具體來說,使用具有7 at.%或更高之氮濃度的In-Ga-Zn-O膜。As a material layer for contacting the gate insulating film, a nitrogen-containing In-Ga-Zn-O film, a nitrogen-containing In-Sn-O film, a nitrogen-containing In-Ga-O film, and a nitrogen-containing In-Zn-O A film, a nitrogen-containing Sn-O film, a nitrogen-containing In-O film, or a metal nitride film such as InN or ZnN is preferably disposed between the gate electrode 108 and the gate insulating film. These films each have a working function of 5 eV or higher, preferably 5.5 eV or higher; therefore, the threshold voltage of the electrical characteristics of the transistor can be positive. According to this, a so-called normally-off type switching element can be realized. For example, in the case of using a nitrogen-containing In-Ga-Zn-O film, an In-Ga-Zn-O film having a nitrogen concentration at least higher than that of the oxide semiconductor stack 105 is used; specifically, the use has 7 An In-Ga-Zn-O film having a nitrogen concentration of at.% or higher.

可藉由印刷法或噴墨法形成閘極電極108。或者,在藉由濺鍍法、CVD法、蒸發法、或之類形成導電膜之後,在導電膜上方形成遮罩並蝕刻導電膜,並藉此形成閘極電極108。可藉由印刷法、噴墨法、或光刻法適當地形成在導電膜上方所形成之遮罩。The gate electrode 108 can be formed by a printing method or an inkjet method. Alternatively, after the conductive film is formed by a sputtering method, a CVD method, an evaporation method, or the like, a mask is formed over the conductive film and the conductive film is etched, and thereby the gate electrode 108 is formed. The mask formed over the conductive film can be suitably formed by a printing method, an inkjet method, or a photolithography method.

可以針對閘極絕緣膜107所列舉之任何絕緣膜適當地形成絕緣膜109。當藉由濺鍍法形成氮化矽膜作為絕緣膜109時,可防止濕氣及鹼金屬從外部進入,並因此可減少氧化物半導體堆疊105中所包括之雜質的數量。The insulating film 109 can be appropriately formed for any of the insulating films exemplified for the gate insulating film 107. When a tantalum nitride film is formed as the insulating film 109 by sputtering, moisture and an alkali metal can be prevented from entering from the outside, and thus the amount of impurities included in the oxide semiconductor stack 105 can be reduced.

注意到,在形成閘極絕緣膜107或形成絕緣膜109之後,可在含有很少氫及濕氣(以濕氣而言,例如,露點低於或等於-40℃,較佳低於或等於-60℃)的周圍環境(諸如氮周圍環境、氧周圍環境、或乾空氣周圍環境)中履行熱處理(溫度範圍:高於或等於150℃並低於或等於650℃,較佳高於或等於200℃並低於或等於500℃)。It is noted that after forming the gate insulating film 107 or forming the insulating film 109, it may contain little hydrogen and moisture (in terms of moisture, for example, the dew point is lower than or equal to -40 ° C, preferably lower than or equal to -60 ° C) of the surrounding environment (such as nitrogen surrounding environment, oxygen surrounding environment, or dry air surrounding environment) to perform heat treatment (temperature range: higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and less than or equal to 500 ° C).

透過上述步驟,可製造一種電晶體,其之通道包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel of which includes an oxide semiconductor stack including a crystal having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

在此實施例中所述的氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓-溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack described in this embodiment has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby a light irradiation or a transistor can be manufactured A transistor that performs a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

(實施例2)(Example 2)

在此實施例中,將參照第7A及7B圖及第8A至8C圖敘述與實施例1不同之電晶體的結構和其之製造方法。此實施例與實施例1的不同之處在於在氧化物絕緣膜與氧化物半導體堆疊之間設置一對電極。注意到第7B圖相應於沿著第7A圖(上視圖)中之點虛線C-D的剖面圖。在7A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜117、及絕緣膜119。第8A至8C圖為繪示第7B圖中所示之電晶體的製程之剖面圖。In this embodiment, the structure of the transistor different from that of Embodiment 1 and the method of manufacturing the same will be described with reference to FIGS. 7A and 7B and FIGS. 8A to 8C. This embodiment is different from Embodiment 1 in that a pair of electrodes are provided between the oxide insulating film and the oxide semiconductor stack. Note that Fig. 7B corresponds to a cross-sectional view taken along the dotted line C-D in the point 7A (upper view). In the FIG. 7A, the substrate 101, the oxide insulating film 102, the gate insulating film 117, and the insulating film 119 are not shown. 8A to 8C are cross-sectional views showing the process of the transistor shown in Fig. 7B.

第7B圖中所示之電晶體包括形成在基板101上方之氧化物絕緣膜102;形成在氧化物絕緣膜102上方並作用為源極電極和汲極電極的的一對電極116;覆蓋氧化物絕緣膜102及作用為源極電極和汲極電極的的該對電極116之氧化物半導體堆疊115;形成在氧化物絕緣膜102、該對電極116、及氧化物半導體堆疊115上方之閘極絕緣膜117;及重疊氧化物半導體堆疊115且以閘極絕緣膜117夾設其間之閘極電極118。此外,可設置覆蓋閘極絕緣膜117和閘極電極118的絕緣膜119。此外,可設置接觸在絕緣膜119之開口中的該對電極116之一對佈線120。The transistor shown in FIG. 7B includes an oxide insulating film 102 formed over the substrate 101; a pair of electrodes 116 formed over the oxide insulating film 102 and functioning as a source electrode and a drain electrode; An insulating film 102 and an oxide semiconductor stack 115 of the pair of electrodes 116 functioning as a source electrode and a drain electrode; a gate insulating formed over the oxide insulating film 102, the pair of electrodes 116, and the oxide semiconductor stack 115 The film 117; and the gate electrode 115 are overlapped and the gate electrode 118 therebetween is sandwiched by the gate insulating film 117. Further, an insulating film 119 covering the gate insulating film 117 and the gate electrode 118 may be provided. Further, one of the pair of electrodes 116 contacting the wiring 120 in the opening of the insulating film 119 may be disposed.

氧化物半導體堆疊115的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜115a,其接觸氧化物絕緣膜102和該對電極116,及具有第二晶體結構之氧化物半導體膜115b,其接觸具有第一晶體結構之氧化物半導體膜115a。The oxide semiconductor stack 115 is characterized by being stacked with an oxide semiconductor film 115a having a first crystal structure, which contacts the oxide insulating film 102 and the pair of electrodes 116, and an oxide semiconductor film 115b having a second crystal structure, which is in contact An oxide semiconductor film 115a having a first crystal structure.

此外,氧化物半導體堆疊115的特徵在於使用具有第二晶體結構之氧化物半導體膜115b作為種晶而在具有第一晶體結構之氧化物半導體膜115a中發生晶體生長。Further, the oxide semiconductor stack 115 is characterized in that crystal growth occurs in the oxide semiconductor film 115a having the first crystal structure using the oxide semiconductor film 115b having the second crystal structure as a seed crystal.

如同在實施例1中般,具有第二晶體結構之氧化物半導體膜及具有第一晶體結構之氧化物半導體膜包括三角及/或六角形晶體;因此,可從c軸方向觀察到六角形晶格影像。As in Embodiment 1, the oxide semiconductor film having the second crystal structure and the oxide semiconductor film having the first crystal structure include triangular and/or hexagonal crystals; therefore, hexagonal crystals can be observed from the c-axis direction Image.

注意到具有第一晶體結構之氧化物半導體膜115a及具有第二晶體結構之氧化物半導體膜115b的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體。It is noted that each of the oxide semiconductor film 115a having the first crystal structure and the oxide semiconductor film 115b having the second crystal structure is non-single crystal, not all in an amorphous state, and includes a c-axis aligned crystal.

接下來,將參照第8A至8C圖敘述製造第7B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 7B will be described with reference to Figs. 8A to 8C.

如第8A圖中所示,如同在實施例1中般,在基板101上方形成氧化物絕緣膜102。接著,在氧化物絕緣膜102上方形成該對電極116。然後,在該對電極116及氧化物絕緣膜102上方形成第一氧化物半導體膜113a及第二氧化物半導體膜113b。As shown in FIG. 8A, as in Embodiment 1, the oxide insulating film 102 is formed over the substrate 101. Next, the pair of electrodes 116 are formed over the oxide insulating film 102. Then, a first oxide semiconductor film 113a and a second oxide semiconductor film 113b are formed over the counter electrode 116 and the oxide insulating film 102.

可藉由使用和實施例1中所述的該對電極106之那些類似的材料及形成方法來適當地形成該對電極116。The pair of electrodes 116 can be suitably formed by using materials and forming methods similar to those of the pair of electrodes 106 described in Embodiment 1.

可藉由使用和實施例1中所述的第一氧化物半導體膜103a及第二氧化物半導體膜103b之那些類似的材料及形成方法來適當地形成第一氧化物半導體膜113a及第二氧化物半導體膜113b。The first oxide semiconductor film 113a and the second oxide can be appropriately formed by using materials and forming methods similar to those of the first oxide semiconductor film 103a and the second oxide semiconductor film 103b described in Embodiment 1. The semiconductor film 113b.

接下來,以和實施例1中的那些類似之方式,履行第一熱處理。第一熱處理允許晶體生長從第二氧化物半導體膜113b的表面朝第一氧化物半導體膜113a開始,使得第二氧化物半導體膜113b成為具有第二晶體結構的氧化物半導體膜114b。具有第二晶體結構的氧化物半導體膜114b包括c軸對準晶體。Next, the first heat treatment was performed in a manner similar to those in Example 1. The first heat treatment allows crystal growth to start from the surface of the second oxide semiconductor film 113b toward the first oxide semiconductor film 113a, so that the second oxide semiconductor film 113b becomes the oxide semiconductor film 114b having the second crystal structure. The oxide semiconductor film 114b having the second crystal structure includes a c-axis alignment crystal.

當繼續第一熱處理時,以具有第二晶體結構的氧化物半導體膜114b作為晶種,第一氧化物半導體膜113a的晶體生長從與具有第二晶體結構的氧化物半導體膜114b之界面朝氧化物絕緣膜102繼續進行,以形成具有第一晶體結構的氧化物半導體膜114a。具有第一晶體結構的氧化物半導體膜114a包括c軸對準晶體(見第8B圖)。When the first heat treatment is continued, the oxide semiconductor film 114b having the second crystal structure is seeded, and the crystal growth of the first oxide semiconductor film 113a is oxidized from the interface with the oxide semiconductor film 114b having the second crystal structure. The material insulating film 102 is continued to form an oxide semiconductor film 114a having a first crystal structure. The oxide semiconductor film 114a having the first crystal structure includes a c-axis alignment crystal (see Fig. 8B).

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜114a及具有第二晶體結構的氧化物半導體膜114b。Through the above steps, the oxide semiconductor film 114a having the first crystal structure and the oxide semiconductor film 114b having the second crystal structure can be formed.

接下來,在具有第二晶體結構的氧化物半導體膜114b上方形成遮罩,並接著使用該遮罩選擇性蝕刻具有第一晶體結構的氧化物半導體膜114a及具有第二晶體結構的氧化物半導體膜114b,以形成具有第一晶體結構之氧化物半導體膜115a及具有第二晶體結構之氧化物半導體膜115b。注意到第一晶體結構之氧化物半導體膜115a及具有第二晶體結構之氧化物半導體膜115b統稱為氧化物半導體堆疊115。之後,移除遮罩。Next, a mask is formed over the oxide semiconductor film 114b having the second crystal structure, and then the mask is used to selectively etch the oxide semiconductor film 114a having the first crystal structure and the oxide semiconductor having the second crystal structure. The film 114b is formed to form an oxide semiconductor film 115a having a first crystal structure and an oxide semiconductor film 115b having a second crystal structure. It is noted that the oxide semiconductor film 115a of the first crystal structure and the oxide semiconductor film 115b having the second crystal structure are collectively referred to as an oxide semiconductor stack 115. After that, remove the mask.

接下來,在氧化物絕緣膜102、該對電極116、及氧化物半導體堆疊115上方形成閘極絕緣膜117。接著,在閘極絕緣膜117上方形成閘極電極118。Next, a gate insulating film 117 is formed over the oxide insulating film 102, the pair of electrodes 116, and the oxide semiconductor stack 115. Next, a gate electrode 118 is formed over the gate insulating film 117.

之後,在閘極絕緣膜117及閘極電極118上方形成絕緣膜119。接著,在絕緣膜119上方形成遮罩後,部分蝕刻閘極絕緣膜117及絕緣膜119以形成開口。接著,可形成經由該些開口連接到該對電極116之佈線120(見第8C圖)。Thereafter, an insulating film 119 is formed over the gate insulating film 117 and the gate electrode 118. Next, after a mask is formed over the insulating film 119, the gate insulating film 117 and the insulating film 119 are partially etched to form an opening. Next, wirings 120 connected to the pair of electrodes 116 via the openings may be formed (see FIG. 8C).

可藉由使用和實施例1中所述的閘極絕緣膜107之那些類似的材料及形成方法來適當地形成閘極絕緣膜117。The gate insulating film 117 can be suitably formed by using a material and a forming method similar to those of the gate insulating film 107 described in Embodiment 1.

可藉由使用和實施例1中所述的閘極電極108之那些類似的材料及形成方法來適當地形成閘極電極118。The gate electrode 118 can be suitably formed by using materials and forming methods similar to those of the gate electrode 108 described in Embodiment 1.

可藉由使用和實施例1中所述的絕緣膜109之那些類似的材料及形成方法來適當地形成絕緣膜119。The insulating film 119 can be suitably formed by using a material similar to those of the insulating film 109 described in Embodiment 1 and a forming method.

可藉由使用和該對電極116之那些類似的材料及形成方法來適當地形成佈線120。The wiring 120 can be appropriately formed by using materials and forming methods similar to those of the pair of electrodes 116.

透過上述步驟,可製造一種電晶體,其之通道區域包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel region of which includes an oxide semiconductor stack including a crystal having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

在此實施例中所述的氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓-溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack described in this embodiment has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby a light irradiation or a transistor can be manufactured A transistor that performs a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

注意到此實施例可和任何其他實施例適當地結合。It is noted that this embodiment can be combined as appropriate with any of the other embodiments.

(實施例3)(Example 3)

在此實施例中,將參照第9A及9B圖及第10A至10E圖敘述其中使用氧化物半導體膜作為通道之電晶體和其之製造方法。第9B圖為繪示為半導體裝置之結構的一個實施例之電晶體的結構之剖面圖,且相應於沿著第9A圖(上視圖)中之點虛線A-B的剖面圖。注意到在9A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜107、及絕緣膜109。第10A至10E圖為繪示第9B圖中所示之電晶體的製程之剖面圖。In this embodiment, a transistor in which an oxide semiconductor film is used as a channel and a method of manufacturing the same will be described with reference to FIGS. 9A and 9B and FIGS. 10A to 10E. Fig. 9B is a cross-sectional view showing the structure of a transistor of one embodiment of the structure of the semiconductor device, and corresponds to a cross-sectional view taken along a dotted line A-B in the drawing of Fig. 9A (upper view). Note that in the FIG. 9A, the substrate 101, the oxide insulating film 102, the gate insulating film 107, and the insulating film 109 are not shown. 10A to 10E are cross-sectional views showing the process of the transistor shown in Fig. 9B.

第9B圖中所示之電晶體包括形成在基板101上方之氧化物絕緣膜102;形成在氧化物絕緣膜102上方的氧化物半導體堆疊105、形成在氧化物半導體堆疊105上方並作用為源極電極和汲極電極的一對電極106;形成在氧化物絕緣膜102、氧化物半導體堆疊105、及該對電極106上方之閘極絕緣膜107;及重疊氧化物半導體堆疊105並以閘極絕緣膜107夾設於其間之閘極電極108。此外,可設置覆蓋閘極絕緣膜107和閘極電極108的絕緣膜109。The transistor shown in FIG. 9B includes an oxide insulating film 102 formed over the substrate 101; an oxide semiconductor stack 105 formed over the oxide insulating film 102, formed over the oxide semiconductor stack 105, and functioning as a source a pair of electrodes 106 of an electrode and a drain electrode; a gate insulating film 107 formed over the oxide insulating film 102, the oxide semiconductor stack 105, and the pair of electrodes 106; and an overlapping oxide semiconductor stack 105 insulated by a gate The film 107 is interposed between the gate electrodes 108 therebetween. Further, an insulating film 109 covering the gate insulating film 107 and the gate electrode 108 may be provided.

氧化物半導體堆疊105的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜105a,其接觸氧化物絕緣膜102;具有第二晶體結構之氧化物半導體膜105b,其接觸具有第一晶體結構之氧化物半導體膜105a;及具有第三晶體結構之氧化物半導體膜105c,其接觸具有第二晶體結構之氧化物半導體膜105b及閘極絕緣膜107。The oxide semiconductor stack 105 is characterized by being stacked with an oxide semiconductor film 105a having a first crystal structure, which contacts the oxide insulating film 102, and an oxide semiconductor film 105b having a second crystal structure, the contact having the first crystal structure The oxide semiconductor film 105a; and the oxide semiconductor film 105c having the third crystal structure are in contact with the oxide semiconductor film 105b and the gate insulating film 107 having the second crystal structure.

亦即,具有第一晶體結構之氧化物半導體膜105a及具有第三晶體結構之氧化物半導體膜105c設置在具有第二晶體結構之氧化物半導體膜105b的下方及上方。That is, the oxide semiconductor film 105a having the first crystal structure and the oxide semiconductor film 105c having the third crystal structure are disposed below and above the oxide semiconductor film 105b having the second crystal structure.

此外,氧化物半導體堆疊105的特徵在於使用具有第二晶體結構之氧化物半導體膜105b作為種晶而在具有第一晶體結構之氧化物半導體膜105a及具有第三晶體結構之氧化物半導體膜105c中發生晶體生長。Further, the oxide semiconductor stack 105 is characterized in that an oxide semiconductor film 105a having a second crystal structure is used as a seed crystal, and an oxide semiconductor film 105a having a first crystal structure and an oxide semiconductor film 105c having a third crystal structure are used. Crystal growth occurs in the middle.

具有第一晶體結構之氧化物半導體膜105a及具有第三晶體結構之氧化物半導體膜105c的晶體結構各為三角及/或六角形晶體結構及YbFe2O4結構、Yb2Fe3O7結構、和非纖鋅礦結構的任一者。注意到非纖礦結構為並非三角及/或六角形纖鋅礦類型的晶體結構。The crystal structure of the oxide semiconductor film 105a having the first crystal structure and the oxide semiconductor film 105c having the third crystal structure are each a triangular and/or hexagonal crystal structure and a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure. And any of the non-wurtzite structures. It is noted that the non-fibrous structure is a crystal structure that is not a triangular and/or hexagonal wurtzite type.

此外,具有第二晶體結構之氧化物半導體膜105b的晶體結構為纖鋅礦結構,其為三角及/或六角形晶體結構之一。Further, the crystal structure of the oxide semiconductor film 105b having the second crystal structure is a wurtzite structure which is one of a triangular and/or hexagonal crystal structure.

換言之,由於具有第一晶體結構之氧化物半導體膜、具有第二晶體結構之氧化物半導體膜、及具有第三晶體結構之氧化物半導體膜的全部都包括三角及/或六角形晶體,可從c軸方向觀察到六角形晶格影像。In other words, since the oxide semiconductor film having the first crystal structure, the oxide semiconductor film having the second crystal structure, and the oxide semiconductor film having the third crystal structure all include triangular and/or hexagonal crystals, A hexagonal lattice image is observed in the c-axis direction.

注意到具有第一晶體結構之氧化物半導體膜105a、具有第二晶體結構之氧化物半導體膜105b、及具有第三晶體結構之氧化物半導體膜105c的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體區域。亦即,每一個氧化物半導體膜具有非晶區域及c軸對準晶體區域。It is noted that each of the oxide semiconductor film 105a having the first crystal structure, the oxide semiconductor film 105b having the second crystal structure, and the oxide semiconductor film 105c having the third crystal structure is non-single crystal, not all in the non- In the crystalline state, and including the c-axis aligned with the crystal region. That is, each of the oxide semiconductor films has an amorphous region and a c-axis aligned crystal region.

接下來,將參照第10A至10E圖敘述製造第9B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 9B will be described with reference to Figs. 10A to 10E.

如第10A圖中所示,以和實施例1中的那些類似之方式,在於基板101上方形成氧化物絕緣膜102之後,在氧化物絕緣膜102上方形成第一氧化物半導體膜103a,並在第一氧化物半導體膜103a上方形成第二氧化物半導體膜103b。As shown in FIG. 10A, in a manner similar to those in Embodiment 1, after the oxide insulating film 102 is formed over the substrate 101, the first oxide semiconductor film 103a is formed over the oxide insulating film 102, and The second oxide semiconductor film 103b is formed over the first oxide semiconductor film 103a.

使用氧化物絕緣膜(自其透過加熱釋放出一部分所含的氧)來形成氧化物絕緣膜102。自其透過加熱釋放出一部分所含的氧之氧化物絕緣膜較佳為含有量超過其之化學劑量組成中的氧量之氧的氧化物絕緣膜。藉由自其透過加熱釋放出一部分所含的氧之氧化物絕緣膜,可透過加熱將氧擴散到第一氧化物半導體膜103a及第二氧化物半導體膜103b之中。氧化物絕緣膜102的典型範例包括氧化矽、氧氮化矽、氮氧化矽、氧化鋁、氧氮化鋁、氧化鎵、氧化鉿、及氧化釔。The oxide insulating film 102 is formed using an oxide insulating film from which a part of the contained oxygen is released by heating. The oxide insulating film which releases a part of oxygen contained therein by heating is preferably an oxide insulating film containing oxygen in an amount exceeding the amount of oxygen in the chemical composition. Oxygen is diffused into the first oxide semiconductor film 103a and the second oxide semiconductor film 103b by heating by releasing a part of the oxide oxide film contained therein by heat. Typical examples of the oxide insulating film 102 include cerium oxide, cerium oxynitride, cerium oxynitride, aluminum oxide, aluminum oxynitride, gallium oxide, cerium oxide, and cerium oxide.

氧化物絕緣膜102的厚度大於或等於50 nm,較佳大於或等於200 nm並小於或等於500 nm。藉由使用厚的氧化物絕緣膜102,可增加從氧化物絕緣膜102釋放出之氧的量,並且可減少在氧化物絕緣膜102與後續形成之氧化物半導體膜之間的界面之缺陷。The thickness of the oxide insulating film 102 is greater than or equal to 50 nm, preferably greater than or equal to 200 nm and less than or equal to 500 nm. By using the thick oxide insulating film 102, the amount of oxygen released from the oxide insulating film 102 can be increased, and the defect of the interface between the oxide insulating film 102 and the subsequently formed oxide semiconductor film can be reduced.

藉由濺鍍法、CVD法、或之類來形成氧化物絕緣膜102。較佳地,藉由濺鍍法輕易形成藉由熱處理從其釋放一部分的所含氧之氧化物絕緣膜。The oxide insulating film 102 is formed by a sputtering method, a CVD method, or the like. Preferably, a portion of the oxygen-containing oxide insulating film is released therefrom by heat treatment by sputtering.

當藉由濺鍍法形成藉由熱處理從其釋放一部分的所含氧之氧化物絕緣膜時,在沈積氣體中之氧的量較佳很大,且可使用氧、氧及稀有氣體之混合氣體、或之類。典型上,沈積氣體中的氧濃度較佳高於或等於6%並低於或等於100%。When a portion of the oxygen-containing oxide insulating film is released therefrom by heat treatment by sputtering, the amount of oxygen in the deposited gas is preferably large, and a mixed gas of oxygen, oxygen, and a rare gas can be used. , or the like. Typically, the concentration of oxygen in the deposition gas is preferably greater than or equal to 6% and less than or equal to 100%.

使用透過加熱可包括三角及/或六角形晶體並具有非纖鋅礦結構、YbFe2O4結構、Yb2Fe3O7結構、及前述結構的變形結構的任一晶體結構的氧化物絕緣膜來形成第一氧化物半導體膜103a。An oxide insulating film using any crystal structure which can include a triangular and/or hexagonal crystal and has a non-wurtzite structure, a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and a deformed structure of the foregoing structure by heating The first oxide semiconductor film 103a is formed.

作為具有第一晶體結構的氧化物半導體膜的一個範例,為三成分金屬氧化物之In-Ga-Zn-O膜包括三角及/或六角形非纖鋅礦晶體。另外,為三成分金屬氧化物之In-Ga-Zn-O膜的範例包括具有YbFe2O4結構之InGaZnO4及具有Yb2Fe3O7結構之In2Ga2ZnO7,且In-Ga-Zn-O膜可具有前述結構的變形結構之任一者(M. Nakamura,N. Kimizuka,and T. Mohri,“The Phase Relations in the In2O3-Ga2ZnO4-ZnO System at 1350℃”,J. Solid State Chem.,1991,Vol. 93,pp. 298-315)。As an example of the oxide semiconductor film having the first crystal structure, the In-Ga-Zn-O film which is a three-component metal oxide includes triangular and/or hexagonal non-wurtzite crystals. Further, examples of the In-Ga-Zn-O film which is a three-component metal oxide include InGaZnO 4 having a YbFe 2 O 4 structure and In 2 Ga 2 ZnO 7 having a Yb 2 Fe 3 O 7 structure, and In-Ga The -Zn-O film may have any of the above-described structurally deformed structures (M. Nakamura, N. Kimizuka, and T. Mohri, "The Phase Relations in the In 2 O 3 -Ga 2 ZnO 4 -ZnO System at 1350 °C", J. Solid State Chem ., 1991, Vol. 93, pp. 298-315).

作為第一氧化物半導體膜103a,可使用諸如In-Sn-Ga-Zn-O膜的四成分金屬氧化物;諸如In-Ga-Zn-O膜、In-Sn-Zn-O膜、In-Al-Zn-O膜、Sn-Ga-Zn-O膜、Al-Ga-Zn-O膜、或Sn-Al-Zn-O膜的三成分金屬氧化物;諸如In-Zn-O膜、Sn-Zn-O膜、Al-Zn-O膜、或In-Ga-O膜的兩成分金屬氧化物;或之類。此外,SiO2可包含在上述氧化物半導體中。在此說明書中,例如,In-Ga-Zn-O膜意指含有銦(In)、鎵(Ga)、及鋅(Zn)之氧化物膜。注意到可使用含有在高於或等於1×1017 /cm3並低於或等於5×1019 /cm3的濃度之氮的上述金屬氧化物作為第一氧化物半導體膜103a。As the first oxide semiconductor film 103a, a four-component metal oxide such as an In-Sn-Ga-Zn-O film can be used; such as an In-Ga-Zn-O film, an In-Sn-Zn-O film, In- Three-component metal oxide of Al-Zn-O film, Sn-Ga-Zn-O film, Al-Ga-Zn-O film, or Sn-Al-Zn-O film; such as In-Zn-O film, Sn a two-component metal oxide of a -Zn-O film, an Al-Zn-O film, or an In-Ga-O film; or the like. Further, SiO 2 may be included in the above oxide semiconductor. In this specification, for example, an In-Ga-Zn-O film means an oxide film containing indium (In), gallium (Ga), and zinc (Zn). Note that the above-described metal oxide containing nitrogen at a concentration higher than or equal to 1 × 10 17 /cm 3 and lower than or equal to 5 × 10 19 /cm 3 can be used as the first oxide semiconductor film 103a.

注意到可形成第一氧化物半導體膜103a的金屬氧化物之能隙為2 eV或更多;較佳2.5 eV或更多;更佳3 eV或更多。依照此方式,可藉由使用具有寬能隙之氧化物半導體來減少電晶體之關閉狀態電流。Note that the metal oxide which can form the first oxide semiconductor film 103a has an energy gap of 2 eV or more; preferably 2.5 eV or more; more preferably 3 eV or more. In this manner, the off-state current of the transistor can be reduced by using an oxide semiconductor having a wide energy gap.

使用可透過加熱具有纖鋅礦晶體結構的氧化物半導體膜來形成第二氧化物半導體膜103b。透過熱處理輕易結晶可具有纖鋅礦晶體結構的氧化物半導體膜,並且相較於可具有三角及/或六角形晶體結構之氧化物半導體膜具有高結晶度。The second oxide semiconductor film 103b is formed using an oxide semiconductor film having a wurtzite crystal structure permeable to heating. The oxide semiconductor film which may have a wurtzite crystal structure is easily crystallized by heat treatment, and has high crystallinity as compared with an oxide semiconductor film which may have a triangular and/or hexagonal crystal structure.

可使用氧化鋅、氮氧化物半導體、或之類來形成第二氧化物半導體膜103b。可藉由在高於或等於5×1019/cm3,較佳高於或等於1×1020/cm3並低於7 at.%的濃度添加氮至針對第一氧化物半導體膜103a所列之任何金屬氧化物來獲得氮氧化物半導體。The second oxide semiconductor film 103b can be formed using zinc oxide, an oxynitride semiconductor, or the like. Nitrogen may be added to the first oxide semiconductor film 103a at a concentration higher than or equal to 5 × 10 19 /cm 3 , preferably higher than or equal to 1 × 10 20 /cm 3 and lower than 7 at. %. Any metal oxide is listed to obtain an oxynitride semiconductor.

使用第二氧化物半導體膜103b作為第一氧化物半導體膜103a及後續將形成之第三氧化物半導體膜103c的晶體生長之晶種。因此,第二氧化物半導體膜103b可具有能夠允許晶體生長的厚度,典型大於或等於一原子層的厚度並小於或等於10 nm,較佳大於或等於2 nm並小於或等於5 nm。當第二氧化物半導體膜103b為薄時,可改善沈積處理及熱處理中的通量。The second oxide semiconductor film 103b is used as a seed crystal for crystal growth of the first oxide semiconductor film 103a and the third oxide semiconductor film 103c to be formed later. Therefore, the second oxide semiconductor film 103b may have a thickness capable of allowing crystal growth, typically greater than or equal to the thickness of one atomic layer and less than or equal to 10 nm, preferably greater than or equal to 2 nm and less than or equal to 5 nm. When the second oxide semiconductor film 103b is thin, the flux in the deposition process and the heat treatment can be improved.

第一氧化物半導體膜103a及第二氧化物半導體膜103b各可藉由濺鍍法、塗覆法、印刷法、脈衝雷射蒸發法、或之類加以形成。當藉由濺鍍法形成第一氧化物半導體膜103a及第二氧化物半導體膜103b時,使用AC濺鍍設備、DC濺鍍設備、及RF濺鍍設備之一。Each of the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be formed by a sputtering method, a coating method, a printing method, a pulsed laser evaporation method, or the like. When the first oxide semiconductor film 103a and the second oxide semiconductor film 103b are formed by sputtering, one of an AC sputtering device, a DC sputtering device, and an RF sputtering device is used.

當藉由使用氮氧化物半導體的濺鍍法來形成第二氧化物半導體膜103b時,可藉由改變引進濺鍍設備之氣體的種類,亦即,藉由在形成第一氧化物半導體膜103a之後引進氮,來沈積氮氧化物半導體。換言之,可接續地形成第一氧化物半導體膜103a及第二氧化物半導體膜103b,此具有高生產力。When the second oxide semiconductor film 103b is formed by a sputtering method using an oxynitride semiconductor, the kind of the gas introduced into the sputtering apparatus can be changed, that is, by forming the first oxide semiconductor film 103a. Nitrogen is then introduced to deposit the NOx semiconductor. In other words, the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be formed successively, which is highly productive.

接下來,以和實施例1中的那些類似之方式,履行第一熱處理。Next, the first heat treatment was performed in a manner similar to those in Example 1.

第一熱處理允許晶體生長從第二氧化物半導體膜103b的表面朝第一氧化物半導體膜103a開始。由於輕易結晶第二氧化物半導體膜103b,結晶整個第二氧化物半導體膜103b成為具有第二晶體結構(其為纖鋅礦晶體結構)的氧化物半導體膜104b。此外,由於晶體生長從第二氧化物半導體膜103b的表面朝第一氧化物半導體膜103a進行,形成c軸對準之晶體區域。亦即,具有第二晶體結構的氧化物半導體膜104b包括在a-b面的一上平面中形成六角形形狀之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。The first heat treatment allows crystal growth to start from the surface of the second oxide semiconductor film 103b toward the first oxide semiconductor film 103a. Since the second oxide semiconductor film 103b is easily crystallized, the entire second oxide semiconductor film 103b is crystallized into the oxide semiconductor film 104b having the second crystal structure which is a wurtzite crystal structure. Further, since crystal growth proceeds from the surface of the second oxide semiconductor film 103b toward the first oxide semiconductor film 103a, a crystal region in which c-axis is aligned is formed. That is, the oxide semiconductor film 104b having the second crystal structure includes a key which forms a hexagonal shape in an upper plane of the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment.

當繼續第一熱處理時,以具有第二晶體結構的氧化物半導體膜104b作為晶種,第一氧化物半導體膜103a的晶體生長從與具有第二晶體結構的氧化物半導體膜104b之界面朝氧化物絕緣膜102繼續進行。具有第二晶體結構的氧化物半導體膜104b在c軸方向中對準,藉由使用具有第二晶體結構的氧化物半導體膜104b作為晶種,第一氧化物半導體膜103a中的晶體可生長而變成與具有第二晶體結構的氧化物半導體膜104b的晶軸大致上對準。亦即,第一氧化物半導體膜103a中的晶體可在對準c軸的同時生長。亦即,具有第一晶體結構的氧化物半導體膜104a包括在a-b面的一上平面中形成六角形形狀之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。透過上述步驟,可形成具有c軸對準之第一晶體結構的氧化物半導體膜104a(見第10B圖)。When the first heat treatment is continued, the oxide semiconductor film 104b having the second crystal structure is seeded, and the crystal growth of the first oxide semiconductor film 103a is oxidized from the interface with the oxide semiconductor film 104b having the second crystal structure. The insulating film 102 continues. The oxide semiconductor film 104b having the second crystal structure is aligned in the c-axis direction, and the crystal in the first oxide semiconductor film 103a can be grown by using the oxide semiconductor film 104b having the second crystal structure as a seed crystal. It becomes substantially aligned with the crystal axis of the oxide semiconductor film 104b having the second crystal structure. That is, the crystals in the first oxide semiconductor film 103a can be grown while being aligned with the c-axis. That is, the oxide semiconductor film 104a having the first crystal structure includes a key which forms a hexagonal shape in an upper plane of the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment. Through the above steps, the oxide semiconductor film 104a having the c-axis aligned first crystal structure can be formed (see FIG. 10B).

在透過第一熱處理晶體生長從第二氧化物半導體膜103b之表面垂直進行的情況中,具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b的c軸與該表面大致上垂直。In the case where the crystal growth by the first heat treatment is performed vertically from the surface of the second oxide semiconductor film 103b, the c-axis of the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure The surface is substantially vertical.

另外,透過第一熱處理,釋放出在第一氧化物半導體膜103a及第二氧化物半導體膜103b中所含的氫(亦即,發生脫氫或脫水)且氧化物絕緣膜102中所含的一部分氧擴散到第一氧化物半導體膜103a、第二氧化物半導體膜103b、及氧化物絕緣膜102的一區域(其係與第一氧化物半導體膜103a之界面附近)。藉由此步驟,可減少第一氧化物半導體膜103a及第二氧化物半導體膜103b中所包括的氧缺陷;此外,氧擴散到在第一氧化物半導體膜103a附近的氧化物絕緣膜102之區域允許減少在氧化物絕緣膜102與第一氧化物半導體膜103a之間的界面的缺陷。結果,可形成其中氫濃度及氧缺陷已減少之具有第一晶體結構的氧化物半導體膜104a及具有第二晶體結構的氧化物半導體膜104b。In addition, hydrogen contained in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b (that is, dehydrogenation or dehydration occurs) is transmitted through the first heat treatment and is contained in the oxide insulating film 102. A part of oxygen diffuses into a region of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the oxide insulating film 102 (which is in the vicinity of the interface with the first oxide semiconductor film 103a). By this step, oxygen defects included in the first oxide semiconductor film 103a and the second oxide semiconductor film 103b can be reduced; further, oxygen is diffused to the oxide insulating film 102 in the vicinity of the first oxide semiconductor film 103a. The region allows the reduction of the interface at the interface between the oxide insulating film 102 and the first oxide semiconductor film 103a. As a result, the oxide semiconductor film 104a having the first crystal structure and the oxide semiconductor film 104b having the second crystal structure in which the hydrogen concentration and the oxygen deficiency have been reduced can be formed.

接下來,如第10C圖中所示,在具有第二晶體結構的氧化物半導體膜104b上方形成第三氧化物半導體膜103c。可藉由使用和第一氧化物半導體膜103a的那些類似之材料及形成方法來形成第三氧化物半導體膜103c。可藉由從業員根據欲製造的裝置適當地判定第三氧化物半導體膜103c的厚度。例如,第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c的總厚度可大於或等於10 nm並小於或等於200 nm。Next, as shown in FIG. 10C, a third oxide semiconductor film 103c is formed over the oxide semiconductor film 104b having the second crystal structure. The third oxide semiconductor film 103c can be formed by using a material similar to those of the first oxide semiconductor film 103a and a forming method. The thickness of the third oxide semiconductor film 103c can be appropriately determined by the practitioner according to the device to be manufactured. For example, the total thickness of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor film 103c may be greater than or equal to 10 nm and less than or equal to 200 nm.

藉由在以濺鍍法形成第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之一或更多者時將濺鍍設備之處理室的洩漏率設定成1×10-10 Pa‧m3/s或更低,可在濺鍍法之形成期間抑制如鹼金屬或氫之雜質進入到第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之中。此外,使用捕集真空泵(例如,低溫泵)作為抽空系統,可減少來自抽空系統之如鹼金屬或氫之雜質的逆流。The leak rate of the processing chamber of the sputtering apparatus is set by forming one or more of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor film 103c by sputtering. When it is 1 × 10 -10 Pa ‧ m 3 /s or lower, impurities such as alkali metal or hydrogen can be prevented from entering the first oxide semiconductor film 103a and the second oxide semiconductor film 103b during the formation of the sputtering method, And among the third oxide semiconductor film 103c. In addition, the use of a trapping vacuum pump (e.g., a cryopump) as an evacuation system can reduce backflow of impurities such as alkali metals or hydrogen from the evacuation system.

此外,可在加熱引進濺鍍設備之處理室內之氣體(諸如氮氣、氧氣、或氬氣)的狀態中形成第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之一或更多者。因此,可減少第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之一或更多者中之氫含量。Further, the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor may be formed in a state of heating a gas (such as nitrogen, oxygen, or argon) introduced into the processing chamber of the sputtering apparatus. One or more of the films 103c. Therefore, the hydrogen content in one or more of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor film 103c can be reduced.

此外,在藉由濺鍍法形成第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之一或更多者之前,履行預熱處理以移除濺鍍設備或靶材表面或內部所含之濕氣或氫。因此,可減少第一氧化物半導體膜103a、第二氧化物半導體膜103b、及第三氧化物半導體膜103c之一或更多者中之氫含量。Further, before the one or more of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor film 103c are formed by sputtering, the pre-heat treatment is performed to remove the sputtering. Moisture or hydrogen contained on the surface or inside of the equipment or target. Therefore, the hydrogen content in one or more of the first oxide semiconductor film 103a, the second oxide semiconductor film 103b, and the third oxide semiconductor film 103c can be reduced.

接下來,履行第二熱處理。第二熱處理的溫度高於或等於150℃並低於或等於650℃,較佳高於或等於200℃並低於或等於500℃。另外,第二熱處理的加熱時間長於或等於一分鐘並短於或等於24小時。Next, the second heat treatment is performed. The temperature of the second heat treatment is higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and lower than or equal to 500 ° C. Further, the heating time of the second heat treatment is longer than or equal to one minute and shorter than or equal to 24 hours.

可以和第一熱處理的那個類似之周圍環境中履行第二熱處理。另外,可針對第二熱處理適當使用和第一熱處理的那個類似之加熱設備。The second heat treatment may be performed in an environment similar to the one of the first heat treatment. In addition, a heating device similar to the one of the first heat treatment may be suitably used for the second heat treatment.

第二熱處理允許晶體生長從具有第二晶體結構的氧化物半導體膜104b(其為纖鋅礦結構)朝第三氧化物半導體膜103c開始。具有第二晶體結構的氧化物半導體膜104b中的晶體為c軸對準;因此,藉由使用具有第二晶體結構的氧化物半導體膜104b作為晶種,第三氧化物半導體膜103c中的晶體可生長而使得和具有第二晶體結構的氧化物半導體膜104b的晶軸大致上對準,如同在第一氧化物半導體膜103a的情況中一般。亦即,第三氧化物半導體膜103c中的晶體可在對準c軸的同時生長。亦即,具有第三晶體結構的氧化物半導體膜104c包括在a-b面的一上平面中形成六角形形狀之鍵。另外,包括六角形鍵之層係在厚度方向(c軸方向)中堆疊並鍵結,而獲得c軸對準。透過上述步驟,可形成具有c軸對準之第三晶體結構的氧化物半導體膜104c。此外,由於使用具有第二晶體結構的氧化物半導體膜104b發生晶體生長,增進第三氧化物半導體膜103c的生長,所以具有第三晶體結構的氧化物半導體膜104c的表面具有高均勻度及高結晶度(見第10D圖)。The second heat treatment allows crystal growth to start from the oxide semiconductor film 104b having the second crystal structure, which is a wurtzite structure, toward the third oxide semiconductor film 103c. The crystal in the oxide semiconductor film 104b having the second crystal structure is c-axis aligned; therefore, the crystal in the third oxide semiconductor film 103c is used as a seed crystal by using the oxide semiconductor film 104b having the second crystal structure. It can be grown so as to be substantially aligned with the crystal axis of the oxide semiconductor film 104b having the second crystal structure as in the case of the first oxide semiconductor film 103a. That is, the crystal in the third oxide semiconductor film 103c can be grown while being aligned with the c-axis. That is, the oxide semiconductor film 104c having the third crystal structure includes a key which forms a hexagonal shape in an upper plane of the a-b plane. In addition, the layer including the hexagonal keys is stacked and bonded in the thickness direction (c-axis direction) to obtain c-axis alignment. Through the above steps, the oxide semiconductor film 104c having the c-axis aligned third crystal structure can be formed. Further, since crystal growth is performed using the oxide semiconductor film 104b having the second crystal structure, the growth of the third oxide semiconductor film 103c is enhanced, so that the surface of the oxide semiconductor film 104c having the third crystal structure has high uniformity and high Crystallinity (see Figure 10D).

在透過第二熱處理晶體生長從具有第二晶體結構的氧化物半導體膜104b之表面垂直進行的情況中,具有第三晶體結構的氧化物半導體膜104c的c軸與具有第二晶體結構的氧化物半導體膜104b之該表面大致上垂直。In the case where the second heat treatment crystal growth is performed vertically from the surface of the oxide semiconductor film 104b having the second crystal structure, the c-axis of the oxide semiconductor film 104c having the third crystal structure and the oxide having the second crystal structure The surface of the semiconductor film 104b is substantially vertical.

此外,透過透過第二熱處理,如在第一熱處理的情況中般,釋放第三氧化物半導體膜103c中所含的氫(亦即,發生脫氫或脫水)。結果,可形成其中氫濃度經減少的具有第三晶體結構的氧化物半導體膜104c。Further, by passing through the second heat treatment, as in the case of the first heat treatment, hydrogen contained in the third oxide semiconductor film 103c is released (that is, dehydrogenation or dehydration occurs). As a result, the oxide semiconductor film 104c having the third crystal structure in which the hydrogen concentration is reduced can be formed.

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及具有第三晶體結構的氧化物半導體膜104c;注意到第一至第三晶體結構為三角及/或六角形晶體結構。可減少具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及具有第三晶體結構的氧化物半導體膜104c中之氫濃度及氧缺陷。若氫包含在氧化物半導體中,其之部分充當施子而產生電子作為載子。另外,氧化物半導體中之氧缺陷也充當施子而產生電子作為載子。因此,當在具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及具有第三晶體結構的氧化物半導體膜104c中減少氫濃度及氧缺陷時,可減少氧化物半導體中之載子濃度,並可抑制後續將製造之電晶體的臨限電壓之負位移。有鑑於這些原因,具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及具有第三晶體結構的氧化物半導體膜104c中之氫濃度及氧缺陷的數量之減少導致後續將製造之電晶體的臨限電壓之負位移。Through the above steps, the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, and the oxide semiconductor film 104c having the third crystal structure can be formed; note that the first to third The crystal structure is a triangular and/or hexagonal crystal structure. The hydrogen concentration and oxygen deficiency in the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, and the oxide semiconductor film 104c having the third crystal structure can be reduced. If hydrogen is contained in an oxide semiconductor, a part thereof acts as a donor to generate electrons as a carrier. In addition, oxygen defects in the oxide semiconductor also act as a donor to generate electrons as carriers. Therefore, when the hydrogen concentration and the oxygen defect are reduced in the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, and the oxide semiconductor film 104c having the third crystal structure, The concentration of the carrier in the oxide semiconductor is reduced, and the negative displacement of the threshold voltage of the subsequently fabricated transistor can be suppressed. For these reasons, the concentration of hydrogen and the number of oxygen defects in the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, and the oxide semiconductor film 104c having the third crystal structure This reduction results in a negative displacement of the threshold voltage of the subsequently fabricated transistor.

接下來,以和實施例1類似的方式,在具有第三晶體結構的氧化物半導體膜104c上方形成遮罩,並接著使用遮罩來選擇性蝕刻具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、及具有第三晶體結構的氧化物半導體膜104c,以形成具有第一晶體結構之氧化物半導體膜105a、具有第二晶體結構之氧化物半導體膜105b、及具有第三晶體結構之氧化物半導體膜105c。注意到第一晶體結構之氧化物半導體膜105a、具有第二晶體結構之氧化物半導體膜105b、及具有第三晶體結構之氧化物半導體膜105c統稱為氧化物半導體堆疊105。之後,移除遮罩。Next, in a manner similar to Embodiment 1, a mask is formed over the oxide semiconductor film 104c having the third crystal structure, and then the mask is used to selectively etch the oxide semiconductor film 104a having the first crystal structure, An oxide semiconductor film 104b having a second crystal structure, and an oxide semiconductor film 104c having a third crystal structure to form an oxide semiconductor film 105a having a first crystal structure, and an oxide semiconductor film 105b having a second crystal structure And an oxide semiconductor film 105c having a third crystal structure. It is noted that the oxide semiconductor film 105a of the first crystal structure, the oxide semiconductor film 105b having the second crystal structure, and the oxide semiconductor film 105c having the third crystal structure are collectively referred to as the oxide semiconductor stack 105. After that, remove the mask.

接下來,形成接觸氧化物半導體堆疊105的該對電極106。接著,在氧化物絕緣膜102、氧化物半導體堆疊105、及該對電極106上方形成閘極絕緣膜107。之後,在閘極絕緣膜107上方形成閘極電極108。可在閘極絕緣膜107及閘極電極108上方形成絕緣膜109(參見第10E圖)。Next, the pair of electrodes 106 contacting the oxide semiconductor stack 105 are formed. Next, a gate insulating film 107 is formed over the oxide insulating film 102, the oxide semiconductor stack 105, and the pair of electrodes 106. Thereafter, a gate electrode 108 is formed over the gate insulating film 107. An insulating film 109 can be formed over the gate insulating film 107 and the gate electrode 108 (see FIG. 10E).

可藉由使用和實施例1中所述的該對電極106的那些類似之材料及形成方法來適當地形成該對電極106。The pair of electrodes 106 can be suitably formed by using materials and forming methods similar to those of the pair of electrodes 106 described in Embodiment 1.

注意到可以下列方式形成氧化物半導體堆疊105及該對電極106。在具有第三晶體結構的氧化物半導體膜104c上方形成導電膜之後,使用多色調光罩來形成凹凸形狀的遮罩。使用該遮罩來蝕刻具有第一晶體結構的氧化物半導體膜104a、具有第二晶體結構的氧化物半導體膜104b、具有第三晶體結構的氧化物半導體膜104c、及導電膜。接著,藉由灰化分隔該凹凸形狀的遮罩。使用該分隔的遮罩來選擇性蝕刻導電膜。在此程序中,可減少光罩數量及光刻程序中之步驟數量。It is noted that the oxide semiconductor stack 105 and the pair of electrodes 106 can be formed in the following manner. After the conductive film is formed over the oxide semiconductor film 104c having the third crystal structure, a multi-tone mask is used to form a mask of the uneven shape. The mask is used to etch the oxide semiconductor film 104a having the first crystal structure, the oxide semiconductor film 104b having the second crystal structure, the oxide semiconductor film 104c having the third crystal structure, and the conductive film. Next, the mask of the uneven shape is separated by ashing. The separated mask is used to selectively etch the conductive film. In this procedure, the number of masks and the number of steps in the lithography procedure can be reduced.

可藉由使用和實施例1中所述的閘極絕緣膜107的那些類似之材料及形成方法來適當地形成閘極絕緣膜107。The gate insulating film 107 can be suitably formed by using materials and forming methods similar to those of the gate insulating film 107 described in Embodiment 1.

在形成閘極絕緣膜107之前,可暴露氧化物半導體堆疊105的表面至諸如氧、臭氧、或二氮一氧化碳的氧化氣體之電漿以加以氧化,藉此減少氧缺陷。Before the formation of the gate insulating film 107, the surface of the oxide semiconductor stack 105 may be exposed to a plasma of an oxidizing gas such as oxygen, ozone, or dinitrogen monoxide to be oxidized, thereby reducing oxygen defects.

可藉由使用和實施例1中所述的閘極電極108的那些類似之材料及形成方法來適當地形成閘極電極108。The gate electrode 108 can be suitably formed by using materials and forming methods similar to those of the gate electrode 108 described in Embodiment 1.

注意到,在形成閘極絕緣膜107或形成絕緣膜109之後,可在含有很少氫及濕氣(以濕氣而言,例如,露點低於或等於-40℃,較佳低於或等於-60℃)的周圍環境(諸如氮周圍環境、氧周圍環境、或乾空氣周圍環境)中履行熱處理(溫度範圍:高於或等於150℃並低於或等於650℃,較佳高於或等於200℃並低於或等於500℃)。It is noted that after forming the gate insulating film 107 or forming the insulating film 109, it may contain little hydrogen and moisture (in terms of moisture, for example, the dew point is lower than or equal to -40 ° C, preferably lower than or equal to -60 ° C) of the surrounding environment (such as nitrogen surrounding environment, oxygen surrounding environment, or dry air surrounding environment) to perform heat treatment (temperature range: higher than or equal to 150 ° C and lower than or equal to 650 ° C, preferably higher than or equal to 200 ° C and less than or equal to 500 ° C).

透過上述步驟,可製造一種電晶體,其之通道包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel of which includes an oxide semiconductor stack including a crystal having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

在此實施例中所述的氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體區域及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓一溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack described in this embodiment has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal region having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby light irradiation or electricity can be manufactured therein. The crystal performs a transistor with a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

注意到氧氮化物半導體具有比氧化物半導體更小的能隙,並因此在其中載子輕易流動。因此,藉由減少電晶體中之具有第三晶體結構之氧化物半導體膜105c的厚度,獲得其中具有第二晶體結構之氧化物半導體膜105b充當通道之埋入式通道電晶體。結果,可製造出一種電晶體,其具有合意的電氣特性而無閘極絕緣膜107與具有第三晶體結構之氧化物半導體膜105c之間的界面條件之影響。It is noted that the oxynitride semiconductor has a smaller energy gap than the oxide semiconductor, and thus the carrier easily flows therein. Therefore, by reducing the thickness of the oxide semiconductor film 105c having the third crystal structure in the transistor, a buried channel transistor in which the oxide semiconductor film 105b having the second crystal structure serves as a channel is obtained. As a result, a transistor which has desirable electrical characteristics without the influence of the interface condition between the gate insulating film 107 and the oxide semiconductor film 105c having the third crystal structure can be manufactured.

(實施例4)(Example 4)

在此實施例中,將參照第11A及11B圖及第12A至12D圖敘述與實施例3不同之電晶體的結構和其之製造方法。此實施例與實施例3的不同之處在於在氧化物絕緣膜與氧化物半導體堆疊之間設置一對電極。注意到第11B圖相應於沿著第11A圖(其為上視圖)中之點虛線C-D的剖面圖。在第11A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜117、及絕緣膜119。第12A至12D圖為繪示第11B圖中所示之電晶體的製程之剖面圖。In this embodiment, the structure of the transistor different from that of Embodiment 3 and the method of manufacturing the same will be described with reference to FIGS. 11A and 11B and FIGS. 12A to 12D. This embodiment is different from Embodiment 3 in that a pair of electrodes are provided between the oxide insulating film and the oxide semiconductor stack. Note that Fig. 11B corresponds to a cross-sectional view taken along the dotted line C-D of the point 11A (which is a top view). In FIG. 11A, the substrate 101, the oxide insulating film 102, the gate insulating film 117, and the insulating film 119 are not shown. 12A to 12D are cross-sectional views showing the process of the transistor shown in Fig. 11B.

第11B圖中所示之電晶體包括形成在基板101上方之氧化物絕緣膜102;形成在氧化物絕緣膜102上方並作用為源極電極和汲極電極的的一對電極116;覆蓋氧化物絕緣膜102及作用為源極電極和汲極電極的的該對電極116之氧化物半導體堆疊115;形成在氧化物絕緣膜102、該對電極116、及氧化物半導體堆疊115上方之閘極絕緣膜117;及重疊氧化物半導體堆疊115且以閘極絕緣膜117夾設其間之閘極電極118。此外,可設置覆蓋閘極絕緣膜117和閘極電極118的絕緣膜119。此外,可設置接觸在絕緣膜119之開口中的該對電極116之一對佈線120。The transistor shown in FIG. 11B includes an oxide insulating film 102 formed over the substrate 101; a pair of electrodes 116 formed over the oxide insulating film 102 and functioning as a source electrode and a drain electrode; covering oxide An insulating film 102 and an oxide semiconductor stack 115 of the pair of electrodes 116 functioning as a source electrode and a drain electrode; a gate insulating formed over the oxide insulating film 102, the pair of electrodes 116, and the oxide semiconductor stack 115 The film 117; and the gate electrode 115 are overlapped and the gate electrode 118 therebetween is sandwiched by the gate insulating film 117. Further, an insulating film 119 covering the gate insulating film 117 and the gate electrode 118 may be provided. Further, one of the pair of electrodes 116 contacting the wiring 120 in the opening of the insulating film 119 may be disposed.

氧化物半導體堆疊115的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜115a,其接觸氧化物絕緣膜102及該對電極116;具有第二晶體結構之氧化物半導體膜115b,其接觸具有第一晶體結構之氧化物半導體膜115a;及具有第三晶體結構之氧化物半導體膜115c,其接觸具有第二晶體結構之氧化物半導體膜115b及閘極絕緣膜117。The oxide semiconductor stack 115 is characterized by being stacked with an oxide semiconductor film 115a having a first crystal structure, which contacts the oxide insulating film 102 and the pair of electrodes 116, and an oxide semiconductor film 115b having a second crystal structure, the contacts having The oxide semiconductor film 115a of the first crystal structure; and the oxide semiconductor film 115c having the third crystal structure, which is in contact with the oxide semiconductor film 115b and the gate insulating film 117 having the second crystal structure.

亦即,具有第一晶體結構之氧化物半導體膜115a及具有第三晶體結構之氧化物半導體膜115c設置在具有第二晶體結構之氧化物半導體膜115b的下方及上方。That is, the oxide semiconductor film 115a having the first crystal structure and the oxide semiconductor film 115c having the third crystal structure are disposed below and above the oxide semiconductor film 115b having the second crystal structure.

此外,氧化物半導體堆疊115的特徵在於使用具有第二晶體結構之氧化物半導體膜115b作為種晶而在具有第一晶體結構之氧化物半導體膜115a及具有第三晶體結構之氧化物半導體膜115c中發生晶體生長。Further, the oxide semiconductor stack 115 is characterized in that an oxide semiconductor film 115b having a second crystal structure is used as a seed crystal, and an oxide semiconductor film 115a having a first crystal structure and an oxide semiconductor film 115c having a third crystal structure are used. Crystal growth occurs in the middle.

具有第一晶體結構之氧化物半導體膜115a及具有第三晶體結構之氧化物半導體膜115c的晶體結構各為三角及/或六角形晶體結構及YbFe2O4結構、Yb2Fe3O7結構、和非纖鋅礦結構的任一者。注意到非纖礦結構為並非三角及/或六角形纖鋅礦類型的晶體結構。The crystal structure of the oxide semiconductor film 115a having the first crystal structure and the oxide semiconductor film 115c having the third crystal structure are each a triangular and/or hexagonal crystal structure and a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure. And any of the non-wurtzite structures. It is noted that the non-fibrous structure is a crystal structure that is not a triangular and/or hexagonal wurtzite type.

此外,具有第二晶體結構之氧化物半導體膜115b為纖鋅礦結構,其為三角及/或六角形晶體結構之一。Further, the oxide semiconductor film 115b having the second crystal structure is a wurtzite structure which is one of a triangular and/or hexagonal crystal structure.

如同在實施例3中般,由於具有第一晶體結構之氧化物半導體膜115a、具有第二晶體結構之氧化物半導體膜115b、及具有第三晶體結構之氧化物半導體膜115c全部都包括三角及/或六角形晶體,可從c軸方向觀察到六角形晶格影像。As in the third embodiment, the oxide semiconductor film 115a having the first crystal structure, the oxide semiconductor film 115b having the second crystal structure, and the oxide semiconductor film 115c having the third crystal structure all include the triangle and / or hexagonal crystal, hexagonal lattice image can be observed from the c-axis direction.

注意到具有第一晶體結構之氧化物半導體膜115a、具有第二晶體結構之氧化物半導體膜115b、及具有第三晶體結構之氧化物半導體膜115c的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體區域。亦即,每一個氧化物半導體膜具有非晶區域及c軸對準晶體區域。It is noted that each of the oxide semiconductor film 115a having the first crystal structure, the oxide semiconductor film 115b having the second crystal structure, and the oxide semiconductor film 115c having the third crystal structure is non-single crystal, not all in the non- In the crystalline state, and including the c-axis aligned with the crystal region. That is, each of the oxide semiconductor films has an amorphous region and a c-axis aligned crystal region.

接下來,將參照第12A至12D圖敘述製造第11B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 11B will be described with reference to Figs. 12A to 12D.

如第12A圖中所示,如同在實施例1中般,在基板101上方形成氧化物絕緣膜102。接著,在氧化物絕緣膜102上方形成該對電極116。然後,在該對電極116及氧化物絕緣膜102上方形成第一氧化物半導體膜113a及第二氧化物半導體膜113b。As shown in FIG. 12A, as in Embodiment 1, the oxide insulating film 102 is formed over the substrate 101. Next, the pair of electrodes 116 are formed over the oxide insulating film 102. Then, a first oxide semiconductor film 113a and a second oxide semiconductor film 113b are formed over the counter electrode 116 and the oxide insulating film 102.

可藉由使用和實施例1中所述的該對電極106之那些類似的材料及形成方法來適當地形成該對電極116。The pair of electrodes 116 can be suitably formed by using materials and forming methods similar to those of the pair of electrodes 106 described in Embodiment 1.

可藉由使用和實施例1中所述的第一氧化物半導體膜103a及第二氧化物半導體膜103b之那些類似的材料及形成方法來適當地形成第一氧化物半導體膜113a及第二氧化物半導體膜113b。The first oxide semiconductor film 113a and the second oxide can be appropriately formed by using materials and forming methods similar to those of the first oxide semiconductor film 103a and the second oxide semiconductor film 103b described in Embodiment 1. The semiconductor film 113b.

接下來,以和實施例1中的那些類似之方式,履行第一熱處理。第一熱處理允許晶體生長從第二氧化物半導體膜113b的表面朝第一氧化物半導體膜113a開始,使得第二氧化物半導體膜113b成為具有第二晶體結構(其為纖鋅礦晶體結構)的氧化物半導體膜114b。具有第二晶體結構的氧化物半導體膜114b包括c軸對準晶體。Next, the first heat treatment was performed in a manner similar to those in Example 1. The first heat treatment allows crystal growth to start from the surface of the second oxide semiconductor film 113b toward the first oxide semiconductor film 113a, so that the second oxide semiconductor film 113b has a second crystal structure which is a wurtzite crystal structure. The oxide semiconductor film 114b. The oxide semiconductor film 114b having the second crystal structure includes a c-axis alignment crystal.

當繼續第一熱處理時,以具有第二晶體結構的氧化物半導體膜114b作為晶種,第一氧化物半導體膜113a的晶體生長從與具有第二晶體結構的氧化物半導體膜114b之界面朝氧化物絕緣膜102繼續進行,以形成具有第一晶體結構的氧化物半導體膜114a。具有第一晶體結構的氧化物半導體膜114a包括c軸對準晶體區域。When the first heat treatment is continued, the oxide semiconductor film 114b having the second crystal structure is seeded, and the crystal growth of the first oxide semiconductor film 113a is oxidized from the interface with the oxide semiconductor film 114b having the second crystal structure. The material insulating film 102 is continued to form an oxide semiconductor film 114a having a first crystal structure. The oxide semiconductor film 114a having the first crystal structure includes a c-axis aligned crystal region.

接下來,在具有第二晶體結構的氧化物半導體膜114b上方形成第三氧化物半導體膜113c(見第12B圖)。可藉由使用和實施例3中的第三氧化物半導體膜103c的那些類似之材料及形成方法來適當地形成第三氧化物半導體膜113c。Next, a third oxide semiconductor film 113c is formed over the oxide semiconductor film 114b having the second crystal structure (see FIG. 12B). The third oxide semiconductor film 113c can be appropriately formed by using a material similar to those of the third oxide semiconductor film 103c in Embodiment 3 and a forming method.

接下來,以和實施例3中的那些類似的方式,履行第二熱處理。第二熱處理允許晶體生長從具有第二晶體結構的氧化物半導體膜114b(其為纖鋅礦結構)的表面朝第三氧化物半導體膜113c開始,以使第三氧化物半導體膜113c變成具有第三晶體結構的氧化物半導體膜114c。具有第三晶體結構的氧化物半導體膜114c包括c軸對準晶體區域(見第12C圖)。Next, the second heat treatment was performed in a similar manner to those in Example 3. The second heat treatment allows crystal growth to start from the surface of the oxide semiconductor film 114b having the second crystal structure which is the wurtzite structure toward the third oxide semiconductor film 113c, so that the third oxide semiconductor film 113c becomes the first The oxide semiconductor film 114c of a triple crystal structure. The oxide semiconductor film 114c having the third crystal structure includes a c-axis aligned crystal region (see Fig. 12C).

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜114a、具有第二晶體結構的氧化物半導體膜114b、及具有第三晶體結構的氧化物半導體膜114c;注意到第一至第三晶體結構為三角及/或六角形晶體結構。Through the above steps, the oxide semiconductor film 114a having the first crystal structure, the oxide semiconductor film 114b having the second crystal structure, and the oxide semiconductor film 114c having the third crystal structure can be formed; note that the first to third The crystal structure is a triangular and/or hexagonal crystal structure.

接下來,在具有第三晶體結構的氧化物半導體膜114c上方形成遮罩,並接著使用遮罩來選擇性蝕刻具有第一晶體結構的氧化物半導體膜114a、具有第二晶體結構的氧化物半導體膜114b、及具有第三晶體結構的氧化物半導體膜114c,以形成具有第一晶體結構之氧化物半導體膜115a、具有第二晶體結構之氧化物半導體膜115b、及具有第三晶體結構之氧化物半導體膜115c。注意到具有第一晶體結構之氧化物半導體膜115a、具有第二晶體結構之氧化物半導體膜115b、及具有第三晶體結構之氧化物半導體膜115c統稱為氧化物半導體堆疊115。之後,移除遮罩。Next, a mask is formed over the oxide semiconductor film 114c having the third crystal structure, and then the mask is used to selectively etch the oxide semiconductor film 114a having the first crystal structure and the oxide semiconductor having the second crystal structure a film 114b and an oxide semiconductor film 114c having a third crystal structure to form an oxide semiconductor film 115a having a first crystal structure, an oxide semiconductor film 115b having a second crystal structure, and an oxidation having a third crystal structure The semiconductor film 115c. It is noted that the oxide semiconductor film 115a having the first crystal structure, the oxide semiconductor film 115b having the second crystal structure, and the oxide semiconductor film 115c having the third crystal structure are collectively referred to as the oxide semiconductor stack 115. After that, remove the mask.

接下來,在氧化物絕緣膜102、該對電極116、及氧化物半導體堆疊115上方形成閘極絕緣膜117。接著,在閘極絕緣膜117上方形成閘極電極118。Next, a gate insulating film 117 is formed over the oxide insulating film 102, the pair of electrodes 116, and the oxide semiconductor stack 115. Next, a gate electrode 118 is formed over the gate insulating film 117.

之後,在閘極絕緣膜117及閘極電極118上方形成絕緣膜119。接著,在絕緣膜119上方形成遮罩後,部分蝕刻閘極絕緣膜117及絕緣膜119以形成開口。接著,可形成經由該些開口連接到該對電極116之佈線120(見第12D圖)。Thereafter, an insulating film 119 is formed over the gate insulating film 117 and the gate electrode 118. Next, after a mask is formed over the insulating film 119, the gate insulating film 117 and the insulating film 119 are partially etched to form an opening. Next, wirings 120 connected to the pair of electrodes 116 via the openings may be formed (see FIG. 12D).

可藉由使用和實施例1中所述的閘極絕緣膜107之那些類似的材料及形成方法來適當地形成閘極絕緣膜117。The gate insulating film 117 can be suitably formed by using a material and a forming method similar to those of the gate insulating film 107 described in Embodiment 1.

可藉由使用和實施例1中所述的閘極電極108之那些類似的材料及形成方法來適當地形成閘極電極118。The gate electrode 118 can be suitably formed by using materials and forming methods similar to those of the gate electrode 108 described in Embodiment 1.

可藉由使用和實施例1中所述的絕緣膜109之那些類似的材料及形成方法來適當地形成絕緣膜119。The insulating film 119 can be suitably formed by using a material similar to those of the insulating film 109 described in Embodiment 1 and a forming method.

可藉由使用和該對電極116之那些類似的材料及形成方法來適當地形成佈線120。The wiring 120 can be appropriately formed by using materials and forming methods similar to those of the pair of electrodes 116.

透過上述步驟,可製造一種電晶體,其之通道區域包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體區域及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel region of which includes an oxide semiconductor stack including a crystal region having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

在此實施例中所述的氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體區域及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓-溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack described in this embodiment has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal region having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby light irradiation or electricity can be manufactured therein. The crystal performs a transistor with a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

注意到此實施例可和任何其他實施例適當地結合。It is noted that this embodiment can be combined as appropriate with any of the other embodiments.

(實施例5)(Example 5)

在此實施例中,將參照第13A及13B圖及第14A至14D圖敘述與實施例1至4中的電晶體結構不同之電晶體的結構和其之製造方法。此實施例與實施例1至4的不同之處在於在氧化物絕緣膜與閘極絕緣膜之間設置閘極電極。亦即,雖在實施例1至4中敘述頂閘極電晶體,將在此實施例中敘述底閘極電晶體。注意到第13B圖相應於沿著第13A圖(其為上視圖)中之點虛線E-F的剖面圖。在第13A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜127、及絕緣膜129。第14A至14D圖為繪示第13B圖中所示之電晶體的製程之剖面圖。In this embodiment, the structure of the transistor different from the crystal structures in Embodiments 1 to 4 and the method of manufacturing the same will be described with reference to Figs. 13A and 13B and Figs. 14A to 14D. This embodiment is different from Embodiments 1 to 4 in that a gate electrode is provided between the oxide insulating film and the gate insulating film. That is, although the top gate transistor is described in Embodiments 1 to 4, the bottom gate transistor will be described in this embodiment. Note that Fig. 13B corresponds to a cross-sectional view taken along the dotted line E-F in the 13A diagram (which is a top view). In FIG. 13A, the substrate 101, the oxide insulating film 102, the gate insulating film 127, and the insulating film 129 are not shown. 14A to 14D are cross-sectional views showing the process of the transistor shown in Fig. 13B.

第13B圖中所示之電晶體包括形成在基板101上方的氧化物絕緣膜102;形成在氧化物絕緣膜102上的閘極電極128;覆蓋氧化物絕緣膜102及閘極電極128的閘極絕緣膜127;覆蓋閘極電極128且閘極絕緣膜127設置在其間之氧化物半導體堆疊125;及接觸氧化物半導體堆疊125並充當源極電極及汲極電極之一對電極126。此外,可設置覆蓋閘極絕緣膜127、氧化物半導體堆疊125、及該對電極126的絕緣膜129。The transistor shown in FIG. 13B includes an oxide insulating film 102 formed over the substrate 101; a gate electrode 128 formed on the oxide insulating film 102; and a gate covering the oxide insulating film 102 and the gate electrode 128 An insulating film 127; an oxide semiconductor stack 125 covering the gate electrode 128 and having the gate insulating film 127 disposed therebetween; and a contact electrode semiconductor 125 and serving as a source electrode and a drain electrode 126. Further, an insulating film 129 covering the gate insulating film 127, the oxide semiconductor stack 125, and the pair of electrodes 126 may be provided.

氧化物半導體堆疊125的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜125b,其接觸閘極絕緣膜127,及具有第二晶體結構之氧化物半導體膜125c,其接觸具有第一晶體結構之氧化物半導體膜125b。The oxide semiconductor stack 125 is characterized by being stacked with an oxide semiconductor film 125b having a first crystal structure, a gate insulating film 127, and an oxide semiconductor film 125c having a second crystal structure having a first crystal structure in contact The oxide semiconductor film 125b.

此外,氧化物半導體堆疊125的特徵在於使用具有第一晶體結構之氧化物半導體膜125b作為種晶而在具有第二晶體結構之氧化物半導體膜125c中發生晶體生長。Further, the oxide semiconductor stack 125 is characterized in that crystal growth occurs in the oxide semiconductor film 125c having the second crystal structure using the oxide semiconductor film 125b having the first crystal structure as a seed crystal.

具有第一晶體結構之氧化物半導體膜125b具有纖鋅礦晶體結構,其為三角及/或六角形晶體結構之一。The oxide semiconductor film 125b having the first crystal structure has a wurtzite crystal structure which is one of a triangular and/or hexagonal crystal structure.

具有第二晶體結構之氧化物半導體膜125c包括三角及/或六角形晶體結構並具有YbFe2O4結構、Yb2Fe3O7結構、和非纖鋅礦結構的任一晶體結構。The oxide semiconductor film 125c having the second crystal structure includes a triangular and/or hexagonal crystal structure and has any crystal structure of a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and a non-wurtzite structure.

由於具有第一晶體結構之氧化物半導體膜及具有第二晶體結構之氧化物半導體膜兩者皆包括三角及/或六角形晶體,可從c軸方向觀察到六角形晶格影像。Since the oxide semiconductor film having the first crystal structure and the oxide semiconductor film having the second crystal structure both include triangular and/or hexagonal crystals, a hexagonal lattice image can be observed from the c-axis direction.

具有第一晶體結構之氧化物半導體膜125b及具有第二晶體結構之氧化物半導體膜125c的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體區域。亦即,每一個氧化物半導體膜具有非晶區域及c軸對準晶體區域。Each of the oxide semiconductor film 125b having the first crystal structure and the oxide semiconductor film 125c having the second crystal structure is non-single crystal, not all in an amorphous state, and includes a c-axis aligned crystal region. That is, each of the oxide semiconductor films has an amorphous region and a c-axis aligned crystal region.

注意到氧化物半導體堆疊125具有兩層結構,在此,包括具有第一晶體結構之氧化物半導體膜125b及具有第二晶體結構之氧化物半導體膜125c;然而,可如實施例3及4中般形成三層氧化物半導體堆疊。It is noted that the oxide semiconductor stack 125 has a two-layer structure, and here includes an oxide semiconductor film 125b having a first crystal structure and an oxide semiconductor film 125c having a second crystal structure; however, as in Embodiments 3 and 4 A three-layer oxide semiconductor stack is formed.

接下來,將參照第14A至14D圖敘述製造第13B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 13B will be described with reference to Figs. 14A to 14D.

如第14A圖中所示,如同在實施例1中般,在基板101上方形成氧化物絕緣膜102。接著,在氧化物絕緣膜102上方形成閘極電極128。然後,在氧化物絕緣膜102及閘極電極128上方形成閘極絕緣膜127。之後,在閘極絕緣膜127上方形成第一氧化物半導體膜123b。As shown in FIG. 14A, as in Embodiment 1, the oxide insulating film 102 is formed over the substrate 101. Next, a gate electrode 128 is formed over the oxide insulating film 102. Then, a gate insulating film 127 is formed over the oxide insulating film 102 and the gate electrode 128. Thereafter, a first oxide semiconductor film 123b is formed over the gate insulating film 127.

可藉由使用和實施例1中所述的閘極電極108及閘極絕緣膜107之那些類似的材料及形成方法來適當地形成閘極電極128及閘極絕緣膜127。The gate electrode 128 and the gate insulating film 127 can be appropriately formed by using materials and forming methods similar to those of the gate electrode 108 and the gate insulating film 107 described in the first embodiment.

可藉由使用和實施例1中所述的第二氧化物半導體膜103b之那些類似的材料及形成方法來適當地形成第一氧化物半導體膜123b。The first oxide semiconductor film 123b can be appropriately formed by using a material similar to those of the second oxide semiconductor film 103b described in Embodiment 1 and a forming method.

接下來,以和實施例1中的那些類似之方式,履行第一熱處理。第一熱處理允許晶體生長從第一氧化物半導體膜123b的表面朝閘極絕緣膜127開始,以形成具有第一晶體結構的氧化物半導體膜124b。具有第一晶體結構的氧化物半導體膜124b包括c軸對準晶體區域。Next, the first heat treatment was performed in a manner similar to those in Example 1. The first heat treatment allows crystal growth to start from the surface of the first oxide semiconductor film 123b toward the gate insulating film 127 to form the oxide semiconductor film 124b having the first crystal structure. The oxide semiconductor film 124b having the first crystal structure includes a c-axis aligned crystal region.

接下來,在具有第一晶體結構的氧化物半導體膜124b上方形成第二氧化物半導體膜123c(見第14B圖)。可藉由使用和實施例3中所述的第三氧化物半導體膜103c之那些類似的材料及形成方法來適當地形成第二氧化物半導體膜123c。Next, a second oxide semiconductor film 123c is formed over the oxide semiconductor film 124b having the first crystal structure (see FIG. 14B). The second oxide semiconductor film 123c can be suitably formed by using a material similar to those of the third oxide semiconductor film 103c described in Embodiment 3 and a forming method.

接下來,以和實施例3中類似的方式,履行第二熱處理。此熱處理允許晶體生長從和具有第一晶體結構的氧化物半導體膜124b之界面朝第二氧化物半導體膜123c開始,以使第二氧化物半導體膜123c變成具有第二晶體結構的氧化物半導體膜124c。具有第二晶體結構的氧化物半導體膜124c包括c軸對準晶體區域(見第14C圖)。Next, in a manner similar to that in Embodiment 3, the second heat treatment was performed. This heat treatment allows crystal growth to start from the interface with the oxide semiconductor film 124b having the first crystal structure toward the second oxide semiconductor film 123c, so that the second oxide semiconductor film 123c becomes an oxide semiconductor film having the second crystal structure. 124c. The oxide semiconductor film 124c having the second crystal structure includes a c-axis aligned crystal region (see Fig. 14C).

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜124b及第二晶體結構的氧化物半導體膜124c。Through the above steps, the oxide semiconductor film 124b having the first crystal structure and the oxide semiconductor film 124c having the second crystal structure can be formed.

接下來,在具有第二晶體結構的氧化物半導體膜124c上方形成遮罩,並接著使用該遮罩選擇性蝕刻具有第一晶體結構的氧化物半導體膜124b及具有第二晶體結構的氧化物半導體膜124c,以形成具有第一晶體結構之氧化物半導體膜125b及具有第二晶體結構之氧化物半導體膜125c。注意到具有第一晶體結構之氧化物半導體膜125b及具有第二晶體結構之氧化物半導體膜125c統稱為氧化物半導體堆疊115。之後,移除遮罩。Next, a mask is formed over the oxide semiconductor film 124c having the second crystal structure, and then the mask is used to selectively etch the oxide semiconductor film 124b having the first crystal structure and the oxide semiconductor having the second crystal structure. The film 124c is formed to form an oxide semiconductor film 125b having a first crystal structure and an oxide semiconductor film 125c having a second crystal structure. It is noted that the oxide semiconductor film 125b having the first crystal structure and the oxide semiconductor film 125c having the second crystal structure are collectively referred to as the oxide semiconductor stack 115. After that, remove the mask.

接下來,以和實施例1中的那些類似的方式,形成該對電極126。Next, the pair of electrodes 126 are formed in a similar manner to those in Embodiment 1.

接下來,在閘極絕緣膜127、該對電極126、及氧化物半導體堆疊125上方形成絕緣膜129(見第14D圖)。Next, an insulating film 129 is formed over the gate insulating film 127, the pair of electrodes 126, and the oxide semiconductor stack 125 (see FIG. 14D).

可藉由使用和實施例1中所述的絕緣膜109之那些類似的材料及形成方法來適當地形成絕緣膜129。The insulating film 129 can be suitably formed by using a material similar to those of the insulating film 109 described in Embodiment 1 and a forming method.

透過上述步驟,可製造一種電晶體,其之通道區域包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體區域及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel region of which includes an oxide semiconductor stack including a crystal region having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

注意到在此實施例中敘述通道經蝕刻的電晶體;然而,此實施例可應用至通道保護電晶體。It is noted that the channel etched transistor is described in this embodiment; however, this embodiment can be applied to a channel protection transistor.

氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓-溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby a light irradiation or a transistor can be manufactured A transistor that performs a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

注意到氧氮化物半導體具有比氧化物半導體更小的能隙,並因此在其中載子輕易流動。因此,藉由使用氧氮化物半導體膜來形成具有第一晶體結構之氧化物半導體膜125b,其接觸閘極絕緣膜127,可製造具有合意的電氣特性之電晶體。It is noted that the oxynitride semiconductor has a smaller energy gap than the oxide semiconductor, and thus the carrier easily flows therein. Therefore, by using the oxynitride semiconductor film to form the oxide semiconductor film 125b having the first crystal structure, which contacts the gate insulating film 127, a transistor having desired electrical characteristics can be manufactured.

注意到此實施例可和任何其他實施例適當地結合。It is noted that this embodiment can be combined as appropriate with any of the other embodiments.

(實施例6)(Example 6)

在此實施例中,將參照第15A及15B圖及第16A至16D圖敘述與實施例1至5中的電晶體結構不同之電晶體的結構和其之製造方法。在此實施例中,將敘述底閘極電晶體。該電晶體與實施例5中的那個不同之處在於在氧化物絕緣膜與氧化物半導體膜之間設置一對電極。注意到第15B圖相應於沿著第15A圖(其為上視圖)中之點虛線G-H的剖面圖。在15A圖中,並未繪示基板101、氧化物絕緣膜102、閘極絕緣膜137、及絕緣膜139。第16A至16D圖為繪示第15B圖中所示之電晶體的製程之剖面圖。In this embodiment, the structure of the crystal crystals different from those of the crystal structures of Embodiments 1 to 5 and the method of manufacturing the same will be described with reference to Figs. 15A and 15B and Figs. 16A to 16D. In this embodiment, the bottom gate transistor will be described. This transistor is different from the one in Embodiment 5 in that a pair of electrodes are provided between the oxide insulating film and the oxide semiconductor film. Note that Fig. 15B corresponds to a cross-sectional view of a dotted line G-H along a point 15A (which is a top view). In FIG. 15A, the substrate 101, the oxide insulating film 102, the gate insulating film 137, and the insulating film 139 are not shown. 16A to 16D are cross-sectional views showing the process of the transistor shown in Fig. 15B.

第15B圖中所示之電晶體包括形成在基板101上方的氧化物絕緣膜102;形成在氧化物絕緣膜102上的閘極電極138;覆蓋氧化物絕緣膜102及閘極電極138的閘極絕緣膜137;充當源極電極及汲極電極之一對電極136;及接觸閘極絕緣膜137和該對電極136的氧化物半導體堆疊135。此外,可設置覆蓋閘極絕緣膜137、氧化物半導體堆疊135、及該對電極136的絕緣膜139。The transistor shown in FIG. 15B includes an oxide insulating film 102 formed over the substrate 101; a gate electrode 138 formed on the oxide insulating film 102; and a gate covering the oxide insulating film 102 and the gate electrode 138 An insulating film 137; a counter electrode 136 serving as a source electrode and a drain electrode; and an oxide semiconductor stack 135 contacting the gate insulating film 137 and the pair of electrodes 136. Further, an insulating film 139 covering the gate insulating film 137, the oxide semiconductor stack 135, and the pair of electrodes 136 may be provided.

氧化物半導體堆疊135的特徵在於堆疊有具有第一晶體結構之氧化物半導體膜135b,其接觸閘極絕緣膜137,及具有第二晶體結構之氧化物半導體膜135c,其接觸具有第一晶體結構之氧化物半導體膜135b。The oxide semiconductor stack 135 is characterized by being stacked with an oxide semiconductor film 135b having a first crystal structure, which contacts a gate insulating film 137, and an oxide semiconductor film 135c having a second crystal structure having a first crystal structure in contact The oxide semiconductor film 135b.

此外,氧化物半導體堆疊135的特徵在於使用具有第一晶體結構之氧化物半導體膜135b作為種晶而在具有第二晶體結構之氧化物半導體膜135c中發生晶體生長。Further, the oxide semiconductor stack 135 is characterized in that crystal growth occurs in the oxide semiconductor film 135c having the second crystal structure using the oxide semiconductor film 135b having the first crystal structure as a seed crystal.

具有第一晶體結構之氧化物半導體膜135b具有纖鋅礦晶體結構,其為三角及/或六角形晶體結構之一。The oxide semiconductor film 135b having the first crystal structure has a wurtzite crystal structure which is one of a triangular and/or hexagonal crystal structure.

具有第二晶體結構之氧化物半導體膜135c包括三角及/或六角形晶體結構並具有YbFe2O4結構、Yb2Fe3O7結構、和非纖鋅礦結構的任一晶體結構。The oxide semiconductor film 135c having the second crystal structure includes a triangular and/or hexagonal crystal structure and has any crystal structure of a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, and a non-wurtzite structure.

由於具有第一晶體結構之氧化物半導體膜及具有第二晶體結構之氧化物半導體膜兩者皆包括三角及/或六角形晶體,可從c軸方向觀察到六角形晶格影像。Since the oxide semiconductor film having the first crystal structure and the oxide semiconductor film having the second crystal structure both include triangular and/or hexagonal crystals, a hexagonal lattice image can be observed from the c-axis direction.

具有第一晶體結構之氧化物半導體膜135b及具有第二晶體結構之氧化物半導體膜135c的各者為非單晶,非全部在非晶態中,且包括c軸對準晶體區域。亦即,每一個氧化物半導體膜具有非晶區域及c軸對準晶體區域。Each of the oxide semiconductor film 135b having the first crystal structure and the oxide semiconductor film 135c having the second crystal structure is non-single crystal, not all in an amorphous state, and includes a c-axis aligned crystal region. That is, each of the oxide semiconductor films has an amorphous region and a c-axis aligned crystal region.

注意到氧化物半導體堆疊135具有兩層結構,在此,包括具有第一晶體結構之氧化物半導體膜135b及具有第二晶體結構之氧化物半導體膜135c;然而,可如實施例3及4中般形成三層氧化物半導體堆疊。It is noted that the oxide semiconductor stack 135 has a two-layer structure including an oxide semiconductor film 135b having a first crystal structure and an oxide semiconductor film 135c having a second crystal structure; however, as in Embodiments 3 and 4 A three-layer oxide semiconductor stack is formed.

接下來,將參照第16A至16D圖敘述製造第15B圖中的電晶體之方法。Next, a method of manufacturing the transistor in Fig. 15B will be described with reference to Figs. 16A to 16D.

如第16A圖中所示,如同在實施例1中般,在基板101上方形成氧化物絕緣膜102。接下來,在氧化物絕緣膜102上方形成閘極電極138。然後,在氧化物絕緣膜102及閘極電極138上方形成閘極絕緣膜137。之後,在閘極絕緣膜137上方形成該對電極136。接著,在閘極絕緣膜137及該對電極136上方形成第一氧化物半導體膜133b。As shown in FIG. 16A, as in Embodiment 1, the oxide insulating film 102 is formed over the substrate 101. Next, a gate electrode 138 is formed over the oxide insulating film 102. Then, a gate insulating film 137 is formed over the oxide insulating film 102 and the gate electrode 138. Thereafter, the pair of electrodes 136 are formed over the gate insulating film 137. Next, a first oxide semiconductor film 133b is formed over the gate insulating film 137 and the pair of electrodes 136.

可藉由使用和實施例3中所述的閘極電極108、閘極絕緣膜107、及第二氧化物半導體膜103b之那些類似的材料及形成方法來適當地形成閘極電極138、閘極絕緣膜137、及第一氧化物半導體膜133b。The gate electrode 138 and the gate electrode can be appropriately formed by using materials and forming methods similar to those of the gate electrode 108, the gate insulating film 107, and the second oxide semiconductor film 103b described in Embodiment 3. The insulating film 137 and the first oxide semiconductor film 133b.

接下來,以和實施例1中的那些類似之方式,履行第一熱處理。第一熱處理允許晶體生長從第一氧化物半導體膜133b的表面朝閘極絕緣膜137開始,以使第一氧化物半導體膜133b變成具有第一晶體結構的氧化物半導體膜134b。具有第一晶體結構的氧化物半導體膜134b包括c軸對準晶體區域。Next, the first heat treatment was performed in a manner similar to those in Example 1. The first heat treatment allows crystal growth to start from the surface of the first oxide semiconductor film 133b toward the gate insulating film 137, so that the first oxide semiconductor film 133b becomes the oxide semiconductor film 134b having the first crystal structure. The oxide semiconductor film 134b having the first crystal structure includes a c-axis aligned crystal region.

接下來,在具有第一晶體結構的氧化物半導體膜134b上方形成第二氧化物半導體膜133c(見第16B圖)。可藉由使用和實施例3中所述的第三氧化物半導體膜103c之那些類似的材料及形成方法來適當地形成第二氧化物半導體膜133c。Next, a second oxide semiconductor film 133c is formed over the oxide semiconductor film 134b having the first crystal structure (see FIG. 16B). The second oxide semiconductor film 133c can be suitably formed by using a material similar to those of the third oxide semiconductor film 103c described in Embodiment 3 and a forming method.

接下來,以和實施例3中類似的方式,履行第二熱處理。此熱處理允許晶體生長從和具有第一晶體結構的氧化物半導體膜134b之界面朝第二氧化物半導體膜133c開始,以使第二氧化物半導體膜133c變成具有第二晶體結構的氧化物半導體膜134c。具有第二晶體結構的氧化物半導體膜134c包括c軸對準晶體區域(見第16C圖)。Next, in a manner similar to that in Embodiment 3, the second heat treatment was performed. This heat treatment allows crystal growth to start from the interface with the oxide semiconductor film 134b having the first crystal structure toward the second oxide semiconductor film 133c, so that the second oxide semiconductor film 133c becomes an oxide semiconductor film having the second crystal structure. 134c. The oxide semiconductor film 134c having the second crystal structure includes a c-axis aligned crystal region (see Fig. 16C).

透過上述步驟,可形成具有第一晶體結構的氧化物半導體膜134b及具有第二晶體結構的氧化物半導體膜134c。Through the above steps, the oxide semiconductor film 134b having the first crystal structure and the oxide semiconductor film 134c having the second crystal structure can be formed.

接下來,在具有第二晶體結構的氧化物半導體膜134c上方形成遮罩,並接著使用該遮罩選擇性蝕刻具有第一晶體結構的氧化物半導體膜134b及具有第二晶體結構的氧化物半導體膜134c,以形成具有第一晶體結構之氧化物半導體膜135b及具有第二晶體結構之氧化物半導體膜135c。注意到第一晶體結構之氧化物半導體膜135b及具有第二晶體結構之氧化物半導體膜135c統稱為氧化物半導體堆疊135。之後,移除遮罩。Next, a mask is formed over the oxide semiconductor film 134c having the second crystal structure, and then the mask is used to selectively etch the oxide semiconductor film 134b having the first crystal structure and the oxide semiconductor having the second crystal structure. The film 134c is formed to form an oxide semiconductor film 135b having a first crystal structure and an oxide semiconductor film 135c having a second crystal structure. It is noted that the oxide semiconductor film 135b of the first crystal structure and the oxide semiconductor film 135c having the second crystal structure are collectively referred to as an oxide semiconductor stack 135. After that, remove the mask.

接下來,在氧化物絕緣膜102、該對電極136、及氧化物半導體堆疊135上方形成絕緣膜139(見第16D圖)。Next, an insulating film 139 is formed over the oxide insulating film 102, the pair of electrodes 136, and the oxide semiconductor stack 135 (see FIG. 16D).

可藉由使用和實施例3中所述的絕緣膜109之那些類似的材料及形成方法來適當地形成絕緣膜139。The insulating film 139 can be suitably formed by using a material similar to those of the insulating film 109 described in Embodiment 3 and a forming method.

透過上述步驟,可製造一種電晶體,其之通道區域包括氧化物半導體堆疊,該氧化物半導體堆疊包括在a-b面中具有六角形鍵的晶體及c軸對準三角及/或六角形結構。Through the above steps, a transistor can be fabricated, the channel region of which includes an oxide semiconductor stack including a crystal having a hexagonal bond in the a-b plane and a c-axis alignment triangle and/or hexagonal structure.

注意到在此實施例中敘述通道經蝕刻的電晶體;然而,此實施例可應用至通道保護電晶體。It is noted that the channel etched transistor is described in this embodiment; however, this embodiment can be applied to a channel protection transistor.

氧化物半導體堆疊在與閘極絕緣膜的界面附近具有高結晶度及均勻度並因此具有穩定的電氣特性;據此,可獲得高度可靠的電晶體。包括在a-b面中具有六角形鍵的晶體區域及c軸對準三角及/或六角形結構的氧化物半導體堆疊係用於電晶體的通道區域,藉此可製造出其中在光照射或對電晶體履行偏壓-溫度應力(BT)測試前或後之間的臨限電壓之改變量很小且具有穩定的電氣特性之電晶體。The oxide semiconductor stack has high crystallinity and uniformity in the vicinity of the interface with the gate insulating film and thus has stable electrical characteristics; accordingly, a highly reliable transistor can be obtained. An oxide semiconductor stack including a crystal region having a hexagonal bond in the ab plane and a c-axis alignment triangle and/or a hexagonal structure is used for a channel region of the transistor, whereby light irradiation or electricity can be manufactured therein. The crystal performs a transistor with a small amount of change in threshold voltage between before or after the bias-temperature stress (BT) test and has stable electrical characteristics.

注意到此實施例可和任何其他實施例適當地結合。It is noted that this embodiment can be combined as appropriate with any of the other embodiments.

(實施例7)(Example 7)

在此實施例中,將敘述實施例1至6的任何者中所述之電晶體具有複數閘極電極的情況。雖在此實施例中使用實施例5中所述的電晶體,此實施例可適當地應用至實施例1至4和實施例6中所述的電晶體。In this embodiment, the case where the transistor described in any of Embodiments 1 to 6 has a plurality of gate electrodes will be described. Although the transistor described in Embodiment 5 is used in this embodiment, this embodiment can be suitably applied to the transistors described in Embodiments 1 to 4 and Embodiment 6.

以和實施例5中的那個類似之方式,如第17圖中所示般,在基板101上方形成氧化物絕緣膜102,並在氧化物絕緣膜102上方形成第一閘極電極148a及第一閘極絕緣膜147a。接著,在第一閘極絕緣膜147a上方形成其中堆疊有具有第一晶體結構之氧化物半導體膜125b及具有第二晶體結構之氧化物半導體膜125c的氧化物半導體堆疊125、該對電極126、及第二閘極絕緣膜147b。In a manner similar to that in Embodiment 5, as shown in FIG. 17, an oxide insulating film 102 is formed over the substrate 101, and a first gate electrode 148a and a first electrode are formed over the oxide insulating film 102. Gate insulating film 147a. Next, an oxide semiconductor stack 125 in which an oxide semiconductor film 125b having a first crystal structure and an oxide semiconductor film 125c having a second crystal structure are stacked is formed over the first gate insulating film 147a, the pair of electrodes 126, And a second gate insulating film 147b.

接下來,在第二閘極絕緣膜147b上方重疊氧化物半導體堆疊125的區域中形成第二閘極電極148b。可在第二閘極絕緣膜147b及第二閘極電極148b上方形成絕緣膜129作為保護膜。Next, a second gate electrode 148b is formed in a region where the oxide semiconductor stack 125 is overlaid over the second gate insulating film 147b. An insulating film 129 can be formed as a protective film over the second gate insulating film 147b and the second gate electrode 148b.

第一閘極電極148a和第二閘極電極148b可被形成以類似於實施例1中所述之閘極電極108的方式。The first gate electrode 148a and the second gate electrode 148b may be formed in a manner similar to the gate electrode 108 described in Embodiment 1.

可以和實施例1中的閘極絕緣膜107的那個類似之材料及形成方法來適當地形成第一閘極絕緣膜147a及第二閘極絕緣膜147b。The first gate insulating film 147a and the second gate insulating film 147b can be appropriately formed in a material and a forming method similar to those of the gate insulating film 107 in the first embodiment.

可連接第一閘極電極148a及第二閘極電極148b。在此情況中,第一閘極電極148a及第二閘極電極148b具有相同電位且在氧化物半導體堆疊125的第一閘極電極148a側上及第二閘極電極148b側上形成通道區域,並藉此可增加電晶體之啟通狀態電流及場效遷移率。The first gate electrode 148a and the second gate electrode 148b can be connected. In this case, the first gate electrode 148a and the second gate electrode 148b have the same potential and form a channel region on the first gate electrode 148a side and the second gate electrode 148b side of the oxide semiconductor stack 125, Thereby, the on-state current and the field effect mobility of the transistor can be increased.

或者,亦可不連接第一閘極電極148a及第二閘極電極148b並供應不同電位。在此情況中,可控制電晶體的臨限電壓。Alternatively, the first gate electrode 148a and the second gate electrode 148b may not be connected and supply different potentials. In this case, the threshold voltage of the transistor can be controlled.

在此實施例中,在氧化物半導體堆疊125與第二閘極絕緣膜147b之間形成該對電極126,但該對電極126可形成在第一閘極絕緣膜147a與氧化物半導體堆疊125之間。In this embodiment, the pair of electrodes 126 are formed between the oxide semiconductor stack 125 and the second gate insulating film 147b, but the pair of electrodes 126 may be formed on the first gate insulating film 147a and the oxide semiconductor stack 125. between.

透過上述步驟,可製造具有複數閘極電極之電晶體。Through the above steps, a transistor having a plurality of gate electrodes can be fabricated.

(實施例8)(Example 8)

在此實施例中,於下將敘述一個實施例,其中製造出一個顯示裝置,其包括設置在一個基板上方的驅動器電路之至少一部分及配置在畫素部中的電晶體。In this embodiment, an embodiment will be described below in which a display device is manufactured which includes at least a portion of a driver circuit disposed above a substrate and a transistor disposed in the pixel portion.

根據實施例1至7之任一者形成配置在畫素部中的電晶體。此外,在任何實施例1至7中所述之電晶體為n通道電晶體,並因此可在和畫素部之電晶體相同的基板上方形成在諸多驅動器電路之中可使用n通道電晶體所形成之一個驅動器電路的一部分。A transistor disposed in the pixel portion is formed according to any of Embodiments 1 to 7. Further, the transistor described in any of Embodiments 1 to 7 is an n-channel transistor, and thus can be formed over the same substrate as the transistor of the pixel portion, and an n-channel transistor can be used among a plurality of driver circuits. Formed as part of a driver circuit.

第18A圖繪示主動矩陣顯示裝置的區塊圖之一個實施例。在顯示裝置中的基板5300上方,設置畫素部5301、第一掃描線驅動器電路5302、第二掃描線驅動器電路5303、及信號線驅動器電路5304。在畫素部5301中,配置從信號線驅動器電路5304延伸的複數信號線且配置從第一掃描線驅動器電路5302及第二掃描線驅動器電路5303延伸的複數掃描線。注意到在其中掃描線及信號線互相交叉的個別區域中以矩陣形式設置包括顯示元件之畫素。此外,在顯示裝置中之基板5300經由連結點(如撓性印刷電路(FPC))連接至一個時序控制電路(亦稱為控制器或控制器IC)。Figure 18A illustrates an embodiment of a block diagram of an active matrix display device. Above the substrate 5300 in the display device, a pixel portion 5301, a first scanning line driver circuit 5302, a second scanning line driver circuit 5303, and a signal line driver circuit 5304 are disposed. In the pixel portion 5301, a plurality of signal lines extending from the signal line driver circuit 5304 are disposed, and a plurality of scanning lines extending from the first scanning line driver circuit 5302 and the second scanning line driver circuit 5303 are disposed. It is noted that pixels including display elements are arranged in a matrix form in individual regions in which the scan lines and the signal lines cross each other. Further, the substrate 5300 in the display device is connected to a timing control circuit (also referred to as a controller or controller IC) via a connection point such as a flexible printed circuit (FPC).

在第18A圖中,第一掃描線驅動器電路5302、第二掃描線驅動器電路5303、信號線驅動器電路5304形成在與畫素部5301相同的基板5300上方。依此,減少設置在外部之驅動器電路或之類的構件數量,故可實現成本減少。此外,若驅動器電路設置在基板5300外部,會需要延長佈線且佈線連結的數量會增加。然而,若在基板5300上方設置驅動器電路,可減少佈線連結的數量。依此,可實現可靠度及產率的改善。In FIG. 18A, the first scan line driver circuit 5302, the second scan line driver circuit 5303, and the signal line driver circuit 5304 are formed over the same substrate 5300 as the pixel portion 5301. Accordingly, the number of components of the driver circuit or the like provided outside is reduced, so that cost reduction can be achieved. Further, if the driver circuit is disposed outside the substrate 5300, it is necessary to extend the wiring and the number of wiring connections may increase. However, if a driver circuit is provided over the substrate 5300, the number of wiring connections can be reduced. Accordingly, improvement in reliability and productivity can be achieved.

第18B圖繪示畫素部之電路組態的一範例。在此,顯示VA液晶顯示面板的畫素結構。Fig. 18B is a diagram showing an example of the circuit configuration of the pixel unit. Here, the pixel structure of the VA liquid crystal display panel is displayed.

在此畫素結構中,在一個畫素中包括複數畫素電極,且一個電晶體連接至畫素電極之各者。由不同的閘極信號驅動該些電晶體。亦即,獨立地控制供應至在多域畫素中之個別畫素電極的信號。In this pixel structure, a plurality of pixel electrodes are included in one pixel, and one transistor is connected to each of the pixel electrodes. The transistors are driven by different gate signals. That is, the signals supplied to the individual pixel electrodes in the multi-domain pixels are independently controlled.

電晶體628的閘極佈線602及電晶體629的閘極佈線603為分離,所以可供應不同的閘極信號至其。相反地,作用為資料線之源極或汲極電極616係由電晶體628及629所共同使用。針對電晶體628及629的各者,可適當使用實施例1至7中所述的任何電晶體。The gate wiring 602 of the transistor 628 and the gate wiring 603 of the transistor 629 are separated, so that different gate signals can be supplied thereto. Conversely, the source or drain electrode 616 functioning as a data line is commonly used by transistors 628 and 629. For each of the transistors 628 and 629, any of the transistors described in Embodiments 1 to 7 can be suitably used.

第一畫素電極及第二畫素電極具有不同的形狀並藉由一裂縫分開。設置第二畫素電極以圍繞呈V形狀散開的第一畫素電極之外側。藉由電晶體628及629使第一及第二畫素電極之間的電壓施加之時序有所不同以控制液晶之對準。電晶體628連接至閘極佈線602,且電晶體629連接至閘極佈線603。當施加不同閘極信號至閘極佈線602及閘極佈線603時,可變化電晶體628及電晶體629的操作時序。The first pixel electrode and the second pixel electrode have different shapes and are separated by a crack. A second pixel electrode is disposed to surround the outer side of the first pixel electrode that is dispersed in a V shape. The timing of the voltage application between the first and second pixel electrodes is varied by transistors 628 and 629 to control the alignment of the liquid crystal. The transistor 628 is connected to the gate wiring 602, and the transistor 629 is connected to the gate wiring 603. When different gate signals are applied to the gate wiring 602 and the gate wiring 603, the operation timing of the transistor 628 and the transistor 629 can be changed.

此外,使用電容器佈線690、充當電介質之閘極絕緣膜、及電連接至第一畫素電極或第二畫素電極的電容器電極來形成儲存電容器。Further, a storage capacitor is formed using a capacitor wiring 690, a gate insulating film serving as a dielectric, and a capacitor electrode electrically connected to the first pixel electrode or the second pixel electrode.

第一畫素電極、液晶層、及相對電極互相重疊以形成第一液晶元件651。第二畫素電極、該液晶層、及該相對電極互相重疊以形成第二液晶元件652。畫素結構為一個多域結構,其中第一液晶元件651及第二液晶元件652設置在一個畫素中。The first pixel electrode, the liquid crystal layer, and the opposite electrode overlap each other to form the first liquid crystal element 651. The second pixel electrode, the liquid crystal layer, and the opposite electrode overlap each other to form a second liquid crystal element 652. The pixel structure is a multi-domain structure in which the first liquid crystal element 651 and the second liquid crystal element 652 are disposed in one pixel.

注意到畫素結構不限於第18B圖中所示者。例如,可添加切換器、電阻器、電容器、電晶體、感測器、或邏輯電路至第18B圖中所示之畫素。It is noted that the pixel structure is not limited to those shown in Fig. 18B. For example, a switch, resistor, capacitor, transistor, sensor, or logic circuit can be added to the pixel shown in Figure 18B.

在此實施例中,顯示VA液晶顯示面板的一個實施例;然而,本發明之一個實施例不特別限於此且可應用至各種模式之液晶顯示裝置。例如,作為改善視角特性之一種方法,本發明之一個實施例可應用至橫向電場模式(亦稱為IPS模式),其中施加在水平方向中至基板的主要表面的電場到液晶層。In this embodiment, an embodiment of the VA liquid crystal display panel is shown; however, one embodiment of the present invention is not particularly limited thereto and can be applied to liquid crystal display devices of various modes. For example, as one method of improving viewing angle characteristics, one embodiment of the present invention can be applied to a transverse electric field mode (also referred to as an IPS mode) in which an electric field in a horizontal direction to a main surface of a substrate is applied to a liquid crystal layer.

例如,較佳使用呈現藍相(針對此IPS液晶顯示面板無需對準膜)的液晶。藍相為液晶相之一,其正好在當膽固醇液晶的溫度增加時膽固醇相改變成各向同性相之前產生。由於藍相僅產生在窄的溫度範圍內,針對液晶元件的液晶層使用其混合有手性劑之液晶組成物來改善該溫度範圍。包括呈現藍相之液晶及手性劑之液晶組成物具有1毫秒或更少之短響應時間,且具有光學各向同性,這使得對準處理變成不必要且視角相依性變小。For example, a liquid crystal exhibiting a blue phase (the alignment film is not required for this IPS liquid crystal display panel) is preferably used. The blue phase is one of the liquid crystal phases which is generated just before the temperature of the cholesteric liquid crystal increases as the cholesterol phase changes to the isotropic phase. Since the blue phase is produced only in a narrow temperature range, the liquid crystal layer mixed with the chiral agent is used for the liquid crystal layer of the liquid crystal element to improve the temperature range. A liquid crystal composition including a liquid crystal and a chiral agent exhibiting a blue phase has a short response time of 1 millisecond or less and is optically isotropic, which makes the alignment process unnecessary and the viewing angle dependency becomes small.

此外,為了改善液晶顯示裝置的移動影像特性,可採用一種驅動技術(例如,場序法),其中使用複數發光二極體(LED)或複數EL光源作為背光以形成表面光源,且表面光源的每一個光源在一訊框週期中以脈衝方式獨立加以驅動。作為表面光源,可使用三或更多種LED或一個發射白光的LED。在使用發射不同顏色的三或更多種光源(例如,紅色(R)、綠色(G)、藍色(B)的光源)作為表面光源的情況中,可履行彩色顯示而無濾色器。此外,在使用發射白光的LED作為表面光源的情況中,可濾色器履行彩色顯示。由於可獨立控制複數LED,可以光學調變液晶層之時序同步化LED的發光時序。可部分關閉諸LED,並因此尤其在顯示其中黑色顯示區域佔據一個螢幕的大面積的影像之情況中減少耗電量。In addition, in order to improve the moving image characteristics of the liquid crystal display device, a driving technique (for example, a field sequential method) may be employed in which a plurality of light emitting diodes (LEDs) or a plurality of EL light sources are used as a backlight to form a surface light source, and the surface light source Each light source is independently driven in a pulsed manner during a frame period. As the surface light source, three or more LEDs or one LED that emits white light can be used. In the case of using three or more light sources (for example, red (R), green (G), blue (B) light sources) emitting different colors as the surface light source, color display can be performed without a color filter. Further, in the case of using an LED that emits white light as a surface light source, the color filter performs a color display. Since the complex LEDs can be independently controlled, the timing of the liquid crystal layer can be optically modulated to synchronize the illumination timing of the LEDs. The LEDs can be partially turned off, and thus the power consumption is reduced especially in the case of displaying a large area image in which the black display area occupies one screen.

第18C圖顯示畫素部之電路組態的一個實施例。在此,顯示使用有機EL元件之顯示面板的畫素結構。Figure 18C shows an embodiment of the circuit configuration of the pixel portion. Here, the pixel structure of the display panel using the organic EL element is displayed.

在有機EL元件中,藉由施加電壓至發光元件,分別從一對電極注入電子及電洞到含有發光有機化合物的層中,並因此電流流動。載子(電子與電洞)重新結合,並因此激發發光有機化合物。發光有機化合物從激發態返回基態,藉此發光。由於這種機制的緣故,此發光元件稱為電流激發型發光元件。In the organic EL element, by applying a voltage to the light-emitting element, electrons and holes are respectively injected from a pair of electrodes into a layer containing a light-emitting organic compound, and thus current flows. The carriers (electrons and holes) recombine and thus excite the luminescent organic compound. The luminescent organic compound returns from the excited state to the ground state, thereby emitting light. Due to this mechanism, this light-emitting element is called a current-excited light-emitting element.

第18C圖繪示可施加數位時間灰階驅動至其之畫素結構的一個實施例,作為半導體裝置之一個實施例。Figure 18C illustrates an embodiment of a pixel structure to which a grayscale drive can be applied, as an embodiment of a semiconductor device.

將敘述可施加數位時間灰階驅動至其之畫素的結構及操作。在此實施例中敘述一個實施例,其中一個畫素包括在通道區域中使用氧化物半導體膜的兩個n通道電晶體。The structure and operation of a pixel to which a grayscale driving to a digital time can be applied will be described. In this embodiment, an embodiment is described in which one pixel includes two n-channel transistors using an oxide semiconductor film in the channel region.

畫素6400包括切換電晶體6401、驅動電晶體6402、發光元件6404、及電容器6403。切換電晶體6401的閘極電極連接至掃描線6406。切換電晶體6401的第一電極(源極電極及汲極電極之一)連接至信號線6405。切換電晶體6401的第二電極(源極電極及汲極電極之另一)連接至驅動電晶體6402的閘極電極。驅動電晶體6402的閘極電極透過電容器6403連接至電源線6407。驅動電晶體6402的第一電極連接至電源線6407。驅動電晶體6402的第二電極連接至發光元件6404的第一電極(畫素電極)。發光元件6404的第二電極相應於共同電極6408。共同電極6408電連接至設置於相同基板上方的共同電位線。The pixel 6400 includes a switching transistor 6401, a driving transistor 6402, a light emitting element 6404, and a capacitor 6403. The gate electrode of the switching transistor 6401 is connected to the scan line 6406. The first electrode (one of the source electrode and the drain electrode) of the switching transistor 6401 is connected to the signal line 6405. The second electrode (the other of the source electrode and the drain electrode) of the switching transistor 6401 is connected to the gate electrode of the driving transistor 6402. The gate electrode of the driving transistor 6402 is connected to the power source line 6407 through the capacitor 6403. The first electrode of the driving transistor 6402 is connected to the power source line 6407. The second electrode of the driving transistor 6402 is connected to the first electrode (pixel electrode) of the light emitting element 6404. The second electrode of the light emitting element 6404 corresponds to the common electrode 6408. The common electrode 6408 is electrically connected to a common potential line disposed above the same substrate.

發光元件6404的第二電極(共同電極6408)設定至低電源電位。注意到低電源電位為一電位,其參照設定至電源線6407之高電源電位,滿足低電源電位<高電源電位。作為低電源電位,可採用例如GND或0 V。將高電源電位與低電源電位之間的電位差施加至發光元件6404,並供應電流至發光元件6404,使發光元件6404發光。在此,為了讓發光元件6404發光,設定每一個電位使得高電源電位與低電源電位之間的電位差高於或等於發光元件6404之正向臨限電壓。The second electrode (common electrode 6408) of the light-emitting element 6404 is set to a low power supply potential. Note that the low power supply potential is at a potential, which is set to the high power supply potential set to the power supply line 6407, and satisfies the low power supply potential <high power supply potential. As the low power supply potential, for example, GND or 0 V can be employed. A potential difference between the high power supply potential and the low power supply potential is applied to the light emitting element 6404, and a current is supplied to the light emitting element 6404 to cause the light emitting element 6404 to emit light. Here, in order to cause the light-emitting element 6404 to emit light, each potential is set such that the potential difference between the high power supply potential and the low power supply potential is higher than or equal to the forward threshold voltage of the light-emitting element 6404.

注意到可使用驅動電晶體6402的閘極電容作為電容器6403之替代件,所以可省略電容器6403。驅動電晶體6402的閘極電容可形成在通道形成區域與閘極電極之間。Note that the gate capacitance of the driving transistor 6402 can be used as a replacement for the capacitor 6403, so the capacitor 6403 can be omitted. A gate capacitance of the driving transistor 6402 may be formed between the channel formation region and the gate electrode.

在電壓輸入電壓驅動法的情況中,將視頻信號輸入到驅動電晶體6402的閘極電極,使驅動電晶體6402為充分啟通或充分關閉。亦即,驅動電晶體6402在線性區域中操作,並因此,施加高於電源線6407之電壓的電壓至驅動電晶體6402的閘極電極。注意到施加高於或等於(電源線之電壓+驅動電晶體6402之Vth)的電壓至信號線6405。In the case of the voltage input voltage driving method, a video signal is input to the gate electrode of the driving transistor 6402 so that the driving transistor 6402 is sufficiently turned on or sufficiently turned off. That is, the driving transistor 6402 operates in the linear region, and thus, a voltage higher than the voltage of the power source line 6407 is applied to the gate electrode of the driving transistor 6402. It is noted that a voltage higher than or equal to (the voltage of the power supply line + the Vth of the driving transistor 6402) is applied to the signal line 6405.

在履行類比灰階法來取代數位時間灰階法的情況中,可藉由改變信號輸入來使用與第18C圖中之相同的畫素結構。In the case of performing the analog gray scale method instead of the digital time gray scale method, the same pixel structure as in the 18Cth picture can be used by changing the signal input.

在履行類比灰階驅動的情況中,施加高於或等於發光元件6404的正向電壓及驅動電晶體6402的Vth之和的電壓至驅動電晶體6402的閘極電極。發光元件6404的正向電壓表示獲得希望的亮度之電壓,並包括至少正向臨限電壓。藉由輸入俾使驅動電晶體6402在飽和區域中操作的視頻信號,可供應電流到發光元件6404。為了讓驅動電晶體6402在飽和區域中操作,電源線6407的電位設定成高於驅動電晶體6402之閘極電位。當使用類比視頻信號時,可根據視頻信號饋送電流至發光元件6404並履行類比灰階驅動。In the case of performing the analog gray scale driving, a voltage higher than or equal to the sum of the forward voltage of the light-emitting element 6404 and the Vth of the driving transistor 6402 is applied to the gate electrode of the driving transistor 6402. The forward voltage of the light-emitting element 6404 represents the voltage at which the desired brightness is obtained and includes at least a forward threshold voltage. Current can be supplied to the light-emitting element 6404 by inputting a video signal that causes the drive transistor 6402 to operate in a saturated region. In order for the driving transistor 6402 to operate in the saturation region, the potential of the power supply line 6407 is set to be higher than the gate potential of the driving transistor 6402. When an analog video signal is used, current can be fed to the light-emitting element 6404 according to the video signal and the analog gray scale drive is performed.

注意到畫素結構不限於第18C圖中所示。例如,可添加切換器、電阻器、電容器、電晶體、感測器、或邏輯電路至第18C圖中所示之畫素。It is noted that the pixel structure is not limited to that shown in Fig. 18C. For example, a switch, resistor, capacitor, transistor, sensor, or logic circuit can be added to the pixel shown in Figure 18C.

接下來,將參照畫素的剖面結構敘述發光元件的結構,其係繪示在第19A至19C圖中。在此,將以發光元件驅動電晶體為n通道電晶體的情況作為範例來敘述畫素的剖面結構。可以和任何實施例1至7中所述的電晶體之類似的方式製造用於第19A至19C圖中所示之半導體裝置的發光元件驅動電晶體7011、7021、及7001。Next, the structure of the light-emitting element will be described with reference to the cross-sectional structure of the pixel, which is shown in Figs. 19A to 19C. Here, the cross-sectional structure of the pixel will be described by taking a case where the light-emitting element driving transistor is an n-channel transistor. The light-emitting element drive transistors 7011, 7021, and 7001 for the semiconductor device shown in Figs. 19A to 19C can be fabricated in a manner similar to that of any of the transistors described in Embodiments 1 to 7.

使用透射可見光的導電膜來形成發光元件的第一電極和第二電極的至少一者,且從發光元件提取光發射。當注意力集中在提取光發射之方向時,可提出下列結構:頂發射結構,其中從形成發光元件於其上之基板的側提取光發射而不通過發光元件及電晶體形成於其上方的基板;底發射結構,其中從無形成發光元件的側透過發光元件形成於其上方的基板提取光發射;及雙發射結構,其中從發光元件形成於其上的基板之側及透過基板之基板的另一側兩者提取光發射。第18C圖中所示之畫素組態可應用至具有任何這些發射結構的發光元件。At least one of the first electrode and the second electrode of the light emitting element is formed using a conductive film that transmits visible light, and light emission is extracted from the light emitting element. When attention is focused on extracting the direction of light emission, the following structure may be proposed: a top emission structure in which a light emission is extracted from a side of a substrate on which a light-emitting element is formed without passing through a substrate on which a light-emitting element and a transistor are formed. a bottom emission structure in which light is emitted from a substrate on which a light-emitting element is not formed, and a double-emission structure in which a substrate from which a light-emitting element is formed and a substrate through which a substrate is transmitted Both sides extract light emission. The pixel configuration shown in Fig. 18C can be applied to a light-emitting element having any of these emission structures.

將參照第19A圖敘述具有底發射結構的發光元件。具有底發射結構的發光元件在由第19A圖中的箭頭所示之方向中發光。A light-emitting element having a bottom emission structure will be described with reference to Fig. 19A. The light-emitting element having the bottom emission structure emits light in the direction indicated by the arrow in Fig. 19A.

在第19A圖中,顯示其中使用實施例1中所述之n通道電晶體作為發光元件驅動電晶體7011之一個實施例;然而,本發明之一個實施例不特別限於此。In Fig. 19A, an embodiment in which the n-channel transistor described in Embodiment 1 is used as the light-emitting element driving transistor 7011 is shown; however, an embodiment of the present invention is not particularly limited thereto.

在第19A圖中,EL層7014及第二電極7015依此順序堆疊在具有透光性質之第一電極7017上方,該第一電極連接至發光元件驅動電晶體7011的源極電極或汲極電極。In FIG. 19A, the EL layer 7014 and the second electrode 7015 are sequentially stacked above the first electrode 7017 having a light transmitting property, and the first electrode is connected to the source electrode or the drain electrode of the light emitting element driving transistor 7011. .

使用透射可見光的導電膜形成第一電極7017。針對透射可見光的導電膜,可使用,例如,含氧化鎢之氧化銦、含氧化鎢之氧化銦鋅、含氧化鈦之氧化銦、含氧化鈦之氧化銦錫、氧化銦錫(此後稱為ITO)、氧化銦鋅、或添加氧化矽至其的氧化銦錫。此外,亦可使用具有厚度夠大而足以透光(較佳約5 nm至30 nm)的金屬薄膜。例如,可將具有20 nm之厚度的鋁膜堆疊在具有透光性質之導電膜上方。The first electrode 7017 is formed using a conductive film that transmits visible light. For the conductive film that transmits visible light, for example, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium tin oxide (hereinafter referred to as ITO) ), indium zinc oxide, or indium tin oxide to which cerium oxide is added. Further, a metal film having a thickness large enough to transmit light (preferably about 5 nm to 30 nm) can also be used. For example, an aluminum film having a thickness of 20 nm may be stacked over a conductive film having a light transmitting property.

作為第二電極7015,較佳使用有效反射從EL層7014所發射的光之材料,在此情況中可改善光提取效率。注意到第二電極7015可具有堆疊層結構。例如,可堆疊透射可見光的導電膜(其形成在接觸EL層7014的側上)及擋光膜7016。作為擋光膜,雖有效反射從EL層7014所發射的光之金屬膜或之類為佳,亦可使用例如添加黑色色素至其的樹脂或之類。As the second electrode 7015, a material that effectively reflects light emitted from the EL layer 7014 is preferably used, in which case the light extraction efficiency can be improved. It is noted that the second electrode 7015 may have a stacked layer structure. For example, a conductive film that transmits visible light (which is formed on the side contacting the EL layer 7014) and a light blocking film 7016 may be stacked. As the light-blocking film, a metal film or the like which efficiently reflects light emitted from the EL layer 7014 is preferably used, for example, a resin to which a black coloring matter is added or the like.

注意到第一電極7017及第二電極7015之一作用為陽極,且另一者作用為陰極。較佳使用具有高工作函數的物質作為作用為陽極之電極,並使用具有低工作函數的物質作為作用為陰極之電極。It is noted that one of the first electrode 7017 and the second electrode 7015 functions as an anode, and the other acts as a cathode. It is preferable to use a substance having a high work function as an electrode acting as an anode, and a substance having a low work function as an electrode functioning as a cathode.

作為具有高工作函數的材質,例如,可使用ZrN、Ti、W、Ni、Pt、Cr、ITO、或In-Zn-O。作為具有低工作函數的材質,可使用諸如Li或Cs之鹼金屬、諸如Mg、Ca、或Sr之鹼土金屬、含有任何這些的合金(諸如Mg:Ag或Al:Li)、諸如Yb或Er之稀土金屬、或之類。As a material having a high work function, for example, ZrN, Ti, W, Ni, Pt, Cr, ITO, or In-Zn-O can be used. As a material having a low work function, an alkali metal such as Li or Cs, an alkaline earth metal such as Mg, Ca, or Sr, an alloy containing any of these (such as Mg:Ag or Al:Li), such as Yb or Er may be used. Rare earth metals, or the like.

注意到當比較耗電量時,較佳第一電極7017作用為陰極且第二電極7015作用為陽極,因為可抑制驅動器電路部之電壓的增加並可減少耗電量。Note that when the power consumption is relatively high, it is preferable that the first electrode 7017 functions as a cathode and the second electrode 7015 functions as an anode because an increase in voltage of the driver circuit portion can be suppressed and power consumption can be reduced.

EL層7014包括至少一發光層且可為單層或複數層的堆疊。作為堆疊有複數層之結構,可提供其中陽極、電洞注入層、電洞輸送層、發光層、電子輸送層、及電子注入層依此順序堆疊之結構。注意到在EL層7014中並一定得設置全部這些層,且這些層的每一層可加倍或更多地設置。此外,除了電荷產生層外,可適當添加諸如電子中繼層之另一構件作為中間層。The EL layer 7014 includes at least one light emitting layer and may be a single layer or a stack of a plurality of layers. As a structure in which a plurality of layers are stacked, a structure in which an anode, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer are stacked in this order can be provided. It is noted that all of these layers must be provided in the EL layer 7014, and each of these layers may be doubled or more. Further, in addition to the charge generating layer, another member such as an electron relay layer may be appropriately added as an intermediate layer.

發光元件7012設有隔牆7019,其覆蓋第一電極7017的一個邊緣。作為隔牆7019,除了聚醯亞胺、丙烯酸類、聚醯胺、環氧樹脂、或之類的有機樹脂膜外,可應用無機絕緣膜或有機聚矽氧烷膜。尤佳使用光敏樹脂材料來形成隔牆7019,使隔牆7019的一側表面形成為具有連續弧度的傾斜表面。在使用光敏樹脂材料作為隔牆7019的情況中,可省略形成阻劑遮罩之步驟。此外,可使用無機絕緣膜來形成隔牆7019。當使用無機絕緣膜作為隔牆7019時,可減少隔牆中所包括的濕氣量。The light emitting element 7012 is provided with a partition wall 7019 covering one edge of the first electrode 7017. As the partition wall 7019, an inorganic insulating film or an organic polyoxyalkylene film can be applied in addition to an organic resin film such as polyimide, acrylic, polyamide, epoxy resin or the like. It is particularly preferable to form the partition wall 7019 using a photosensitive resin material so that one side surface of the partition wall 7019 is formed as an inclined surface having a continuous curvature. In the case where a photosensitive resin material is used as the partition wall 7019, the step of forming a resist mask may be omitted. Further, the partition wall 7019 may be formed using an inorganic insulating film. When an inorganic insulating film is used as the partition wall 7019, the amount of moisture included in the partition wall can be reduced.

注意到濾色器層7033係設置在發光元件7012及基板7010之間(見第19A圖)。採用發射白光的結構作為發光元件7012,藉此從發光元件7012所發射的光通過濾色器層7033並接著通過絕緣膜7032、閘極絕緣膜7031、氧化物絕緣膜7030、及基板7010,以被發射到外部。It is noted that the color filter layer 7033 is disposed between the light-emitting element 7012 and the substrate 7010 (see FIG. 19A). A structure that emits white light is used as the light-emitting element 7012, whereby light emitted from the light-emitting element 7012 passes through the color filter layer 7033 and then passes through the insulating film 7032, the gate insulating film 7031, the oxide insulating film 7030, and the substrate 7010. Was launched to the outside.

可形成複數種的濾色器層7033。例如,可在個別畫素中設置紅色濾色器層、藍色濾色器層、綠色濾色器層。注意到藉由諸如噴墨法的小滴釋放法、印刷法、使用光刻技術之蝕刻法、或之類形成濾色器層7033。A plurality of color filter layers 7033 can be formed. For example, a red color filter layer, a blue color filter layer, and a green color filter layer may be provided in individual pixels. It is noted that the color filter layer 7033 is formed by a droplet discharge method such as an inkjet method, a printing method, an etching method using a photolithography technique, or the like.

以外套層7034覆蓋濾色器層7033並進一步在其上方形成保護絕緣膜7035。注意到在第19A圖中繪示具有小厚度之外套層7034;外套層7034係使用諸如丙烯酸樹脂的樹脂材料加以形成並具有減少濾色器層7033所導致之不均勻度的功能。The color filter layer 7033 is covered with a jacket layer 7034 and a protective insulating film 7035 is further formed thereon. It is noted that a jacket layer 7034 having a small thickness is illustrated in Fig. 19A; the jacket layer 7034 is formed using a resin material such as an acrylic resin and has a function of reducing the unevenness caused by the color filter layer 7033.

在絕緣膜7032、濾色器層7033、外套層7034、及保護絕緣膜7035中所形成並到達汲極電極的接觸孔係在重疊隔牆7019的位置中。Contact holes formed in the insulating film 7032, the color filter layer 7033, the overcoat layer 7034, and the protective insulating film 7035 and reaching the gate electrode are in a position overlapping the partition wall 7019.

接下來,將參照第19B圖敘述具有雙發射結構的發光元件。具有雙發射結構的發光元件在由第19B圖中之箭頭所示之方向中發光。Next, a light-emitting element having a dual emission structure will be described with reference to Fig. 19B. A light-emitting element having a dual emission structure emits light in a direction indicated by an arrow in Fig. 19B.

在第19B圖中,顯示其中使用實施例1中所述之n通道電晶體作為發光元件驅動電晶體7021之一個實施例;然而,本發明之一個實施例不特別限於此。In Fig. 19B, an embodiment in which the n-channel transistor described in Embodiment 1 is used as the light-emitting element driving transistor 7021 is shown; however, an embodiment of the present invention is not particularly limited thereto.

在第19B圖中,EL層7024及第二電極7025依此順序堆疊在具有透光性質之第一電極7027上方,該第一電極連接至發光元件驅動電晶體7021的源極電極或汲極電極。In FIG. 19B, the EL layer 7024 and the second electrode 7025 are stacked in this order over the first electrode 7027 having a light transmitting property, and the first electrode is connected to the source electrode or the drain electrode of the light emitting element driving transistor 7021. .

使用透射可見光的導電膜形成第一電極7027及第二電極7025的各者。可使用可用為第19A圖中之第一電極7017的材料作為透射可見光的導電膜。因此,細節請參照第一電極7017之說明。Each of the first electrode 7027 and the second electrode 7025 is formed using a conductive film that transmits visible light. As the conductive film that transmits visible light, a material which can be used as the first electrode 7017 in Fig. 19A can be used. Therefore, please refer to the description of the first electrode 7017 for details.

注意到第一電極7027及第二電極7025之一作用為陽極,且另一者作用為陰極。較佳使用具有高工作函數的物質作為作用為陽極之電極,並使用具有低工作函數的物質作為作用為陰極之電極。It is noted that one of the first electrode 7027 and the second electrode 7025 functions as an anode, and the other acts as a cathode. It is preferable to use a substance having a high work function as an electrode acting as an anode, and a substance having a low work function as an electrode functioning as a cathode.

EL層7024可為單層或複數層的堆疊。針對EL層7024,可使用可用為第19A圖中之EL層7014的結構及材料。因此,細節請參照EL層7014之說明。The EL layer 7024 can be a single layer or a stack of multiple layers. For the EL layer 7024, the structure and material which can be used as the EL layer 7014 in Fig. 19A can be used. Therefore, please refer to the description of EL layer 7014 for details.

發光元件7022設有隔牆7029,其覆蓋第一電極7027的一個邊緣。針對隔牆7029,可使用可用為第19A圖中之隔牆7019的結構及材料。因此,細節請參照隔牆7019之說明。The light emitting element 7022 is provided with a partition wall 7029 covering one edge of the first electrode 7027. For the partition wall 7029, the structure and material that can be used as the partition wall 7019 in Fig. 19A can be used. Therefore, please refer to the description of partition 7019 for details.

另外,在第19B圖中所示的元件結構中,如由箭頭所示般,從發光元件7022發射光到第二電極7025側及第一電極7027兩者,並且發射到第一電極7027側的光線通過絕緣膜7042、閘極絕緣膜7041、氧化物絕緣膜7040、及基板7020,以被發射到外部。Further, in the element structure shown in Fig. 19B, as shown by the arrow, light is emitted from the light-emitting element 7022 to both the second electrode 7025 side and the first electrode 7027, and is emitted to the side of the first electrode 7027. The light passes through the insulating film 7042, the gate insulating film 7041, the oxide insulating film 7040, and the substrate 7020 to be emitted to the outside.

在第19B圖中的結構中,為了履行全彩顯示,發光元件7022、與發光元件7022相鄰的發光元件之一、及發光元件的另一者分別為,例如,綠色發光元件、紅色發光元件、及藍色發光元件。或者,可使用四種發光元件(除了三種發光元件外包括白色發光元件)來製造能夠全彩顯示之發光顯示裝置。In the configuration of FIG. 19B, in order to perform full color display, the light-emitting element 7022, one of the light-emitting elements adjacent to the light-emitting element 7022, and the other of the light-emitting elements are, for example, a green light-emitting element and a red light-emitting element, respectively. And blue light-emitting elements. Alternatively, four kinds of light-emitting elements (including white light-emitting elements other than the three light-emitting elements) may be used to manufacture a light-emitting display device capable of full-color display.

接下來,將參照第19C圖敘述具有頂發射結構的發光元件。具有頂發射結構的發光元件在由第19C圖中之箭頭所示之方向中發光。Next, a light-emitting element having a top emission structure will be described with reference to Fig. 19C. The light-emitting element having the top emission structure emits light in the direction indicated by the arrow in Fig. 19C.

在第19C圖中,顯示其中使用實施例1中所述之n通道電晶體作為發光元件驅動電晶體7001之一個實施例;然而,本發明之一個實施例不特別限於此。In Fig. 19C, an embodiment in which the n-channel transistor described in Embodiment 1 is used as the light-emitting element driving transistor 7001 is shown; however, an embodiment of the present invention is not particularly limited thereto.

在第19C圖中,EL層7004及第二電極7005依此順序堆疊在具有透光性質之第一電極7003上方,該第一電極連接至發光元件驅動電晶體7001的源極電極或汲極電極。In FIG. 19C, the EL layer 7004 and the second electrode 7005 are stacked in this order over the first electrode 7003 having a light transmitting property, and the first electrode is connected to the source electrode or the drain electrode of the light emitting element driving transistor 7001. .

作為第一電極7003,較佳使用有效反射從EL層7004所發射的光之材料,在此情況中可改善光提取效率。注意到第一電極7003可具有堆疊層結構。例如,可堆疊透射可見光的導電膜(其形成在接觸EL層7004的側上)在擋光膜上方。作為擋光膜,雖有效反射從EL層所發射的光之金屬膜或之類為佳,亦可使用例如添加黑色色素至其的樹脂或之類。As the first electrode 7003, a material that effectively reflects light emitted from the EL layer 7004 is preferably used, in which case the light extraction efficiency can be improved. It is noted that the first electrode 7003 may have a stacked layer structure. For example, a conductive film that transmits visible light, which is formed on the side contacting the EL layer 7004, may be stacked over the light blocking film. As the light-blocking film, a metal film or the like which effectively reflects light emitted from the EL layer is preferably used, for example, a resin to which a black coloring matter is added or the like.

使用透射可見光的導電膜來形成第二電極7005。可使用可用為第19A圖中之第一電極7017的材料作為透射可見光的導電膜。因此,細節請參照第一電極7017之說明。The second electrode 7005 is formed using a conductive film that transmits visible light. As the conductive film that transmits visible light, a material which can be used as the first electrode 7017 in Fig. 19A can be used. Therefore, please refer to the description of the first electrode 7017 for details.

注意到第一電極7003及第二電極7005之一作用為陽極,且另一者作用為陰極。較佳使用具有高工作函數的物質作為作用為陽極之電極,並使用具有低工作函數的物質作為作用為陰極之電極。It is noted that one of the first electrode 7003 and the second electrode 7005 functions as an anode, and the other acts as a cathode. It is preferable to use a substance having a high work function as an electrode acting as an anode, and a substance having a low work function as an electrode functioning as a cathode.

EL層7004可為單層或複數層的堆疊。針對EL層7004,可使用可用為第19A圖中之EL層7014的結構及材料。因此,細節請參照EL層7014之說明。The EL layer 7004 can be a single layer or a stack of multiple layers. For the EL layer 7004, the structure and material which can be used as the EL layer 7014 in Fig. 19A can be used. Therefore, please refer to the description of EL layer 7014 for details.

發光元件7002設有隔牆7009,其覆蓋第一電極7003的一個邊緣。針對隔牆7009,可使用可用為第19A圖中之隔牆7019的結構及材料。因此,細節請參照隔牆7019之說明。The light emitting element 7002 is provided with a partition wall 7009 covering one edge of the first electrode 7003. For the partition wall 7009, the structure and material that can be used as the partition wall 7019 in Fig. 19A can be used. Therefore, please refer to the description of partition 7019 for details.

在第19C圖中,發光元件驅動電晶體7001之源極電極或汲極電極透過設置在閘極絕緣膜7051、保護絕緣膜7052、及絕緣膜7055中的接觸孔電連接至第一電極7003。可使用諸如聚醯亞胺、丙烯酸類、苯環丁烯、聚醯胺、或環氧樹脂的樹脂來形成平面化絕緣膜7053。除了這種樹脂材料外,可使用低電介質常數(低k材料)、矽氧烷為基樹脂、或之類。注意到可藉由堆疊使用這些材料所形成之複數絕緣膜來形成平面化絕緣膜7053。對於形成平面化絕緣膜7053之方法無特別限制,且可根據材料藉由濺鍍法、SOG法、旋塗、浸塗、噴塗、小滴釋放法(諸如噴墨法、網板印刷、或平板印刷)、或之類來形成平面化絕緣膜7053。In FIG. 19C, the source electrode or the drain electrode of the light-emitting element driving transistor 7001 is electrically connected to the first electrode 7003 through a contact hole provided in the gate insulating film 7051, the protective insulating film 7052, and the insulating film 7055. The planarization insulating film 7053 may be formed using a resin such as polyimide, acrylic, benzocyclobutene, polyamine, or epoxy. In addition to such a resin material, a low dielectric constant (low-k material), a siloxane-based resin, or the like can be used. It is noted that the planarization insulating film 7053 can be formed by stacking a plurality of insulating films formed using these materials. The method of forming the planarization insulating film 7053 is not particularly limited, and may be performed by sputtering, SOG method, spin coating, dip coating, spray coating, droplet discharge method (such as inkjet method, screen printing, or flat sheet) depending on the material. The planarization insulating film 7053 is formed by printing, or the like.

在第19C圖中的結構中,為了履行全彩顯示,發光元件7002、與發光元件7002相鄰的發光元件之一、及發光元件的另一者分別為,例如,綠色發光元件、紅色發光元件、及藍色發光元件。或者,可使用四種發光元件(除了三種發光元件外包括白色發光元件)來製造能夠全彩顯示之發光顯示裝置。In the configuration of FIG. 19C, in order to perform full color display, the light-emitting element 7002, one of the light-emitting elements adjacent to the light-emitting element 7002, and the other of the light-emitting elements are, for example, a green light-emitting element and a red light-emitting element, respectively. And blue light-emitting elements. Alternatively, four kinds of light-emitting elements (including white light-emitting elements other than the three light-emitting elements) may be used to manufacture a light-emitting display device capable of full-color display.

在第19C圖中的結構中,可以一種方式製造能夠全彩顯示之發光顯示裝置,使得所配置之所有複數發光元件為白色發光元件且在發光元件7002上方配置具有濾色器或之類的密封基板。當形成呈現諸如白色的單色之材料並與濾色器或色彩轉換層結合,可履行全彩顯示。In the structure of Fig. 19C, the light-emitting display device capable of full-color display can be manufactured in such a manner that all of the plurality of light-emitting elements arranged are white light-emitting elements and a color filter or the like is disposed above the light-emitting element 7002. Substrate. A full color display can be performed when a material that exhibits a single color such as white is formed and combined with a color filter or a color conversion layer.

不用說,亦可履行單色光發射的顯示。例如,可使用白光發射來形成發光裝置,或可使用單色光發射來形成區域顏色發光裝置。Needless to say, the display of monochromatic light emission can also be performed. For example, white light emission may be used to form the light emitting device, or monochromatic light emission may be used to form the area color light emitting device.

若有需要,可設置諸如包括圓偏光板的偏光膜之光學膜。An optical film such as a polarizing film including a circular polarizing plate may be provided if necessary.

注意到敘述了一種範例,其中控制發光元件的驅動之電晶體(發光元件驅動電晶體)電連接至該發光元件;然而,可採用一種結構,其中電流控制電晶體係連接在發光元件驅動電晶體與發光元件之間。It is noted that an example is described in which a transistor (light-emitting element driving transistor) that controls driving of a light-emitting element is electrically connected to the light-emitting element; however, a structure may be employed in which a current-controlled electro-crystal system is connected to a light-emitting element driving transistor Between the light emitting element.

在此實施例中所述之半導體裝置不限於第19A至19C圖中所示的結構且可依照本發明之技術的精神以各種方式加以修改。The semiconductor device described in this embodiment is not limited to the structure shown in the drawings 19A to 19C and can be modified in various ways in accordance with the spirit of the technology of the present invention.

(實施例9)(Example 9)

可將在此說明書中揭露的半導體裝置應用至各種的電子裝置(包括遊戲機)。電子裝置的範例為電視機(亦稱為電視或電視接收器)、電腦或之類的監視器、如數位相機或數位視頻相機之相機、數位相框、行動電話機(亦稱為蜂窩式電話或行動電話裝置)、可攜式遊戲機、可攜式資訊終端機、音頻再生裝置、及大尺寸遊戲機(如柏青哥機)。將敘述各包括在任何上述實施例中所述之半導體裝置的電子裝置之實施例。The semiconductor device disclosed in this specification can be applied to various electronic devices (including game machines). Examples of electronic devices are televisions (also known as television or television receivers), computers or the like, cameras such as digital cameras or digital video cameras, digital photo frames, mobile phones (also known as cellular phones or mobile phones). Telephone device), portable game machine, portable information terminal, audio reproduction device, and large-sized game machine (such as Pachinko machine). Embodiments of electronic devices each including the semiconductor device described in any of the above embodiments will be described.

第20A圖繪示可攜式資訊終端機,其包括主體3001、殼體3002、顯示部3003a及3003b、及之類。顯示部3003b為具有觸碰輸入功能的面板。藉由觸碰顯示在顯示部3003b上之鍵盤按鍵3004,可操作螢幕,並可輸入文字。不用說,顯示部3003a可為具有觸碰輸入功能的面板。實施例8中所述之液晶面板或有機發光面板係使用任何實施例1至7中所述之電晶體作為切換元件加以製造,並應用至顯示部3003a或3003b,藉此可獲得可攜式資訊終端機。FIG. 20A illustrates a portable information terminal device including a main body 3001, a housing 3002, display portions 3003a and 3003b, and the like. The display unit 3003b is a panel having a touch input function. By touching the keyboard button 3004 displayed on the display portion 3003b, the screen can be operated and characters can be input. Needless to say, the display portion 3003a may be a panel having a touch input function. The liquid crystal panel or the organic light-emitting panel described in Embodiment 8 is manufactured using the transistor described in any of Embodiments 1 to 7 as a switching element, and is applied to the display portion 3003a or 3003b, thereby obtaining portable information. Terminal.

第20A圖中所示之可攜式資訊終端機可具有顯示各種資訊(如靜止影像、移動影像、及文字影像)的功能;在顯示部上顯示日曆、日期、時間、及之類的功能;操作或編輯顯示在顯示部上之資訊的功能;藉由各種軟體(程式)控制處理的功能;及之類。此外,外部連接端子(諸如耳機端子或USB端子)、儲存媒體插入部、及之類可設置在殼體之背表面或側表面上。The portable information terminal device shown in FIG. 20A may have a function of displaying various information (such as still images, moving images, and text images); displaying calendar, date, time, and the like on the display portion; The function of operating or editing the information displayed on the display unit; the function of controlling the processing by various software (programs); and the like. Further, an external connection terminal such as a headphone terminal or a USB terminal, a storage medium insertion portion, and the like may be disposed on a back surface or a side surface of the housing.

第20A圖中所示之可攜式資訊終端機可無線傳送並接收資料。透過無線通訊,可從從電子書伺服器購買並下載想要的書資料或之類。The portable information terminal shown in Fig. 20A can wirelessly transmit and receive data. Through wireless communication, you can purchase and download the desired book materials or the like from the e-book server.

此外,第20A圖中所示之可攜式資訊終端機的兩個顯示部3003a及3003b之一可如第20B圖中所示般拆卸。顯示部3003a可為具有觸碰輸入功能的面板,這可當被攜帶時貢獻於重量之進一步的減少及方便性,因為可由一隻手進行操作並由另一隻手支撐著殼體3002。Further, one of the two display portions 3003a and 3003b of the portable information terminal shown in Fig. 20A can be detached as shown in Fig. 20B. The display portion 3003a can be a panel having a touch input function, which can contribute to further reduction in weight and convenience when carried, since the housing 3002 can be operated by one hand and supported by the other hand.

此外,當第20B圖中所示之殼體3002可裝有天線、麥克風功能、或無線通訊功能,供用為行動電話。Further, the housing 3002 shown in Fig. 20B can be equipped with an antenna, a microphone function, or a wireless communication function for use as a mobile phone.

第20C圖繪示行動電話的一實施例。第20C圖中所示之行動電話5005設有併入一殼體中的顯示部5001、附接至鉸鍊5002的顯示面板5003、操作按鈕5004、揚聲器、麥克風、及之類。Figure 20C depicts an embodiment of a mobile telephone. The mobile phone 5005 shown in FIG. 20C is provided with a display portion 5001 incorporated in a casing, a display panel 5003 attached to the hinge 5002, an operation button 5004, a speaker, a microphone, and the like.

在第20C圖中所示之行動電話5005中,滑動顯示面板5003以重疊顯示部5001,且顯示面板5003亦作用為具有透光性質之蓋子。顯示面板5003為包括具有實施例8中第19B圖中所示之雙發射結構的發光元件之顯示面板,其中經過和基板側相反的表面及基板側上的表面提取光發射。In the mobile phone 5005 shown in FIG. 20C, the display panel 5003 is slid to overlap the display portion 5001, and the display panel 5003 also functions as a cover having light transmitting properties. The display panel 5003 is a display panel including a light-emitting element having the dual-emission structure shown in FIG. 19B of Embodiment 8, in which light emission is extracted through a surface opposite to the substrate side and a surface on the substrate side.

由於使用具有雙發射結構的發光元件作為顯示面板5003,亦可在顯示部5001被重疊下進行顯示;因此,顯示部5001及顯示面板5003可進行顯示且使用者可觀看這兩個顯示器。顯示面板5003具有透光性質並且可看到超過顯示面板的景像。例如,當在顯示部5001上顯示地圖並使用顯示面板5003顯使用者的位置點時,可清楚認出目前位置。Since the light-emitting element having the dual-emission structure is used as the display panel 5003, the display portion 5001 can be displayed under overlap; therefore, the display portion 5001 and the display panel 5003 can be displayed and the user can view the two displays. The display panel 5003 has a light transmitting property and can be seen to exceed the scene of the display panel. For example, when the map is displayed on the display unit 5001 and the position point of the user is displayed using the display panel 5003, the current position can be clearly recognized.

此外,在行動電話5005設有影像感測器以用為電視電話的情況中,可在顯示出多個面孔的同時與多人交談;因此,可進行電視會議或之類。例如,當在顯示面板5003上顯示一人的面孔或多人的面孔並進一步在顯示部5001上顯示另一個人的面孔時,使用者可在看著這兩或更多人的面孔的同時進行對話。Further, in the case where the mobile phone 5005 is provided with an image sensor for use as a videophone, it is possible to talk with a plurality of people while displaying a plurality of faces; therefore, a video conference or the like can be performed. For example, when a face of a person or a face of a plurality of people is displayed on the display panel 5003 and the face of another person is further displayed on the display portion 5001, the user can perform a dialogue while looking at the faces of the two or more persons.

當以手指或之類觸碰顯示面板5003上所顯示的觸碰輸入按鈕5006時,可輸入資料到行動電話5005中。另外,可藉由滑動顯示面板5003並以手指或之類觸碰操作按鈕5004來進行諸如打電話或寫信的操作。When the touch input button 5006 displayed on the display panel 5003 is touched with a finger or the like, information can be input into the mobile phone 5005. In addition, an operation such as making a call or writing can be performed by sliding the display panel 5003 and touching the operation button 5004 with a finger or the like.

第20D圖繪示電視機9600的一個實施例。在電視機9600中,顯示部9603係納入殼體9601中。顯示部9603可顯示影像。在此,由設有CPU的支架9605支撐機殼9601。當應用任何實施例1至7中所述的電晶體於顯示部9603時,可獲得電視機9600。Figure 20D depicts an embodiment of a television set 9600. In the television set 9600, the display portion 9603 is incorporated in the housing 9601. The display portion 9603 can display an image. Here, the casing 9601 is supported by a bracket 9605 provided with a CPU. When the transistor described in any of Embodiments 1 to 7 is applied to the display portion 9603, the television set 9600 can be obtained.

可以機殼9601之操作開關或分開的遙控器來操作電視機9600。此外,遙控器可設有顯示部,以顯示從遙控器輸出的資料。The television set 9600 can be operated by an operation switch of the cabinet 9601 or a separate remote controller. Further, the remote controller may be provided with a display portion to display the material output from the remote controller.

注意到電視機9600設有接收器、數據機、及之類。藉由使用接收器,可接收一般電視廣播。再者,當電視機有線或無線經由數據機連接至通訊網路時,可履行單道(從傳送器至接收器)或雙道(傳送器與接收器之間、諸多接收器之間、或之類)資訊通訊。It is noted that the television set 9600 is provided with a receiver, a data machine, and the like. A general television broadcast can be received by using a receiver. Furthermore, when the television is wired or wirelessly connected to the communication network via the data machine, it can perform a single channel (from the transmitter to the receiver) or a dual channel (between the transmitter and the receiver, between the receivers, or Class) Information communication.

此外,電視機9600設有外部連結端子9604、儲存媒體記錄及再生部9602、及外部記憶體槽。外部連結端子9604可連接至如USB電纜的各種電纜,使得與個人電腦之資料通訊變成可行。碟型儲存媒體係插入到儲存媒體記錄及再生部9602中,並且可履行儲存在儲存媒體中之資料讀取及至儲存媒體之資料寫入。另外,可在顯示部9603上顯示插入到外部記憶體槽之外部記憶體9606中儲存為資料的圖案、視頻、或之類。Further, the television set 9600 is provided with an external connection terminal 9604, a storage medium recording and reproducing unit 9602, and an external memory slot. The external connection terminal 9604 can be connected to various cables such as a USB cable, making it possible to communicate with a personal computer. The disc-type storage medium is inserted into the storage medium recording and reproducing unit 9602, and can perform data reading stored in the storage medium and data writing to the storage medium. Further, a pattern, a video, or the like stored as a material in the external memory 9606 inserted into the external memory slot can be displayed on the display portion 9603.

在此實施例中所述的方法、結構、及之類可與其他實施例中所述的任何方法、結構、及之類適當地結合。The methods, structures, and the like described in this embodiment can be combined as appropriate with any of the methods, structures, and the like described in the other embodiments.

101...基板101. . . Substrate

102...氧化物絕緣膜102. . . Oxide insulating film

103a...氧化物半導體膜103a. . . Oxide semiconductor film

103b...氧化物半導體膜103b. . . Oxide semiconductor film

103c...氧化物半導體膜103c. . . Oxide semiconductor film

104a...氧化物半導體膜104a. . . Oxide semiconductor film

104b...氧化物半導體膜104b. . . Oxide semiconductor film

104c...氧化物半導體膜104c. . . Oxide semiconductor film

105...氧化物半導體堆疊105. . . Oxide semiconductor stack

105a...氧化物半導體膜105a. . . Oxide semiconductor film

105b...氧化物半導體膜105b. . . Oxide semiconductor film

105c...氧化物半導體膜105c. . . Oxide semiconductor film

106...電極106. . . electrode

107...閘極絕緣膜107. . . Gate insulating film

108...閘極電極108. . . Gate electrode

109...絕緣膜109. . . Insulating film

113a...氧化物半導體膜113a. . . Oxide semiconductor film

113b...氧化物半導體膜113b. . . Oxide semiconductor film

113c...氧化物半導體膜113c. . . Oxide semiconductor film

114a...氧化物半導體膜114a. . . Oxide semiconductor film

114b...氧化物半導體膜114b. . . Oxide semiconductor film

114c...氧化物半導體膜114c. . . Oxide semiconductor film

115...氧化物半導體堆疊115. . . Oxide semiconductor stack

115a...氧化物半導體膜115a. . . Oxide semiconductor film

115b...氧化物半導體膜115b. . . Oxide semiconductor film

115c...氧化物半導體膜115c. . . Oxide semiconductor film

116...電極116. . . electrode

117...閘極絕緣膜117. . . Gate insulating film

118...閘極電極118. . . Gate electrode

119...絕緣膜119. . . Insulating film

120...佈線120. . . wiring

123b...氧化物半導體膜123b. . . Oxide semiconductor film

123c...氧化物半導體膜123c. . . Oxide semiconductor film

124b...氧化物半導體膜124b. . . Oxide semiconductor film

124c...氧化物半導體膜124c. . . Oxide semiconductor film

125...氧化物半導體堆疊125. . . Oxide semiconductor stack

125b...氧化物半導體膜125b. . . Oxide semiconductor film

125c...氧化物半導體膜125c. . . Oxide semiconductor film

126...電極126. . . electrode

127...閘極絕緣膜127. . . Gate insulating film

128...閘極電極128. . . Gate electrode

129...絕緣膜129. . . Insulating film

133b...氧化物半導體膜133b. . . Oxide semiconductor film

133c...氧化物半導體膜133c. . . Oxide semiconductor film

134b...氧化物半導體膜134b. . . Oxide semiconductor film

134c...氧化物半導體膜134c. . . Oxide semiconductor film

135...氧化物半導體堆疊135. . . Oxide semiconductor stack

135b...氧化物半導體膜135b. . . Oxide semiconductor film

135c...氧化物半導體膜135c. . . Oxide semiconductor film

136...電極136. . . electrode

137...閘極絕緣膜137. . . Gate insulating film

138...閘極電極138. . . Gate electrode

139...絕緣膜139. . . Insulating film

147a...閘極絕緣膜147a. . . Gate insulating film

147b...閘極絕緣膜147b. . . Gate insulating film

148a...閘極電極148a. . . Gate electrode

148b...閘極電極148b. . . Gate electrode

602...閘極佈線602. . . Gate wiring

603...閘極佈線603. . . Gate wiring

616...源極或汲極電極616. . . Source or drain electrode

628...電晶體628. . . Transistor

629...電晶體629. . . Transistor

651...液晶元件651. . . Liquid crystal element

652...液晶元件652. . . Liquid crystal element

690...電容器佈線690. . . Capacitor wiring

2000...晶體結構2000. . . Crystal structure

2001...晶體結構2001. . . Crystal structure

3001...主體3001. . . main body

3002...殼體3002. . . case

3003a...顯示部3003a. . . Display department

3003b...顯示部3003b. . . Display department

3004...鍵盤按鍵3004. . . Keyboard button

5001...顯示部5001. . . Display department

5002...鉸鍊5002. . . Hinge

5003...顯示面板5003. . . Display panel

5004...操作按鈕5004. . . Operation button

5005...行動電話5005. . . mobile phone

5006...觸碰輸入按鈕5006. . . Touch the input button

5300...基板5300. . . Substrate

5301...畫素部5301. . . Graphic department

5302...掃描線驅動器電路5302. . . Scan line driver circuit

5303...掃描線驅動器電路5303. . . Scan line driver circuit

5304...信號線驅動器電路5304. . . Signal line driver circuit

6400...畫素6400. . . Pixel

6401...切換電晶體6401. . . Switching transistor

6402...驅動電晶體6402. . . Drive transistor

6403...電容器6403. . . Capacitor

6404...發光元件6404. . . Light-emitting element

6405...信號線6405. . . Signal line

6406...掃描線6406. . . Scanning line

6407...電源線6407. . . power cable

6408...共同電極6408. . . Common electrode

7001...發光元件驅動電晶體7001. . . Light-emitting element driving transistor

7002...發光元件7002. . . Light-emitting element

7003...電極7003. . . electrode

7004...EL層7004. . . EL layer

7005...電極7005. . . electrode

7009...隔牆7009. . . partition

7010...基板7010. . . Substrate

7011...發光元件驅動電晶體7011. . . Light-emitting element driving transistor

7012...發光元件7012. . . Light-emitting element

7014...EL層7014. . . EL layer

7015...電極7015. . . electrode

7016...膜7016. . . membrane

7017...電極7017. . . electrode

7019...隔牆7019. . . partition

7020...基板7020. . . Substrate

7021...發光元件驅動電晶體7021. . . Light-emitting element driving transistor

7022...發光元件7022. . . Light-emitting element

7024...EL層7024. . . EL layer

7025...電極7025. . . electrode

7027...電極7027. . . electrode

7029...隔牆7029. . . partition

7030...氧化物絕緣膜7030. . . Oxide insulating film

7031...閘極絕緣膜7031. . . Gate insulating film

7032...絕緣膜7032. . . Insulating film

7033...濾色器層7033. . . Color filter layer

7034...外套層7034. . . Jacket

7035...保護絕緣膜7035. . . Protective insulating film

7040‧‧‧氧化物絕緣膜 7040‧‧‧Oxide insulating film

7041‧‧‧閘極絕緣膜 7041‧‧‧gate insulating film

7042‧‧‧絕緣膜 7042‧‧‧Insulation film

7043‧‧‧濾色器層 7043‧‧‧ color filter layer

7044‧‧‧外套層 7044‧‧‧ coat layer

7045‧‧‧保護絕緣膜 7045‧‧‧Protective insulation film

7051‧‧‧閘極絕緣膜 7051‧‧‧gate insulating film

7052‧‧‧保護絕緣膜 7052‧‧‧Protective insulation film

7053‧‧‧平面化絕緣膜 7053‧‧‧Flat insulating film

7055‧‧‧絕緣膜 7055‧‧‧Insulation film

9600‧‧‧電視機 9600‧‧‧TV

9601‧‧‧殼體 9601‧‧‧shell

9602‧‧‧儲存媒體記錄及再生部 9602‧‧‧Storage Media Recording and Reproduction Department

9603‧‧‧顯示部 9603‧‧‧Display Department

9604‧‧‧外部連結端子 9604‧‧‧External connection terminal

9605‧‧‧支架 9605‧‧‧ bracket

9606‧‧‧外部記憶體9606‧‧‧External memory

第1A及1B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;1A and 1B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第2A至2C圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;2A to 2C are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第3A及3B圖各顯示根據本發明的一實施例之晶體結構;3A and 3B each show a crystal structure according to an embodiment of the present invention;

第4A至4C圖各顯示根據本發明的一實施例之晶體結構;4A to 4C each show a crystal structure according to an embodiment of the present invention;

第5A及5B圖各為顯示根據一實施例之晶體結構的HAADF-STEM影像;5A and 5B are each a HAADF-STEM image showing a crystal structure according to an embodiment;

第6A及6B圖各為顯示根據一實施例之晶體結構的HAADF-STEM影像;6A and 6B are each a HAADF-STEM image showing a crystal structure according to an embodiment;

第7A及7B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;7A and 7B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第8A至8C圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;8A to 8C are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第9A及9B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;9A and 9B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第10A至10E圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;10A to 10E are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第11A及11B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;11A and 11B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第12A至12D圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;12A to 12D are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第13A及13B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;13A and 13B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第14A至14D圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;14A to 14D are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第15A及15B圖分別為繪示為本發明之一實施例的半導體裝置之上視圖及剖面圖;15A and 15B are respectively a top view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention;

第16A至16D圖為製造為本發明之一實施例的半導體裝置之方法的剖面圖;16A to 16D are cross-sectional views showing a method of fabricating a semiconductor device according to an embodiment of the present invention;

第17圖為繪示為本發明之一實施例的半導體裝置之剖面圖;Figure 17 is a cross-sectional view showing a semiconductor device according to an embodiment of the present invention;

第18A至18C圖為繪示本發明之一實施例的區塊圖及電路圖;18A to 18C are block diagrams and circuit diagrams showing an embodiment of the present invention;

第19A至19C圖各為繪示本發明之一實施例的剖面圖;及19A to 19C are each a cross-sectional view showing an embodiment of the present invention; and

第20A至20D圖各繪示一電子裝置之一實施例。20A to 20D each illustrate an embodiment of an electronic device.

101...基板101. . . Substrate

102...氧化物絕緣膜102. . . Oxide insulating film

105...氧化物半導體堆疊105. . . Oxide semiconductor stack

105a...氧化物半導體膜105a. . . Oxide semiconductor film

105b...氧化物半導體膜105b. . . Oxide semiconductor film

106...電極106. . . electrode

107...閘極絕緣膜107. . . Gate insulating film

108...閘極電極108. . . Gate electrode

109...絕緣膜109. . . Insulating film

Claims (22)

一種半導體裝置,包含:第一絕緣膜;與該第一絕緣膜重疊的第二絕緣膜;夾置在該第一絕緣膜和該第二絕緣膜之間的半導體膜之堆疊,該半導體膜之堆疊包含:第一氧化物半導體膜;及接觸該第一氧化物半導體膜並且夾置在該第一氧化物半導體膜與該第二絕緣膜之間的第二氧化物半導體膜;夾置在該第二氧化物半導體膜與該第二絕緣膜之間的第三氧化物半導體膜;及與該半導體膜之堆疊重疊的導電膜,其之間夾置該第二絕緣膜,其中該第二氧化物半導體膜的氮濃度高於該第一氧化物半導體膜的氮濃度,及其中該第二氧化物半導體膜的該氮濃度高於該第三氧化物半導體膜的氮濃度。 A semiconductor device comprising: a first insulating film; a second insulating film overlapping the first insulating film; a stack of semiconductor films sandwiched between the first insulating film and the second insulating film, the semiconductor film The stack includes: a first oxide semiconductor film; and a second oxide semiconductor film contacting the first oxide semiconductor film and interposed between the first oxide semiconductor film and the second insulating film; a third oxide semiconductor film between the second oxide semiconductor film and the second insulating film; and a conductive film overlapping the stack of the semiconductor film with the second insulating film interposed therebetween, wherein the second oxide The nitrogen concentration of the semiconductor film is higher than the nitrogen concentration of the first oxide semiconductor film, and the nitrogen concentration of the second oxide semiconductor film is higher than the nitrogen concentration of the third oxide semiconductor film. 一種半導體裝置,包含:第一絕緣膜;與該第一絕緣膜重疊的第二絕緣膜;夾置在該第一絕緣膜和該第二絕緣膜之間的半導體膜之堆疊,該半導體膜之堆疊包含:第一氧化物半導體膜; 在該第一氧化物半導體膜上並與其接觸的第二氧化物半導體膜;在該第二氧化物半導體膜上並與其接觸且夾置在該第二氧化物半導體膜與該第二絕緣膜之間的第三氧化物半導體膜;及與該半導體膜之堆疊重疊的導電膜,其之間夾置該第二絕緣膜,其中該第二氧化物半導體膜的氮濃度高於該第一氧化物半導體膜的氮濃度。 A semiconductor device comprising: a first insulating film; a second insulating film overlapping the first insulating film; a stack of semiconductor films sandwiched between the first insulating film and the second insulating film, the semiconductor film The stack includes: a first oxide semiconductor film; a second oxide semiconductor film on and in contact with the first oxide semiconductor film; on the second oxide semiconductor film and in contact therewith and sandwiched between the second oxide semiconductor film and the second insulating film a third oxide semiconductor film; and a conductive film overlapping the stack of the semiconductor film with the second insulating film interposed therebetween, wherein the second oxide semiconductor film has a higher nitrogen concentration than the first oxide The nitrogen concentration of the semiconductor film. 一種半導體裝置,包含:第一絕緣膜;與該第一絕緣膜重疊的第二絕緣膜;夾置在該第一絕緣膜和該第二絕緣膜之間的半導體膜之堆疊,該半導體膜之堆疊包含:具有第一晶體結構的第一氧化物半導體膜;及具有第二晶體結構的第二氧化物半導體膜,其接觸該第一氧化物半導體膜並且夾置在該第一氧化物半導體膜與該第二絕緣膜之間;夾置在該第二氧化物半導體膜與該第二絕緣膜之間的具有第三晶體結構之第三氧化物半導體膜;及與該半導體膜之堆疊重疊的導電膜,其之間夾置該第二絕緣膜,其中該第一晶體結構為非纖鋅礦結構或非纖鋅礦結構之變形結構, 其中該第三晶體結構為非纖鋅礦結構或非纖鋅礦結構之變形結構,及其中該第二晶體結構為纖鋅礦結構。 A semiconductor device comprising: a first insulating film; a second insulating film overlapping the first insulating film; a stack of semiconductor films sandwiched between the first insulating film and the second insulating film, the semiconductor film The stack includes: a first oxide semiconductor film having a first crystal structure; and a second oxide semiconductor film having a second crystal structure that contacts the first oxide semiconductor film and is sandwiched between the first oxide semiconductor film Between the second insulating film; a third oxide semiconductor film having a third crystal structure interposed between the second oxide semiconductor film and the second insulating film; and overlapping with the stack of the semiconductor film a conductive film sandwiching the second insulating film, wherein the first crystal structure is a deformed structure of a non-wurtzite structure or a non-wurtzite structure, Wherein the third crystal structure is a deformed structure of a non-wurtzite structure or a non-wurtzite structure, and wherein the second crystal structure is a wurtzite structure. 如申請專利範圍第3項所述之半導體裝置,其中該第一晶體結構為YbFe2O4結構、Yb2Fe3O7結構、YbFe2O4結構的變形結構、及Yb2Fe3O7結構的變形結構之一。 The application of the semiconductor device according to item 3 patentable scope, wherein the first crystal structure YbFe 2 O 4 structure, Yb 2 Fe 3 O 7 structure, YbFe 2 O 4 structure deformable structure, and Yb 2 Fe 3 O 7 One of the structural deformation structures. 如申請專利範圍第3項所述之半導體裝置,其中該第二氧化物半導體膜的氮濃度高於該第一氧化物半導體膜的氮濃度。 The semiconductor device according to claim 3, wherein the second oxide semiconductor film has a nitrogen concentration higher than a nitrogen concentration of the first oxide semiconductor film. 如申請專利範圍第3項所述之半導體裝置,其中該第一晶體結構為YbFe2O4結構、Yb2Fe3O7結構、YbFe2O4結構的變形結構、及Yb2Fe3O7的變形結構之一。 The semiconductor device according to claim 3, wherein the first crystal structure is a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, a deformed structure of a YbFe 2 O 4 structure, and Yb 2 Fe 3 O 7 One of the deformed structures. 如申請專利範圍第1至3項的任一項所述之半導體裝置,其中該第一氧化物半導體膜具有三角或六角結構膜。 The semiconductor device according to any one of claims 1 to 3, wherein the first oxide semiconductor film has a triangular or hexagonal structure film. 如申請專利範圍第1至3項的任一項所述之半導體裝置,其中該第一氧化物半導體膜及該第二氧化物半導體膜為非單晶體,且包含非晶區域和具有c軸對準的結晶區域。 The semiconductor device according to any one of claims 1 to 3, wherein the first oxide semiconductor film and the second oxide semiconductor film are non-single crystal and comprise an amorphous region and have c-axis alignment Crystallized area. 如申請專利範圍第1至3項的任一項所述之半導體裝置, 其中該第一氧化物半導體膜包含鋅、銦、或鎵。 The semiconductor device according to any one of claims 1 to 3, Wherein the first oxide semiconductor film contains zinc, indium, or gallium. 如申請專利範圍第1至3項的任一項所述之半導體裝置,其中該第二氧化物半導體膜為氧化鋅或氧氮化物半導體。 The semiconductor device according to any one of claims 1 to 3, wherein the second oxide semiconductor film is a zinc oxide or oxynitride semiconductor. 一種包括如申請專利範圍第1至3項的任一項所述之半導體裝置的電子裝置。 An electronic device comprising the semiconductor device according to any one of claims 1 to 3. 一種製造半導體裝置的方法,該方法包含下列步驟:設置具有電絕緣頂表面的基板;在第一周圍環境中於該基板上方形成第一氧化物半導體膜;在具有比該第一周圍環境更高濃度的氮之第二周圍環境中在該第一氧化物半導體膜上形成與其接觸的第二氧化物半導體膜;對該第一氧化物半導體膜及該第二氧化物半導體膜履行熱處理,使該第一氧化物半導體膜結晶化成第一晶體結構,且該第二氧化物半導體膜結晶化成與該第一晶體結構不同的第二晶體結構;在該第二氧化物半導體膜上形成與其接觸的第三氧化物半導體膜;及對該第三氧化物半導體膜履行額外的熱處理,使該第三氧化物半導體膜結晶化成第三晶體結構;其中該第二氧化物半導體膜的氮濃度高於該第一氧化 物半導體膜的氮濃度,其中該第二氧化物半導體膜的該氮濃度高於該第三氧化物半導體膜的氮濃度。 A method of fabricating a semiconductor device, the method comprising the steps of: providing a substrate having an electrically insulating top surface; forming a first oxide semiconductor film over the substrate in a first ambient environment; having a higher than the first ambient environment Forming a second oxide semiconductor film in contact with the first oxide semiconductor film in the second surrounding environment of the concentration of nitrogen; performing heat treatment on the first oxide semiconductor film and the second oxide semiconductor film to cause the The first oxide semiconductor film is crystallized into a first crystal structure, and the second oxide semiconductor film is crystallized into a second crystal structure different from the first crystal structure; a second contact is formed on the second oxide semiconductor film a trioxide semiconductor film; and performing an additional heat treatment on the third oxide semiconductor film to crystallize the third oxide semiconductor film into a third crystal structure; wherein a nitrogen concentration of the second oxide semiconductor film is higher than the first Oxidation The nitrogen concentration of the semiconductor film, wherein the nitrogen concentration of the second oxide semiconductor film is higher than the nitrogen concentration of the third oxide semiconductor film. 一種製造半導體裝置的方法,該方法包含下列步驟:設置具有電絕緣頂表面的基板;在第一周圍環境中於該基板上方形成第一氧化物半導體膜;在具有比該第一周圍環境更高濃度的氮之第二周圍環境中在該第一氧化物半導體膜上形成與其接觸的第二氧化物半導體膜;在該第二氧化物半導體膜上形成與其接觸的第三氧化物半導體膜;對該第一氧化物半導體膜及該第二氧化物半導體膜履行熱處理,使該第一氧化物半導體膜結晶化成第一晶體結構,且該第二氧化物半導體膜結晶化成與該第一晶體結構不同的第二晶體結構;其中該第二氧化物半導體膜的氮濃度高於該第一氧化物半導體膜的氮濃度。 A method of fabricating a semiconductor device, the method comprising the steps of: providing a substrate having an electrically insulating top surface; forming a first oxide semiconductor film over the substrate in a first ambient environment; having a higher than the first ambient environment a second oxide semiconductor film in contact with the first oxide semiconductor film is formed on the first oxide semiconductor film in a second surrounding environment of a concentration of nitrogen; a third oxide semiconductor film in contact therewith is formed on the second oxide semiconductor film; The first oxide semiconductor film and the second oxide semiconductor film perform heat treatment to crystallize the first oxide semiconductor film into a first crystal structure, and the second oxide semiconductor film is crystallized to be different from the first crystal structure a second crystal structure; wherein a nitrogen concentration of the second oxide semiconductor film is higher than a nitrogen concentration of the first oxide semiconductor film. 一種製造半導體裝置的方法,該方法包含下列步驟:設置具有電絕緣頂表面的基板;在第一周圍環境中於該基板上方形成第一氧化物半導體膜; 在具有比該第一周圍環境更高濃度的氮之第二周圍環境中在該第一氧化物半導體膜上形成與其接觸的第二氧化物半導體膜;對該第一氧化物半導體膜及該第二氧化物半導體膜履行熱處理,使該第一氧化物半導體膜結晶化成第一晶體結構,且該第二氧化物半導體膜結晶化成第二晶體結構;在該第二氧化物半導體膜上形成與其接觸的第三氧化物半導體膜;及對該第三氧化物半導體膜履行額外的熱處理,使該第三氧化物半導體膜結晶化成第三晶體結構,其中該第一晶體結構為非纖鋅礦結構或非纖鋅礦結構之變形結構,其中該第二晶體結構為纖鋅礦結構,及其中該第三晶體結構為非纖鋅礦結構或非纖鋅礦結構之變形結構。 A method of fabricating a semiconductor device, the method comprising the steps of: providing a substrate having an electrically insulating top surface; forming a first oxide semiconductor film over the substrate in a first ambient environment; Forming a second oxide semiconductor film in contact with the first oxide semiconductor film in a second surrounding environment having a higher concentration of nitrogen than the first surrounding environment; the first oxide semiconductor film and the first The dioxide semiconductor film performs heat treatment to crystallize the first oxide semiconductor film into a first crystal structure, and the second oxide semiconductor film is crystallized into a second crystal structure; forming contact with the second oxide semiconductor film on the second oxide semiconductor film a third oxide semiconductor film; and performing an additional heat treatment on the third oxide semiconductor film to crystallize the third oxide semiconductor film into a third crystal structure, wherein the first crystal structure is a non-wurtzite structure or a deformed structure of the non-wurtzite structure, wherein the second crystal structure is a wurtzite structure, and wherein the third crystal structure is a deformed structure of a non-wurtzite structure or a non-wurtzite structure. 如申請專利範圍第14項所述之製造半導體裝置的方法,其中該第一晶體結構為YbFe2O4結構、Yb2Fe3O7結構、YbFe2O4結構的變形結構、及Yb2Fe3O7的變形結構之一。 The method of manufacturing a semiconductor device according to claim 14, wherein the first crystal structure is a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, a YbFe 2 O 4 structure deformed structure, and Yb 2 Fe One of the deformed structures of 3 O 7 . 如申請專利範圍第14項所述之製造半導體裝置的方法,其中該第二氧化物半導體膜的氮濃度高於該第一氧化物半導體膜的氮濃度。 The method of manufacturing a semiconductor device according to claim 14, wherein the second oxide semiconductor film has a nitrogen concentration higher than a nitrogen concentration of the first oxide semiconductor film. 如申請專利範圍第14項所述之製造半導體裝置的方法,其中該第三晶體結構為YbFe2O4結構、Yb2Fe3O7結構、YbFe2O4結構的變形結構、及Yb2Fe3O7的變形結構之一。 The method of manufacturing a semiconductor device according to claim 14, wherein the third crystal structure is a YbFe 2 O 4 structure, a Yb 2 Fe 3 O 7 structure, a YbFe 2 O 4 structure deformed structure, and Yb 2 Fe One of the deformed structures of 3 O 7 . 如申請專利範圍第12至14項的任一項所述之製造半導體裝置的方法,其中該第一氧化物半導體膜具有三角或六角結構膜。 The method of manufacturing a semiconductor device according to any one of claims 12 to 14, wherein the first oxide semiconductor film has a triangular or hexagonal structure film. 如申請專利範圍第12至14項的任一項所述之製造半導體裝置的方法,其中該第一氧化物半導體膜及該第二氧化物半導體膜為非單晶體,且包含非晶區域和具有c軸對準的結晶區域。 The method of manufacturing a semiconductor device according to any one of claims 12 to 14, wherein the first oxide semiconductor film and the second oxide semiconductor film are non-single crystal, and comprise an amorphous region and have c The crystallization area where the axes are aligned. 如申請專利範圍第12至14項的任一項所述之製造半導體裝置的方法,其中該第一氧化物半導體膜包含鋅、銦、或鎵。 The method of manufacturing a semiconductor device according to any one of claims 12 to 14, wherein the first oxide semiconductor film comprises zinc, indium, or gallium. 如申請專利範圍第12至14項的任一項所述之製造半導體裝置的方法,其中該第二氧化物半導體膜為氧化鋅或氧氮化物半導體。 The method of manufacturing a semiconductor device according to any one of claims 12 to 14, wherein the second oxide semiconductor film is a zinc oxide or oxynitride semiconductor. 如申請專利範圍第12至14項的任一項所述之製造半導體裝置的方法,其中藉由濺鍍法接續形成該第一氧化物半導體膜及該第二氧化物半導體膜;及 其中在已形成該第一氧化物半導體膜之後,將氮引入形成室中以形成該第二氧化物半導體膜。The method of manufacturing a semiconductor device according to any one of claims 12 to 14, wherein the first oxide semiconductor film and the second oxide semiconductor film are successively formed by sputtering; Wherein after the first oxide semiconductor film has been formed, nitrogen is introduced into the formation chamber to form the second oxide semiconductor film.
TW100141658A 2010-11-30 2011-11-15 Semiconductor device and method for manufacturing semiconductor device TWI525818B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267896 2010-11-30
JP2010267901 2010-11-30

Publications (2)

Publication Number Publication Date
TW201236155A TW201236155A (en) 2012-09-01
TWI525818B true TWI525818B (en) 2016-03-11

Family

ID=46126011

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104144474A TWI562379B (en) 2010-11-30 2011-11-15 Semiconductor device and method for manufacturing semiconductor device
TW100141658A TWI525818B (en) 2010-11-30 2011-11-15 Semiconductor device and method for manufacturing semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104144474A TWI562379B (en) 2010-11-30 2011-11-15 Semiconductor device and method for manufacturing semiconductor device

Country Status (7)

Country Link
US (3) US8728883B2 (en)
JP (8) JP5839557B2 (en)
KR (1) KR102058962B1 (en)
CN (1) CN103229304B (en)
DE (1) DE112011103975T5 (en)
TW (2) TWI562379B (en)
WO (1) WO2012073918A1 (en)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823092B2 (en) 2010-11-30 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629496B2 (en) 2010-11-30 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8816425B2 (en) 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
TWI562379B (en) * 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP5897910B2 (en) 2011-01-20 2016-04-06 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8686416B2 (en) * 2011-03-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
KR102103913B1 (en) * 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
TWI562361B (en) 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US8999773B2 (en) * 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
KR102479944B1 (en) * 2012-04-13 2022-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102551443B1 (en) 2012-05-10 2023-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
DE112013002407B4 (en) 2012-05-10 2024-05-08 Semiconductor Energy Laboratory Co., Ltd. semiconductor device
JP2014027263A (en) * 2012-06-15 2014-02-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
KR101451403B1 (en) * 2012-06-26 2014-10-23 엘지디스플레이 주식회사 Thin Film Transistor Substrate Having Metal Oxide Semiconductor And Method For Manufacturing The Same
KR101975929B1 (en) * 2012-06-29 2019-05-09 삼성전자주식회사 Transistor having oxynitride channel layer and method of manufacturing the same
KR102161077B1 (en) * 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20230003262A (en) 2012-07-20 2023-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP6142151B2 (en) * 2012-07-31 2017-06-07 株式会社Joled Display device and electronic device
JP6134598B2 (en) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 Semiconductor device
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2014025002A1 (en) * 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US9929276B2 (en) * 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (en) * 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
KR102211215B1 (en) * 2012-09-14 2021-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for fabricating the same
TWI627750B (en) * 2012-09-24 2018-06-21 半導體能源研究所股份有限公司 Semiconductor device
TWI681233B (en) * 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 Liquid crystal display device, touch panel and method for manufacturing liquid crystal display device
JP6018873B2 (en) * 2012-10-17 2016-11-02 株式会社半導体エネルギー研究所 Semiconductor device
JP6246549B2 (en) * 2012-10-17 2017-12-13 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
DE112013005029T5 (en) * 2012-10-17 2015-07-30 Semiconductor Energy Laboratory Co., Ltd. Microcontroller and manufacturing process for it
KR102094568B1 (en) * 2012-10-17 2020-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9569992B2 (en) * 2012-11-15 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for driving information processing device, program, and information processing device
TWI613813B (en) 2012-11-16 2018-02-01 半導體能源研究所股份有限公司 Semiconductor device
US9263531B2 (en) * 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
EP2738815B1 (en) * 2012-11-30 2016-02-10 Samsung Electronics Co., Ltd Semiconductor materials, transistors including the same, and electronic devices including transistors
TWI582993B (en) 2012-11-30 2017-05-11 半導體能源研究所股份有限公司 Semiconductor device
KR102389073B1 (en) * 2012-11-30 2022-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102305310B1 (en) 2012-12-28 2021-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI607510B (en) 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method of the same
TWI611566B (en) 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 Display device and electronic device
KR102238682B1 (en) * 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI644433B (en) * 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device
JP6193786B2 (en) * 2013-03-14 2017-09-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US10304859B2 (en) * 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
DE102014208859B4 (en) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN109860278A (en) 2013-05-20 2019-06-07 株式会社半导体能源研究所 Semiconductor device
US9773915B2 (en) * 2013-06-11 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102072140B1 (en) * 2013-06-26 2020-02-03 삼성디스플레이 주식회사 Organic light emitting diode display
JP6421446B2 (en) * 2013-06-28 2018-11-14 株式会社リコー Field effect transistor, display element, image display apparatus and system
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP2015053477A (en) * 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing the same
JP6345023B2 (en) * 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9449853B2 (en) * 2013-09-04 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising electron trap layer
US9607991B2 (en) * 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9893194B2 (en) * 2013-09-12 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI678740B (en) * 2013-09-23 2019-12-01 日商半導體能源研究所股份有限公司 Semiconductor device
US9882014B2 (en) * 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9991392B2 (en) 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI642186B (en) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI666770B (en) * 2013-12-19 2019-07-21 日商半導體能源研究所股份有限公司 Semiconductor device
US9722049B2 (en) * 2013-12-23 2017-08-01 Intermolecular, Inc. Methods for forming crystalline IGZO with a seed layer
WO2015097596A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9472678B2 (en) 2013-12-27 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2927934B1 (en) * 2014-03-31 2017-07-05 Flosfia Inc. Crystalline multilayer structure and semiconductor device
TWI663726B (en) * 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6358434B2 (en) * 2014-09-25 2018-07-18 株式会社Joled Thin film transistor and manufacturing method thereof
US20160225915A1 (en) * 2015-01-30 2016-08-04 Cindy X. Qiu Metal oxynitride transistor devices
WO2016139551A1 (en) * 2015-03-03 2016-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10008609B2 (en) * 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US20160308067A1 (en) * 2015-04-17 2016-10-20 Ishiang Shih Metal oxynitride transistor devices
CN105097675B (en) * 2015-09-22 2018-01-30 深圳市华星光电技术有限公司 Array base palte and preparation method thereof
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9882064B2 (en) * 2016-03-10 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Transistor and electronic device
WO2017153882A1 (en) * 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
JP6917734B2 (en) * 2016-03-18 2021-08-11 株式会社半導体エネルギー研究所 Semiconductor device
DE112017002579T5 (en) * 2016-05-20 2019-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device containing the same
TWI726026B (en) * 2016-06-27 2021-05-01 日商半導體能源硏究所股份有限公司 Transistor and semiconductor device
WO2018047067A1 (en) 2016-09-12 2018-03-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR102446301B1 (en) * 2017-12-11 2022-09-23 엘지디스플레이 주식회사 Thin film trnasistor having supporting layer, method for manufacturing the same and display device comprising the same
CN108468037B (en) * 2018-02-26 2019-03-29 武汉大学 Femtosecond laser predissociation device and chemical vapor depsotition equipment
CN109950322B (en) * 2019-03-25 2022-05-13 华南理工大学 Top gate type thin film transistor and manufacturing method thereof
US20220238718A1 (en) * 2019-06-12 2022-07-28 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and transistor including metal oxide
KR20210009000A (en) 2019-07-16 2021-01-26 삼성전자주식회사 Semiconductor device
CN110600553A (en) * 2019-08-09 2019-12-20 深圳市华星光电半导体显示技术有限公司 Thin film transistor and method of manufacturing the same
CN115136324A (en) * 2020-02-20 2022-09-30 株式会社半导体能源研究所 Metal oxide, method for forming metal oxide, and semiconductor device
TWI738430B (en) * 2020-07-22 2021-09-01 友達光電股份有限公司 Organic light emitting diode display panel
CN112701045B (en) * 2020-12-29 2023-07-18 北京大学深圳研究生院 Structure and manufacturing method of double-gate thin film transistor

Family Cites Families (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (en) 1984-03-23 1985-10-08 Fujitsu Ltd Thin film transistor
JPH0244256B2 (en) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN2O5DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPS63210023A (en) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Compound having laminar structure of hexagonal crystal system expressed by ingazn4o7 and its production
JPH0244260B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN5O8DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244258B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN3O6DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244262B2 (en) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN6O9DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244263B2 (en) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN7O10DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0275697A (en) 1988-09-13 1990-03-15 Katalistiks Internatl Inc Method for cracking of hydrocarbon and catalyst used therein
JPH04300292A (en) 1991-03-26 1992-10-23 Sumitomo Electric Ind Ltd Film forming method for multicomponent oxide film superconducting film
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP3298974B2 (en) 1993-03-23 2002-07-08 電子科学株式会社 Thermal desorption gas analyzer
JP3479375B2 (en) 1995-03-27 2003-12-15 科学技術振興事業団 Metal oxide semiconductor device in which a pn junction is formed with a thin film transistor made of a metal oxide semiconductor such as cuprous oxide, and methods for manufacturing the same
US5625202A (en) 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
DE69635107D1 (en) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv SEMICONDUCTOR ARRANGEMENT WITH A TRANSPARENT CIRCUIT ELEMENT
JP3402030B2 (en) * 1995-11-10 2003-04-28 ソニー株式会社 Thin-film semiconductor device manufacturing method
US5817548A (en) 1995-11-10 1998-10-06 Sony Corporation Method for fabricating thin film transistor device
GB2308919A (en) * 1995-12-30 1997-07-09 Samsung Display Devices Co Ltd ZnO thin film electrode structure and manufacturing method therefor
JP3625598B2 (en) 1995-12-30 2005-03-02 三星電子株式会社 Manufacturing method of liquid crystal display device
JP2000026119A (en) 1998-07-09 2000-01-25 Hoya Corp Article having transparent electrically conductive oxide thin film and its manufacture
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000150861A (en) 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3276930B2 (en) 1998-11-17 2002-04-22 科学技術振興事業団 Transistor and semiconductor device
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
WO2002016679A1 (en) 2000-08-18 2002-02-28 Tohoku Techno Arch Co., Ltd. Polycrystalline semiconductor material and method of manufacture thereof
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
KR20020038482A (en) 2000-11-15 2002-05-23 모리시타 요이찌 Thin film transistor array, method for producing the same, and display panel using the same
JP3997731B2 (en) 2001-03-19 2007-10-24 富士ゼロックス株式会社 Method for forming a crystalline semiconductor thin film on a substrate
JP2002289859A (en) 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
KR100532080B1 (en) 2001-05-07 2005-11-30 엘지.필립스 엘시디 주식회사 Echant for amorphous indium-tin-oxide and fabrication method using the same
JP3694737B2 (en) 2001-07-27 2005-09-14 独立行政法人物質・材料研究機構 Method for producing zinc oxide-based homologous compound thin film
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3925839B2 (en) 2001-09-10 2007-06-06 シャープ株式会社 Semiconductor memory device and test method thereof
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
JP4083486B2 (en) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
JP2003298062A (en) 2002-03-29 2003-10-17 Sharp Corp Thin film transistor and its manufacturing method
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (en) 2002-06-13 2004-01-22 Murata Mfg Co Ltd Manufacturing method of semiconductor device and its manufacturing method
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP3859148B2 (en) 2002-10-31 2006-12-20 信越半導体株式会社 Method for manufacturing Zn-based semiconductor light emitting device
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4108633B2 (en) 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
CN1806322A (en) 2003-06-20 2006-07-19 夏普株式会社 Semiconductor device, its manufacturing method, and electronic device
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
EP1724790A4 (en) 2004-03-09 2008-10-01 Idemitsu Kosan Co Thin-film transistor and thin-film transistor substrate and production methods for them and liquid crystal display unit using these and related device and method, and, sputtering target and transparent conductive film formed by using this and transparent electrode and related device and method
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
KR101078509B1 (en) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method of manufacturing thin film transistor
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (en) 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP5276769B2 (en) 2004-10-01 2013-08-28 東京電波株式会社 Hexagonal wurtzite single crystal, method for producing the same, and hexagonal wurtzite single crystal substrate
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
CA2585190A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI481024B (en) 2005-01-28 2015-04-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI412138B (en) 2005-01-28 2013-10-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP4280736B2 (en) 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP5116225B2 (en) 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP2007073705A (en) 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP4560502B2 (en) 2005-09-06 2010-10-13 キヤノン株式会社 Field effect transistor
JP4850457B2 (en) 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
JP4988179B2 (en) 2005-09-22 2012-08-01 ローム株式会社 Zinc oxide compound semiconductor device
JP4907942B2 (en) * 2005-09-29 2012-04-04 シャープ株式会社 Transistors and electronic devices
JP5078246B2 (en) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5064747B2 (en) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (en) 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
CN101283444B (en) 2005-11-15 2011-01-26 株式会社半导体能源研究所 Semiconductor device and method of manufacturing the same
US8263977B2 (en) 2005-12-02 2012-09-11 Idemitsu Kosan Co., Ltd. TFT substrate and TFT substrate manufacturing method
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (en) 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (en) 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US20070287221A1 (en) 2006-06-12 2007-12-13 Xerox Corporation Fabrication process for crystalline zinc oxide semiconductor layer
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
US7906415B2 (en) * 2006-07-28 2011-03-15 Xerox Corporation Device having zinc oxide semiconductor and indium/zinc electrode
JP4609797B2 (en) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
JP4999400B2 (en) 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4332545B2 (en) 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP5164357B2 (en) 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
JP4274219B2 (en) 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7511343B2 (en) * 2006-10-12 2009-03-31 Xerox Corporation Thin film transistor
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (en) 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101312259B1 (en) 2007-02-09 2013-09-25 삼성전자주식회사 Thin film transistor and method for forming the same
KR100851215B1 (en) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
JP2008276212A (en) * 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
JP5043499B2 (en) 2007-05-02 2012-10-10 財団法人高知県産業振興センター Electronic device and method for manufacturing electronic device
KR101345376B1 (en) 2007-05-29 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
JP5241143B2 (en) * 2007-05-30 2013-07-17 キヤノン株式会社 Field effect transistor
US7935964B2 (en) 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
TWI453915B (en) 2007-09-10 2014-09-21 Idemitsu Kosan Co Thin film transistor
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP5264197B2 (en) * 2008-01-23 2013-08-14 キヤノン株式会社 Thin film transistor
US8586979B2 (en) 2008-02-01 2013-11-19 Samsung Electronics Co., Ltd. Oxide semiconductor transistor and method of manufacturing the same
KR101513601B1 (en) * 2008-03-07 2015-04-21 삼성전자주식회사 transistor
JP4555358B2 (en) 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and display device
KR101490112B1 (en) 2008-03-28 2015-02-05 삼성전자주식회사 Inverter and logic circuit comprising the same
KR100941850B1 (en) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
JP2009266938A (en) * 2008-04-23 2009-11-12 Rohm Co Ltd Semiconductor element
KR101496148B1 (en) * 2008-05-15 2015-02-27 삼성전자주식회사 Semiconductor device and method of manufacturing the same
KR100963026B1 (en) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963027B1 (en) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
EP2146379B1 (en) 2008-07-14 2015-01-28 Samsung Electronics Co., Ltd. Transistor comprising ZnO based channel layer
JP2010040552A (en) 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd Thin film transistor and manufacturing method thereof
JP5345456B2 (en) 2008-08-14 2013-11-20 富士フイルム株式会社 Thin film field effect transistor
KR101497425B1 (en) 2008-08-28 2015-03-03 삼성디스플레이 주식회사 Liquid crystal display and method of manufacturing the same
JP5339825B2 (en) * 2008-09-09 2013-11-13 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP4623179B2 (en) 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof
KR101623958B1 (en) * 2008-10-01 2016-05-25 삼성전자주식회사 Inverter, method of operating the same and logic circuit comprising inverter
JP5430113B2 (en) * 2008-10-08 2014-02-26 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP5451280B2 (en) 2008-10-09 2014-03-26 キヤノン株式会社 Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
KR101259727B1 (en) * 2008-10-24 2013-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI501401B (en) 2008-10-31 2015-09-21 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
KR101432764B1 (en) 2008-11-13 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP2010153802A (en) 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP5781720B2 (en) * 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
EP2515337B1 (en) 2008-12-24 2016-02-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
KR101034686B1 (en) * 2009-01-12 2011-05-16 삼성모바일디스플레이주식회사 Organic light emitting display device and method of manufacturing the same
JP5606682B2 (en) 2009-01-29 2014-10-15 富士フイルム株式会社 Thin film transistor, method for manufacturing polycrystalline oxide semiconductor thin film, and method for manufacturing thin film transistor
US8367486B2 (en) * 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
US8704216B2 (en) * 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI489628B (en) * 2009-04-02 2015-06-21 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US8338226B2 (en) * 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2010267896A (en) 2009-05-18 2010-11-25 Toyota Motor Corp Igbt
JP5439944B2 (en) 2009-05-18 2014-03-12 株式会社村田製作所 Multilayer electronic component and manufacturing method thereof
JP5564331B2 (en) 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4415062B1 (en) 2009-06-22 2010-02-17 富士フイルム株式会社 THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
JP4571221B1 (en) 2009-06-22 2010-10-27 富士フイルム株式会社 IGZO-based oxide material and method for producing IGZO-based oxide material
JP2011071476A (en) 2009-08-25 2011-04-07 Canon Inc Thin film transistor, display device using the same, and method of manufacturing thin film transistor
CN105679834A (en) 2009-09-16 2016-06-15 株式会社半导体能源研究所 Transistor and display device
TWI512997B (en) 2009-09-24 2015-12-11 Semiconductor Energy Lab Semiconductor device, power circuit, and manufacturing method of semiconductor device
KR102054650B1 (en) 2009-09-24 2019-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
CN102549757A (en) 2009-09-30 2012-07-04 佳能株式会社 Thin-film transistor
KR101779349B1 (en) 2009-10-14 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011052411A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
KR101763126B1 (en) 2009-11-06 2017-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011058885A1 (en) 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
KR20190100462A (en) 2009-11-28 2019-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
EP2504855A4 (en) 2009-11-28 2016-07-20 Semiconductor Energy Lab Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
WO2011065244A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011065210A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR20220136513A (en) 2009-12-04 2022-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101945171B1 (en) 2009-12-08 2019-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101481398B1 (en) * 2009-12-11 2015-01-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Latch circuit and cpu
WO2011074409A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101830195B1 (en) 2009-12-18 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
CN102903758B (en) 2009-12-28 2015-06-03 株式会社半导体能源研究所 Semiconductor device
JP2011138934A (en) 2009-12-28 2011-07-14 Sony Corp Thin film transistor, display device, and electronic equipment
KR101701208B1 (en) 2010-01-15 2017-02-02 삼성디스플레이 주식회사 Display substrate
JP2011187506A (en) 2010-03-04 2011-09-22 Sony Corp Thin-film transistor, method of manufacturing the thin-film transistor, and display device
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI615920B (en) 2010-08-06 2018-02-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US20120064665A1 (en) 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus, apparatus for successive deposition, and method for manufacturing semiconductor device
JP2012099661A (en) * 2010-11-02 2012-05-24 Idemitsu Kosan Co Ltd Method of manufacturing oxide semiconductor
TWI562379B (en) * 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
JP2012160679A (en) 2011-02-03 2012-08-23 Sony Corp Thin-film transistor, display device, and electronic apparatus

Also Published As

Publication number Publication date
US8728883B2 (en) 2014-05-20
JP2020057820A (en) 2020-04-09
JP6648193B2 (en) 2020-02-14
JP5839557B2 (en) 2016-01-06
TW201613107A (en) 2016-04-01
US20160181434A1 (en) 2016-06-23
JP6031580B2 (en) 2016-11-24
JP2016105494A (en) 2016-06-09
KR102058962B1 (en) 2019-12-24
US20140239298A1 (en) 2014-08-28
US9634082B2 (en) 2017-04-25
JP6142012B2 (en) 2017-06-07
JP2012134467A (en) 2012-07-12
US9281358B2 (en) 2016-03-08
US20120132903A1 (en) 2012-05-31
CN103229304B (en) 2016-08-10
WO2012073918A1 (en) 2012-06-07
TWI562379B (en) 2016-12-11
JP2016066803A (en) 2016-04-28
JP6860705B2 (en) 2021-04-21
TW201236155A (en) 2012-09-01
JP2018133596A (en) 2018-08-23
JP2021097251A (en) 2021-06-24
JP2023052247A (en) 2023-04-11
JP6348204B2 (en) 2018-06-27
DE112011103975T5 (en) 2013-09-26
CN103229304A (en) 2013-07-31
KR20130140802A (en) 2013-12-24
JP2017130702A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
TWI525818B (en) Semiconductor device and method for manufacturing semiconductor device
JP5933890B2 (en) Semiconductor film and semiconductor device
JP5917105B2 (en) Semiconductor device
JP5946633B2 (en) Semiconductor device and manufacturing method thereof
JP2014175446A (en) Metal oxide film and semiconductor device
JP6392955B2 (en) Metal oxide film
JP6553266B2 (en) Metal oxide film and semiconductor device
JP2019176183A (en) Metal oxide film and semiconductor device
JP2024010113A (en) metal oxide film