KR20080025385A - 적층형 유기 전계발광 장치 및 그의 제작방법 - Google Patents

적층형 유기 전계발광 장치 및 그의 제작방법 Download PDF

Info

Publication number
KR20080025385A
KR20080025385A KR1020080015351A KR20080015351A KR20080025385A KR 20080025385 A KR20080025385 A KR 20080025385A KR 1020080015351 A KR1020080015351 A KR 1020080015351A KR 20080015351 A KR20080015351 A KR 20080015351A KR 20080025385 A KR20080025385 A KR 20080025385A
Authority
KR
South Korea
Prior art keywords
organic
organic electroluminescent
thin film
electroluminescent device
stacked
Prior art date
Application number
KR1020080015351A
Other languages
English (en)
Other versions
KR100930312B1 (ko
Inventor
테츠오 츠츠이
히로코 야마자키
사토시 세오
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19180108&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20080025385(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20080025385A publication Critical patent/KR20080025385A/ko
Application granted granted Critical
Publication of KR100930312B1 publication Critical patent/KR100930312B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

종래의 유기 반도체 소자의 구성에 새로운 개념을 도입함으로써, 종래의 초박막을 사용하지 않고, 더욱 신뢰성이 높으면서 수율도 높은 유기 반도체 소자를 제공한다. 또한, 특히 유기 반도체를 사용한 광전 장치에서는 그 효율도 향상된다. SCLC를 흐르게 함으로써 다양한 기능을 발현하는 유기 박막층(기능성 유기 박막층)과, 억셉터 및 도너를 도핑하는 등의 방법으로 암(暗) 도전성을 발현시킨 도전체 박막층(오믹 도전체 박막층)을 교대로 적층한 유기 구조체를 양극과 음극 사이에 제공한다.
적층형 유기 전계발광 장치, 유기 전계발광 유닛, 도전체 박막층, 유기 층

Description

적층형 유기 전계발광 장치 및 그의 제작방법{Stacked organic electroluminescent device and method of making the same}
본 발명은 유기 반도체를 사용한 전자 장치에 관한 것으로서, 특히, 광전 변환 소자나 EL(electroluminescent: 전계발광) 소자 등의 광전(photoelectronic) 장치에 관한 것이다.
유기 화합물은, 무기 화합물에 비해 재료계가 다양하고, 적절한 분자 설계에 의해 다양한 기능을 가지는 유기 재료를 합성할 수 있는 가능성이 있고, 또한, 유기 화합물을 사용한 막 등의 형성물이 풍부한 유연성을 가지며, 또한, 고분자화함으로써 가공성도 우수한 장점을 가진다. 이러한 장점으로, 최근, 기능성 유기 재료를 사용한 포토닉스(photonics)나 일렉트로닉스(electronics)에 주목이 모아지고 있다.
유기 화합물의 광 물성을 사용한 포토닉스는 현재의 산업 기술에서 이미 중요한 역할을 담당하고 있다. 예를 들어, 포토레지스트 등의 감광 재료는 반도체의 미세 가공에 사용되는 포토리소그래피 기술에서 없어서는 안되는 재료이다. 뿐만 아니라, 유기 화합물 자체는 광 흡수 및 그에 수반하는 발광(형광이나 인광)의 성 질을 가지고 있기 때문에, 레이저 색소 등의 발광재료로서의 용도도 크다.
한편, 유기 화합물은 그 자체가 캐리어를 갖지 않는 재료이므로, 본질적으로는 우수한 절연성을 가진다. 따라서, 유기 재료의 전기적 성질을 이용한 일렉트로닉스 분야에서, 종래에는 절연체로서의 기능을 사용하는 것이 주(主)가 되어, 유기 화합물이 절연 재료, 보호 재료, 피복 재료로서 사용되어 왔다.
그러나, 본질적으로는 절연체인 유기 재료에 대량의 전류를 흐르게 하는 수단이 존재하고, 일렉트로닉스 분야에서도 실제로 사용되고 있다. 그 "수단"은 크게 2가지로 나눌 수 있다.
그 중 하나는, 도전성 고분자로 대표되는 바와 같이, π공역계 유기 화합물에 억셉터(acceptor)(전자 수용체) 또는 도너(donor)(전자 공여체)를 도핑함으로써 그 π공역계 유기 화합물에 캐리어를 부여하는 수단이다(문헌 1: Hideki Shirakawa, Edwin J. Louis, Alan, G. MacDiarmid, Chwan K. Chiang, and Alan J. Heeger, "Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetyrene, (CH)x", Chem. Comm., 1977, 16, 578-580). 도핑량을 늘림으로써, 캐리어는 어느 정도의 영역까지 증가하므로, 그와 함께 암(暗) 도전율(dark conductivity)도 상승하여, 많은 전류가 흐르게 된다.
이 때의 전류량은 통상의 반도체의 레벨 또는 그 이상의 레벨까지 도달할 수 있으므로, 이와 같은 거동을 보이는 재료의 군을 유기 반도체(경우에 따라서는 유기 도전체)라 부를 수 있다.
이와 같이 억셉터 또는 도너를 도핑함으로써 암 도전율을 향상시켜 유기 재료에 전류를 흘리는 수단은 이미 일부 일렉트로닉스 분야에서 응용되고 있다. 그의 예로서는, 폴리아닐린이나 폴리아센을 사용한 재충전 가능한 축전지나, 폴리피롤을 사용한 전계 콘덴서 등이 있다.
유기 재료에 대량의 전류를 흘리는 다른 한 수단은, 공간 전하 제한 전류(SCLC; Space Charge Limited Current)를 사용하는 수단이다. SCLC란, 외부로부터 공간 전하를 주입하여 이동시킴으로써 흐르게 되는 전류이고, 그의 전류 밀도는 차일드의 법칙(Child's Law), 즉, 하기 식 1로 표시된다. 하기 식 1에서, J는 전류 밀도, ε는 비유전율, ε0는 진공 유전율, μ는 캐리어 이동도, V는 전압, d는 전압 V가 인가되고 있는 전극들 사이의 거리(이하, 「두께」라 칭함)이다.
[식 1]
J = 9/8ㆍεε0μㆍV2/d3
또한, 상기 식 1로 표시되는 SCLC는, SCLC가 흐를 때의 캐리어 트랩을 일체 가정하지 않은 식이다. 캐리어 트랩에 의해 제한되는 전류는 트랩 전하 제한 전류(TCLC: Trap Charge Limited Current)라 불리고, 전압의 누승에 비례하지만, SCLC 및 TCLC 모두 벌크 제한(bulk limitation)을 받는 전류이므로, 이하에서는 동일하게 취급하기로 한다.
여기서, 대비를 위해, 옴의 법칙(Ohm's Law)에 따라 옴 전류가 흐를 때의 전류 밀도를 나타내는 식을 하기 식 2로 나타낸다. σ는 도전율, E는 전계 강도이 다.
[식 2]
J = σE = σㆍV/d
상기 식 2에서, 도전율(σ)은 σ = neμ(n은 캐리어 밀도, e는 전하)로 표시되므로, 캐리어 밀도는 흐르는 전류량을 지배하는 인자에 포함된다. 따라서, 어느 정도의 캐리어 이동도를 가지는 유기 재료에서는, 앞에서 설명한 도핑에 의한 캐리어 밀도의 증대를 꾀하지 않는 한, 통상 캐리어가 거의 존재하지 않는 유기 재료에는 옴 전류가 흐르지 않는다.
그러나, 식 1에서 알 수 있는 바와 같이, SCLC를 결정하는 인자는 유전율, 캐리어 이동도, 전압 및 두께이고, 캐리어 밀도는 관계가 없다. 즉, 캐리어를 갖지 않는 유기 재료 절연체일지라도, 두께(d)를 충분히 얇게 하고 캐리어 이동도(μ)가 큰 재료를 선택함으로써, 외부로부터 캐리어를 주입하여 전류를 흐르게 할 수 있는 것이다.
이 수단을 사용한 경우에도, 전류량은 통상의 반도체의 레벨이나 그 이상의 레벨까지 도달할 수 있으므로, 캐리어 이동도(μ)가 큰 유기 재료, 다시 말해, 잠재적으로 캐리어를 수송할 수 있는 유기 재료는 "유기 반도체"라 부를 수 있다.
그런데, 이와 같은 SCLC를 사용한 유기 반도체 소자 중에서도, 특히 기능성 유기 재료의 광 물성과 전기 물성 모두를 활용한 광전 장치로서 유기 일렉트로루미네슨스(전게발광) 소자(이하, 「유기 EL 소자」라 칭함)가 최근 눈부신 발전을 보이고 있다.
유기 EL 소자의 가장 기본적인 구조는 1987년 C.W.Tang 등에 의해 보고되어 있다(문헌 2: C.W.Tang and S.A.Vanslyke, "Organic electroluminesent diodes", Applied Physics Letters, Vol. 51, No. 12, 913-915(1987)). 문헌 2에 보고되어 있는 소자는, 정공 수송성의 유기 화합물과 전자 수송성의 유기 화합물을 적층하여 구성한 총 두께 100 nm 정도의 유기 박막을 전극들 사이에 끼우고 있는 다이오드 소자의 일종으로, 전자 수송성 화합물로서 발광성 재료(형광 재료)를 사용하고 있다. 이와 같은 소자에 전압을 인가함으로써, 발광 다이오드와 같이 발광을 얻을 수 있다.
그 발광 기구는 다음과 같이 동작하는 것으로 보고 있다. 즉, 전극들 사이에 끼운 유기 박막에 전압을 인가함으로써, 전극들로부터 주입된 정공과 전자가 유기 박막 중에서 재결합하여 여기 상태의 분자(이하, 「분자 여기자」라 칭함)를 형성하고, 그 분자 여기자가 기저 상태로 복귀할 때 광이 방출되는 것으로 보고 있다.
또한, 유기 화합물에 의해 형성되는 분자 여기자의 종류로서는, 일중항 여기 상태와 삼중항 여기 상태가 가능하고, 기저 상태는 통상 일중항 여기 상태이므로, 일중항 여기 상태로부터의 발광은 형광, 삼중항 여기 상태로부터의 발광은 인광으로 불린다. 본 명세서에서는, 어느 여기 상태가 발광에 기여하든 모두 포함하는 것으로 한다.
이와 같은 유기 EL 소자의 경우, 통상, 유기 박막은 두께 100∼200 nm 정도의 박막으로 형성된다. 또한, 유기 EL 소자는 유기 박막 자체가 광을 방출하는 자 기발광형의 소자이므로, 종래의 액정 디스플레이 등에 사용되고 있는 백라이트가 필요없다. 따라서, 유기 EL 소자는 지극히 박형 경량으로 제조될 수 있는 큰 이점이 있다.
또한, 예를 들어, 두께 100∼200 nm 정도의 유기 박막의 경우, 캐리어를 주입한 후 재결합에 이르기까지의 시간은 유기 박막의 캐리어 이동도를 고려하면 수 십 나노초 정도이므로, 캐리어의 재결합으로부터 발광까지의 과정을 포함해도 마이크로초 정도 이내에 발광에 이른다. 따라서, 응답속도가 매우 빠른 것 또한 특징 중 하나이다.
이러한 박형, 경량, 고응답성 등의 특성 때문에, 유기 EL 소자는 차세대 플랫 패널형 디스플레이 소자로서 주목을 받고 있다. 또한, 자기발광형이고 시야각이 넓고 시인성(視認性)도 비교적 양호하여, 휴대 기기의 표시 화면에 사용하는 소자로서 효과적인 것으로 알려져 있다.
또한, 유기 EL 소자 이외에도, 잠재적으로 캐리어를 수송할 수 있는, 즉, 어느 정도의 캐리어 이동도를 가지는 유기 재료(즉, 유기 반도체)를 사용한 유기 반도체 소자의 다른 대표예로서 유기 태양전지를 들 수 있다.
이른바, 유기 태양전지는 유기 EL 소자와 반대의 기구를 사용하는 것이다. 즉, 가장 기본적인 구성은 유기 EL 소자와 동일하고, 2층 구조의 유기 박막을 전극들 사이에 끼운 구조이다(문헌 3: C.W. Tang, "Two-layer organic photovoltaic cell", Applied Physics Letters, vol.48, No.2, 183-185(1986)). 광을 그 유기 박막에 흡수시킴으로써 발생하는 광전류(photoelectric current)를 사용하여 기전 력을 얻는다. 이 때 흐르는 전류는, 광에 의해 발생한 캐리어가 유기 재료의 캐리어 이동도를 사용하여 흐르는 것으로 생각할 수 있다.
이와 같이, 일렉트로닉스 분야에서는 본래 절연체로서의 용도 밖에 생각할 수 없었던 유기 재료는 유기 반도체에 대해 여러 가지 변형을 가함으로써 다양한 전자 장치 및 광전 장치의 중심적 기능을 담당하도록 할 수 있다. 따라서, 유기 반도체에 대한 연구가 현재 활발히 이루어지고 있다.
본질적으로는 절연체인 유기 재료에 전류를 흐르게 하는 수단으로서 유기 반도체를 사용한 2가지 기법을 앞에서 설명하였다. 그러나, 2가지 기법은 모두 각각 다른 결점을 가지고 있다.
먼저, 유기 반도체에 억셉터나 도너를 도핑함으로써 캐리어 밀도를 증대시키는 경우, 도전성은 확실히 향상되지만, 그 유기 반도체 자체가 원래 가지고 있던 고유의 물성(광 흡수 특성, 형광 특성 등)이 상실된다. 예를 들어, 형광을 발하는 π공역계 고분자 재료에 억셉터나 도너를 도핑하면, 도전성은 상승하지만, 발광하지 않게 되는 것이다. 따라서, 도전성이라는 기능을 얻는 대신에, 유기 재료가 가지고 있는 다른 다양한 기능은 희생된다고 할 수 있다
또한, 억셉터나 도너의 도핑량을 조절함으로써 다양한 도전율을 달성할 수 있는 장점은 있으나, 어느 정도 억셉터나 도너를 도핑하여 캐리어를 증대시켜도, 금속이나 금속에 준하는 무기 화합물(예를 들어, 질화티탄 등의 무기 화합물 도전체) 정도의 캐리어 밀도를 안정적으로 얻기는 어렵다. 즉, 도전율과 관련하여, 무기 재료의 도전체를 웃도는 것은 몇몇 예를 제외하고는 지극히 곤란하여, 가공성이 나 유연성이 풍부하다는 것을 제외하고는 다른 장점을 갖지 못하게 된다.
한편, SCLC(이하에서는 광전류도 포함)를 유기 반도체에 흐르게 하는 경우, 유기 반도체 자신이 원래 가지고 있던 고유의 물성은 잃지 않는다. 그의 대표적인 예는 바로 유기 EL 소자로서, 전류를 흐르게 하면서 형광 재료(또는 인광 재료)의 발광을 사용하고 있다. 유기 태양전지도 유기 반도체의 광 흡수 기능을 사용하고 있다.
그러나, 상기한 식 1을 통해 알 수 있는 바와 같이, SCLC는 두께(d)의 3승에 반비례하기 때문에, 지극히 얇은 막의 양면에 전극을 개재한 구조를 통해서만 SCLC를 흐르게 할 수 있다. 더 구체적으로는, 유기 재료의 일반적인 캐리어 이동도를 고려해서, 두께 100 nm∼200 nm 정도의 초박막의 구조로 하여야 한다.
분명, 상기와 같은 초박막으로 함으로써, 낮은 전압으로 많은 SCLC를 흐르게 할 수 있다. 문헌 2에서 설명한 바와 같은 유기 EL 소자도 유기 박막의 두께를 100 nm 정도의 균일한 초박막으로 한 것이 성공 요인의 하나이다.
그러나, 이와 같이 두께(d)를 지극히 얇게 해야 하는 것 자체가, SCLC를 흐르게 할 때의 최대 문제점이었다. 먼저, 100 nm 정도의 박막에서는, 핀홀 등의 결함이 발생하기 쉽고, 그로 인해 단락(短絡) 등의 불량이 발생하여, 수율이 악화될 우려가 있다. 또한, 박막의 기계적 강도도 낮아질 뿐만 아니라, 초박막이어야 하기 때문에 제작 공정 자체도 한정되게 된다.
또한, SCLC를 전류로서 사용하는 경우, 유기 반도체 자체가 원래 가지고 있던 고유의 물성을 잃지 않고, 다양한 기능이 발현될 수 있는 것이 장점이지만, SCLC가 흐름에 따라 그 유기 반도체 기능의 열화(劣化)는 촉진된다. 예를 들어, 유기 EL 소자를 예로 든 경우, 초기 휘도에 거의 반비례, 다시 말해, 흘리는 전류의 양에 반비례하는 형태로 소자 수명(즉, 발광 휘도의 반감기)이 나빠지는 것으로 알려져 있다(문헌 4: Yoshiharu SATO, 「응용 물리학회 유기 분자 일렉트로닉스ㆍ바이오일렉트로닉스 분과회 회지」, Vol. 11, No.1(2000), 86-99).
이상에서 설명한 바와 같이, 억셉터 또는 도너를 도핑하여 도전성을 발현시키는 장치에서는, 도전성 이외의 기능은 상실하게 된다. 또한, SCLC를 사용하여 도전성을 발현시키는 장치에서는, 초박막을 통해 대량의 전류를 흘리는 것에 기인하여, 소자의 신뢰성 등에 문제점이 발생하고 있는 것이다.
그런데, 유기 EL 소자나 유기 태양전지와 같은, 유기 반도체를 사용한 광전 장치에서는 효율에도 문제가 있다.
일 예로서 유기 EL 소자를 보면, 유기 EL 소자의 발광 기구는, 앞에서 설명한 바와 같이, 주입된 정공과 전자가 재결합함으로써 광으로 변환된다. 따라서, 논리적으로는, 1개의 정공과 1개의 전자의 재결합을 통해 최대 1개의 광자를 취출할 수 있게 되고, 다수의 광자를 취출할 수는 없다. 즉, 내부 양자 효율(주입된 캐리어의 수에 대해 방출되는 광자의 수)은 최대로 1이다.
그러나, 현실적으로는, 내부 양자 효율을 1에 가깝게 하는 것 조차 어렵다. 예를 들어, 발광체로서 형광 재료를 사용한 유기 EL 소자의 경우, 일중항 여기 상태(S*)와 삼중항 여기 상태(T*)의 통계적인 생성 비율은 S*:T* = 1:3이라고 보고 있 으므로(문헌 5: Tetsuo TSUTSUI, 「응용물리학회 유기 분자 일렉트로닉스ㆍ바이오일렉트로닉스 분과회ㆍ제3회 강습회 텍스트」, P.31(1993)), 그 내부 양자 효율의 이론적 한계는 0.25가 된다. 또한, 그 형광 재료의 형광 양자 수율(φf)이 1이 아닌 이상, 내부 양자 효율은 0.25보다 더욱 낮아진다.
최근에는, 인광 재료를 사용함으로써, 삼중항 여기 상태로부터의 발광을 사용하여 내부 양자 효율의 이론적 한계를 0.75∼1에 가깝게 하고자 하는 시도가 이루어졌고, 실제로, 형광 재료를 초과하는 효율이 달성되었다. 그러나, 이것도 인광 양자 효율(φP)이 높은 인광 재료를 사용해야만 하므로, 재료의 선택폭이 어쩔 수 없이 제한된다. 그 이유는, 실온에서 인광을 방출할 수 있는 유기 화합물이 매우 드물기 때문이다.
즉, 유기 EL 소자의 전류 효율(전류에 대해 발생하는 휘도)을 향상시키는 수단을 강구할 수 있다면, 대혁신이 이루어지는 것이다. 전류 효율이 향상되면, 보다 적은 전류로 많은 휘도를 낼 수 있다. 바꾸어 말하면, 소정의 휘도를 달성하는데 흘리는 전류를 적게 할 수 있으므로, 앞에서 설명한 바와 같은 초박막에 대량의 전류를 흐르게 함으로써 발생하는 열화를 줄일 수 있다.
유기 EL 소자와는 반대 기능, 즉, 유기 태양전지에서와 같은 광전 변화에 관련해서도 효율이 나쁜 것이 현재의 상황이다. 종래의 유기 반도체를 사용한 유기 태양전지의 경우, 앞에서 설명한 바와 같이, 초박막을 사용하지 않으면, 전류가 흐르지 않고, 따라서 기전력도 발생하지 않는다. 그러나, 초박막으로 하면, 광 흡수 효율이 좋지 않은(즉, 광을 완전히 흡수할 수 없는) 문제가 발생한다. 이와 같은 점이 효율이 나쁜 가장 큰 요인이라고 생각된다.
상기 논의의 관점에서, 유기 반도체를 사용한 전자 장치는, 유기 재료 고유의 물성을 살리면서 대량의 전류를 흘리고자 할 경우, 신뢰성이나 수율에 악영향을 미치게 되는 결점이 있다. 또한, 특히 광전 장치의 경우에는, 그 장치의 효율도 좋지 않다. 이러한 문제점들은 기본적으로 종래 유기 반도체 소자의 「초박막」 구조로부터 유래하는 것이라고 할 수 있다.
따라서, 본 발명은, 종래의 유기 반도체 소자의 구성에 새로운 개념을 도입함으로써, 종래의 초박막을 사용하지 않고 더욱 신뢰성이 높으면서 수율도 높은 유기 반도체 소자를 제공하는 것을 목적으로 한다. 또한, 특히 유기 반도체를 사용한 광전 장치의 경우에는 그 효율도 향상시키는 것을 목적으로 한다.
본 발명자는 예의 검토를 거듭한 결과, 억셉터 또는 도너를 도핑하여 도전성을 발현시키는 유기 반도체와, SCLC를 사용하여 도전성을 발현시키는 유기 반도체를 조합함으로써, 상기 목적을 달성할 수 있는 수단을 안출하였다. 그의 가장 기본적인 구성을 도 1에 나타낸다.
도 1은, SCLC를 흐르게 함으로써 다양한 기능을 발현하는 유기 박막층("기능성 유기 박막층"이라 함)과, 억셉터 또는 도너를 도핑하는 등의 방법으로 암(暗) 도전성(dark conductivity)을 발현시킨 부유(floating) 상태의 도전체 박막층을 교대로 적층한 유기 구조체를 양극과 음극 사이에 마련한 유기 반도체 소자를 나타내 고 있다.
여기서 중요한 것은, 도전체 박막층은 기능성 유기 박막층에 거의 오믹(ohmic)으로 접속되어야 하는 것이다(이 경우, 도전체 박막층은 특히 "오믹(ohmic) 도전체 박막층"이라 불림). 다시 말해, 도전체 박막층과 기능성 유기 박막층 사이의 장벽을 없애거나 극히 작게 하는 것이다.
이와 같이 구성함으로써, 각 오믹 도전체 박막층으로부터 각 기능성 유기 박막층에 정공과 전자가 쉽게 주입된다. 예를 들어, 도 1에서 n = 2로 한 소자의 개념도를 도 2(A) 및 도 2(B)에 나타낸다. 도 2(A) 및 도 2(B)에서, 양극과 음극 사이에 전압을 인가한 경우, 제1 오믹 도전체 박막층으로부터 제1 기능성 유기 박막층으로는 전자가, 제1 오믹 도전체 박막층으로부터 제2 기능성 유기 박막층으로는 정공이 용이하게 주입된다. 외부 회로에서 보면, 양극으로부터 음극을 향해서는 정공이. 음극으로부터 양극을 향해서는 전자가 이동하고 있지만(도 2(A)), 오믹 도전체 박막층으로부터 전자와 정공 모두가 역방향을 향해 흐르고 있다고 볼 수도 있다(도 2(B)).
여기서, 각 기능성 유기 박막층을 100 nm∼200 nm, 또는 그 이하의 두께로 함으로써, 각 기능성 유기 박막층에 주입된 캐리어는 SCLC로서 흐를 수 있다. 즉, 각 기능성 유지 박막층에서는, 유기 재료 고유의 물성에 유래하는 기능(발광 등)을 발현할 수 있다.
더욱이, 본 발명의 기본 구조를 적용하면, 유기 구조체를 얼마든지 두껍게 할 수 있는데, 이는 매우 유용한 것이다. 다시 말하면, 종래의 소자(음극(301)과 양극(302) 사이에 기능성 유기 박막층(303)이 개재되어 있는)에서, 막 두께(d)에 소정의 전압(V)을 인가함으로써, J의 전류 밀도를 얻는 것으로 한다(도 3(A)). 여기서, 마찬가지로 d의 막 두께를 가지는 n개의 기능성 유기 박막층(303)과 n-1개의 오믹 도전체 박막층(304)를 교대로 적층한 본 발명의 경우(도 3(B)), 이제까지는 d의 막 두께(종래의 경우, 100 nm∼200 nm)에 대해서만 SCLC를 흐르게 할 수 있었던 것이, 겉보기로는, 도 3(A)에 나타낸 경우에서와 같이 nd의 막 두께에 대해 J의 전류 밀도를 가지는 SCLC를 흘리는 것처럼 된다. 즉, 보기에는 도 3(C)와 같이 되겠지만, 이것은 종래의 소자에서는 불가능한 것이다. 그 이유는 아무리 큰 전압을 인가해도 SCLC는 막 두께가 아주 크게 되면 급격히 흐르지 않게 되기 때문이다.
물론, 이것은 단순히, 전압 nV만이 필요하게 된다는 것을 의미한다. 그러나, 유기 반도체를 사용한 전자 장치는, 유기 재료 고유의 물성을 사용함으로써, 대량의 전류를 흘리고자 할 경우 신뢰성이나 수율에 악영향을 미치는 결점을 용이하게 극복할 수 있다.
이와 같이, 기능성 유기 박막층과 오믹 도전체 박막층을 교대로 적층한 유기 구조체를 양극과 음극 사이에 제공함으로써, 유기 반도체 소자는 종래보다도 두꺼운 막 두께에서 SCLC를 흐르게 할 수 있다. 이 개념은 이제까지 존재하지 않았다. 이 개념은 SCLC를 흘려 발광을 도출하는 유기 EL 소자나, 그 역의 기능이라 할 수 있고 광전류를 사용하는 유기 태양전지는 물론이고, 그 밖의 유기 반도체 소자에도 널리 응용하는 것이 가능하다.
따라서, 본 발명에서는, 양극과 음극 사이에 첫번째에서 n번째(n은 2 이상의 정수(整數))까지의 n개의 기능성 유기 박막층을 순차로 적층하여 형성되는 유기 구조체로 구성된 유기 반도체 소자에 있어서, k번째(k는 1≤k≤(n-1)이 되는 정수)의 기능성 유기 박막층과 k+1번째의 기능성 유기 박막층 사이에는 모두, 부유 상태의 도전체 박막층이 형성되어 있고, 각각의 도전체 박막층은 각각의 기능성 유기 박막층에 옴(ohm) 접촉하고 있는 것을 특징으로 하는 유기 반도체 소자가 제공된다.
이 경우, 도전체 박막층으로서, 금속이나 도전성 무기 화합물을 사용하지 않고 유기 화합물을 사용하는 것이 바람직하다. 특히 투명성이 필요하게 되는 광전장치의 경우에는, 유기 화합물을 사용하는 것이 바람직하다.
따라서, 본 발명에서는, 양극과 음극 사이에 첫번째에서 n번째(n은 2 이상의 정수)까지의 n개의 기능성 유기 박막층을 순차로 적층하여 형성되는 유기 구조체로 구성된 유기 반도체 소자에 있어서, k번째(k는 1≤k≤(n-1)이 되는 정수)의 기능성 유기 박막층과 k+1번째의 기능성 유기 박막층 사이에는 모두, 유기 화합물을 포함하는 부유 상태의 도전체 박막층이 형성되어 있고, 각각의 도전체 박막층은 각각의 기능성 유기 박막층에 옴 접촉하고 있는 것을 특징으로 하는 유기 반도체 소자가 제공된다.
또한, 도전체 박막층과 기능성 유기 박막층을 옴 접촉 또는 그에 가까운 접촉을 시키기 위해, 앞에서 설명한 바와 같이, 도전체 박막층을 유기 화합물로 형성하고 그 층에 억셉터 또는 도너를 도핑하는 수단을 채용하는 것이 중요하다.
따라서, 본 발명에서는, 양극과 음극 사이에 첫번째에서 n번째(n은 2 이상의 정수)까지의 n개의 기능성 유기 박막층을 순차로 적층하여 형성되는 유기 구조체로 구성된 유기 반도체 소자에 있어서, k번째(k는 1≤k≤(n-1)이 되는 정수)의 기능성 유기 박막층과 k+1번째의 기능성 유기 박막층 사이에는 모두, 유기 화합물을 포함하는 부유 상태의 도전체 박막층이 형성되고, 각각의 도전체 박막층은 상기 유기 화합물에 대한 억셉터와 도너 중 적어도 하나를 함유하는 것을 특징으로 하는 유기 반도체 소자가 제공된다.
또한, 본 발명에서는, 양극과 음극 사이에 첫번째에서 n번째(n은 2 이상의 정수)까지의 n개의 기능성 유기 박막층을 순차로 적층하여 형성되는 유기 구조체로 구성된 유기 반도체 소자에 있어서, k번째(k는 1≤k≤(n-1)이 되는 정수)의 기능성 유기 박막층과 k+1번째의 기능성 유기 박막층 사이에는 모두, 유기 화합물을 포함하는 부유 상태의 도전체 박막층이 형성되어 있고, 각각의 도전체 박막층은 상기 유기 화합물에 대한 억셉터와 도너 모두를 함유하는 것을 특징으로 하는 유기 반도체 소자가 제공된다.
또한, 도전체 박막층에 억셉터나 도너를 도핑할 때, 기능성 유기 박막층에 사용되는 유기 화합물과 도전체 박막층에 사용되는 유기 화합물을 동일한 것으로 접속함으로써(즉, 기능성 유기 박막층에 사용하는 유기 화합물을 도전체 박막층에 포함시키고, 그 도전체 박막층에 억셉터나 도너를 도핑함으로써), 더욱 간단한 공정으로 소자를 제조할 수 있다.
그런데, 도전체 박막층에 억셉터와 도너가 모두 포함되는 경우, 그 도전체 박막층은 유기 화합물에 억셉터를 첨가하여 형성된 제1 층과, 그 유기 화합물과 동일한 유기 화합물에 도너를 첨가하여 형성된 제2 층을 적층하여 이루어지는 구조이 고, 상기 제1 층이 상기 제2 층보다 음극측에 더 가까이 위치하는 구조가 바람직하다.
또한, 그와 같은 경우에도, 기능성 유기 박막층에 사용되는 유기 화합물과, 도전체 박막층에 사용되는 유기 화합물을 동일한 것으로 접속하는 것이 바람직하다.
그런데, 도전체 박막층에 억셉터와 도너가 모두 포함되는 경우, 그 도전체 박막층은 제1 유기 화합물에 억셉터를 첨가하여 형성된 제1 층과, 그 제1 유기 화합물과는 다른 제2 유기 화합물에 도너를 첨가하여 형성된 제2 층을 적층하여 이루어지는 구조이고, 상기 제1 층이 상기 제2 층보다 음극측에 더 가까이 위치하는 구조가 바람직하다.
이 경우에도, 기능성 유기 박막층에 사용되는 유기 화합물과 상기 제1 층에 사용되는 유기 화합물을 동일한 것으로 접속하는 것이 바람직하다. 또한, 기능성 유기 박막층에 사용되는 유기 화합물과 상기 제2 층에 사용되는 유기 화합물을 동일한 것으로 접속하는 것이 바람직하다.
기능성 유기 박막층의 구성은 쌍극성의 유기 화합물을 사용하여 제조될 수도 있고, 또는 정공 수송층과 전자 수송층을 적층하는 등, 단극성의 유기 화합물들을 조합하여 제조될 수도 있다.
이상과 같이 설명한 소자 구조는 유기 반도체 소자 중에서도 포토일렉트로닉스 분야에서 특히 발광 효율이나 광흡수 효율을 높일 수 있으므로 매우 유용하다. 즉, 기능성 유기 박막층을, 전류를 흐르게 함으로써 발광을 나타내는 유기 화합물 로 구성함으로써, 신뢰성 높고 효율 좋은 유기 EL 소자를 제조할 수 있다. 또한, 기능성 유기 박막층을, 광을 흡수함으로써 광전류를 발생하는(즉, 기전력을 발생하는) 유기 화합물로 구성함으로써, 신뢰성 높고 효율 좋은 유기 태양전지를 제조할 수 있다.
따라서, 본 발명은, 이상 설명한 기능성 유기 박막층이, 유기 EL 소자의 기능이나 유기 태양전지의 기능을 발현할 수 있는 구성을 가지는 유기 반도체 소자와 관련되는 모든 것을 포함하는 것으로 한다.
또한, 특히 유기 EL 소자에서, 기능성 유기 박막층을 쌍극성의 유기 화합물로 구성하는 경우, 상기 쌍극성의 유기 화합물은 π공역계를 가지는 고분자 화합물을 포함하는 것이 바람직하다. 또한, 도전체 박막층에 대해서도, π공역계를 가지는 고분자 화합물을 사용하고 억셉터나 도너를 도핑하여 암 도전율을 향상시키는 방법을 사용하는 것이 바람직하다. 또는, 도전체 박막층으로서, 억셉터 또는 도너를 첨가한 도전성 고분자 화합물을 사용할 수도 있다.
또한, 유기 EL 소자에서, 정공 수송 재료로 된 정공 수송층과 전자 수송 재료로 된 전자 수송층을 적층하는 등, 단극성의 유기 화합물을 조합하여 기능성 유기 박막층을 구성하는 경우, 도전체 박막층에 대해서도 상기 정공 수송 재료와 상기 전자 수송 재료 중 적어도 하나를 사용하고 억셉터나 도너를 도핑하여 암 도전율을 향상시키는 방법이 바람직하다. 또는, 상기 정공 수송 재료와 상기 전자 수송 재료 모두를 사용할 수도 있다. 구체적으로는, 이것은, 기능성 유기 박막층에 사용되는 전자 수송 재료에 도너를 도핑한 층과, 기능성 유기 박막층에 사용되는 정공 수송 재료에 억셉터를 도핑한 층을 적층한 구조를 도전체 박막층으로서 사용하는 등의 방법이다.
기능성 유기 박막층의 구성은 유기 태양전지에 사용되는 경우에도 유기 EL 소자에 사용될 때와 동일하다. 즉, 유기 태양전지에서, 기능성 유기 박막층을 쌍극성의 유기 화합물로 구성하는 경우, 상기 쌍극성의 유기 화합물은 π공역계를 가지는 고분자 화합물을 포함하는 것이 바람직하다. 또한, 도전체 박막층에 대해서도, π공역계를 가지는 고분자 화합물을 사용하고 억셉터나 도너를 도핑하여 암 도전율을 향상시키는 방법이 바람직하다. 또는, 도전체 박막층으로서, 억셉터 또는 도너를 첨가한 도전성 고분자 화합물을 사용할 수도 있다.
또한, 유기 태양전지에서, 정공 수송 재료로 된 층과 전자 수송 재료로 된 층을 적층하는 등, 단극성의 유기 화합물을 조합하여 기능성 유기 박막층을 구성하는 경우, 도전체 박막층에 대해서도, 상기 정공 수송 재료와 상기 전자 수송 재료 중 적어도 하나를 사용하고 억셉터나 도너를 도핑하여 암 도전율을 향상시키는 방법이 바람직하다. 또는, 상기 정공 수송 재료와 상기 전자 수송 재료 모두를 사용할 수도 있다. 구체적으로는, 이것은, 기능성 유기 박막층에 사용되는 전자 수송 재료에 도너를 도핑한 층과, 기능성 유기 박막층에 사용되는 정공 수송 재료에 억셉터를 도핑한 층을 적층한 구조를 도전체 박막층으로서 사용하는 등의 방법이다.
또한, 이상 설명한 바와 같은 모든 도전체 박막층(오믹 도전체 박막층)에 캐리어를 주입할 수 있으면, 그들 어느 것에서도 시트(sheet) 저항을 낮출 필요는 없 다. 따라서, 그 도전율은 10-10 S/m 이상 정도면 충분하다.
본 발명을 실시함으로써, 종래의 초박막을 사용하지 않고, 더욱 신뢰성이 높으면서 수율도 높은 유기 반도체 소자를 제공할 수 있다. 또한, 특히 유기 반도체를 사용한 광전 장치에서는 그의 효율을 향상시킬 수 있다.
이하, 본 발명의 실시형태에 대해 유기 EL 소자와 유기 태양전지를 예로 들어 상세히 설명한다. 또한, 유기 EL 소자에 대해서는, 발광을 이루게 하기 위해, 양극과 음극 중 적어도 하나를 투명하게 하면 되지만, 본 실시형태에서는 기판상에 투명 양극을 형성하여 양극 측으로부터 발광이 이루어지는 소자 구조를 설명한다. 실제로는, 본 발명은, 음극을 기판상에 형성하여 음극측으로부터 발광이 이루어지는 구조나, 기판의 반대측으로부터 발광이 이루어지는 구조, 양 전극으로부터 양측에서 발광이 이루어지는 구조에도 적용 가능하다. 유기 태양전지에 있어서도, 광을 흡수하기 위해, 소자의 양면 중 어느 한쪽이 투명하면 된다.
먼저, 유기 EL 소자의 경우, 초박막에 기인하는 낮은 신뢰성을 극복하고, 또한, 전류와 관련하여 방출되는 광의 비율(즉, 전류 효율)을 향상시키는 수단으로서, 단순한 장치 구조를 달성하기 위해서는, 예를 들어, 유기 EL 소자를 직렬로 접속하면 좋다. 이하에서는, 이에 대해 설명한다.
도 4(A)에 도시한 바와 같이, 소정의 전압(V1)을 인가함으로써, J1의 전류 밀도를 가지는 전류가 흐르고, 단위 면적당 L1의 광 에너지(즉, 어떤 양의 에너지를 가진 광자가 방출된 것으로 할 때, 그 에너지와 광자 수의 곱에 상당하는 광 에너지)로 발광하는 유기 EL 소자(D1)가 있다고 가정한다. 이 때, 파워(power) 효율(φe1)(이것은 부여된 전기 에너지(전력)에 대한 발광 에너지를 나타내는 것으로서, "에너지 변환 효율"과 동일한 것을 의미한다)은 하기 식 3으로 주어진다.
[식 3]
φe1 = L1/(J1ㆍV1)
다음에, 이 유기 EL 소자(D1)와 완전 등가인 유기 EL 소자(D2)를 D1에 직렬로 접속한 경우를 생각한다(도 4(B)). 또한, 이 때의 접점(C1)은 2개의 유기 EL 소자(D1, D2)를 옴(ohm) 접속하고 있는 것으로 한다.
여기서, 소자 전체(즉, D1과 D2를 접속한 구조를 가지는 소자(Da11))에, 도 4(A)에서 인가한 전압의 2배의 전압 V2(= 2V1)를 인가하는 것으로 한다. 그러면, D1과 D2가 등가이므로, 도 4(B)에 도시한 바와 같이, D1 및 D2에는 각각 V1의 전압이 인가되고, 공통의 전류 밀도 J1의 전류가 흐른다. 따라서, D1 및 D2는 각각 L1의 광 에너지로 발광하므로, 소자 전체(Da11)로부터는 2배의 광 에너지(2L1)를 얻을 수 있는 것이다.
이 때의 파워 효율(φe2)은 이하의 식 4로 주어진다.
[식 4]
φe2 = 2L1/(J1ㆍ2V1) = L1/(JㆍV1)
상기 식 3과 식 4를 비교하여 알 수 있는 바와 같이, 파워 효율로 생각하면, 도 4(A)와 도 4(B)에서는 변화가 없고, V1과 J1로부터 L1로 변환되는 에너지 보존 법칙은 지켜지고 있다. 그러나, 전류 효율은 겉보기상 2배, 즉, L1/J1에서 2L1/J1로 증가한다. 이것은 유기 EL 소자에서 중요한 의미를 가진다. 즉, 직렬로 접속되는 유기 EL 소자를 늘리고, 그 수를 늘린만큼 전압을 더욱 많이 인가하고, 전류 밀도는 일정하게 유지시켜 둠으로써, 전류 효율을 높일 수 있는 것이다.
이 개념을 더욱 일반화하면, 완전 등가인 유기 EL 소자 n개를 직렬로 옴 접속한 경우, 전류 밀도를 일정하게 유지한 채 전압을 n배로 함으로써 n배의 휘도를 얻을 수 있다. 이 성질은 유기 EL 소자에서 휘도와 전류 밀도가 비례 관계에 있는 것에 기인한다.
물론, 다른 유기 EL 소자들을 직렬로 접속한 경우에도, 각각의 유기 EL 소자로부터 방출되는 휘도는 다르지만, 전압을 많이 인가함으로써 하나의 유기 EL 소자의 경우보다 많은 휘도를 취출할 수 있다. 이 개념도를 도 5에 나타낸다.
도 5에 도시된 바와 같이, 다른 유기 EL 소자(D1과 D2)를 직렬로 접속하고 하나의 유기 EL 소자(D1 또는 D2)에 J1의 전류를 흐르게 하는데 필요한 전압(V1 또는 V2)보다 높은 전압(V1+V2)을 인가하면, J1의 전류로 L1+L2 (> L1, L2)의 휘도를 취출할 수 있다.
이 때, 예를 들어, D1을 청색 발광 소자로, D2를 황색 발광 소자로 하여 혼색할 수 있으면, 백색 발광이 되므로, 종래보다 전류 효율이 높고, 나아가, 소자의 수명 또한 긴 백색 발광 소자도 가능해진다.
이와 같이, 소자들을 직렬로 옴 접속시킴으로써, 겉보기의 전류 효율을 향상시키고, 보다 적은 전류로 큰 휘도를 얻을 수 있다. 이것은, 같은 휘도의 광을 방출시키는데 필요한 전류를 종래보다 작게 할 수 있음을 의미한다. 더욱이, 전압까지 많이 인가할 수 있는 것이라면 얼마든지 많은 유기 EL 소자를 접속할 수 있어 전체적인 막 두께는 두껍게 할 수 있다.
그러나, 상기와 같이 단순히 유기 EL 소자들을 직렬로 접속하는 경우에도 문제점이 존재한다. 이는 유기 EL 소자의 전극 및 소자 구조에 기인하는 문제인데, 도 6(A) 및 도 6(B)를 사용하여 설명한다. 도 6(A)는 도 4(A)의 유기 EL 소자(D1)의 단면도, 도 6(B)는 도 4(B)의 소자 전체(Dall)의 단면도를 모식적으로 나타낸 것이다.
통상의 유기 EL 소자의 기본 구조(도 6(A))는, 기판(601) 상에 투명 전극(602)(여기서는 양극으로서, 일반적으로는 ITO 등이 사용됨)을 마련하고 전류를 흐르게 함으로써 발광을 행하는 기능성 유기 박막층(이하, 「유기 EL 층」이라 함)(604)을 성막하고, 음극(603)을 형성함으로써 이루어져 있다. 이 경우, 광은 투명 전극(양극)(602)으로부터 도출된다. 음극(603)은 통상 일 함수가 낮은 금속 전극 또는 전자 주입을 보조하는 음극 버퍼층과 금속 도전막(알루미늄 등)을 병용한 것을 사용할 수도 있다.
이와 같은 구조의 유기 EL 소자를 단순히 2개 직렬로 접속하는 경우(도 6(B)), 하측으로부터 제1 투명 전극(양극)(602a), 제1 유기 EL 층(604a), 제1 음극(603a), 제2 투명 전극(양극)(602b), 제2 유기 EL 층(604b), 제2 음극(603b)이 순차로 적층되는 구조가 된다. 그러면, 제2 유기 EL 층(604b)에서 방출되는 광은 제1 음극(603a)이 금속이므로 투과하지 못하고, 소자 밖으로 도출될 수 없다. 따라서, 상하의 유기 EL 소자의 발광을 혼색하여 백색 광으로 하는 등의 변형도 불가능해진다.
예를 들어, 양극과 음극 모두에 투명 전극인 ITO를 사용하는 기술도 보고되어 있다(문헌 6: G. Parthasarathy, P. E. Burrows, V.Khalfin, V. G. Kozlov, and S. R. Forrest, "A metal-free cathode for organic semiconductor devices", J. Appl. Phys., 72, 2138-2140(1998)). 이를 사용하면, 제1 음극(603a)을 투명하게 할 수 있으므로, 제2 유기 EL 층(604b)로부터 방출되는 광을 도출할 수 있다. 그러나, ITO는 주로 스퍼터링에 의해 성막되므로, 유기 EL 층(604a)에 대한 손상이 우려된다. 또한, 공정도, 증착에 의한 유기 EL 층의 성막과 스퍼터링에 의한 ITO의 성막을 반복해야 하므로 번잡해진다.
이에, 본 발명을 유기 El 소자에 적용함으로써, 소자들을 직렬로 접속하여 전류 효율을 향상시킬 수 있다고 하는 개념과 동일하게 전류 효율을 향상시킬 뿐만 아니라, 소자의 투명성도 문제없이 해결할 수 있다. 즉, 예를 들어, 도 7과 같은 구성이다.
도 7은, 기판(701)상에 제공된 투명 전극(양극)(702)상에 제1 유기 EL 층(704a), 제1 오믹 도전체 박막층(705a), 제2 유기 EL 층(704b), 음극(703)이 순차로 적층된 구조이다. 이 경우, 제1 오믹 도전체 박막층(705a)은 유기 반도체에 억셉터나 도너를 도핑한 재료를 적용함으로써, 유기 EL 층과 거의 오믹(ohmic)으로 접속할 수 있을(즉, 정공 캐리어와 전자 캐리어가 주입될 수 있음)뿐만 아나라, 투명성도 거의 완전하게 유지할 수 있다. 따라서, 제2 유기 EL 층(703b)에서 발생하는 발광도 도출할 수 있고, 단순히 전압을 2배로 함으로써 전류 효율을 2배로 할 수 있다.
더욱이, 전체 공정은 일관되게(예를 들어, 저분자 재료를 사용하는 경우라면, 진공 증착과 같은 건식 공정이 사용될 수 있고, 고분자 재료를 사용하는 경우라면, 스핀 코팅과 같은 습식 공정이 사용될 수 있음) 제조할 수 있으므로, 번잡함을 없앨 수 있다.
또한, 도 7에서는 2개의 유기 EL 층을 제공한 구조이지만, 앞에서 설명한 바와 같이, 전압을 많이 인가할 수 있는 것이라면 다층으로 할 수도 있다(물론, 각 유기 EL 층과 유기 EL 층과의 사이에는 오믹 도전체 박막층이 삽입되어 있음). 따라서, 초박막에 기인하는 유기 반도체 소자의 신뢰성 저하를 극복할 수 있다.
이 사상은 유기 EL 소자와 반대의 기능이라고도 할 수 있는 유기 태양전지에도 당연히 적용된다. 이에 대해 설명하면 다음과 같다.
주어진 광 에너지(L1)에 의해 전류 밀도 J1의 광전류가 발생하여 V1의 기전력을 발생하는 유기 태양전지(S1)가 있다고 가정한다. 이 S1을 n개 직렬로 오믹 접속하고, 거기에 nL1의 광 에너지를 조사했을 때, 만약 n개의 모든 태양전지(S1)에 등가의 광 에너지(= (nL1/n = L1)를 공급할 수 있다면, n배의 기전력(= nV1)을 얻을 수 있다. 요컨대, 직렬로 접속한 다수의 유기 태양전지가 모두 광을 흡수할 수 있다면, 그 기전력은 전지의 수의 곱만큼 증가하는 것이다.
예를 들어, 2개의 유기 태양전지를 직렬로 접속함으로써 기전력을 향상시킨다는 보고가 있다(문헌 7: Masahiro HIRAMOTO, Minoru SUEZAKI, and Masaaki YOKOYAMA, "Effect of Thin Gole Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell", Chemistry Letters, pp.327-330, 1990). 이 문헌 7에서는, 2개의 유기 태양전지 사이(즉, front cell과 back cell 사이)에 금 박막을 삽입함으로써, 광 조사에 의해 발생하는 기전력을 향상시키는 효과를 얻고 있다.
그러나, 문헌 7의 경우에도, 광 투과성을 달성하기 위해 금 박막의 두께는 3 nm 이하로 하고 있다. 즉, 그 막을 광이 투과할 수 있을 정도의 초박막으로 하여, 후방 셀(back cell)까지 광이 도달할 수 있도록 설계해야 하는 것이다. 더욱이, 수 nm 정도의 초박막에서는 그 재현성에도 문제가 있다.
이러한 문제점도 본 발명을 적용함으로써 해결할 수 있다. 즉, 문헌 7에 개시된 것과 같은 유기 태양전지 구조에서, 금 박막 부분에 본 발명의 오믹 도전체 박막층을 적용하면 되는 것이다. 그렇게 함으로써, 2개의 소자를 직렬로 접속하는 것이 아니라, 종래보다 막 두께가 두꺼우면서 효율이 높은 하나의 유기 태양전지로서 사용할 수 있다.
이상에서는, 유기 EL 소자 및 유기 태양전지를 예로 들어 본 발명의 기본적인 개념 및 구성을 설명하였다. 이하에서는, 본 발명에 사용하는 오믹 도전체 박막층의 구성으로서 바람직한 예를 설명한다. 그러나, 본 발명이 이것에 한정되지 않는다.
먼저, 다수의 캐리어를 가진다고 말할 수 있을 정도의 도전성을 가지는 다양한 금속 박막을 사용할 수 있다. 특히, Au, Al, Pt, Cu, Ni 등을 사용할 수 있다. 이러한 금속을 도전체 박막층으로서 사용하는 경우에는, 가시광이 통과할 수 있을 정도의 초박막(즉, 수 nm 내지 수 십 nm)으로 형성하는 것이 바람직하다.
또한, 특히 가시광 투과성의 관점에서, 다양한 금속 산화물 박막을 사용할 수 있다. 이에 대한 특정 예로서는, ITO, ZnO, SnO2, 산화 구리, 산화 코발트, 산화 지르코늄, 산화 티탄, 산화 니오븀, 산화 니켈, 산화 네오디뮴, 산화 바나듐, 산화 비스무스, 산화 베릴륨 알루미늄, 산화 붕소, 산화 마그네슘, 산화 몰리브덴, 산화 란탄, 산화 리튬, 산화 루데늄, BeO를 들 수 있다. 또한, ZnS, ZnSe, GaN, AlGaN, CdS와 같은 화합물 반도체 박막도 사용할 수 있다.
본 발명에서는 특히 오믹 도전체 박막층을 유기 화합물로 구성할 수 있는 것이 특징적이다. 예를 들어, p형 유기 반도체와 n형 유기 반도체를 혼합하여 반도 체 박막층을 형성하는 수법이 있다.
p형 유기 반도체의 대표예로서는, 하기 구조식 1로 나타내어지는 CuPc 이외에, 다른 금속 프탈로시아닌이나 무금속 프탈로시아닌(하기 구조식 2로 나타내어짐)도 적용할 수 있다. 또한, p형 유기 반도체로서, TTF(하기 구조식 3으로 나타내어짐), TTT(하기 구조식 4로 나타내어짐), 메틸페노티아진(하기 구조식 5로 나타내어짐), N-이소프로필카르바졸(하기 구조식 6으로 나타내어짐) 등으로서 사용할 수도 있다. 또한, 유기 EL 등에 사용되는 정공 수송성 재료, 에를 들어, TPD(하기 구조식 7로 나타내어짐), α-NPD(하기 구조식 8로 나타내어짐), 또는 CBP(하기 구조식 9로 나타내어짐) 등도 적용할 수 있다.
[구조식 1]
Figure 112008012632523-PAT00001
[구조식 2]
Figure 112008012632523-PAT00002
[구조식 3]
Figure 112008012632523-PAT00003
[구조식 4]
Figure 112008012632523-PAT00004
[구조식 5]
Figure 112008012632523-PAT00005
[구조식 6]
Figure 112008012632523-PAT00006
[구조식 7]
Figure 112008012632523-PAT00007
[구조식 8]
Figure 112008012632523-PAT00008
[구조식 9]
Figure 112008012632523-PAT00009
n형 유기 반도체의 대표예로서는, 하기 구조식 10으로 나타내어지는 F16-CuPc 외에, PV(하기 구조식 11로 나타내어짐), Me-PTC(하기 구조식 12로 나타내어짐), PTCDA(하기 구조식 13으로 나타내어짐), 나프탈렌카르복실 안하드라이드(하기 구조식 14로 나타내어짐), 나프탈렌카르복실 디이미드(하기 구조식 15로 나타내어짐) 등과 같은 3,4,9,10-페릴렌 테트라카르복실산 유도체를 들 수 있다. n형 유기 반도체로서, TCNQ(하기 구조식 16으로 나타내어짐), TCE(하기 구조식 17로 나타내어짐), 벤조퀴논(하기 구조식 18로 나타내어짐), 2,6-나프토퀴논(하기 구조식 19로 나타내어짐), DDQ(하기 구조식 20으로 나타내어짐), p-플루오라닐(하기 구조식 21로 나타내어짐), 테트라클로로디페노퀴논(하기 구조식 22로 나타내어짐), 니켈비스디페닐글리옥심(하기 구조식 23으로 나타내어짐) 등을 사용할 수도 있다. 또한, 유기 EL 등에 사용되는 전자 수송성 재료, 예를 들어, Alq3(하기 구조식 24로 나타내어짐), BCP(하기 구조식 25로 나타내어짐), 또는 PBD(하기 구조식 26로 나타내어짐)를 적용할 수도 있다.
[구조식 10]
Figure 112008012632523-PAT00010
[구조식 11]
Figure 112008012632523-PAT00011
[구조식 12]
Figure 112008012632523-PAT00012
[구조식 13]
Figure 112008012632523-PAT00013
[구조식 14]
Figure 112008012632523-PAT00014
[구조식 15]
Figure 112008012632523-PAT00015
[구조식 16]
Figure 112008012632523-PAT00016
[구조식 17]
Figure 112008012632523-PAT00017
[구조식 18]
Figure 112008012632523-PAT00018
[구조식 19]
Figure 112008012632523-PAT00019
[구조식 20]
Figure 112008012632523-PAT00020
[구조식 21]
Figure 112008012632523-PAT00021
[구조식 22]
Figure 112008012632523-PAT00022
[구조식 23]
Figure 112008012632523-PAT00023
[구조식 24]
Figure 112008012632523-PAT00024
[구조식 25]
Figure 112008012632523-PAT00025
[구조식 26]
Figure 112008012632523-PAT00026
또한, 유기 화합물의 억셉터(전자 수용체)와 유기 화합물의 도너(전자 공여체)를 혼합하여 전하 이동 착체를 형성함으로써 도전성을 부여하여 오믹 도전체 박막층로 하는 방법도 있다. 전하 이동 착체는 쉽게 결정화하고 성막성이 나쁜 점도 있지만, 본 발명의 오믹 도전체 박막층은 박층 또는 클러스터 형상으로 형성되어도 무방하므로(캐리어를 주입할 수 있으면 되므로), 큰 문제는 발생하지 않는다.
전하 이동 착체용의 대표적인 조합예로서는, 하기 구조식 27로 나타내어지는 TTF-TCNQ 조합, K-TCNQ 및 Cu-TCNQ와 같은 금속/유기 억셉터를 들 수 있다. 다른 조합예로서는, [BEDT-TTF]-TCNQ(하기 구조식 28로 나타내어짐), (Me)2P-C18TCNQ(하기 구조식 29로 나타내어짐), BIPA-TCNQ(하기 구조식 30으로 나타내어짐), Q-TCNQ(하기 구조식 31로 나타내어짐)를 들 수 있다. 이러한 전하 이동 착체 박막은 증착막, 스핀 코팅막, LB 막, 고분자 결합제 분산막 등으로 적용 가능하다.
[구조식 27]
Figure 112008012632523-PAT00027
[구조식 28]
Figure 112008012632523-PAT00028
[구조식 29]
Figure 112008012632523-PAT00029
[구조식 30]
Figure 112008012632523-PAT00030
[구조식 31]
Figure 112008012632523-PAT00031
또한, 도전체 박막층의 구성예로서, 유기 반도체에 억셉터나 도너를 도핑하여 암 도전성을 부여하는 방법이 바람직하다. 유기 반도체로서는, 도전성 고분자 등으로 대표될 수 있는 π공역계를 가지는 유기 화합물을 사용하면 좋다. 도전성 고분자의 예로서는, 실제 사용에 적용할 수 있는 재료, 예를 들어, 폴리(에틸렌디옥시티오펜)(PEDOT로 약칭됨), 폴리아닐린, 또는 폴리피롤, 이외에 폴리페닐렌 유도체, 폴리티오펜 유도체, 폴리(파라페닐렌 비닐렌) 유도체를 들 수 있다.
또한, 억셉터를 도핑하는 경우에는, 유기 반도체로서 p형 재료를 사용하는 것이 바람직하다. p형 유기 반도체의 예로서는, 상기한 구조식 1∼구조식 9로 나타내어지는 것들을 들 수 있다. 이 경우, 억셉터로서는, FeCl3(III), AlCl3, AlBr3, AsF6 또는 할로겐 화합물과 같은 루이스 산(Lewis acid)(강산성 도펀트)을 사용할 수도 있다(루이스 산은 억셉터로서 작용할 수 있다).
또한, 도너를 도핑하는 경우에는, 유기 반도체로서 n형 재료를 사용하는 것이 바람직하다. n형 유기 반도체의 예로서는, 상기한 구조식 10∼구조식 26으로 나타내어지는 것 등을 들 수 있다. 도너용으로는, Li, K, Ca, Cs 등으로 대표되는 알칼리 금속 또는 알칼리토류 금속과 같은 루이스 염기(Lewis base)를 사용할 수도 있다(루이스 염기는 도너로서 작용할 수 있다).
보다 바람직하게는, 상기한 구조들 중 몇 개를 조합하여 도전체 박막층으로서 기능하게 할 수 있다. 다시 말하면, 에를 들어, 상기한 금속성 박막, 금속성 산화물 박막 도는 화합물 반도체 박막과 같은 무기 박막의 일측 또는 양측에, p형 유기 반도체와 n형 유기 반도체가 혼합되어 있는 박막, 또는 전하 이동 착체 박막, 또는 도핑된 도전체 고분자 박막, 또는 억셉터가 도핑된 p형 유기 반도체, 또는 도너가 도핑된 n형 유기 반도체를 형성할 수 있다. 이러한 경우, 무기 박막 대신에 전하 이동 착체 박막을 사용하는 것이 효과적이다.
또한, 도너가 도핑되어 있는 n형 유기 반도체 박막과, 억셉터가 도핑되어 있는 p형 유기 반도체 박막을 적층하여 반도체 박막층으로서 기능하게 함으로써, 정공과 전자 모두가 효과적으로 주입될 수 있는 기능성 유기 반도체층이 얻어진다. 또한, 도너가 도핑되어 있는 n형 유기 반도체 박막과 억셉터가 도핑되어 있는 p형 유기 반도체 박막을 상기 박막의 일측 또는 양측에 그 도너가 도핑되어 있는 n형 유기 반도체 박막 및 억셉터가 도핑되어 있는 p형 유기 반도체 박막이 서로 혼합된 상태로 적층되게 하는 기술을 고려할 수도 있다.
상기한 반도체 박막층의 구조로서 주어진 상기한 바와 같은 모든 박막 형태는 반드시 막의 형태를 갖출 필요는 없고, 섬의 형태를 갖추어도 무방하다.
상기와 같은 반도체 박막층을 본 발명에 적용함으로써, 신뢰성이 높으면서 수율도 우수한 유기 반도체 소자를 제조할 수 있다.
예로서, 본 발명에서의 유기 박막층을, 전류를 흐르게 함으로써 발광을 얻을 수 있는 구성으로 함으로써, 유기 EL 소자를 얻을 수 있다. 따라서, 본 발명의 유기 EL 소자는 효율도 향상시킬 수 있으므로 효과적이다.
이 때의 유기 박막층(즉, 유기 EL 층)의 구조로서는, 일반적으로 사용되고 있는 유기 EL 소자의 유기 EL 층의 구조 및 구성 재료를 사용하면 좋다. 구체적으로는, 문헌 2에서 기재하고 있는 바와 같은 정공 수송층과 전자 수송층의 적층 구조나, 고분자 화합물을 사용한 단층 구조, 삼중항 여기 상태로부터의 발광을 사용한 고효율 소자 등, 다양한 변형이 가능하다. 또한, 앞에서 설명한 바와 같이, 각 유기 EL 층으로부터의 색을 다른 발광색으로 하여 혼합함으로써, 고효율이며 소자 수명이 긴 백색 발광 소자로 구성하는 등의 응용도 가능하다.
유기 EL 소자의 양극에 관해서는, 양극측으로부터 광을 도출할 수 있는 것이라면, ITO(인듐 주석 산화물), IZO(인듐 아연 산화물), 다른 투명 도전성 무기 화합물이 주로 사용될 수 있다. 금 등의 초박막도 가능하다. 양극이 비투명이어도 무방한 경우(즉, 음극측으로부터 광을 도출하는 경우)에는, 광을 투과하지 않으나 일 함수가 어느 정도 큰 금속/합금이나 도전체를 사용할 수도 있고, W, Ti, TiN 등을 들 수 있다.
유기 EL 소자의 음극에 대해서는, 통상 일 함수가 작은 금속 또는 합금이 사용되고, 알칼리 금속이나 알칼리토류 금속 또는 희토류 금속이 사용되며, 그들 금속 원소을 포함하는 합금 등도 사용될 수 있다. 예를 들어, Mg:Ag 합금, Al:Li 합금, Ba, Ca, Yb, Er 등을 사용할 수 있다. 또한, 음극측으로부터 광을 도출하는 경우에는, 이들 금속/합금의 초박막을 사용할 수도 있다.
또한, 예를 들어, 본 발명에서의 유기 박막층을, 광을 흡수함으로써 기전력을 발생하는 구성으로 사용함으로써, 유기 태양전지를 얻을 수 있다. 따라서, 본 발명의 유기 태양전지는 효율도 향상시킬 수 있으므로 효과적이다.
그 때의 기능성 유기 박막층의 구조로서는, 일반적으로 사용되고 있는 유기 태양전지의 유기 박막층의 구조 및 구성 재료를 사용하면 된다. 구체적으로는, 문헌 3에 설명되어 있는 것과 같은 p형 유기 반도체와 n형 유기 반도체의 적층 구조 등을 들 수 있다.
[실시예 1]
본 실시예에서는, 도전체 박막층으로서 전하 이동 착체를 사용한 본 발명의 유기 EL 소자를 구체적으로 예시한다. 그 소자 구조를 도 8에 나타낸다.
먼저, 유리 기판(801)상에 양극(802)으로서 ITO를 100 nm 정도의 두께로 성막하고, 그 위에 정공 수송 재료로서 N,N'-비스(3-메틸페닐)-N,N'-디페닐-벤지딘(약칭: TPD)을 50 nm 증착하여 정공 수송층(804a)을 형성한다. 이어서, 전자 수송성 발광 재료로서 트리스(8-퀴놀리놀라토)알루미늄(약칭: Alq)을 50 nm 증착하여 전자 수송층 겸 발광층(805a)을 형성한다.
이와 같이 하여 제1 유기 EL 층(810a)을 형성한 후, 도전체 박막층(806)으로서 TTF와 TCNQ를 1:1의 비율이 되도록 공증착하여, 두께 10 nm의 층을 형성한다.
그 후, 정공 수송층(804b)으로서 TPD를 50 nm 증착하고, 그 위에, 전자 수송층 겸 발광층(805b)으로서 Alq를 50 nm 증착한다. 이렇게 하여, 제2 유기 EL 층(810b)이 형성된다.
마지막으로, 음극(803)으로서, Mg와 Ag를 원자비가 10:1이 되도록 공증착하고, 음극(803)을 150 nm의 두께로 성막함으로써, 본 발명의 유기 EL 소자를 얻는다.
[실시예 2]
본 실시예에서는, 유기 EL 층에서 사용하는 것과 동일한 유기 반도체를 도전체 박막층에 포함시키고 억셉터 및 도너를 도핑함으로써 도전성을 부여한 본 발명의 유기 EL 소자를 구체적으로 예시한다. 그 소자 구조를 도 9에 나타낸다.
먼저, 유리 기판(901)상에 양극(902)으로서 기능하는 ITO를 100 nm 정도의 두께로 성막하고, 그 위에 정공 수송 재료로서 기능하는 TPD를 50 nm 증착하여 정공 수송층(904a)을 형성한다. 이어서, 전자 수송성 발광 재료로서 기능하는 Alq를 약 50 nm 증착하여 전자 수송층 겸 발광층(905a)을 형성한다.
이와 같이 하여 제1 유기 EL 층(910a)을 형성한 후, 도너인 TTF가 2 mol%의 비율이 되도록 Alq와 공증착한 층(906)을 5 nm 증착한다. 그 후, 억셉터인 TCNQ가 2 mol%의 비율이 되도록 TPD와 공증착한 층(907)을 5 nm 증착함으로써 도전체 박막층(911)을 형성한다.
그 후, 정공 수송층(904b)으로서 TPD를 50 nm 증착하고, 그 위에 전자 수송층 겸 발광층(905b)으로서 Alq를 50 nm 증착한다. 이렇게 하여 제2 유기 EL 층(910b)이 형성된다.
마지막으로, 음극(903)으로서 Mg와 Ag를 원자비가 10:1이 되도록 공증착하고, 음극(903)을 150 nm의 두께로 성막함으로써, 본 발명의 유기 EL 소자를 얻는 다. 이 소자는, 도전체 박막층의 구성 재료로서 유기 EL 층에서 사용되고 있는 유기 반도체를 그대로 적용하고 도너와 억셉터를 혼합하는 것만으로 제조할 수 있으므로, 매우 간단하고 효과적이다.
[실시예 3]
본 실시예에서는, 유기 EL 층에 전기 발광성의 폴리머를 사용하고 도전체 박막층을 도전성 폴리머로 형성하는 등의 습식법의 유기 EL 소자를 구체적으로 예시한다. 그 소자 구조를 도 10에 나타낸다.
먼저, 유리 기판(1001)상에 양극(1002)으로서 ITO를 100 nm 정도의 두께로 성막하고, 그 위에 스핀 코팅법에 의해 폴리에틸렌 디옥시티오펜/폴리스틸렌 술폰산(약칭: PEDOT/PSS)의 혼합 수용액을 도포하고 수분을 증발시켜, 정공 주입층(1004)을 30 nm의 두께로 성막한다. 이어서, 폴리(2-메톡시-5-(2'-에틸-헥속시)-1,4-페닐렌비닐렌)(약칭: MHE-PPV)을 스핀 코팅법으로 100 nm의 두께로 성막하여 발광층(1005a)을 형성한다.
이와 같이 하여 제1 유기 EL 층(1010a)을 형성한 후, 도전체 박막층(1006)으로서 PEDOT/PSS를 스핀 코팅법으로 30 nm의 두께로 성막한다.
그 후, 발광층(1005b)으로서 MEH-PPV를 스핀 코팅법으로 100 nm의 두께로 성막한다. 또한, 도전체 박막층이 정공 주입층과 같은 재료이므로, 이 제2 유기 EL 층(1010b)은 정공 주입층을 형성할 필요가 없다. 따라서, 그 위에 3번째 및 4번째 유기 EL 층을 적층해 나갈 경우에도, 매우 간단한 조작으로 도전체 박막층인 PEDOT/PSS와 발광층인 MEH-PPV를 교대로 적층할 수 있다.
마지막으로, 음극(1003)으로서 Ca을 150 nm 증착하고, 그 위에 Ca의 산화를 방지하기 위해 캡(cap)으로서 Al을 150 nm 증착한다.
[실시예 4]
본 실시예에서는, 도전체 박막층으로서 p형 유기 반도체와 n형 유기 반도체를 혼합한 것을 적용한 본 발명의 유기 태양전지를 구체적으로 예시한다.
먼저, 투명 전극인 ITO를 100 nm 정도의 두께로 성막한 유리 기판상에 p형의 유기 반도체인 CuPc를 30 nm 증착한다. 이어서, n형의 유기 반도체인 PV를 50 nm 증착하고, CuPc와 PV를 사용하여 유기 반도체에서의 p-n 접합을 만든다. 이에 따라 제1 기능성 유기 박막층이 된다.
그 후, 도전체 박막층으로서 CuPc와 PV를 1:1 비율이 되도록 공증착하여, 10 nm의 두께로 형성한다. 이어서, CuPc를 30 nm의 두께로 증착하고, 그 위에 PV를 50 nm 증착함으로써, 제2 기능성 유기 박막층을 형성한다.
마지막으로, 전극으로서 Au를 150 nm의 두께로 성막한다. 이와 같이 하여 구성된 유기 태양전지는 유기 화합물로서 최종적으로 2종류를 사용하는 것만으로 본 발명을 실현할 수 있으므로 매우 효과적이다.
도 1은 본 발명의 기본적 구성을 나타내는 도면,
도 2(A) 및 도 2(B)는 본 발명의 개념을 나타내는 도면,
도 3(A)∼도 3(C)는 본 발명의 효과를 나타내는 도면,
도 4(A) 및 도 4(B)는 전류 효율이 향상되는 이론을 나타내는 도면,
도 5는 전류 효율이 향상되는 이론을 나타내는 도면,
도 6(A) 및 도 6(B)는 종래의 유기 El 소자를 나타내는 도면,
도 7은 본 발명의 유기 El 소자를 나타내는 도면,
도 8은 본 발명의 유기 EL 소자의 구체예를 나타내는 도면,
도 9는 본 발명의 유기 EL 소자의 구체예를 나타내는 도면,
도 10은 본 발명의 유기 EL 소자의 구체예를 나타내는 도면.
* 도면의 주요부분에 대한 부호의 설명
601: 기판 602: 양극
603: 음극 604a, 604b: 유기 EL 층
702: 양극 703: 음극
704a, 704b: 유기 EL 층 705a: 반도체 박막층

Claims (38)

  1. 양극;
    음극;
    상기 양극과 상기 음극 사이에 배치된 다수의 유기 전계발광 유닛; 및
    각각의 인접한 유기 전계발광 유닛들 사이에 배치된 도전체 박막층을 포함하는 적층형 유기 전계발광 장치.
  2. 양극;
    음극;
    상기 양극과 상기 음극 사이에 배치된 다수의 유기 전계발광 유닛; 및
    각각의 인접한 유기 전계발광 유닛들 사이에 배치된 도전체 박막층을 포함하고,
    상기 도전체 박막층은 적어도 하나의 n형 도핑 유기 층을 포함하는 적층형 유기 전계발광 장치.
  3. 양극;
    음극;
    상기 양극과 상기 음극 사이에 배치된 다수의 유기 전계발광 유닛; 및
    각각의 인접한 유기 전계발광 유닛들 사이에 배치된 도전체 박막층을 포함하 고,
    상기 도전체 박막층은 적어도 하나의 p형 도핑 유기 층을 포함하는 적층형 유기 전계발광 장치.
  4. 양극;
    음극;
    상기 양극과 상기 음극 사이에 배치된 다수의 유기 전계발광 유닛; 및
    각각의 인접한 유기 전계발광 유닛들 사이에 배치된 도전체 박막층을 포함하고,
    상기 도전체 박막층은 적어도 하나의 n형 도핑 유기 층과 하나의 p형 도핑 유기 층을 포함하는 적층형 유기 전계발광 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 유기 전계발광 유닛이 저분자 재료를 포함하는 적층형 유기 전계발광 장치.
  6. 제 5 항에 있어서, 상기 유기 전계발광 유닛이 정공 수송층과 전자 수송층을 포함하는 적층형 유기 전계발광 장치.
  7. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 유기 전계발광 유닛이 고분자 재료를 포함하는 적층형 유기 전계발광 장치.
  8. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 유기 전계발광 유닛 각각의 두께가 100∼200 nm인 적층형 유기 전계발광 장치.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 도전체 박막층의 두께가 10 nm인 적층형 유기 전계발광 장치.
  10. 제 1 항에 있어서, 상기 유기 전계발광 유닛들 모두가 동일한 구조인 적층형 유기 전계발광 장치.
  11. 제 1 항에 있어서, 상기 유기 전계발광 유닛들 중 적어도 하나가 적어도 하나의 다른 유기 전계발광 유닛과 상이한 구조인 적층형 유기 전계발광 장치.
  12. 제 1 항에 있어서, 상기 유기 전계발광 유닛이 적어도 3개 존재하고, 상기 도전체 박막층이 n형 도핑 유기 층, p형 도핑 유기 층, 또는 이들의 조합을 포함하는 적층형 유기 전계발광 장치.
  13. 제 1 항에 있어서, 상기 유기 전계발광 유닛들 중 적어도 하나가 삼중항 방사체(triplet emitter)인 적층형 유기 전계발광 장치.
  14. 제 2 항에 있어서, 상기 n형 도핑 유기 층은, 전자 수송을 보조할 수 있는 적어도 하나의 유기 재료와, 적어도 하나의 n형 도펀트를 포함하는 적층형 유기 전계발광 장치.
  15. 제 3 항에 있어서, 상기 p형 도핑 유기 층은, 정공 수송을 보조할 수 있는 적어도 하나의 유기 재료와, 적어도 하나의 p형 도펀트를 포함하는 적층형 유기 전계발광 장치.
  16. 제 14 항에 있어서, 상기 n형 도핑 유기 층의 상기 유기 재료는 Alq3를 포함하는 적층형 유기 전계발광 장치.
  17. 제 14 항에 있어서, 상기 n형 도핑 유기 층 내의 상기 n형 도펀트는, 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있도록 강한 전자 공여성을 가지는 유기 화합물 도너를 포함하는 적층형 유기 전계발광 장치.
  18. 제 17 항에 있어서, 상기 n형 도핑 유기 층 내의 상기 n형 도펀트는 비스(에틸렌디티오)-테트라티아풀발렌(BEDT-TTF), 테트라티아풀발렌(TTF), 이들의 유도체, 또는 이들의 조합을 포함하는 적층형 유기 전계발광 장치.
  19. 제 14 항에 있어서, n형 도핑 농도가 2 mol%인 적층형 유기 전계발광 장치.
  20. 제 15 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는, 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있는 무기 억셉터를 포함하는 적층형 유기 전계발광 장치.
  21. 제 20 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는 FeCl3 또는 그의 조합물을 포함하는 적층형 유기 전계발광 장치.
  22. 제 15 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있도록 강한 전자 수용성을 가지는 유기 화합물 억셉터를 포함하는 적층형 유기 전계발광 장치.
  23. 제 15 항에 있어서, p형 도핑 농도가 2 mol%인 적층형 유기 전계발광 장치.
  24. 제 4 항에 있어서, 상기 도전체 박막층은 서로 인접하여 배치된 n형 도핑 유기 층과 p형 도핑 유기 층을 포함하고, 상기 n형 도핑 유기 층은 상기 양극측에 배치되고, 상기 p형 도핑 유기 층은 상기 음극측에 배치되는 적층형 유기 전계발광 장치.
  25. 제 24 항에 있어서, 상기 n형 도핑 유기 층은, 전자 수송을 보조할 수 있는 적어도 하나의 유기 재료와, 적어도 하나의 n형 도펀트를 포함하고, 상기 p형 도핑 유기 층은, 정공 수송을 보조할 수 있는 적어도 하나의 유기 재료와, 적어도 하나의 p형 도펀트를 포함하는 적층형 유기 전계발광 장치.
  26. 제 25 항에 있어서, 상기 n형 도핑 유기 층의 상기 유기 재료는 Alq3를 포함하는 적층형 유기 전계발광 장치.
  27. 제 25 항에 있어서, 상기 n형 도핑 유기 층 내의 상기 n형 도펀트는, 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있는, 강한 전자 공여성을 가지는 유기 화합물 도너를 포함하는 적층형 유기 전계발광 장치.
  28. 제 27 항에 있어서, 상기 n형 도핑 유기 층 내의 상기 n형 도펀트는 비스(에틸렌디티오)-테트라티아풀발렌(BEDT-TTF), 테트라티아풀발렌(TTF), 이들의 유도체, 또는 이들의 조합을 포함하는 적층형 유기 전계발광 장치.
  29. 제 25 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는, 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있는 무기 억셉터를 포함하는 적층 형 유기 전계발광 장치.
  30. 제 29 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는 FeCl3 또는 그의 조합물을 포함하는 적층형 유기 전계발광 장치.
  31. 제 25 항에 있어서, 상기 p형 도핑 유기 층 내의 상기 p형 도펀트는 상기 유기 재료와 함께 전하 이동 착체를 형성할 수 있는, 강한 전자 수용성을 가지는 유기 화합물 억셉터를 포함하는 적층형 유기 전계발광 장치.
  32. 제 25 항에 있어서, n형 도핑 농도와 p형 도핑 농도 각각이 2 mol%인 적층형 유기 전계발광 장치.
  33. 제 2 항, 제 3 항, 제 4 항 중 어느 한 항에 있어서, 황색 발광 유닛과 청색 발광 유닛이 조합하여 백색 광을 생성하도록 적어도 2개의 유기 전계발광 유닛을 포함하는 적층형 유기 전계발광 장치.
  34. 제 2 항, 제 3 항, 제 4 항 중 어느 한 항에 있어서, 상기 유기 전계발광 유닛들이 동일한 색을 발광하는 적층형 유기 전계발광 장치.
  35. 적어도 2개의 유기 전계발광 유닛을 가지는 적층형 유기 전계발광 장치를 제작하는 방법으로서,
    양극에 접속되는 제1 유기 전계발광 유닛과, 음극에 접속되는 제2 유기 전계발광 유닛을 제공하는 공정과;
    적어도 상기 제1 유기 전계발광 유닛과 상기 제2 유기 전계발광 유닛을 접속하는 도전체 박막층으로서, 상기 적층형 유기 전계발광 장치가 단일의 양극 및 음극만을 가지도록, 각각의 인접한 유기 전계발광 유닛들 사이에 배치되는 도전체 박막층을 제공하는 공정을 포함하는 적층형 유기 전계발광 장치 제작방법.
  36. 제 35 항에 있어서, 상기 제1 유기 전계발광 유닛과 상기 제2 유기 전계발광 유닛 사이에 하나 또는 그 이상의 중간 유기 전계발광 유닛이 더 배치되고, 그 중간 유기 전계발광 유닛은 양극이나 음극 없이 형성되고, 또한, 상기 적층형 유기 전계발광 장치 내에 상기 중간 유기 전계발광 유닛을 고정시키는 도전체 박막층을 사용하여 형성되는 적층형 유기 전계발광 장치 제작방법.
  37. 제 35 항에 있어서, 향상된 발광 효율을 제공하도록 상기 유기 전계발광 유닛들을 선택하는 공정을 더 포함하는 적층형 유기 전계발광 장치 제작방법.
  38. 제 37 항에 있어서, 상기 유기 전계발광 유닛의 수가 발광 효율의 향상 정도에 따라 선택되는 적층형 유기 전계발광 장치 제작방법.
KR1020080015351A 2001-12-05 2008-02-20 적층형 유기 전계발광 장치 및 그의 제조방법 KR100930312B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00370980 2001-12-05
JP2001370980 2001-12-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020020076877A Division KR100923739B1 (ko) 2001-12-05 2002-12-05 유기 반도체 소자

Publications (2)

Publication Number Publication Date
KR20080025385A true KR20080025385A (ko) 2008-03-20
KR100930312B1 KR100930312B1 (ko) 2009-12-08

Family

ID=19180108

Family Applications (9)

Application Number Title Priority Date Filing Date
KR1020020076877A KR100923739B1 (ko) 2001-12-05 2002-12-05 유기 반도체 소자
KR1020070122691A KR100866632B1 (ko) 2001-12-05 2007-11-29 전자 장치
KR1020080015351A KR100930312B1 (ko) 2001-12-05 2008-02-20 적층형 유기 전계발광 장치 및 그의 제조방법
KR1020090045072A KR100955897B1 (ko) 2001-12-05 2009-05-22 유기 반도체 소자를 이용한 전자장치
KR1020090060304A KR101153471B1 (ko) 2001-12-05 2009-07-02 유기 반도체 소자를 이용한 태양전지
KR1020100021770A KR101206943B1 (ko) 2001-12-05 2010-03-11 백색 발광 발광장치
KR1020110023371A KR101219747B1 (ko) 2001-12-05 2011-03-16 발광장치
KR1020110051294A KR101424795B1 (ko) 2001-12-05 2011-05-30 발광장치
KR1020120148801A KR101465194B1 (ko) 2001-12-05 2012-12-18 발광장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020020076877A KR100923739B1 (ko) 2001-12-05 2002-12-05 유기 반도체 소자
KR1020070122691A KR100866632B1 (ko) 2001-12-05 2007-11-29 전자 장치

Family Applications After (6)

Application Number Title Priority Date Filing Date
KR1020090045072A KR100955897B1 (ko) 2001-12-05 2009-05-22 유기 반도체 소자를 이용한 전자장치
KR1020090060304A KR101153471B1 (ko) 2001-12-05 2009-07-02 유기 반도체 소자를 이용한 태양전지
KR1020100021770A KR101206943B1 (ko) 2001-12-05 2010-03-11 백색 발광 발광장치
KR1020110023371A KR101219747B1 (ko) 2001-12-05 2011-03-16 발광장치
KR1020110051294A KR101424795B1 (ko) 2001-12-05 2011-05-30 발광장치
KR1020120148801A KR101465194B1 (ko) 2001-12-05 2012-12-18 발광장치

Country Status (7)

Country Link
US (8) US7956349B2 (ko)
EP (3) EP1318553B1 (ko)
JP (16) JP2008171832A (ko)
KR (9) KR100923739B1 (ko)
CN (7) CN1738502B (ko)
SG (4) SG176316A1 (ko)
TW (4) TWI300627B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139607A3 (ko) * 2008-05-16 2010-02-18 주식회사 엘지화학 적층형 유기발광소자

Families Citing this family (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG176316A1 (en) 2001-12-05 2011-12-29 Semiconductor Energy Lab Organic semiconductor element
US6872472B2 (en) * 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
JP4060113B2 (ja) * 2002-04-05 2008-03-12 株式会社半導体エネルギー研究所 発光装置
JP2003303683A (ja) * 2002-04-09 2003-10-24 Semiconductor Energy Lab Co Ltd 発光装置
EP1367659B1 (en) * 2002-05-21 2012-09-05 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
SG119187A1 (en) * 2002-06-28 2006-02-28 Semiconductor Energy Lab Light emitting device and manufacturing method therefor
US7045955B2 (en) * 2002-08-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence element and a light emitting device using the same
TWI272874B (en) * 2002-08-09 2007-02-01 Semiconductor Energy Lab Organic electroluminescent device
EP1388903B1 (en) 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
US6717358B1 (en) * 2002-10-09 2004-04-06 Eastman Kodak Company Cascaded organic electroluminescent devices with improved voltage stability
WO2004046275A1 (ja) * 2002-11-21 2004-06-03 Semiconductor Energy Laboratory Co., Ltd 電界発光素子および発光装置
TWI232066B (en) * 2002-12-25 2005-05-01 Au Optronics Corp Manufacturing method of organic light emitting diode for reducing reflection of external light
AU2003289392A1 (en) 2002-12-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element
JPWO2004068911A1 (ja) * 2003-01-29 2006-05-25 株式会社半導体エネルギー研究所 発光装置
US7333072B2 (en) * 2003-03-24 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device
JP3976700B2 (ja) * 2003-03-24 2007-09-19 独立行政法人科学技術振興機構 極薄分子結晶を用いたアバランシェ増幅型フォトセンサー及びその製造方法
JP4519423B2 (ja) * 2003-05-30 2010-08-04 創世理工株式会社 半導体を用いた光デバイス
JP4351869B2 (ja) * 2003-06-10 2009-10-28 隆 河東田 半導体を用いた電子デバイス
DE10326547A1 (de) * 2003-06-12 2005-01-05 Siemens Ag Tandemsolarzelle mit einer gemeinsamen organischen Elektrode
US6903378B2 (en) * 2003-06-26 2005-06-07 Eastman Kodak Company Stacked OLED display having improved efficiency
KR101164687B1 (ko) * 2003-07-02 2012-07-11 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 이를 이용한 표시 장치
US7504049B2 (en) * 2003-08-25 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode device for organic device, electronic device having electrode device for organic device, and method of forming electrode device for organic device
US7511421B2 (en) * 2003-08-25 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Mixed metal and organic electrode for organic device
DE10339772B4 (de) * 2003-08-27 2006-07-13 Novaled Gmbh Licht emittierendes Bauelement und Verfahren zu seiner Herstellung
US7502392B2 (en) 2003-09-12 2009-03-10 Semiconductor Energy Laboratory Co., Ltd. Laser oscillator
DE10345403A1 (de) * 2003-09-30 2005-04-28 Infineon Technologies Ag Material und Zellenaufbau für Speicheranwendungen
WO2005064995A1 (en) 2003-12-26 2005-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
KR100581634B1 (ko) * 2004-03-04 2006-05-22 한국과학기술연구원 고분자 나노 절연막을 함유한 고효율 고분자 전기발광 소자
EP2254390B1 (en) * 2004-03-26 2012-07-04 Panasonic Corporation Organic light emitting element
JP2005294715A (ja) * 2004-04-05 2005-10-20 Fuji Photo Film Co Ltd 撮像素子及び撮像方法
WO2005104072A1 (en) * 2004-04-22 2005-11-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and driving method of the same
EP1749423A4 (en) * 2004-04-28 2010-09-22 Semiconductor Energy Lab LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING THE SAME, AND LIGHT EMITTING DEVICE USING THE LIGHT EMITTING ELEMENT
US20050274609A1 (en) * 2004-05-18 2005-12-15 Yong Chen Composition of matter which results in electronic switching through intra- or inter- molecular charge transfer, or charge transfer between molecules and electrodes induced by an electrical field
US8018152B2 (en) 2004-05-20 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including intermediate conductive layer having a hole-injection layer with an island-like structure
KR101215860B1 (ko) * 2004-05-21 2012-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자 및 그 소자를 사용하는 발광 장치
JP4027914B2 (ja) 2004-05-21 2007-12-26 株式会社半導体エネルギー研究所 照明装置及びそれを用いた機器
CN101640254B (zh) 2004-05-21 2016-01-20 株式会社半导体能源研究所 发光元件和发光设备
JP4461367B2 (ja) * 2004-05-24 2010-05-12 ソニー株式会社 表示素子
US7733441B2 (en) * 2004-06-03 2010-06-08 Semiconductor Energy Labortory Co., Ltd. Organic electroluminescent lighting system provided with an insulating layer containing fluorescent material
JP2006295104A (ja) 2004-07-23 2006-10-26 Semiconductor Energy Lab Co Ltd 発光素子およびそれを用いた発光装置
EP1782487B1 (en) * 2004-08-03 2013-03-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
EP1624502B1 (en) 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
US7196366B2 (en) * 2004-08-05 2007-03-27 The Trustees Of Princeton University Stacked organic photosensitive devices
US8248392B2 (en) * 2004-08-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device using light emitting element and driving method of light emitting element, and lighting apparatus
WO2006022194A1 (en) * 2004-08-23 2006-03-02 Semiconductor Energy Laboratory Co., Ltd. Electron injecting composition, and light emitting element and light emitting device using the electron injecting composition
JP4543250B2 (ja) * 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 蛍光体混合物および発光装置
EP2299779A3 (en) * 2004-09-13 2011-05-04 Semiconductor Energy Laboratory Co, Ltd. Light emitting layer device
CN101032040B (zh) * 2004-09-30 2012-05-30 株式会社半导体能源研究所 发光元件和发光设备
WO2006049323A1 (en) 2004-11-05 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light emitting device using the same
WO2006049334A1 (en) * 2004-11-05 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7989694B2 (en) * 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
US7667389B2 (en) * 2004-12-06 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
JP4496948B2 (ja) * 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
JP4712372B2 (ja) * 2004-12-16 2011-06-29 株式会社半導体エネルギー研究所 発光装置
US20060131567A1 (en) * 2004-12-20 2006-06-22 Jie Liu Surface modified electrodes and devices using reduced organic materials
JP4603370B2 (ja) * 2005-01-18 2010-12-22 創世理工株式会社 基板上に作製された半導体光デバイスおよびその作製方法
JP5089020B2 (ja) * 2005-01-19 2012-12-05 創世理工株式会社 基板上に作製された半導体電子デバイス
US8237048B2 (en) * 2005-03-04 2012-08-07 Panasonic Corporation Multilayer organic solar cell
US8026531B2 (en) 2005-03-22 2011-09-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2006269351A (ja) * 2005-03-25 2006-10-05 Aitesu:Kk トップエミッション型マルチフォトン有機el表示パネル
JP5023456B2 (ja) * 2005-03-28 2012-09-12 大日本印刷株式会社 有機薄膜太陽電池素子
US7926726B2 (en) * 2005-03-28 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Survey method and survey system
US7755275B2 (en) * 2005-03-28 2010-07-13 Panasonic Corporation Cascaded light emitting devices based on mixed conductor electroluminescence
US8125144B2 (en) 2005-04-11 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and vapor deposition apparatus
US7745019B2 (en) * 2005-04-28 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device and method of manufacturing light emitting element
US20060244373A1 (en) * 2005-04-28 2006-11-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing thereof
US8487527B2 (en) * 2005-05-04 2013-07-16 Lg Display Co., Ltd. Organic light emitting devices
US7943244B2 (en) * 2005-05-20 2011-05-17 Lg Display Co., Ltd. Display device with metal-organic mixed layer anodes
TWI295900B (en) 2005-06-16 2008-04-11 Au Optronics Corp Method for improving color-shift of serially connected organic electroluminescence device
KR101351816B1 (ko) * 2005-07-06 2014-01-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 및 전자 기기
CN100426938C (zh) * 2005-07-07 2008-10-15 友达光电股份有限公司 改善串联式有机电激发光元件色偏的方法
US20070181179A1 (en) 2005-12-21 2007-08-09 Konarka Technologies, Inc. Tandem photovoltaic cells
KR100712214B1 (ko) * 2005-07-14 2007-04-27 삼성에스디아이 주식회사 유기전계발광표시소자
US20070267055A1 (en) * 2005-07-14 2007-11-22 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US20080006324A1 (en) * 2005-07-14 2008-01-10 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
US7781673B2 (en) * 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US7772485B2 (en) * 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
TWI321968B (en) * 2005-07-15 2010-03-11 Lg Chemical Ltd Organic light meitting device and method for manufacturing the same
CN102163697B (zh) * 2005-07-25 2015-09-16 株式会社半导体能源研究所 发光元件,发光器件,和电子设备
US7635858B2 (en) * 2005-08-10 2009-12-22 Au Optronics Corporation Organic light-emitting device with improved layer conductivity distribution
JP4951224B2 (ja) * 2005-08-23 2012-06-13 富士フイルム株式会社 光電変換膜、光電変換素子、及び撮像素子、並びに、これらに電場を印加する方法
JP2007059517A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 光電変換膜、光電変換素子、及び撮像素子、並びに、これらに電場を印加する方法
JP3895356B1 (ja) 2005-10-17 2007-03-22 パイオニア株式会社 表示装置、表示方法、表示プログラム、および記録媒体
EP1784055A3 (en) 2005-10-17 2009-08-05 Semiconductor Energy Laboratory Co., Ltd. Lighting system
US8017863B2 (en) * 2005-11-02 2011-09-13 The Regents Of The University Of Michigan Polymer wrapped carbon nanotube near-infrared photoactive devices
US7947897B2 (en) 2005-11-02 2011-05-24 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US8013240B2 (en) * 2005-11-02 2011-09-06 The Trustees Of Princeton University Organic photovoltaic cells utilizing ultrathin sensitizing layer
US8698392B2 (en) * 2006-02-07 2014-04-15 Sumitomo Chemical Company, Limited Organic electroluminescent element
US7528418B2 (en) * 2006-02-24 2009-05-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
TWI475737B (zh) 2006-03-08 2015-03-01 Semiconductor Energy Lab 發光元件、發光裝置及電子裝置
KR101027708B1 (ko) * 2006-03-20 2011-04-12 파나소닉 전공 주식회사 유기 박막 태양 전지
US8987589B2 (en) 2006-07-14 2015-03-24 The Regents Of The University Of Michigan Architectures and criteria for the design of high efficiency organic photovoltaic cells
US20080023059A1 (en) * 2006-07-25 2008-01-31 Basol Bulent M Tandem solar cell structures and methods of manufacturing same
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8008421B2 (en) * 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
JP2008112904A (ja) * 2006-10-31 2008-05-15 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP5030742B2 (ja) * 2006-11-30 2012-09-19 株式会社半導体エネルギー研究所 発光素子
KR100858936B1 (ko) * 2007-07-12 2008-09-18 경성대학교 산학협력단 양이온 함유 수용성 고분자층을 포함하는 고분자 유기 전계발광 소자 및 그 제조방법
EP2190832A2 (en) * 2007-09-10 2010-06-02 Yeda Research And Development Co. Ltd. Selenophenes and selenophene-based polymers, their preparation and uses thereof
TWI638583B (zh) * 2007-09-27 2018-10-11 半導體能源研究所股份有限公司 發光元件,發光裝置,與電子設備
EP2068380B1 (de) 2007-10-15 2011-08-17 Novaled AG Organisches elektrolumineszentes Bauelement
US7755156B2 (en) * 2007-12-18 2010-07-13 Palo Alto Research Center Incorporated Producing layered structures with lamination
US7586080B2 (en) * 2007-12-19 2009-09-08 Palo Alto Research Center Incorporated Producing layered structures with layers that transport charge carriers in which each of a set of channel regions or portions operates as an acceptable switch
US8283655B2 (en) 2007-12-20 2012-10-09 Palo Alto Research Center Incorporated Producing layered structures with semiconductive regions or subregions
EP2075860A3 (en) * 2007-12-28 2013-03-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device and electronic device
US20090208776A1 (en) * 2008-02-19 2009-08-20 General Electric Company Organic optoelectronic device and method for manufacturing the same
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
KR101493408B1 (ko) * 2008-03-11 2015-02-13 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그 구동 방법
TWI452046B (zh) * 2008-05-16 2014-09-11 Semiconductor Energy Lab 有機化合物,苯並唑衍生物,以及使用苯並唑衍生物之發光元件,發光裝置,和電子裝置
CN105957972A (zh) 2008-05-16 2016-09-21 株式会社半导体能源研究所 发光元件、电子设备和照明装置
DE102008029782A1 (de) * 2008-06-25 2012-03-01 Siemens Aktiengesellschaft Photodetektor und Verfahren zur Herstellung dazu
KR102112799B1 (ko) 2008-07-10 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광장치 및 전자기기
US8455606B2 (en) * 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
WO2010045308A2 (en) * 2008-10-14 2010-04-22 Drexel University Polymer dispersed liquid crystal photovoltaic device and method for making
TWI522007B (zh) 2008-12-01 2016-02-11 半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子裝置
US8603642B2 (en) * 2009-05-13 2013-12-10 Global Oled Technology Llc Internal connector for organic electronic devices
US8389979B2 (en) * 2009-05-29 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
EP2436233B1 (en) * 2009-05-29 2016-08-10 Semiconductor Energy Laboratory Co, Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
EP2448033A4 (en) * 2009-06-23 2014-07-23 Sumitomo Chemical Co ORGANIC ELECTROLUMINESCENT ELEMENT
US8525407B2 (en) * 2009-06-24 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Light source and device having the same
US8169137B2 (en) * 2009-07-14 2012-05-01 Semiconductor Energy Laboratory Co., Ltd. Light source and device using electroluminescence element
US8987726B2 (en) 2009-07-23 2015-03-24 Kaneka Corporation Organic electroluminescent element
EP2458942A4 (en) 2009-07-23 2012-12-26 Kaneka Corp ORGANIC ELECTROLUMINESCENT ELEMENT
TWI393282B (zh) 2009-08-11 2013-04-11 Univ Nat Taiwan 具有電極反轉結構之可撓性光電元件及其製作方法
TWI491087B (zh) 2009-08-26 2015-07-01 Univ Nat Taiwan 用於有機光電元件之過渡金屬氧化物的懸浮液或溶液、其製作方法與應用
JP5624140B2 (ja) * 2009-09-01 2014-11-12 コーニンクレッカ フィリップス エヌ ヴェ 電源を含む照明装置
WO2011027657A1 (en) * 2009-09-07 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, lighting device, and electronic device
US8771840B2 (en) 2009-11-13 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
TWI407609B (zh) * 2009-11-27 2013-09-01 Univ Nat Taiwan 有機/無機三明治結構之光電元件及其製作方法
WO2011068857A2 (en) * 2009-12-02 2011-06-09 Versatilis Llc Static-electrical-field-enhanced semiconductor-based devices and methods of enhancing semiconductor-based device performance
KR101094282B1 (ko) * 2009-12-04 2011-12-19 삼성모바일디스플레이주식회사 유기 발광 장치
EP2365556B1 (en) 2010-03-08 2014-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN102201541B (zh) * 2010-03-23 2015-11-25 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
TWI506121B (zh) 2010-03-31 2015-11-01 Semiconductor Energy Lab 發光元件,發光裝置,電子裝置以及照明裝置
JP5801579B2 (ja) 2010-03-31 2015-10-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、及び照明装置
JP2012009420A (ja) 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd 発光装置及び照明装置
WO2011162105A1 (en) 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display, and electronic device
KR101182268B1 (ko) * 2010-07-09 2012-09-12 삼성디스플레이 주식회사 유기 발광 장치
DE102010031979B4 (de) * 2010-07-22 2014-10-30 Novaled Ag Halbleiterbauelement, Verfahren zu dessen Herstellung, Verwendung des Halbleiterbauelementes und Inverter mit zwei Halbleiterbauelementen
WO2012014759A1 (en) 2010-07-26 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and manufacturing method of light-emitting device
JP2012038523A (ja) * 2010-08-05 2012-02-23 Seiko Epson Corp 発光素子、発光装置、表示装置および電子機器
KR101117127B1 (ko) * 2010-08-06 2012-02-24 한국과학기술연구원 비정질 실리콘 태양전지와 유기 태양전지를 이용한 탠덤형 태양전지
CN103229313A (zh) * 2010-09-14 2013-07-31 密歇根大学董事会 作为无机太阳能电池窗口层的有机半导体
US8496341B2 (en) 2010-10-07 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Lighting device
KR101365824B1 (ko) 2010-10-22 2014-02-20 엘지디스플레이 주식회사 유기전계발광소자
KR101950363B1 (ko) 2010-10-29 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 페난트렌 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP5827104B2 (ja) 2010-11-19 2015-12-02 株式会社半導体エネルギー研究所 照明装置
WO2012075639A1 (zh) * 2010-12-09 2012-06-14 海洋王照明科技股份有限公司 一种双面发光的有机电致发光器件及其制备方法
DE102010056519A1 (de) * 2010-12-27 2012-06-28 Heliatek Gmbh Optoelektronisches Bauelement mit dotierten Schichten
US9516713B2 (en) 2011-01-25 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
TWI647973B (zh) 2011-02-11 2019-01-11 日商半導體能源研究所股份有限公司 發光元件、發光裝置以及顯示裝置
CN102683597B (zh) * 2011-03-09 2015-06-03 海洋王照明科技股份有限公司 一种白光电致发光器件及其制备方法
EP3260458B1 (en) 2011-03-10 2019-09-18 Kyoto University Polycyclic aromatic compound
JP5760630B2 (ja) 2011-04-18 2015-08-12 セイコーエプソン株式会社 有機el装置およびその製造方法、電子機器
KR101917752B1 (ko) 2011-05-11 2018-11-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 모듈, 발광 패널, 발광 장치
KR101271483B1 (ko) * 2011-06-17 2013-06-05 한국항공대학교산학협력단 사용자 인식기능을 이용하는 지능형 양방향 광고 단말기
WO2013008765A1 (en) 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
JP2013058562A (ja) 2011-09-07 2013-03-28 Semiconductor Energy Lab Co Ltd 光電変換装置
US9105852B2 (en) 2012-02-17 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Bipyridine compound, light-emitting element material, organic semiconductor material, light-emitting element, display module, lighting module, light-emitting device, lighting device, display device and electronic device
DE102012204432B4 (de) * 2012-03-20 2018-06-07 Osram Oled Gmbh Elektronische Struktur, aufweisend mindestens eine Metall-Aufwachsschicht sowie Verfahren zur Herstellung einer elektronischen Struktur
JPWO2013147031A1 (ja) 2012-03-30 2015-12-14 国立研究開発法人産業技術総合研究所 炭素電極を用いたアクチュエータ素子
US9793444B2 (en) 2012-04-06 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
CN103378307A (zh) * 2012-04-28 2013-10-30 海洋王照明科技股份有限公司 叠层有机电致发光器件及其制备方法
TWI588540B (zh) 2012-05-09 2017-06-21 半導體能源研究所股份有限公司 顯示裝置和電子裝置
TWI675222B (zh) 2012-05-09 2019-10-21 日商半導體能源研究所股份有限公司 驅動半導體裝置的方法
WO2014030666A1 (ja) 2012-08-24 2014-02-27 コニカミノルタ株式会社 透明電極、電子デバイス、および透明電極の製造方法
WO2014072873A1 (en) * 2012-11-06 2014-05-15 Empire Technology Development Llc Bi-polar organic semiconductors for thermoelectric power generation
US9882109B2 (en) 2012-11-06 2018-01-30 Empire Technology Development Llc Bi-polar organic semiconductors for thermoelectric power generation
WO2014089066A1 (en) * 2012-12-03 2014-06-12 The University Of Akron An organic polymer photo device with broadband response and increased photo-responsitivity
JP6155020B2 (ja) 2012-12-21 2017-06-28 株式会社半導体エネルギー研究所 発光装置及びその製造方法
JP6124584B2 (ja) 2012-12-21 2017-05-10 株式会社半導体エネルギー研究所 発光装置及びその製造方法
CN104037330A (zh) * 2013-03-06 2014-09-10 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
JP6314974B2 (ja) 2013-03-29 2018-04-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
JP6350518B2 (ja) 2013-03-29 2018-07-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
KR101798307B1 (ko) 2013-03-29 2017-11-15 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
CN104253243A (zh) * 2013-06-26 2014-12-31 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
KR101666781B1 (ko) * 2013-06-28 2016-10-17 엘지디스플레이 주식회사 유기 발광 소자
DE102013106949A1 (de) * 2013-07-02 2015-01-08 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, organische funktionelle Schicht und Verfahren zur Herstellung eines optoelektronischen Bauelements
TWI633100B (zh) 2013-07-19 2018-08-21 半導體能源研究所股份有限公司 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置
TW202339325A (zh) 2013-08-09 2023-10-01 日商半導體能源研究所股份有限公司 發光元件、顯示模組、照明模組、發光裝置、顯示裝置、電子裝置、及照明裝置
US10100415B2 (en) * 2014-03-21 2018-10-16 Hypersolar, Inc. Multi-junction artificial photosynthetic cell with enhanced photovoltages
TWI754193B (zh) 2014-04-30 2022-02-01 日商半導體能源研究所股份有限公司 發光元件、發光裝置、照明裝置、及電子設備
KR102520463B1 (ko) 2014-05-30 2023-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
KR20160049974A (ko) * 2014-10-28 2016-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자기기, 및 조명 장치
JP2016142981A (ja) * 2015-02-04 2016-08-08 株式会社東芝 自給電型表示装置
JP5831654B1 (ja) 2015-02-13 2015-12-09 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
US10991894B2 (en) 2015-03-19 2021-04-27 Foundation Of Soongsil University-Industry Cooperation Compound of organic semiconductor and organic semiconductor device using the same
JP6788314B2 (ja) 2016-01-06 2020-11-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP2017139342A (ja) * 2016-02-04 2017-08-10 日立化成株式会社 有機発光素子
US10524319B2 (en) 2016-02-10 2019-12-31 Konica Minolta, Inc. Organic electroluminescent light emitting device
US10340470B2 (en) 2016-02-23 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting apparatus
KR20170128664A (ko) 2016-05-12 2017-11-23 삼성디스플레이 주식회사 유기 발광 소자
KR102675576B1 (ko) * 2016-07-04 2024-06-18 삼성디스플레이 주식회사 유기 발광 표시 장치
WO2018037791A1 (ja) 2016-08-24 2018-03-01 コニカミノルタ株式会社 有機エレクトロルミネッセンス発光装置
CN106450023A (zh) 2016-12-26 2017-02-22 深圳市华星光电技术有限公司 有机发光器件及有机发光显示器
KR102527664B1 (ko) 2018-04-24 2023-05-04 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
WO2019234562A1 (ja) 2018-06-06 2019-12-12 株式会社半導体エネルギー研究所 発光装置、表示装置および電子機器
JPWO2019234543A1 (ja) 2018-06-06 2021-07-26 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
US10770482B2 (en) 2018-06-06 2020-09-08 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11575013B2 (en) 2018-11-02 2023-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US12058878B2 (en) 2018-12-21 2024-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, light-emitting module, lighting device, display apparatus, display module, and electronic device
TW202036954A (zh) 2018-12-28 2020-10-01 日商半導體能源研究所股份有限公司 發光裝置、照明裝置、顯示裝置、模組及電子機器
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
CN113994494A (zh) 2019-07-12 2022-01-28 株式会社半导体能源研究所 功能面板、显示装置、输入输出装置、数据处理装置
CN110513605B (zh) * 2019-08-20 2020-12-29 西安鸿钧睿泽新材料科技有限公司 一种具有自发光功能的园林景观灯及其制造方法
WO2021069999A1 (ja) 2019-10-11 2021-04-15 株式会社半導体エネルギー研究所 機能パネル、表示装置、入出力装置、情報処理装置
KR20210056259A (ko) 2019-11-08 2021-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 전자 기기, 및 조명 장치
JP2023142463A (ja) 2022-03-25 2023-10-05 株式会社デンソー 運転操作支援装置

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713778Y2 (ko) 1976-03-19 1982-03-19
JPS55140277U (ko) 1979-03-28 1980-10-06
JPS55140277A (en) * 1979-04-19 1980-11-01 Ricoh Co Ltd Organic phtotovoltaic element
US4255211A (en) * 1979-12-31 1981-03-10 Chevron Research Company Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
JPS577115A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Organic semiconductor material
US4292461A (en) 1980-06-20 1981-09-29 International Business Machines Corporation Amorphous-crystalline tandem solar cell
JPS5750481A (en) 1980-09-12 1982-03-24 Toray Ind Inc Solar battery
JPS57124481A (en) 1981-01-27 1982-08-03 Nippon Telegr & Teleph Corp <Ntt> Solar cell and its manufacture
JPS6028278Y2 (ja) 1982-03-04 1985-08-27 ツインバ−ド工業株式会社 複合材食器
JPS5952702U (ja) 1982-09-29 1984-04-06 三菱電機株式会社 単投双極形半導体スイツチ
JPS6028278A (ja) 1983-07-26 1985-02-13 Mitsubishi Electric Corp 光電変換素子
JPS6028278U (ja) 1983-08-02 1985-02-26 株式会社 丸島水門製作所 小水力発電設備
US4552927A (en) 1983-09-09 1985-11-12 Rockwell International Corporation Conducting organic polymer based on polypyrrole
US4878097A (en) * 1984-05-15 1989-10-31 Eastman Kodak Company Semiconductor photoelectric conversion device and method for making same
US4950614A (en) * 1984-05-15 1990-08-21 Semiconductor Energy Laboratory Co., Ltd. Method of making a tandem type semiconductor photoelectric conversion device
US4741976A (en) * 1984-07-31 1988-05-03 Canon Kabushiki Kaisha Electroluminescent device
JPS61204173A (ja) * 1985-03-07 1986-09-10 Takasago Corp 導電性有機化合物
US4871236A (en) 1985-09-18 1989-10-03 Kabushiki Kaisha Toshiba Organic thin film display element
JPS636882A (ja) * 1986-06-26 1988-01-12 ザ スタンダ−ド オイル カンパニ− タンデム構成の光電池装置
DE3700792C2 (de) 1987-01-13 1996-08-22 Hoegl Helmut Photovoltaische Solarzellenanordnung und Verfahren zu ihrer Herstellung
JP2520247B2 (ja) * 1987-02-12 1996-07-31 日本カ−リツト株式会社 表面の透明導電化方法
US5093210A (en) * 1989-06-30 1992-03-03 Ricoh Company, Ltd. Electroluminescent device
EP0418833A3 (en) 1989-09-20 1993-03-17 Hitachi, Ltd. Organic thin film and liquid crystal display devices with the same
JPH03105315A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd 液晶表元装置
JPH03125478A (ja) * 1989-10-11 1991-05-28 Olympus Optical Co Ltd 有機半導体を用いた電子素子の製造方法
JPH03272186A (ja) * 1990-03-22 1991-12-03 Sumitomo Electric Ind Ltd タンデム構造超高効率太陽電池
JPH0447609A (ja) * 1990-06-12 1992-02-17 Shin Etsu Polymer Co Ltd 透明導電体
US5364654A (en) 1990-06-14 1994-11-15 Idemitsu Kosan Co., Ltd. Process for production of a thin film electrode and an electroluminescence device
JP2884723B2 (ja) 1990-06-18 1999-04-19 富士通株式会社 薄膜半導体装置およびその製造方法
JPH04192376A (ja) 1990-11-22 1992-07-10 Sekisui Chem Co Ltd タンデム型有機太陽電池
JPH0831616B2 (ja) * 1990-11-22 1996-03-27 積水化学工業株式会社 タンデム型有機太陽電池
US5684320A (en) 1991-01-09 1997-11-04 Fujitsu Limited Semiconductor device having transistor pair
US5093698A (en) 1991-02-12 1992-03-03 Kabushiki Kaisha Toshiba Organic electroluminescent device
JPH05121770A (ja) * 1991-10-29 1993-05-18 Ricoh Co Ltd 有機光起電力素子
US5294870A (en) * 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells
JPH06122277A (ja) * 1992-08-27 1994-05-06 Toshiba Corp アモルファス有機薄膜素子およびアモルファス有機ポリマー組成物
JP2605555B2 (ja) 1992-09-14 1997-04-30 富士ゼロックス株式会社 無機薄膜el素子
JPH06120535A (ja) 1992-10-07 1994-04-28 Ricoh Co Ltd 有機光起電力素子
JP3189438B2 (ja) 1992-12-04 2001-07-16 富士電機株式会社 有機薄膜発光素子
JP3243311B2 (ja) 1992-12-15 2002-01-07 キヤノン株式会社 電界発光素子
JP3137494B2 (ja) * 1993-04-22 2001-02-19 三菱電機株式会社 電界発光素子およびこれを用いた表示装置
JPH06318725A (ja) 1993-05-10 1994-11-15 Ricoh Co Ltd 光起電力素子およびその製造方法
GB9317932D0 (en) 1993-08-26 1993-10-13 Cambridge Display Tech Ltd Electroluminescent devices
US5682043A (en) * 1994-06-28 1997-10-28 Uniax Corporation Electrochemical light-emitting devices
JP2002516629A (ja) * 1994-08-11 2002-06-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 固体画像増倍器及び固体画像増倍器からなるx線検査装置
US6358631B1 (en) * 1994-12-13 2002-03-19 The Trustees Of Princeton University Mixed vapor deposited films for electroluminescent devices
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5858561A (en) * 1995-03-02 1999-01-12 The Ohio State University Bipolar electroluminescent device
WO1996033594A1 (en) 1995-04-18 1996-10-24 Cambridge Display Technology Limited Electroluminescent device
US5677546A (en) * 1995-05-19 1997-10-14 Uniax Corporation Polymer light-emitting electrochemical cells in surface cell configuration
JP4477150B2 (ja) * 1996-01-17 2010-06-09 三星モバイルディスプレイ株式會社 有機薄膜el素子
JP3808534B2 (ja) * 1996-02-09 2006-08-16 Tdk株式会社 画像表示装置
US6048630A (en) * 1996-07-02 2000-04-11 The Trustees Of Princeton University Red-emitting organic light emitting devices (OLED's)
JP3159071B2 (ja) * 1996-08-01 2001-04-23 株式会社日立製作所 放熱フィンを有する電気装置
DE69724129T2 (de) * 1996-09-04 2004-02-26 Cambridge Display Technology Ltd. Lichtemittierende organische vorrichtungen mit verbesserter kathode
JP3173395B2 (ja) * 1996-11-26 2001-06-04 富士ゼロックス株式会社 電荷輸送性材料及びそれに用いる電荷輸送性微粒子の製造方法
US6187457B1 (en) * 1996-11-27 2001-02-13 Tdk Corporation Organic EL element and method of producing the same
JPH10199678A (ja) 1996-12-28 1998-07-31 Casio Comput Co Ltd 電界発光素子
JP4486713B2 (ja) * 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
JPH10270171A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
US5757139A (en) 1997-02-03 1998-05-26 The Trustees Of Princeton University Driving circuit for stacked organic light emitting devices
US5917280A (en) * 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
JP3744103B2 (ja) 1997-02-21 2006-02-08 双葉電子工業株式会社 有機エレクトロルミネッセンス素子
US5981970A (en) 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
KR100248392B1 (ko) * 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JPH1115408A (ja) 1997-06-20 1999-01-22 Casio Comput Co Ltd 表示装置及びその駆動方法
US6337492B1 (en) * 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
KR100216930B1 (ko) 1997-09-01 1999-09-01 이서봉 공액 고분자 화합물을 이용한 전기발광소자의 제조법
AU2492399A (en) * 1998-02-02 1999-08-16 Uniax Corporation Image sensors made from organic semiconductors
JPH11250171A (ja) * 1998-02-26 1999-09-17 Sony Corp 光学読取装置
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
GB9806066D0 (en) * 1998-03-20 1998-05-20 Cambridge Display Tech Ltd Multilayer photovoltaic or photoconductive devices
JP3748491B2 (ja) 1998-03-27 2006-02-22 出光興産株式会社 有機エレクトロルミネッセンス素子
JPH11307261A (ja) * 1998-04-16 1999-11-05 Tdk Corp 有機el素子
JPH11307259A (ja) * 1998-04-23 1999-11-05 Tdk Corp 有機el素子
JPH11312585A (ja) * 1998-04-28 1999-11-09 Tdk Corp 有機el素子
JP3875401B2 (ja) 1998-05-12 2007-01-31 Tdk株式会社 有機el表示装置及び有機el素子
US6885147B2 (en) 1998-05-18 2005-04-26 Emagin Corporation Organic light emitting diode devices with improved anode stability
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US6657300B2 (en) 1998-06-05 2003-12-02 Lumileds Lighting U.S., Llc Formation of ohmic contacts in III-nitride light emitting devices
CN1941453A (zh) 1998-06-26 2007-04-04 出光兴产株式会社 发光器件
JP2000052591A (ja) 1998-08-11 2000-02-22 Futaba Corp 有機elプリントヘッド
JP3776600B2 (ja) 1998-08-13 2006-05-17 Tdk株式会社 有機el素子
JP3907142B2 (ja) * 1998-08-18 2007-04-18 富士フイルム株式会社 有機エレクトロルミネツセンス素子材料およびそれを使用した有機エレクトロルミネツセンス素子
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
CN102694124B (zh) 1998-08-19 2015-08-19 普林斯顿大学理事会 有机光敏光电器件
US6451415B1 (en) 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US6297495B1 (en) * 1998-08-19 2001-10-02 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with a top transparent electrode
US6278055B1 (en) * 1998-08-19 2001-08-21 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically series configuration
US6198092B1 (en) * 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with an electrically parallel configuration
US6198091B1 (en) * 1998-08-19 2001-03-06 The Trustees Of Princeton University Stacked organic photosensitive optoelectronic devices with a mixed electrical configuration
CN1281544C (zh) * 1998-08-31 2006-10-25 出光兴产株式会社 透明导电膜用靶、透明导电材料、透明导电玻璃及透明导电薄膜
US6214631B1 (en) * 1998-10-30 2001-04-10 The Trustees Of Princeton University Method for patterning light emitting devices incorporating a movable mask
JP2000164361A (ja) 1998-11-25 2000-06-16 Tdk Corp 有機el素子
DE19854938A1 (de) 1998-11-27 2000-06-08 Forschungszentrum Juelich Gmbh Bauelement
DE19905694A1 (de) * 1998-11-27 2000-08-17 Forschungszentrum Juelich Gmbh Bauelement
US6781305B1 (en) 1998-12-25 2004-08-24 Sanyo Electric Co., Ltd. Organic electroluminescent device having negative electrode containing a selective combination of elements
JP3732985B2 (ja) 1998-12-25 2006-01-11 三洋電機株式会社 有機エレクトロルミネッセント素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2000231989A (ja) * 1999-02-10 2000-08-22 Tdk Corp 有機el素子
JP3641963B2 (ja) 1999-02-15 2005-04-27 双葉電子工業株式会社 有機el素子とその製造方法
JP2000243567A (ja) * 1999-02-17 2000-09-08 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2000243563A (ja) 1999-02-23 2000-09-08 Stanley Electric Co Ltd 有機発光素子
JP4375502B2 (ja) * 1999-02-23 2009-12-02 淳二 城戸 発光素子
JP2000260572A (ja) 1999-03-04 2000-09-22 Sumitomo Electric Ind Ltd 有機エレクトロルミネッセンスパネル
JP2000268973A (ja) 1999-03-17 2000-09-29 Tdk Corp 有機el素子
JP2000276078A (ja) 1999-03-23 2000-10-06 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス表示装置
JP2000306676A (ja) 1999-04-21 2000-11-02 Chemiprokasei Kaisha Ltd 有機エレクトロルミネッセンス素子
JP2000315581A (ja) 1999-04-30 2000-11-14 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
EP1056139A3 (en) 1999-05-28 2007-09-19 Sharp Kabushiki Kaisha Method for manufacturing photoelectric conversion device
JP3753556B2 (ja) * 1999-05-28 2006-03-08 シャープ株式会社 光電変換素子及びその製造方法
US6521360B2 (en) * 1999-06-08 2003-02-18 City University Of Hong Kong White and colored organic electroluminescent devices using single emitting material by novel color change technique
JP2000348864A (ja) 1999-06-08 2000-12-15 Toray Ind Inc 有機電界発光素子の製造方法
JP3724272B2 (ja) * 1999-09-16 2005-12-07 トヨタ自動車株式会社 太陽電池
KR20010050711A (ko) 1999-09-29 2001-06-15 준지 키도 유기전계발광소자, 유기전계발광소자그룹 및 이런소자들의 발광스펙트럼의 제어방법
JP4824848B2 (ja) 2000-02-29 2011-11-30 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの特定方法
JP2001135479A (ja) 1999-11-08 2001-05-18 Canon Inc 発光素子、並びにそれを用いた画像読取装置、情報処理装置及びディスプレイ装置
US6272269B1 (en) * 1999-11-16 2001-08-07 Dn Labs Inc. Optical fiber/waveguide illumination system
US6486413B1 (en) 1999-11-17 2002-11-26 Ebara Corporation Substrate coated with a conductive layer and manufacturing method thereof
US7202506B1 (en) * 1999-11-19 2007-04-10 Cree, Inc. Multi element, multi color solid state LED/laser
JP2001167808A (ja) 1999-12-09 2001-06-22 Fuji Photo Film Co Ltd 光電変換素子および光電池
US6489073B2 (en) * 2000-01-14 2002-12-03 Ricoh Company, Ltd. Method and device for developing electrostatic latent images
JP4477729B2 (ja) * 2000-01-19 2010-06-09 シャープ株式会社 光電変換素子及びそれを用いた太陽電池
US6580213B2 (en) * 2000-01-31 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method of manufacturing the same
JP4592967B2 (ja) 2000-01-31 2010-12-08 株式会社半導体エネルギー研究所 発光装置及び電気器具
JP2001225847A (ja) * 2000-02-15 2001-08-21 Haguruma Futo Kk 封 筒
JP4631122B2 (ja) * 2000-02-21 2011-02-16 Tdk株式会社 有機el素子
JP2001244074A (ja) 2000-02-28 2001-09-07 Technology Licensing Organization Inc 発光素子及びその製造方法
JP2001267074A (ja) * 2000-03-22 2001-09-28 Fuji Photo Film Co Ltd 有機発光素子
KR100329571B1 (ko) * 2000-03-27 2002-03-23 김순택 유기 전자 발광소자
JP4094203B2 (ja) 2000-03-30 2008-06-04 出光興産株式会社 有機エレクトロルミネッセンス素子及び有機発光媒体
TW493282B (en) 2000-04-17 2002-07-01 Semiconductor Energy Lab Self-luminous device and electric machine using the same
AT410729B (de) * 2000-04-27 2003-07-25 Qsel Quantum Solar Energy Linz Photovoltaische zelle mit einer photoaktiven schicht aus zwei molekularen organischen komponenten
JP2001319781A (ja) 2000-05-02 2001-11-16 Fuji Photo Film Co Ltd 有機発光素子材料の選択方法及びその材料を用いた有機発光素子
KR100889516B1 (ko) * 2000-06-12 2009-03-19 맥스뎀인코포레이티드 폴리머 매트릭스 전계발광 재료 및 전계발광 소자
JP2001357975A (ja) 2000-06-16 2001-12-26 Rohm Co Ltd 有機el素子
JP2002033193A (ja) 2000-07-13 2002-01-31 Hitachi Ltd 有機発光素子
US6939624B2 (en) 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002075661A (ja) * 2000-08-31 2002-03-15 Fujitsu Ltd 有機el素子及び有機el表示装置
US7153592B2 (en) 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
JP2002094085A (ja) * 2000-09-13 2002-03-29 Kyocera Corp 有機太陽電池
JP2002164170A (ja) 2000-11-27 2002-06-07 Matsushita Electric Works Ltd 白色有機エレクトロルミネッセンスパネル
US6803720B2 (en) * 2000-12-15 2004-10-12 Universal Display Corporation Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
JP2002231445A (ja) * 2001-01-31 2002-08-16 Dainippon Printing Co Ltd El素子およびその製造方法
JP4507420B2 (ja) * 2001-02-22 2010-07-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
US6841932B2 (en) * 2001-03-08 2005-01-11 Xerox Corporation Display devices with organic-metal mixed layer
JP2002319688A (ja) * 2001-04-20 2002-10-31 Sharp Corp 積層型太陽電池
JP3955744B2 (ja) * 2001-05-14 2007-08-08 淳二 城戸 有機薄膜素子の製造方法
US6657378B2 (en) * 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
JP2004523129A (ja) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機光起電力素子
US6580027B2 (en) * 2001-06-11 2003-06-17 Trustees Of Princeton University Solar cells using fullerenes
JP4611578B2 (ja) 2001-07-26 2011-01-12 淳二 城戸 有機エレクトロルミネッセント素子
KR20030017748A (ko) * 2001-08-22 2003-03-04 한국전자통신연구원 유기물 전계 효과 트랜지스터와 유기물 발광 다이오드가일체화된 유기물 전기 발광 소자 및 그 제조 방법
US6524884B1 (en) * 2001-08-22 2003-02-25 Korea Electronics And Telecommunications Research Institute Method for fabricating an organic electroluminescene device having organic field effect transistor and organic eloectroluminescence diode
JP4054631B2 (ja) 2001-09-13 2008-02-27 シャープ株式会社 半導体発光素子およびその製造方法、ledランプ並びにled表示装置
JP4011325B2 (ja) * 2001-10-31 2007-11-21 パイオニア株式会社 有機エレクトロルミネッセンス素子
GB0126757D0 (en) * 2001-11-07 2002-01-02 Univ Cambridge Tech Organic field effect transistors
JP3983037B2 (ja) 2001-11-22 2007-09-26 株式会社半導体エネルギー研究所 発光装置およびその作製方法
SG176316A1 (en) 2001-12-05 2011-12-29 Semiconductor Energy Lab Organic semiconductor element
JP2003264085A (ja) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd 有機半導体素子、有機エレクトロルミネッセンス素子及び有機太陽電池
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
EP1367659B1 (en) * 2002-05-21 2012-09-05 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
US7045955B2 (en) * 2002-08-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electroluminescence element and a light emitting device using the same
EP1388903B1 (en) * 2002-08-09 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Organic electroluminescent device
TWI272874B (en) * 2002-08-09 2007-02-01 Semiconductor Energy Lab Organic electroluminescent device
TWI277363B (en) 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
JP2004111085A (ja) 2002-09-13 2004-04-08 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセント素子
US20040123804A1 (en) 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
US6717358B1 (en) 2002-10-09 2004-04-06 Eastman Kodak Company Cascaded organic electroluminescent devices with improved voltage stability
KR101236235B1 (ko) 2002-12-26 2013-02-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
US20040124505A1 (en) 2002-12-27 2004-07-01 Mahle Richard L. Semiconductor device package with leadframe-to-plastic lock
JPWO2004068911A1 (ja) 2003-01-29 2006-05-25 株式会社半導体エネルギー研究所 発光装置
JP4598673B2 (ja) 2003-06-13 2010-12-15 パナソニック株式会社 発光素子及び表示装置
US7511421B2 (en) 2003-08-25 2009-03-31 Semiconductor Energy Laboratory Co., Ltd. Mixed metal and organic electrode for organic device
US7504049B2 (en) 2003-08-25 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode device for organic device, electronic device having electrode device for organic device, and method of forming electrode device for organic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139607A3 (ko) * 2008-05-16 2010-02-18 주식회사 엘지화학 적층형 유기발광소자
KR101065912B1 (ko) * 2008-05-16 2011-09-19 주식회사 엘지화학 적층형 유기발광소자
US8637854B2 (en) 2008-05-16 2014-01-28 Lg Chem, Ltd. Stacked organic light emitting diode

Also Published As

Publication number Publication date
KR20110083570A (ko) 2011-07-20
KR20130016148A (ko) 2013-02-14
US20030127967A1 (en) 2003-07-10
CN101794865A (zh) 2010-08-04
CN101399320B (zh) 2013-05-29
KR101465194B1 (ko) 2014-11-25
JP2017112388A (ja) 2017-06-22
KR101153471B1 (ko) 2012-06-05
CN101814585A (zh) 2010-08-25
CN1738502B (zh) 2010-11-17
JP2011071138A (ja) 2011-04-07
KR20100044148A (ko) 2010-04-29
CN101794865B (zh) 2012-03-14
KR20110046406A (ko) 2011-05-04
SG113443A1 (en) 2005-08-29
KR100866632B1 (ko) 2008-11-04
US20050156197A1 (en) 2005-07-21
TW200301021A (en) 2003-06-16
EP1318553A2 (en) 2003-06-11
EP1318553A3 (en) 2006-03-29
JP2012038742A (ja) 2012-02-23
EP2254155A1 (en) 2010-11-24
JP2019054255A (ja) 2019-04-04
KR20030046327A (ko) 2003-06-12
US20110227125A1 (en) 2011-09-22
JP2021002674A (ja) 2021-01-07
CN102544374A (zh) 2012-07-04
US7420203B2 (en) 2008-09-02
EP1919008A2 (en) 2008-05-07
SG142163A1 (en) 2008-05-28
KR101206943B1 (ko) 2012-11-30
EP1318553B1 (en) 2019-10-09
JP2019208035A (ja) 2019-12-05
KR20090085007A (ko) 2009-08-06
CN1433096A (zh) 2003-07-30
JP2019053991A (ja) 2019-04-04
CN101814585B (zh) 2012-08-29
KR20070119591A (ko) 2007-12-20
TW200610439A (en) 2006-03-16
JP2019061964A (ja) 2019-04-18
JP2021073671A (ja) 2021-05-13
SG176316A1 (en) 2011-12-29
CN102544374B (zh) 2015-04-01
US9312507B2 (en) 2016-04-12
CN101697368A (zh) 2010-04-21
CN101697368B (zh) 2012-04-25
EP1919008B1 (en) 2019-03-27
TWI301037B (en) 2008-09-11
TWI270225B (en) 2007-01-01
JP2015062247A (ja) 2015-04-02
JP6189401B2 (ja) 2017-08-30
US11217764B2 (en) 2022-01-04
US20160218309A1 (en) 2016-07-28
US7473923B2 (en) 2009-01-06
TW200610207A (en) 2006-03-16
US20190074463A1 (en) 2019-03-07
JP2008171832A (ja) 2008-07-24
US7956349B2 (en) 2011-06-07
CN101399320A (zh) 2009-04-01
US20060091797A1 (en) 2006-05-04
KR100930312B1 (ko) 2009-12-08
KR100955897B1 (ko) 2010-05-06
US20090045738A1 (en) 2009-02-19
JP2009267433A (ja) 2009-11-12
JP2018142718A (ja) 2018-09-13
KR101424795B1 (ko) 2014-08-04
TW200610170A (en) 2006-03-16
TWI300627B (en) 2008-09-01
JP2012009446A (ja) 2012-01-12
SG194237A1 (en) 2013-11-29
TWI261380B (en) 2006-09-01
US8941096B2 (en) 2015-01-27
EP1919008A3 (en) 2008-06-04
US20110227119A1 (en) 2011-09-22
CN1433096B (zh) 2010-04-28
KR101219747B1 (ko) 2013-01-21
CN1738502A (zh) 2006-02-22
KR100923739B1 (ko) 2009-10-27
JP2012248857A (ja) 2012-12-13
JP2016054316A (ja) 2016-04-14
US7956353B2 (en) 2011-06-07
KR20090064514A (ko) 2009-06-19

Similar Documents

Publication Publication Date Title
KR100930312B1 (ko) 적층형 유기 전계발광 장치 및 그의 제조방법
JP2003264085A (ja) 有機半導体素子、有機エレクトロルミネッセンス素子及び有機太陽電池
JP2005123208A (ja) 有機太陽電池
JP2007027141A (ja) 有機半導体素子の作製方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131101

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141031

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151030

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171027

Year of fee payment: 9