US20070169854A1 - Copper-based alloy casting in which grains are refined - Google Patents
Copper-based alloy casting in which grains are refined Download PDFInfo
- Publication number
- US20070169854A1 US20070169854A1 US10/596,849 US59684905A US2007169854A1 US 20070169854 A1 US20070169854 A1 US 20070169854A1 US 59684905 A US59684905 A US 59684905A US 2007169854 A1 US2007169854 A1 US 2007169854A1
- Authority
- US
- United States
- Prior art keywords
- copper
- mass
- based alloy
- solidification
- specimens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/022—Casting heavy metals, with exceedingly high melting points, i.e. more than 1600 degrees C, e.g. W 3380 degrees C, Ta 3000 degrees C, Mo 2620 degrees C, Zr 1860 degrees C, Cr 1765 degrees C, V 1715 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/025—Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention relates to a copper-based alloy casting in which grains are refined after melt-solidification, and particularly, to a Cu—Zn—Si alloy casting.
- the grains of the copper-based alloy are refined as follows: (A) grains are being refined during the melt-solidification of the copper-based alloy, or (B) grains are refined by performing deformation process such as rolling or heat treatment on the melt-solidified copper alloy (ingot such as slurry or the like; casting such as diecast or the like; and hot forged parts or the like), in which stacking energy such as distortion energy or the like acts as a driving force.
- Zr is a well-known element contributing to the grain refinement in both (A) and (B) cases.
- grains are, in general, refined like (B) case, that is, heat treatment is performed on a melt-solidified ingot, casting or the like, and then the alloy is distorted for grain refinement.
- B refined like
- JP-B-38-20467 solution heat treatment and 75% cold-working are performed on a copper alloy containing Zr, P and Ni in order to examine the mean grain size.
- the publication illustrates that the grain size decreases as the amount of Zr increases by showing that the mean grain sizes are 280 ⁇ m (no Zr contained), 170 ⁇ m (0.05% of Zr contained), 50 ⁇ m (0.13% of Zr contained), 29 ⁇ m (0.22% of Zr contained) and 6 ⁇ m (0.89% of Zr contained) respectively.
- the publication suggests that the optimum amount of Zr is 0.05 to 0.3%, considering adverse effects induced when Zr is contained excessively.
- JP-A-2004-233952 discloses that, in a copper alloy containing 0.15 to 0.5% of Zr, grains can be reduced about 20 ⁇ m or less in the mean grain size by performing solution heat treatment and deformation process, which is to add distortion to the alloy.
- the oxides can enter the mold during pouring, and thus casting defects occur.
- it can be a good method to dissolve and cast the alloy in vacuum or inert gas atmosphere, however, it leads to cost rise.
- Zr is an expensive element. Therefore it is preferable, from an economic viewpoint, to contain a small amount of Zr.
- Si improves the mechanical properties or the like.
- cracks and cavities easily occur during the melt-solidification, whereby shrinkage cavities become large, and casting defects such as shrinkage cavity or the like easily occur.
- the above phenomena are mainly induced by the following facts: as the amount of Si increases, the solidification temperature range between liquidus temperature and solidus temperature is widened, and the thermal conductivity decreases.
- dendrites are shaped, and the arms of the dendrites hinder the removal of porosities generated in the casting. Therefore, the shrinkage cavities remain in the casting, and large shrinkage cavities are generated locally.
- the present inventor found out that, if the grains are being refined during the melt-solidification, shrinkage stress generated at the final stage of solidification decreases, and stresses exerting solid phases are dispersed. Therefore, cracks and cavities seldom occur, and the arms of the dendrites are cut. In addition, porosities are easily removed, and shrinkage cavities are smoothly generated. As a result, a casting without casting defect can be obtained.
- a first copper-based alloy casting according to the invention includes 69 to 88% of Cu, 2 to 5% of Si, 0.0005 to 0.04% of Zr, 0.01 to 0.25% of P by mass, and a remainder includes Zn and inevitable impurities, and satisfies 60 ⁇ Cu ⁇ 3.5 ⁇ Si ⁇ 3 ⁇ P ⁇ 71. Further, mean grain size after melt-solidification is 100 ⁇ m or less, and ⁇ , ⁇ and ⁇ -phases occupy more than 80% of phase structure.
- a second copper-based alloy casting according to the invention further includes, in addition to the composition of the first copper-based alloy casting, at least one element selected from a group consisting of 0.001 to 0.2% of Mg, 0.003 to 0.1% of B, 0.0002 to 0.01% of C, 0.001 to 0.2% of Ti and 0.01 to 0.3% of rare earth element as a grain-refining element, and satisfies 60 ⁇ Cu ⁇ 3.5 ⁇ Si ⁇ 3 ⁇ P ⁇ 0.5 ⁇ [i]+0.5 ⁇ [ii] ⁇ 71.
- [i] is a group consisting of Mg and B
- [ii] is a group consisting of C, Ti and rare earth element.
- First to fourth copper-based alloy castings according to the invention can further include at least one element selected from a group consisting of 0.1 to 2.5% of Sn, 0.02 to 0.25% of Sb and 0.02 to 0.25% of As as a corrosion resistance-improving element, and at least one element selected from a group consisting of 0.004 to 0.45% of Pb, 0.004 to 0.45% of Bi, 0.03 to 0.45% of Se and 0.01 to 0.45% of Te as a machinability-improving element.
- mean grain size after melt-solidification means the mean grain size measured after melt-solidification of the copper-based alloys of predetermined compositions, on which no deformation process such as rolling and heat treatment are performed.
- FIG. 1 is a photomicrograph ( ⁇ 350) showing a phase structure of Specimen No. 9 of embodiments;
- FIG. 2 is a photomicrograph ( ⁇ 350) showing a phase structure of Specimen No. 103 of comparative examples
- FIG. 3 is macro photograph and photomicrograph ( ⁇ 75) showing a metal structure of a cross section of Specimen No. 9 of the embodiments;
- FIG. 4 is macro photograph and photomicrograph ( ⁇ 75) showing a metal structure of a cross section of Specimen No. 10 of the embodiments;
- FIG. 5 is macro photograph and photomicrograph ( ⁇ 75) showing a metal structure of a cross section of Specimen No. 6 of the embodiments;
- FIG. 6 is macro photograph and photomicrograph ( ⁇ 75) of a metal structure showing a cross section of Specimen No. 112 of the comparative examples;
- FIG. 7 is macro photograph and photomicrograph ( ⁇ 75) showing a metal structure of a cross section of Specimen No. 110 of the comparative examples;
- FIG. 8 is macro photograph and photomicrograph ( ⁇ 75) showing a metal structure of a cross section of Specimen No. 103 of the comparative examples;
- FIG. 9A is a graph showing a relationship between the amount of Zr and the mean grain size within the extent of 64 ⁇ Cu ⁇ 3.5 ⁇ Si ⁇ 3 ⁇ P ⁇ 67;
- FIG. 9B is a graph of FIG. 9A , wherein the amount of Zr is expressed in logarithmic scale
- FIG. 10 is a photomicrograph ( ⁇ 75) showing the shape of dendrite in Specimen No. 8 of the comparative example
- FIG. 11 is a photomicrograph ( ⁇ 75) showing the shape of dendrite in Specimen No. 115 of the comparative example
- FIG. 12 is a photomicrograph ( ⁇ 75) showing the shape of dendrite in Specimen No. 110 of the comparative example
- FIGS. 13A to 13 C are views showing final solidificaton portions in Tatur Shrinkage Test.
- FIG. 13A is a view of final solidification portion evaluated ‘good’
- FIG. 13C is a view of final solidification portion evaluated ‘bad’
- FIG. 13B is a view of final solidification portion evaluated ‘fair’;
- FIGS. 14A to 14 C are photographs showing cross-sections of Specimen No. 9 of the embodiments.
- FIG. 14A is a photograph without magnification
- FIG. 14B is a photograph ( ⁇ 3.5)
- FIG. 14C is a photograph ( ⁇ 18);
- FIGS. 15A to 15 C are photographs showing cross-sections of Specimen No. 109 of the comparative example.
- FIG. 15A is a photograph without magnification
- FIG. 15B is a photograph ( ⁇ 3.5)
- FIG. 15C is a photograph ( ⁇ 18).
- % of the alloy components means percent by mass.
- Copper-based alloy castings according to the invention contain 69 to 88% of Cu, 2 to 5% of Si, 0.0005 to 0.04% of Zr and 0.01 to 0.25% of P, and the remainder is Zn and inevitable impurities.
- Cu is the main component of the alloys.
- the grains are not necessarily refined in all copper-based alloy castings even when Zr and P are contained.
- the present inventor found out that the grains can be refined considerably by adding a small amount of Zr when the amount of Si and P follow predetermined relationships.
- Cu In order to obtain various characteristics such as mechanical properties, corrosion resistance or the like as an industrial material, more than 69% of Cu is contained. However, if more than 88% of Cu is contained, the grain refinement is hindered, whereby the maximum amount of Cu is 88%. In addition, it is preferable to contain 70 to 84% of Cu, more preferable to contain 71 to 79.5% of Cu, and most preferable to contain 72 to 79% of Cu.
- Si decreases the stacking fault energy of the alloys and refines the grains considerably when contained with Zr, P, Cu, and Zn. In this case, 2% or more of Si must be contained. However, if more than 5% of Si is contained, the grain refinement saturates or tends to be hindered even when added with Cu and Zn. In addition, the ductility of the castings decreases. Also, the thermal conductivity decreases, and the solidification temperature range is widened, whereby the machinability deteriorates. Si also improves the fluidity of the molten alloy, prevents oxidation of the molten alloy, and decreases the melting point of the molten alloy. Furthermore, Si improves the corrosion resistance, particularly dezincification corrosion resistance and stress corrosion cracking resistance.
- Si also improves the machinability and the mechanical strength such as tensile strength, proof stress, impact strength, fatigue strength or the like.
- the above effects induce synergy effect for the grain refinement of the castings. It is preferable to contain 2.2 to 4.8% of Si, more preferable to contain 2.5 to 4.5% of Si, and most preferable to contain 2.7 to 3.7% of Si in order to induce the synergy effect.
- Zr is an important component for the grain refinement of the castings. As described below, if the amounts of Cu, Si and P follow predetermined relationships, the grains are effectively refined when 0.0005% or more of Zr is contained. The grains are refined more effectively at the amount of 0.0008% or more, most effectively at the amount of 0.0010% or more, and the grain refinement saturates at the amount of 0.0095%.
- the affinity of Zr to oxygen and sulfur is so strong that it is difficult to add Zr within a targeted narrow composition range. Therefore, considering that copper alloy castings are, in general, fabricated with recycled and scrapped materials in the air, a considerable amount of Zr must be added. Meanwhile, the inventor found out that, when 0.05% or more of Zr is contained in Cu—Zn—Si alloys, the grains are not being effectively refined during the melt-solidification. As a result, the maximum amount of Zr is defined at 0.04%. Zirconium oxide is easily formed in the casting and thus robust castings are difficult to obtain as the amount of Zr increases. In addition, since Zr is an expensive metal, it is not desired, from an economic viewpoint, to contain a large amount of Zr.
- the optimal amount of Zr is 0.0010 to 0.0095%.
- P is, like Zr, an important component for the grain refinement of the castings. When contained with Zr, P refines the grains considerably. In addition, P increases the fluidity of the molten alloy, precipitates ⁇ , ⁇ and ⁇ -phases, to be described below, more finely, and improves the corrosion resistance. P shows the above effects when contained 0.01%. However, when P is contained too much, a low-melting point intermetallic compound is formed, and thus the alloy becomes brittle. Therefore, the maximum amount of P is defined at 0.25%, considering easy fabrication of the castings.
- the amount of P is preferably in the range of 0.02 to 0.20%, more preferably in the range of 0.03 to 0.16%, and most preferably in the range of 0.04 to 0.12%.
- Zn is a main component composing the copper-based alloy castings of the invention with Cu and Si.
- Zn decreases the stacking fault energy of the alloy and refines the grains of the castings.
- Zn induces the increase in the fluidity of the molten alloy, the decrease in the melting point, the prevention of Zr oxidation, the increase in corrosion resistance, and the increase in machinability.
- Zn improves the mechanical strength such as tensile strength, proof stress, impact strength, fatigue strength or the like. Therefore, Zn composes the alloy with the above components.
- Cu, Si and P among the components of the copper-based alloy castings of the invention are further required to satisfy the value of Expression (1): Cu ⁇ 3.5 ⁇ Si ⁇ 3 ⁇ P is in the range from 60 to 71 as well as the above-mentioned conditions.
- Expression (1) is derived experimentally from the measured sizes of melt-solidified grains and conditions refining the grains of the copper-based alloy castings about 100 ⁇ m or less in the mean grain size. Even though Expression (1) will be described in detail later, it is preferable that Expression (1) have the value in the range of 62.5 to 68.5, and more preferable in the range of 64 to 67.
- P/Zr be in the range of 0.8 to 250
- Si/Zr be in the range of 80 to 6000
- Si/P be in the range of 12 to 220 in order to achieve the desired level of grain refinement.
- P/Zr is preferably in the range of 1.5 to 150, more preferably in the range of 2 to 100, and most preferably in the range of 4 to 50.
- Si/Zr is preferably in the range of 100 to 5000, more preferably in the range of 120 to 3500, and most preferably in the range of 300 to 1500.
- Si/P is preferably in the range of 16 to 160, more preferably in the range of 20 to 120, and most preferably in the range of 25 to 80.
- Zr particularly when added with P, increases the stacking fault density of a melt-solidified material and causes crystal nuclei to be generated faster than grain growth, whereby micronization of a melt-solidified material, specifically, the grains of the castings can be realized.
- a second copper-based alloy casting according to the invention can further contain at least one element selected from a group consisting of 0.001 to 0.2% of Mg, 0.003 to 0.1% of B, 0.0002 to 0.01% of C, 0.001 to 0.2% of Ti and 0.01 to 0.3% of rare earth element, in addition to the components of the first copper-based alloy casting, as a grain refinement-promoting element.
- Mg considerably decreases the loss of Zr due to sulfur and oxygen, which are mixed from recycled or scrapped materials such as inferior products, scrapped products, wire scrap, press scrap of copper alloy, chips, sprue runner generated during processing, sink head, lasher, mill ends or the like, and exists in the form of manganese sulfide and/or (manganese) oxide in the molten alloy so as to prevent the presence of Zr not contributing to the grain refinement, thereby contributing to the grain refinement. That is, if Mg is added before Zr, Mg becomes MgS and MgO, whereby Mg decreases the amount of S and O in the molten alloy and render Zr do its role effectively. Therefore, it is preferable to contain at least 0.001% of Mg in the alloy.
- B, C, Ti and rare earth elements contribute to the grain refinement. Therefore, it is preferable to contain at least 0.003% of B, 0.0002% of C, 0.001% of Ti, and 0.01% of rare earth elements in order for the elements to effectively work.
- the rare earth elements mean fourteen kinds of lanthanoid elements, including La, Ce or the like as well as Sc and Y.
- Mg, B, C, Ti and rare earth elements are added too much, their effects saturate and the fluidity of the molten alloy deteriorates. Therefore, the maximum amounts of Mg, B, C, Ti and rare earth elements are defined at 0.2%, 0.1%, 0.01%, 0.2% and 0.3%, respectively.
- the above elements are related with the effect of Zr on the grain refinement and influence Expression (1) of the first copper-based alloy casting, whereby, considering each of the effects of Mg, B, C, Ti and rare earth element, the amounts of the respective elements are adjusted to satisfy that the values of Expression (2): Cu ⁇ 3.5 ⁇ Si ⁇ 3 ⁇ P ⁇ 0.5 ⁇ [i]+0.5 ⁇ [ii] are in the range of 60 to 71.
- [i] is a group composed of Mg and B
- [ii] is a group composed of C, Ti, and rare earth element.
- a third copper-based alloy casting according to the invention can further contain at least one element selected from a group consisting of 0.02 to 1.5% of Al, 0.2 to 4.0% of Mn and 0.01 to 0.2% of Cr, in addition to the components of the first copper-based alloy casting, in order to increase the strength and wear resistance of the first copper-based alloy casting.
- the alloys in which grains are refined have excellent strength and wear resistance.
- Al strengthens the matrix so as to improve the strength and wear resistance. Therefore, it is preferable to contain 0.02% or more of Al, and more preferable to contain 0.1% or more of Al. However, if Al is contained too much, the elongation deteriorates, whereby the maximum amount of Al is defined at 1.5%.
- Mn is combined with Si to form a Mn—Si intermetallic compound and contributes to improve the wear resistance. Therefore, it is preferable to contain 0.2% or more of Mn, and more preferable to contain 0.5% or more of Mn. However, if more than 4.0% of Mn is contained, the above effect saturates, and the fluidity of the molten alloy deteriorates, whereby Si, which is useful for the grain refinement, is consumed due to the formation of Mn—Si intermetallic compound. Therefore, the maximum amount of Mn is defined at 4.0%, and it is preferable to contain 3.5% or less of Mn.
- the amount of Si in order to suppress the consumption of Si, which is useful for the grain refinement, it is preferable that the amount of Si satisfy 2.3+1 ⁇ 3 Mn ⁇ Si ⁇ 3.5+1 ⁇ 3 Mn, and more preferable that it satisfy 2.6+1 ⁇ 3 Mn ⁇ Si ⁇ 3.4+1 ⁇ 3 Mn.
- Cr is partially dissolved in the matrix and partially forms a fine intermetallic compound with Si so as to improve the wear resistance. Therefore, it is preferable to contain 0.01% or more of Cr. However, if Cr is contained too much, the Cr—Si compound is coarsened and the above effect saturates. Therefore, the maximum amount of Cr is defined at 0.2%.
- a fourth copper-based alloy casting according to the invention can further contain at least one element selected from a group consisting of 0.02 to 1.5% of Al, 0.2 to 4.0% of Mn and 0.01 to 0.2% of Cr, in addition to the components of the second copper-based alloy casting, in order to increase the strength and wear resistance of the second copper-based alloy casting.
- First to fourth copper-based alloy castings can further contain at least one element selected from a group consisting of 0.1 to 2.5% of Sn, 0.02 to 0.25% of Sb and 0.02 to 0.25% of As as a corrosion resistance-improving element.
- Containing the above elements can increase the corrosion resistance of the alloys in which grains are refined.
- Sn improves erosion•corrosion resistance, seawater resistance.
- the synergy effect of Sn with Si forms Si and Sn-rich protective coatings in a corrosive liquid so as to lead to an excellent corrosion resistance. Therefore, it is preferable to contain 0.1% or more of Sn.
- the maximum amount of Sn is defined at 2.5%, and it is preferable to contain in the range of 0.2 to 0.9% of Sn.
- Sb and As improve dezincification corrosion resistance. Therefore, it is preferable to contain 0.02% or more of Sb and/or As. However, if Sb and/or As are contained too much, segregations easily occur, and casting cracks easily occur since Sb and As are low-melting point metals. In addition, the ductility may deteriorate. Therefore, the maximum amounts of Sb and As are defined 0.25% respectively.
- the copper-based alloy castings according to the invention can further contain at least one element selected from a group consisting of 0.004 to 0.45% of Pb, 0.004 to 0.45% of Bi, 0.03 to 0.45% of Se and 0.01 to 0.45% of Te as a machinability-improving element.
- the alloys in which grains are refined have excellent machinability.
- the machinability can be improved by containing 0.004% of Pb, 0.004% of Bi, 0.03% of Se and/or 0.01% of Te.
- the maximum amounts of Pb, Bi, Se and Te are defined at 0.45% respectively.
- the maximum amount of the above element be 0.2% or less.
- the copper-based alloy casting of the invention it is allowed to contain impurities that are inevitably contained during the melting of raw material of the alloy.
- Fe and Ni as impurities, they consume Zr and P, which are useful for the grain refinement, so as to hinder the grain refinement. Therefore, when Fe and/or Ni is contained, amount thereof is defined at 0.5% or less.
- phase structures of the copper-based alloy castings of the invention ⁇ , ⁇ and ⁇ -phases are adjusted to occupy 80% or more of the structure, and it is preferable that the above three phases be adjusted to occupy 100% of the structure. Meanwhile, the concentrations of Si in ⁇ and ⁇ -phases are higher than that in ⁇ -phase, and at least one of ⁇ , ⁇ and ⁇ -phases occupies the remainder when the three phases do not occupy 100% of the structure.
- phase structure 80% or more of which are occupied by ⁇ , ⁇ and ⁇ -phases, it is required to optimize the casting conditions such as pouring temperature, cooling rate or the like. This is also a condition required to reduce the mean size of the melt-solidified grains to be about 100 ⁇ m or less.
- ⁇ + ⁇ -phase occupy 5 to 85% of the phase structure, and it is more preferable that the phase occupy 10 to 80% of the phase structure.
- the other phases occupy more than 20% of the structure, a primary crystal is not ⁇ -phase, whereby the grain refinement cannot be achieved.
- machinability, corrosion-resistance, elongation and impact strength deteriorate.
- the primary crystal be ⁇ -phase during solidification. That is, if the solid phase is ⁇ -phase while the crystal nuclei are generated, the grain refinement is further expedited.
- the values of Expressions (1) to (4) are equivalent to 62.5.
- the amount of ⁇ -phase primary crystal be 20 to 30% or more, and, in this case, the values of Expressions (1) to (4) are equivalent to 64.
- ⁇ -phase solid can exist in Cu—Zn—Si alloy when the solidification is complete, whereby the above fact becomes a condition for the grain refinement, and the values of Expressions (1) to (4) are equivalent to 62.5. Even though the mean grain size is large even at compositions having the values close but not equal to 62.5, the grains are refined. Then, Expressions (1) to (4) have values of 60 as the minimum.
- Expressions (1) to (4) have the values of 71 due to the following facts: the grain refinement becomes more difficult as the amount of added Zn decreases, peritectic reaction does not occur in a practical non-equilibrium state during solidification, and the machinability deteriorates.
- the solidification temperature range is widened. If the solidification temperature range is widened, solid-phase granular coalescences are easily generated, and thus dendrites have shapes similar to a tree. Furthermore, even though the grains are refined to a certain degree, cracks and cavities easily occur, and the number and size of shrinkage cavities and shrinkage cavities increase.
- the grains are best refined when phases other than ⁇ -phase, mainly ⁇ , ⁇ or ⁇ -phase are crystallized or precipitated after solidification. That is, as the number of ⁇ -phase primary crystals increases, the grains are coalesced with one another, whereby the primary crystals are shaped like dendrites having grown arms. If phases other than ⁇ -phase such as ⁇ , ⁇ and ⁇ -phase are crystallized or precipitated in order to prevent the above phenomenon, the growth of ⁇ -phase grains during solidification and cooling from high temperature are suppressed, and thus micronization can be realized. For example, if eutectic reaction occurs during solidification, the micronization of grains can be realized. In order for the second phase to exist during solidification, it is desirable that the values of Expressions (1) to (4) have 68.5 or less, most desirable that they have 67, considering the balance with ⁇ -phase and the solidification temperature.
- the values of Expressions (1) to (4) are required to be 60 or more, and it is preferable that the values be 62.5 or more, more preferable that the values be 64 or more.
- the values of Expressions (1) to (4) are required to be 71 or less, and it is preferable that the values be 68.5 or less.
- the values be 67 or less.
- the copper-based alloy casting according to the invention with a phase structure, more than 80% of which is occupied by ⁇ , ⁇ and ⁇ -phases, can be obtained by the following casting conditions.
- the maximum pouring temperature is, in general, 1150° C. or less or liquidus temperature+250° C. or less, preferably 1100° C. or less, and most preferably 1050° C. or less.
- the minimum pouring temperature is not specified as long as the molten alloy can reach every corner of the mold. However, in general, the minimum pouring temperature is in the range of 900 to 950° C., right above the liquidus temperature. It should be understood that the above temperature varies with the compositions of the alloys.
- the phase structure has a close relationship with the above expressions, and the temperature range from solidification-complete temperature to 500° C. has the biggest effect on the phase transformation.
- the above expressions have the values of 62.5 or less, it is difficult to obtain a phase structure, more than 80% of which is occupied by ⁇ , ⁇ and ⁇ -phases, if the alloy is cooled at the average rate of 250° C./second or more. It is preferable to cool the alloy at the rate of 100° C./second or less when the expressions have the values of 62.5 or less.
- the alloy is cooled at the average rate of 0.5° C./second or less in the temperature range of 700 to 800° C., even though ⁇ , ⁇ and ⁇ -phases occupy more than 80% of the phase structure, the precipitations of ⁇ and ⁇ -phases are hindered, and thus ⁇ -phase grains are grown, whereby it become more difficult to achieve the grain refinement. Therefore, it is preferable to cool the alloy at the rate of 1° C./minute, at least, in the temperature range of 700 to 800° C. even when the expressions have the values of 68.5 or more.
- the grains can be refined by common methods or means for casting refinement, that is, the decrease in pouring temperature, fastening the cooling rate, stirring during solidification or the like.
- the word ‘casting’ means a substance, which is wholly or partially melted and solidified.
- the casting includes various substances, beginning with ingot, slab, billet for rolling or extrusion, for example, castings by virtue of sand casting, metal casting, low-pressure casting, diecast, lost wax, semi-solid casting (for example, Thixo casting, Rheocasting), squeeze, centrifugal casting, continuous casting (for example, horizontal continuous casting, metallizing, build-up spraying or upward, rod manufactured by upCast, hollow rod, heteromorphic rod, heteromorphic hollow rod, coil material, wire material or the like), melting and forging (direct forging), metallizing, build-up spraying, lining, overlay.
- welding should be included in the casting because part of the base material is melted, solidified and combined together in welding.
- Alloy materials having compositions shown in Tables 1 to 3 are melted in an electric furnace and poured into a metal mold in order to obtain specimens.
- the pouring temperature is 1000° C.
- the pre-heating temperature of the metal mold is 200° C.
- the specimens are cylindrical, 40 mm in diameter and 280 mm in length.
- the area ratios of respective phases composing the phase structure of the specimens are measured. Also, the cylindrical specimens are cut parallel to the bottom surface at 100 mm away from the bottom surface, and the mean grain sizes are measured at 10 mm away from the center of the cross-sectional surface of the specimen.
- the mean grain sizes are measured on the basis of the comparative methods for estimating average grain size of wrought copper and copper alloy of JIS HO501, in which, after the cut surfaces are etched by nitric acid, grains as large as 0.5 mm and more are observed with the naked eye or a magnifying glass offering 5 times the magnification, and grains smaller than 0.5 mm are etched by a mixed solution of hydrogen peroxide and ammonia water and then observed with an optical microscope. Meanwhile, the grain sizes are measured at 10 mm away from the axis of the cut surface and 100 mm away from the bottom surface.
- Tables 1 to 3 disclose the measured grain sizes. Specimens No. 1 to 44 disclosed in Tables 1 and 2 are embodiments of the invention, and Specimens No. 101 to 122 disclosed in Table 3 are comparative examples. Among the comparative examples, bold-lettered data illustrate that the specimens do not follow the conditions defined for the copper-based alloy casting of the invention. TABLE 1 Chemical composition of alloys Area ratio of Mean (remainder Zn and inevitable impurities) (mass %) Expres- phase structure grain Mg, B, C, Pb, Bi, sion (%) size No.
- Specimens No. 1 to 3 of the embodiments and Specimens No. 120 and 121 of the comparative examples have almost the same values for the expressions, and the results disclose that the mean grain sizes decrease as the total area ratios of ⁇ , ⁇ and ⁇ -phases increase. It can be found out that the above three phases should occupy more than 80% of the phase structure in order to refine the grains as small as 100 ⁇ m or less, which is an object of the invention.
- phase structures of Specimen No. 9 of the embodiments and Specimen No. 103 of the comparative examples are disclosed in FIGS. 1 and 2 .
- ⁇ , ⁇ and ⁇ -phases occupy 100% of the phase structure, and the mean grain size is 15 ⁇ m.
- ⁇ , ⁇ and ⁇ -phases occupy 60% of the phase structure with ⁇ -phase occupying the remainder, and the mean grain size is 800 ⁇ m.
- the expressions have values of less than 60, the total area ratios of the above three phases are less than 80%, and the mean grain sizes are considerably large.
- the expressions have values of larger than 71. Even though the other conditions defined for the invention are satisfied, the mean grain sizes are 200 ⁇ m or larger.
- Specimen No. 109 of the comparative examples contains no Zr and P, and Specimens No. 110 and 111 of the comparative examples contain a smaller amount of Zr than that defined for the invention. Meanwhile, since Specimens No. 110 and 111 of the comparative examples contain a small amount of Zr, the values of Si/Zr and P/Zr are not in the preferable ranges of the invention, and thus the mean grain sizes are considerably large.
- Specimens No. 113 to 115 of the comparative examples contain larger amounts of Zr than that defined for the invention, and it can be found out that the grain refinement is hindered if more than 0.05% of Zr is contained.
- FIGS. 9A and 9B show the relationship of the mean grain size with the amount of Zr for the specimens of the embodiments (Cu, Si, Zr, P and the remainder Zn), for which the expressions have the values in the preferable range of 64 to 67, and Specimens No. 110 to 115 of the comparative examples.
- the values of the expressions are limited within the range shown in the figures because, as shown in Specimens No. 1 to 4 and No. 15 to 20 of the embodiment, the values of the expressions considerably influence the mean grain sizes outside the limited range. Therefore, in the limited range, the mean grain sizes are estimated without influence by the values.
- Specimen No. 115 of the comparative examples contains a smaller amount of P than that defined for the invention. Also, in Specimens No. 116 and 117 of the comparative examples, the amounts of Si are not in the defined range of the invention, and the mean grain sizes are 200 ⁇ m or more.
- Specimens No. 118 and 119 of the comparative examples illustrate that the mean grain size increase when Fe and Ni are contained more than defined for the invention as impurities.
- FIGS. 10 to 12 illustrate respectively the metal structures of Specimen No. 8 of the embodiments (25 ⁇ m in the mean grain size), Specimens No. 115 (350 ⁇ m in the mean grain size) and 110 (500 ⁇ m in the mean grain size) of the comparative examples that are cooled during solidification process, specifically at which 40% solid-phases and 60% liquid-phases coexist (semi-molten state), and then etched.
- the arms of dendrites are not generated, and thus the dendrites have a circular or oval shape, contrary to the above, in Specimens No. 115 and 110 of the embodiments, dendrites have a tree-shape.
- crystal nuclei are generated faster than grain growth (growth of the arms of dendrites), whereby the grains can be refined (the matrix is a liquid phase in the semi-molten state).
- Tatur Shrinkage Test is performed on the specimens illustrated in Table 4, and the shapes of the inside shrinkages and the existence of defects such as porosity, hole, cavity or the like in the vicinity of the inside shrinkages is examined.
- the castability is evaluated ‘good’ for specimens with smooth shapes of the inside shrinkages and no defects such as porosity or the like at the final solidification portion as shown in FIG. 13A , ‘fair’ for specimens with non-smooth shapes of the inside shrinkages and some defects such as porosity or the like at the final solidification portion as shown in FIG.
- FIGS. 14 and 15 illustrate the results of Specimens No. 9 and 109. It is evident from the comparison between FIGS. 14B and 14C and FIGS. 15B and 15C that casting defects cannot be discovered in Specimen No. 9 in which the grains are refined, on the contrary, in Specimen No. 109, cracks, cavities and lots of holes are discovered among the arms of dendrites, shrinkage cavities are large, unevenness at the final solidification portion is severe, and casting defects are included.
- Specimens No. 110, 111 and 112 the specimens are further heated up to 750° C. and hot-extruded on the condition of the extrusion ratio of 9 and the rolling reduction of 89% so as to fabricate round bars with diameters of 13.3 mm, and then the mean grain sizes and mechanical properties are measured. Meanwhile, hot-extruded specimens are indicated with Specimens No. 110a, 111a, and 112a.
- melt- 516 257 42 255 solidification 9 15 (after melt- 526 274 42 261 solidification) 12 25 (after melt- 520 263 40 257 solidification) 29 25 (after melt- 652 345 24 330 solidification) 39 20 (after melt- 525 271 30 252 solidification) 44 30 (after melt- 605 310 26 285 solidification) 122 1500 (after 388 184 15 159 melt- solidification) 110 500 (after 436 181 26 169 melt- solidification) 110a 30 (after hot 500 254 37 250 working) 111 600 (after 433 174 24 155 melt- solidification) 111a 30 (after hot 498 251 36 248 working) 112 150 (after 452 199 30 186 melt- solidification) 112a 20 (after hot 524 272 36 258 working)
- Specimens No. 8, 9, 12, 29, 39 and 44 of the embodiments have better mechanical properties than Specimens No. 122, 110, 111 and 112 of the comparative examples.
- Specimens No. 22 and 44 have better mechanical properties than the other specimens of the embodiments.
- the grains are large after melt-solidification, however, the grains can be refined as small as 30 ⁇ m or less by hot extrusion. Also, mechanical properties of the specimens in which the grains are refined by hot extrusion are almost equal or still inferior to those of the melt-solidified embodiments. It is evident from the above results that the mechanical properties are dependent on the mean grain size. Therefore, it can be found out that the copper-based alloy castings according to the invention, in which the grains are being refined during the melt-solidification, can have the mechanical properties as excellent as those of specimens that are hot-extruded, even though they are not hot-extruded.
- the dezincification test is based on ISO 6509. Samples taken from the specimens are buried in phenol-resin materials, polished by emery papers up to No. 1200, washed by ultrasonic waves in pure water, and then dried. Samples for the corrosion resistance test obtained by the above procedure are soaked in an aqueous solution (12.7 g/l) of 1.0% cupric chloride dihydrate (CuCl2.2H2O), maintained for 24 hours at 75° C., taken out from the aqueous solution, and then the maximum values of the dezincification corrosion depth (maximum dezincification corrosion depth) are measured. Table 7 illustrates the results.
- the stress corrosion cracking test is based on JIS H3250.
- Tabular samples (10 mm in width, 60 mm in length and 5 mm in depth) taken from the specimens are bent (to add residual tensile stress) at 45 degree so as to have V-shapes (the radius of the bent area is 5 mm), fat-removed, dried, and maintained under the ammonia atmosphere (25° C.) in a desiccator containing 12.5% ammonia water (ammonia diluted with the same amount of pure water).
- the samples are taken out from the desiccator after predetermined time described below, washed with 10% sulfuric acid, and then the existence of cracks in the samples are observed by a magnifying glass (10 times magnification). Table 6 illustrates the observation results.
- Specimens No. 8, 9, 15, 42 and 33 of the embodiments in which the grains are refined have better corrosion resistance than Specimens No. 103 and 115 of the comparative examples.
- Specimens No. 42 and 33 are superior in the weight loss due to corrosion, in particular, to the other specimens of the embodiments.
- the outer circumferential surfaces of the specimens shown in Table 7 are cut by a lathe provided with a point nose straight tool (rake angle: ⁇ 6°, nose R: 0.4 mm) on the condition of the cutting speed of 100 m/minute, the cutting depth of 1.5 mm, the feed of 0.11 mm/rev, power is measured with a three component dynamometer attached to the bite, and calculated into the primary cutting force. Also, the machinability is evaluated from the shapes of chips generated during cutting. That is, when the chips are shaped like fan or circular-arc, that is, half-rotating, the treatability is good, and the specimens are expressed with ⁇ .
- the treatability is good, but there are some dangers in that the debris forms obstacles to machine tools such as lathe or the like, and the debris may be stuck into the operator's finger, whereby the specimens are expressed with ‘ ⁇ ’.
- the debris are shaped like a screw, that is, rotating over three times, there are disadvantages in that cutting treatability deteriorates, debris may be stuck into the bite, and the cutting surface can be damaged, whereby the specimens are expressed with ‘x’.
- the debris are shaped like a circular-arc rotating more than half, but, less than one time, or a screw rotating less than three times, even though considerable troubles do not occur, the treatablity of the chips deteriorates, the debris may be stuck into the bite during continuous cutting, and then the cutting surfaces are damaged, whereby the specimens are expressed with ‘ ⁇ ’.
- Specimens No. 8, 36 and 39 of the embodiments in which the grains are refined have better machinability than Specimens No. 103, 107, 110 and 113 of the comparative examples. Meanwhile, since containing machinability-improving elements, Specimens No. 36 and 39 have smaller primary cutting forces than Specimen No. 8.
- the copper-based alloy casting according to the invention in which the grains are refined during the melt-solidification, can be used as the following structural materials:
- Electric terminal and connecter requiring high degree of conductivity and thermal conductivity, electric parts, on which alloy brazing and welding can be easily performed;
- Copper-based alloy castings according to the invention have the above compositions and phase structures, and grains are refined to be about 100 ⁇ m or less in the mean grain size after melt-solidification.
- the castings can endure shrinkage during solidification, and casting cracks hardly occur.
- holes and porosities, generated during solidification can be removed easily, robust castings without casting defects such as cavities, shrinkage cavities or the like can be fabricated.
- dendrites crystallized during solidification, have no arms, different from the typical dendrite structure in a casting, that is, a tree-like shape, and are preferably shaped circular, oval, and polygonal or like a cruciform. Therefore, the fluidity of molten alloy improves, and the molten alloy can reach every corner of a thin-walled and complex-shaped mold.
- the castings, grains of which are refined are particularly useful for As-Cast products with complex shapes such as valve, joint, water faucet, metal fitting for water supply and drainage or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Pulmonology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Conductive Materials (AREA)
- Continuous Casting (AREA)
- Farming Of Fish And Shellfish (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Domestic Plumbing Installations (AREA)
- Forging (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Contacts (AREA)
- Surgical Instruments (AREA)
- Cultivation Of Plants (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Instructional Devices (AREA)
- Prostheses (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Catalysts (AREA)
- Wire Processing (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/033,689 US10570483B2 (en) | 2004-08-10 | 2018-07-12 | Copper-based alloy casting in which grains are refined |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-233952 | 2004-08-10 | ||
JP2004233952 | 2004-08-10 | ||
PCT/JP2005/008662 WO2006016442A1 (ja) | 2004-08-10 | 2005-05-02 | 結晶粒が微細化された銅基合金鋳物 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/008662 A-371-Of-International WO2006016442A1 (ja) | 2004-08-10 | 2005-05-02 | 結晶粒が微細化された銅基合金鋳物 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/033,689 Continuation US10570483B2 (en) | 2004-08-10 | 2018-07-12 | Copper-based alloy casting in which grains are refined |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070169854A1 true US20070169854A1 (en) | 2007-07-26 |
Family
ID=35839218
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/596,849 Abandoned US20070169854A1 (en) | 2004-08-10 | 2005-05-02 | Copper-based alloy casting in which grains are refined |
US11/573,638 Abandoned US20090260727A1 (en) | 2004-08-10 | 2005-08-10 | Sn-CONTAINING COPPER ALLOY AND METHOD OF MANUFACTURING THE SAME |
US10/597,454 Active 2025-10-03 US7909946B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy |
US10/597,568 Abandoned US20080253924A1 (en) | 2004-08-10 | 2005-08-10 | Master Alloy for Casting a Modified Copper Alloy and Casting Method Using the Same |
US11/573,640 Active 2030-03-11 US10017841B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy casting and method of casting the same |
US10/597,233 Active 2027-11-04 US8171886B2 (en) | 2004-08-10 | 2005-08-10 | Structure used in seawater, copper alloy wire or bar forming the structure, and method for manufacturing the copper alloy wire or bar |
US11/573,632 Expired - Fee Related US9328401B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same |
US14/534,807 Abandoned US20150132179A1 (en) | 2004-08-10 | 2014-11-06 | Master alloy for casting a modified copper alloy and casting method using the same |
US16/033,689 Active 2025-05-15 US10570483B2 (en) | 2004-08-10 | 2018-07-12 | Copper-based alloy casting in which grains are refined |
US16/802,844 Abandoned US20200190630A1 (en) | 2004-08-10 | 2020-02-27 | Master alloy for casting a modified copper alloy and casting method using the same |
Family Applications After (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/573,638 Abandoned US20090260727A1 (en) | 2004-08-10 | 2005-08-10 | Sn-CONTAINING COPPER ALLOY AND METHOD OF MANUFACTURING THE SAME |
US10/597,454 Active 2025-10-03 US7909946B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy |
US10/597,568 Abandoned US20080253924A1 (en) | 2004-08-10 | 2005-08-10 | Master Alloy for Casting a Modified Copper Alloy and Casting Method Using the Same |
US11/573,640 Active 2030-03-11 US10017841B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy casting and method of casting the same |
US10/597,233 Active 2027-11-04 US8171886B2 (en) | 2004-08-10 | 2005-08-10 | Structure used in seawater, copper alloy wire or bar forming the structure, and method for manufacturing the copper alloy wire or bar |
US11/573,632 Expired - Fee Related US9328401B2 (en) | 2004-08-10 | 2005-08-10 | Copper alloy casting having excellent machinability, strength, wear resistance and corrosion resistance and method of casting the same |
US14/534,807 Abandoned US20150132179A1 (en) | 2004-08-10 | 2014-11-06 | Master alloy for casting a modified copper alloy and casting method using the same |
US16/033,689 Active 2025-05-15 US10570483B2 (en) | 2004-08-10 | 2018-07-12 | Copper-based alloy casting in which grains are refined |
US16/802,844 Abandoned US20200190630A1 (en) | 2004-08-10 | 2020-02-27 | Master alloy for casting a modified copper alloy and casting method using the same |
Country Status (19)
Country | Link |
---|---|
US (10) | US20070169854A1 (es) |
EP (9) | EP1777305B1 (es) |
JP (8) | JP3964930B2 (es) |
KR (2) | KR100863374B1 (es) |
CN (7) | CN100487148C (es) |
AT (7) | ATE482294T1 (es) |
AU (3) | AU2005256111B2 (es) |
BR (1) | BRPI0509025B1 (es) |
CA (5) | CA2563094C (es) |
CL (1) | CL2012003194A1 (es) |
DE (3) | DE602005023737D1 (es) |
DK (1) | DK1777305T3 (es) |
ES (2) | ES2379365T3 (es) |
MX (2) | MXPA06010613A (es) |
NO (1) | NO344238B1 (es) |
NZ (2) | NZ552015A (es) |
PT (1) | PT1777308E (es) |
RU (1) | RU2383641C2 (es) |
WO (7) | WO2006016442A1 (es) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090286083A1 (en) * | 2008-05-13 | 2009-11-19 | Hitachi Cable, Ltd. | Copper wire for a magnet wire, magnet wire using same, and method for fabricating copper wire for a magnet wire |
US20100135848A1 (en) * | 2008-12-02 | 2010-06-03 | Chuankai Xu | Lead-free free-cutting silicon brass alloy |
US20130315660A1 (en) * | 2010-10-25 | 2013-11-28 | Mitsubishi Shindoh Co., Ltd. | Pressure resistant and corrosion resistant copper alloy, brazed structure, and method of manufacturing brazed structure |
RU2629402C1 (ru) * | 2016-12-06 | 2017-08-29 | Юлия Алексеевна Щепочкина | Спеченный сплав на основе меди |
US10538828B2 (en) | 2016-08-15 | 2020-01-21 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
US11155909B2 (en) | 2017-08-15 | 2021-10-26 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
US11479834B2 (en) | 2019-06-25 | 2022-10-25 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
US20230160039A1 (en) * | 2020-05-08 | 2023-05-25 | Mitsubishi Materials Corporation | Wire rod of cu-zn-si based alloy obtained by up-drawing continuous casting |
Families Citing this family (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1777305B1 (en) * | 2004-08-10 | 2010-09-22 | Mitsubishi Shindoh Co., Ltd. | Copper-base alloy casting with refined crystal grains |
DE502005009545D1 (de) * | 2004-10-11 | 2010-06-17 | Diehl Metall Stiftung & Co Kg | Kupfer-zink-silizium-legierung, deren verwendung und deren herstellung |
JP5306591B2 (ja) * | 2005-12-07 | 2013-10-02 | 古河電気工業株式会社 | 配線用電線導体、配線用電線、及びそれらの製造方法 |
JP5116976B2 (ja) * | 2006-02-10 | 2013-01-09 | 三菱伸銅株式会社 | 半融合金鋳造用原料黄銅合金 |
JP2007211324A (ja) * | 2006-02-13 | 2007-08-23 | Sanbo Copper Alloy Co Ltd | 半融合金鋳造用原料りん青銅合金 |
WO2008041777A1 (fr) * | 2006-10-04 | 2008-04-10 | Sumitomo Light Metal Industries, Ltd. | Alliage de cuivre pour tuyaux sans soudure |
KR101133704B1 (ko) * | 2006-12-28 | 2012-04-06 | 가부시키가이샤 기츠 | 내응력부식균열성이 우수한 무연 황동합금 |
WO2009047919A1 (ja) * | 2007-10-10 | 2009-04-16 | Toto Ltd. | 鋳造性に優れた無鉛快削性黄銅 |
EP2196549B1 (en) * | 2007-10-10 | 2019-03-13 | Toto Ltd. | Lead-free, free-machining brass having excellent castability |
TWI452153B (zh) * | 2008-01-09 | 2014-09-11 | Toto Ltd | Excellent lead-free quick-brushed brass |
US8302564B2 (en) * | 2008-03-19 | 2012-11-06 | Nv Bekaert Sa | Aquaculture net with polygonal bottom |
WO2009130949A1 (ja) * | 2008-04-25 | 2009-10-29 | 三菱マテリアル株式会社 | 太陽電池用インターコネクタ用材料及び太陽電池用インターコネクタ |
CL2008001565A1 (es) * | 2008-05-29 | 2008-08-29 | Ochoa Disselkoen Jose Alberto | Dispositivo flotante sumergible, para la limpieza biologica de redes utilizadas en el cultivo de peces que permite destruir los microorganismos del agua, conformado por medios soportantes, un medio de filtracion de particulas y un medio de desinfecci |
CN101440445B (zh) | 2008-12-23 | 2010-07-07 | 路达(厦门)工业有限公司 | 无铅易切削铝黄铜合金及其制造方法 |
US10311991B2 (en) * | 2009-01-09 | 2019-06-04 | Mitsubishi Shindoh Co., Ltd. | High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same |
JP5356974B2 (ja) * | 2009-02-03 | 2013-12-04 | 日立電線株式会社 | 鋳造材、その製造方法及びこれを用いたマグネットワイヤ用銅線並びにマグネットワイヤ及びその製造方法 |
JP5373422B2 (ja) * | 2009-02-09 | 2013-12-18 | Dowaメタルテック株式会社 | 銅合金の鋳造方法 |
CN102341513A (zh) * | 2009-03-03 | 2012-02-01 | 奎斯泰克创新公司 | 无铅、高强度、高润滑性的铜合金 |
US20100303667A1 (en) * | 2009-03-09 | 2010-12-02 | Lazarus Norman M | Novel lead-free brass alloy |
US20100226815A1 (en) * | 2009-03-09 | 2010-09-09 | Lazarus Norman M | Lead-Free Brass Alloy |
JP4871380B2 (ja) * | 2009-03-18 | 2012-02-08 | 株式会社Lixil | 鋳造用銅基合金 |
DE102009002894A1 (de) * | 2009-05-07 | 2010-11-18 | Federal-Mogul Wiesbaden Gmbh | Gleitlagermaterial |
CN101919357A (zh) * | 2009-06-16 | 2010-12-22 | 铜联商务咨询(上海)有限公司 | 一种铜合金材料的应用 |
JP5513230B2 (ja) * | 2009-06-17 | 2014-06-04 | サンエツ金属株式会社 | 鋳造用銅基合金 |
CN102470471A (zh) * | 2009-07-10 | 2012-05-23 | 诺而达埃斯波公司 | 用于热交换器管的铜合金 |
US20110123643A1 (en) * | 2009-11-24 | 2011-05-26 | Biersteker Robert A | Copper alloy enclosures |
MX2012005493A (es) * | 2009-11-24 | 2012-07-10 | Luvata Appleton Llc | Recintos de aleacion de cobre. |
CN101775509B (zh) * | 2010-01-28 | 2011-04-13 | 吉林大学 | 通过添加氧族合金元素提高铜抗腐蚀能力的方法 |
CN102206772A (zh) * | 2010-03-30 | 2011-10-05 | Lclip有限公司 | 黄铜合金 |
JP5037742B2 (ja) * | 2010-08-24 | 2012-10-03 | 株式会社キッツ | 銅合金のBi溶出防止方法 |
KR101260912B1 (ko) * | 2011-02-01 | 2013-05-06 | 주식회사 풍산 | 해수용 동합금재 및 이의 제조 방법 |
CN102230105A (zh) * | 2011-04-08 | 2011-11-02 | 菏泽广源铜带股份有限公司 | 一种高强度锡黄铜 |
JP5484634B2 (ja) * | 2011-04-13 | 2014-05-07 | サンエツ金属株式会社 | 鍛造性、耐応力腐食割れ性及び耐脱亜鉛腐食性に優れた銅基合金 |
US9050651B2 (en) * | 2011-06-14 | 2015-06-09 | Ingot Metal Company Limited | Method for producing lead-free copper—bismuth alloys and ingots useful for same |
DE102012002450A1 (de) * | 2011-08-13 | 2013-02-14 | Wieland-Werke Ag | Verwendung einer Kupferlegierung |
US8465003B2 (en) | 2011-08-26 | 2013-06-18 | Brasscraft Manufacturing Company | Plumbing fixture made of bismuth brass alloy |
US8211250B1 (en) | 2011-08-26 | 2012-07-03 | Brasscraft Manufacturing Company | Method of processing a bismuth brass article |
JP5785836B2 (ja) * | 2011-09-20 | 2015-09-30 | 三菱マテリアル株式会社 | 銅合金及び鋳造品 |
JP5742621B2 (ja) * | 2011-09-20 | 2015-07-01 | 三菱マテリアル株式会社 | 銅合金及び鋳造品 |
KR101340487B1 (ko) * | 2011-09-30 | 2013-12-12 | 주식회사 풍산 | 쾌삭성 무연 구리합금 및 이의 제조방법 |
CN103917674B (zh) * | 2011-11-04 | 2015-06-03 | 三菱伸铜株式会社 | 铜合金热锻件 |
KR20130054022A (ko) * | 2011-11-16 | 2013-05-24 | 주식회사 대창 | 양식 어망용 동합금 |
CN103131887B (zh) * | 2011-11-21 | 2016-07-06 | 宁波三旺洁具有限公司 | 一种耐腐蚀硼铜合金 |
CN102578008B (zh) * | 2012-02-16 | 2014-01-01 | 中国水产科学研究院东海水产研究所 | 刚柔结合装配的锥体网箱箱体构建方法 |
KR102062933B1 (ko) | 2012-03-30 | 2020-01-06 | 가부시키가이샤 구리모토 뎃코쇼 | 수도 부재용 황동 합금 |
CN102703740A (zh) * | 2012-06-20 | 2012-10-03 | 河南平高电气股份有限公司 | 一种Cu-Cr-Zr合金的制备方法 |
DE102012013817A1 (de) | 2012-07-12 | 2014-01-16 | Wieland-Werke Ag | Formteile aus korrosionsbeständigen Kupferlegierungen |
WO2014018564A1 (en) | 2012-07-23 | 2014-01-30 | Zieger Claus Dieter | Multiple proportion delivery systems and methods |
US8991787B2 (en) * | 2012-10-02 | 2015-03-31 | Nibco Inc. | Lead-free high temperature/pressure piping components and methods of use |
AU2013340034B2 (en) * | 2012-10-31 | 2018-03-22 | Kitz Corporation | Brass alloy and processed part and wetted part |
CN103509967B (zh) * | 2013-01-22 | 2016-04-27 | 阮媛清 | 一种重力铸造专用dzr环保黄铜合金锭及其制作工艺 |
US10287653B2 (en) | 2013-03-15 | 2019-05-14 | Garrett Transportation I Inc. | Brass alloys for use in turbocharger bearing applications |
DE112014002690T5 (de) * | 2013-06-05 | 2016-02-25 | San-Etsu Metals Co., Ltd. | Kupferlegierung |
JP5406405B1 (ja) * | 2013-06-12 | 2014-02-05 | 株式会社栗本鐵工所 | 水道部材用銅合金 |
JP2015016501A (ja) * | 2013-07-12 | 2015-01-29 | 株式会社ブリヂストン | 鋳物の鋳造方法、鋳物及びタイヤ成形用金型 |
DE102013012288A1 (de) | 2013-07-24 | 2015-01-29 | Wieland-Werke Ag | Korngefeinte Kupfer-Gusslegierung |
CN105593390B (zh) * | 2013-09-26 | 2017-03-22 | 三菱伸铜株式会社 | 铜合金 |
EP3050982B1 (en) * | 2013-09-26 | 2019-03-20 | Mitsubishi Shindoh Co., Ltd. | Copper alloy and copper alloy sheet |
CN103526067B (zh) * | 2013-10-13 | 2015-07-08 | 蒋荣 | 一种高强度稀土掺杂铜合金的制备方法 |
KR102181051B1 (ko) * | 2013-10-21 | 2020-11-19 | 주식회사 대창 | 내구성이 향상된 죽방렴 구조물 |
CN103555991B (zh) * | 2013-11-20 | 2016-01-20 | 苏州天兼金属新材料有限公司 | 一种无铅环保铜基合金管及其制造方法 |
US20150203940A1 (en) * | 2014-01-22 | 2015-07-23 | Metal Industries Research&Development Centre | Brass alloy and method for manufacturing the same |
US10358696B1 (en) | 2014-02-07 | 2019-07-23 | Chase Brass And Copper Company, Llc | Wrought machinable brass alloy |
US9951400B1 (en) | 2014-02-07 | 2018-04-24 | Chase Brass And Copper Company, Llc | Wrought machinable brass alloy |
CN103849794B (zh) * | 2014-03-07 | 2016-05-25 | 镇江金鑫有色合金有限公司 | 一种环保自润滑耐磨铜合金 |
JP2015175008A (ja) * | 2014-03-13 | 2015-10-05 | 株式会社Lixil | 鉛レス黄銅材料および水道用器具 |
JP5656138B1 (ja) * | 2014-05-08 | 2015-01-21 | 株式会社原田伸銅所 | 抗菌性を有するリン青銅合金及びそれを用いた物品 |
CN103938021B (zh) * | 2014-05-09 | 2016-04-13 | 邵建洪 | 一种海洋围殖渔网专用编织铜合金线材及其制备方法 |
CN104032176B (zh) * | 2014-06-23 | 2015-03-11 | 江西鸥迪铜业有限公司 | 低铅黄铜合金 |
JP6354391B2 (ja) * | 2014-07-03 | 2018-07-11 | 三菱マテリアル株式会社 | Cu−Zn−Sn系合金の連続鋳造方法 |
RU2587110C9 (ru) * | 2014-09-22 | 2016-08-10 | Дмитрий Андреевич Михайлов | МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелО, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН |
RU2587112C9 (ru) * | 2014-09-22 | 2016-08-10 | Дмитрий Андреевич Михайлов | МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелТ, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН |
RU2587108C9 (ru) * | 2014-09-22 | 2016-08-10 | Дмитрий Андреевич Михайлов | МЕДНЫЙ СПЛАВ, ЛЕГИРОВАННЫЙ ТЕЛЛУРОМ ТелМ, ДЛЯ КОЛЛЕКТОРОВ ЭЛЕКТРИЧЕСКИХ МАШИН |
CN104388749B (zh) * | 2014-12-17 | 2016-07-06 | 湖南科技大学 | 一种高强减摩耐磨锰铝青铜合金 |
CN104451244B (zh) * | 2014-12-17 | 2016-08-17 | 湖南科技大学 | 一种高性能减摩耐磨锰铝青铜合金 |
CN104630549A (zh) * | 2015-01-27 | 2015-05-20 | 苏州金仓合金新材料有限公司 | 一种连铸连轧的环保无铅新型合金材料棒及其制备方法 |
CN104593637B (zh) * | 2015-01-27 | 2017-01-18 | 苏州金仓合金新材料有限公司 | 一种高速铁路用新型铜基合金管及其制备方法 |
JP6477127B2 (ja) * | 2015-03-26 | 2019-03-06 | 三菱伸銅株式会社 | 銅合金棒および銅合金部材 |
CN107429326A (zh) * | 2015-03-31 | 2017-12-01 | 株式会社栗本铁工所 | 水管部件用铜合金 |
CN104711450A (zh) * | 2015-04-03 | 2015-06-17 | 北京金鹏振兴铜业有限公司 | 高强度高延展性镁黄铜合金 |
CN104858364B (zh) * | 2015-04-27 | 2017-09-15 | 海安铸鑫金属制品有限公司 | 覆砂壳型锡青铜复合铸造阀板的制备方法 |
CN104895903A (zh) * | 2015-05-27 | 2015-09-09 | 含山县恒翔机械制造有限公司 | 一种跑车轮毂的防盗螺丝 |
CN104889687A (zh) * | 2015-05-27 | 2015-09-09 | 含山县恒翔机械制造有限公司 | 一种跑车轮毂防盗螺丝的制备方法 |
CN104911390A (zh) * | 2015-06-13 | 2015-09-16 | 陈新棠 | 一种抗菌耐腐蚀的热交换器铜管 |
DE102015116314A1 (de) * | 2015-09-25 | 2017-03-30 | Berkenhoff Gmbh | Verwendung eines aus einer Kupfer-Zink-Mangan-Legierung ausgebildeten metallischen Elements als elektrisches Heizelement |
JP2018533674A (ja) * | 2015-11-12 | 2018-11-15 | ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. | 冷却構造を有するスパッタリングターゲットバッキングプレートアセンブリ |
CN105506358A (zh) * | 2015-12-03 | 2016-04-20 | 中铝洛阳铜业有限公司 | 一种海洋养殖用环保耐蚀黄铜材料的制备工艺 |
CN105387965A (zh) * | 2015-12-24 | 2016-03-09 | 常熟市易安达电器有限公司 | 巷道用压力传感器 |
CN105671360B (zh) * | 2016-04-05 | 2017-07-18 | 上海理工大学 | 一种含有锆的耐海水腐蚀的铜合金及其制备方法 |
DE202016102696U1 (de) * | 2016-05-20 | 2017-08-29 | Otto Fuchs - Kommanditgesellschaft - | Sondermessinglegierung sowie Sondermessinglegierungsprodukt |
JP6304915B1 (ja) * | 2016-05-25 | 2018-04-04 | 三菱伸銅株式会社 | 黄銅合金熱間加工品及び黄銅合金熱間加工品の製造方法 |
CN105908014B (zh) * | 2016-06-08 | 2017-08-25 | 上海理工大学 | 一种耐海水腐蚀的铜合金及其制备方法 |
CN106148755B (zh) * | 2016-08-09 | 2018-04-24 | 苏州天兼新材料科技有限公司 | 一种核动力汽轮机耐磨泵块用铸造材料及其制作方法 |
CN108085531A (zh) * | 2016-11-21 | 2018-05-29 | 宜兴市帝洲新能源科技有限公司 | 一种地暖设备的弯头材料 |
US10568304B2 (en) * | 2016-11-23 | 2020-02-25 | Graduate School At Shenzhen, Tsinghua University | Steel structure cage for marine crustacean aquaculture and integration thereof into vertical fish-crustacean aquaculture system |
CN107620769A (zh) * | 2016-12-30 | 2018-01-23 | 合肥美诚机械有限公司 | 一种车用新材料轴承 |
KR101796191B1 (ko) * | 2017-01-17 | 2017-11-09 | 주식회사 풍산 | 항균성, 내변색성 및 성형성이 우수한 동합금재 및 이의 제조방법 |
CN107217172A (zh) * | 2017-06-28 | 2017-09-29 | 安徽华飞机械铸锻有限公司 | 一种铜合金铸造工艺 |
US20190033020A1 (en) * | 2017-07-27 | 2019-01-31 | United Technologies Corporation | Thin-walled heat exchanger with improved thermal transfer features |
DE102017007138B3 (de) * | 2017-07-27 | 2018-09-27 | Wieland-Werke Ag | Drahtmaterial, Netz und Zuchtkäfig für Aquakultur |
CN107354507B (zh) * | 2017-07-31 | 2019-07-19 | 江苏裕铭铜业有限公司 | 一种单晶导电铜杆上引连铸法生产工艺 |
CN107381337A (zh) * | 2017-09-22 | 2017-11-24 | 张家港沙工科技服务有限公司 | 一种起重机用吊钩 |
CN108300891A (zh) * | 2017-12-13 | 2018-07-20 | 浙江灿根智能科技有限公司 | 一种多路连续铜及铜合金板材铸造方法 |
CN108384986B (zh) * | 2018-05-07 | 2020-02-21 | 宁波博威合金材料股份有限公司 | 一种铜合金材料及其应用 |
CN108950272B (zh) * | 2018-08-02 | 2020-02-18 | 济南大学 | 一种锌-铜合金的含锑变质剂及变质处理方法 |
CN112805109A (zh) * | 2018-10-10 | 2021-05-14 | 住友电工硬质合金株式会社 | 切削工具及其制造方法 |
KR101969010B1 (ko) | 2018-12-19 | 2019-04-15 | 주식회사 풍산 | 납과 비스무트가 첨가되지 않은 쾌삭성 무연 구리합금 |
FR3090433B1 (fr) * | 2018-12-21 | 2020-12-11 | Thermocompact Sa | fil électrode à laiton en phase Delta pour usinage par électroérosion, et procédé pour sa fabrication |
CN109865804B (zh) * | 2019-03-13 | 2021-08-03 | 北京首钢吉泰安新材料有限公司 | 一种圆珠笔头用易切削不锈钢的铋碲合金化方法 |
CN110000344B (zh) * | 2019-03-14 | 2021-02-02 | 昆明理工大学 | 一种抑制ZCuSn10P1合金锡元素偏析的连续制备半固态浆料的装置和方法 |
DE202019101597U1 (de) * | 2019-03-20 | 2019-04-23 | Otto Fuchs - Kommanditgesellschaft - | Cu-Zn-Legierung |
CN110117736B (zh) * | 2019-06-17 | 2021-11-19 | 上海理工大学 | 一种塑性好耐腐蚀的铋黄铜合金 |
KR102623143B1 (ko) | 2019-06-25 | 2024-01-09 | 미쓰비시 마테리알 가부시키가이샤 | 쾌삭성 구리 합금 주물, 및 쾌삭성 구리 합금 주물의 제조 방법 |
US11450516B2 (en) * | 2019-08-14 | 2022-09-20 | Honeywell International Inc. | Large-grain tin sputtering target |
CN111014623B (zh) * | 2019-12-09 | 2021-09-10 | 宁波兴业盛泰集团有限公司 | 一种铜镁合金大规格扁锭半连续铸造方法 |
CN110952019B (zh) * | 2019-12-24 | 2021-09-14 | 宁波博威合金材料股份有限公司 | 一种易切削锌白铜及其制备方法和应用 |
CN110951989B (zh) * | 2019-12-25 | 2020-11-06 | 鸣浩高新材料科技(江苏盐城)有限公司 | 一种高强韧铜锌铝形状记忆合金及其制备方法 |
CN111607714B (zh) * | 2020-07-03 | 2021-08-20 | 贵溪骏达特种铜材有限公司 | 一种铝青铜的熔炼工艺 |
CN112030033A (zh) * | 2020-09-14 | 2020-12-04 | 江西省科学院应用物理研究所 | 一种高强高导接触线用稀土铜合金 |
CN112404889B (zh) * | 2020-10-10 | 2022-03-01 | 厦门格欧博新材料科技有限公司 | 一种锌包铜工艺 |
DE102020127317A1 (de) | 2020-10-16 | 2022-04-21 | Diehl Metall Stiftung & Co. Kg | Bleifreie Kupferlegierung sowie Verwendung der bleifreien Kupferlegierung |
KR102265115B1 (ko) * | 2021-02-24 | 2021-06-15 | 주식회사 풍산 | 내식성 및 내변색성이 우수한 Cu-Zn계 합금 및 이의 제조 방법 |
CN113223629B (zh) * | 2021-05-13 | 2023-04-28 | 中南大学 | 一种Al-Mg-Si-Mn-Fe合金设计方法 |
CN115261665B (zh) * | 2022-06-22 | 2023-04-28 | 昆明冶金研究院有限公司北京分公司 | 铜铁磷系合金用变质剂、其制备方法及应用 |
CN118086716B (zh) * | 2024-04-22 | 2024-07-16 | 中铝科学技术研究院有限公司 | 海洋养殖用铜合金丝材、其制备方法及应用 |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2521663A (en) * | 1947-11-04 | 1950-09-05 | Gen Electric X Ray Corp | Electron target and means for making the same |
US3676083A (en) * | 1969-01-21 | 1972-07-11 | Sylvania Electric Prod | Molybdenum base alloys |
US3912552A (en) * | 1972-05-17 | 1975-10-14 | Int Nickel Co | Oxidation resistant dispersion strengthened alloy |
US3928028A (en) * | 1974-04-05 | 1975-12-23 | Olin Corp | Grain refinement of copper alloys by phosphide inoculation |
US4047978A (en) * | 1975-04-17 | 1977-09-13 | Olin Corporation | Processing copper base alloys |
US4055445A (en) * | 1974-09-20 | 1977-10-25 | Essex International, Inc. | Method for fabrication of brass alloy |
US4110132A (en) * | 1976-09-29 | 1978-08-29 | Olin Corporation | Improved copper base alloys |
US4238249A (en) * | 1977-12-30 | 1980-12-09 | Diehl Gmbh & Co. | Process for the preparation of a copper-zinc material |
US4353415A (en) * | 1979-07-30 | 1982-10-12 | United Kingdom Atomic Energy Authority | Heat pipes and thermal siphons |
JPS61133357A (ja) * | 1984-12-03 | 1986-06-20 | Showa Alum Ind Kk | 加工性および耐焼付性にすぐれた軸受用Cu合金 |
US4708739A (en) * | 1985-10-04 | 1987-11-24 | London & Scandinavian Metallurgical Co. Limited | Grain refining metals |
US4710349A (en) * | 1986-03-18 | 1987-12-01 | Sumitomo Metal & Mining Co., Ltd. | Highly conductive copper-based alloy |
US4786469A (en) * | 1985-08-23 | 1988-11-22 | London & Scandinavian Metallurgical Co Limited | Grain refining metals |
US4822560A (en) * | 1985-10-10 | 1989-04-18 | The Furukawa Electric Co., Ltd. | Copper alloy and method of manufacturing the same |
US4826736A (en) * | 1985-06-14 | 1989-05-02 | Sumitomo Special Metals Co., Ltd. | Clad sheets |
US5370840A (en) * | 1992-11-04 | 1994-12-06 | Olin Corporation | Copper alloy having high strength and high electrical conductivity |
US5565045A (en) * | 1992-11-04 | 1996-10-15 | Olin Corporation | Copper base alloys having improved bend formability |
US5871861A (en) * | 1994-04-05 | 1999-02-16 | Mitsubishi Chemical Corporation | Lithium ion secondary cell |
US20020006351A1 (en) * | 2000-04-14 | 2002-01-17 | Dowa Mining Co., Ltd. | Process for producing connector copper alloys |
US6401323B1 (en) * | 1997-08-06 | 2002-06-11 | Sms Demag Ag | Method of producing welded Cu and Cu alloy pipes |
US6413330B1 (en) * | 1998-10-12 | 2002-07-02 | Sambo Copper Alloy Co., Ltd. | Lead-free free-cutting copper alloys |
US20040234412A1 (en) * | 2002-09-09 | 2004-11-25 | Keiichiro Oishi | High-strength copper alloy |
US20050039827A1 (en) * | 2003-08-20 | 2005-02-24 | Yoshinori Yamagishi | Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same |
US20060222557A1 (en) * | 2004-09-03 | 2006-10-05 | Pike Lee M Jr | Ni-Cr-Co alloy for advanced gas turbine engines |
US20080073005A1 (en) * | 2003-02-07 | 2008-03-27 | Advanced Steel Technology Llc | Fine-grained martensitic stainless steel and method thereof |
US20100297464A1 (en) * | 2005-09-30 | 2010-11-25 | Sanbo Shindo Kogyo Kabushiki Kaisha | Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same |
Family Cites Families (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517617B2 (es) | 1972-08-25 | 1976-03-09 | ||
JPS5078519A (es) * | 1973-11-14 | 1975-06-26 | ||
JPS52107227A (en) * | 1976-02-27 | 1977-09-08 | Furukawa Electric Co Ltd:The | Heat resisting cu alloy with excellent electro- and heat conductivity |
JPS52134811A (en) * | 1976-05-07 | 1977-11-11 | Osamu Hayashi | Golden copper alloy for dental use |
JPS5839900B2 (ja) | 1977-12-29 | 1983-09-02 | 三菱マテリアル株式会社 | 継目無し管製造用Cu合金 |
JPS5570494A (en) | 1978-11-18 | 1980-05-27 | Futoshi Matsumura | Wire rod for copper welding excelling in electric conductivity, thermal conductivity and welding performance |
JPS5690944A (en) | 1979-12-24 | 1981-07-23 | Furukawa Kinzoku Kogyo Kk | Alloy for wire cut electrospark machining electrode |
JPS5837143A (ja) | 1981-08-27 | 1983-03-04 | Furukawa Electric Co Ltd:The | 高強度耐食銅合金 |
JPS5839900A (ja) | 1981-09-01 | 1983-03-08 | Nippon Kokan Kk <Nkk> | 海底パイプラインの緊急漏洩油量制限装置 |
JPS58197243A (ja) * | 1982-05-12 | 1983-11-16 | Sumitomo Electric Ind Ltd | ワイアカツト放電加工電極線用合金線 |
JPS5920811A (ja) * | 1982-07-28 | 1984-02-02 | Yokogawa Hokushin Electric Corp | 光式変位変換器 |
JPS5920811U (ja) | 1982-07-30 | 1984-02-08 | 三宝伸銅工業株式会社 | 海水取水口用スクリ−ン |
SE445181B (sv) * | 1982-12-15 | 1986-06-09 | Nippon Light Metal Co | Sett vid kontinuerlig metallgjutning |
JPS59136439A (ja) | 1983-01-26 | 1984-08-06 | Sanpo Shindo Kogyo Kk | 銅基合金 |
US4515132A (en) * | 1983-12-22 | 1985-05-07 | Ford Motor Company | Ionization probe interface circuit with high bias voltage source |
JPS61542A (ja) * | 1984-06-12 | 1986-01-06 | Nippon Mining Co Ltd | ラジエ−タ−プレ−ト用銅合金 |
JPS6148547A (ja) | 1984-08-14 | 1986-03-10 | Mitsui Mining & Smelting Co Ltd | 海洋用耐食銅合金 |
JPS6345338A (ja) * | 1986-04-10 | 1988-02-26 | Furukawa Electric Co Ltd:The | 電子電気機器用銅合金とその製造法 |
JPS62274036A (ja) | 1986-05-23 | 1987-11-28 | Nippon Mining Co Ltd | 耐磨耗性及び耐食性に優れた銅合金 |
JPS62297429A (ja) * | 1986-06-17 | 1987-12-24 | Nippon Mining Co Ltd | 耐食性に優れた銅合金 |
US4874439A (en) * | 1987-02-24 | 1989-10-17 | Mitsubishi Kinzoku Kabushiki Kaisha | Synchronizer ring in speed variator made of wear-resistant copper alloy having high strength and toughness |
JPH0622332B2 (ja) * | 1987-10-14 | 1994-03-23 | 日本電気株式会社 | 入力回路 |
US4770718A (en) * | 1987-10-23 | 1988-09-13 | Iowa State University Research Foundation, Inc. | Method of preparing copper-dendritic composite alloys for mechanical reduction |
JPH01162737A (ja) | 1987-12-18 | 1989-06-27 | Nippon Mining Co Ltd | 電子部品用銅合金 |
KR910003882B1 (ko) * | 1988-12-21 | 1991-06-15 | 풍산금속공업주식회사 | 전기 및 전자부품용 동합금과 그 제조방법 |
JPH02170954A (ja) * | 1988-12-22 | 1990-07-02 | Nippon Mining Co Ltd | 曲げ加工性の良好な銅合金の製造方法 |
JPH02179857A (ja) * | 1988-12-28 | 1990-07-12 | Furukawa Electric Co Ltd:The | ワイヤ放電加工用電極線 |
JP2809713B2 (ja) | 1989-06-22 | 1998-10-15 | 株式会社神戸製鋼所 | フレキシブルプリント用銅合金圧延箔 |
JPH03291344A (ja) | 1990-04-09 | 1991-12-20 | Furukawa Electric Co Ltd:The | 熱交換器ヘッダープレート用銅合金 |
JPH0499837A (ja) * | 1990-08-14 | 1992-03-31 | Nikko Kyodo Co Ltd | 通電材料 |
JPH04224645A (ja) * | 1990-12-26 | 1992-08-13 | Nikko Kyodo Co Ltd | 電子部品用銅合金 |
US5288458A (en) * | 1991-03-01 | 1994-02-22 | Olin Corporation | Machinable copper alloys having reduced lead content |
CN1021890C (zh) * | 1991-05-12 | 1993-08-25 | 冯金陵 | 代银焊料及其制造方法 |
JPH0533087A (ja) * | 1991-07-31 | 1993-02-09 | Furukawa Electric Co Ltd:The | 小型導電性部材用銅合金 |
JP2758536B2 (ja) | 1992-08-11 | 1998-05-28 | 三菱伸銅株式会社 | 内面溝付溶接銅合金管 |
DE4395519C2 (de) * | 1992-10-27 | 1997-04-30 | Mitsubishi Materials Corp | Gegen Lochkorrosion beständige Kupferlegierungsrohre für die Zufuhr von Kalt- und Heißwasser |
JPH06184669A (ja) * | 1992-12-18 | 1994-07-05 | Mitsubishi Materials Corp | 給水給湯用耐孔食性銅合金配管 |
JPH06184674A (ja) | 1992-12-23 | 1994-07-05 | Nikko Kinzoku Kk | 高導電性銅合金 |
JP3319482B2 (ja) * | 1993-12-30 | 2002-09-03 | 三宝伸銅工業株式会社 | 耐蝕性銅基合金材 |
JPH08127830A (ja) | 1994-11-01 | 1996-05-21 | Fujikura Ltd | 電線導体用銅合金及び電線導体の製造方法 |
DE19548124C2 (de) * | 1995-12-21 | 2002-08-29 | Euroflamm Gmbh | Reibkörper und Verfahren zum Herstellen eines solchen |
JP3956322B2 (ja) * | 1996-05-30 | 2007-08-08 | 中越合金鋳工株式会社 | ワンウェイクラッチ用エンドベアリング及びその他の摺動部品 |
JPH1046270A (ja) * | 1996-08-01 | 1998-02-17 | Sumitomo Light Metal Ind Ltd | 耐中間温度脆性、耐焼鈍脆性および耐食性に優れた銅合金並びに伝熱管 |
JP3280250B2 (ja) * | 1996-11-26 | 2002-04-30 | 三宝伸銅工業株式会社 | 魚類用養殖網及び魚類養殖用生簀 |
JP2898627B2 (ja) * | 1997-03-27 | 1999-06-02 | 日鉱金属株式会社 | 銅合金箔 |
US6132528A (en) * | 1997-04-18 | 2000-10-17 | Olin Corporation | Iron modified tin brass |
US5853505A (en) * | 1997-04-18 | 1998-12-29 | Olin Corporation | Iron modified tin brass |
JPH10337132A (ja) | 1997-06-05 | 1998-12-22 | Kuraray Co Ltd | 魚介類養殖網 |
JPH111736A (ja) * | 1997-06-09 | 1999-01-06 | Chuetsu Gokin Chuko Kk | 加熱装置用黄銅合金材料 |
JP3820467B2 (ja) | 1997-07-25 | 2006-09-13 | 独立行政法人土木研究所 | 土工事用流動化処理土の製造方法及び装置 |
JP4100583B2 (ja) * | 1997-08-25 | 2008-06-11 | 中越合金鋳工株式会社 | 鉄系材料と高力黄銅合金を接合する方法 |
JPH11140677A (ja) | 1997-11-14 | 1999-05-25 | Nakabohtec Corrosion Protecting Co Ltd | 銅又は銅合金製金網の防汚及び局部腐食防止の方法及び装置 |
JP2000087158A (ja) * | 1998-09-11 | 2000-03-28 | Furukawa Electric Co Ltd:The | 半導体リードフレーム用銅合金 |
US7056396B2 (en) * | 1998-10-09 | 2006-06-06 | Sambo Copper Alloy Co., Ltd. | Copper/zinc alloys having low levels of lead and good machinability |
JP3734372B2 (ja) * | 1998-10-12 | 2006-01-11 | 三宝伸銅工業株式会社 | 無鉛快削性銅合金 |
JP3414294B2 (ja) | 1999-01-07 | 2003-06-09 | 三菱マテリアル株式会社 | 0.2%耐力および疲労強度の優れた熱交換器用電縫溶接銅合金管 |
JP4129807B2 (ja) | 1999-10-01 | 2008-08-06 | Dowaホールディングス株式会社 | コネクタ用銅合金およびその製造法 |
JP4387027B2 (ja) * | 2000-03-07 | 2009-12-16 | 三菱伸銅株式会社 | 耐孔食性銅基合金管材 |
JP2002030364A (ja) * | 2000-07-19 | 2002-01-31 | Sumitomo Light Metal Ind Ltd | 高強度快削黄銅 |
KR100513947B1 (ko) * | 2002-03-29 | 2005-09-09 | 닛코 킨조쿠 가부시키가이샤 | 프레스성이 양호한 구리 합금 소재 및 그 제조방법 |
CN1327016C (zh) * | 2002-05-14 | 2007-07-18 | 同和矿业株式会社 | 具有改善的冲压冲制性能的铜基合金及其制备方法 |
JP2004100041A (ja) | 2002-07-18 | 2004-04-02 | Honda Motor Co Ltd | 銅合金 |
JP4014542B2 (ja) | 2002-07-18 | 2007-11-28 | 本田技研工業株式会社 | 銅合金素材の製造方法 |
JP2004113003A (ja) * | 2002-09-24 | 2004-04-15 | Baba Shoten:Kk | 生け簀装置及び生け簀養殖方法 |
JP4043342B2 (ja) * | 2002-10-25 | 2008-02-06 | 株式会社神戸製鋼所 | リン青銅 |
JP4371257B2 (ja) | 2002-12-02 | 2009-11-25 | 株式会社リコー | 画像形成装置 |
JP3693994B2 (ja) | 2002-12-04 | 2005-09-14 | 三宝伸銅工業株式会社 | 鉛低減快削性銅合金 |
JP3999676B2 (ja) * | 2003-01-22 | 2007-10-31 | Dowaホールディングス株式会社 | 銅基合金およびその製造方法 |
DE10308779B8 (de) * | 2003-02-28 | 2012-07-05 | Wieland-Werke Ag | Bleifreie Kupferlegierung und deren Verwendung |
JP3731600B2 (ja) * | 2003-09-19 | 2006-01-05 | 住友金属工業株式会社 | 銅合金およびその製造方法 |
EP1777305B1 (en) * | 2004-08-10 | 2010-09-22 | Mitsubishi Shindoh Co., Ltd. | Copper-base alloy casting with refined crystal grains |
-
2005
- 2005-05-02 EP EP05738890A patent/EP1777305B1/en active Active
- 2005-05-02 DK DK05738890.2T patent/DK1777305T3/da active
- 2005-05-02 JP JP2006531272A patent/JP3964930B2/ja active Active
- 2005-05-02 CN CNB2005800194114A patent/CN100487148C/zh active Active
- 2005-05-02 US US10/596,849 patent/US20070169854A1/en not_active Abandoned
- 2005-05-02 DE DE602005023737T patent/DE602005023737D1/de active Active
- 2005-05-02 WO PCT/JP2005/008662 patent/WO2006016442A1/ja active Application Filing
- 2005-05-02 AT AT05738890T patent/ATE482294T1/de not_active IP Right Cessation
- 2005-05-02 CA CA2563094A patent/CA2563094C/en active Active
- 2005-05-02 MX MXPA06010613A patent/MXPA06010613A/es active IP Right Grant
- 2005-08-10 MX MXPA06011720A patent/MXPA06011720A/es active IP Right Grant
- 2005-08-10 AT AT05770785T patent/ATE498698T1/de not_active IP Right Cessation
- 2005-08-10 EP EP11150172.2A patent/EP2333125B1/en active Active
- 2005-08-10 PT PT05770520T patent/PT1777308E/pt unknown
- 2005-08-10 JP JP2006531699A patent/JP4094044B2/ja active Active
- 2005-08-10 EP EP05770474A patent/EP1777311B1/en active Active
- 2005-08-10 AT AT05770441T patent/ATE540131T1/de active
- 2005-08-10 EP EP05770785A patent/EP1777310B1/en not_active Not-in-force
- 2005-08-10 NZ NZ552015A patent/NZ552015A/en unknown
- 2005-08-10 CA CA2563097A patent/CA2563097C/en active Active
- 2005-08-10 CA CA2563096A patent/CA2563096C/en active Active
- 2005-08-10 EP EP05770446A patent/EP1777307B1/en not_active Not-in-force
- 2005-08-10 WO PCT/JP2005/014698 patent/WO2006016630A1/ja active Application Filing
- 2005-08-10 ES ES05770474T patent/ES2379365T3/es active Active
- 2005-08-10 RU RU2006136408/02A patent/RU2383641C2/ru active
- 2005-08-10 WO PCT/JP2005/014687 patent/WO2006016621A1/ja active Application Filing
- 2005-08-10 US US11/573,638 patent/US20090260727A1/en not_active Abandoned
- 2005-08-10 WO PCT/JP2005/014697 patent/WO2006016629A1/ja active Application Filing
- 2005-08-10 EP EP11150175.5A patent/EP2333124B1/en active Active
- 2005-08-10 AT AT05770520T patent/ATE537275T1/de active
- 2005-08-10 AT AT05770446T patent/ATE543919T1/de active
- 2005-08-10 US US10/597,454 patent/US7909946B2/en active Active
- 2005-08-10 CA CA2686478A patent/CA2686478C/en not_active Expired - Fee Related
- 2005-08-10 AU AU2005256111A patent/AU2005256111B2/en active Active
- 2005-08-10 WO PCT/JP2005/014699 patent/WO2006016631A1/ja active Application Filing
- 2005-08-10 JP JP2006531707A patent/JP4951342B2/ja not_active Expired - Fee Related
- 2005-08-10 CN CNB2005800194133A patent/CN100545280C/zh active Active
- 2005-08-10 US US10/597,568 patent/US20080253924A1/en not_active Abandoned
- 2005-08-10 ES ES05770520T patent/ES2378874T3/es active Active
- 2005-08-10 KR KR1020077001182A patent/KR100863374B1/ko active IP Right Grant
- 2005-08-10 CN CNB2005800267914A patent/CN100545281C/zh not_active Expired - Fee Related
- 2005-08-10 CN CNB2005800268372A patent/CN100543160C/zh not_active Expired - Fee Related
- 2005-08-10 JP JP2006531701A patent/JP4095666B2/ja active Active
- 2005-08-10 CN CNB2005800267670A patent/CN100535144C/zh not_active Expired - Fee Related
- 2005-08-10 US US11/573,640 patent/US10017841B2/en active Active
- 2005-08-10 AU AU2005272455A patent/AU2005272455B2/en not_active Ceased
- 2005-08-10 JP JP2006531706A patent/JP5111853B2/ja not_active Expired - Fee Related
- 2005-08-10 US US10/597,233 patent/US8171886B2/en active Active
- 2005-08-10 US US11/573,632 patent/US9328401B2/en not_active Expired - Fee Related
- 2005-08-10 CA CA2561295A patent/CA2561295C/en active Active
- 2005-08-10 WO PCT/JP2005/014678 patent/WO2006016614A1/ja active Application Filing
- 2005-08-10 DE DE602005024006T patent/DE602005024006D1/de active Active
- 2005-08-10 NZ NZ587764A patent/NZ587764A/en unknown
- 2005-08-10 CN CN2005800194129A patent/CN1969051B/zh active Active
- 2005-08-10 BR BRPI0509025-3A patent/BRPI0509025B1/pt not_active IP Right Cessation
- 2005-08-10 AU AU2005272376A patent/AU2005272376B2/en not_active Ceased
- 2005-08-10 AT AT05770474T patent/ATE538222T1/de active
- 2005-08-10 DE DE602005026397T patent/DE602005026397D1/de active Active
- 2005-08-10 WO PCT/JP2005/014691 patent/WO2006016624A1/ja active Application Filing
- 2005-08-10 EP EP05770571A patent/EP1777309B1/en active Active
- 2005-08-10 AT AT05770571T patent/ATE483826T1/de not_active IP Right Cessation
- 2005-08-10 EP EP05770520A patent/EP1777308B9/en not_active Not-in-force
- 2005-08-10 JP JP2006531691A patent/JP4486966B2/ja active Active
- 2005-08-10 CN CNB2005800269089A patent/CN100543162C/zh active Active
- 2005-08-10 JP JP2006531708A patent/JP4951343B2/ja not_active Expired - Fee Related
- 2005-08-10 EP EP05770441A patent/EP1777306B1/en not_active Not-in-force
-
2006
- 2006-04-24 NO NO20061782A patent/NO344238B1/no unknown
- 2006-10-31 KR KR1020067022868A patent/KR100921311B1/ko active IP Right Grant
-
2007
- 2007-09-04 JP JP2007228438A patent/JP4814183B2/ja active Active
-
2012
- 2012-11-15 CL CL2012003194A patent/CL2012003194A1/es unknown
-
2014
- 2014-11-06 US US14/534,807 patent/US20150132179A1/en not_active Abandoned
-
2018
- 2018-07-12 US US16/033,689 patent/US10570483B2/en active Active
-
2020
- 2020-02-27 US US16/802,844 patent/US20200190630A1/en not_active Abandoned
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2521663A (en) * | 1947-11-04 | 1950-09-05 | Gen Electric X Ray Corp | Electron target and means for making the same |
US3676083A (en) * | 1969-01-21 | 1972-07-11 | Sylvania Electric Prod | Molybdenum base alloys |
US3912552A (en) * | 1972-05-17 | 1975-10-14 | Int Nickel Co | Oxidation resistant dispersion strengthened alloy |
US3928028A (en) * | 1974-04-05 | 1975-12-23 | Olin Corp | Grain refinement of copper alloys by phosphide inoculation |
US4055445A (en) * | 1974-09-20 | 1977-10-25 | Essex International, Inc. | Method for fabrication of brass alloy |
US4047978A (en) * | 1975-04-17 | 1977-09-13 | Olin Corporation | Processing copper base alloys |
US4110132A (en) * | 1976-09-29 | 1978-08-29 | Olin Corporation | Improved copper base alloys |
US4238249A (en) * | 1977-12-30 | 1980-12-09 | Diehl Gmbh & Co. | Process for the preparation of a copper-zinc material |
US4353415A (en) * | 1979-07-30 | 1982-10-12 | United Kingdom Atomic Energy Authority | Heat pipes and thermal siphons |
JPS61133357A (ja) * | 1984-12-03 | 1986-06-20 | Showa Alum Ind Kk | 加工性および耐焼付性にすぐれた軸受用Cu合金 |
US4826736A (en) * | 1985-06-14 | 1989-05-02 | Sumitomo Special Metals Co., Ltd. | Clad sheets |
US4786469A (en) * | 1985-08-23 | 1988-11-22 | London & Scandinavian Metallurgical Co Limited | Grain refining metals |
US4708739A (en) * | 1985-10-04 | 1987-11-24 | London & Scandinavian Metallurgical Co. Limited | Grain refining metals |
US4822560A (en) * | 1985-10-10 | 1989-04-18 | The Furukawa Electric Co., Ltd. | Copper alloy and method of manufacturing the same |
US4710349A (en) * | 1986-03-18 | 1987-12-01 | Sumitomo Metal & Mining Co., Ltd. | Highly conductive copper-based alloy |
US5370840A (en) * | 1992-11-04 | 1994-12-06 | Olin Corporation | Copper alloy having high strength and high electrical conductivity |
US5565045A (en) * | 1992-11-04 | 1996-10-15 | Olin Corporation | Copper base alloys having improved bend formability |
US5871861A (en) * | 1994-04-05 | 1999-02-16 | Mitsubishi Chemical Corporation | Lithium ion secondary cell |
US6401323B1 (en) * | 1997-08-06 | 2002-06-11 | Sms Demag Ag | Method of producing welded Cu and Cu alloy pipes |
US6413330B1 (en) * | 1998-10-12 | 2002-07-02 | Sambo Copper Alloy Co., Ltd. | Lead-free free-cutting copper alloys |
US20020006351A1 (en) * | 2000-04-14 | 2002-01-17 | Dowa Mining Co., Ltd. | Process for producing connector copper alloys |
US6627011B2 (en) * | 2000-04-14 | 2003-09-30 | Dowa Mining Co., Ltd. | Process for producing connector copper alloys |
US20040234412A1 (en) * | 2002-09-09 | 2004-11-25 | Keiichiro Oishi | High-strength copper alloy |
US20080073005A1 (en) * | 2003-02-07 | 2008-03-27 | Advanced Steel Technology Llc | Fine-grained martensitic stainless steel and method thereof |
US20050039827A1 (en) * | 2003-08-20 | 2005-02-24 | Yoshinori Yamagishi | Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same |
US20060222557A1 (en) * | 2004-09-03 | 2006-10-05 | Pike Lee M Jr | Ni-Cr-Co alloy for advanced gas turbine engines |
US20100297464A1 (en) * | 2005-09-30 | 2010-11-25 | Sanbo Shindo Kogyo Kabushiki Kaisha | Melt-solidified substance, copper alloy for melt-solidification and method of manufacturing the same |
Non-Patent Citations (1)
Title |
---|
Handbook of Workability and Process Design, G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, editors, p35-44, DOI:10.1361/hwpd2003po35, Chapter 3, Evolution of Microstructure during Hot Working, ASM International, 2003 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090286083A1 (en) * | 2008-05-13 | 2009-11-19 | Hitachi Cable, Ltd. | Copper wire for a magnet wire, magnet wire using same, and method for fabricating copper wire for a magnet wire |
US20100135848A1 (en) * | 2008-12-02 | 2010-06-03 | Chuankai Xu | Lead-free free-cutting silicon brass alloy |
US10155289B2 (en) * | 2010-10-25 | 2018-12-18 | Mitsubishi Shindoh Co., Ltd. | Pressure resistant and corrosion resistant copper alloy, brazed structure, and method of manufacturing brazed structure |
US20130315660A1 (en) * | 2010-10-25 | 2013-11-28 | Mitsubishi Shindoh Co., Ltd. | Pressure resistant and corrosion resistant copper alloy, brazed structure, and method of manufacturing brazed structure |
US8956474B2 (en) | 2010-10-25 | 2015-02-17 | Mitsubishi Shindoh Co., Ltd. | Pressure resistant and corrosion resistant copper alloy, brazed structure, and method of manufacturing brazed structure |
US11136648B2 (en) | 2016-08-15 | 2021-10-05 | Mitsubishi Materials Corporation | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
US11313013B2 (en) | 2016-08-15 | 2022-04-26 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US10538827B2 (en) | 2016-08-15 | 2020-01-21 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
US10557185B2 (en) | 2016-08-15 | 2020-02-11 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
US11131009B2 (en) | 2016-08-15 | 2021-09-28 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
US11434548B2 (en) | 2016-08-15 | 2022-09-06 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US11421302B2 (en) | 2016-08-15 | 2022-08-23 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US10538828B2 (en) | 2016-08-15 | 2020-01-21 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
US11421301B2 (en) | 2016-08-15 | 2022-08-23 | Mitsubishi Materials Corporation | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
RU2629402C1 (ru) * | 2016-12-06 | 2017-08-29 | Юлия Алексеевна Щепочкина | Спеченный сплав на основе меди |
US11155909B2 (en) | 2017-08-15 | 2021-10-26 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
US11479834B2 (en) | 2019-06-25 | 2022-10-25 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
US11512370B2 (en) | 2019-06-25 | 2022-11-29 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US11788173B2 (en) | 2019-06-25 | 2023-10-17 | Mitsubishi Materials Corporation | Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy |
US11814712B2 (en) | 2019-06-25 | 2023-11-14 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US20230160039A1 (en) * | 2020-05-08 | 2023-05-25 | Mitsubishi Materials Corporation | Wire rod of cu-zn-si based alloy obtained by up-drawing continuous casting |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10570483B2 (en) | Copper-based alloy casting in which grains are refined | |
JP5399818B2 (ja) | 鉛を含まない快削性ケイ素真鍮合金 | |
JP4951517B2 (ja) | 溶融固化処理物並びに溶融固化処理用銅合金材及びその製造方法 | |
US10458009B2 (en) | Free-machining wrought aluminium alloy product and manufacturing process thereof | |
JP2004244672A (ja) | 耐脱亜鉛性に優れた銅基合金 | |
JP5383633B2 (ja) | 優れた応力腐食耐性を有する黄銅合金およびその製造方法 | |
MXPA06002911A (es) | Aleacion de cobre de corte expedito que contiene muy bajo contenido de plomo. | |
JP2001064742A (ja) | 耐食性、被削性、熱間加工性に優れた黄銅合金 | |
RU2398904C2 (ru) | Легкообрабатываемый резанием медный сплав, содержащий очень мало свинца | |
JP5566622B2 (ja) | 鋳造合金とその合金を用いた接液部品 | |
KR100834201B1 (ko) | 결정립이 미세화된 구리기합금주물 | |
TWI316555B (es) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SANBO SHINDO KOGYO KABUSIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OISHI, KEIICHIRO;REEL/FRAME:018553/0670 Effective date: 20060828 |
|
AS | Assignment |
Owner name: MITSUBISHI SHINDOH CO., LTD., JAPAN Free format text: MERGER;ASSIGNOR:SAMBO COPPER ALLOY CO., LTD.;REEL/FRAME:021096/0976 Effective date: 20080401 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |