RU2726719C1 - Химическая композиция галогенированного полиимидного силоксана и стеклянные изделия с покрытиями с низким коэффициентом трения из галогенированного полиимидного силоксана - Google Patents

Химическая композиция галогенированного полиимидного силоксана и стеклянные изделия с покрытиями с низким коэффициентом трения из галогенированного полиимидного силоксана Download PDF

Info

Publication number
RU2726719C1
RU2726719C1 RU2018111021A RU2018111021A RU2726719C1 RU 2726719 C1 RU2726719 C1 RU 2726719C1 RU 2018111021 A RU2018111021 A RU 2018111021A RU 2018111021 A RU2018111021 A RU 2018111021A RU 2726719 C1 RU2726719 C1 RU 2726719C1
Authority
RU
Russia
Prior art keywords
coated glass
chemical composition
glass
low friction
glass article
Prior art date
Application number
RU2018111021A
Other languages
English (en)
Inventor
Давид Анри
Валери Клодин ЛАКАРРЬЕР
Original Assignee
Корнинг Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Корнинг Инкорпорейтед filed Critical Корнинг Инкорпорейтед
Application granted granted Critical
Publication of RU2726719C1 publication Critical patent/RU2726719C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/005Coating the outside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • Y10T428/1321Polymer or resin containing [i.e., natural or synthetic]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Настоящее изобретение относится к покрытиям с низким коэффициентом трения, наносимым на стеклянные контейнеры, такие как упаковка лекарственных средств. Техническим результатом является повышение стойкости к механическому повреждению. В частности, предложено стеклянное изделие с покрытием, включающее: стеклянный контейнер, содержащий первую поверхность и вторую поверхность, противоположную первой поверхности, и покрытие с низким коэффициентом трения, связанное, по меньшей мере, с частью первой поверхности стеклянного контейнера. При этом покрытие с низким коэффициентом трения включает полиимидную химическую композицию. Причем полиимидная химическая композиция является галогенированной, и включает силоксановый фрагмент. Кроме того, полиимидная химическая композиция представляет собой сополимер, образованный, по меньшей мере, из мономера, включающего галогенированный ангидрид. 3 н. и 17 з.п. ф-лы, 2 табл., 13 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Настоящая заявка испрашивает приоритет Европейской заявки на патент № 15290254.0, поданной 30 сентября 2015 г., озаглавленной «Halogenated Polyimide Siloxane Chemical Compositions and Glass Articles with Halogenated Polyimide Siloxane Low-Friction Coatings» и во всей полноте включаемой в настоящий документ путем ссылки.
ОБЛАСТЬ ТЕХНИКИ
[0002] Настоящее изобретение относится, вообще, к покрытиям, более конкретно, к покрытиям с низким коэффициентом трения, наносимым на стеклянные контейнеры, такие как упаковка лекарственных средств.
УРОВЕНЬ ТЕХНИКИ
[0003] Исторически, в качестве предпочтительного материала для упаковки лекарственных средств используется стекло благодаря таким его свойствам, как герметичность, оптическая прозрачность и высокая химическая стойкость, отличающим его от других материалов. А именно, стекло, используемое для упаковки лекарственных средств, должно обладать соответствующей химической стойкостью, чтобы не оказывать влияния на устойчивость заключенных в нем препаратов. К стеклам, обладающим надлежащей химической стойкостью, относятся те композиции стекла, соответствующие стандарту ASTM «Тип 1В», которые обладают подтвержденной статистикой химической стойкостью.
[0004] Однако, использование стекла в таких вариантах применения ограничено механическими характеристиками стекла. В фармацевтической промышленности бой стекла является фактором опасности для конечного потребителя, так как разбитая упаковка и/или содержание этой упаковки может нанести повреждения конечному потребителю. Кроме этого, некатастрофическое разрушение (т.е. когда стекло дает трещину, но не бьется) может вызвать потерю стерильности содержимого, что, в свою очередь, может привести к возврату дорогостоящей продукции.
[0005] А именно, высокая технологическая скорость, имеющая место при производстве и заполнении стеклянной упаковки лекарственных средств, может приводить к механическим повреждениям поверхности упаковки, например, абразивному износу, когда упаковка вступает в контакт с технологическим оборудованием, манипуляционным оборудованием и/или другими упаковками. Такое механическое повреждение значительно снижает прочность стеклянной упаковки лекарственных средств, что приводит к увеличению вероятности развития в стекле трещин, потенциально подвергающих риску стерильность препаратов, содержащихся в упаковке, или ведущих к полному разрушению упаковки.
[0006] Одним из подходов к повышению механической стойкости стеклянной упаковки является термическая и/или химическая закалка стеклянной упаковки. Термическая закалка упрочняет стекло путем создания во время быстрого охлаждения после формования поверхностного сжимающего напряжения. Эта технология дает хорошие результаты в случае стеклянных изделий с плоской геометрией (например, окна), стеклянных изделий толщиной более, примерно, 2 мм и композиций стекла с большим коэффициентом термического расширения. Однако стеклянная упаковка лекарственных средств обычно имеет сложную геометрию (пузырьки, трубки, ампулы и т.д.), тонкие стенки (иногда, примерно, 1-1,5 мм) и производится из стекла с малым коэффициентом термического расширения, из-за чего стеклянная упаковка лекарственных средств не может быть упрочнена путем термической закалки. Химическая закалка также способствует упрочнению стекла путем создания поверхностного сжимающего напряжения. Это напряжение возникает при погружении изделия в ванну с расплавленной солью. По мере того, как ионы стекла замещаются более крупными ионами расплавленной соли, на поверхности стекла возникает сжимающее напряжение. Преимуществом химической закалки является то, что она может быть использована в случае сложной геометрии, тонких стенок и относительно нечувствительна к параметрам термического расширения стеклянной подложки.
[0007] Однако, хотя описанные выше технологии закалки позволяют улучшить способность закаленного стекла выдерживать тупые удары, они менее эффективны с точки зрения повышения стойкости стекла к абразивному износу, например, царапинам, которые могут возникать во время производства, транспортировки и манипулирования.
[0008] Следовательно, существует потребность в альтернативных стеклянных изделиях, обладающих повышенной стойкостью к механическому повреждению.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0009] В соответствии с одним из вариантов осуществления изобретения, стеклянное изделие с покрытием может включать стеклянный контейнер, в котором может иметься первая поверхность и вторая поверхность, противоположная первой поверхности, и покрытие с низким коэффициентом трения, связанное, по меньшей мере, с частью первой поверхности стеклянного контейнера. Покрытие с низким коэффициентом трения может включать полиимидную химическую композицию. Полиимидная химическая композиция может быть галогенированной, и полиимидная химическая композиция может включать силоксановый фрагмент.
[0010] В другом варианте осуществления изобретения полиимидная химическая композиция может быть образована в результате полимеризации первого мономера, который может включать оканчивающийся амином силоксан, второго мономера, который может включать галогенированный ароматический диангидрид, и третьего мономера, который может включать ароматический галогенированный диамин. Полиимидная химическая композиция в полностью имидизированной форме может быть растворимой в ацетате, кетоне или их смесях.
[0011] В еще одном варианте осуществления изобретения покрытие может быть нанесено на стеклянное изделие способом, включающим осаждение покрытия с низким коэффициентом трения на первой поверхности стеклянного изделия. Покрытие с низким коэффициентом трения может включать полиимидную химическую композицию, при этом, полиимидная химическая композиция является галогенированной и при этом полиимидная химическая композиция включает силоксановый фрагмент.
[0012] Дополнительные отличительные особенности и преимущества полиимидов, которые могут быть использованы для создания покрытия на стеклянном изделии, стеклянных изделий с покрытием и способов и процессов их производства изложены в нижеследующем подробном описании и, отчасти, станут очевидны специалистам в данной области из этого описания или в ходе воплощения на практике вариантов осуществления изобретения, описанных в настоящем документе, в том числе, в нижеследующем подробном описании, формуле изобретения, а также на прилагаемых чертежах.
[0013] Следует понимать, что и приведенное выше общее описание, и нижеследующее подробное описание освещают различные варианты осуществления изобретения и предназначены для создания общего представления или основы для понимания природы и характера заявленного предмета изобретения. Прилагаемые чертежи приведены для дополнительного облегчения понимания различных вариантов осуществления изобретения и составляют часть данного описания. Чертежи поясняют различные описанные варианты осуществления изобретения и вместе с описанием служат для разъяснения принципов и приемов заявленного предмета изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0014] На фиг. 1 схематично представлено поперечное сечение стеклянного контейнера с покрытием с низким коэффициентом трения в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0015] На фиг. 2 схематично представлено поперечное сечение стеклянного контейнера с однослойным покрытием с низким коэффициентом трения в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0016] На фиг. 3 схематично представлено поперечное сечение стеклянного контейнера с покрытием с низким коэффициентом трения, включающим полимерный слой и слой связующего, в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0017] На фиг. 4 схематично представлен испытательный стенд для определения коэффициента трения между двумя поверхностями в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0018] На фиг. 5 схематично представлено устройство для определения потери массы покрытия на стеклянном контейнере в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0019] На фиг. 6 представлен спектр 1Н-ЯМР фторированной полиимидной силоксановой химической композиции в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0020] На фиг. 7 представлен спектр 19F-ЯМР фторированной полиимидной силоксановой химической композиции в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0021] На фиг. 8 графически представлены данные в отношении коэффициента трения для стеклянных контейнеров с покрытием в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0022] На фиг. 9 графически представлены данные в отношении потери массы для стеклянных контейнеров с покрытием в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0023] На фиг. 10 графически представлены данные в отношении коэффициента трения для стеклянных контейнеров с покрытием в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0024] На фиг. 11 графически представлены данные в отношении цвета для стеклянных контейнеров, снабженных фторированным полиимидным силоксановым покрытием, в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе;
[0025] На фиг. 12 графически представлены данные в отношении коэффициента трения для стеклянных контейнеров с покрытием в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе; и
[0026] На фиг. 13 представлены оптические микрофотографии стеклянных контейнеров с покрытием в местах царапин пузырек о пузырек на испытательном стенде после различной термической обработки в соответствии с одним или несколькими вариантами осуществления изобретения, представленными и описанными в настоящем документе.
ПОДРОБНОЕ ОПИСАНИЕ
[0027] Далее подробно рассмотрены различные варианты осуществления полиимидных композиций, покрытий с низким коэффициентом трения для стеклянных изделий, стеклянных изделий с покрытием с низким коэффициентом трения и способов их изготовления, примеры которых схематично представлены на фигурах. Стеклянные изделия с покрытием могут представлять собой стеклянные контейнеры, пригодные для применения в качестве разного рода упаковки, в том числе, помимо прочего, упаковки для лекарственных средств. В этих вариантах осуществления изобретения покрытия с низким коэффициентом трения являются термически устойчивыми, если после первичного нанесения подверглись воздействию высоких температур, подобных применяемым в процессе депирогенизации. Например, описываемые стеклянные изделия с покрытием могут в достаточной степени сохранять низкий коэффициент трения после термической обработки и могут не приобретать желтого оттенка после такой термической обработки. Такая упаковка для лекарственных средств может содержать или не содержать лекарственный препарат. В вариантах осуществления изобретения покрытия с низким коэффициентом трения могут включать полиимиды, которые могут быть нанесены на стеклянные изделия в полностью имидизированной форме (т.е. не как полиамидокислота). В вариантах осуществления изобретения описываемые полиимиды могут быть галогенированными, например, фторированными, и могут содержать силоксановые фрагменты. Такие полиимиды в настоящем описании могут быть названы галогенированными полиимидными силоксанами.
[0028] Различные варианты осуществления покрытий с низким коэффициентом трения, стеклянных изделий с покрытиями с низким коэффициентом трения и способов их изготовления описаны далее более подробно со ссылкой на определенные прилагаемые чертежи. Хотя покрытия с низким коэффициентом трения описываемых вариантов осуществления изобретения наносятся на наружную поверхность стеклянного контейнера, следует понимать, что описываемые покрытия с низким коэффициентом трения могут быть использованы в качестве покрытия на широком спектре материалов, включая нестеклянные материалы и иные подложки, нежели контейнеры, включая, помимо прочего, стеклянные индикаторные панели и т.п.
[0029] Вообще, покрытие с низким коэффициентом трения может быть нанесено на поверхность стеклянного изделия, такого как контейнер, которое может быть использовано в качестве упаковки лекарственных средств. Покрытие с низким коэффициентом трения может придавать стеклянному изделию с покрытием благоприятные свойства, такие как сниженный коэффициент трения и повышенная механическая стойкость. Благодаря пониженному коэффициенту трения стеклянное изделие может быть более прочным и долговечным благодаря уменьшению абразивного износа стекла. Кроме того, покрытие с низким коэффициентом трения может способствовать сохранению указанной прочности и долговечности после воздействия высоких температур и других условий, таких как применяемые на стадиях расфасовки и упаковки в ходе упаковки лекарственных средств, например, депирогенизация, автоклавирование и т.п. Следовательно, покрытия с низким коэффициентом трения и стеклянные изделия с покрытием с низким коэффициентом трения могут обладать термической устойчивостью.
[0030] Покрытие с низким коэффициентом трения, вообще, может включать галогенированный полиимидный силоксан, например, один слой галогенированного полиимидного силоксана. В другом варианте осуществления изобретения в покрытие с низким коэффициентом трения наряду с галогенированными полиимидным силоксаном может быть включено связующее, такое как функционализированный мочевиной силан. В некоторых вариантах осуществления изобретения связующее может находиться в слое связующего, расположенном на поверхности стеклянного изделия, а галогенированный полиимидный силоксан может находиться в полимерном слое, расположенном поверх слоя связующего. В других вариантах осуществления изобретения связующее и композиция галогенированного полиимидного силоксана могут быть смешаны в одном слое.
[0031] На фиг. 1 схематически представлено поперечное сечение стеклянного изделия с покрытием, а именно, стеклянного контейнера 100 с покрытием. Стеклянный контейнер 100 с покрытием включает стеклянный корпус 102 и покрытие 120 с низким коэффициентом трения. Стеклянный корпус 102 имеет стенку 104 стеклянного корпуса, находящуюся между наружной поверхностью 108 (т.е. первой поверхностью) и внутренней поверхностью 110 (т.е. второй поверхностью). Внутренняя поверхность 110 стенки 104 стеклянного контейнера обуславливает наличие внутреннего объема 106 стеклянного контейнера 100 с покрытием. Покрытие 120 с низким коэффициентом трения расположено, по меньшей мере, на части наружной поверхности 108 стеклянного корпуса 102. В некоторых вариантах осуществления изобретения покрытие 120 с низким коэффициентом трения может быть расположено, по существу, на всей наружной поверхности 108 стеклянного корпуса 102. Покрытие 120 с низким коэффициентом трения имеет наружную поверхность 122 и поверхность 124, контактирующую со стеклянным корпусом, на границе раздела стеклянного корпуса 102 и покрытия 120 с низким коэффициентом трения. Покрытие 120 с низким коэффициентом трения может быть связано со стеклянным корпусом 102 на наружной поверхности 108.
[0032] В одном из вариантов осуществления изобретения стеклянный контейнер 100 с покрытием является упаковкой лекарственного средства. Например, стеклянный корпус 102 может иметь форму пузырька, ампулы, бутылки, флакона, склянки, мерного стакана, ковша, графина, бочки, корпуса шприца и т.п. Стеклянный контейнер 100 с покрытием может быть использован для вмещения любой композиции, и в одном из вариантов осуществления изобретения может быть использован для вмещения лекарственного препарата. Лекарственный препарат может включать любое химическое вещество, предназначенное для использования в медицинской диагностике, лечении, обслуживании или профилактике. Примеры лекарственных препаратов включают, помимо прочего, лекарственные средства, наркотики, медикаменты, лечебные средства и т.п. Лекарственный препарат может иметь форму жидкости, твердого тела, геля, суспензии, порошка и т.п.
[0033] Обратимся к фиг. 1 и 2; в одном из вариантов осуществления изобретения покрытие 120 с низким коэффициентом трения имеет однослойную структуру, иногда именуемую монослойной структурой. Например, покрытие 120 с низким коэффициентом трения может иметь, по существу, гомогенный состав, включающий один или несколько полимеров, таких как галогенированный полиимидный силоксан. Покрытие 120 с низким коэффициентом трения может включать галогенированный полиимидный силоксан в количестве, например, по меньшей мере, около 50% вес., по меньшей мере, около 60% вес., по меньшей мере, около 70% вес., по меньшей мере, около 80% вес., по меньшей мере, около 90% вес., по меньшей мере, около 95% вес., по меньшей мере, около 99% вес. или может состоять, по существу, из галогенированного полиимидного силоксана (например, по меньшей мере, около 99,5% вес. покрытия 120 с низким коэффициентом трения составляет галогенированный полиимидный силоксан). В одном из вариантов осуществления изобретения химическая композиция галогенированного полиимидного силоксана и связующее могут быть, по существу, смешаны в одном слое с образованием покрытия 120 с низким коэффициентом трения. Например, покрытие 120 с низким коэффициентом трения может представлять собой смесь связующего и галогенированного полиимидного силоксана, при этом, покрытие 120 с низким коэффициентом трения включает, например, от 30% вес. до 70% вес. галогенированного полиимидного силоксана и от 30% вес. до 70% вес. связующего.
[0034] Обратимся к фиг. 1 и 3; в одном из вариантов осуществления изобретения покрытие 120 с низким коэффициентом трения имеет двухслойную структуру. На фиг. 3 показано поперечное сечение стеклянного контейнера 100, при этом, покрытие 120 с низким коэффициентом трения включает полимерный слой 170 и слой 180 связующего. Полимерная химическая композиция, такая как галогенированный полиимидный силоксан, может находиться в полимерном слое 170, и связующее может находиться в слое 180 связующего. Слой 180 связующего может непосредственно контактировать с наружной поверхностью 108 стенки 104 стеклянного контейнера. Полимерный слой 170 может непосредственно контактировать со слоем 180 связующего и может образовывать наружную поверхность 122 покрытия 120 с низким коэффициентом трения. В некоторых вариантах осуществления изобретения слой 180 связующего соединен со стеклянной стенкой 104, а полимерный слой 170 соединен со слоем 180 связующего на границе раздела 174. Полимерный слой 170 может включать галогенированный полиимидный силоксан в количестве, например, по меньшей мере, около 50% вес., по меньшей мере, около 60% вес., по меньшей мере, около 70% вес., по меньшей мере, около 80% вес., по меньшей мере, около 90% вес., по меньшей мере, около 95% вес., по меньшей мере, около 99% вес. или может состоять, по существу, из галогенированного полиимидного силоксана (например, по меньшей мере, около 99,5% вес. полимерного слоя 170 составляет галогенированный полиимидный силоксан). Слой 180 связующего может содержать один или несколько связующих в количестве, например, по меньшей мере, около 50% вес., по меньшей мере, около 60% вес., по меньшей мере, около 70% вес., по меньшей мере, около 80% вес., по меньшей мере, около 90% вес., по меньшей мере, около 95% вес., по меньшей мере, около 99% вес. или может состоять, по существу, из одного или нескольких связующих (например, по меньшей мере, около 99,5% вес. слоя 180 связующего составляет связующее).
[0035] В некоторых вариантах осуществления изобретения полимерный слой может быть расположен поверх слоя связующего, что означает, что полимерный слой 170 является наружным слоем относительно слоя 180 связующего и стеклянной стенки 104. В настоящем контексте то, что первый слой расположен «поверх» второго слоя, означает, что первый слой может непосредственно контактировать со вторым слоем или быть отделенным от второго слоя, например, третьим слоем, расположенным между первым и вторым слоями.
[0036] Покрытие 120 с низким коэффициентом трения, нанесенное на стеклянный корпус 102, может иметь толщину, меньшую или равную, примерно, 100 мкм, меньшую или равную, примерно, 10 мкм, меньшую или равную, примерно, 8 мкм, меньшую или равную, примерно, 6 мкм, меньшую или равную, примерно, 4 мкм, меньшую или равную, примерно, 3 мкм, меньшую или равную, примерно, 2 мкм, или даже меньшую или равную, примерно, 1 мкм. В некоторых вариантах осуществления изобретения толщина покрытия 120 с низким коэффициентом трения может быть меньше или равна, примерно, 800 нм, меньше или равна, примерно, 600 нм, меньше или равна, примерно, 400 нм, меньше или равна, примерно, 300 нм, меньше или равна, примерно, 200 нм или даже меньше или равна, примерно, 100 нм. В других вариантах осуществления изобретения толщина покрытия 120 с низким коэффициентом трения может быть меньше, примерно, 90 нм, меньше, примерно, 80 нм, меньше, примерно, 70 нм, меньше, примерно, 60 нм, меньше, примерно, 50 нм или даже меньше, примерно, 25 нм. В некоторых вариантах осуществления изобретения покрытие 120 с низким коэффициентом трения может иметь неоднородную толщину по всему стеклянному корпусу 102. Например, стеклянный контейнер 100 с покрытием может иметь более толстое покрытие 120 с низким коэффициентом трения в некоторых областях благодаря способу приведения стеклянного корпуса 102 в контакт с одним или несколькими растворами покрытия, образующими покрытие 120 с низким коэффициентом трения. В некоторых вариантах осуществления изобретения покрытие 120 с низким коэффициентом трения может иметь неоднородную толщину. Например, толщина покрытия может быть разной на разных участках стеклянного контейнера 100 с покрытием, что может усиливать защиту на определенном участке.
[0037] В тех вариантах осуществления изобретения, где имеется, по меньшей мере, два слоя, таких как полимерный слой 170 и слой 180 связующего, каждый слой может иметь толщину меньшую, примерно, 100 мкм, меньшую или равную, примерно, 10 мкм, меньшую или равную, примерно, 8 мкм, меньшую или равную, примерно, 6 мкм, меньшую или равную, примерно, 4 мкм, меньшую или равную, примерно, 3 мкм, меньшую или равную, примерно, 2 мкм, или даже меньшую или равную, примерно, 1 мкм. В некоторых вариантах осуществления изобретения толщина каждого слоя может быть меньше или равна, примерно, 0,5 мкм или даже меньше или равна, примерно, 100 нм. В других вариантах осуществления изобретения каждый слой может иметь толщину менее, примерно, 90 нм, менее, примерно, 80 нм, менее, примерно, 70 нм, менее, примерно, 60 нм, менее, примерно, 50 нм или даже менее, примерно, 25 нм.
[0038] Как отмечено в настоящем документе, покрытие 120 с низким коэффициентом трения включает полимерную химическую композицию галогенированного полиимидного силоксана. Галогенированный полиимидный силоксан может быть образован из термически устойчивых галогенированных полиимидных силоксанов, таких как галогенированные полиимидные силоксаны, которые, по существу, не разлагаются при температуре в диапазоне от 200°С до 400°С, включая 250°С, 300°С и 350°С. Эти галогенированные полиимидные силоксаны могут быть нанесены со связующим или без него. В настоящем контексте «галогенированные полиимидные силоксаны» означает полиимиды, которые галогенированы и включают силоксановый фрагмент. «Силоксановый фрагмент» означает химическую группу Si-O-Si. Один или несколько мономеров галогенированного полиимидного силоксана могут включать такой силоксановый фрагмент. «Галогенированным» соединением является соединение, которое включает один или несколько атомов галогена, например, помимо прочего, фтор, хлор, бром и/или йод, при этом, галоген может иногда замещать атом водорода в углеводороде.
[0039] Галогенированные полиимидные силоксаны могут быть образованы, например, по реакции одной или нескольких композиций диаминового мономера с одной или несколькими композициями диангидридного мономера. Многие полиимиды неустойчивы в растворе в полиимидной форме и присутствуют в растворе как полиамидокислоты, которые являются не-циклизированными прекурсорами полиимида, которые образуются из диаминовых мономеров и диангидридных мономеров. Однако галогенированные полиимидные силоксаны настоящего изобретения могут быть устойчивыми как полностью имидизированные полиимидные химические соединения. В вариантах осуществления изобретения галогенированные полиимидные силоксаны могут быть нанесены на стеклянные изделия в полностью имидизированной форме, может не требоваться стадия отверждения с целью имидизирования, как в случае полиамидокислот, наносимых на стеклянное изделие. В вариантах осуществления изобретения полностью имидизированный галогенированный полиимидный силоксан может быть отвержден, например, путем тепловой обработки, примерно, при 300°С в течение, примерно, 30 минут или менее. В некоторых вариантах осуществления изобретения отверждение может осуществляться после осаждения слоя связующего и полимерного слоя или после осаждения смешанного слоя полимера и связующего. Без связи с какой-либо теорией полагают, что стадия отверждения может способствовать усилению адгезии галогенированного полиимидного силоксана к стеклянному корпусу в обоих вариантах осуществления изобретения: и где используется связующее, и где связующее не используют.
[0040] Вообще, для получения имидизировнных химических соединений полиамидокислоты необходимо отверждать. Такое отверждение может включать нагревание полиамидокислоты до 300°С и выдерживание при этой температуре, примерно, 30 минут или менее или при температуре более 300°С, например, по меньшей мере, 320°С, 340°С, 360°С, 380°С или 400°С более короткое время. Без связи с какой-либо теорией полагают, что на стадии отверждения происходит имидизирование полиамидокислоты по реакции между молекулами карбоновой кислоты и амида с образованием полиимида.
[0041] Как отмечено выше, многие обычные полиимиды в имидизированной форме нерастворимы и могут быть переведены в раствор только в форме полиамидокислоты. Кроме того, если обычный полностью имидизированный полиимид может быть растворен в растворителе, такие растворители могут быть токсичными или иметь высокую температуру кипения. Трудно и, может быть, даже опасно иметь дело с такими токсичными или высококипящими растворителями на производственной установке, оперирующей большими объемами токсичных или высококипящих растворителей в ходе крупномасштабного промышленного производства стеклянных изделий, таких как стеклянные контейнеры с покрытием. Примерами токсичных или высококипящих растворителей являются н,н-диметилацетамид (DMAc), н,н-диметилформамид (DMF) и 1-метил-2-пирролидинон (NMP) или их смеси.
[0042] Галогенированные полиимидные силоксаны, описываемые в настоящем документе, могут быть растворимыми в полностью имидизированной форме в нетоксичных растворителях с низкой температурой кипения. Такие нетоксичные и низкокипящие растворители могут включать ацетаты или кетоны, например, помимо прочего, этилацетат, ацетат метилового эфира пропиленгликоля, толуол, ацетон, 2-бутанон и их смеси. Без связи с какой-либо теорией полагают, что причиной повышенной растворимости и совместимости с растворителями, такими как ацетаты и кетоны, может быть сочетание в полимере, по меньшей мере, одного оканчивающегося амином силоксанового звена, по меньшей мере, одного фторированного ароматического диангидрида и, по меньшей мере, одного ароматического фторированного диамина.
[0043] В вариантах осуществления изобретения галогенированный полиимидный силоксан может представлять собой сополимер, включающий один или несколько мономеров из первого мономера, включающего оканчивающийся амином силоксан, второго мономера, включающего галогенированный ангидрид (такой как галогенированный диангидрид), и третьего мономера, включающего галогенированный амин (такой как галогенированный диамин). Галогенированный полиимидный силоксан может дополнительно включать другие мономеры. В вариантах осуществления изобретения второй мономер, третий мономер или оба эти мономера могут быть фторированными. В вариантах осуществления изобретения второй мономер может включать фторированный ароматический диангидрид, и/или третий мономер может включать ароматический фторированный диамин. В настоящем контексте мономер, именуемый «аминовым» может включать 1, 2, 3 или даже более аминовых фрагментов. Кроме того, в настоящем контексте «ангидридный» мономер может включать 1, 2, 3 или даже более ангидридных фрагментов. Например, наряду с тем, что полиимиды, вообще, могут быть образованы из диангидридов и диаминов, диангидриды и диамины могут включать дополнительные ангидридные или аминовые фрагменты, соответственно.
[0044] В одном из вариантов осуществления изобретения первый мономер, включающий оканчивающийся амином силоксан, может представлять собой 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан, структура которого представлена как Химическая структура 1 ниже. 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан в настоящем документе может упоминаться в сокращенной форме как «BADS».
Figure 00000001
Химическая структура 1
[0045] В одном из вариантов осуществления изобретения второй мономер, включающий галогенированный диангидрид, может представлять собой 4,4'-(гексафторизопропилиден)дифталевый ангидрид, структура которого представлена как Химическая структура 2 ниже. 4,4'-(гексафторизопропилиден)дифталевый ангидрид в настоящем документе может упоминаться в сокращенной форме как «6FDA».
Figure 00000002
Химическая структура 2
[0046] В одном из вариантов осуществления изобретения третий мономер, включающий галогенированный диамин, может представлять собой 2,2-бис(4-аминофенил)гексафторпропан, структура которого представлена как Химическая структура 3 ниже. 2,2-бис(4-аминофенил)гексафторпропан в настоящем документе может упоминаться в сокращенной форме как «6F».
Figure 00000003
Химическая структура 3
[0047] В одном из вариантов осуществления изобретения галогенированный полиимидный силоксан может состоять из первого мономера, включающего оканчивающийся амином силоксан, второго мономера, включающего галогенированный диангидрид, и третьего мономера, включающего галогенированный диамин. Например, галогенированный полиимидный силоксан может состоять из трех мономеров, представленных Химической структурой 1, Химической структурой 2 и Химической структурой 3. Такой галогенированный полиимидный силоксан, образованный из Химической структуры 1, Химической структуры 2 и Химической структуры 3, имеет Химическую структуру 4, представленную ниже. Такой галогенированный полиимидный силоксан, образованный из Химической структуры 1, Химической структуры 2 и Химической структуры 3, в настоящем документе может упоминаться в сокращенной форме как «Silimide-6F».
Figure 00000004
Химическая структура 4
[0048] В Химической структуре 4 мономеры 6FDA полимеризованы с мономерами 6F и BADS, при этом, сумма мономеров 6F и BADS примерно равна количеству мономеров 6FDA, присутствующих в галогенированном полиимидном силоксане. В Химической структуре 4 отношение количества мономеров 6F к количеству мономеров BADS выражается отношением n к m. В вариантах осуществления изобретения отношение количества мономеров 6F к количеству мономеров BADS может составлять от, примерно, 9:1 до, примерно, 1:9, например, от, примерно, 8:2 до, примерно, 2:8, от, примерно, 7:3 до, примерно, 3:7 или от, примерно, 6:4 до, примерно, 4:6, например, около 1:1. В других вариантах осуществления изобретения отношение количества мономеров 6F к количеству мономеров BADS может составлять от, примерно, 9:1 до, примерно, 6:1 или от, примерно, 8:1 до, примерно, 7:1. Кроме того, следует понимать, что приведенные выше отношения 6F к BADS могут быть применены, вообще, как отношения любых оканчивающихся амином силоксановых мономеров к галогенированным диаминовым мономерам, используемым для получения галогенированных полиимидных силоксанов.
[0049] Без связи с какой-либо теорией полагают, что когда отношение количества галогенированных диаминовых мономеров к количеству оканчивающихся амином силоксановых мономеров высокое, то есть, больше, примерно, 9:1, то имеет место приемлемая стойкость к обесцвечиванию (особенно пожелтению) при высокой температуре, высокая температура стеклования галогенированного полиимидного силоксана, однако, может ухудшиться адгезия покрытия. Когда указанное отношение низкое, то есть, меньше, примерно, 1:9, то галогенированный полиимидный силоксан может проявлять достаточную адгезию к стеклу, но быть подверженным термическому разложению при более низких температурах, иметь более низкую температуру стеклования и заметно обесцвечиваться (желтеть) при отверждении или термической обработке, такой как депирогенизация.
[0050] Описываемые галогенированные полиимидные силоксаны могут характеризоваться температурой стеклования от, примерно, 50°С до, примерно, 300°С. Например, полиимид, образованный из 6FDA и 6F в молярном отношении 1:1, может иметь температуру стеклования, примерно, 300°С, а полиимид, образованный из 6FDA и BADS в молярном отношении 1:1, может иметь температуру стеклования, примерно, 50°С. Без связи с какой-либо теорией полагают, что полиимид, образованный из 6FDA, BADS и 6F, будет иметь температуру стеклования от, примерно, 50°С до, примерно, 300°С, при этом, температура стеклования является функцией отношения BADS к 6F.
[0051] Помимо оканчивающегося амином силоксана, галогенированного амина и галогенированного диангидрида, в галогенированном полиимидном силоксане могут присутствовать другие мономеры. Например, мономеры, не являющиеся оканчивающимся амином силоксаном, галогенированным диамином или галогенированным диангидридом, могут составлять до 5% мономеров, 10% мономеров, 20% мономеров или даже, по меньшей мере, около 30% мономеров галогенированного полиимидного силоксана. Такие дополнительные мономеры могут быть введены для повышения растворимости в растворителях.
[0052] Хотя дополнительные мономеры могут быть введены в галогенированный полиимидный силоксан, галогенированный полиимидный силоксан может включать галогенированные диангидридные мономеры в количестве, по меньшей мере, около 20% общего количества мономеров, по меньшей мере, около 30% общего количества мономеров, по меньшей мере, около 40% общего количества мономеров, по меньшей мере, около 45% общего количества мономеров или даже 50% общего количества мономеров. Галогенированный полиимидный силоксан может включать галогенированные диаминовые мономеры в количестве, по меньшей мере, около 10% общего количества мономеров, по меньшей мере, около 15% общего количества мономеров, по меньшей мере, около 20% общего количества мономеров, по меньшей мере, около 23% общего количества мономеров или даже 25% общего количества мономеров. Галогенированный полиимидный силоксан может включать оканчивающиеся амином силоксановые мономеры в количестве, по меньшей мере, около 10% общего количества мономеров, по меньшей мере, около 15% общего количества мономеров, по меньшей мере, около 20% общего количества мономеров, по меньшей мере, около 23% общего количества мономеров или даже 25% общего количества мономеров. В настоящем контексте процентное содержание конкретного мономера в полиимиде означает молярное отношение количества мономерных звеньев конкретного мономера к общему количеству мономеров в полиимидной цепи.
[0053] В некоторых вариантах осуществления изобретения галогенированный полиимидный силоксан может включать мономер, в котором имеется звено из двух бензольных колец, отражаемое Химической структурой 5. В Химической структуре 5 «А» может означать -С(СН3)2-, -SO2-, -S-, или -О-, «а» означает 0 или 1 (0 означает, что бензольные кольца соединены непосредственно без группы «А»).
Figure 00000005
Химическая структура 5
[0054] В вариантах осуществления изобретения галогенированный полиимидный силоксан может представлять собой статистический сополимер. Описываемые галогенированные полиимидные силоксаны могут иметь среднечисленную молярную массу (Mn) около 19 Да, например, от, примерно, 18 Да до, примерно, 20 Да, от, примерно, 17 Да до, примерно, 21 Да, от, примерно, 16 Да до, примерно, 22 Да или от, примерно, 15 Да до, примерно, 23 Да. Например, полиимид Silimide-6F Химической структуры 4 может иметь Mn, равную, примерно, 19 Да, когда m:n составляет, примерно, 3:1 (в настоящем документе именуемый «Silimide-6F 25/75»). Описываемые галогенированные полиимидные силоксаны могут иметь средневесовую молярную массу (Mw) около 40 Да, например, от примерно, 39 Да до, примерно, 41 Да, от примерно, 38 Да до, примерно, 42 Да, от примерно, 36 Да до, примерно, 44 Да или от примерно, 30 Да до, примерно, 50 Да. Например, полиимид Silimide-6F Химической структуры 4 может иметь Mw, равную, примерно, 19 Да, когда m:n составляет, примерно, 3:1. Описываемые галогенированные полиимидные силоксаны могут характеризоваться коэффициентом полидисперсности, примерно, 2,15, например, от, примерно, 2,0 до, примерно, 2,3, от, примерно, 1,8 до, примерно, 2,5 или от, примерно, 1,5 до, примерно, 2,8. Например, полиимид Silimide-6F Химической структуры 4 может иметь коэффициент полидисперсности, примерно, 2,15, когда m:n составляет, примерно, 3:1.
[0055] Как отмечалось, в некоторых вариантах осуществления изобретения покрытие 120 с низким коэффициентом трения включает связующее. Связующее может усиливать сцепление или связывание галогенированных полиимидных силоксанов со стеклянным корпусом 102 и, как правило, располагается между стеклянным корпусом 102 и галогенированными полиимидными силоксанами или смешивается с галогенированными полиимидными силоксанами. Адгезия в настоящем контексте означает силу сцепления или связывания покрытия с низким коэффициентом трения, нанесенного на стеклянный контейнер, до и после обработки, такой как термическая обработка. Виды термической обработки включают, помимо прочего, автоклавирование, депирогенизацию, лиофилизацию и т.п. Следует понимать, что описываемые процессы отверждения отличны от описываемой тепловой обработки, например, типов тепловой обработки, подобных или идентичных процессам, применяемым в области упаковки лекарственных средств, такой как депирогенизация или тепловая обработка, используемая для определения термической стойкости, как описано в настоящем документе.
[0056] В одном из вариантов осуществления изобретения связующее может включать, по меньшей мере, одну силановую химическую композицию. В настоящем контексте «силановая» химическая композиция - это любая химическая композиция, содержащая силан, включая функционализированные органосиланы, а также силанолы, образующиеся из силанов в водных растворах. Силановые химические композиции связующего могут быть ароматическими или алифатическими. В некоторых вариантах осуществления изобретения, по меньшей мере, одна силановая химическая композиция может включать аминовый фрагмент, например, первичный амин или вторичный амин. Кроме того, связующее может включать гидролизаты и/или олигомеры таких силанов, например, одну или несколько силсесквиоксановых химических композиций, которые образованы из одной или нескольких силановых химических композиций. Силсесквиоксановые химические композиции могут иметь полную кэйдж-структуру, неполную кэйдж-структуру или не иметь кэйдж-структуру.
[0057] Связующее может включать любое число различных химических композиций, например, одну химическую композицию, две разных химических композиции или более двух разных химических композиций, включая олигомеры, Образованные из более, чем одной мономерной химический композиции. В одном из вариантов осуществления изобретения связующее может включать, по меньшей мере, одно из следующего: (1) первую силановую химическую композицию, ее гидролизат или ее олигомер и (2) химическую композицию, Образованную в результате олигомеризации, по меньшей мере, первой силановой химической композиции и второй силановой химической композиции. В другом варианте осуществления изобретения связующее включает первый и второй силан. В настоящем контексте «первая» силановая химическая композиция и «вторая» силановая химическая композиция представляют собой силаны с разным химическим составом. Первая силановая химическая композиция может быть ароматической или алифатической химической композицией, необязательно, может включать аминовый фрагмент и, необязательно, может представлять собой алкоксисилан. Точно так же, вторая силановая химическая композиция может быть ароматической или алифатической химической композицией, необязательно, может включать аминовый фрагмент и, необязательно, может представлять собой алкоксисилан.
[0058] Например, в одном из вариантов осуществления изобретения в качестве связующего применяется только одна силановая химическая композиция. В таком варианте осуществления изобретения связующее может включать силановую химическую композицию, ее гидролизат или ее олигомер.
[0059] В другом варианте осуществления изобретения в качестве связующего может быть применено множество силановых химических композиций. В таком варианте осуществления изобретения связующее может включать, по меньшей мере, одно из следующего: (1) смесь первой силановой химической композиции и второй силановой химической композиции и (2) химическую композицию, образованную в результате олигомеризации, по меньшей мере, первой силановой химической композиции и второй силановой химической композиции.
[0060] В описанных выше вариантах осуществления изобретения первая силановая химическая композиция, вторая силановая химическая композиция или обе композиции могут быть ароматическими химическими композициями. В настоящем контексте ароматическая химическая композиция содержит одно или несколько колец из шести атомов углерода, характерных для бензольного ряда и родственных ему органических соединений. Ароматическая силановая химическая композиция может представлять собой алкоксисилан, например, помимо прочего, диалкоксисилановую химическую композицию, ее гидролизат или ее олигомер или триалкоксисилановую химическую композицию, ее гидролизат или ее олигомер. В некоторых вариантах осуществления изобретения ароматический силан может включать аминовый фрагмент и может представлять собой алкоксисилан, включающий аминовый фрагмент. В другом варианте осуществления изобретения ароматическая силановая химическая композиция может являться ароматической алкоксисилановой химической композицией, ароматической ацилоксисилановой химической композицией, ароматической галогенсилановой химической композицией, или ароматической аминосилановой химической композицией. В другом варианте осуществления изобретения ароматическая силановая химическая композиция может быть выбрана из группы, состоящей из аминофенил-, 3-(м-аминофенокси)пропил-, н-фениламинопропил- или (хлорметил)фенил- замещенных алкокси-, ацилокси-, галоген- или аминосиланов. Например, ароматический алкоксисилан может представлять собой, помимо прочего, аминофенилтриметоксисилан (иногда в настоящем документе именуемый «APhTMS»), аминофенилдиметоксисилан, аминофенилтриэтоксисилан, аминофенилдиэтоксисилан, 3-(м-аминофенокси)пропилтриметоксисилан, 3-(м-аминофенокси)пропилдиметоксисилан, 3-(м-аминофенокси)пропилтриэтоксисилан, 3-(м-аминофенокси)пропилдиэтоксисилан, н-фениламинопропилтриметоксисилан, н-фениламинопропилдиметоксисилан, н-фениламинопропилтриэтоксисилан, н-фениламинопропилдиэтоксисилан, их гидролизаты или олигомеризованную химическую композицию. В одном из примерных вариантов осуществления изобретения ароматическая силановая химическая композиция может представлять собой аминофенилтриметоксисилан.
[0061] В описанных выше вариантах осуществления изобретения первая силановая химическая композиция, вторая силановая химическая композиция или обе композиции могут являться алифатическими химическими композициями. В настоящем контексте алифатическая химическая композиция является неароматической химической композицией, имеющей структуру с открытой цепью, такой как, помимо прочего, алканы, алкены и алкины. Например, в некоторых вариантах осуществления изобретения связующее может включать химическую композицию, которая является алкоксисиланом и может быть алифатическим алкоксисиланом, например, помимо прочего, диалкоксисилановой химической композицией, ее гидролизатом или ее олигомером или триалкоксисилановой химической композицией, ее гидролизатом или ее олигомером. В некоторых вариантах осуществления изобретения алифатический силан может включать аминовый фрагмент и может представлять собой алкоксисилан, включающий аминовый фрагмент, например, аминоалкилтриалкоксисилан. В одном из вариантов осуществления изобретения алифатическая силановая химическая композиция может быть выбрана из группы, состоящей из 3-аминопропил-, н-(2-аминоэтил)-3-аминопропил-, винил-, метил-, н-фениламинопропил-, (н-фениламино)метил-, н-(2-винилбензиламиноэтил)-3-аминопропил-замещенных алкокси-, ацилокси-, галоген- или аминосиланов, их гидролизатов или их олигомеров. Аминоалкилтриалкоксисиланы включают, помимо прочего, 3-аминопропилтриметоксисилан (иногда в настоящем документе именуемый «GAPS»), 3-аминопропилдиметоксисилан, 3-аминопропилтриэтоксисилан, 3- аминопропилдиэтоксисилан, н-(2-аминоэтил)-3-аминопропилтриметоксисилан, н-(2-аминоэтил)-3-аминопропилдиметоксисилан, н-(2-аминоэтил)-3-аминопропилтриэтоксисилан, н-(2-аминоэтил)-3-аминопропилдиэтоксисилан, их гидролизаты и олигомеризованные химические композиции. В других вариантах осуществления изобретения алифатическая алкоксисилановая химическая композиция может не содержать аминовый фрагмент, как, например, алкилтриалкоксисилан или алкилдиалкоксисилан. К таким алкилтриалкоксисиланам или алкилдиалкоксисиланам относятся, помимо прочего, винилтриметоксисилан, винилдиметоксисилан, винилтриэтоксисилан, винилдиэтоксисилан, метилтриметоксисилан, метилдиметоксисилан, метилтриэтоксисилан, метилдиэтоксисилан, их гидролизаты и олигомеризованные химические композиции. В одном из примерных вариантов осуществления изобретения алифатическая силановая химическая композиция представляет собой 3-аминопропилтриметоксисилан. Также в качестве композиций связующего рассматриваются амино-бис-силаны, такие как, помимо прочего, бис-((3-триэтоксисилил)пропил)амин или бис((3-триметоксисилил)пропил)амин.
[0062] В одном из вариантов осуществления изобретения связующее может включать функционализированный мочевиной силан и может не содержать аминогрупп и ароматических групп. Без связи с какой-либо теорией полагают, что слои такого функционализированного мочевиной силана не обесцвечиваются и, таким образом, предотвращают пожелтение защитного покрытия вследствие термической обработки, такой как депирогенизация. Кроме того, связующие на основе функционализированного мочевиной силана могут быть дешевле, чем функционализированные амином силаны, а алифатические силаны могут быть дешевле, чем ароматические. Таким образом, алифатический функционализированный мочевиной силан может быть более предпочтительным, чем некоторые функционализированные амином ароматические силаны. Примерами функционализированного мочевиной силана являются 1-[3-(триметоксисилил)пропил]мочевина, 1-(3-(триэтоксисилил)пропил)мочевина, бис(уреидо)силан и мочевины, приготовленные из изоцианатов или аминосиланов.
[0063] В другом варианте осуществления изобретения связующее может включать химическую композицию, представляющую собой аминоалкилсилсесквиоксан. В одном из вариантов осуществления изобретения связующее включает олигомер аминопропилсилсесквиоксана (APS) (серийно выпускаемый в форме водного раствора компанией Gelest). В одном из вариантов осуществления изобретения ароматическая силановая химическая композиция представляет собой хлорсилановую химическую композицию. В другом варианте осуществления изобретения связующее может включать химическую композицию, представляющую собой гидролизованный аналог аминоалкоксисиланов, например, помимо прочего, (3-аминопропил)силантриол, н-(2-аминоэтил)-3-аминопропилсилантриол и/или их смеси.
[0064] В другом варианте осуществления изобретения связующее может являться неорганическим материалом, таким как металл и/или керамическая пленка. Не имеющими ограничительного характера примерами пригодных органических материалов, используемых в качестве связующего, являются титанаты, цикронаты, олово, титан и/или их оксиды.
[0065] Как показано на фиг. 1, 2 и 3, покрытие 120 с низким коэффициентом трения может быть нанесено за одну стадию осаждения (в случаях, когда покрытие 120 с низким коэффициентом трения включает один слой, как на фиг. 2) или может быть нанесено многостадийным способом, при этом, стеклянный корпус 102 приводят в контакт с раствором связующего с образованием слоя 180 связующего (как описано выше), необязательно, сушат, затем приводят в контакт с раствором полимерной химической композиции, такой как галогенированный полиимидный силоксан в растворе, например, способом погружения или, в качестве альтернативы, полимерный слой 170 может быть нанесен путем распыления или иным надлежащим образом и, необязательно, высушен. Описание пригодных способов осаждения покрытия 120 с низким коэффициентом трения, описываемого в настоящем документе, можно найти в Заявке на патент США № 13/780740, озаглавленной «Стеклянные изделия с покрытиями с низким коэффициентом трения», которая во всей полноте включается в настоящий документ путем ссылки.
[0066] Стеклянные изделия, такие как стеклянные контейнеры, на которые может быть нанесено покрытие 120 с низким коэффициентом трения, могут быть изготовлены из множества различных композиций стекла. Надлежащая композиция для стеклянного изделия может быть выбрана в соответствии с конкретным вариантом применения так, чтобы стекло обладало нужным набором физических свойств.
[0067] Стеклянные контейнеры могут быть изготовлены из композиции стекла, имеющей коэффициент термического расширения, лежащий в диапазоне, примерно, от 25×10-7/°С до 80×10-7/°С. Например, в некоторых описываемых вариантах осуществления изобретения стеклянный корпус 102 изготовлен из композиций щелочно-алюмосиликатного стекла, поддающихся упрочнению путем ионообмена. Как правило, такие композиции включают сочетание SiO2, Al2O3, по меньшей мере, одного оксида щелочноземельного металла и один или несколько оксидов щелочных металлов, например, Na2O и/или K2O. В некоторых из этих вариантов осуществления изобретения композиция стекла может не содержать бор и соединения, содержащие бор. В некоторых других вариантах осуществления изобретения композиции стекла могут дополнительно включать незначительные количества одного или нескольких дополнительных оксидов, таких как, например, SnO2, ZrO2, ZnO, TiO2, As2O3 и т.п. Эти компоненты могут быть введены в качестве осветлителей и/или для дополнительного повышения химической стойкости композиции стекла. В другом варианте осуществления изобретения на поверхности стекла может иметься покрытие из оксида металла, содержащее SnO2, ZrO2, ZnO, TiO2, As2O3 и т.п.
[0068] В некоторых описываемых вариантах осуществления изобретения стеклянный корпус 102 упрочнен, например, путем ионообмена и именуется «ионообменным стеклом». Например, стеклянный корпус 102 может характеризоваться сжимающим напряжением, большим или равным, примерно, 300 МПа, или даже большим или равным, примерно, 350 МПа. В некоторых вариантах осуществления изобретения сжимающее напряжение может лежать в диапазоне от, примерно, 300 МПа до, примерно, 900 МПа. Однако следует понимать, что в некоторых вариантах осуществления изобретения сжимающее напряжение в стекле может быть менее 300 МПа или более 900 МПа. В некоторых вариантах осуществления изобретения стеклянный корпус 102 может характеризоваться глубиной слоя, большей или равной 20 мкм. В некоторых из этих вариантов осуществления изобретения глубина слоя может быть больше 50 мкм или даже больше или равна 75 мкм. В других вариантах осуществления изобретения глубина слоя может достигать или превосходить 100 мкм. Ионообменное упрочнение может быть осуществлено в ванне расплавленной соли при температуре от, примерно, 350°С до, примерно, 500°С. Для достижения нужного сжимающего напряжения стеклянный контейнер (без покрытия) может быть погружен в ванну расплавленной соли на менее, чем, примерно, 30 часов или даже менее, чем, примерно, 20 часов. Например, в одном варианте осуществления изобретения стеклянный контейнер погружают в ванну 100% KNO3 с температурой 450°С, примерно, на 8 часов.
[0069] В одном конкретном примерном варианте осуществления изобретения стеклянный корпус 102 может быть изготовлен из композиции ионообменного стекла, описанной в находящейся в стадии рассмотрения Заявке на патент США № 13/660894, поданной 25 октября 2012 г. и озаглавленной «Композиции стекла с повышенной химической и механической стойкостью», на имя Corning, Incorporated.
[0070] Однако следует понимать, что описываемые стеклянные контейнеры 100 с покрытием могут быть изготовлены из других композиций стекла, включая, помимо прочего, композиции ионообменного стекла и композиции неионообменного стекла. Например, в некоторых вариантах осуществления изобретения стеклянный контейнер может быть изготовлен из композиции стекла типа 1В, такой как, например, алюмосиликатное стекло Schott типа 1В.
[0071] В некоторых описываемых вариантах осуществления изобретения стеклянное изделие может быть изготовлено из композиции стекла, отвечающей критериям стекол для фармацевтической промышленности, описанным регулирующими органами, такими как USP (Фармакопея США), EP (Европейская фармакопея) и JP (Фармакопея Японии), на основании гидролитической устойчивости. Согласно USP 660 и ЕР 7, боросиликатные стекла отвечают критериям Типа I и обычно используются для упаковки препаратов для парентерального введения. Примерами боросиликатных стекол являются, помимо прочего, Corning® Pyrex® 7740, 7800 и Wheaton 180, 200 и 400, Schott Duran, Schott Fiolax, KIMAX® N-51A, Gerrescheimer GX-51 Flint и другие. Известково-натриевое стекло отвечает критериям Типа III и подходит для упаковки сухих порошков, которые затем растворяют для получения растворов или буферов. Стекла Типа III также пригодны для упаковки жидких препаратов, нечувствительных к щелочам. Примерами известково-натриевого стекла Типа III являются Wheaton 800 и 900. Обесщелоченное известково-натриевое стекло содержит больше гидроксида натрия и оксида кальция и отвечает критериям Типа II. Эти стекла менее стойки к выщелачиванию, чем стекла Типа I, но более стойки, чем стекла Типа III. Стекла Типа II могут быть использованы для упаковки продуктов, рН которых на протяжении срока их хранения остается меньшим 7. Примером являются известково-натриевые стекла, обработанные сульфатом аммония. Эти стекла для фармацевтической промышленности имеют различный химический состав и характеризуются коэффициентом линейного термического расширения (СТЕ) в диапазоне 20-85×10-7/°С.
[0072] Когда описываемые стеклянные изделия представляют собой стеклянные контейнеры, стеклянный корпус 102 стеклянных контейнеров 100 с покрытием может иметь множество различных форм. Например, описываемые стеклянные корпуса могут быть использованы для производства таких стеклянных контейнеров 100 с покрытием, как пузырьки, ампулы, картриджи, корпуса шприцев и/или любые другие стеклянные контейнеры для хранения лекарственных препаратов. Кроме того, пригодность стеклянных контейнеров для химического упрочнения до нанесения покрытия может быть использована для дополнительного повышения механической стойкости стеклянных контейнеров. Следовательно, следует понимать, что, по меньшей мере, в одном варианте осуществления изобретения стеклянные контейнеры могут быть подвергнуты ионообменному упрочнению перед нанесением покрытия с низким коэффициентом трения. В качестве альтернативы, для упрочнения стекла перед нанесением покрытия могут быть использованы другие способы упрочнения, такие как термозакалка, полировка пламенем и ламинирование, как описано в патенте США № 7201965.
[0073] Различные свойства стеклянных контейнеров с покрытием (т.е., коэффициент трения, прочность на горизонтальное сжатие, прочность при 4-точечном изгибе) могут быть измерены для стеклянных контейнеров сразу после нанесения покрытия (т.е. после нанесения покрытия без какой-либо дополнительной обработки за исключением отверждения, если нужно) или после одного или нескольких типов технологической обработки, подобных или идентичных процессам, применяемым на линии упаковки лекарственных средств, включая, помимо прочего, промывку, лиофилизацию, депирогенизацию, автоклавирование и т.п.
[0074] Депирогенизация представляет собой процесс, в ходе которого из вещества удаляют пирогены. Депирогенизация стеклянных изделий, таких как упаковка лекарственных средств, может быть выполнена путем термической обработки образца, в ходе которой образец нагревают до повышенной температуры на некоторый период времени. Например, депирогенизация может включать нагревание стеклянного контейнера до температуры в диапазоне от, примерно, 250°С до, примерно, 380°С на период времени от, примерно, 30 секунд до, примерно, 72 часов, включая, помимо прочего, 20 минут, 30 минут, 40 минут, 1 час, 2 часа, 4 часа, 8 часов, 12 часов, 24 часа, 48 часов и 72 часа. После термической обработки стеклянный контейнер охлаждают до комнатной температуры. Одним из обычных условий депирогенизации, широко применяемых в фармацевтической промышленности, является термическая обработки при температуре около 250°С в течение, примерно, 30 минут. Однако, предусматривается, что время термической обработки может быть сокращено, если применена более высокая температура. Стеклянные контейнеры с покрытием, подобные описываемым в настоящем документе, могут быть выдержаны при повышенной температуре в течение некоторого периода времени. Повышенные температуры и периоды нагревания, описываемые в настоящем документе, могут быть достаточными или недостаточными для депирогенизации стеклянного контейнера. Однако, следует понимать, что некоторые из температур и периодов нагревания, описываемых в настоящем документе, являются достаточными для депирогенизации стеклянного контейнера с покрытием, такого как описываемые в настоящем документе стеклянные контейнеры с покрытием. Например, как описывается в настоящем документе, стеклянные контейнеры с покрытием могут быть подвергнуты нагреванию до, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или примерно, 400°С, на период времени 30 минут.
[0075] В настоящем контексте условия лиофилизации (т.е. сушки вымораживанием) относятся к процессу, в ходе которого образец заполняют жидкостью, которая содержит белок, и замораживают при -100°С с последующей сублимацией воды в течение 20 часов при -15°С в вакууме.
[0076] В настоящем контексте условия автоклавирования относятся к обработке образца паром в течение 10 минут при 100°С с последующим 20 минутным периодом выдерживания, в ходе которого образец находится в среде с температурой 121°С, и последующей 30 минутной тепловой обработкой при 121°С.
[0077] Коэффициент трения (μ) части стеклянного контейнера с покрытием, на которую нанесено покрытие с низким коэффициентом трения, может быть меньше, чем коэффициент трения поверхности стеклянного изделия без покрытия, изготовленного из той же композиции стекла. Коэффициент трения (μ) представляет собой количественную характеристику трения между двумя поверхностями и является функцией механических и химических свойств первой и второй поверхностей, в том числе, шероховатости поверхности, а также условий окружающей среды, таких как, помимо прочего, температура и влажность. В настоящем контексте величина коэффициента трения для стеклянного контейнера 100 с покрытием измеряется как коэффициент трения между наружной поверхностью первого стеклянного контейнера (наружный диаметр которого составляет от, примерно, 16,00 мм до, примерно, 17,00 мм) и наружной поверхностью второго стеклянного контейнера, идентичного первому стеклянному контейнеру, при этом первый и второй стеклянные контейнеры имеют одинаковый корпус и одинаковый состав покрытия (если оно нанесено) и были подвергнуты действию одинаковых внешних условий до изготовления, во время изготовления и после изготовления. Если не указано иное, коэффициент трения означает максимальный коэффициент трения, измеренный при нормальной нагрузке 30 Н на испытательном стенде с трением пузырек о пузырек, как описано в настоящем документе. Однако, следует понимать, что стеклянный контейнер с покрытием, который характеризуется максимальным коэффициентом трения при определенной приложенной нагрузке, будет характеризоваться таким же или меньшим максимальным коэффициентом трения при меньшей нагрузке. Например, если стеклянный контейнер с покрытием характеризуется максимальным коэффициентом трения 0,5 или менее при приложенной нагрузке 50 Н, этот стеклянный контейнер с покрытием также будет характеризоваться максимальным коэффициентом трения 0,5 или менее при приложенной нагрузке 25 Н.
[0078] В описываемых вариантах осуществления изобретения коэффициент трения стеклянных контейнеров (как с покрытием, так и без покрытия) измеряют на испытательном стенде с трением пузырек о пузырек. Испытательный стенд 200 схематично изображен на фиг. 4. Такое же устройство может быть использовано для измерения силы трения между двумя стеклянными контейнерами, размещенными на стенде. Испытательный стенд 200 с трением пузырек о пузырек включает первый зажим 212 и второй зажим 222, расположенные крестообразно. Первый зажим 212 включает первый закрепляющий рычаг 214, прикрепленный к первому основанию 216. Первый закрепляющий рычаг 214 прикрепляется к первому стеклянному контейнеру 210 и удерживает первый стеклянный контейнер 210 неподвижно относительно первого зажима 212. Точно так же, второй зажим 222 включает второй закрепляющий рычаг 224, прикрепленный ко второму основанию 226. Второй закрепляющий рычаг 224 прикрепляется ко второму стеклянному контейнеру 220 и удерживает его неподвижно относительно второго зажима 222. Первый стеклянный контейнер 210 расположен в первом зажиме 212, второй стеклянный контейнер 220 расположен во втором зажиме 222 так, что продольная ось первого стеклянного контейнера 210 и продольная ось второго стеклянного контейнера 220 располагаются под углом около 90° друг к другу и на горизонтальной плоскости, определяемой осями координат х-у.
[0079] Первый стеклянный контейнер 210 контактирует со вторым стеклянным контейнером 220 в точке 230 контакта. Нормальную силу прикладывают в направлении, перпендикулярном горизонтальной плоскости, определяемой осями координат х-у. Нормальная сила может быть приложена как неподвижный вес или другая сила, приложенная ко второму зажиму 222, при неподвижном первом зажиме. Например, вес может быть размещен на втором основании 226, а первое основание 216 может быть размещено на устойчивой поверхности, при этом, между первым стеклянным контейнером 210 и вторым стеклянным контейнером 220 в точке 230 контакта возникает измеримая сила. В качестве альтернативы, сила может быть приложена при помощи механического устройства, такого как UMT (универсальное устройство для механических испытаний).
[0080] Первый зажим 212 или второй зажим 222 могут перемещаться относительно другого зажима в направлении, образующем угол 45° с продольной осью первого стеклянного контейнера 210 и второго стеклянного контейнера 220. Например, первый зажим 212 может быть неподвижным, второй зажим 222 может перемещаться так, что второй стеклянный контейнер 220 движется поперек первого стеклянного контейнера 210 в направлении оси х. аналогичная схема описана R. L. De Rosa и др., в «Scratch Resistant Polyimide Coatings for Alumino Silicate Glass surfaces» (Стойкие к царапинам полиимидные покрытия для поверхности алюмосиликатного стекла) в The Journal of Adhesion, 78: 113-127, 2002. Для измерения коэффициента трения при помощи динамометрического элемента измеряют силу, необходимую для перемещения второго зажима 222, и нормальную силу, приложенную к первому и второму стеклянным контейнерам 210, 220, и вычисляют коэффициент трения как отношение силы трения и нормальной силы. Стенд работает в среде с температурой 25°С и относительной влажностью 50%.
[0081] В описываемых вариантах осуществления изобретения часть стеклянного изделия с покрытием с низким коэффициентом трения характеризуется коэффициентом трения, меньшим или равным, примерно, 0,7 относительно стеклянного контейнера с аналогичным покрытием при измерении на испытательном стенде с трением пузырек о пузырек, как описано выше. В других вариантах осуществления изобретения коэффициент трения может быть меньшим или равным, примерно, 0,6 или даже меньшим или равным, примерно, 0,5. В некоторых вариантах осуществления изобретения часть стеклянного изделия с покрытием с низким коэффициентом трения характеризуется коэффициентом трения, меньшим или равным, примерно, 0,4 или даже меньшим или равным, примерно, 0,3. Стеклянные контейнеры с покрытием, характеризующиеся коэффициентом трения, меньшим или равным, примерно, 0,7, как правило, обладают повышенной стойкостью к абразивному износу, благодаря чему обладают улучшенными механическими свойствами. Например, обычные стеклянные контейнеры (без покрытия с низким коэффициентом трения) могут характеризоваться коэффициентом трения больше 0,7.
[0082] В некоторых описываемых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения, по меньшей мере, на 20% меньше, чем коэффициент трения поверхности стеклянного контейнера без покрытия, изготовленного из той же композиции стекла. Например, коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может быть, по меньшей мере, на 20% меньше, по меньшей мере, на 25% меньше, по меньшей мере, на 30% меньше, по меньшей мере, на 40% меньше или даже, по меньшей мере, на 50% меньше, чем коэффициент трения поверхности стеклянного контейнера без покрытия, изготовленного из той же композиции стекла. Например,
[0083] В некоторых описываемых вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7, после воздействия температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут. В других вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7 (т.е., меньшим или равным, примерно, 0,6, меньшим или равным, примерно, 0,5, меньшим или равным, примерно, 0,4 или меньшим или равным, примерно, 0,3), после воздействия температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться более, чем на, примерно, 30%, после воздействия температуры, примерно, 260°С в течение 30 минут. В других вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться более, чем на, примерно, 30% (т.е., примерно, 25%, примерно, 20%, примерно, 15% или даже, примерно, 10%), после воздействия температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут. В других вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться более чем на, примерно, 0,5 (, т.е., примерно, 0,45, примерно, 0,40, примерно, 0,35, примерно, 0,30, примерно, 0,25, примерно, 0,20, примерно, 0,15, примерно, 0,10 или даже, примерно, 0,05), после воздействия температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может вообще не увеличиваться после воздействия температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут.
[0084] В некоторых вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7, после погружения в водяную ванну с температурой, примерно, 70°С на 10 минут. В других вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7 (т.е., меньшим или равным, примерно, 0,6, меньшим или равным, примерно, 0,5, меньшим или равным, примерно, 0,4 или меньшим или равным, примерно, 0,3), после погружения в водяную ванну с температурой, примерно, 70°С на 5 минут, 10 минут, 20 минут, 30 минут, 40 минут, 50 минут или даже 1 час. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30% после погружения в водяную ванну с температурой, примерно, 70°С на 10 минут. В других вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30% (т.е., примерно, 25%, примерно, 20%, примерно, 15% или даже, примерно, 10%), после погружения в водяную ванну с температурой, примерно, 70°С на 5 минут, 10 минут, 20 минут, 30 минут, 40 минут, 50 минут или даже 1 час. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может вообще не увеличиваться после погружения в водяную ванну с температурой, примерно, 70°С на 5 минут, 10 минут, 20 минут, 30 минут, 40 минут, 50 минут или даже 1 час.
[0085] В некоторых вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7, после воздействия условий лиофилизации. В других вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7 (т.е., меньшим или равным, примерно, 0,6, меньшим или равным, примерно, 0,5, меньшим или равным, примерно, 0,4 или меньшим или равным, примерно, 0,3), после воздействия условий лиофилизации. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30%, после воздействия условий лиофилизации. В других вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30% (т.е., примерно, 25%, примерно, 20%, примерно, 15% или даже, примерно, 10%), после воздействия условий лиофилизации. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может вообще не увеличиваться после воздействия условий лиофилизации.
[0086] В некоторых вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7, после воздействия условий автоклавирования. В других вариантах осуществления изобретения часть стеклянного контейнера с покрытием с низким коэффициентом трения может характеризоваться коэффициентом трения, меньшим или равным, примерно, 0,7 (т.е., меньшим или равным, примерно, 0,6, меньшим или равным, примерно, 0,5, меньшим или равным, примерно, 0,4 или меньшим или равным, примерно, 0,3), после воздействия условий автоклавирования. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30%, после воздействия условий автоклавирования. В других вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может не увеличиваться больше, чем, примерно, на 30% (т.е., примерно, 25%, примерно, 20%, примерно, 15% или даже, примерно, 10%), после воздействия условий автоклавирования. В некоторых вариантах осуществления изобретения коэффициент трения части стеклянного контейнера с покрытием с низким коэффициентом трения может вообще не увеличиваться после воздействия условий автоклавирования.
[0087] Описываемые стеклянные контейнеры с покрытием обладают прочностью на горизонтальное сжатие. Обратимся к фиг. 1; в настоящем контексте прочность на горизонтальное сжатие измеряют путем размещения стеклянного контейнера 100 с покрытием горизонтально между двумя параллельными плитами, ориентированными параллельно продольной оси стеклянного контейнера. Затем при помощи плит к стеклянному контейнеру 100 с покрытием прикладывают механическую нагрузку в направлении, перпендикулярном продольной оси стеклянного контейнера. Скорость нагружения для сжатия пузырька составляет 0,5 дюйма/мин (12,7 мм/мин), т.е., плиты движутся навстречу друг другу со скоростью 0,5 дюйма/мин. Прочность на горизонтальное сжатие измеряют при 25°С и относительной влажности 50%. Измеренная прочность на горизонтальное сжатие может быть выражена как вероятность разрушения при заданной нормальной нагрузке. В настоящем контексте разрушение происходит, когда при горизонтальном сжатии разрушается, по меньшей мере, 50% образцов стеклянных контейнеров. В некоторых вариантах осуществления изобретения стеклянный контейнер с покрытием может обладать прочностью на горизонтальное сжатие, по меньшей мере, на 10%, 20% или 30% большей, чем пузырек без покрытия.
[0088] Обратимся к фиг. 1 и 4; измерение прочности на горизонтальное сжатие также может быть выполнено для истертого стеклянного контейнера. А именно, действие испытательного стенда 200 может вызвать повреждение наружной поверхности 122 стеклянного контейнера с покрытием, такое как царапины или абразивный износ поверхности, которое уменьшает прочность стеклянного контейнера 100 с покрытием. После этого стеклянный контейнер подвергают процедуре горизонтального сжатия, для чего контейнер помещают между двумя плитами так, что царапина ориентирована наружу параллельно плитам. Царапина может быть охарактеризована определенный нормальным усилием, приложенным на испытательном стенде с трением пузырек о пузырек, и длиной царапины. Если не указано иное, царапины на истертых стеклянных контейнерах для процедуры горизонтального сжатия характеризуются длиной царапины 20 мм, созданной при нормальной нагрузке 30 Н.
[0089] Может быть произведена оценка прочности на горизонтальное сжатие стеклянных контейнеров с покрытием после тепловой обработки. Тепловая обработка может включать воздействие температуры, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или примерно, 400°С в течение 30 минут. В некоторых вариантах осуществления изобретения прочность на горизонтальное сжатие стеклянных контейнеров с покрытием не уменьшается, более, чем, примерно, на 20%, 30% или даже 40% после тепловой обработки, такой как описанная выше, и последующего истирания, как описано выше. В одном из вариантов осуществления изобретения прочность на горизонтальное сжатие стеклянного контейнера с покрытием не уменьшается более, чем на, примерно, 20%, после тепловой обработки при, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или примерно, 400°С в течение 30 минут и последующего истирания.
[0090] Описываемые стеклянные изделия с покрытием могут быть термически устойчивыми после нагревания до температуры, по меньшей мере, 260°С на период времени 30 минут. Выражение «термически устойчивый» в настоящем контексте означает, что покрытие с низким коэффициентом трения, нанесенное на стеклянное изделие, остается, по существу, неизменным на поверхности стеклянного изделия после воздействия повышенной температуры, то есть, после воздействия механические свойства стеклянного изделия с покрытием, а именно, коэффициент трения и прочность на горизонтальное сжатие, изменяются лишь в минимальной степени, если вообще изменяются. Это означает, что покрытие с низким коэффициентом трения остается связанным с поверхностью стекла после воздействия повышенной температуры и продолжает защищать стеклянное изделие от механических повреждений, таких как абразивный износ, удары и т.п.
[0091] В некоторых описываемых вариантах осуществления изобретения стеклянное изделие с покрытием считается термически устойчивым, если стеклянное изделие с покрытием отвечает и стандарту коэффициента трения, и стандарту прочности на горизонтальное сжатие после нагревания до указанной температуры и выдерживания при этой температуре указанное время. Для определения того, выдерживается ли стандарт коэффициента трения, определяют коэффициент трения первого стеклянного изделия с покрытием в состоянии поставки (т.е., до какого-либо термического воздействия) при помощи испытательного стенда, показанного на фиг. 4, при приложенной нагрузке 30 Н. Второе стеклянное изделие с покрытием (т.е., стеклянное изделие, изготовленное из той же композиции стекла и с тем же покрытием, что и первое стеклянное изделие с покрытием) подвергают термическому воздействию при предписанных условиях и охлаждают до комнатной температуры. После этого определяют коэффициент трения второго стеклянного изделия при помощи испытательного стенда, показанного на фиг. 4, с целью истирания стеклянного изделия с покрытием при приложенной нагрузке 30 Н с получением истирания (т.е., «царапины») длиной, приблизительно, 20 мм. Если коэффициент трения второго стеклянного изделия с покрытием составляем менее 0,7, и поверхность стекла второго стеклянного изделия в истертой области не имеет заметных повреждений, то стандарт коэффициента трения считается выдержанным в целях определения термической устойчивости покрытия с низким коэффициентом трения. Термин «заметные повреждения» в настоящем контексте означает, что поверхность стекла в истертой области стеклянного изделия имеет менее шести микротрещин на 0,5 см длины истертой области при наблюдении по Номарскому или в дифференциальный интерференционный микроскоп с увеличением 100Х и светодиодным или металлогалогенным источником света. Стандартное определение микротрещины стекла приведено в G. D. Quinn, «NIST Recommended Practice Guide: Fractography of Ceramics and Glasses» NIST special publication 960-17 (2006).
[0092] Для определения того, выдерживается ли стандарт прочности на горизонтальное сжатие, первое стеклянное изделие с покрытием подвергают истиранию на испытательном стенде, показанном на фиг. 4, с нагрузкой 30 Н для получения царапины длиной 20 мм. Затем первое стеклянное изделие с покрытием подвергают испытанию прочности на горизонтальное сжатие, как описано в настоящем документе, и определяют остаточную прочность первого стеклянного изделия с покрытием. Второе стеклянное изделие с покрытием (т.е., стеклянное изделие, изготовленное из той же композиции стекла и с тем же покрытием, что и первое стеклянное изделие с покрытием) подвергают термическому воздействию при предписанных условиях и охлаждают до комнатной температуры. Затем второе стеклянное изделие с покрытием подвергают истиранию на испытательном стенде, показанном на фиг. 4, с нагрузкой 30 Н. Затем второе стеклянное изделие с покрытием подвергают испытанию прочности на горизонтальное сжатие, как описано в настоящем документе, и определяют остаточную прочность второго стеклянного изделия с покрытием. Если остаточная прочность второго стеклянного изделия с покрытием не снизилась более, чем, примерно, на 20% относительно первого стеклянного изделия с покрытием, то стандарт прочности на горизонтальное сжатие считается выдержанным в целях определения термической устойчивости покрытия с низким коэффициентом трения.
[0093] В описываемых вариантах осуществления изобретения стеклянные контейнеры с покрытием считаются термически устойчивыми, если стандарт коэффициента трения и стандарт прочности на горизонтальное сжатие выдерживаются после воздействия на стеклянные контейнеры с покрытием температуры, по меньшей мере, около 260°С в течение периода времени около 30 минут (т.е., стеклянные контейнеры с покрытием являются термически устойчивыми при температуре, по меньшей мере, около 260°С в течение периода времени около 30 минут). Оценка термической устойчивости также может быть выполнена при температуре от, примерно, 260°С до, примерно, 400°С. Например, в некоторых вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 270°С или даже около 280°С в течение периода времени около 30 минут. В других вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 290°С или даже около 300°С в течение периода времени около 30 минут. В дополнительных вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 310°С или даже около 320°С в течение периода времени около 30 минут. В других вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 330°С или даже около 340°С в течение периода времени около 30 минут. В других вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 350°С или даже около 360°С в течение периода времени около 30 минут. В некоторых других вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 370°С или даже около 380°С в течение периода времени около 30 минут. В других вариантах осуществления изобретения стеклянные контейнеры с покрытием будут считаться термически устойчивыми, если указанные стандарты выдерживаются при температуре, по меньшей мере, около 390°С или даже около 400°С в течение периода времени около 30 минут.
[0094] Описываемые стеклянные контейнеры с покрытием также могут быть термически устойчивыми в некотором диапазоне температур, что означает, что стеклянные контейнеры с покрытием термически устойчивы, т.е., отвечают стандарту коэффициента трения и стандарту прочности на горизонтальное сжатие при каждом значении температуры в этом диапазоне. Например, в описываемых вариантах осуществления изобретения стеклянные контейнеры с покрытием могут быть термически устойчивыми от, по меньшей мере, примерно, 260°С до температуры, меньшей или равной, примерно, 400°С. В некоторых вариантах осуществления изобретения стеклянные контейнеры с покрытием могут быть термически устойчивыми в диапазоне температур от, по меньшей мере, примерно, 260°С до, примерно, 350°С. В некоторых других вариантах осуществления изобретения стеклянные контейнеры с покрытием могут быть термически устойчивыми от, по меньшей мере, примерно, 280°С до температуры, меньшей или равной, примерно, 350°С. В некоторых других вариантах осуществления изобретения стеклянные контейнеры с покрытием могут быть термически устойчивыми в диапазоне температур от, по меньшей мере, примерно, 290°С до, примерно, 340°С. В другом варианте осуществления изобретения стеклянный контейнер с покрытием может быть термически устойчивым в диапазоне температур от, примерно, 300°С до, примерно, 380°С. В другом варианте осуществления изобретения стеклянный контейнер с покрытием может быть термически устойчивым в диапазоне температур от, примерно, 320°С до, примерно, 360°С.
[0095] Описываемые стеклянные контейнеры с покрытием обладают прочностью при 4-точечном изгибе. Для измерения прочности стеклянного контейнера при 4-точечном изгибе используют стеклянную трубку, которая является прекурсором стеклянного контейнера 100 с покрытием. Стеклянная трубка имеет тот же диаметр, что и стеклянный контейнер, но не имеет основания и горлышка стеклянного контейнера (т.е., находится в состоянии до превращения трубки в стеклянный контейнер). Стеклянную трубку подвергают испытанию на 4-точечный изгиб до наступления механического разрушения. Испытание проводят при относительной влажности 50%, расстоянии между наружными контактными элементами 9ʺ (228,6), расстоянии между внутренними контактными элементами 3ʺ (76,2 мм) и скорости нагружения 10 мм/мин.
[0096] Измерение прочности при 4-точечном изгибе также может быть проведено с использованием истертой трубки с покрытием. При помощи испытательного стенда 200 на поверхности трубки может быть получено истирание, такое как царапина поверхности, которое снижает прочность трубки, как описано в отношении измерения прочности истертого пузырька на горизонтальное сжатие. Затем проводят испытание прочности стеклянной трубки при 4-точечном изгибе до наступления механического разрушения. Испытание проводят при 25°С и относительной влажности 50%, расстоянии между наружными контактными элементами 9ʺ (228,6), расстоянии между внутренними контактными элементами 3ʺ (76,2 мм) и скорости нагружения 10 мм/мин, при этом, трубка расположена так, что царапина во время испытания находится под напряжением.
[0097] В некоторых вариантах осуществления изобретения прочность стеклянной трубки с покрытием с низким коэффициентом трения при 4-точечном изгибе после истирания указывает, в среднем, на большую, по меньшей мере, на 10%, 20% или даже 50% механическую прочность по сравнению со стеклянной трубкой без покрытия, подвергнутой истиранию при тех же условиях.
[0098] В некоторых вариантах осуществления изобретения, после истирания стеклянного контейнера 100 с покрытием об идентичный стеклянный контейнер с нормальной нагрузкой 30 Н, коэффициент трения истертой области стеклянного контейнера 100 с покрытием не увеличивается более, чем, примерно, на 20%, после еще одного истирания об идентичный стеклянный контейнер с нормальной нагрузкой 30 Н в том же месте или вообще не увеличивается. В других вариантах осуществления изобретения после истирания стеклянного контейнера 100 с покрытием об идентичный стеклянный контейнер с нормальной нагрузкой 30 Н коэффициент трения истертой области стеклянного контейнера 100 с покрытием не увеличивается более, чем, примерно, на 15% или даже 10% после еще одного истирания об идентичный стеклянный контейнер с нормальной нагрузкой 30 Н в том же месте или вообще не увеличивается. Однако, необязательно во всех вариантах осуществления изобретения стеклянный контейнер 100 с покрытием проявляет подобные свойства.
[0099] Потеря массы является поддающимся измерению свойством стеклянного контейнера 100 с покрытием, которое соответствует количеству летучих соединений, высвобождаемых стеклянным контейнером 100 с покрытием вследствие воздействия на него определенной повышенной температуры в течение определенного периода времени. Вообще, потеря массы указывает на механическое разрушение покрытия вследствие термического воздействия. Поскольку стеклянный корпус стеклянного контейнера с покрытием не претерпевает измеримой потери массы при указанных температурах, испытание на потерю массы, подробно описываемое в настоящем документе, позволяет получить данные в отношении потери массы только покрытием с низким коэффициентом трения, нанесенным на стеклянный контейнер. На потерю массы может влиять множество факторов. Например, на потерю массы может влиять количество органического материала, которое может быть удалено из покрытия. Разрушение основной углеродной цепи и боковых цепей полимера теоретически приводит к 100%-ному удалению покрытия. Металлорганические полимерные материалы обычно полностью утрачивают органический компонент, но неорганический компонент остается. Таким образом, данные в отношении потери массы являются нормализованными с учетом того, насколько покрытие является органическим и неорганическим (например, % оксида кремния в покрытии), исходя из полного теоретического окисления.
[00100] Для определения потери массы образец с покрытием, такой как стеклянный пузырек с покрытием, сначала нагревают до 150°С и выдерживают при этой температуре 30 минут для сушки покрытия, при этом, из покрытия интенсивно испаряется Н2О. Затем образец нагревают от 150°С до 350°С со скоростью 10°С/мин в окислительной атмосфере, например, на воздухе. В целях определения потери массы учитываются только данные, собранные при температуре от 150°С до 350°С. В некоторых вариантах осуществления изобретения покрытие с низким коэффициентом трения характеризуется потерей менее, примерно, 5% его массы при нагревании от 150°С до 350°С со скоростью около 10°С/мин. В других вариантах осуществления изобретения покрытие с низким коэффициентом трения характеризуется потерей массы менее, примерно, 3% или даже менее, примерно, 2% при нагревании от 150°С до 350°С со скоростью около 10°С/мин. В некоторых других вариантах осуществления изобретения покрытие с низким коэффициентом трения характеризуется потерей массы менее, примерно, 1,5% его массы при нагревании от 150°С до 350°С со скоростью около 10°С/мин. В некоторых других вариантах осуществления изобретения покрытие с низким коэффициентом трения, по существу, не теряет массу при нагревании от 150°С до 350°С со скоростью около 10°С/мин.
[00101] Данные о потере массы получают в ходе процедуры, заключающейся в сравнении веса стеклянного контейнера с покрытием до и после тепловой обработки, такой как нагревание со скоростью 10°/мин от 150°С до 350°С, как описано в настоящем документе. Разность веса пузырька до тепловой обработки и после тепловой обработки представляет собой величину потери массы покрытия, стандартизованную как потеря веса покрытия в процентах, так как вес покрытия перед тепловой обработкой (вес, не включающий вес стеклянного корпуса контейнера, после стадии предварительного нагревания) известен из сравнения веса стеклянного контейнера без покрытия с весом стеклянного контейнера с покрытием после предварительной обработки. В качестве альтернативы, общая масса покрытия может быть определена на основании анализа общего количества органического углерода или иным образом.
[00102] Обезгаживание является поддающимся измерению свойством стеклянного контейнера 100 с покрытием, которое соответствует количеству летучих соединений, высвобождаемых стеклянным контейнером 100 с покрытием вследствие воздействия на него определенной повышенной температуры в течение определенного периода времени. Данные измерения величины обезгаживания выражены в настоящем документе как количество по весу летучих соединений, высвобожденных единицей площади поверхности стеклянного контейнера с покрытием в ходе воздействия повешенной температуры в течение некоторого периода времени. Поскольку стеклянный корпус стеклянного контейнера с покрытием не обнаруживает измеримого обезгаживания при температурах обезгаживания, испытание на обезгаживание, как подробно описано выше, позволяет получить данные по обезгаживанию, по существу, только для покрытия с низким коэффициентом трения, нанесенного на стеклянный контейнер. Данные по обезгаживанию получены в ходе процедуры, заключающейся в помещении стеклянного контейнера 100 с покрытием в камеру 402 для стеклянного образца устройства 400, показанного на фиг. 5. Фоновое значение пустой камеры для образца регистрируют перед каждым испытанием образца. Камеру для образца постоянно продувают воздухом с расходом 100 мл/мин, измеряемым ротометром 406, тогда как печь 404 нагревают до 350°С и выдерживают при этой температуре 1 час для получения фонового значения камеры. Затем стеклянный контейнер 100 с покрытием помещают в камеру 402 для стеклянного образца, камеру 402 для стеклянного образца постоянно продувают воздухом с расходом 100 мл/мин, нагревают до некоторой повышенной температуры и выдерживают при этой температуре в течение некоторого периода времени для сбора пробы со стеклянного контейнера 100 с покрытием. Камера для стеклянного образца изготовлена из Pyrex, ограничивающего максимальную температуру анализа 600°С. Адсорбирующая ловушка 408 Carbotrap 300 установлена на выпускном отверстии камеры для образца и адсорбирует летучие соединения по мере их высвобождения из образца и прохождения вместе в продувочным воздухом 410 через адсорбирующую смолу, на которой летучие соединения адсорбируются. Адсорбирующую смолу затем помещают непосредственно в устройство термодесорбции Gerstel, соединенное с газовым хроматографом Hewlett Packard 5890 Series II/масс-спектрометром Hewlett Packard 5989. Летучие соединения термодесорбируют из адсорбирующей смолы при 350°С, криогенно фокусируют в начало неполярной газохроматографической колонки (DB-5MS). Температуру в газовом хроматографе увеличивают со скоростью 10°С/мин до конечной температуры 325°С с целью разделения и очистки летучих и полулетучих органических соединений. Было показано, что механизм разделения основан на различии теплоты парообразования различных органических соединений и позволяет получить, по существу, хроматограмму разгонки или дистилляции. После разделения очищенные соединения анализируют в соответствии с обычными протоколами масс-спектрометрии с ионизацией электронным ударом. При работе в стандартных условиях получаемые масс-спектры можно сравнивать с существующими в масспектральных библиотеках.
[00103] В некоторых вариантах осуществления изобретения описываемые стеклянные контейнеры с покрытием характеризуются обезгаживанием, меньшим или равным, примерно, 54,6 нг/см2, меньшим или равным, примерно, 27,3 нг/см2, или даже меньшим или равным, примерно, 5,5 нг/см2, вследствие воздействия повышенной температуры, примерно, 250°С, примерно, 275°С, примерно, 300°С, примерно, 320°С, примерно, 360°С или даже, примерно, 400°С в течение периодов времени, примерно, 15 минут, примерно, 30 минут, примерно, 45 минут или, примерно, 1 час. Кроме того, стеклянные контейнеры с покрытием могут быть термически устойчивыми в определенном диапазоне температур, что означает, что контейнеры с покрытием характеризуются некоторым обезгаживанием, как описано выше, при любой температуре в указанном диапазоне. Перед измерением обезгаживания стеклянные контейнеры с покрытием могут находиться в состоянии после нанесения покрытия (т.е. непосредственно после нанесения покрытия с низким коэффициентом трения) или после какой-либо депирогенизации, лиофилизации или автоклавирования. В некоторых вариантах осуществления изобретения стеклянный контейнер 100 с покрытием может, по существу, не проявлять обезгаживания.
[00104] В некоторых вариантах осуществления изобретения данные по обезгаживанию могут быть использованы для определения потери массы покрытия с низким коэффициентом трения. Масса покрытия после предварительной тепловой обработки может быть определена по толщине покрытия (измеряемой по изображению, полученному при помощи сканирующего электронного микроскопа SEM)), плотности покрытия с низким коэффициентом трения и площади поверхности покрытия. Затем стеклянный контейнер с покрытием может быть подвергнут процедуре обезгаживания, и потеря массы может быть определена путем нахождения отношения массы, потерянной при обезгаживании, к массе после предварительной тепловой обработки.
[00105] Оценка прозрачности и цвета контейнера с покрытием может быть произведена путем измерения светопропускания контейнера в некотором диапазоне длин волн в области 400-700 нм при помощи спектрофотометра. Измерения осуществляют, направляя световой луч перпендикулярно к стенке контейнера, так что луч проходит через покрытие с низким коэффициентом трения дважды, первый раз при входе в контейнер, второй раз - при выходе. В некоторых вариантах осуществления изобретения светопропускание стеклянного контейнера с покрытием может быть большим или равным, примерно, 55% светопропускания стеклянного контейнера без покрытия для длин волн от, примерно, 400 нм до, примерно, 700 нм. Как описано в настоящем документе, светопропускание может быть измерено до какой-либо тепловой обработки или после тепловой обработки, такой как различные виды тепловой обработки, описанные в настоящем документе. Например, для каждой длины волны от, примерно, 400 нм до, примерно, 700 нм светопропускание может быть большим или равным, примерно, 55% светопропускания стеклянного контейнера без покрытия. В других вариантах осуществления изобретения светопропускание стеклянного контейнера с покрытием больше или равно, примерно, 55%, примерно, 60%, примерно, 65%, примерно, 70%, примерно, 75%, примерно, 80% или даже, примерно, 90% светопропускания стеклянного контейнера без покрытия для длин волн от, примерно, 400 нм до, примерно, 700 нм.
[00106] Как описано в настоящем документе, светопропускание может быть измерено до какой-либо обработки в окружающей среде, такой как описанная в настоящем документе термическая обработка, или после обработки в окружающей среде. Например, после тепловой обработки при, примерно, 260°С, примерно, 270°С, примерно, 280°С, примерно, 290°С, примерно, 300°С, примерно, 310°С, примерно, 320°С, примерно, 330°С, примерно, 340°С, примерно, 350°С, примерно, 360°С, примерно, 370°С, примерно, 380°С, примерно, 390°С или, примерно, 400°С в течение периода времени 30 минут или после воздействия условий лиофилизации или после воздействия условий автоклавирования светопропускание стеклянного контейнера с покрытием больше или равно, примерно, 55%, примерно, 60%, примерно, 65%, примерно, 70%, примерно, 75%, примерно, 80% или даже, примерно, 90% светопропускания стеклянного контейнера без покрытия для длин волн от, примерно, 400 нм до, примерно, 700 нм.
[00107] Пожелтение, вызванное тепловой обработкой, может быть измерено в координатах х и у в соответствии с цветовым пространством CEI 1931, как показано на фиг. 11. Изменение координат х и у после воздействия условий депирогенизации может служить доказательством пожелтения стеклянного изделия с покрытием.
[00108] В некоторых вариантах осуществления изобретения стеклянный контейнер 100 с покрытием может восприниматься невооруженным человеческим глазом как бесцветный и прозрачный при взгляде под любым углом. В некоторых других вариантах осуществления изобретения покрытие 120 с низким коэффициентом трения может иметь различимый оттенок, например, когда покрытие 120 с низким коэффициентом трения содержит полиимид, образованный из поли(пиромеллитовый диангидрид-ко-4,4'-оксидианилин)амидокислоты, серийно выпускаемой компанией Aldrich.
[00109] В некоторых вариантах осуществления изобретения стеклянный контейнер 100 с покрытием может иметь покрытие 120 с низким коэффициентом трения, пригодное для приклеивания этикетки. То есть, на поверхность стеклянного контейнера 100 с покрытием может быть наклеена этикетка, при этом, этикетка надежно приклеивается. Однако пригодность для приклеивания этикетки не является необходимым требованием для всех вариантов осуществления стеклянных контейнеров 100 с покрытием, описываемых в настоящем документе.
ПРИМЕРЫ
[00110] Различные варианты осуществления стеклянных контейнеров с покрытиями с низким коэффициентом трения дополнительно поясняются на нижеследующих примерах. Примеры имеют иллюстративный характер и не должны рассматриваться как ограничивающие объект настоящего изобретения.
Пример 1
[00111] Фторированный полиимидный силоксан, в настоящем документе именуемый «Silimide-6F 50/50», приготовили в порошкообразной форме из 2,2-бис(4-аминофенил)гексафторпропана (6F), 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксана (BADS) и 4,4'-(гексафторизопропилиден)дифталевого ангидрида (6FDA). Молярное отношение 6F:BADS:6FDA составило 1:1:2.
[00112] Сначала 2,2-бис(4-аминофенил)гексафторпропан (3,75 г, 11,2 ммоль) отвесили в трехгорлую круглодонную колбу объемом 250 мл, содержащую н-метилпирролидон (50 мл), оборудованную двумя мембранами и ловушкой Дина-Старка с масляным барботером, заполненным минеральным или силиконовым маслом. Колбу продули газообразным аргоном, после полного растворения добавили 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан (2,8 г, 11,2 ммоль), раствор перемешали. Спустя, примерно, 15 мин перемешивания быстро добавили 4,4'-(гексафторизопропилиден)дифталевый ангидрид (10,00 г, 22,5 ммоль) в атмосфере аргона при комнатной температуре. Спустя, примерно, 30 мин перемешивания при температуре не более 60°С полученный, теперь уже вязкий, раствор медленно нагрели до 190°С в условиях слабого потока аргона. Реакционный раствор перемешивали при 190°С 3 часа при общем количестве дистиллятов 5 мл (вода и н-метилпирролидон (NMP)) с целью проведения имидизации. Умеренно вязкий золотисто-оранжевый реакционный раствор охладили до комнатной температуры. В этот золотисто-оранжевый реакционный раствор добавили 50 мл свежего NMP для уменьшения вязкости, полученный раствор с малой вязкостью по каплям добавили в 2-пропанол (2000 мл) при умеренном перемешивании. Белый осадок отфильтровали при помощи найлонового сита с ячейками 50 мкм. Полученную твердую фазу суспендировали в изопропиловом спирте и отфильтровали еще раз. Наконец, влажную твердую фазу высушили в вакууме до получения свободнотекучего порошка. Порошкообразный полимер до использования хранили в холодильнике при 4°С.
[00113] Было обнаружено, что этот полиимид растворим в различных растворителях, включая растворители с большим и средним коэффициентом испарения, такие как этилацетат, ацетат метилового эфира пропиленгликоля, толуол, ацетон, 2-бутанон и т.д.
[00114] Полученный полиимид проанализировали методом 1Н-ЯМР спектроскопии. На фиг. 6 приведен 1Н-ЯМР спектр химической композиции фторированного полиимидного силоксана, полученной в примере 1. Цифрами 504, 506, 508, 510 и 512 обозначены части 1Н-ЯМР спектра, соответствующие указанным фрагментам полученного фторированного полиимидного силоксана.
[00115] Полученный полиимид также проанализировали методом 19F-ЯМР спектроскопии. На фиг. 7 приведен 19F-ЯМР спектр химической композиции фторированного полиимидного силоксана, полученной в примере 1. Цифрами 514 и 516 обозначены части 19F-ЯМР спектра, соответствующие указанным фрагментам полученного фторированного полиимидного силоксана.
Пример 2
[00116] На стеклянные пузырьки нанесли слой аминопропилсилсесквиоксана и слой фторированного полиимидного силоксана (Silimide-6F 50/50) примера 1.
[00117] Стеклянные пузырьки были изготовлены из композиции стекла, соответствующей композиции Е в таблице 1 Заявки на патент США № 13/660394, озаглавленной «Glass Compositions with Improved Chemical and Mechanical Durability» (Композиции стекла с повышенной химической и механической стойкостью). Перед нанесением покрытия стеклянные пузырьки подвергли ионообменному упрочнению, как описано в Заявке на патент США № 13/660394.
[00118] 23,5% вес. водный раствор аминопропилсилсесквиоксана (выпускаемый серийно как AB127715 компанией ABCR) разбавили метанолом до получения 2% вес./об. раствора силсесквиоксана.
[00119] Перед нанесением покрытия пузырьки промыли деионизированной водой, продули азотом и подвергли очистке кислородной плазмой в течение 15 сек. Затем пузырьки погрузили в 2% раствор силсесквиоксана, приготовленный, как описано выше (скорость извлечения 80 см/мин). Пузырьки, покрытые силсесквиоксаном, сушили при комнатной температуре 10 мин. Затем пузырьки погружали в раствор Silimide-6F 50/50, полученный путем растворения 2,5 г порошкообразного Silimide-6F, синтезированного в примере 1, в 100 мл растворителя - н-пропилацетата (скорость извлечения 20 см/мин).
[00120] Затем покрытие отверждали путем помещения пузырьков с покрытием в предварительно нагретую до 360°С печь на 30 мин.
[00121] После отверждения пузырьки, покрытые Silimide-6F, не имели видимого цвета. Покрытие характеризовалось низким коэффициентом трения в ходе испытаний трением пузырек о пузырек и очень высокой степенью защиты стекла. На фиг. 10 показан коэффициент трения (ось у) стеклянных контейнеров с покрытием при нагрузке до 30 Н (ось х) для стеклянного контейнера с покрытием примера 2 после отверждения и после депирогенизации в течение 12 часов при 360°С.
Пример 3
[00122] На стеклянные пузырьки нанесли слой 3-аминопропилтриметоксисилана и слой фторированного полиимидного силоксана (Silimide-6F) примера 1.
[00123] На упрочненные путем ионообмена пузырьки, как описано в примере 2, последовательно нанесли слой 3-аминопропилтриметоксисилана («GASP») и Silimide-6F 50/50 примера 1. Процедура нанесения была идентичной описанной в примере 2, за исключением того, что связующий слой силсесквиоксана примера 2 заменили гидролизатом GASP, полученным путем смешивания 0,51 г GASP (0,0028 моль), отвешенного в пробирку для центрифуги вместе с 0,075 мл деионизированной воды (0,0042 моль) и 20 мкл 37% вес. HCl. Раствор перемешивали в течение ночи, затем разбавили метанолом с получением конечного 2% вес./об. раствора GASP для покрытия.
Пример 4
[00124] На стеклянные пузырьки нанесли слой 1-[3-(триметоксисилил)пропил]мочевины («TMSPU») и слой фторированного полиимидного силоксана (Silimide-6F) примера 1.
[00125] На упрочненные путем ионообмена пузырьки, как описано в примере 2, последовательно нанесли слой 1-[3-(триметоксисилил)пропил]мочевины (TMSPU) и Silimide-6F 50/50 примера 1. Процедура нанесения была идентичной описанной в примере 2, за исключением того, что связующий слой силсесквиоксана примера 2 заменили TMSPU, полученным путем смешивания 0,622 г TMSPU (0,0028 моль), отвешенного в пластиковую пробирку вместе с 0,060 мл деионизированной воды (0,0033 моль) и 20 мкл 37% вес. HCl. Раствор перемешивали в течение ночи, затем разбавили метанолом с получением конечного 2% вес./об. раствора.
[00126] На фиг. 11 показаны цветовые координаты х-у для стеклянных контейнеров с покрытием примера 4 после депирогенизации в течение 12 часов при 360°С. Точки 536 и 538 отражают цветовые данные примера 4 (точка 538 - сразу после отверждения, точка 536 - после депирогенизации), точки 540 и 542 отражают цвет стеклянного контейнера без покрытия (сразу после отверждения и после депирогенизации). Пороги цветоразличения (эллипсы) указывают на то, что в примере 4 не зафиксировано изменения цвета, различимого человеческим глазом.
Пример 5
[00127] Фторированный полиимидный силоксан, в настоящем документе именуемый «Silimide-6F 25/75», приготовили в порошкообразной форме из 2,2-бис(4-аминофенил)гексафторпропана (6F), 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксана (BADS) и 4,4'-(гексафторизопропилиден)дифталевого ангидрида (6FDA). Молярное отношение 6F:BADS:6FDA составило 1:3:4.
[00128] Сначала 2,2-бис(4-аминофенил)гексафторпропан (5,61 г, 16,8 ммоль) отвесили в трехгорлую круглодонную колбу объемом 250 мл, содержащую н-метилпирролидон (50 мл), оборудованную двумя мембранами и ловушкой Дина-Старка с масляным барботером, заполненным минеральным или силиконовым маслом. Колбу продули газообразным аргоном, после полного растворения добавили 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан (1,39 г, 5,59 ммоль), раствор перемешали. Спустя, примерно, 15 мин перемешивания быстро добавили 4'4'-(гексафторизопропилиден)дифталевый ангидрид (10,00 г, 22,5 ммоль) в атмосфере аргона при комнатной температуре. Спустя, примерно, 30 мин перемешивания при температуре не более 60°С полученный раствор с малой вязкостью медленно нагрели до 190°С в условиях слабого потока аргона. Реакционный раствор перемешивали при 190°С 3 часа при общем количестве дистиллятов 5 мл (вода и н-метилпирролидон) с целью проведения имидизации. Умеренно вязкий золотисто-оранжевый реакционный раствор охладили до комнатной температуры. В этот золотисто-оранжевый реакционный раствор добавили 50 мл свежего NMP для уменьшения вязкости, полученный раствор с малой вязкостью по каплям добавили в 2-пропанол (2000 мл) при умеренном перемешивании. Белый осадок отфильтровали при помощи найлонового сита с ячейками 50 мкм. Полученную твердую фазу суспендировали в изопропиловом спирте и отфильтровали еще раз. Наконец, влажную твердую фазу высушили в вакууме до получения свободнотекучего порошка. Полимерную композицию и степень ее чистоты (присутствие мономеров и остаточного растворителя) исследовали методом ЯМР и инфракрасной спектроскопии с Фурье-преобразованием. Порошкообразный полимер до использования хранили в холодильнике при 4°С.
Пример 6
[00129] На стеклянные пузырьки нанесли слой фторированного полиимидного силоксана (Silimide-6F 50/50) примера 1. Silimide-6F наносили непосредственно на стеклянный пузырек (т.е., без промежуточного слоя связующего).
[00130] Упрочненные путем ионообмена пузырьки, как описано в примере 2, промыли деионизированной водой, продули азотом и подвергли очистке кислородной плазмой в течение 15 сек. Затем пузырьки погрузили в раствор Silimide-6F 50/50, приготовленный путем растворения 2,5 г порошка Silimide-6F 50/50, синтезированного в примере 1, в 100 мл ацетата метилового эфира пропиленгликоля (растворитель DOWANOLTM PMA) (скорость извлечения 20 см/мин). Затем покрытие отверждали путем помещения пузырьков с покрытием в предварительно нагретую до 360°С печь на 15 мин.
[00131] После отверждения пузырьки, покрытые Silimide-6F 50/50, не имели видимого цвета. Покрытие характеризовалось низким коэффициентом трения (COF от 0,30 до 0,35) в ходе испытаний трением пузырек о пузырек и очень высокой степенью защиты стекла. Стойкость покрытия к царапинам также оценивали после ряда процедур депирогенизации при разных температурах. Silimide-6F 50/50 сохранял практически те же свойства (COF<0,50 и высокую степенью защиты стекла) после 4 часов при 270°С, 12 часов при 300°С и обработки в автоклаве (20 мин. при 121°С). После такой последующей обработки не наблюдалось ухудшения характеристик и обесцвечивания, какую бы термическую обработку не проводили.
Пример 7
[00132] На стеклянные пузырьки нанесли слой фторированного полиимидного силоксана (Silimide-6F 25/75) примера 5. Silimide-6F 25/75 наносили непосредственно на стеклянный пузырек (т.е., без промежуточного слоя связующего).
[00133] На упрочненные путем ионообмена пузырьки, как описано в примере 2, наносили Silimide-6F 25/75, приготовленный в примере 5. Процедура нанесения была идентичной описанной в примере 6, за исключением того, что покрытие Silimide-6F 50/50 примера 6 заменили на покрытие Silimide-6F 25/75, приготовленное путем растворения 2,5 г порошка Silimide-6F 25/75 в 100 мл ацетата метилового эфира пропиленгликоля (растворитель DOWANOLTM PMA). Покрытие наносили погружением со скоростью 40 см/мин для получения той же толщины, что и у покрытия Silimide-6F 50/50 примера 6 (около 50 нм при измерении при помощи ZYGO на предметных стеклах, покрытых и отвержденных в тех же экспериментальных условиях). Стадия отверждения пузырьков с покрытием была аналогична описанной в примере 6. Полученное покрытие из Silimide-6F 25/75 обладало практически таким же низким коэффициентом трения и такой же степенью защиты стекла, что и покрытие Silimide-6F 50/50 примера 6. Свойства этого покрытия также сохранялись после такой же серии процедур депирогенизации и автоклавирования. Образцы даже перенесли депирогенизацию в течение 12 часов при 360°С без микротрещин или лишь с несколькими микротрещинами на стеклянной положке после испытания царапанием с нагрузкой 30 Н.
[00134] На фиг. 8 представлены данные в отношении коэффициента трения (ось у) для стеклянных контейнеров с покрытием примера 7 при нагрузке до 30 Н (ось х) после различной термической обработки. Цифрой 562 обозначен COF после депирогенизации в течение 12 часов при 360°С, цифрой 564 обозначен COF после депирогенизации в течение 12 часов при 300°С, цифрой 566 обозначен COF после депирогенизации в течение 4 часов при 270°С, цифрой 568 обозначен COF после отверждения в течение 15 минут при 360°С, цифрой 570 обозначен COF после автоклавирования в течение 20 минут при 121°С.
[00135] На фиг. 13 представлены оптические микрофотографии стеклянных контейнеров с покрытием после измерения COF после различной термической обработки и в состоянии после отверждения для стеклянного контейнера с покрытием примера 7.
Пример 8
[00136] Полиимидный силоксан синтезировали из 1 части мономера 4,4'-(гексафторизопропилиден)дифталевый ангидрид (6FDA) и 1 части мономера 2,2-бис(4-аминофенил)гексафторпропан (6F). Синтез полимера проводили аналогично описанному в примере 1. Затем на упрочненные путем ионообмена пузырьки, описанные в примере 2, нанесли синтезированный полимер, как описано в примере 6.
Пример 9
[00137] Полиимидный силоксан синтезировали из 1 части мономера 4,4'-(гексафторизопропилиден)дифталевый ангидрид (6FDA) и 1 части мономера 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан (BADS). Синтез полимера проводили аналогично описанному в примере 1. Затем на упрочненные путем ионообмена пузырьки, описанные в примере 2, нанесли синтезированный полимер, как описано в примере 6.
[00138] На фиг. 9 представлена потеря массы, измеренная методом термогравиметрии, как описано в настоящем документе, для полимеров примеров 1, 5, 8 и 9. Цифрой 552 обозначены данные для полимера примера 8, цифрой 554 обозначены данные для полимера примера 5, цифрой 556 обозначены данные для полимера примера 1, цифрой 558 обозначены данные для полимера примера 9. Данные фиг. 9 дополнительно отражены в таблице 1 ниже.
Таблица 1
% масс. при 360°C T°C при потере массы=1% T°C при потере массы=5%
Пример 9 99,5% 458°C 492°C
Пример 5 99,2% 367°C 429°C
Пример 1 96,9% 330°C 380°C
Пример 8 97,2% 311°C 391°C
Сравнительный пример А
[00139] На стеклянные пузырьки нанесли смесь аминофенилтриметоксисилана («APhTMS») и 3-аминопропилтриметоксисилана («GAPS») и слой поли(пиромеллитовый диангидрид-ко-4,4'-оксидианилин)а.
[00140] Поли(пиромеллитовый диангидрид-ко-4,4'-оксидианилин)амидокислоту («PMDA-ODA») использовали в качестве сравнительного полиимида. Поскольку полностью имидизированная форма этого полиимида нерастворима в органическом растворителе, и поскольку форма полиамидокислоты нерастворима в растворителях с большим коэффициентом испарения, PMDA-ODA перевели в соль полиамидокислоты путем смешивания 10 г раствора полиамидокислоты PMDA-ODA (12,0% вес. ±0,5% вес. [80% NMP/20% ксилол] производства Sigma Aldrich) с 1,16 г триэтиламина. После интенсивного перемешивания добавили 28,84 г метанола с получением 3% вес. раствора.
[00141] Для получения покрытия из смеси APhTMS и GAPS к 100 мл смеси 25:75 об./об. вода/метанол добавили 1 г GAPS и 1 г APHTMS. Полученный раствор характеризировался общей концентрацией силана 2% вес./об. Этот раствор приготовили за 24 до использования для обеспечения возможности гидролиза силана.
[00142] На серию пузырьков последовательно нанесли слой смеси APhTMS и GAPS и раствора 0,5% полиамидокислоты PMDA-ODA в метаноле. Пузырьки с покрытием отверждали 15 мин при 360°С и подвергли депирогенизации в течение 12 ч при 360°С. Образцы без депирогенизации (в состоянии после отверждения) и после депирогенизации испытывали на стенде трением пузырек о пузырек при нормальной нагрузке 30 Н.
[00143] Пузырьки с покрытием из раствора поли(пиромеллитовый диангидрид-ко-4,4'-оксидианилин)а характеризовались низким коэффициентом трения в ходе испытания трением пузырек о пузырек и имели желтый цвет.
[00144] На фиг. 10 представлены данные в отношении коэффициента трения (ось у) при нагрузке до 30 Н (ось х) для стеклянного контейнера с покрытием сравнительного примере А в состоянии после отверждения и после депирогенизации в течение 12 часов при 360°С.
Сравнительный пример В
[00145] На стеклянные пузырьки нанесли слой TMSPU и слой PMDA-ODA.
[00146] Слой TMSPU приготовили, как описано в примере 4, раствор PMDA-ODA приготовили, как описано в сравнительном примере А. Скорость извлечения для покрытий TMSPU и PMDA-ODA составила 80 см/мин и 20 см/мин, соответственно. Пузырьки с покрытием отверждали 15 мин при 360°С и подвергли депирогенизации в течение 12 ч при 360°С. Образцы без депирогенизации (в состоянии после отверждения) и после депирогенизации испытывали на стенде трением пузырек о пузырек при нормальной нагрузке 30 Н. Пузырьки с покрытием из раствора поли(пиромеллитовый диангидрид-ко-4,4'-оксидианилин)а и TMSPU в качестве слоя связующего характеризовались неприемлемо высоким коэффициентом трения. Такой коэффициент трения может быть отнесен за счет плохой адгезии PMDA-ODA к слою связующего TMSPU.
[00147] На фиг. 10 представлены данные в отношении коэффициента трения (ось у) при нагрузке до 30 Н (ось х) для стеклянного контейнера с покрытием сравнительного примере В в состоянии после отверждения и после депирогенизации в течение 12 часов при 360°С.
Сравнительный пример С
[00148] На стеклянные пузырьки нанесли слой APhTMS и GAPS и слой фторированного полиимидного силоксана (Silimide-6F 50/50) примера 1.
[00149] Процедура нанесения смешанного слоя APhTMS/GAPS была аналогична описанной в сравнительном примере А. После нанесения слоя APhTMS/GAPS нанесли Silimide-6F 50/50, как описано в примере 2, за исключением того, что слой APS заменили на слой APhTMS/GAPS.
[00150] На фиг. 11 показаны цветовые координаты х-у для стеклянных контейнеров с покрытием сравнительного примера С после депирогенизации в течение 12 часов при 360°С. Точки 532 и 534 отражают цветовые данные сравнительного примера С (точка 534 - сразу после отверждения, точка 532 - после депирогенизации), точки 540 и 542 отражают цвет стеклянного контейнера без покрытия (до и после депирогенизации). Пороги цветоразличения (эллипсы) указывают на то, что в сравнительном примере С имеется изменение цвета, различимое человеческим глазом.
[00151] В таблице 2 ниже представлены данные в отношении COF и коэффициента пожелтения для различных примеров, в которых испытанию COF подвергали по два пузырька для каждого примера. Коэффициент пожелтения определяли в соответствии с методом испытания ASTM E313. В таблице 2 представлен коэффициент пожелтения для освещения D65 под углом наблюдения 2°. Сравнительные примеры А и С характеризовались заметным пожелтением. В сравнительном примере В значительно увеличился COF после депирогенизации. Описываемые изделия с покрытием могут характеризоваться коэффициентом пожелтения, меньшим или равным, примерно, 10, 8 или даже 6.
Таблица 2
Пример COF в состоянии после отверждения COF после депирогенизации 12 часов при 360°C Коэффициент пожелтения
Пример 2 0,32/0,34 0,35/0,41 2,47
Пример 3 0,32/0,33 0,34/0,37 4,25
Пример 4 0,31/0,33 0,34/0,39 1,55
Сравнительный пример A 0,13/0,17 0,17/0,21 18,05
Сравнительный пример В 0,29/0,34 0,76/3,21 3,8
Сравнительный пример С 0,28/0,31 0,24/0,27 11,88
Сравнительный пример D
[00152] На стеклянные пузырьки нанесли покрытие из слоя PMDA-ODA. PMDA-ODA наносили непосредственно на стеклянный пузырек (т.е., без промежуточного слоя связующего. Раствор PMDA приготовили так же, как в сравнительном примере А, и наносили непосредственно на стеклянный пузырек так же, как в сравнительном примере А.
[00153] На фиг. 12 представлены данные в отношении коэффициента трения (ось у) для стеклянных контейнеров с покрытием сравнительного примера D при нагрузке до 30 Н (ось х) после различной термической обработки. Цифрой 572 обозначен COF после депирогенизации в течение 12 часов при 360°С, цифрой 574 обозначен COF после депирогенизации в течение 12 часов при 300°С, цифрой 576 обозначен COF после депирогенизации в течение 4 часов при 270°С, цифрой 578 обозначен COF после отверждения в течение 15 минут при 360°С, цифрой 580 обозначен COF после автоклавирования в течение 20 минут при 121°С.
[00154] На фиг. 13 представлены оптические микрофотографии стеклянных контейнеров с покрытием после измерения COF после различной термической обработки и в состоянии после отверждения для стеклянного контейнера с покрытием сравнительного примера D.
[00155] Следует понимать, что стеклянные контейнеры с покрытиями с низким коэффициентом трения, описанные в настоящем документе, обладают повышенной стойкостью к механическим повреждениям в результате нанесения покрытия с низким коэффициентом трения, и по этой причине стеклянные контейнеры обладают повышенной механической стойкостью. Благодаря этому свойству стеклянные контейнеры хорошо подходят для использования в различных вариантах применения, включая, помимо прочего, использование в качестве материалов для упаковки лекарственных средств.
[00156] Специалистам в данном области понятно, что в описанные в настоящем документе варианты осуществления изобретения могут быть внесены различные изменения и модификации, не выходящие за рамки существа и объема заявленного изобретения. Так, подразумевается, что описание охватывает модификации и изменения различных описанных вариантов осуществления изобретения при условии, что такие модификации и изменения подпадают под объем прилагаемой формулы изобретения и ее эквивалентов.

Claims (31)

1. Стеклянное изделие с покрытием, включающее:
стеклянный контейнер, содержащий первую поверхность и вторую поверхность, противоположную первой поверхности, и
покрытие с низким коэффициентом трения, связанное, по меньшей мере, с частью первой поверхности стеклянного контейнера, при этом покрытие с низким коэффициентом трения включает полиимидную химическую композицию, при этом полиимидная химическая композиция является галогенированной, и при этом полиимидная химическая композиция включает силоксановый фрагмент, причем полиимидная химическая композиция представляет собой сополимер, образованный, по меньшей мере, из мономера, включающего галогенированный ангидрид.
2. Стеклянное изделие с покрытием по п. 1, при этом полиимидная химическая композиция является галогенированной путем включения фтора.
3. Стеклянное изделие с покрытием по п. 1, при этом полиимидная химическая композиция является сополимером, образованным, по меньшей мере, из:
указанного мономера, включающего галогенированный ангидрид;
мономера, включающего оканчивающийся амином силоксан; и
мономера, включающего галогенированный амин.
4. Стеклянное изделие с покрытием по п. 3, в котором первый мономер представляет собой 1,3-бис(3-аминопропил)-1,1,3,3-тетраметилдисилоксан.
5. Стеклянное изделие с покрытием по п. 3, в котором второй мономер представляет собой 4,4'-(гексафторизопропилиден)дифталевый ангидрид.
6. Стеклянное изделие с покрытием по п. 3, в котором третий мономер представляет собой 2,2-бис(4-аминофенил)гексафторпропан.
7. Стеклянное изделие с покрытием по п. 1, в котором часть первой поверхности стеклянного контейнера с покрытием, на которой имеется покрытие с низким коэффициентом трения, характеризуется коэффициентом трения, меньшим или равным примерно 0,7.
8. Стеклянное изделие с покрытием по п. 7, при этом стеклянное изделие с покрытием сохраняет коэффициент трения, меньший или равный примерно 0,7, после тепловой обработки при температуре, по меньшей мере, около 280°С в течение 30 минут.
9. Стеклянное изделие с покрытием по п. 1, при этом светопропускание стеклянного изделия с покрытием больше или равно примерно 55% светопропускания стеклянного изделия без покрытия для каждой длины волны от примерно 400 нм до примерно 700 нм.
10. Стеклянное изделие с покрытием по п. 9, при этом стеклянное изделие с покрытием сохраняет светопропускание, большее или равное примерно 55% светопропускания стеклянного изделия без покрытия для каждой длины волны от примерно 400 нм до примерно 700 нм, после тепловой обработки при температуре, по меньшей мере, около 280°С в течение 30 минут.
11. Стеклянное изделие с покрытием по п. 1, в котором покрытие с низким коэффициентом трения характеризуется потерей массы менее примерно 5% его массы при нагревании от температуры 150°С до 350°С со скоростью примерно 10°С/мин.
12. Стеклянное изделие с покрытием по п. 1, в котором первая поверхность является наружной поверхностью стеклянного контейнера.
13. Стеклянное изделие с покрытием по п. 1, в котором покрытие с низким коэффициентом трения дополнительно включает связующее.
14. Стеклянное изделие с покрытием по п. 13, в котором связующее включает функционализированный мочевиной силан.
15. Стеклянное изделие с покрытием по п. 13, в котором покрытие с низким коэффициентом трения включает:
слой связующего, непосредственно контактирующий с первой поверхностью стеклянного контейнера, при этом слой связующего включает связующее; и
полимерный слой, непосредственно контактирующий со слоем связующего, при этом полимерный слой включает химическую композицию галогенированного полиимидного силоксана.
16. Стеклянное изделие с покрытием по п. 1, при этом стеклянное изделие включает ионообменное стекло.
17. Полиимидная химическая композиция для нанесения на прозрачный субстрат, при этом полиимидная химическая композиция образована в результате полимеризации:
первого мономера, включающего оканчивающийся амином силоксан,
второго мономера, включающего галогенированный ароматический ангидрид, и
третьего мономера, включающего ароматический галогенированный амин;
при этом полиимидная химическая композиция в полностью имидизированной форме растворима в ацетате, кетоне или их смесях.
18. Полиимидная химическая композиция по п. 17, при этом полиимидная химическая композиция является полностью имидизированной и растворена в растворителе, выбранном из ацетата, кетона или их смесей.
19. Полиимидная химическая композиция по п. 17, при этом полиимидная химическая композиция является твердой.
20. Способ нанесения покрытия на стеклянное изделие, при этом способ включает осаждение покрытия с низким коэффициентом трения на первой поверхности стеклянного изделия, при этом покрытие с низким коэффициентом трения включает полиимидную химическую композицию, при этом полиимидная химическая композиция является галогенированной, и при этом полиимидная химическая композиция включает силоксановый фрагмент, и причем полиимидная химическая композиция представляет собой сополимер, образованный, по меньшей мере, из мономера, включающего галогенированный ангидрид.
RU2018111021A 2015-09-30 2016-09-29 Химическая композиция галогенированного полиимидного силоксана и стеклянные изделия с покрытиями с низким коэффициентом трения из галогенированного полиимидного силоксана RU2726719C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15290254.0 2015-09-30
EP15290254.0A EP3150564B1 (en) 2015-09-30 2015-09-30 Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polylmide siloxane low-friction coatings
PCT/US2016/054384 WO2017059036A1 (en) 2015-09-30 2016-09-29 Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polyimide siloxane low-friction coatings

Publications (1)

Publication Number Publication Date
RU2726719C1 true RU2726719C1 (ru) 2020-07-15

Family

ID=54360358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018111021A RU2726719C1 (ru) 2015-09-30 2016-09-29 Химическая композиция галогенированного полиимидного силоксана и стеклянные изделия с покрытиями с низким коэффициентом трения из галогенированного полиимидного силоксана

Country Status (9)

Country Link
US (1) US11208348B2 (ru)
EP (1) EP3150564B1 (ru)
JP (1) JP6867377B2 (ru)
CN (1) CN108137392B (ru)
CA (1) CA3000184C (ru)
MX (1) MX2018003895A (ru)
RU (1) RU2726719C1 (ru)
TW (1) TWI701226B (ru)
WO (1) WO2017059036A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246298A1 (en) * 2016-05-12 2017-11-22 Corning Incorporated Pharmaceutical glass coating for achieving particle reduction
EP3560897B1 (en) * 2018-04-26 2021-11-24 Schott AG Process for making a functionalised hollow body, having a layer of glass, including a superposition of one or more siloxanes and contacting with a plasma
KR20230028365A (ko) * 2020-06-17 2023-02-28 코닝 인코포레이티드 유리 물품을 코팅하는 방법
CN116075288A (zh) 2020-09-04 2023-05-05 康宁股份有限公司 阻挡紫外光的经涂覆的药物包装
WO2024118413A1 (en) * 2022-11-30 2024-06-06 Corning Incorporated Reusable pharmaceutical containers and processes of reusing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU504719A1 (ru) * 1972-06-01 1976-02-28 Ленинградский Филиал Всесоюзного Научно-Исследовательского Института Медицинского Приборостения Способ обработки изделий
US4880895A (en) * 1986-03-31 1989-11-14 Nitto Electric Industrial Co., Ltd. Polyimide film-forming polyamide acid solution
US4923960A (en) * 1989-02-27 1990-05-08 Hoechst Celanese Corp. Polyamide-imide polymers having fluorine-containing linking groups
US20020016438A1 (en) * 2000-06-29 2002-02-07 Shin-Etsu Chemical Co., Ltd. Polyimide silicone resin, process for its production, and polyimide silicone resin composition
US20120088888A1 (en) * 2009-03-10 2012-04-12 Nissan Chemical Industries, Ltd. Polyimide precursor, polyimide, and liquid crystal aligning agent
WO2013130724A2 (en) * 2012-02-28 2013-09-06 Corning Incorporated Glass articles with low-friction coatings
US20140034544A1 (en) * 2012-11-30 2014-02-06 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
RU2514939C2 (ru) * 2009-08-19 2014-05-10 Ппг Индастриз Огайо, Инк. Полисилоксановые покрытия с гибридными сополимерами

Family Cites Families (358)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA853121A (en) 1970-10-06 P. Poole James Method of strengthening glass and increasing the scratch resistance of the surface thereof
US2644802A (en) 1950-06-30 1953-07-07 Du Pont Tetrafluoroethylene polymer compositions containing polyorganosiloxane lubricants
GB702292A (en) 1950-09-13 1954-01-13 Pfizer & Co C Improvements in or relating to liquid containers
NL85087C (ru) 1951-10-09
GB720778A (en) 1952-03-04 1954-12-29 Bayer Ag A process of rendering materials hydrophobic
BE561714A (ru) 1957-10-18
US3179634A (en) 1962-01-26 1965-04-20 Du Pont Aromatic polyimides and the process for preparing them
BE618739A (ru) 1962-03-23
US3287311A (en) 1963-01-03 1966-11-22 Du Pont Polyimide containing tio2, articles, and process of making
US3323889A (en) 1963-04-16 1967-06-06 Owens Illinois Inc Method for increasing scratch resistance of a glass surface with a pyrolyzing treatment and a coating of an olefin polymer
US3395069A (en) 1964-10-15 1968-07-30 Dow Corning Bonding of organic resins to siliceous materials
US3441432A (en) 1965-08-19 1969-04-29 Owens Illinois Inc Method of rendering glass surfaces abrasion and scratch resistant
US3900329A (en) 1965-12-07 1975-08-19 Owens Illinois Inc Glass compositions
US3445267A (en) 1966-01-12 1969-05-20 Dow Corning Treatment of glass with silsesquioxanes to improve durability of subsequent silicone treatments to washing
US3844754A (en) 1966-02-23 1974-10-29 Owens Illinois Inc Process of ion exchange of glass
FR93015E (fr) 1966-04-19 1969-01-31 Ball Brothers Co Inc Procédé et appareil pour déposer un enduit sous forme de vapeur sur des objects en verre.
FR2033431A5 (en) 1969-02-24 1970-12-04 Autolubrification Aps Coating glass with fluorocarbons
US3577256A (en) 1969-06-26 1971-05-04 Owens Illinois Inc Scratch and abrasion resistant coatings for glass
US3674690A (en) 1969-07-08 1972-07-04 Us Air Force Air drying silicone resin bonded dry film lubricant
GB1267855A (en) 1969-08-08 1972-03-22 Owens Illinois Inc Method of coating glass surface and products produced thereby
DE1954314A1 (de) 1969-10-29 1971-05-06 Basf Ag Verfahren zur Herstellung stickstoffhaltiger,thermostabiler Kondensationsprodukte
US3958073A (en) 1970-01-29 1976-05-18 Fidenza S.A. Vetraria S.P.A. Properties of glass surfaces
US3607186A (en) 1970-04-08 1971-09-21 Corning Glass Works Method and apparatus for forming hollow articles from sheet glass
US3801361A (en) 1971-09-17 1974-04-02 Owens Illinois Inc Coated glass surface
US3772061A (en) 1971-10-14 1973-11-13 Liberty Glass Co Containers and methods of preparing
US4065317A (en) 1971-10-28 1977-12-27 Nippon Electric Glass Company, Ltd. Novel glass compositions
US3811921A (en) 1971-12-09 1974-05-21 Owens Illinois Inc Method of coating glass surface and products produced thereby
US3819346A (en) 1972-05-08 1974-06-25 Glass Container Mfg Inst Inc Method for applying an inorganic tin coating to a glass surface
US3878960A (en) 1972-06-12 1975-04-22 Platmanufaktur Ab Glass container with a shrunk-on plastic protective cover
US4093759A (en) 1972-12-23 1978-06-06 Toyo Ink Manufacturing Co., Ltd. Glass container coated with polyurethane
US3791809A (en) 1973-01-12 1974-02-12 Owens Illinois Inc Method of strengthening glass articles using powdered salts for ion exchange
JPS49115088A (ru) 1973-03-08 1974-11-02
US4030904A (en) 1973-09-10 1977-06-21 United Glass, Ltd. Surface coating of glass containers while annealing
US4238041A (en) 1973-12-07 1980-12-09 Bodelind Bo T Glass container with a fixed plastic protective layer
US3926604A (en) 1974-02-19 1975-12-16 Glass Container Manufacturers Method for applying an inorganic titanium coating to a glass surface
GB1436658A (en) 1974-04-18 1976-05-19 Ici Ltd Treatment of glass containers
DE2609931C3 (de) 1975-03-13 1978-07-20 Owens-Illinois, Inc., Toledo, Ohio (V.St.A.) Verfahren zum Herstellen eines polymeren Schutzüberzuges auf einer Glasoberfläche, der Glasbruchstücke festhält, sowie Glasbehälter
US4056651A (en) 1975-03-18 1977-11-01 United Technologies Corporation Moisture and heat resistant coating for glass fibers
US4086373A (en) 1975-04-02 1978-04-25 Owens-Illinois, Inc. Protective polymeric coating for glass substrate
US4065589A (en) 1975-06-09 1977-12-27 Owens-Illinois, Inc. Polymeric coating for protection of glass substrate
DE2611170C3 (de) 1975-06-19 1978-08-31 Owens-Illinois, Inc., Toledo, Ohio (V.St.A.) Verfahren zum Herstellen eines polymeren Schutzüberzugs auf einer Glasoberfläche, der Glasbruchstücke festhält, sowie Glasbehälter
US4056208A (en) 1976-08-11 1977-11-01 George Wyatt Prejean Caustic-resistant polymer coatings for glass
US4130677A (en) 1977-10-21 1978-12-19 E. I. Du Pont De Nemours And Company Process for applying to glass an organic coating having controlled bond strength
US4164402A (en) 1978-02-27 1979-08-14 Yamamura Glass Co., Ltd. Strengthening of thin-walled, light glass containers
US4395527A (en) * 1978-05-17 1983-07-26 M & T Chemicals Inc. Siloxane-containing polymers
US4264658A (en) 1978-07-10 1981-04-28 Owens-Illinois, Inc. Three-component polymeric coating for glass substrate
US4215165A (en) 1978-07-17 1980-07-29 Chemische Werke Huls Aktiengesellschaft Method for coating of glass surfaces
GB2043040B (en) 1978-12-07 1982-12-15 Tokyo Ohka Kogyo Co Ltd Method for preventing leaching of contaminants from solid surfaces
US4214886A (en) 1979-04-05 1980-07-29 Corning Glass Works Forming laminated sheet glass
JPS56819A (en) 1979-05-17 1981-01-07 Mitui Toatsu Chem Inc Thermosetting polyurethane resin and coating agent
JPS5663845A (en) 1979-10-26 1981-05-30 Nippon Kogaku Kk <Nikon> Inorganic substance product having surface layer rendered hydrophilic and its manufacture
US4431692A (en) 1980-02-15 1984-02-14 Owens-Illinois, Inc. Process for making glass surfaces abrasion-resistant and article produced thereby
SU990700A1 (ru) 1980-03-03 1983-01-23 Белорусский технологический институт им.С.М.Кирова Стекло дл химико-лабораторных изделий
JPS5738346A (en) 1980-08-11 1982-03-03 Ishizuka Glass Ltd Tempered glass container
US4315573A (en) 1980-10-06 1982-02-16 Owens-Illinois, Inc. Method of strengthening glass containers and articles so made
US4351882A (en) 1981-01-13 1982-09-28 E. I. Du Pont De Nemours And Company Article coated with fluoropolymer finish with improved durability
JPS56155044A (en) 1981-03-25 1981-12-01 Ishizuka Glass Ltd Glass bottle coated with protecting film
RO83460B1 (ro) 1981-11-17 1984-03-30 Institutul De Chimie STICLE DE AMBALAJ CU îNALTA REZISTENTA LA ACIZI
US4386164A (en) 1981-12-14 1983-05-31 Owens-Illinois, Inc. Barium-free Type I, Class B laboratory soda-alumina-borosilicate glass
JPS58156553A (ja) 1982-03-09 1983-09-17 Toshiba Glass Co Ltd ポリイミド樹脂で着色したフオグランプ用ガラスレンズ
FR2561234A1 (fr) 1984-03-16 1985-09-20 Bouvet Vernis Procede de traitement de recipients en verre avec un vernis protecteur et vernis de protection mis en oeuvre
US4654235A (en) 1984-04-13 1987-03-31 Chemical Fabrics Corporation Novel wear resistant fluoropolymer-containing flexible composites and method for preparation thereof
JPS6147932A (ja) 1984-08-15 1986-03-08 Nissan Chem Ind Ltd 液晶表示素子
US4595548A (en) 1984-08-23 1986-06-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines
US4603061A (en) 1984-08-23 1986-07-29 The United States Of America As Represented By The National Aeronautics And Space Administration Process for preparing highly optically transparent/colorless aromatic polyimide film
EP0176062A3 (en) 1984-09-27 1987-07-15 Dow Corning Corporation Silane bonding agents for high temperature applications and method therefor
US4696994A (en) 1984-12-14 1987-09-29 Ube Industries, Ltd. Transparent aromatic polyimide
US4668268A (en) 1984-12-20 1987-05-26 M&T Chemicals Inc. Coating hood with air flow guide for minimizing deposition of coating compound on finish of containers
US4680373A (en) 1984-12-31 1987-07-14 General Electric Company Process for the production of a random copolymer containing repeating polyimide units and repeating polyetherimide units
US4558110A (en) 1985-02-01 1985-12-10 General Electric Company Crystalline silicone-imide copolymers
JPS60254022A (ja) 1985-03-05 1985-12-14 Sharp Corp 液晶表示素子
US4620985A (en) 1985-03-22 1986-11-04 The D. L. Auld Company Circumferential groove coating method for protecting a glass bottle
US4767414A (en) 1985-05-16 1988-08-30 Becton, Dickinson And Company Ionizing plasma lubricant method
JPS6247623A (ja) 1985-08-27 1987-03-02 Toshiba Corp 液晶表示装置
JPS6268828A (ja) 1985-09-19 1987-03-28 Youbea Le-Ron Kogyo Kk 透明カセツトライナ−
JPH0768347B2 (ja) 1985-09-25 1995-07-26 株式会社日立製作所 有機ケイ素末端ポリイミド前駆体とポリイミドの製造方法
JPS62140257A (ja) 1985-12-13 1987-06-23 Mitsubishi Chem Ind Ltd 光デイスク用基板
JPH0637609B2 (ja) 1986-01-24 1994-05-18 マサチユ−セツツ インスチチユ−ト オブ テクノロジ− 接着促進剤
US4749614A (en) 1986-04-10 1988-06-07 International Business Machines Corporation Process for coating fibers, use thereof, and product
US4689085A (en) 1986-06-30 1987-08-25 Dow Corning Corporation Coupling agent compositions
FR2613846B1 (fr) 1987-04-10 1990-10-26 Commissariat Energie Atomique Dispositif d'affichage a cristal liquide smectique ferroelectrique bistable
JPS63270330A (ja) 1987-04-24 1988-11-08 Ishizuka Glass Ltd ソ−ダライムガラス容器の耐熱性を向上させる方法
JP2632696B2 (ja) 1987-04-28 1997-07-23 大日本インキ化学工業株式会社 ガラス容器の力学的強度の向上方法
CA1333785C (en) 1987-04-28 1995-01-03 Yutaka Hashimoto Method of increasing the dynamical strength of glass container
US4842889A (en) 1987-08-03 1989-06-27 Becton, Dickinson And Company Method for preparing lubricated surfaces
US4860906A (en) 1987-09-14 1989-08-29 Bloomfield Industries, Inc. Glass container with safety coating
FR2625450B1 (fr) 1988-01-05 1992-05-07 Corning Glass Works Article muni d'un revetement anti-adherent presentant une adhesion audit substrat et une durabilite ameliorees, sa fabrication et composition mise en oeuvre
JPH0749482B2 (ja) 1988-02-26 1995-05-31 チッソ株式会社 低吸湿性かつ高接着性のシリコン含有ポリイミド及びその前駆体の製造方法
JPH01279058A (ja) 1988-04-20 1989-11-09 Moon Star Co 高分子被覆保護膜を有するガラス瓶
US4988288A (en) 1988-05-13 1991-01-29 Despatch Industries, Inc. Material heating oven
US4882210A (en) 1988-09-26 1989-11-21 The West Company Glass container
US5024922A (en) 1988-11-07 1991-06-18 Moss Mary G Positive working polyamic acid/imide and diazoquinone photoresist with high temperature pre-bake
WO1990005088A1 (en) 1988-11-07 1990-05-17 Brandt Manufacturing Systems, Inc. Container label and system for applying same
US5112658A (en) 1988-11-16 1992-05-12 Ensign-Bickford Optics Company Coating compositions for glass containers
US5049421A (en) 1989-01-30 1991-09-17 Dresser Industries, Inc. Transducer glass bonding technique
JP2601717B2 (ja) 1989-02-27 1997-04-16 ハニー化成株式会社 ガラス積層体
US4931539A (en) 1989-03-06 1990-06-05 E. I. Du Pont De Nemours And Company Highly-soluble, amorphous siloxane polyimides
US5281690A (en) 1989-03-30 1994-01-25 Brewer Science, Inc. Base-soluble polyimide release layers for use in microlithographic processing
US5246782A (en) 1990-12-10 1993-09-21 The Dow Chemical Company Laminates of polymers having perfluorocyclobutane rings and polymers containing perfluorocyclobutane rings
US5036145A (en) 1989-07-10 1991-07-30 Armstrong World Industries, Inc. Alkoxysilane and alkoxysilane terminated polyamic or polyimide lacquer composition
US5124618A (en) 1989-11-16 1992-06-23 Matsushita Electronics Corporation Shatter-proof fluorescent lamp
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
DE69113291T3 (de) 1990-02-20 1999-08-26 Ishizuka Glass Verfahren und Vorrichtung zum Herstellen von Glascontainern.
US5137751A (en) * 1990-03-09 1992-08-11 Amoco Corporation Process for making thick multilayers of polyimide
US5427862A (en) 1990-05-08 1995-06-27 Amoco Corporation Photocurable polyimide coated glass fiber
US5206337A (en) * 1990-05-10 1993-04-27 Sumitomo Bakelite Company Limited Solvent-soluble polyimidesiloxane oligomer and process for producing the same
US5002359A (en) 1990-05-22 1991-03-26 W. L. Gore & Associates, Inc. Buffered insulated optical waveguide fiber cable
US5252703A (en) 1990-06-01 1993-10-12 Ube Industries, Ltd. Polyimidosiloxane resin and composition thereof and method of applying same
DK146790D0 (da) 1990-06-15 1990-06-15 Meadox Surgimed As Fremgangsmaade til fremstilling af en ved befrugtning friktionsnedsaettende belaegning samt medicinsk instrument med en friktionsnedsaettende belaegning
JP2706998B2 (ja) 1990-08-03 1998-01-28 信越化学工業株式会社 ポリアミド酸共重合体及びその製造方法
US6013333A (en) 1990-08-30 2000-01-11 Elf Atochem North America, Inc. Method for strengthening a brittle oxide substrate
JPH04156402A (ja) 1990-10-19 1992-05-28 Dainippon Printing Co Ltd カラーフィルター
US5114757A (en) 1990-10-26 1992-05-19 Linde Harold G Enhancement of polyimide adhesion on reactive metals
US5230429A (en) 1990-12-13 1993-07-27 Etheredge Iii Robert W Tamper-evident injectable drug vial
AU635167B2 (en) 1990-12-24 1993-03-11 Tsukihoshi Kasei Kabushiki Kaisha Resin laminate for covering glass
GB2252333B (en) 1991-01-29 1995-07-19 Spectra Physics Scanning Syst Improved scanner window
DE4113655A1 (de) 1991-04-26 1992-10-29 Basf Lacke & Farben Haftvermittler
GB9111261D0 (en) 1991-05-24 1991-07-17 Univ Sheffield A method of strenghthening glass
US5209981A (en) * 1991-06-13 1993-05-11 Occidental Chemical Corporation Polyimidesiloxane extended block copolymers
DK0524802T4 (da) 1991-07-22 2010-02-08 Daikyo Gomu Seiko Kk Beholder til en hygiejneartikel
US5310862A (en) 1991-08-20 1994-05-10 Toray Industries, Inc. Photosensitive polyimide precursor compositions and process for preparing same
DE4128634A1 (de) 1991-08-29 1993-03-04 Mueller Klaus Peter Dr Ing Mittel zur bruchsicherungsbeschichtung und zur waschfesten sicherung von etiketten und aufschriften von mehrfach verwendbaren hohlglaesern
US5232783A (en) 1991-09-10 1993-08-03 General Electric Company Abrasion resistant coatings for glass articles
DE4130414A1 (de) 1991-09-10 1993-04-29 Zentralinstitut Fuer Anorganis Polymerbeschichtetes calciumhaltiges silicatglas
US5306537A (en) 1991-12-20 1994-04-26 The Standard Products Company Wear resistant coating for glass run channel
GB2265021B (en) 1992-03-10 1996-02-14 Nippon Steel Chemical Co Photosensitive materials and their use in forming protective layers for printed circuit and process for preparation of printed circuit
US6391459B1 (en) 1992-04-20 2002-05-21 Dsm N.V. Radiation curable oligomers containing alkoxylated fluorinated polyols
JP3126577B2 (ja) * 1993-12-02 2001-01-22 パーカー加工株式会社 ポリイミドブロック共重合体の製造方法及びその溶液組成物
US5337537A (en) 1992-12-28 1994-08-16 Soughan John J Granulable container means and method
DE69412168T2 (de) 1993-05-14 1998-12-10 Asahi Glass Co. Ltd., Tokio/Tokyo Oberflächenbehandeltes Substrat und Verfahren zu seiner Herstellung
TW283163B (ru) 1993-08-19 1996-08-11 Nissan Chemical Ind Ltd
SE9303357L (sv) 1993-10-12 1995-04-13 Plm Ab Sätt att framställa en glasartikel med skyddande överdrag av polymermaterial
CA2132783C (en) 1993-10-18 2001-12-25 Leonard Pinchuk Lubricious silicone surface modification
JP3342758B2 (ja) 1993-11-26 2002-11-11 鬼怒川ゴム工業株式会社 ゴム成形品の滑面構造
RU2071492C1 (ru) 1994-02-09 1997-01-10 Андрейчикова Галина Емельяновна Композиция для покрытия
JP2871440B2 (ja) 1994-02-15 1999-03-17 日本板硝子株式会社 化学強化ガラスの製造方法
US5488092A (en) 1994-04-26 1996-01-30 Gencorp Inc. Low VOC, primerless, polyurethane compostions
DE69514666T2 (de) 1994-05-17 2000-06-08 Asahi Chemical Co., Ltd. Glasurschichtbildende zusammensetzung zum heissen beschichten von feuerfesten ofenmaterialien und verfahren zur herstellung dieser glasurschicht
US5498758A (en) 1994-05-20 1996-03-12 Alltrista Corporation Method for the cold end coating of glassware using a vaporizer having an internal flow path from a reservoir of liquid coating material to a vapor deposition chamber
JP2974576B2 (ja) 1994-05-25 1999-11-10 リンテック株式会社 易滑性ハードコートフイルム及びその製造方法
JPH083510A (ja) 1994-06-20 1996-01-09 Nippon Zeon Co Ltd 新規なコート剤、およびコート層を有する成形品
JPH08151564A (ja) 1994-11-30 1996-06-11 Asahi Glass Co Ltd 容器用表面処理剤および表面処理された容器
JPH08337654A (ja) 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
CA2194190C (en) 1995-08-09 2000-03-21 Tetsuro Higashikawa Syringe, its sealing structure and sealing method and sliding valve for syringe
DE19536708C1 (de) 1995-09-30 1996-10-31 Jenaer Glaswerk Gmbh Zirkon- und lithiumoxidhaltiges Borosilicatglas hoher chemischer Beständigkeit und geringer Viskosität und dessen Verwendung
US5938919A (en) 1995-12-22 1999-08-17 Phenomenex Fused silica capillary columns protected by flexible shielding
IL116815A0 (en) 1996-01-18 1996-05-14 Hadasit Med Res Service Carpule for an interligamentary syringe
US5888591A (en) 1996-05-06 1999-03-30 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
ZA976079B (en) 1996-06-13 1998-03-02 South African Breweries Ltd A coating composition.
DE19632664B4 (de) 1996-08-14 2004-09-23 Schott Glas Glasfläschchen mit einem umspritzten Kunststoffüberzug, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
US6214429B1 (en) 1996-09-04 2001-04-10 Hoya Corporation Disc substrates for information recording discs and magnetic discs
JP4663824B2 (ja) 1996-12-31 2011-04-06 ハイ スループット ジェノミクス インコーポレイテッド 多重化分子分析装置および方法
DE29702816U1 (de) 1997-02-18 1997-04-10 Schott Glaswerke, 55122 Mainz Sterilisierbarer Glasbehälter für medizinische Zwecke, insbesondere zur Aufbewahrung pharmazeutischer oder diagnostischer Produkte
US5908542A (en) 1997-07-02 1999-06-01 Gould Electronics Inc. Metal foil with improved bonding to substrates and method for making the foil
EP1024407A4 (en) 1997-10-13 2004-06-30 Pi R & D Co Ltd POSITIVE PHOTOSENSITIVE POLYIMIDE COMPOSITION
US6346315B1 (en) 1997-10-20 2002-02-12 Henry Sawatsky House wares and decorative process therefor
JPH11171593A (ja) 1997-12-11 1999-06-29 Shin Etsu Chem Co Ltd ガラス容器用擦り傷遮蔽剤及びガラス容器
US6048911A (en) 1997-12-12 2000-04-11 Borden Chemical, Inc. Coated optical fibers
US6358519B1 (en) 1998-02-16 2002-03-19 Ruth S. Waterman Germ-resistant communication and data transfer/entry products
US6482509B2 (en) 1998-03-06 2002-11-19 Novo Nordisk A/S Coating system providing low friction
US6046758A (en) 1998-03-10 2000-04-04 Diamonex, Incorporated Highly wear-resistant thermal print heads with silicon-doped diamond-like carbon protective coatings
US6171652B1 (en) 1998-05-26 2001-01-09 Brij P. Singh Method for modifying surfaces with ultra thin films
DE19831112C2 (de) 1998-07-11 2003-06-26 Schott Glas Universeller Behälter aus Glas für medizinische Zwecke
US6986868B2 (en) 1998-11-20 2006-01-17 Coloplast A/S Method for sterilizing a medical device having a hydrophilic coating
US6232428B1 (en) 1999-01-19 2001-05-15 I.S.T. Corporation Essentially colorless, transparent polyimide coatings and films
JP2000211644A (ja) 1999-01-27 2000-08-02 Asahi Beer Packs:Kk 酸化ジルコニウムコ―ティングガラスびんおよびその製造法
JP2000219621A (ja) 1999-01-28 2000-08-08 Taiyo Yakuhin Kogyo Kk 硫酸塩含有化合物を含む液状医薬製剤
JP3657453B2 (ja) 1999-02-04 2005-06-08 日本板硝子株式会社 情報処理記録媒体
DE19906240A1 (de) 1999-02-15 2000-08-17 Schott Glas Hochzirkoniumoxidhaltiges Glas und dessen Verwendungen
DE19921303C1 (de) 1999-05-07 2000-10-12 Schott Glas Glasbehälter für medizinische Zwecke
JP4253403B2 (ja) 1999-07-23 2009-04-15 オリンパス株式会社 球面測定装置
DE19940706A1 (de) 1999-08-27 2001-03-08 Schott Glas Verschließbarer Glasbehälter mit einem umspritzten Kunststoffüberzug und Verfahren zu seiner Herstellung
JP2001072441A (ja) 1999-08-31 2001-03-21 Mihara Ryoju Engineering Kk 着色ガラス瓶の製造方法及び着色ガラス瓶
GB9920772D0 (en) 1999-09-03 1999-11-03 Nycomed Amersham Plc Improved container composition for radiopharmaceutical agents
JP2001131485A (ja) 1999-10-29 2001-05-15 Sumitomo Osaka Cement Co Ltd 透明導電性膜形成用塗料及び透明導電性膜
JP2001180969A (ja) 1999-12-28 2001-07-03 Central Glass Co Ltd リチウム含有高ヤング率ガラスおよびガラス物品
JP2001192239A (ja) 1999-12-28 2001-07-17 Asahi Techno Glass Corp 強化ガラスの製造方法、強化ガラスおよびガラス基板
PT1261480E (pt) 2000-01-19 2005-02-28 Saint Gobain Performance Plast Membranas compositas reforcadas nao ondulantes com faces opostas diferentes metodos para producao e sua utilizacao em varias aplicacoes
US6277950B1 (en) 2000-01-26 2001-08-21 National Science Council Organic-soluble aromatic polyimides, organic solutions and preparation thereof
FR2806076B1 (fr) 2000-03-08 2002-09-20 Saint Gobain Vitrage Substrat transparent revetu d'une couche polymere
JP3984407B2 (ja) 2000-04-25 2007-10-03 東洋ガラス株式会社 ガラス製品
US6797396B1 (en) 2000-06-09 2004-09-28 3M Innovative Properties Company Wrinkle resistant infrared reflecting film and non-planar laminate articles made therefrom
JP2002003241A (ja) 2000-06-19 2002-01-09 Central Glass Co Ltd プレス成形用ガラスおよび情報記録媒体用基板ガラス
DE10036832C1 (de) 2000-07-28 2001-12-13 Schott Glas Verfahren und Vorrichtung zum Aufbringen einer hitzefixierten Gleitmittelschicht auf die Innenwandung von zylindrischen Behältern für medizinische Zwecke
NZ524248A (en) 2000-08-18 2004-12-24 Norton Healthcare Ltd Spray device
EP1193185A1 (en) 2000-10-02 2002-04-03 Heineken Technical Services B.V. Glass container with improved coating
US6472068B1 (en) 2000-10-26 2002-10-29 Sandia Corporation Glass rupture disk
US6444783B1 (en) 2000-12-21 2002-09-03 E. I. Du Pont De Nemours And Company Melt-processible semicrystalline block copolyimides
JP2001236634A (ja) 2001-01-04 2001-08-31 Nippon Sheet Glass Co Ltd 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
JP2001229526A (ja) 2001-01-04 2001-08-24 Nippon Sheet Glass Co Ltd 化学強化用ガラス組成物からなる磁気ディスク基板および磁気ディスク媒体。
JP2004525403A (ja) 2001-01-15 2004-08-19 スリーエム イノベイティブ プロパティズ カンパニー 可視波長領域における透過が高く、かつ平滑な多層赤外反射フィルム、およびそれから製造される積層物品
AU2002303382A1 (en) 2001-04-19 2002-11-05 General Electric Company Spin coating process
US6660386B2 (en) 2001-05-21 2003-12-09 Polymer Ventures, L.L.C. Flame activated primer for polyolefinic coatings
CN2483332Y (zh) 2001-05-29 2002-03-27 简济廉 套膜防爆玻璃瓶
JP3995902B2 (ja) 2001-05-31 2007-10-24 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
GB0117879D0 (en) 2001-07-21 2001-09-12 Common Services Agency Storage of liquid compositions
US6737105B2 (en) 2001-07-27 2004-05-18 Vtec Technologies, Inc. Multilayered hydrophobic coating and method of manufacturing the same
JP2003053259A (ja) 2001-08-20 2003-02-25 Nippon Paint Co Ltd ガラス容器の塗装方法
JP4590866B2 (ja) 2001-11-05 2010-12-01 旭硝子株式会社 ガラスセラミックス組成物
JP2003146699A (ja) 2001-11-08 2003-05-21 Toyo Glass Co Ltd ガラスびんのコーティング装置
GB0127942D0 (en) 2001-11-21 2002-01-16 Weston Medical Ltd Needleless injector drug capsule and a method for filing thereof
JP2002249340A (ja) 2001-11-30 2002-09-06 Hoya Corp 半導体パッケージ用カバーガラス
WO2003057638A1 (fr) 2001-12-28 2003-07-17 Nippon Sheet Glass Company, Limited Verre en feuilles et verre en feuilles utilise avec un convertisseur photoelectrique
JP4464626B2 (ja) 2002-05-17 2010-05-19 日本山村硝子株式会社 ガラス表面処理用コーティング組成物及びガラス製品
DE10236728A1 (de) 2002-08-09 2004-02-26 Schott Glas Reinigungsfreundliche Vorrichtung
US7215473B2 (en) 2002-08-17 2007-05-08 3M Innovative Properties Company Enhanced heat mirror films
DE10238930C1 (de) 2002-08-24 2003-11-20 Schott Glas Borosilicatglas und seine Verwendungen
JP2004099638A (ja) 2002-09-04 2004-04-02 Shin Etsu Chem Co Ltd イミドシリコーン樹脂およびその製造方法
RU2220219C1 (ru) 2002-11-28 2003-12-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" Высокотемпературный антифрикционный материал покрытия
WO2004063238A1 (ja) 2003-01-10 2004-07-29 Mitsubishi Rayon Co., Ltd. 多層構造重合体及び樹脂組成物、並びに、アクリル樹脂フィルム状物、アクリル樹脂積層フィルム、光硬化性アクリル樹脂フィルム又はシート、積層フィルム又はシート、及び、これを積層した積層成形品
US7344783B2 (en) 2003-07-09 2008-03-18 Shell Oil Company Durable hydrophobic surface coatings using silicone resins
TWI296569B (en) 2003-08-27 2008-05-11 Mitsui Chemicals Inc Polyimide metal laminated matter
JP5373267B2 (ja) 2003-10-29 2013-12-18 サン−ゴバン グラス フランス 断熱用強化ペイン
JP4483331B2 (ja) 2004-02-17 2010-06-16 チッソ株式会社 シルセスキオキサン骨格を有するジアミン及びそれを用いた重合体
DE102004008772A1 (de) 2004-02-23 2005-09-08 Institut für Neue Materialien Gemeinnützige GmbH Abriebbeständige und alkalibeständige Beschichtungen oder Formkörper mit Niedrigenergieoberfläche
DE102004011009A1 (de) 2004-03-08 2005-09-29 Schott Ag Glaskörper aus einem Mehrkomponentenglas mit modifizierter Oberfläche, Verfahren und Vorrichtung zu seiner Herstellung und Verwendung des Glaskörpers
CN101883470B (zh) * 2004-06-23 2012-09-05 日立化成工业株式会社 印制电路板用预浸料片以及贴有金属箔的叠层板
JP2006100379A (ja) 2004-09-28 2006-04-13 Kaneka Corp ヒートシンク
US7470999B2 (en) 2004-09-29 2008-12-30 Nippon Electric Glass Co., Ltd. Glass for semiconductor encapsulation and outer tube for semiconductor encapsulation, and semiconductor electronic parts
FR2876626B1 (fr) 2004-10-19 2007-01-05 Arkema Sa Utilisation d'un polymere fluore pour proteger la surface d' un materiau inorganique contre la corrosion
US20060099360A1 (en) 2004-11-05 2006-05-11 Pepsico, Inc. Dip, spray, and flow coating process for forming coated articles
US7201965B2 (en) 2004-12-13 2007-04-10 Corning Incorporated Glass laminate substrate having enhanced impact and static loading resistance
FR2879619B1 (fr) 2004-12-16 2007-07-13 Arkema Sa Composition adhesive a base de copolymeres ethyleniques, utilisable pour extrusion-couchage et extrusion-lamination sur divers supports
DE102005007743A1 (de) 2005-01-11 2006-07-20 Merck Patent Gmbh Druckfähiges Medium zur Ätzung von Siliziumdioxid- und Siliziumnitridschichten
JP2006291049A (ja) 2005-04-12 2006-10-26 Mitsui Chemicals Inc 水分散型ガラス瓶保護コート剤用組成物
US20060233675A1 (en) 2005-04-13 2006-10-19 Stein Israel M Glass test tube having protective outer shield
KR101238967B1 (ko) 2005-04-14 2013-03-04 미츠비시 가스 가가쿠 가부시키가이샤 폴리이미드 필름의 제조 방법
US7833475B2 (en) 2005-05-02 2010-11-16 Coloplast A/S Method for sterilising a medical device having a hydrophilic coating
SI1731227T1 (sl) 2005-06-10 2014-12-31 Arkema Inc. Raze maskirajoča prevleka za steklene vsebnike
US7781493B2 (en) 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
US20080199618A1 (en) 2005-07-07 2008-08-21 Arkema Inc. Method of Strengthening a Brittle Oxide Substrate with a Weatherable Coating
EP1910078A4 (en) 2005-08-02 2012-06-06 Nexolve Corp HETEROPOLYMERIC COMPOSITIONS OF POLYIMIDE POLYMER
DE102005040266A1 (de) 2005-08-24 2007-03-01 Schott Ag Verfahren und Vorrichtung zur innenseitigen Plasmabehandlung von Hohlkörpern
US20070082135A1 (en) 2005-10-06 2007-04-12 Vincent Lee Coating glass containers and labels
FR2893022B1 (fr) 2005-11-10 2007-12-21 Saint Gobain Emballage Sa Procede de renforcement d'articles en verre creux
JP2007137713A (ja) 2005-11-17 2007-06-07 Fujifilm Corp 表面防曇かつ防汚性強化ガラス及びその製造方法
US20070116907A1 (en) 2005-11-18 2007-05-24 Landon Shayne J Insulated glass unit possessing room temperature-cured siloxane sealant composition of reduced gas permeability
US8234883B2 (en) 2005-11-29 2012-08-07 Ppg Industries Ohio, Inc. Apparatus and method for tempering glass sheets
JPWO2007069494A1 (ja) 2005-12-16 2009-05-21 コニカミノルタビジネステクノロジーズ株式会社 透明部材及び読取ガラス
US8025915B2 (en) 2006-01-11 2011-09-27 Schott Ag Method of preparing a macromolecule deterrent surface on a pharmaceutical package
US20080221263A1 (en) 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
US20090318746A1 (en) 2006-01-31 2009-12-24 Angiotech Biocoatings Corp. Lubricious echogenic coatings
US20070178256A1 (en) 2006-02-01 2007-08-02 Landon Shayne J Insulated glass unit with sealant composition having reduced permeability to gas
US7569653B2 (en) 2006-02-01 2009-08-04 Momentive Performance Materials Inc. Sealant composition having reduced permeability to gas
WO2007088417A1 (en) 2006-02-03 2007-08-09 Wockhardt Limited Silicone oil-in-water emulsions-formulation, production and use
US20090202755A1 (en) 2006-02-21 2009-08-13 C/O Nihon Yamamura Glass Co., Ltd. Water-Base Coating Composition and Glasswork
US8110242B2 (en) 2006-03-24 2012-02-07 Zimmer, Inc. Methods of preparing hydrogel coatings
KR100630309B1 (ko) 2006-04-13 2006-10-02 (주)한국나노글라스 핸드폰 표시창용 박판 강화유리의 제조방법 및 그에 의해제조된 핸드폰 표시창용 박판 강화유리
US20090286058A1 (en) 2006-05-19 2009-11-19 Noriaki Shibata Crystal Glass Article
US20070293388A1 (en) 2006-06-20 2007-12-20 General Electric Company Glass articles and method for making thereof
US9399000B2 (en) 2006-06-20 2016-07-26 Momentive Performance Materials, Inc. Fused quartz tubing for pharmaceutical packaging
FR2903417B1 (fr) 2006-07-07 2012-11-09 Arkema France Activateur d'adhesion destine a etre applique sur un substrat en polymere thermoplastique elastomere ou en pa et procede de traitement de surface et d'assemblage par collage correspondant
US8110652B2 (en) 2006-07-18 2012-02-07 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
US8084103B2 (en) 2006-08-15 2011-12-27 Sakhrani Vinay G Method for treating a hydrophilic surface
JP5551439B2 (ja) 2006-09-15 2014-07-16 ベクトン・ディキンソン・アンド・カンパニー 低摩擦を示すコーティングされた面を有する医療部品およびスティクションを低下させる方法
WO2008034058A2 (en) 2006-09-15 2008-03-20 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and methods of reducing sticktion
WO2008050500A1 (fr) 2006-09-29 2008-05-02 Nippon Electric Glass Co., Ltd. Plaque protectrice pour dispositif d'affichage d'équipement portable
US20080114096A1 (en) 2006-11-09 2008-05-15 Hydromer, Inc. Lubricious biopolymeric network compositions and methods of making same
CN100421018C (zh) 2006-11-17 2008-09-24 北京京东方光电科技有限公司 一种tft lcd阵列基板结构及其制造方法
CN101190969B (zh) 2006-11-17 2010-05-19 长兴化学工业股份有限公司 聚酰亚胺的前驱物组合物及其应用
CN101600664B (zh) 2006-12-20 2013-02-06 陶氏康宁公司 用多层固化的有机硅树脂组合物涂覆或层合的玻璃基材
US7619042B2 (en) 2007-09-07 2009-11-17 Nexolve Corporation Polyimide polymer with oligomeric silsesquioxane
JP2008195602A (ja) 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
JP5808069B2 (ja) 2007-02-16 2015-11-10 日本電気硝子株式会社 太陽電池用ガラス基板
US20100249309A1 (en) 2007-04-05 2010-09-30 Menachem Lewin Nanocomposites and their surfaces
US20100062188A1 (en) 2007-04-13 2010-03-11 Ube Industries, Ltd. Polyimide film having smoothness on one surface
WO2008149858A1 (ja) 2007-06-07 2008-12-11 Nippon Electric Glass Co., Ltd. 強化ガラス基板及びその製造方法
JP2010530911A (ja) 2007-06-15 2010-09-16 マヤテリアルズ インク 新規塗装用多官能基シルセスキオキサン類
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
ES2377852T3 (es) 2007-08-22 2012-04-02 Datalase Ltd Composición de revestimiento sensible al láser
KR101225842B1 (ko) 2007-08-27 2013-01-23 코오롱인더스트리 주식회사 무색투명한 폴리이미드 필름
EP2031124A1 (en) 2007-08-27 2009-03-04 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Coating having low friction characteristics
US8017698B2 (en) 2007-09-07 2011-09-13 Nexolve Corporation Solar panel with polymeric cover
US8309627B2 (en) 2007-09-07 2012-11-13 Nexolve Corporation Polymeric coating for the protection of objects
US8053492B2 (en) 2007-09-07 2011-11-08 Nexolve Corporation Polymeric coating for protecting objects
US8048938B2 (en) 2007-09-07 2011-11-01 Nexolve Corporation Reflective film for thermal control
JP5743125B2 (ja) 2007-09-27 2015-07-01 日本電気硝子株式会社 強化ガラス及び強化ガラス基板
TWI349013B (en) 2007-10-03 2011-09-21 Univ Nat Taiwan Polyimide-titania hybrid materials and method of preparing thin films
JP2009108181A (ja) 2007-10-30 2009-05-21 Sumitomo Chemical Co Ltd 重合体組成物、フィルム及び容器
FR2924432B1 (fr) 2007-11-30 2010-10-22 Cray Valley Sa Dispersion aqueuse de polymere structuree en coeur/ecorce, son procede de preparation et son application dans les revetements
US10023776B2 (en) 2007-12-21 2018-07-17 Saint-Gobain Performance Plastics Corporation Preparation of a self-bonding thermoplastic elastomer using an in situ adhesion promoter
US8048471B2 (en) 2007-12-21 2011-11-01 Innovatech, Llc Marked precoated medical device and method of manufacturing same
US8513371B2 (en) 2007-12-31 2013-08-20 Bridgestone Corporation Amino alkoxy-modified silsesquioxanes and method of preparation
EP2252557A4 (en) 2008-02-05 2013-07-03 Corning Inc DAMAGE-RESISTANT GLASS ARTICLE FOR USE AS A GLASS COVER IN ELECTRONIC DEVICES
US7566632B1 (en) 2008-02-06 2009-07-28 International Business Machines Corporation Lock and key structure for three-dimensional chip connection and process thereof
US8121452B2 (en) 2008-02-20 2012-02-21 Hitachi Cable, Ltd. Method for fabricating a hollow fiber
JP5243064B2 (ja) 2008-03-03 2013-07-24 テルモ株式会社 医療用容器
DE102008016436A1 (de) 2008-03-31 2009-10-01 Ems-Patent Ag Polyamidformmasse für lackfreie, zähe Gehäuse mit Hochglanz-Oberfläche
US20110226658A1 (en) 2008-05-23 2011-09-22 Hospira, Inc. Packaged Iron Sucrose Products
US20110183146A1 (en) 2008-06-16 2011-07-28 Wendell Jr Jay Morell Glass hardening methods and compositions
FR2932807B1 (fr) 2008-06-20 2011-12-30 Arkema France Polyamide, composition comprenant un tel polyamide et leurs utilisations.
JP5867953B2 (ja) 2008-06-27 2016-02-24 日本電気硝子株式会社 強化ガラスおよび強化用ガラス
US8324304B2 (en) 2008-07-30 2012-12-04 E I Du Pont De Nemours And Company Polyimide resins for high temperature wear applications
JP5614607B2 (ja) 2008-08-04 2014-10-29 日本電気硝子株式会社 強化ガラスおよびその製造方法
EP2334613A1 (en) 2008-08-21 2011-06-22 Corning Inc. Durable glass housings/enclosures for electronic devices
JP2010168270A (ja) 2008-12-26 2010-08-05 Hoya Corp ガラス基材及びその製造方法
JP5622069B2 (ja) 2009-01-21 2014-11-12 日本電気硝子株式会社 強化ガラス、強化用ガラス及び強化ガラスの製造方法
US8535761B2 (en) 2009-02-13 2013-09-17 Mayaterials, Inc. Silsesquioxane derived hard, hydrophobic and thermally stable thin films and coatings for tailorable protective and multi-structured surfaces and interfaces
CN201390409Y (zh) 2009-02-27 2010-01-27 金治平 一种玻璃容器
WO2010115728A2 (en) 2009-03-30 2010-10-14 F. Hoffmann-La Roche Ag A method for avoiding glass fogging
US8444186B2 (en) 2009-04-20 2013-05-21 S & B Technical Products, Inc. Seal and restraint system for plastic pipe with low friction coating
CN201404453Y (zh) 2009-04-29 2010-02-17 山东省药用玻璃股份有限公司 新型轻量化药用玻璃瓶
BRPI1007653A2 (pt) 2009-05-06 2019-09-24 3M Innovative Properties Co "dispositivos para inalação de insumos medicinais e componentes dos mesmos"
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
JP5739877B2 (ja) 2009-05-27 2015-06-24 エーティーエムアイ ビーヴィービーエー 使い捨て膜
US8470913B2 (en) 2009-05-29 2013-06-25 Dic Corporation Thermosetting resin composition and cured product of the same
IT1405176B1 (it) 2009-06-12 2013-12-20 Schott Ag Vetro neutro povero di boro con ossido di titanio e zirconio
CN101585666B (zh) 2009-06-22 2011-08-31 浙江新康药用玻璃有限公司 一种药用玻璃瓶的内表面涂膜工艺
JP5667053B2 (ja) 2009-06-30 2015-02-12 ソルピー工業株式会社 Pmda、dade、bpdaおよび9,9−ビス(4−アミノフェニル)フルオレン成分を含む有機溶媒に可溶なポリイミド組成物およびその製造方法
US20110045219A1 (en) 2009-08-18 2011-02-24 Bayer Materialscience Llc Coating compositions for glass substrates
CN102695683A (zh) 2009-08-21 2012-09-26 迈图高新材料公司 药物包装用熔凝石英管
CN101717189B (zh) 2009-08-28 2011-06-08 武汉力诺太阳能集团股份有限公司 高耐化学性硼硅玻璃及用途
EP2298825A1 (de) 2009-09-17 2011-03-23 Bayer MaterialScience AG Hydrophile Polyurethanharnstoffdispersionen
TW201113233A (en) 2009-10-06 2011-04-16 Guo Chun Ying Method of coating noble metal nanoparticle in glassware
TWI466949B (zh) 2009-10-15 2015-01-01 Ind Tech Res Inst 聚醯胺酸樹脂組成物、由其製備之聚醯亞胺薄膜及積層材料
JPWO2011049146A1 (ja) 2009-10-20 2013-03-14 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス板およびこれを用いた太陽電池
DE102009050568A1 (de) 2009-10-23 2011-04-28 Schott Ag Einrichtung mit verminderten Reibeigenschaften
DE102009051852B4 (de) 2009-10-28 2013-03-21 Schott Ag Borfreies Glas und dessen Verwendung
US9597458B2 (en) 2009-10-29 2017-03-21 W. L. Gore & Associates, Inc. Fluoropolymer barrier materials for containers
JP4951057B2 (ja) 2009-12-10 2012-06-13 信越石英株式会社 シリカ容器及びその製造方法
CN102092940A (zh) 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
EP2336093A1 (en) 2009-12-14 2011-06-22 Arkema Vlissingen B.V. Process for scratch masking of glass containers
JP2011132061A (ja) 2009-12-24 2011-07-07 Asahi Glass Co Ltd 情報記録媒体用ガラス基板および磁気ディスク
US20130211344A1 (en) 2009-12-31 2013-08-15 Nestor Rodriguez Medical components having coated surfaces exhibiting low friction and/or low gas/liquid permeability
JP5652742B2 (ja) 2010-02-12 2015-01-14 日本電気硝子株式会社 強化板ガラス及びその製造方法
CN102770387B (zh) 2010-02-24 2015-11-25 康宁股份有限公司 双涂层光纤以及用于形成该双涂层光纤的方法
CN102167507B (zh) 2010-02-26 2016-03-16 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
CN102167509A (zh) 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 能进行后续切割的化学钢化玻璃
CN201694531U (zh) 2010-03-11 2011-01-05 黄灿荣 玻璃瓶防破保护贴膜
JP4808827B1 (ja) 2010-03-30 2011-11-02 東洋ガラス株式会社 ガラス容器の内面処理方法及びガラス容器
CN101831175A (zh) 2010-04-01 2010-09-15 辽宁科技大学 一种无色透明的聚酰亚胺纳米复合材料膜及其制备方法
US8993723B2 (en) 2010-04-28 2015-03-31 Atyr Pharma, Inc. Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of alanyl-tRNA synthetases
KR20130072187A (ko) 2010-05-19 2013-07-01 아사히 가라스 가부시키가이샤 화학 강화용 유리 및 디스플레이 장치용 유리판
US8802603B2 (en) 2010-06-17 2014-08-12 Becton, Dickinson And Company Medical components having coated surfaces exhibiting low friction and low reactivity
WO2012000500A1 (en) 2010-07-01 2012-01-05 Inmold Biosystems A/S Method and apparatus for producing a nanostructured or smooth polymer article
CN102336910B (zh) 2010-07-14 2015-04-08 株式会社Lg化学 可低温固化的聚酰亚胺树脂及其制备方法
WO2012006748A1 (de) 2010-07-16 2012-01-19 Gevartis Ag Verfahren zur verbesserung von hitzeschutzverglasungen durch verhinderung der glaskorrosion, verursacht durch alkalischen glasangriff, und durch primerung
FR2963328B1 (fr) 2010-07-30 2013-11-29 Disposable Lab Article de conditionnement jetable
US8973401B2 (en) 2010-08-06 2015-03-10 Corning Incorporated Coated, antimicrobial, chemically strengthened glass and method of making
US20120052302A1 (en) 2010-08-24 2012-03-01 Matusick Joseph M Method of strengthening edge of glass article
FR2964646B1 (fr) 2010-09-13 2014-06-13 Sgd Sa Recipient en verre et procede de fabrication correspondant
EP2624801A1 (en) 2010-10-06 2013-08-14 Allergan, Inc. System for storage and subsequent handling of botulinum toxin
CN202006114U (zh) 2010-12-03 2011-10-12 成都威邦科技有限公司 不易摔坏的玻璃试管
US9833308B2 (en) 2010-12-23 2017-12-05 Mayo Foundation For Medical Education And Research Vessel dissection and harvesting apparatus, systems and methods
JP2014517711A (ja) 2011-03-14 2014-07-24 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド 被覆製品に対するメカニカルストレスの検出
FR2973804B1 (fr) 2011-04-08 2014-06-13 Seb Sa Revetement sol-gel comportant une charge fluoree et article culinaire muni d'un tel revetement
JP5504487B2 (ja) 2011-04-22 2014-05-28 東洋ガラス株式会社 水性コーティング剤、ガラス容器のコーティング方法及びガラス容器
US9346709B2 (en) 2011-05-05 2016-05-24 Corning Incorporated Glass with high frictive damage resistance
JP5736993B2 (ja) 2011-06-15 2015-06-17 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
EP2771294B1 (en) 2011-10-25 2017-12-13 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
WO2013101444A1 (en) 2011-12-30 2013-07-04 Corning Incorporated Media and methods for etching glass
US9725357B2 (en) 2012-10-12 2017-08-08 Corning Incorporated Glass articles having films with moderate adhesion and retained strength
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
EP2690124B1 (en) 2012-07-27 2015-09-16 Samsung Electronics Co., Ltd Composition Comprising Polyimide Block Copolymer And Inorganic Particles, Method Of Preparing The Same, Article Including The Same, And Display Device Including The Article
JP5488772B1 (ja) 2012-08-01 2014-05-14 東レ株式会社 ポリアミド酸樹脂組成物、これを用いたポリイミドフィルムおよびその製造方法
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
CN104194618B (zh) 2014-08-13 2017-01-11 南京理工大学 一种高附着力的含硅聚酰亚胺涂层胶及其制备方法
JP6784671B2 (ja) 2014-11-26 2020-11-11 コーニング インコーポレイテッド 強化および耐久性ガラス容器の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU504719A1 (ru) * 1972-06-01 1976-02-28 Ленинградский Филиал Всесоюзного Научно-Исследовательского Института Медицинского Приборостения Способ обработки изделий
US4880895A (en) * 1986-03-31 1989-11-14 Nitto Electric Industrial Co., Ltd. Polyimide film-forming polyamide acid solution
US4923960A (en) * 1989-02-27 1990-05-08 Hoechst Celanese Corp. Polyamide-imide polymers having fluorine-containing linking groups
US20020016438A1 (en) * 2000-06-29 2002-02-07 Shin-Etsu Chemical Co., Ltd. Polyimide silicone resin, process for its production, and polyimide silicone resin composition
US20120088888A1 (en) * 2009-03-10 2012-04-12 Nissan Chemical Industries, Ltd. Polyimide precursor, polyimide, and liquid crystal aligning agent
RU2514939C2 (ru) * 2009-08-19 2014-05-10 Ппг Индастриз Огайо, Инк. Полисилоксановые покрытия с гибридными сополимерами
WO2013130724A2 (en) * 2012-02-28 2013-09-06 Corning Incorporated Glass articles with low-friction coatings
US20140034544A1 (en) * 2012-11-30 2014-02-06 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance

Also Published As

Publication number Publication date
CN108137392A (zh) 2018-06-08
CA3000184C (en) 2023-08-15
MX2018003895A (es) 2019-04-01
US11208348B2 (en) 2021-12-28
JP2018532676A (ja) 2018-11-08
TW201731795A (zh) 2017-09-16
EP3150564B1 (en) 2018-12-05
EP3150564A1 (en) 2017-04-05
TWI701226B (zh) 2020-08-11
WO2017059036A1 (en) 2017-04-06
JP6867377B2 (ja) 2021-04-28
US20170088459A1 (en) 2017-03-30
CA3000184A1 (en) 2017-04-06
CN108137392B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
RU2733518C1 (ru) Способ изготовления фармацевтического контейнера
JP7295819B2 (ja) 耐熱性コーティングを有する耐層間剥離性ガラス容器
RU2726719C1 (ru) Химическая композиция галогенированного полиимидного силоксана и стеклянные изделия с покрытиями с низким коэффициентом трения из галогенированного полиимидного силоксана
RU2706146C2 (ru) Стеклянные контейнеры с устойчивостью к отслаиванию и повышенной устойчивостью к повреждению
JP2015527965A5 (ru)
US11772846B2 (en) Glass articles with mixed polymer and metal oxide coatings
US11724963B2 (en) Pharmaceutical packages with coatings comprising polysilazane