TWI633100B - 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置 - Google Patents

有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置 Download PDF

Info

Publication number
TWI633100B
TWI633100B TW103122982A TW103122982A TWI633100B TW I633100 B TWI633100 B TW I633100B TW 103122982 A TW103122982 A TW 103122982A TW 103122982 A TW103122982 A TW 103122982A TW I633100 B TWI633100 B TW I633100B
Authority
TW
Taiwan
Prior art keywords
light
emitting element
organic compound
emitting
carbon atoms
Prior art date
Application number
TW103122982A
Other languages
English (en)
Other versions
TW201509935A (zh
Inventor
門間裕史
光森智美
川田優子
濱田孝夫
瀬尾哲史
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201509935A publication Critical patent/TW201509935A/zh
Application granted granted Critical
Publication of TWI633100B publication Critical patent/TWI633100B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

本發明的一個方式的目的是提供一種可以用作發光元件的載子傳輸材料、主體材料或發光材料的新穎有機化合物。尤其是,本發明的一個方式的目的是提供一種即使將其用於發射磷光的發光元件,也可以得到特性良好的發光元件的有機化合物。本發明的一個方式提供一種兩個與二苯並噻吩基或二苯並呋喃基鍵合的吡啶骨架藉由伸芳基鍵合而形成聯吡啶骨架的有機化合物。

Description

有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置
本發明係關於一種能夠用作發光元件用材料的有機化合物。本發明還係關於一種使用該有機化合物的發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置。
由於具有薄型輕量、對輸入信號的高速回應性以及低耗電量等潛能,使用以有機化合物為發光物質的發光元件(有機EL元件)的下一代的照明設備或顯示裝置的開發正在加快地進行。
在有機EL元件中,藉由將發光層夾在電極之間而施加電壓,從電極注入的電子及電洞再結合而使發光物質成為激發態,並且當該激發態回到基態時發光。發光物質所發射的光的波長是該發光物質特有的,並且藉由將 不同種類的有機化合物用作發光物質,可以得到呈現各種波長(即各種顏色)的發光的發光元件。
為了再現全彩色影像,當將該發光元件用於顯示器等主要用來顯示影像的顯示裝置時,至少需要得到紅、綠、藍這三種顏色的光。另外,為了實現高演色性,當將該發光元件用於照明設備時,理想的是能夠得到在可見光區域中具有均勻的波長成分的光,實際上,在很多情況下藉由合成兩種以上的不同波長的光而得到的光被用於照明。另外,藉由合成紅色、綠色及藍色的三種光能夠得到具有高演色性的白色光是眾所周知的。
上面已說明,發光物質所發射的光是該物質特有的。但是,發光元件的使用壽命或耗電量,甚至於發光效率等重要性能不僅取決於發光物質,並且在很大程度上還取決於發光層之外的其他層、元件結構、發光中心物質與主體材料的性質或相容性、載子的平衡等。因此,為了使該領域成熟,一定會需要多種發光元件用材料。根據上述理由,已經提出了具有各種分子結構的發光元件用材料(例如,參照專利文獻1)。
但一般而言,在利用電致發光的發光元件中,處於激發態的生成比例為單重激發態:三重激發態=1:3。因此,在原理上,與作為發光中心物質使用將單重態激發態轉換成發光的螢光材料的發光元件相比,作為發光中心物質使用能夠將三重態激發態轉換成發光的磷光材料的發光元件可以實現發光效率更高的發光元件。
在此,為了高效地將激發能量轉換成來自發光中心物質的發光,作為主體-客體型發光層中的主體材料或構成接觸於發光層的各傳輸層的物質,使用具有比發光中心物質的能帶間隙大的能帶間隙或者比發光中心物質的三重態能階(T1能階,三重激發態與單重基態之間的能量差)高的三重態能階的物質。
但是,由於用作該發光元件的主體材料的物質幾乎都是螢光材料,所以不同狀態之間的電子躍遷為禁止躍遷。因此,該物質的三重激發態在比單重激發態能量小的位置,當對相同波長的螢光與磷光進行比較時,必須後者使用能帶間隙較寬的物質作為主體材料。
因此,為了高效地得到磷光發光,需要具有更大的能帶間隙的主體材料及載子傳輸材料。然而,在均勻地實現低驅動電壓或高發光效率等在發光元件中很重要的特性的同時開發具有那樣大的能帶間隙且用作發光元件用材料的物質是非常困難的。
[專利文獻1]日本專利申請公開第2007-15933號公報
於是,本發明的一個方式的目的是提供一種可以用作發光元件的載子傳輸材料或主體材料、發光材料的新穎有機化合物。尤其是,本發明的一個方式的目的是 提供一種即使將其用於發射磷光的發光元件,也可以得到特性良好的發光元件的有機化合物。
本發明的一個方式的目的是提供一種T1能階高的有機化合物。
本發明的一個方式的目的是提供一種載子傳輸性高的有機化合物。
本發明的其他方式的目的是提供一種使用上述有機化合物的發光元件。
本發明的其他方式的目的是提供使用上述有機化合物的耗電量低的顯示器模組、照明模組、發光裝置、照明設備、顯示裝置以及電子裝置。
本發明實現上述目的中的任一個即可。
本發明的一個方式提供一種兩個芳基與吡啶骨架或聯吡啶骨架鍵合且二苯並噻吩基或二苯並呋喃基與該芳基的每一個鍵合的有機化合物。
也就是說,本發明的一個方式是一種以如下通式(G0)表示的有機化合物。
通式中的A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,n表示1或2。
另外,在以上述通式(G0)表示的有機化合物中,n=2的有機化合物可以使發光元件具有低驅動電壓,所以是較佳的。也就是說,本發明的另一個方式是以如下通式(G1)表示的有機化合物。
通式中的A1及A2分別獨立表示二苯並噻吩基或二苯並呋喃基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,以上述通式(G1)表示的有機化合物也可以具有除了上述通式所示以外的取代基。明確而言,A1及A2可以分別獨立表示具有取代基的二苯並噻吩基或二苯並呋喃基,A1及A2還可以分別獨立表示具有取代基的碳原子數為6至13的伸芳基。另外,上述通式(G1)所包括的聯吡啶骨架也可以具有取代基。作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,在以上述通式(G1)表示的有機化合物中,二苯並呋喃基和/或二苯並噻吩基較佳為在4位上與伸芳基鍵合。也就是說,本發明的另一個方式是以如下通式(G2)表示的有機化合物。
Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧原子和硫原子中的任一個。另外,以上述通式(G2)表示的有機化合物也可以具有除了上述通式所示以外的取代基,作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,在以上述通式(G2)表示的有機化合物中,聯吡啶骨架較佳為2,2’-聯吡啶骨架。也就是說,本發明的其他結構是以如下通式(G3)表示的有機化合物。
通式中的R1至R4中的一個表示以如下通式(A-1)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,R5至R8中的一個表示以如下通式(A-2)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在通式(A-1)及通式(A-2)中,R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧原子和硫原子中的任一個。
在以上述通式(G3)表示的有機化合物中,Ar1及Ar2較佳為m-伸苯基。也就是說,本發明的另一個方式是以如下通式(G4)表示的有機化合物。
通式中的R1至R4中的一個表示以如下通式(A-3)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,R5至R8中的一個表示以如下通式(A-4)表示的基,其餘 的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在通式(A-3)及通式(A-4)中,R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
在上述通式(G4)中,(A-3)及(A-4)較佳為分別與聯吡啶骨架的4位及4’位鍵合。也就是說,本發明的一個方式是以如下通式(G5)表示的有機化合物。
在通式(G5)中,R1、R2、R4、R5、R7、R8、R10至R16、R20至R26、R30至R37分別獨立表示氫、 碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
另外,在以通式(G0)表示的有機化合物中,n=1的有機化合物可以以如下通式(G6)那樣表示。
通式中的A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,以上述通式(G6)表示的有機化合物也可以具有除了上述通式所示以外的取代基,作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,在以上述通式(G6)表示的有機化合物中,二苯並呋喃基和/或二苯並噻吩基較佳為在4位上與伸芳基鍵合。也就是說,本發明的另一個方式是以如下通式(G7)表示的有機化合物。
Ar1及Ar2分別獨立表示碳原子數為6至13的 伸芳基,Z表示氧原子和硫原子中的任一個。另外,以上述通式(G7)表示的有機化合物也可以具有除了上述通式所示以外的取代基,作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,以上述通式(G7)表示的有機化合物也可以以如下通式(G8)那樣表示。
在通式中,R40至R44中的一個表示以如下通式(A-1)表示的基,另一個表示以如下通式(A-2)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在通式(A-1)及通式(A-2)中,R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧 原子和硫原子中的任一個。
在以上述通式(G8)表示的有機化合物中,Ar1及Ar2較佳為m-取代的伸苯基。也就是說,本發明的其他結構是以如下通式(G9)表示的有機化合物。
通式中的R40至R44中的一個表示以如下通式(A-3)表示的基,另一個表示以如下通式(A-4)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在通式(A-3)及通式(A-4)中,R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
在通式(G9)中,以通式(A-3)表示的基及 以通式(A-4)表示的基較佳為分別與中心的吡啶的3位及5位鍵合。也就是說,本發明的其他結構是以如下通式(G10)表示的有機化合物。
在通式中,R40、R42、R44、R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
本發明的一個方式是一種以如下結構式(100)表示的有機化合物。
本發明的一個方式是一種以如下結構式(200)表示的有機化合物。
本發明的另一個方式是一種以如下結構式(300)表示的有機化合物。
本發明的另一個方式是一種以如下結構式(400)表示的有機化合物。
本發明的一個方式是一種發光元件,包括:一對電極;以及夾在一對電極之間的包含有機化合物的層,其中包含有機化合物的層包含上述任一個記載中的有機化合物。
本發明的一個方式是一種發光元件,包括: 一對電極;以及夾在一對電極之間的包含有機化合物的層,其中包含有機化合物的層至少包括發光層,發光層包含上述任一個記載中的有機化合物。
本發明的其他結構是一種包括具有上述結構的發光元件的顯示器模組。
本發明的其他結構是一種包括具有上述結構的發光元件的照明模組。
本發明的其他結構是一種包括具有上述結構的發光元件以及控制發光元件的單元的發光裝置。
本發明的其他結構是一種在顯示部中包括具有上述結構的發光元件,並且包括控制發光元件的單元的顯示裝置。
本發明的其他結構是一種在照明部中包括具有上述結構的發光元件,並且包括控制發光元件的單元的照明設備。
本發明的其他結構是一種包括具有上述結構的發光元件的電子裝置。
根據本發明的發光元件是一種發光效率高的發光元件。
根據本發明的有機化合物具有大的能帶間隙,還具有高載子傳輸性。因此,可以作為構成發光元件的傳輸層的材料、發光層中的主體材料以及發光層中的發光中心物質適當地使用該有機化合物。
另外,在本發明的其他方式中,能夠提供使 用上述有機化合物且耗電量低的顯示器模組、照明模組、發光裝置、照明設備、顯示裝置以及電子裝置。
101‧‧‧第一電極
102‧‧‧第二電極
103‧‧‧EL層
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
113‧‧‧發光層
114‧‧‧電子傳輸層
115‧‧‧電子注入層
501‧‧‧第一電極
502‧‧‧第二電極
511‧‧‧第一發光單元
512‧‧‧第二發光單元
513‧‧‧電荷產生層
601‧‧‧驅動電路部(源極一側驅動電路)
602‧‧‧像素部
603‧‧‧驅動電路部(閘極一側驅動電路)
604‧‧‧密封基板
605‧‧‧密封材料
607‧‧‧空間
608‧‧‧佈線
609‧‧‧FPC(撓性印刷電路)
610‧‧‧元件基板
611‧‧‧開關用TFT
612‧‧‧電流控制用TFT
613‧‧‧第一電極
614‧‧‧絕緣物
616‧‧‧EL層
617‧‧‧第二電極
618‧‧‧發光元件
623‧‧‧n通道型TFT
624‧‧‧p通道型TFT
901‧‧‧外殼
902‧‧‧液晶層
903‧‧‧背光
904‧‧‧外殼
905‧‧‧驅動器IC
906‧‧‧端子
951‧‧‧基板
952‧‧‧電極
953‧‧‧絕緣層
954‧‧‧分隔壁層
955‧‧‧EL層
956‧‧‧電極
1001‧‧‧基板
1002‧‧‧基底絕緣膜
1003‧‧‧閘極絕緣膜
1006‧‧‧閘極電極
1007‧‧‧閘極電極
1008‧‧‧閘極電極
1020‧‧‧第一層間絕緣膜
1021‧‧‧第二層間絕緣膜
1022‧‧‧電極
1024W‧‧‧發光元件的第一電極
1024R‧‧‧發光元件的第一電極
1024G‧‧‧發光元件的第一電極
1024B‧‧‧發光元件的第一電極
1025‧‧‧分隔壁
1028‧‧‧EL層
1029‧‧‧發光元件的第二電極
1031‧‧‧密封基板
1032‧‧‧密封材料
1033‧‧‧透明基材
1034R‧‧‧紅色的著色層
1034G‧‧‧綠色的著色層
1034B‧‧‧藍色的著色層
1035‧‧‧黑色層(黑矩陣)
1036‧‧‧保護層
1037‧‧‧第三層間絕緣膜
1040‧‧‧像素部
1041‧‧‧驅動電路部
1042‧‧‧周邊部
1044W‧‧‧白色的發光區域
1044R‧‧‧紅色的發光區域
1044B‧‧‧藍色的發光區域
1044G‧‧‧綠色的發光區域
1201‧‧‧源極電極
1202‧‧‧活性層
1203‧‧‧汲極電極
1204‧‧‧閘極電極
2001‧‧‧外殼
2002‧‧‧光源
3001‧‧‧照明設備
3002‧‧‧照明設備
5000‧‧‧顯示區域
5001‧‧‧顯示區域
5002‧‧‧顯示區域
5003‧‧‧顯示區域
5004‧‧‧顯示區域
5005‧‧‧顯示區域
7101‧‧‧外殼
7103‧‧‧顯示部
7105‧‧‧支架
7107‧‧‧顯示部
7109‧‧‧操作鍵
7110‧‧‧遙控器
7201‧‧‧主體
7202‧‧‧外殼
7203‧‧‧顯示部
7204‧‧‧鍵盤
7205‧‧‧外部連接埠
7206‧‧‧指向裝置
7301‧‧‧外殼
7302‧‧‧外殼
7303‧‧‧聯結部
7304‧‧‧顯示部
7305‧‧‧顯示部
7306‧‧‧揚聲器部
7307‧‧‧儲存介質插入部
7308‧‧‧LED燈
7309‧‧‧操作鍵
7310‧‧‧連接端子
7311‧‧‧感測器
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
9630‧‧‧外殼
9631‧‧‧顯示部
9631a‧‧‧顯示部
9631b‧‧‧顯示部
9632a‧‧‧觸控面板區域
9632b‧‧‧觸控面板區域
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧電池
9636‧‧‧DCDC轉換器
9637‧‧‧操作鍵
9638‧‧‧轉換器
9639‧‧‧鍵盤顯示切換按鈕
9033‧‧‧夾子
9034‧‧‧顯示模式切換開關
9035‧‧‧電源開關
9036‧‧‧省電模式切換開關
9038‧‧‧操作開關
在圖式中:圖1A及圖1B是發光元件的示意圖;圖2是有機半導體元件的示意圖;圖3A及圖3B是主動矩陣型發光裝置的示意圖;圖4A及圖4B是主動矩陣型發光裝置的示意圖;圖5是主動矩陣型發光裝置的示意圖;圖6A及圖6B是被動矩陣型發光裝置的示意圖;圖7A至圖7D是示出電子裝置的圖;圖8是示出光源裝置的圖;圖9是示出照明設備的圖;圖10是示出照明設備的圖;圖11是示出車載顯示裝置及照明設備的圖;圖12A至圖12C是示出電子裝置的圖;圖13A及圖13B是4,4’mDBTP2BPy-II的NMR圖;圖14A及圖14B是示出4,4’mDBTP2BPy-II的吸收光譜及發射光譜的圖;圖15是示出4,4’mDBTP2BPy-II的LC/MS分析結果的圖;圖16A及圖16B是4,4’DBfP2BPy的NMR圖;圖17A及圖17B是示出4,4’DBfP2BPy的吸收光譜及 發射光譜的圖;圖18是示出4,4’DBfP2BPy的LC/MS分析結果的圖;圖19是示出發光元件1、發光元件2及對比發光元件1的電流密度-亮度特性的圖;圖20是示出發光元件1、發光元件2及對比發光元件1的亮度-電流效率特性的圖;圖21是示出發光元件1、發光元件2及對比發光元件1的電壓-亮度特性的圖;圖22是示出發光元件1、發光元件2及對比發光元件1的亮度-外部量子效率特性的圖;圖23是示出發光元件1、發光元件2及對比發光元件1的發射光譜的圖;圖24是示出發光元件1、發光元件2及對比發光元件1的歸一化亮度的隨時間變化特性的圖;圖25是示出發光元件3及發光元件4的電流密度-亮度特性的圖;圖26是示出發光元件3及發光元件4的亮度-電流效率特性的圖;圖27是示出發光元件3及發光元件4的電壓-亮度特性的圖;圖28是示出發光元件3及發光元件4的亮度-外部量子效率特性的圖;圖29是示出發光元件3及發光元件4的發射光譜的 圖;圖30A及圖30B是3,5mDBTP2Py的NMR圖;圖31A及圖31B是示出3,5mDBTP2Py的吸收光譜及發射光譜的圖;圖32A及圖32B是3,5mDBFP2Py的NMR圖;圖33A及圖33B是示出3,5mDBFP2Py的吸收光譜及發射光譜的圖;圖34是示出發光元件5及發光元件6的電流密度-亮度特性的圖;圖35是示出發光元件5及發光元件6的亮度-電流效率特性的圖;圖36是示出發光元件5及發光元件6的電壓-亮度特性的圖;圖37是示出發光元件5及發光元件6的亮度-外部量子效率特性的圖;圖38是示出發光元件5及發光元件6的發射光譜的圖;圖39是示出發光元件7及發光元件8的電流密度-亮度特性的圖;圖40是示出發光元件7及發光元件8的亮度-電流效率特性的圖;圖41是示出發光元件7及發光元件8的電壓-亮度特性的圖;圖42是示出發光元件7及發光元件8的亮度-外部量 子效率特性的圖;圖43是示出發光元件7及發光元件8的發射光譜的圖;圖44是示出發光元件7及發光元件8的歸一化亮度的隨時間變化特性的圖;圖45是示出發光元件9至發光元件12、對比發光元件3及對比發光元件4的歸一化亮度的隨時間變化特性的圖。
下面,說明本發明的實施方式。但是,本發明可以藉由多個不同方式而實施,所屬技術領域的普通技術人員可以很容易地理解一個事實就是其方式和詳細內容在不脫離本發明的精神及其範圍下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限於本實施方式所記載的內容中。
實施方式1
本實施方式中的有機化合物是兩個芳基與吡啶骨架或聯吡啶骨架鍵合且二苯並噻吩基或二苯並呋喃基與該芳基的每一個鍵合的有機化合物。該有機化合物是具有大能帶間隙的物質。另外,也是具有高的三重態能階的物質。而且,該有機化合物的載子傳輸性也好。注意,也可以說該有機化合物是兩個二苯並噻吩基、兩個二苯並呋喃基或二 苯並噻吩基和二苯並呋喃基藉由伸芳基鍵合於吡啶骨架或聯吡啶骨架的有機化合物。
因此,使用該有機化合物的發光元件可以成為發光效率高的發光元件。
作為上述有機化合物中的伸芳基,較佳為使用碳原子數為6至13的伸芳基。作為碳原子數為6至13的伸芳基,可以舉出伸苯基、萘二基、聯苯二基及茀二基等,尤其是伸苯基、聯苯二基及茀二基能夠保持高的三重態能階,所以是較佳的。其中,伸苯基,尤其m-伸苯基是較佳的。
另外,當中心骨架為聯吡啶骨架時,較佳為2,2’-聯吡啶骨架。
在以上述2,2’-聯吡啶骨架為中心骨架的本發明的一個方式的有機化合物中,與二苯並噻吩基或二苯並呋喃基鍵合的伸芳基較佳為在2,2’-聯吡啶骨架中的4位及4’位上鍵合。
當中心骨架為吡啶骨架時,在將其用作構成發光元件的材料的情況下,與二苯並噻吩基或二苯並呋喃基鍵合的伸芳基較佳為在吡啶骨架中的3位及5位上鍵合,由此能夠降低驅動電壓。
該有機化合物中的二苯並噻吩基和/或二苯並呋喃基較佳為在4位上與伸芳基鍵合。
上述有機化合物也可以具有取代基,作為該取代基可以使用碳原子數為1至6的烷基、碳原子數為6 至13的芳基等。
由於具有這樣的結構的有機化合物具有大能帶間隙,所以在發光元件的發光層中,可以適當地用作使用發射藍色或藍色以下的波長的螢光的發光中心物質的發光層中的主體材料或者鄰接於該發光層的載子傳輸層。另外,由於該有機化合物具有高的三重態能階,所以可以適當地用作包含發射磷光的發光中心物質的發光層中的主體材料或者鄰接於該發光層的載子傳輸層。由於該有機化合物具有大能帶間隙或高的三重態能階(T1能階),所以其能夠將在主體材料上再結合的載子的能量有效地移動到發光中心物質,從而能夠製造發光效率高的發光元件。
另外,從該有機化合物具有良好的載子傳輸性這一方面也可以看出其可以適當地用作發光元件的主體材料或載子傳輸層。由於該有機化合物具有良好的載子傳輸性,所以能夠製造出驅動電壓小的發光元件。另外,該有機化合物具有大能帶間隙或高的三重態能階,因此當將其用作發光層中的發光區域附近的載子傳輸層時,可以抑制發光中心物質的激發能的損失,從而能夠實現發光效率高的發光元件。
上述本發明的一個方式的有機化合物也可以以如下通式(G0)表示。
在上述通式中,A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,n表示1或2。另外,以上述通式(G0)表示的有機化合物既可以是未取代又可以具有取代基,當具有取代基時,該取代基是碳原子數為1至6的烷基或碳原子數為6至13的芳基。
另外,在以上述通式(G0)表示的有機化合物中,藉由使用以n=2表示的有機化合物,可以得到驅動電壓小的發光元件,所以是較佳的。該有機化合物可以以如下通式(G1)表示。
在上述通式中,A1及A2分別獨立表示二苯並噻吩基或二苯並呋喃基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,以上述通式(G1)表示的有機化合物既可以是未取代又可以具有取代基,當具有取代基時,該取代基是碳原子數為1至6的烷基或碳原子數為6至13的芳基。
另外,在以上述通式(G1)表示的有機化合 物中,二苯並噻吩基和/或二苯並呋喃基較佳為在4位上與Ar1及Ar2鍵合,這樣的有機化合物以如下通式(G2)表示。
在上述通式中,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,Z表示氧原子和硫原子中的任一個。另外,以上述通式(G2)表示的有機化合物既可以是未取代又可以具有取代基,當具有取代基時,該取代基是碳原子數為1至6的烷基或碳原子數為6至13的芳基。
以上述通式(G2)表示的有機化合物具有二苯並呋喃基和/或二苯並噻吩基在4位上與Ar1及Ar2鍵合的結構。藉由具有該結構,可以較簡單地合成以上述通式(G2)表示的有機化合物,從而有利於降低成本。
另外,上述有機化合物也可以以如下通式(G3)表示。
在上述通式(G3)中,R1至R4中的一個是以如下通式(A-1)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,R5至R8中的一個是以如下通式(A-2)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。
在上述通式(A-1)及通式(A-2)中,R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧原子和硫原子中的任一個。
另外,在本實施方式中說明的本發明的一個方式的有機化合物中,該伸芳基較佳為伸苯基或聯苯二基,更佳為伸苯基。
並且,關於,與藉由Ar1及Ar2直線連接聯吡啶骨架與二苯並呋喃基和/或二苯並噻吩基相比,以彎曲的方式連接它們更能夠減少該兩個骨架中的軌域的相互作用,並提高能帶間隙寬度或三重態能階,所以是較佳的。 例如,若Ar1及Ar2是伸苯基,則較佳為間位取代的伸苯基,而不是對取代的伸苯基。另外,若Ar1及Ar2是聯苯二基,則較佳為1,1’-聯苯-3,3’-二基。
也就是說,上述有機化合物可以以如下通式(G4)表示。
在上述通式(G4)中,R1至R4中的一個是以如下通式(A-3)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個,R5至R8中的一個是以如下通式(A-4)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。
在通式(A-3)及通式(A-4)中,R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。 另外,Z表示氧原子和硫原子中的任一個。
在以上述通式(G4)表示的有機化合物中,較佳為以通式(A-3)表示的基及以通式(A-4)表示的基鍵合在聯吡啶骨架的4位及4’位上。也就是說,較佳為以如下通式(G5)表示的有機化合物。
在上述通式(G5)中,R1、R2、R4、R5、R7、R8、R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
在上述通式(G5)中,與二苯並呋喃基和/或二苯並噻吩基鍵合的苯基在2,2’-聯吡啶骨架的4位及4’位上鍵合。
另外,若R1至R8、R10至R16、R20至R26、R30至R37全部都是氫,則具有合成簡單或容易得到原料的優點,從而可以廉價地合成,所以是較佳的。
另外,在以上述通式(G0)表示的有機化合物中,n=1的有機化合物也可以以如下通式(G6)表示。
在上述通式中,A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,以上述通式(G6)表示的有機化合物也可以具有除了上述通式所示以外的取代基,作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,在上述有機化合物中,二苯並噻吩基和/或二苯並呋喃基較佳為在4位上與Ar1及Ar2鍵合,這樣的有機化合物以如下通式(G7)表示。
在上述通式中,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧原子和硫原子中的任一個。另外,以上述通式(G7)表示的有機化合物也可以具有除了上述通式所示以外的取代基,作為該取代基可以舉出碳原子數為1至6的烷基及碳原子數為6至13的芳基。
另外,以上述通式(G7)表示的有機化合物也可以以如下通式(G8)那樣表示。
在上述通式(G8)中,R40至R44中的一個表示以如下通式(A-1)表示的基,另一個表示以如下通式(A-2)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在上述通式(A-1)及通式(A-2)中,R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,Z表示氧原子和硫原子中的任一個。
在以上述通式(G8)表示的有機化合物中,由於不容易產生三重激發能階的下降,Ar1及Ar2較佳為m-取代的伸苯基。也就是說,本發明的一個方式較佳為以 如下通式(G9)表示的有機化合物。
在上述通式中,R40至R44中的一個是以如下通式(A-3)表示的基,另一個是以如下通式(A-4)表示的基,其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。
在上述通式(A-3)及通式(A-4)中,R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
在上述通式(G9)中,上述以通式(A-3)表示的基及以通式(A-4)表示的基較佳為與吡啶的3位及5位鍵合。也就是說,較佳為以如下通式(G10)表示的有機化合物。
在上述通式(G10)中,R40、R42、R44、R10至R16、R20至R26、R30至R37分別獨立表示氫、碳原子數為1至6的烷基及碳原子數為6至13的芳基中的任一個。另外,Z表示氧原子和硫原子中的任一個。
另外,在上述以通式(G0)至通式(G10)表示的有機化合物的說明中,作為碳原子數為1至6的烷基的具體例子,可以舉出甲基、乙基、正丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、戊基、己基及環己基等。另外,作為碳原子數為6至13的芳基的具體例子,可以舉出苯基、聯苯基、茀基、萘基等。另外,也可以使這些取代基彼此鍵合而形成環,作為這樣的例子,例如可以舉出茀基的9位的碳具有兩個苯基作為取代基,藉由該苯基彼此鍵合而形成螺茀骨架的情況等。
另外,作為以Ar1及Ar2表示的碳原子數為6至13的伸芳基的具體例子,可以舉出伸苯基、萘二基、聯苯二基及茀二基等,為了保持高的三重態能階,特別較佳為採用伸苯基、聯苯二基及茀二基。
另外,作為以上述通式(G0)至(G10)表示 的有機化合物的具體的結構的例子,可以舉出以如下結構式(100)至(127)、(200)至(227)、(300)至(327)、(400)至(427)表示的物質等。
由於上述有機化合物具有高的三重態能階,所以可以得到發光效率高的磷光發光元件。尤其是,即使是波長短的綠色或藍色的磷光發光元件,也可以得到良好特性的元件,而不使其效率降低。另外,具有高的三重態能階也意味著具有大的能帶間隙,因此可以使呈現藍色螢光的發光元件也高效率地發光。
另外,本實施方式中的有機化合物也可以用作呈現藍色至紫外的發光的發光材料。
接著,說明這些有機化合物的合成方法。如以下合成方案(A-1)所示,可以利用鈴木.宮浦反應使吡啶衍生物的鹵化物或三氟甲磺酸酯取代產物(化合物1)與吡啶衍生物的有機硼化合物或硼酸(化合物2)耦合來得到以上述結構式(G1)表示的有機化合物。以下示出合成方案(A-1)。
在上述合成方案(A-1)中,A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。R50及R51表示氫、碳原子數為1至6的烷基中的任一個。在合成方案(A-1)中,R50與R51也可以相互鍵合而形成環結構。另外,X1表示鹵素或三氟甲磺酸酯基。
另外,如以下合成方案(B-1)所示,也可以利用鈴木.宮浦反應使聯吡啶衍生物的鹵化物或三氟甲磺酸酯取代產物(化合物3)與二苯並呋喃和/或二苯並噻吩衍生物的有機硼化合物或硼酸(化合物4及化合物5)耦合來得到以上述結構式(G1)表示的有機化合物。以下示出合成方案(B-1)。
在上述合成方案(B-1)中,A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。R52或R55表示氫、碳原子數為1至6的烷基中的任一個。在合成方案(B-1)中,R52與R53以及R54與R55也可以相互鍵合而形成環結構。X2及X3表示鹵素或三氟甲磺酸酯基。
作為在合成方案(A-1)及(B-1)中可以使用的鈀催化劑,可以舉出醋酸鈀(Ⅱ)、四(三苯胺膦)鈀(0)、雙(三苯胺膦)鈀(Ⅱ)二氯化物等,但是可以使用的鈀催化劑不侷限於此。作為在合成方案(B-1)中可以使用的鈀催化劑的配體,可以舉出三(鄰-甲苯基)膦、三苯胺膦、三環己基膦等。但是,可以使用的鈀催化劑的配體不侷限於此。作為在合成方案(A-1)及(B-1)中可以使用的鹼,可以舉出:三級丁醇鈉等有機鹼;或者碳酸鉀、碳酸鈉等無機鹼等,但是可以使用的鹼不侷限於此。作為在合成方案(A-1)及(B-1)中可以使用的溶劑,可以舉出如下溶劑:甲苯和水的混合溶劑;甲苯、乙醇等醇和水的混合溶劑;二甲苯和水的混合溶劑; 二甲苯、乙醇等醇和水的混合溶劑;苯和水的混合溶劑;苯、乙醇等醇和水的混合溶劑;以及水和乙二醇二甲醚等醚類的混合溶劑等。但是,可以使用的溶劑不侷限於此。另外,更佳的是使用甲苯和水的混合溶劑;甲苯、乙醇和水的混合溶劑;或者乙二醇二甲醚等醚類和水的混合溶劑。
在合成方案(A-1)及合成方案(B-1)中,化合物2、化合物4及化合物5是有機硼化合物或硼酸,並且利用鈴木.宮浦耦合反應來使其起反應,還可以作為化合物2、化合物4及化合物5採用有機鋁、有機鋯、有機鋅或有機錫化合物等,並且利用交叉耦合反應來合成目的物。但是,並不侷限於這些。
另外,在合成方案(B-1)所示的鈴木.宮浦耦合反應中,也可以使聯吡啶衍生物的有機硼化合物或硼酸與二苯並呋喃、二苯並噻吩衍生物的鹵化物或三氟甲磺酸酯取代產物起反應。
另外,如以下合成方案(C-1)所示,可以利用鈴木.宮浦反應使吡啶衍生物的鹵化物或三氟甲磺酸酯取代產物(化合物6)與二苯並呋喃和/或二苯並噻吩衍生物的有機硼化合物或硼酸(化合物7及化合物8)耦合來得到以上述結構式(G6)表示的有機化合物。以下示出合成方案(C-1)。
在上述合成方案(C-1)中,A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。R57至R60表示氫、碳原子數為1至6的烷基中的任一個。在合成方案(C-1)中,R57與R58以及R59與R60也可以相互鍵合而形成環結構。X4及X5表示鹵素或三氟甲磺酸酯基。
作為在合成方案(C-1)中可以使用的鈀催化劑,可以舉出醋酸鈀(Ⅱ)、四(三苯胺膦)鈀(0)、雙(三苯胺膦)鈀(Ⅱ)二氯化物等,但是可以使用的鈀催化劑不侷限於此。作為在合成方案(C-1)中可以使用的鈀催化劑的配體,可以舉出三(鄰-甲苯基)膦、三苯胺膦、三環己基膦等。但是,可以使用的鈀催化劑的配體不侷限於此。作為在合成方案(C-1)中可以使用的鹼,可以舉出:三級丁醇鈉等有機鹼;或者碳酸鉀、碳酸鈉等無機鹼等,但是可以使用的鹼不侷限於此。作為在合成方案(C-1)中可以使用的溶劑,可以舉出如下溶劑:甲苯和水的混合溶劑;甲苯、乙醇等醇和水的混合溶劑;二甲苯和水的混合溶劑;二甲苯、乙醇等醇和水的混合溶劑; 苯和水的混合溶劑;苯、乙醇等醇和水的混合溶劑;以及水和乙二醇二甲醚等醚類的混合溶劑等。但是,可以使用的溶劑不侷限於此。另外,更佳的是使用甲苯和水的混合溶劑;甲苯、乙醇和水的混合溶劑;或者乙二醇二甲醚等醚類和水的混合溶劑。
在合成方案(C-1)中,化合物7及化合物8是有機硼化合物或硼酸,並且利用鈴木.宮浦耦合反應來使其起反應,還可以作為化合物7及化合物8採用有機鋁、有機鋯、有機鋅或有機錫化合物等,並且利用交叉耦合反應來合成目的物。但是,並不侷限於這些。
另外,在合成方案(C-1)所示的鈴木.宮浦耦合反應中,也可以使吡啶衍生物的有機硼化合物或硼酸與二苯並呋喃、二苯並噻吩衍生物的鹵化物或三氟甲磺酸酯取代產物起反應。
如上所述,可以合成根據本實施方式的有機化合物。
實施方式2
在本實施方式中,例示出將實施方式1所記載的以下述通式(G0)表示的有機化合物用於有機半導體元件之一種的垂直電晶體(靜電感應電晶體:SIT)的活性層的方式。但是,下述通式(G0)中的A1及A2分別獨立表示二苯並呋喃基或二苯並噻吩基,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。另外,n表示1或2。
如圖2所示,作為元件結構,具有將包含以通式(G0)表示的有機化合物的薄膜狀活性層1202夾在源極電極1201與汲極電極1203之間並將閘極電極1204嵌埋到活性層1202中的結構。閘極電極1204電連接於用來施加閘極電壓的單元,並且,源極電極1201及汲極電極1203電連接於用來控制源極-汲極之間的電壓的單元。
在這種元件結構中,當在不施加閘極電壓的狀態下對源極-汲極之間施加電壓時,電流流動(成為ON狀態)。並且,當在該狀態下施加閘極電壓時,在閘極電極1204周圍產生空乏層,電流不流動(成為OFF狀態)。藉由上述機制,該元件用作電晶體。
在垂直電晶體中,與發光元件同樣,作為活性層的材料需要兼備高載子傳輸性和良好的膜質的材料。以通式(G0)表示的有機化合物充分滿足該條件,所以可以適用於活性層的材料。
實施方式3
下面,參照圖1A說明包含在實施方式1中公開的本發明的一個方式的有機化合物的發光元件的一個方式。
根據本實施方式中的發光元件在一對電極之 間具有多個層。在本方式中,發光元件由第一電極101、第二電極102、設置於第一電極101與第二電極102之間的EL層103構成。注意,在圖1A中,將第一電極101用作陽極且將第二電極102用作陰極。即,採用當以使第一電極101的電位高於第二電極102的電位的方式對第一電極101和第二電極102施加電壓時能夠得到發光的結構。當然,也可以將第一電極用作陰極且將第二電極用作陽極。此時,EL層的疊層順序與下面所說明的順序相反。另外,在本實施方式所示的發光元件中,EL層103的任一個層包含在實施方式1中說明的本發明的一個方式的有機化合物即可。此外,包含該有機化合物的層較佳為發光層或電子傳輸層,因為可以有效地利用上述有機化合物的特性,並且可以得到具有良好的特性的發光元件。
作為用作陽極的電極,較佳為使用功函數大(具體為4.0eV以上)的金屬、合金、導電化合物、以及這些物質的混合物等。明確而言,例如可以舉出氧化銦-氧化錫(ITO:Indium Tin Oxide、銦錫氧化物)、包含矽或氧化矽的氧化銦-氧化錫、氧化銦-氧化鋅、包含氧化鎢及氧化鋅的氧化銦(IWZO)等。雖然通常藉由濺射法形成這些導電金屬氧化物膜,但是也可以應用溶膠-凝膠法等來製造。例如,可以使用對氧化銦添加有1wt%至20wt%的氧化鋅的靶材而藉由濺射法形成氧化銦-氧化鋅。另外,可以使用對氧化銦添加有0.5wt%至5wt%的氧化鎢和0.1wt%至1wt%的氧化鋅的靶材而藉由濺射法形成包含 氧化鎢及氧化鋅的氧化銦(IWZO)。另外,可以舉出金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)或金屬材料的氮化物(例如,氮化鈦)等。另外,也可以使用石墨烯。
對EL層103的疊層結構沒有特別的限制,適當地組合包含電子傳輸性高的物質的層、包含電洞傳輸性高的物質的層、包含電子注入性高的物質的層、包含電洞注入性高的物質的層、包含具有雙極性的物質(電子及電洞傳輸性高的物質)的層或載子阻擋層等來構成,即可。在本實施方式中,EL層103具有在用作陽極的電極上依次層疊電洞注入層111、電洞傳輸層112、發光層113、電子傳輸層114及電子注入層115的結構。下面具體地示出構成各層的材料。
電洞注入層111是包含電洞注入性的物質的層。作為電洞注入層111可以使用鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。另外,也可以使用酞青類化合物如酞青(簡稱:H2Pc)、銅酞青(簡稱:CuPc)等;芳香胺化合物如4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)等;或者高分子化合物等如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(PEDOT/PSS)等來形成電洞注入層111。
另外,作為電洞注入層111,也可以使用在具有電洞傳輸性的物質中含有對該物質呈現電子接受性的物質(以下就稱為電子接受物質)的複合材料。在本說明書中,“複合材料”不僅是指混合兩個材料而成的材料,也是指藉由混合多個材料來使其處於在材料之間可以授受電荷的狀態的材料。該電荷的授受包括只當存在電場時發生的電荷的授受。
此外,藉由使用在具有電洞傳輸性的物質中含有電子接受物質的物質,可以不顧及材料的功函數而選擇形成電極的材料。即,作為用作陽極的電極,除了功函數大的材料以外,還可以使用功函數小的材料。作為電子接受物質,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟喹啉並二甲烷(簡稱:F4-TCNQ)、氯醌等。另外,也可以使用過渡金屬氧化物。尤其是,較佳為使用屬於元素週期表中的第4族至第8族的金屬的氧化物。明確而言,由於其電子接受性高,所以較佳為使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸。其中,作為電子接受物質特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。
作為用於複合材料的具有電洞傳輸性的物質,可以使用各種有機化合物如芳香胺化合物、咔唑化合物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等。作為用於複合材料的有機化合物,較佳為使用電洞傳輸性高的有機化合物。明確而言,較佳為使用電洞 移動率為1×10-6cm2/Vs以上的物質。但是,只要是其電洞傳輸性高於電子傳輸性的物質,就可以使用這些以外的物質。下面,具體地列舉可以用作複合材料中的具有電洞傳輸性的物質的有機化合物。
例如,作為芳香胺化合物,可以舉出N,N’-二(p-甲苯基)-N,N’-二苯基-p-苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯基胺基]苯(簡稱:DPA3B)等。
作為可用於複合材料的咔唑化合物,明確而言,可以舉出3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)等。
另外,作為可用於複合材料的咔唑化合物,還可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、1,4-雙[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。
此外,作為可用於複合材料的芳烴,例如可以舉出2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t- BuDNA)、2-三級丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-三級丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-三級丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-三級丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(三級丁基)苝等。除此之外,還可以使用稠五苯、蔻等。如上所述,較佳為使用具有1×10-6cm2/Vs以上的電洞移動率的碳原子數為14至42的芳烴。
注意,可用於複合材料的芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。
另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱: Poly-TPD)等高分子化合物。
電洞傳輸層112是包含具有電洞傳輸性的物質的層。作為具有電洞傳輸性的物質,同樣可以使用上述可用於複合材料的具有電洞傳輸性的物質。另外,為了避免重複而省略詳細說明。參見複合材料的記載。
發光層113是包含發光性的物質的層。發光層113既可以由只包含發光物質的膜構成,又可以由在主體材料中分散有發光中心物質的膜構成。
對在發光層113中能夠用作發光物質或發光中心物質的材料沒有特別的限制,而這些材料所發射的光可以是螢光也可以是磷光。作為上述發光物質或發光中心物質,例如可以舉出如下材料。作為螢光發光性的物質,可以舉出N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2- 蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N’,N’,N”,N”,N''',N'''-八苯基二苯並[g,p]屈(chrysene)-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素545T、N,N’-二苯基喹吖啶酮(簡稱:DPQd)、紅螢烯、5,12-雙(1,1’-聯苯-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯並[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊並[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基} 丙二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯並[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FLPAPrn)等。作為藍色磷光發光性的物質,可以舉出:三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑(triazolato))銥(III)(簡稱:[Ir(Mptz)3])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑(triazolato)]銥(III)(簡稱:[Ir(iPrptz-3b)3])等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑(triazolato)]銥(III)(簡稱:[Ir(Mptzl-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑(triazolato))銥(III)(簡稱:[Ir(Prptzl-Me)3])等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑並[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有 機金屬銥錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)吡啶甲酸酯(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’}銥(III)吡啶甲酸酯(簡稱:[Ir(CF3ppy)2(pic)])、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)乙醯丙酮(簡稱:FIracac)等以具有吸電子基團的苯基吡啶衍生物為配體的有機金屬銥錯合物。注意,由於具有4H-三唑骨架的有機金屬銥錯合物的可靠性及發光效率都高,所以是特別較佳的。另外,作為發射綠色光的磷光物質的例子,可以舉出:三(4-甲基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(mppm)3])、三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)3])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶根)銥(III)(簡稱:[Ir(mppm)2(acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)2(acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶根]銥(III)(簡稱:[Ir(nbppm)2(acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]銥(III)(簡稱:[Ir(mpmppm)2(acac)])、(乙醯丙酮根)雙(4,6-二苯基嘧啶根)銥(III)(簡稱:[Ir(dppm)2(acac)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪根)銥(III)(簡稱:[Ir(mppr- Me)2(acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪根)銥(III)(簡稱:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有機金屬銥錯合物;fac-三(2-苯基吡啶)銥(簡稱:[Ir(ppy)3])、雙(2-苯基吡啶根-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(ppy)2(acac)])、雙(苯並[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2(acac)])、三(苯並[h]喹啉)銥(III)(簡稱:[Ir(bzq)3])、三(2-苯基喹啉-N,C2’]銥(III)(簡稱:[Ir(pq)3])、雙(2-苯基喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(pq)2(acac)])等具有吡啶骨架的有機金屬銥錯合物;以及三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3(Phen)])等稀土金屬錯合物。另外,由於具有嘧啶骨架的有機金屬銥錯合物的可靠性及發光效率都非常高,所以是特別較佳的。作為發射紅色光的磷光物質的例子,可以舉出:(二異丁醯基甲烷根(diisobutyrylmethanato))雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:[Ir(5mdppm)2(dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根)(二新戊醯基甲烷根)銥(III)(簡稱:[Ir(5mdppm)2(dpm)])、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:[Ir(d1npm)2(dpm)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:[Ir(tppr)2(acac)])、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱: [Ir(tppr)2(dpm)])、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹啉合]銥(III)(簡稱:[Ir(Fdpq)2(acac)])等具有吡嗪啉骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’)銥(III)(簡稱:[Ir(piq)3])、雙(1-苯基異喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(piq)2(acac)])等具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3(Phen)])、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:[Eu(TTA)3(Phen)])等稀土金屬錯合物。注意,由於具有嘧啶骨架的有機金屬銥錯合物的可靠性及發光效率都非常高,所以是特別較佳的。另外,由於具有吡嗪骨架的有機金屬銥錯合物可以獲得色度良好的紅色發光,所以藉由將其用於白色發光元件,可以提高演色性。此外,在實施方式1中說明的本發明的一個方式的有機化合物也呈現藍色至紫外線區域的發光,因此也可以用作發光中心物質。
另外,除了上述物質之外,還可以選擇已知的物質。
作為分散發光中心物質的主體材料,較佳為使用在實施方式1中說明的本發明的一個方式的有機化合物。
由於該有機化合物具有大能帶間隙以及高三 重態能階,因此該有機化合物特別適用於分散具有能量大的激發態的發光中心物質諸如發射藍色螢光的發光中心物質或發射綠色磷光的發光中心物質等的主體材料。當然,也可以將該化合物用作分散發射比藍色的波長長的螢光的發光中心物質或發射比綠色的波長長的磷光的發光中心物質等的主體材料。此外,將該有機化合物用作構成與發光層相鄰的載子傳輸層(較佳為電子傳輸層)的材料也是有效的。因為該有機化合物具有大能帶間隙或高三重態能階,即便發光中心物質是呈現藍色螢光或綠色磷光等能量大的發光的材料,也能夠將在主體材料中再結合的載子的能量有效地移動到發光中心物質,從而可以製造發光效率高的發光元件。另外,當將上述有機化合物用作主體材料或構成載子傳輸層的材料時,作為發光中心物質,較佳為選擇其能帶間隙比該有機化合物的能帶間隙小的物質或者其單重態能階(S1能階)以及其三重態能階比該有機化合物的能階低的物質,但不侷限於此。
在不將實施方式1所說明的本發明的一個方式的有機化合物用作主體材料的情況下,作為主體材料可以使用已知的材料。
下面,例示出可以用作上述主體材料的材料。作為具有電子傳輸性的材料,可以舉出:雙(10-羥基苯並[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)、雙[2-(2-苯 並噁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯並噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等金屬錯合物;2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、1,3-雙[5-(對三級丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯並咪唑)(簡稱:TPBI)、2-[3-(二苯並噻吩-4-基)苯基]-1-苯基-1H-苯並咪唑(簡稱:mDBTBIm-II)等具有多唑骨架的雜環化合物;2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯並[f,h]喹啉(簡稱:2mCzBPDBq)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯並噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)等具有二嗪骨架的雜環化合物;以及3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等具有吡啶骨架的雜環化合物。其中,具有二嗪骨架的雜環化合物以及具有吡啶骨架的雜環化合物的可靠性高,所以是較佳的。尤其是,具有二嗪(嘧啶或吡嗪)骨架的雜環化合物具有高電子傳輸性,也有助於降低驅動電壓。
另外,作為可以用作上述主體材料且具有電洞傳輸性的材料,可以舉出:4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二茀-2-胺(簡稱:PCBASF)等具有芳香胺骨架的化合物;1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)等具有咔唑骨架的化合物;4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯並噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯並噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合 物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯並呋喃)(簡稱:DBF3P-II)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯並呋喃(簡稱:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物以及具有咔唑骨架的化合物具有高可靠性和高載子傳輸性,也有助於降低驅動電壓,所以是較佳的。
另外,作為主體材料較佳為選擇三重激發能階及能帶間隙都比發光中心物質大的物質。此外,除了主體材料以及磷光物質之外,在發光層中也可以包含第三物質。
在此,為了當使用磷光發光物質時獲得發光效率更高的發光元件,考慮主體材料與磷光物質之間的能量轉移。在主體材料及磷光物質中都發生載子的再結合,所以為了提高發光效率,需要高效率地進行從主體材料向磷光物質的能量轉移。在該說明中,將賦予激發能量的分子記為主體分子,而將接受激發能量的分子記為客體分子。
當將磷光性化合物用作客體材料時,在磷光化合物的吸收光譜中,最有助於發光的吸收帶位於相當於從基態到三重激發態的直接躍遷的吸收波長附近,這是呈現在最長波長一側的吸收帶。由此,較佳的是,主體材料的發射光譜(螢光光譜及磷光光譜)與磷光化合物的吸收光譜的最長波長一側的吸收帶重疊。
在此首先,考慮由主體材料的三重激發態的 能量轉移。在由三重激發態的能量轉移中,只要使主體材料的磷光光譜與客體材料的最長波長一側的吸收帶大部分地重疊即可。
然而,此時成為問題的是由主體分子的單重激發態的能量轉移。在除了由三重激發態的能量轉移以外,還高效地進行由單重激發態的能量轉移時,從上述可知,除了主體材料的磷光光譜以外,還需要以使螢光光譜與客體材料的最長波長一側的吸收帶重疊的方式設計主體材料。換言之,若不以主體材料的螢光光譜位於與磷光光譜大致相同的位置的方式設計主體材料,則不能高效地進行由主體材料的單重激發態及三重激發態的兩者的能量轉移。
另一方面,一般而言,由於S1能階與T1能階大不相同(S1能階>T1能階),所以螢光的發射波長與磷光的發射波長也大不相同(螢光的發射波長<磷光的發射波長)。因此,以主體材料的螢光光譜位於與磷光光譜大致相同的位置的方式設計主體材料是極為困難的。
另外,因為螢光發光是由比發射磷光發光的能階高的能階發射的光,所以螢光光譜位於與客體材料的最長波長一側的吸收光譜接近的波長的主體材料的T1能階低於客體材料的T1能階。
於是,在本實施方式的發光元件中,當作為發光中心物質使用磷光發光物質時,除了主體材料以及發光中心物質之外,發光層還包括第三物質,其中,主體材 料與第三物質的組合較佳為形成激態錯合物(也稱為“exciplex”)的組合。
此時,當在發光層中載子(電子及電洞)再結合時,主體材料和第三物質形成激態錯合物。激態錯合物的螢光光譜位於比單個主體材料的螢光光譜以及單個第三物質的螢光光譜長波長一側,因此在主體材料以及第三物質的T1能階保持高於客體材料的T1能階的狀態下,可以最大限度地提高由單重激發態的能量轉移。另外,因為激態錯合物的T1能階與S1能階相互接近,所以螢光光譜與磷光光譜位於大致相同的位置。由此,可以使相當於客體分子從單重基態到三重激發態的遷移的吸收(客體分子的吸收光譜中的位於最長波長一側的寬吸收帶)與激態錯合物的螢光光譜及磷光光譜的兩者大部分地重疊,從而能夠得到能量轉移效率高的發光元件。
作為第三物質,可以使用可用作上述主體材料或添加物的材料。另外,作為主體材料與第三物質的組合,只要是形成激態錯合物的組合即可,但較佳的是容易接受電子的化合物(具有電子傳輸性的化合物)與容易接受電洞的化合物(具有電洞傳輸性的化合物)的組合。
在使用具有電子傳輸性的化合物和具有電洞傳輸性的化合物構成主體材料和第三物質的情況下,也可以藉由調節兩者的混合比來控制載子平衡。明確而言,主體材料與第三物質(或添加物)的比例較佳為1:9至9:1。注意,此時,也可以將分散有一種發光中心物質的 發光層分成為兩層,並且使該兩層中的主體材料與第三物質的混合比不同。由此,可以對發光元件的載子平衡進行最佳化,從而可以提高使用壽命。另外,也可以將一個發光層用作電洞傳輸層而將另一個發光層用作電子傳輸層。
在具有如上所述那樣的結構的發光層由多個材料構成時,可以藉由利用真空蒸鍍法的共蒸鍍、使用混合溶液的噴墨法、旋塗法或浸漬塗布法等來製造。
電子傳輸層114是包含具有電子傳輸性的物質的層。例如,電子傳輸層114是由如下具有喹啉骨架或苯並喹啉骨架的金屬錯合物等構成的層:三(8-羥基喹啉)鋁(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(簡稱:Almq3)、雙(10-羥基苯並[h]喹啉)鈹(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(簡稱:BAlq)等。除此之外,還可以使用雙[2-(2-羥基苯基)苯並噁唑]鋅(簡稱:Zn(BOX)2)、雙[2-(2-羥基苯基)苯並噻唑]鋅(簡稱:Zn(BTZ)2)等具有噁唑類、噻唑類配體的金屬錯合物等。再者,除了金屬錯合物之外,還可以使用2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)等。在此所述的物質主要是電子移動率為10-6cm2/Vs以上的物質。注意,只要是其電子傳輸性比電 洞傳輸性高的物質,就可以作為電子傳輸層使用上述以外的物質。
另外,也可以作為構成電子傳輸層114的材料使用在實施方式1中說明的本發明的一個方式的有機化合物。由於該有機化合物具有大能帶間隙以及高T1能階,所以能夠有效地防止在發光層中激發能量轉移到電子傳輸層114,從而能夠抑制起因於激發能量轉移的發光效率的降低,還能夠得到發光效率高的發光元件。此外,該有機化合物的載子傳輸性高,因此能夠提供一種驅動電壓低的發光元件。
另外,電子傳輸層也可以是由上述物質構成的層的兩層以上的疊層,而不侷限於單層。
另外,也可以在電子傳輸層與發光層之間設置控制電子載子的移動的層。這是對如上所述那樣的電子傳輸性高的材料添加少量的電子捕獲性高的物質而成的層,並且藉由抑制電子載子的移動,可以調節載子平衡。這種結構對由於電子穿過發光層而發生的問題(例如,元件使用壽命的降低)的抑制發揮很大的效果。
此外,發光層的主體材料和構成電子傳輸層的材料較佳為具有相同的骨架。由此,更容易進行載子的移動,從而可以降低驅動電壓。並且,更有效的是上述主體材料和構成電子傳輸層的材料是相同的材料。
另外,還可以在電子傳輸層114與第二電極102之間以接觸於第二電極102的方式設置電子注入層 115。作為電子注入層115,可以使用鋰、鈣、氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)等。此外,也可以使用具有電子傳輸性的物質與對該物質具有電子給予性的物質(以下就稱為電子給予性物質)的複合材料。作為電子給予性物質,可以舉出鹼金屬、鹼土金屬或它們的化合物。此外,藉由作為電子注入層115使用這種複合材料,可以有效地進行從第二電極102的電子注入,因此是更佳的。藉由採用該結構,作為陰極,除了功函數小的材料之外還可以使用其他導電材料。
作為形成用作陰極的電極的物質,可以使用功函數小(具體為3.8eV以下)的金屬、合金、導電化合物以及這些的混合物等。作為這種陰極材料的具體例子,可以舉出屬於元素週期表中的第1族或第2族的元素,即鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)或鍶(Sr)等以及包含這些金屬的合金(MgAg、AlLi)、銪(Eu)或鐿(Yb)等稀土金屬以及包含這些稀土金屬的合金等。然而,藉由在第二電極102與電子傳輸層之間設置電子注入層,可以不顧及功函數的大小而將各種導電材料諸如Al、Ag、ITO、包含矽或氧化矽的氧化銦-氧化錫等用於第二電極102。這些導電材料可以藉由濺射法、噴墨法、旋塗法等形成。
另外,作為EL層103的形成方法,無論是乾處理還是濕處理,都可以使用各種方法。例如,也可以使用真空蒸鍍法、噴墨法或旋塗法等。另外,也可以根據各 電極或各層使用不同的成膜方法來形成。
電極既可以藉由利用溶膠-凝膠法的濕處理形成,又可以藉由利用金屬材料的膏劑的濕處理形成。另外,也可以藉由濺射法或真空蒸鍍法等乾處理形成。
注意,設置於第一電極101與第二電極102之間的EL層的結構不侷限於上述結構。但是,較佳為採用在離第一電極101及第二電極102遠的部分設置電洞與電子再結合的發光區域的結構,以便抑制由於發光區域與用於電極或載子注入層的金屬的接近而發生的淬滅。
另外,為了抑制由在發光層中產生的激子的能量轉移,直接接觸於發光層的電洞傳輸層或電子傳輸層,尤其是接觸於接近發光層113中的發光區域一側的載子傳輸層較佳為使用具有比構成發光層的發光物質或者包含在發光層中的發光中心物質大的能帶間隙的物質構成。
在具有如上所述那樣的結構的發光元件中,電流因在第一電極101與第二電極102之間產生的電位差而流動,並且電洞和電子在作為包含發光性高的物質的層的發光層113中再結合,以進行發光。即,採用在發光層113中形成發光區域的結構。
光經過第一電極101和第二電極102中的任一者或兩者被提取到外面。因此,第一電極101和第二電極102中的任一者或兩者由具有透光性的電極構成。當只有第一電極101具有透光性時,光經過第一電極101從基板一側被提取。另外,當只有第二電極102具有透光性 時,光經過第二電極102從與基板相反一側被提取。當第一電極101和第二電極102都具有透光性時,光經過第一電極101及第二電極102從基板一側及與基板的相反一側被提取。
由於本實施方式的發光元件使用本發明的一個方式的有機化合物,而該有機化合物的能帶間隙大,因此即使發光中心物質是呈現藍色螢光的物質或發射綠色磷光的物質,也能夠高效率地發光,從而可以得到發光效率高的發光元件。由此,能夠提供耗電量更低的發光元件。另外,由於本發明的一個方式的有機化合物具有高載子傳輸性,所以能夠提供驅動電壓低的發光元件。
將由玻璃或塑膠等構成的基板用作支撐體來製造這種發光元件即可。藉由在一個基板上形成多個這種發光元件,可以製造被動矩陣型發光裝置。或者,也可以在由玻璃或塑膠等構成的基板上形成電晶體,並且在與電晶體電連接的電極上製造該發光元件。由此,可以製造主動矩陣型發光裝置,在該裝置中電晶體控制發光元件的驅動。
實施方式4
在本實施方式中,參照圖1B說明具有層疊有多個發光單元的結構的發光元件(以下也稱為疊層型元件)的方式。該發光元件是在第一電極與第二電極之間具有多個發光單元的發光元件。一個發光單元具有與實施方式3所示 的EL層103同樣的結構。即,可以說實施方式3所示的發光元件是具有一個發光單元的發光元件,而本實施方式所示的發光元件是具有多個發光單元的發光元件。
在圖1B中,在第一電極501與第二電極502之間層疊有第一發光單元511和第二發光單元512,並且在第一發光單元511與第二發光單元512之間設置有電荷產生層513。第一電極501和第二電極502分別相當於實施方式3中的第一電極101和第二電極102,並且可以應用與實施方式3所說明的材料同樣的材料。另外,第一發光單元511和第二發光單元512可以具有相同結構或不同結構。
電荷產生層513包含由有機化合物和金屬氧化物構成的複合材料。作為該由有機化合物和金屬氧化物構成的複合材料,可以使用實施方式3所示的可用於電洞注入層的複合材料。作為有機化合物,可以使用芳香胺化合物、咔唑化合物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等各種化合物。另外,作為有機化合物,較佳為使用其電洞移動率為1×10-6cm2/Vs以上的有機化合物。但是,只要是其電洞傳輸性高於電子傳輸性的物質,就可以使用這些以外的物質。因為由有機化合物和金屬氧化物構成的複合材料具有良好的載子注入性以及載子傳輸性,所以可以實現低電壓驅動以及低電流驅動。注意,在陽極一側的介面接觸於電荷發生層的發光單元中,電荷發生層還可以具有電洞注入層的功能,所以也可以不 設置電洞注入層。
注意,電荷產生層513也可以藉由採用組合包含由有機化合物和金屬氧化物構成的複合材料的層與由其他材料構成的層的疊層結構形成。例如,也可以藉由組合包含由有機化合物和金屬氧化物構成的複合材料的層與包含選自電子給予性物質中的一個化合物和具有高電子傳輸性的化合物的層形成。另外,也可以藉由組合包含由有機化合物和金屬氧化物構成的複合材料的層與透明導電膜形成。
總之,夾在第一發光單元511與第二發光單元512之間的電荷產生層513只要具有在將電壓施加到第一電極501和第二電極502時,將電子注入到一個發光單元且將電洞注入到另一個發光單元的結構即可。例如,在圖1B中,電荷產生層513具有在以使第一電極的電位高於第二電極的電位的方式施加電壓時,將電子注入到第一發光單元511且將電洞注入到第二發光單元512的結構即可。
雖然在本實施方式中說明了具有兩個發光單元的發光元件,但是可以同樣地應用層疊有三個以上的發光單元的發光元件。如根據本實施方式的發光元件那樣,藉由在一對電極之間以由電荷產生層將其隔開的方式來配置多個發光單元,該發光元件在保持低電流密度的同時還可以進行高亮度發光,並且可以實現使用壽命更長的發光元件。另外,還可以實現能夠進行低電壓驅動且耗電量低 的發光裝置。
此外,藉由使各發光單元的發光顏色不同,可以以整個發光元件得到所希望的顏色的發光。例如,藉由在具有兩個發光單元的發光元件中使第一發光單元的發光顏色和第二發光單元的發光顏色成為補色關係,可以實現以整個發光元件發射白色光的發光元件。注意,補色是指當顏色混合時得到無彩色的顏色關係。即,當混合補色關係的顏色的光時,可以得到白色光。另外,具有三個發光單元的發光元件也是同樣的,例如,在第一發光單元的發光顏色是紅色,第二發光單元的發光顏色是綠色,第三發光單元的發光顏色是藍色的情況下,可以以整個發光元件發射白色光。此外,藉由在一方的發光單元中應用使用呈現磷光發光的發光中心物質的發光層而在另一方的發光單元中應用使用呈現螢光發光的發光中心物質的發光層,能夠在一個發光元件中高效地得到螢光發光和磷光發光的兩者。例如,藉由在一方的發光單元中得到紅色和綠色的磷光發光而在另一方的發光單元中得到藍色的螢光發光,能夠得到發光效率高的白色發光。
因為本實施方式的發光元件包含本發明的一個方式的有機化合物,所以可以得到發光效率高的發光元件。另外,還可以得到驅動電壓低的發光元件。此外,由於包含該有機化合物的發光單元可以得到來源於發光中心物質的高色純度的光,所以容易調整發光元件整體的顏色。
注意,本實施方式可以與其他實施方式適當地組合。
實施方式5
在本實施方式中,參照圖3A和圖3B說明使用包含本發明的一個方式的有機化合物的發光元件來製造的發光裝置的一個例子。另外,圖3A是示出發光裝置的俯視圖,圖3B是沿圖3A中的A-B以及C-D切割的剖面圖。該發光裝置包括以虛線表示的用來控制發光元件618的發光的驅動電路部(源極一側驅動電路)601、像素部602以及驅動電路部(閘極一側驅動電路)603。另外,元件符號604是密封基板,元件符號605是密封材料,由密封材料605圍繞的內側是空間607。
另外,引導佈線608是用來傳送輸入到源極一側驅動電路601及閘極一側驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(撓性印刷電路)609接收視訊信號、時脈信號、啟動信號、重設信號等。另外,雖然在此只圖示FPC,但是該FPC也可以安裝有印刷線路板(PWB)。本說明書中的發光裝置不僅包括發光裝置主體,並且還包括安裝有FPC或PWB的發光裝置。
接下來,參照圖3B說明剖面結構。在元件基板610上形成有驅動電路部及像素部,在此示出作為驅動電路部的源極一側驅動電路601及像素部602中的一個像素。
另外,在源極一側驅動電路601中,形成組合n通道型TFT623和p通道型TFT624的CMOS電路。此外,驅動電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。另外,在本實施方式中,雖然示出將驅動電路形成於基板上的驅動器一體型,但不需要必須採用該結構,也可以將驅動電路形成於外部而不形成於基板上。
此外,像素部602由包括開關用TFT611、電流控制用TFT612、電連接於該電流控制用TFT612的汲極的第一電極613的多個像素形成。另外,以覆蓋第一電極613的端部的方式形成有絕緣物614。在此,可以使用正型的光敏樹脂膜來形成絕緣物614。
注意,對電晶體的結構沒有特別的限制,可以使用交錯TFT或反交錯TFT。另外,對用於TFT的半導體的結晶度也沒有特別的限制。此外,在TFT基板中形成的驅動電路可以由N型和P型中的任何一種或兩種形成。作為構成TFT的半導體層的材料,只要是矽(Si)及鍺(Ge)等元素週期表中的第14族元素、砷化鎵及磷化銦等化合物以及氧化鋅及氧化錫等氧化物等呈現半導體特性的物質,就可以使用任何材料。作為呈現半導體特性的氧化物(氧化物半導體),可以使用選自銦、鎵、鋁、鋅以及錫中的元素的複合氧化物。例如,可以舉出氧化鋅(ZnO)、含有氧化鋅的氧化銦(IZO:Indium Zinc Oxide)、由氧化銦、氧化鎵、氧化鋅構成的氧化物 (IGZO:Indium Gallium Zinc Oxide)。另外,也可以使用有機半導體。該半導體層的結構可以為結晶結構或非晶結構。此外,作為結晶結構的半導體層的具體例子,可以舉出單晶半導體、多晶半導體或微晶半導體。
另外,為了提高形成於絕緣物614上的膜的覆蓋率,將絕緣物614的上端部或下端部形成為具有曲率的曲面。例如,在作為絕緣物614的材料使用正型的光敏丙烯酸樹脂的情況下,較佳為使只有絕緣物614的上端部包括具有曲率半徑(0.2μm至3μm)的曲面。此外,作為絕緣物614,可以使用負型光敏材料或正型光敏材料。
在第一電極613上形成有EL層616及第二電極617。在此,作為用作陽極的第一電極613的材料較佳為使用功函數大的材料。例如,除了ITO膜、包含矽的銦錫氧化物膜、包含2wt%至20wt%的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、鋅膜、鉑膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜以及由氮化鈦膜、以鋁為主要成分的膜和氮化鈦膜構成的三層結構膜等。注意,當採用疊層結構時,佈線電阻也低,可以得到良好的歐姆接觸,並且可以將其用作陽極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋塗法等各種方法形成。EL層616包含本發明的一個方式的有機化合物。此外,作為構成EL層616的其他材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、樹枝狀聚合物)。
另外,作為形成在EL層616上並用作陰極的第二電極617的材料,較佳為使用功函數小的材料(Al、Mg、Li、Ca、或它們的合金及化合物、MgAg、MgIn、AlLi等)。注意,當使產生在EL層616中的光透過第二電極617時,作為第二電極617較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt%至20wt%的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層結構。
此外,發光元件由第一電極613、EL層616、第二電極617形成。該發光元件具有實施方式3或實施方式4所示的結構。另外,像素部由多個發光元件構成,本實施方式的發光裝置也可以包括具有實施方式3或實施方式4所說明的結構的發光元件和具有其他結構的發光元件的兩者。
再者,藉由利用密封材料605將密封基板604與元件基板610貼合在一起,在由元件基板610、密封基板604及密封材料605圍繞的空間607中設置有發光元件618。另外,在空間607中填充有填充劑,除了填充有惰性氣體(氮、氬等)以外,還有時填充有樹脂或乾燥材料、或者樹脂與乾燥材料的兩者。
作為密封材料605,較佳為使用環氧類樹脂或玻璃粉。另外,這些材料較佳為儘量不使水分、氧透過的材料。此外,作為用於密封基板604的材料,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiber Reinforced Plastics:纖維增強塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。
如上所述,可以得到使用包含本發明的一個方式的有機化合物的發光元件製造的發光裝置。
圖4A和圖4B示出藉由形成呈現白色發光的發光元件且設置著色層(濾色片)等來實現全彩色化的發光裝置的例子。圖4A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光元件的第一電極1024W、1024R、1024G、1024B、分隔壁1025、EL層1028、發光元件的第二電極1029、密封基板1031、密封材料1032等。
在圖4A中,將著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)設置於透明基材1033上。另外,還可以設置黑色層(黑矩陣)1035。對設置有著色層及黑色層的透明基材1033進行對準將其固定在基板1001上。此外,著色層及黑色層由覆蓋層1036覆蓋。另外,圖4A示出光不透過著色層而透射到外部的發光層及光透過各顏色的著色層而透射到外部的發光層,不透過著色層的光成為白色光且透過著色層的光成為紅色光、藍色光、綠色光,因此能夠以四個顏色的像素呈現影像。
圖4B示出將著色層(紅色著色層1034R、綠 色著色層1034G、藍色著色層1034B)形成在閘極絕緣膜1003與第一層間絕緣膜1020之間的例子。如上所述,也可以將著色層設置在基板1001與密封基板1031之間。
另外,雖然上面說明了具有在形成有TFT的基板1001一側取出光的結構(底部發射型)的發光裝置,但是也可以採用具有在密封基板1031一側取出光的結構(頂部發射型)的發光裝置。圖5示出頂部發射型發光裝置的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。直到製造連接TFT與發光元件的陽極的連接電極為止的製程與底部發射型發光裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該第三層間絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜相同的材料或其他已知的材料形成。
雖然在此將發光元件的第一電極1024W、1024R、1024G、1024B都用作陽極,但也可以將其用作陰極。另外,在採用如圖5所示的頂部發射型發光裝置的情況下,第一電極較佳為反射電極。EL層1028的結構採用如實施方式3或實施方式4所說明那樣的結構,並且採用能夠得到白色發光的元件結構。
在圖4A和圖4B以及圖5中,藉由使用多個發光層或者使用多個發光單元等來實現能夠得到白色發光的EL層的結構,即可。當然,能夠得到白色發光的結構不侷限於此。
在採用如圖5所示的頂部發射結構的情況下,可以使用設置有著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)的密封基板1031進行密封。也可以在密封基板1031上設置有位於像素與像素之間的黑色層(黑矩陣)1035。著色層(紅色著色層1034R、綠色著色層1034G、藍色著色層1034B)、黑色層(黑矩陣)也可以由覆蓋層覆蓋。另外,作為密封基板1031使用具有透光性的基板。
另外,雖然在此示出了以紅色、綠色、藍色、白色的四個顏色進行全彩色顯示的例子,但並不侷限於此,也可以以紅色、綠色、藍色的三個顏色進行全彩色顯示。
因為本實施方式的發光裝置使用實施方式3或實施方式4所記載的發光元件(包含本發明的一個方式的有機化合物的發光元件),所以可以得到具有良好的特性的發光裝置。明確而言,本發明的一個方式的有機化合物具有大的能帶間隙或高三重態能階,可以抑制由發光物質的能量轉移,因此能夠提供發光效率高的發光元件,從而能夠實現耗電量降低了的發光裝置。另外,本發明的一個方式的有機化合物的載子傳輸性高,因此能夠得到驅動電壓低的發光元件,從而能夠得到驅動電壓低的發光裝置。
上面說明了主動矩陣型發光裝置,下面將說明被動矩陣型發光裝置。圖6A和圖6B示出藉由本發明 的應用製造的被動矩陣型發光裝置。另外,圖6A是表示發光裝置的透視圖,並且圖6B是沿圖6A中的X-Y切割的剖面圖。在圖6A和圖6B中,在基板951上的電極952與電極956之間設置有EL層955。電極952的端部由絕緣層953覆蓋。在絕緣層953上設置有分隔壁層954。分隔壁層954的側壁具有如下傾斜:越接近基板表面,兩個側壁之間的間隔越窄。即,分隔壁層954的短邊方向的剖面是梯形,底邊(朝向與絕緣層953的面方向相同的方向並與絕緣層953接觸的邊)短於上邊(朝向與絕緣層953的面方向相同的方向並不與絕緣層953接觸的邊)。藉由如此設置分隔壁層954,可以防止起因於靜電等的發光元件的不良。此外,在被動矩陣型發光裝置中,也藉由使用以低電壓驅動的實施方式3或實施方式4所記載的發光元件(包含本發明的一個方式的有機化合物的發光元件),能夠以低耗電量驅動。另外,藉由包括包含本發明的一個方式的有機化合物的發光效率高的發光元件(實施方式3或實施方式4所記載的發光元件),可以以低耗電量驅動。
上述發光裝置能夠控制配置為矩陣狀的微小的多個發光元件的每一個,所以該發光裝置適用於進行影像顯示的顯示裝置。
實施方式6
在本實施方式中,說明在其一部分包括實施方式3或 實施方式4所示的發光元件的電子裝置。由於實施方式3或實施方式4所記載的發光元件包含本發明的一個方式的有機化合物,因此該發光元件是耗電量降低了的發光元件,其結果,作為本實施方式所記載的電子裝置能夠實現具有耗電量降低了的顯示部的電子裝置。另外,實施方式3或實施方式4所記載的發光元件是驅動電壓低的發光元件,從而能夠實現驅動電壓低的電子裝置。
作為應用上述發光元件的電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再生裝置、大型遊戲機如彈珠機等。下面示出這些電子裝置的具體例子。
圖7A示出電視機的一個例子。在電視機中,外殼7101組裝有顯示部7103。此外,在此示出利用支架7105支撐外殼7101的結構。可以利用顯示部7103顯示影像,將與實施方式3或實施方式4所說明的發光元件同樣的發光元件排列為矩陣狀構成顯示部7103。
可以藉由利用外殼7101所具備的操作開關或另外提供的遙控器7110進行電視機的操作。藉由利用遙控器7110所具備的操作鍵7109,可以進行頻道及音量的操作,並可以對在顯示部7103上顯示的影像進行操作。此外,也可以在遙控器7110中設置顯示從該遙控器7110輸出的資訊的顯示部7107。
另外,電視機具備有接收機及數據機等。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機將電視機連接到有線或無線方式的通信網路,從而可以進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通信。
圖7B示出電腦,包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。另外,將與實施方式3或實施方式4所說明的發光元件同樣的發光元件排列為矩陣狀而將其用於顯示部7203來製造該電腦。
圖7C示出可攜式遊戲機,包括外殼7301和外殼7302的兩個外殼,並且藉由聯結部7303可以開閉地連接。外殼7301組裝有將與實施方式3或實施方式4所說明的發光元件同樣的發光元件排列為矩陣狀來製造的顯示部7304,而外殼7302組裝有顯示部7305。此外,圖7C所示的可攜式遊戲機還具備揚聲器部7306、儲存介質插入部7307、LED燈7308、輸入單元(操作鍵7309、連接端子7310、感測器7311(包括測定如下因素的功能:力量、位移、位置、速度、加速度、角速度、轉動數、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線)、麥克風7312)等。當然,可攜式遊戲機的結構不侷限於上述結構,只要在顯示部7304及顯示部7305的兩者或一者中使用將與實施方式3或實 施方式4所說明的發光元件同樣的發光元件排列為矩陣狀來製造的顯示部即可,還可以採用適當地設置其他輔助設備的結構。圖7C所示的可攜式遊戲機具有讀出儲存在儲存介質中的程式或資料並將其顯示在顯示部上的功能、以及藉由與其他可攜式遊戲機進行無線通訊而實現資訊共用的功能。另外,圖7C所示的可攜式遊戲機的功能不侷限於此,而可以具有各種各樣的功能。
圖7D示出行動電話機的一個例子。行動電話機除了組裝在外殼7401中的顯示部7402之外還具備操作按鈕7403、外部連接埠7404、揚聲器7405以及麥克風7406等。另外,該行動電話機包括將與實施方式3或實施方式4所說明的發光元件同樣的發光元件排列為矩陣狀來製造的顯示部7402。
圖7D所示的行動電話機也可以採用用手指等觸摸顯示部7402來輸入資訊的結構。此時,可以用手指等觸摸顯示部7402來進行打電話或編寫電子郵件的操作。
顯示部7402的螢幕主要有如下三個模式:第一是以影像顯示為主的顯示模式;第二是以文字等資訊輸入為主的輸入模式;第三是混合顯示模式與輸入模式的兩個模式的顯示及輸入模式。
例如,在打電話或編寫電子郵件時,將顯示部7402設定為以文字輸入為主的文字輸入模式,並進行顯示在螢幕的文字的輸入操作,即可。在此情況下,較佳 的是,在顯示部7402的螢幕的大部分上顯示鍵盤或號碼按鈕。
另外,藉由在行動電話機內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,判斷行動電話機的方向(縱向或橫向),而可以對顯示部7402的螢幕顯示進行自動切換。
此外,藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作來切換螢幕模式。也可以根據顯示在顯示部7402上的影像種類切換螢幕模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將螢幕模式切換成顯示模式,而當顯示在顯示部上的影像信號為文字資料時,將螢幕模式切換成輸入模式。
另外,當在輸入模式下藉由檢測出顯示部7402的光感測器所檢測的信號得知在一定期間內沒有顯示部7402的觸摸操作輸入時,也可以控制為將螢幕模式從輸入模式切換成顯示模式。
還可以將顯示部7402用作影像感測器。例如,藉由用手掌或手指觸摸顯示部7402,來拍攝掌紋、指紋等,而可以進行身份識別。此外,藉由在顯示部中使用發射近紅外光的背光或發射近紅外光的感測光源,也可以拍攝手指靜脈、手掌靜脈等。
另外,本實施方式所示的結構可以適當地與實施方式1至實施方式5所示的結構組合而使用。
如上所述,具備實施方式3或實施方式4所 說明的包含本發明的一個方式的有機化合物的發光元件的發光裝置的應用範圍極廣,從而可以將該發光裝置應用於各種領域的電子裝置。藉由使用本發明的一個方式的有機化合物,能夠得到耗電量降低了的電子裝置。還能夠得到驅動電壓低的電子裝置。
另外,包含本發明的一個方式的有機化合物的發光元件可以用於光源裝置。參照圖8說明將包含本發明的一個方式的有機化合物的發光元件用於光源裝置的一個方式。此外,光源裝置是指作為照射光的單元包括本發明的一個方式的有機化合物的發光元件且至少包括對該發光元件供應電流的輸入輸出端子部的裝置。另外,該發光元件較佳為由密封單元與外部氛圍隔絕。
圖8示出將包含本發明的一個方式的有機化合物的發光元件用於背光的液晶顯示裝置的一個例子。圖8所示的液晶顯示裝置包括外殼901、液晶層902、背光903以及外殼904,液晶層902與驅動器IC905連接。另外,在背光903中使用包含上述有機化合物的發光元件,並且藉由端子906將電流供應到背光903。
藉由將包含上述有機化合物的發光元件用於液晶顯示裝置的背光,能夠得到耗電量降低了的背光。另外,藉由使用含有上述有機化合物的發光元件,能夠製造面發光的照明設備,還能夠實現大面積化。由此能夠實現背光的大面積化及液晶顯示裝置的大面積化。再者,使用包含上述有機化合物的發光元件的背光可以形成得比習知 的背光更薄,所以還能夠實現顯示裝置的薄型化。
圖9示出將包含本發明的一個方式的有機化合物的發光元件用於作為照明設備的檯燈的例子。圖9所示的檯燈包括外殼2001和光源2002,並且作為光源2002使用包含上述有機化合物的發光元件。
圖10示出將包含本發明的一個方式的有機化合物的發光元件用於室內的照明設備3001的例子。因為包含上述有機化合物的發光元件是耗電量降低了的發光元件,所以能夠實現耗電量降低了的照明設備。另外,由於包含上述有機化合物的發光元件能夠實現大面積化,因此可以用於大面積的照明設備。另外,因為包含上述有機化合物的發光元件的厚度薄,所以能夠製造薄型照明設備。
還可以將包含本發明的一個方式的有機化合物的發光元件安裝於汽車的擋風玻璃或儀表板上。圖11示出將包含上述有機化合物的發光元件用於汽車的擋風玻璃或儀表板的一個方式。在顯示區域5000至顯示區域5005中設置有包含上述有機化合物的發光元件。
顯示區域5000和顯示區域5001是設置於汽車的擋風玻璃上的顯示區域。藉由使用具有透光性的電極形成第一電極和第二電極,可以將包含上述有機化合物的發光元件形成為能看到對面的景色的所謂的透視式顯示裝置。如果採用透視式顯示,即使設置於汽車的擋風玻璃上,也不妨礙視界。另外,在設置用來驅動的電晶體等的情況下,較佳為使用具有透光性的電晶體諸如使用有機半 導體材料的有機電晶體或使用氧化物半導體的電晶體等。
顯示區域5002是設置於立柱部分的顯示區域。藉由在顯示區域5002上顯示來自設置於車廂上的成像單元的影像,可以補充被立柱遮擋的視界。另外,同樣地,設置於儀表板部分上的顯示區域5003藉由顯示來自設置於汽車外側的成像單元的影像,可以補充被車廂遮擋的視界的死角來提高安全性。藉由顯示影像以補充看不到的部分,更自然且簡單地確認安全。
顯示區域5004和顯示區域5005可以提供導航資訊、速度、旋轉數、行車距離、加油量、排檔狀態、空調的設定等各種資訊。使用者可以適當地改變其顯示內容及佈置。另外,這些資訊也可以顯示在顯示區域5000至顯示區域5003上。此外,也可以將顯示區域5000至顯示區域5005用作照明設備。
藉由包含本發明的一個方式的有機化合物的發光元件含有該有機化合物,能夠實現驅動電壓低的發光元件或者耗電量低的發光元件。由此,即便設置如顯示區域5000至顯示區域5005那樣的多個大面積螢幕,也可以減少電池的負載並舒適地使用,從而使用包含上述有機化合物的發光元件的發光裝置或照明設備可以適用於車載用發光裝置或照明設備。
圖12A和圖12B是能夠折疊的平板終端的一個例子。圖12A是打開的狀態的平板終端,並且該平板終端包括外殼9630、顯示部9631a、顯示部9631b、顯示模 式切換開關9034、電源開關9035、省電模式切換開關9036、夾子9033以及操作開關9038。此外,藉由將具備使用上述有機化合物的發光元件的發光裝置用於顯示部9631a和顯示部9631b的一者或兩者製造該平板終端。
在顯示部9631a中,可以將其一部分用作觸控面板區域9632a,並且可以藉由觸摸所顯示的操作鍵9637輸入資料。此外,作為一個例子示出顯示部9631a的一半只具有顯示的功能,另一半具有觸控面板的功能的結構,但是不侷限於該結構。也可以使顯示部9631a的所有的區域具有觸控面板的功能。例如,可以使顯示部9631a的整個面顯示鍵盤按鈕來將其用作觸控面板,並且將顯示部9631b用作顯示螢幕。
此外,與顯示部9631a同樣,顯示部9631b也可以將其一部分用作觸控面板區域9632b。此外,藉由使用手指或觸控筆等觸摸觸控面板上的鍵盤顯示切換按鈕9639,可以在顯示部9631b上顯示鍵盤按鈕。
此外,也可以對觸控面板區域9632a和觸控面板區域9632b同時進行觸摸輸入。
另外,顯示模式切換開關9034可以選擇切換豎屏顯示和橫屏顯示等顯示的方向以及黑白顯示和彩色顯示等。省電模式切換開關9036可以根據平板終端所內置的光感測器所檢測的使用時的外光的光量,將顯示的亮度設定為最合適的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其 他檢測裝置。
此外,圖12A示出顯示部9631b的顯示面積與顯示部9631a相同的例子,但是不侷限於此,可以使一個的尺寸和另一個的尺寸不同,也可以使它們的顯示品質有差異。例如,可以使顯示部9631a和9631b中的一個比另一個進行高精細的顯示。
圖12B是合上的狀態的平板終端,並示出本實施方式的平板終端具備外殼9630、太陽能電池9633、充放電控制電路9634、電池9635以及DCDC轉換器9636的例子。此外,在圖12B中,作為充放電控制電路9634的一個例子示出具有電池9635和DCDC轉換器9636的結構。
此外,平板終端能夠進行對折,所以不使用時可以合上外殼9630。因此,可以保護顯示部9631a和顯示部9631b,從而可以提供一種具有良好的耐久性且在長期使用上具有良好的可靠性的平板終端。
此外,圖12A和圖12B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等)的功能;將日曆、日期或時刻等顯示在顯示部上的功能;對顯示在顯示部上的資訊進行操作或編輯的觸摸輸入的功能;藉由各種各樣的軟體(程式)控制處理的功能等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供應到觸控面板、顯示部或影像 信號處理部等。另外,藉由將太陽能電池9633設置於外殼9630的一個面或兩個面,可以高效地對電池9635進行充電,所以是較佳的。
另外,參照圖12C所示的方塊圖對圖12B所示的充放電控制電路9634的結構和工作進行說明。圖12C示出太陽能電池9633、電池9635、DCDC轉換器9636、轉換器9638、開關SW1至SW3以及顯示部9631,電池9635、DCDC轉換器9636、轉換器9638、開關SW1至SW3對應於圖12B所示的充放電控制電路9634。
首先,說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池9633所產生的電力進行升壓或降壓以使它成為用來對電池9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時,使開關SW1打開並利用轉換器9638將該電力升壓或降壓到顯示部9631所需要的電壓。另外,當不進行顯示部9631中的顯示時,使開關SW1斷開且使開關SW2打開來對電池9635進行充電。
注意,作為發電單元的一個例子示出太陽能電池9633,但並不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行電池9635的充電。也可以使用以無線(不接觸)的方式收發電力來進行 充電的無線電力傳輸模組或組合其他充電單元進行充電,並且也可以不包括發電單元。
另外,只要具備上述顯示部9631,就不侷限於圖12A至圖12C所示的電子裝置。
實施例1
在本實施例中,說明以通式(G1)表示的有機化合物所包含的以如下結構式(200)表示的4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mDBTP2BPy-II)的合成方法及其物理性質。
〈合成方法〉
在500mL的三頸燒瓶中放入3.1g(10mmol)的4,4’-二溴-2,2’-聯吡啶、6.7g(22mmol)的3-(二苯並噻吩-4-基)苯基硼酸、100mL的甲苯、15mL的乙醇以及15mL的2M碳酸鈉水溶液。藉由在減壓下攪拌該混合物而進行脫氣,對該燒瓶內進行氮氣置換。對該混合物添加0.43g(0.37mmol)的四(三苯基膦)鈀(0),在氮氣流及100℃的溫度下攪拌3.5小時。在經過指定的時間之後, 使該混合物降溫到60℃,添加100mL的甲苯以及15mL的水,進行吸引過濾以得到固體。藉由對該固體的甲醇懸浮液照射超聲波來對固體進行吸引過濾。將所得到的固體溶解於甲苯,藉由矽藻土(由日本和光純藥工業株式會社製造、目錄號碼:531-16855,以下使用與此相同的矽藻土)以及礬土進行吸引過濾來濃縮該濾液。使用甲苯使所得到的固體重結晶,以32%的產率得到2.2g的目的物的白色粉末。以下示出該反應的合成方案。
藉由利用梯度昇華法昇華精煉所得到的2.2g的4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶的粉末。在壓力為3.1Pa、氬流量為5.0mL/min的條件下以340℃的加熱溫度進行昇華精煉。在昇華精煉後,以91%的產率得到2.0g的4,4’mDBTP2BPy-II的白色粉末。
以下示出所得到的化合物的1H NMR資料。
1H NMR(CDCl3,300MHz):δ=7.47-7.50(m,4H),7.56-7.70(m,8H),7.83-7.90(m,6H),8.15(s,2H),8.19- 8.23(m,4H),8.78(d,J=5.4Hz,2H),8.82(s,2H)。
另外,圖13A和13B示出1H NMR圖。注意,圖13B為放大圖13A中的7.00ppm至9.0ppm的範圍的圖。由測定結果可確認:得到了目的物的4,4’mDBTP2BPy-II。
〈〈4,4’mDBTP2BPy-II的物理性質〉〉
接著,圖14A示出4,4’mDBTP2BPy-II的甲苯溶液中的吸收光譜及發射光譜,圖14B示出薄膜狀態的4,4’mDBTP2BPy-II的吸收光譜及發射光譜。使用紫外可見分光光度計(日本分光公司製造,V550型)進行光譜的測定。將4,4’mDBTP2BPy-II的甲苯溶液注入到石英皿中來測定甲苯溶液的光譜。另外,將4,4’mDBTP2BPy-II蒸鍍在石英基板上來製造樣本,從而測定薄膜的光譜。注意,圖示的甲苯溶液的吸收光譜是減去只將甲苯放入到石英皿而測定出的吸收光譜的吸收光譜,圖示的薄膜的吸收光譜是減去石英基板的吸收光譜的吸收光譜。
由圖14A可知:在甲苯溶液中的4,4’mDBTP2BPy-II中,在332nm附近及282nm附近觀察到吸收峰值,發光的峰值在351nm附近(激發波長333nm)。另外,由圖14B可知:在4,4’mDBTP2BPy-II的薄膜中,在336nm附近、318nm附近、288nm附近及246nm附近觀察到吸收峰值,並且發光的峰值為371nm附近(激發波長為274nm)。由此可知:4,4’mDBTP2BPy-II 在極短波長的區域中呈現吸收以及發光。
另外,在大氣中利用光電子分光光度裝置(日本理研計器公司製造,AC-3)測定薄膜狀態的4,4’mDBTP2BPy-II的游離電位值。將所測得的游離電位值換算為負值,其結果是,4,4’mDBTP2BPy-II的HOMO能階為-6.38eV。由圖14B的薄膜的吸收光譜的資料可知,根據假定為直接躍遷的Tauc曲線算出的4,4’mDBTP2BPy-II的吸收端為3.48eV。由此,可以將固體狀態的4,4’mDBTP2BPy-II的光學能帶間隙推測為3.48eV,從而根據先得到的HOMO能階及該能帶間隙值,可以將4,4’mDBTP2BPy-II的LUMO能階推測為-2.90eV。如此,可知:4,4’mDBTP2BPy-II在固體狀態下具有3.48eV的大能帶間隙。
此外,進行了4,4’mDBTP2BPy-II的磷光發光測定。在該測定中,使用顯微PL裝置LabRAM HR-PL(日本堀場製作所),作為激發光使用He-Cd雷射(325nm),作為檢測器使用CCD檢測器,並且將測定溫度設定為10K。在石英基板上形成50nm厚的樣本的薄膜,並且在氮氛圍中對該石英基板的蒸鍍面貼合其他石英基板之後,將其用於測定。由該結果可知,在4,4’mDBTP2BPy-II的磷光光譜中最短波長一側的峰值存在於470nm,其是具有高T1能階的物質。
另外,藉由利用液相層析-質譜分析(Liquid Chromatography Mass Spectrometry,簡稱:LC/MS分析) 對4,4’mDBTP2BPy-II進行分析。
在LC/MS分析中,使用Waters(沃特斯)Corporation製造的Acquity UPLC及Waters Corporation 製造的Xevo G2 Tof MS。
在MS分析中,藉由電灑游離法(ElectroSpray Ionization,簡稱:ESI)進行離子化。此時,將毛細管電壓設定為3.0kV,將樣本錐孔電壓設定為30V,並且以正模式進行檢測。再者,在碰撞室(collision cell)內將以上述條件離子化了的成分碰撞到氬氣體來使其離解為子離子。將與氬氣碰撞時的能量(碰撞能量:collision energy)設定為70eV。另外,將檢測的質量範圍設定為m/z=100至1200。圖15示出其結果。
實施例2
在本實施例中,說明以通式(G1)表示的有機化合物所包含的以如下結構式(100)表示的4,4’-雙[3-(二苯並呋喃-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’DBfP2BPy)的合成方法及其物理性質。
〈合成方法〉
在500mL的三頸燒瓶中放入3.1g(10mmol)的4,4’-二溴-2,2’-聯吡啶、6.4g(22mmol)的3-(二苯並呋喃-4-基)苯基硼酸、120mL的甲苯、15mL的乙醇以及使3.2g(30mmol)的碳酸鈉溶解於15mL的水而成的水溶液。藉由在減壓下攪拌該混合物而進行脫氣,對該燒瓶內進行氮氣置換。對該混合物添加0.48g(0.42mmol)的四(三苯基膦)鈀(0),在氮氣流及100℃的溫度下攪拌13小時。在經過指定的時間之後,對該混合物添加120mL的甲苯以及15mL的水,在60℃的溫度下攪拌3小時。在經過指定的時間之後,對該混合物進行吸引過濾以得到固體。藉由對該固體的甲醇懸浮液照射超聲波來對固體進行吸引過濾。將所得到的固體溶解於熱甲苯,藉由矽藻土(由日本和光純藥工業株式會社製造、目錄號碼:531-16855,以下使用與此相同的矽藻土)以及礬土進行吸引過濾來濃縮濾液。使用甲苯使所得到的固體重結晶,以58%的產率得到3.7g的目的物的白色粉末。以下示出該反應的合成方案。
藉由利用梯度昇華法昇華精煉所得到的3.7g的4,4’DBfP2BPy的粉末。在壓力為3.5Pa、氬流量為5.0mL/min的條件下以335℃的加熱溫度進行昇華精煉。在昇華精煉後,以65%的產率得到2.4g的4,4’DBfP2BPy的白色粉末。
以下示出所得到的化合物的1H NMR資料。
1H NMR(CDCl3,300MHz):δ=7.38(t,J=7.2Hz,2H),7.46-7.51(m,4H),7.61-7.72(m,8H),7.87(d,J=7.2Hz,2H),7.99-8.04(m,6H),8.31(s,2H),8.81(d,J=4.8Hz,2H),8.86(s,2H)。
另外,圖16A和16B示出1H NMR圖。注意,圖16B為放大圖16A中的7.00ppm至9.0ppm的範圍的圖。由測定結果可知:得到了目的物的4,4’DBfP2BPy。
〈〈4,4’DBfP2BPy的物理性質〉〉
接著,圖17A示出4,4’DBfP2BPy的甲苯溶液中的吸收光譜及發射光譜,圖17B示出薄膜狀態的 4,4’DBfP2BPy的吸收光譜及發射光譜。使用紫外可見分光光度計(日本分光公司製造,V550型)進行光譜的測定。將4,4’DBfP2BPy的甲苯溶液注入到石英皿中來測定甲苯溶液的光譜。另外,將4,4’DBfP2BPy蒸鍍在石英基板上來製造樣本,從而測定薄膜的光譜。注意,圖示的甲苯溶液的吸收光譜是減去只將甲苯放入到石英皿而測定出的吸收光譜的吸收光譜,圖示的薄膜的吸收光譜是減去石英基板的吸收光譜的吸收光譜。
由圖17A可知:在甲苯溶液中的4,4’DBfP2BPy中,在287nm附近、300nm附近及314nm附近觀察到吸收峰值,發光的峰值為344nm附近(激發波長為289nm)。另外,由圖17B可知:在4,4’DBfP2BPy的薄膜中,在314nm附近、301nm附近、291nm附近、254nm附近及206nm附近觀察到吸收峰值,發光的峰值為366nm附近(激發波長為305nm)。由此可知:4,4’DBfP2BPy在極短波長的區域中呈現吸收以及發光。
另外,在大氣中利用光電子分光光度裝置(日本理研計器公司製造,AC-3)測定薄膜狀態的4,4’DBfP2BPy的游離電位值。將所測得的游離電位值換算為負值,其結果是,4,4’DBfP2BPy的HOMO能階為-6.47eV。由圖17B的薄膜的吸收光譜的資料可知,根據假設為直接躍遷的Tauc曲線算出的4,4’DBfP2BPy的吸收端為3.73eV。由此,可以將固體狀態的4,4’DBfP2BPy的 光學能帶間隙推測為3.73eV,從而根據先得到的HOMO能階及該能帶間隙值,可以將4,4’DBfP2BPy的LUMO能階推測為-2.74eV。如此,可知:4,4’DBfP2BPy在固體狀態下具有3.73eV的大能帶間隙。
此外,進行了4,4’DBfP2BPy的磷光發光測定。在該測定中,使用顯微PL裝置LabRAM HR-PL(日本堀場製作所),作為激發光使用He-Cd雷射(325nm),作為檢測器使用CCD檢測器,並且將測定溫度設定為10K。在石英基板上形成大約50nm厚的樣本的薄膜,並且在氮氛圍中對該石英基板的蒸鍍面貼合其他石英基板之後,將其用於測定。由該結果可知,在4,4’DBfP2BPy的磷光光譜中最短波長一側的峰值存在於467nm,其是具有高T1能階的物質。
此外,藉由利用液相層析-質譜分析(Liquid Chromatography Mass Spectrometry,簡稱:LC/MS分析)對4,4’DBfP2BPy進行分析。
在LC/MS分析中,使用Waters(沃特斯)Corporation製造的Acquity UPLC及Waters Corporation製造的Xevo G2 Tof MS。
在MS分析中,藉由電灑游離法(ElectroSpray Ionization,簡稱:ESI)進行離子化。此時,將毛細管電壓設定為3.0kV,將樣本錐孔電壓設定為30V,並且以正模式進行檢測。再者,在碰撞室(collision cell)內將以上述條件離子化了的成分碰撞到 氬氣體來使其離解為子離子。將與氬氣碰撞時的能量(碰撞能量:collision energy)設定為70eV。另外,將檢測的質量範圍設定為m/z=100至1200。圖18示出其結果。
實施例3
在本實施例中,說明作為綠色的磷光元件的主體材料及電子傳輸材料使用4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mDBTP2BPy-II)及4,4’-雙[3-(二苯並呋喃-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’DBfP2BPy)的發光元件(發光元件1、發光元件2)以及作為綠色的磷光元件的主體材料及電子傳輸材料使用4,4’-雙[3-(9H-咔唑-9-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mCzP2BPy)的發光元件(對比發光元件1)。
另外,以下述結構式(i)至(vii)示出在本實施例中使用的有機化合物的分子結構。作為元件結構採用圖1A所示的結構。
〈〈發光元件1的製造〉〉
首先,準備作為第一電極101形成有110nm的包含矽的銦錫氧化物(ITSO)的玻璃基板。利用聚醯亞胺膜以使該ITSO表面以2mm平方的尺寸露出的方式來覆蓋ITSO表面的周邊,將電極面積設定為2mm×2mm。作為用來在該基板上形成發光元件的預處理,利用水洗滌基板表面,並以200℃焙燒1小時,然後進行370秒的UV臭氧處理。此後,將基板引入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並且在真空蒸鍍裝置內的加熱室中以 170℃進行30分鐘的真空焙燒,然後冷卻基板30分鐘左右。
接著,以使形成有ITSO膜的表面朝下方的方式將基板固定於設置在真空蒸鍍裝置內的支架上。
在將真空蒸鍍裝置內減壓到10-4Pa後,將以上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI)以DBT3P-II:氧化鉬=4:2(重量比)的比例共蒸鍍,由此形成電洞注入層111。將其膜厚度設定為60nm。注意,共蒸鍍是指使多個不同的物質分別從不同的蒸發源同時蒸發的蒸鍍法。
接著,以厚度為20nm的方式蒸鍍以上述結構式(ii)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)來形成電洞傳輸層112。
並且,以厚度為20nm的方式將以上述結構式(iii)表示的4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mDBTP2BPy-II)、PCCP和以上述結構式(iv)表示的fac-三(2-苯基吡啶)銥(簡稱:[Ir(ppy)3])以4,4’mDBTP2BPy-II:PCCP:[Ir(ppy)3]=1:0.3:0.06(重量比)的比例共蒸鍍,然後以厚度為20nm的方式將4,4’mDBTP2BPy-II和[Ir(ppy)3]以4,4’mDBTP2BPy-II:[Ir(ppy)3]=1:0.06(重量比)的比例共蒸鍍,由此在電洞傳輸層112上形成發光層113。
接著,藉由以厚度為10nm的方式蒸鍍 4,4’mDBTP2BPy-II,接著以厚度為20nm的方式蒸鍍以上述結構式(v)表示的紅啡啉(簡稱:BPhen),由此形成電子傳輸層114。
再者,以厚度為1nm的方式蒸鍍氟化鋰來在電子傳輸層114上形成電子注入層115。最後,作為用作陰極的第二電極102形成200nm的鋁膜,以完成發光元件1。在上述蒸鍍過程中,蒸鍍都使用電阻加熱法。
〈〈發光元件2的製造〉〉
除了以上述結構式(vi)表示的4,4’-雙[3-(二苯並呋喃-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’DBfP2BPy)來代替發光元件1中的4,4’mDBTP2BPy-II以外,發光元件2是與發光元件1同樣地製造的。
〈〈對比發光元件1的製造〉〉
除了以上述結構式(vii)表示的4,4’-雙[3-(9H-咔唑-9-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mCzP2BPy)來代替發光元件1中的4,4’mDBTP2BPy-II以外,對比發光元件1是與發光元件1同樣地製造的。
〈〈發光元件1、發光元件2及對比發光元件1的工作特性〉〉
在氮氛圍的手套箱中,以不使上述步驟得到的發光元件1、發光元件2及對比發光元件1暴露於大氣的方式對該發光元件進行密封處理(將密封材料塗佈在元件的周 圍,在密封時進行UV處理以及在80℃的溫度下進行1小時的加熱處理),然後對該發光元件的工作特性進行測定。注意,在室溫下(在保持於25℃的氛圍中)進行測定。
關於發光元件1、發光元件2及對比發光元件1,圖19示出電流密度-亮度特性,圖20示出亮度-電流效率特性,圖21示出電壓-亮度特性,圖22示出亮度-外部量子效率特性。
根據圖20可知:發光元件1及發光元件2具有良好的亮度-電流效率特性,並且是發光效率高的發光元件。由此可知:即便4,4’mDBTP2BPy-II及4,4’DBfP2BPy具有高三重態能階以及大的能帶間隙,並且是發射綠色磷光的發光物質,也能夠有效地激發。同樣地,關於圖22中的亮度-外部量子效率,發光元件1及發光元件2也示出良好的特性。另外,根據圖21可知:發光元件1及發光元件2具有良好的電壓-亮度特性,其是驅動電壓低的發光元件。這表示4,4’mDBTP2BPy-II及4,4’DBfP2BPy具有高載子傳輸性。同樣地,圖19也示出發光元件1及發光元件2具有良好的電流密度-亮度特性。
如此,可知使用4,4’mDBTP2BPy-II及4,4’DBfP2BPy的發光元件1及發光元件2是比同樣地使用4,4’mCzP2Bpy製造的對比發光元件1的發光效率顯著高的特性良好的發光元件。
接著,圖23示出當使0.1mA的電流流過所製造的發光元件中時的發射光譜。由圖23可知:發光元件1、發光元件2及對比發光元件1呈現來源於作為發光中心物質的[Ir(ppy)3]的綠色的發光。
接著,進行這些發光元件的可靠性測試。在可靠性測試中,將初始亮度設定為1000cd/m2並在固定電流密度的條件下以初始亮度為100%測量隨著驅動時間經過而產生的亮度變化(歸一化亮度隨時間的變化)。圖24示出其結果。從該結果可知,發光元件1、發光元件2是比對比發光元件1的可靠性好的元件。
實施例4
在本實施例中,說明作為藍色的磷光元件的主體材料及電子傳輸材料使用4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mDBTP2BPy-II)及4,4’-雙[3-(二苯並呋喃-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’DBfP2BPy)的發光元件(發光元件3、發光元件4)。
另外,以下述結構式(i)至(iii)、(v)、(vi)、(viii)示出在本實施例中使用的有機化合物的分子結構。作為元件結構採用圖1A所示的結構。
〈〈發光元件3的製造〉〉
首先,準備作為第一電極101形成有110nm的包含矽的銦錫氧化物(ITSO)的玻璃基板。利用聚醯亞胺膜以使該ITSO表面以2mm平方的尺寸露出的方式來覆蓋ITSO表面的周邊,將電極面積設定為2mm×2mm。作為用來在該基板上形成發光元件的預處理,利用水洗滌基板表面,並以200℃焙燒1小時,然後進行370秒的UV臭氧處理。此後,將基板引入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並且在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後冷卻基板30分鐘左右。
接著,以使形成有ITSO膜的表面朝下方的方式將基板固定於設置在真空蒸鍍裝置內的支架上。
在將真空蒸鍍裝置內減壓到10-4Pa後,將以上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI)以DBT3P-II:氧化鉬=4:2(重量比)的比例共蒸鍍,由此形成電洞注入層111。將其膜厚度設定為60nm。注意,共蒸鍍是指使多個不同的物質分別從不同的蒸發源同時蒸發的蒸鍍法。
接著,以厚度為20nm的方式蒸鍍以上述結構式(ii)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)來形成電洞傳輸層112。
然後,以厚度為30nm的方式將以上述結構式(iii)表示的4,4’-雙[3-(二苯並噻吩-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’mDBTP2BPy-II)、PCCP和以上述結構式(viii)表示的三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3])以PCCP:4,4’mDBTP2BPy-II:[Ir(mpptz-dmp)3]=1:0.3:0.06(重量比)的比例共蒸鍍,然後以厚度為10nm的方式將4,4’mDBTP2BPy-II和[Ir(mpptz-dmp)3]以4,4’mDBTP2BPy-II:[Ir(mpptz-dmp)3]=1:0.06(重量比)的比例共蒸鍍,由此在電洞傳輸層112上形成發光層113。
接著,藉由以厚度為10nm的方式蒸鍍 4,4’mDBTP2BPy-II,接著以厚度為15nm的方式蒸鍍以上述結構式(v)表示的紅啡啉(簡稱:BPhen),形成電子傳輸層114。
再者,以厚度為1nm的方式蒸鍍氟化鋰來在電子傳輸層114上形成電子注入層115。最後,作為用作陰極的第二電極102形成200nm的鋁膜,以完成發光元件3。在上述蒸鍍過程中,蒸鍍都使用電阻加熱法。
〈〈發光元件4的製造〉〉
除了以上述結構式(vi)表示的4,4’-雙[3-(二苯並呋喃-4-基)苯基]-2,2’-聯吡啶(簡稱:4,4’DBfP2BPy)來代替發光元件3中的4,4’mDBTP2BPy-II以外,發光元件4是與發光元件3同樣地製造的。
〈〈發光元件3及發光元件4的工作特性〉〉
在氮氛圍的手套箱中,以不使上述步驟得到的發光元件3及發光元件4暴露於大氣的方式對該發光元件進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理以及在80℃的溫度下進行1小時的加熱處理),然後對該發光元件的工作特性進行測定。注意,在室溫下(在保持於25℃的氛圍中)進行測定。
關於發光元件3及發光元件4,圖25示出電流密度-亮度特性,圖26示出亮度-電流效率特性,圖27示出電壓-亮度特性,圖28示出亮度-外部量子效率特 性。
根據圖26可知:發光元件3及發光元件4具有良好的亮度-電流效率特性,並且是發光效率高的發光元件。由此可知:即便4,4’mDBTP2BPy-II及4,4’DBfP2BPy具有高三重態能階以及大的能帶間隙,並且是發射藍色磷光的發光物質,也能夠有效地激發。同樣地,關於圖28中的亮度-外部量子效率,發光元件3及發光元件4也示出良好的特性。另外,根據圖27可知:發光元件3及發光元件4具有良好的電壓-亮度特性,並且是驅動電壓低的發光元件。這表示4,4’mDBTP2BPy-II及4,4’DBfP2BPy具有高載子傳輸性。同樣地,圖25也示出發光元件3及發光元件4具有良好的電流密度-亮度特性。
接著,圖29示出當使0.1mA的電流流過所製造的發光元件3及發光元件4中時的發射光譜。由圖29可知:發光元件3及發光元件4呈現來源於作為發光中心物質的[Ir(mpptz-dmp)3]的藍色的發光。
實施例5
在本實施例中,說明以通式(G0)表示的有機化合物所包含的以如下結構式(400)表示的3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)的合成方法及其物理性質。
〈合成方法〉
在200mL的三頸燒瓶中放入1.6g(6.8mmol)的3,5-二溴吡啶、4.5g(15mmol)的3-(二苯並噻吩-4-基)苯基硼酸及0.20g(0.66mmol)的三(2-甲基苯基)膦,對該燒瓶內進行氮氣置換。對該混合物添加15mL的2M碳酸鉀水溶液及25mL的甲苯、8.5mL的乙醇,藉由在減壓下攪拌而進行脫氣。對該混合物添加30mg(0.13mmol)的醋酸鈀(II),在氮氣流及90℃的溫度下攪拌6小時。在經過指定的時間之後,使該混合物的有機層和水層分離,並利用氯仿萃取水層。混合所得到的萃取溶液和有機層,使用水、飽和食鹽水洗滌,然後添加硫酸鎂進行乾燥。藉由自然過濾分離該混合物,將濾液濃縮獲得褐色油狀物。藉由利用矽膠管柱層析法(在展開溶劑中,首先使用甲苯,然後使用甲苯和乙酸乙酯(甲苯:乙酸乙酯=20:1))精製該油狀物。濃縮所得到的餾分而得到白色固體。使用甲苯使所得到的固體重結晶,由此得到白色固體。藉由利用高效液相色譜法(HPLC)(展開溶劑:氯仿)精製該白色固體。濃縮所得到的餾分而得到白色固體。對該固體添加己烷並照射超聲波,而藉由吸引過濾來 收集固體,以50%的產率得到2.0g的目的物的白色粉末。以下示出該反應的合成方案。
利用梯度昇華法昇華精煉所得到的白色固體。在壓力為3.2Pa、氬流量為5mL/min的條件下,以310℃對白色固體進行加熱,由此進行昇華精煉。在昇華精煉後,以85%的產率得到1.6g的白色固體。
以下示出所得到的化合物的1H NMR資料。
1H NMR(CDCl3,300MHz):δ=7.41-7.52(m,4H),7.56-7.69(m,6H),7.72-7.82(m,6H),8.07-8.08(m,2H),8.17-8.21(m,4H),8.23-8.25(m,1H),8.97(d,J=2.1Hz,2H)。
另外,圖30A和30B示出1H NMR圖。注意,圖30B為放大圖30A中的7.00ppm至9.5ppm的範圍的圖。由測定結果可確認:得到了目的物的3,5mDBTP2Py。
〈〈3,5mDBTP2Py的物理性質〉〉
接著,圖31A示出3,5mDBTP2Py的甲苯溶液中的吸收光譜及發射光譜,圖31B示出薄膜狀態的3,5mDBTP2Py的吸收光譜及發射光譜。使用紫外可見分光光度計(日本分光公司製造,V550型)進行光譜的測定。將3,5mDBTP2Py的甲苯溶液注入到石英皿中來測定甲苯溶液的光譜。另外,將3,5mDBTP2Py蒸鍍在石英基板上來製造樣本,從而測定薄膜的光譜。注意,圖示的甲苯溶液的吸收光譜是減去只將甲苯放入到石英皿而測定出的吸收光譜的吸收光譜,圖示的薄膜的吸收光譜是減去石英基板的吸收光譜的吸收光譜。
由圖31A可知:在甲苯溶液中的3,5mDBTP2Py中,在331nm附近、319nm附近及283nm附近觀察到吸收峰值,發光的峰值在352nm附近(激發波長289nm)。另外,由圖31B可知:在3,5mDBTP2Py的薄膜中,在332nm附近、315nm附近、284nm附近、272nm附近、240nm附近及220nm附近觀察到吸收峰值,並且發光的峰值為369nm附近(激發波長為274nm)。由此可知:3,5mDBTP2Py在極短波長的區域中呈現吸收以及發光。
另外,在大氣中利用光電子分光光度裝置(日本理研計器公司製造,AC-3)測定薄膜狀態的3,5mDBTP2Py的游離電位值。將所測得的游離電位值換算為負值,其結果是,3,5mDBTP2Py的HOMO能階為-6.42eV。由圖31B的薄膜的吸收光譜的資料可知,根據 假定為直接躍遷的Tauc曲線算出的3,5mDBTP2Py的吸收端為3.49eV。由此,可以將固體狀態的3,5mDBTP2Py的光學能帶間隙推測為3.49eV,從而根據先得到的HOMO能階及該能帶間隙值,可以將3,5mDBTP2Py的LUMO能階推測為-2.93eV。如此,可知:3,5mDBTP2Py在固體狀態下具有3.49eV的大能帶間隙。
此外,進行了3,5mDBTP2Py的磷光發光測定。在該測定中,使用顯微PL裝置LabRAM HR-PL(日本堀場製作所),作為激發光使用He-Cd雷射(325nm),作為檢測器使用CCD檢測器,並且將測定溫度設定為10K。在石英基板上形成50nm厚的樣本的薄膜,並且在氮氛圍中對該石英基板的蒸鍍面貼合其他石英基板之後,將其用於測定。由該結果可知,在3,5mDBTP2Py的磷光光譜中最短波長一側的峰值存在於472nm,並且其是具有高T1能階的物質。
實施例6
在本實施例中,說明以通式(G0)表示的有機化合物所包含的以如下結構式(300)表示的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)的合成方法及其物理性質。
〈合成方法〉
在200mL的三頸燒瓶中放入1.7g(7.2mmol)的3,5-二溴吡啶、4.5g(16mmol)的3-(二苯並呋喃-4-基)苯基硼酸及0.22g(0.72mmol)的三(2-甲基苯基)膦,對該燒瓶內進行氮氣置換。對該混合物添加16mL的2M碳酸鉀水溶液及27mL的甲苯、9.0mL的乙醇,藉由在減壓下攪拌而進行脫氣。對該混合物添加32mg(0.14mmol)的醋酸鈀(II),在氮氣流及90℃的溫度下攪拌6小時。在經過指定的時間之後,使該混合物的有機層和水層分離,並利用氯仿萃取水層。混合所得到的萃取溶液和有機層,使用水、飽和食鹽水洗滌,然後添加硫酸鎂進行乾燥。藉由自然過濾分離該混合物,將濾液濃縮獲得褐色固體。藉由利用矽膠管柱層析法(在展開溶劑中,首先使用甲苯,然後使用甲苯和乙酸乙酯(甲苯:乙酸乙酯=20:1))精製該固體。濃縮所得到的餾分而得到白色固體。藉由利用高效液相色譜法(HPLC)(展開溶劑:氯仿)精製該白色固體。濃縮所得到的餾分而得到白色固體。對該固體添加己烷並照射超聲波,而藉由吸引過濾來收集固 體,以40%的產率得到1.6g的目的物的白色固體。
利用梯度昇華法昇華精煉1.6g的所得到的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)。在壓力為3.6Pa、氬流量為5mL/min的條件下,以280℃對白色固體進行加熱,由此進行昇華精煉。在昇華精煉後,以88%的產率得到1.4g的白色固體。
以下示出所得到的化合物的1H NMR資料。
1H NMR(CDCl3,300MHz):δ=7.34-7.49(m,6H),7.58(d,J=7.8Hz,2H),7.66-7.77(m,6H),7.97-8.02(m,6H),8.21-8.22(m,2H),8.27-8.28(m,1H),8.99(d,J=2.4Hz,2H)。
另外,圖32A和32B示出1H NMR圖。注意,圖32B為放大圖32A中的7.00ppm至9.5ppm的範圍的圖。由測定結果可確認:得到了目的物的3,5mDBFP2Py。
〈〈3,5mDBFP2Py的物理性質〉〉
接著,圖33A示出3,5mDBFP2Py的甲苯溶液中的吸收光譜及發射光譜,圖33B示出薄膜狀態的3,5mDBFP2Py的吸收光譜及發射光譜。使用紫外可見分光光度計(日本分光公司製造,V550型)進行光譜的測定。將3,5mDBFP2Py的甲苯溶液注入到石英皿中來測定甲苯溶液的光譜。另外,將3,5mDBFP2Py蒸鍍在石英基板上來製造樣本,從而測定薄膜的光譜。注意,圖示的甲苯溶液的吸收光譜是減去只將甲苯放入到石英皿而測定出的吸收光譜的吸收光譜,圖示的薄膜的吸收光譜是減去石英基板的吸收光譜的吸收光譜。
由圖33A可知:在甲苯溶液中的3,5mDBFP2Py中,在314nm附近及288nm附近觀察到吸收峰值,發光的峰值在342nm附近及332nm附近(激發波長292nm)。另外,由圖33B可知:在3,5mDBFP2Py的薄膜中,在316nm附近、304nm附近、293nm附近、272nm附近、250nm附近及206nm附近觀察到吸收峰值,並且發光的峰值為356nm附近及341nm附近(激發波長為305nm)。由此可知:3,5mDBFP2Py在極短波長的區域中呈現吸收以及發光。
另外,在大氣中利用光電子分光光度裝置(日本理研計器公司製造,AC-3)測定薄膜狀態的3,5mDBFP2Py的游離電位值。將所測得的游離電位值換算為負值,其結果是,3,5mDBFP2Py的HOMO能階為 -6.49eV。由圖33B的薄膜的吸收光譜的資料可知,根據假定為直接躍遷的Tauc曲線算出的3,5mDBFP2Py的吸收端為3.69eV。由此,可以將固體狀態的3,5mDBFP2Py的光學能帶間隙推測為3.69eV,從而根據先得到的HOMO能階及該能帶間隙值,可以將3,5mDBFP2Py的LUMO能階推測為-2.80eV。如此,可知:3,5mDBFP2Py在固體狀態下具有3.69eV的大能帶間隙。
此外,進行了3,5mDBFP2Py的磷光發光測定。在該測定中,使用顯微PL裝置LabRAM HR-PL(日本堀場製作所),作為激發光使用He-Cd雷射(325nm),作為檢測器使用CCD檢測器,並且將測定溫度設定為10K。在石英基板上形成大約50nm厚的樣本的薄膜,並且在氮氛圍中對該石英基板的蒸鍍面貼合其他石英基板之後,將其用於測定。由該結果可知,在3,5mDBFP2Py的磷光光譜中最短波長一側的峰值存在於467nm,並且其是具有高T1能階的物質。
實施例7
在本實施例中,說明將3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)和3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)用作藍色的磷光元件的主體材料及電子傳輸材料的發光元件(發光元件5和發光元件6)。
另外,以下述結構式(i)、(ii)、(v)、 (viii)、(ix)、(x)表示在本實施例中使用的有機化合物的分子結構。作為元件結構採用圖1A所示的結構。
〈〈發光元件5的製造〉〉
首先,準備作為第一電極101形成有110nm的包含矽的銦錫氧化物(ITSO)的玻璃基板。利用聚醯亞胺膜以使該ITSO表面以2mm平方的尺寸露出的方式來覆蓋ITSO表面的周邊,將電極面積設定為2mm×2mm。作為用來在該基板上形成發光元件的預處理,利用水洗滌基板表面,並以200℃焙燒1小時,然後進行370秒的UV臭氧 處理。此後,將基板引入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並且在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後冷卻基板30分鐘左右。
接著,以使形成有ITSO膜的表面朝下方的方式將基板固定於設置在真空蒸鍍裝置內的支架上。
在將真空蒸鍍裝置內減壓到10-4Pa後,將以上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI)以DBT3P-II:氧化鉬=4:2(重量比)的比例共蒸鍍,由此形成電洞注入層111。將其膜厚度設定為60nm。注意,共蒸鍍是指使多個不同的物質分別從不同的蒸發源同時蒸發的蒸鍍法。
接著,以厚度為20nm的方式蒸鍍以上述結構式(ii)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)來形成電洞傳輸層112。
並且,以厚度為30nm的方式將以上述結構式(ix)表示的3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)、PCCP和以上述結構式(viii)表示的三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3])以PCCP:3,5mDBTP2Py:[Ir(mpptz-dmp)3]=1:0.3:0.06(重量比)的比例共蒸鍍,然後以厚度為10nm的方式將3,5mDBTP2Py和[Ir(mpptz-dmp)3]以 3,5mDBTP2Py:[Ir(mpptz-dmp)3]=1:0.06(重量比)的比例共蒸鍍,由此在電洞傳輸層112上形成發光層113。
接著,藉由以厚度為10nm的方式蒸鍍3,5mDBTP2Py,接著以厚度為15nm的方式蒸鍍以上述結構式(v)表示的紅啡啉(簡稱:BPhen),由此形成電子傳輸層114。
再者,以厚度為1nm的方式蒸鍍氟化鋰來在電子傳輸層114上形成電子注入層115。最後,作為用作陰極的第二電極102形成200nm的鋁膜,以完成發光元件5。在上述蒸鍍過程中,蒸鍍都使用電阻加熱法。
〈〈發光元件6的製造〉〉
除了以上述結構式(x)表示的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)來代替發光元件5中的3,5mDBTP2Py以外,發光元件6是與發光元件5同樣地製造的。
〈〈發光元件5及發光元件6的工作特性〉〉
在氮氛圍的手套箱中,以不使上述步驟得到的發光元件5及發光元件6暴露於大氣的方式對該發光元件進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理以及在80℃的溫度下進行1小時的加熱處理),然後對該發光元件的工作特性進行測定。注意,在室溫下(在保持於25℃的氛圍中)進行測定。
關於發光元件5及發光元件6,圖34示出電流密度-亮度特性,圖35示出亮度-電流效率特性,圖36示出電壓-亮度特性,圖37示出亮度-外部量子效率特性。
根據圖35可知:發光元件5及發光元件6具有良好的亮度-電流效率特性,並且是發光效率高的發光元件。由此可知:即便3,5mDBTP2Py及3,5mDBFP2Py具有高三重態能階以及大的能帶間隙,並且是發射藍色磷光的發光物質,也能夠有效地激發。同樣地,關於圖37中的亮度-外部量子效率,發光元件5及發光元件6也示出良好的特性。另外,根據圖36可知:發光元件5及發光元件6具有良好的電壓-亮度特性,並且是驅動電壓低的發光元件。這表示3,5mDBTP2Py及3,5mDBFP2Py具有高載子傳輸性。同樣地,圖34也示出發光元件5及發光元件6具有良好的電流密度-亮度特性。
接著,圖38示出當使0.1mA的電流流過所製造的發光元件5及發光元件6中時的發射光譜。由圖38可知:發光元件5及發光元件6呈現來源於作為發光中心物質的[Ir(mpptz-dmp)3]的藍色的發光。
另外,還製造了將發光元件5中的3,5mDBTP2Py的吡啶骨架換為嘧啶骨架的有機化合物的對比發光元件2。發光元件5的外部量子效率比對比發光元件2高。此外,可知發光元件5是光譜尖銳且色純度也高的發光元件。
實施例8
在本實施例中,說明將3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)和3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)用作綠色的磷光元件的主體材料及電子傳輸材料的發光元件(發光元件7和發光元件8)。
另外,以下述結構式(i)、(ii)、(iv)、(v)、(ix)、(x)、(xii)示出在本實施例中使用的有機化合物的分子結構。作為元件結構採用圖1A所示的結構。
〈〈發光元件7的製造〉〉
首先,準備作為第一電極101形成有110nm的包含矽的銦錫氧化物(ITSO)的玻璃基板。利用聚醯亞胺膜以使該ITSO表面以2mm平方的尺寸露出的方式來覆蓋ITSO表面的周邊,將電極面積設定為2mm×2mm。作為用來在該基板上形成發光元件的預處理,利用水洗滌基板表面,並以200℃焙燒1小時,然後進行370秒的UV臭氧處理。此後,將基板引入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並且在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後冷卻基板30分鐘左 右。
接著,以使形成有ITSO膜的表面朝下方的方式將基板固定於設置在真空蒸鍍裝置內的支架上。
在將真空蒸鍍裝置內減壓到10-4Pa後,將以上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI)以DBT3P-II:氧化鉬=4:2(重量比)的比例共蒸鍍,由此形成電洞注入層111。將其膜厚度設定為60nm。
接著,以厚度為20nm的方式蒸鍍以上述結構式(xii)表示的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)來形成電洞傳輸層112。
並且,以厚度為40nm的方式將以上述結構式(ix)表示的3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)、以上述結構式(ii)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)和以上述結構式(iv)表示的fac-三(2-苯基吡啶)銥(簡稱:[Ir(ppy)3])以3,5mDBTP2Py:PCCP:[Ir(ppy)3]=0.8:0.2:0.06(重量比)的比例共蒸鍍,由此在電洞傳輸層112上形成發光層113。
接著,藉由以厚度為10nm的方式蒸鍍3,5mDBTP2Py,接著以厚度為15nm的方式蒸鍍以上述結構式(v)表示的紅啡啉(簡稱:BPhen),由此形成電子傳輸層114。
再者,以厚度為1nm的方式蒸鍍氟化鋰來在 電子傳輸層114上形成電子注入層115。最後,作為用作陰極的第二電極102形成200nm的鋁膜,以完成發光元件7。在上述蒸鍍過程中,蒸鍍都使用電阻加熱法。
〈〈發光元件8的製造〉〉
除了以上述結構式(x)表示的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)來代替發光元件7中的3,5mDBTP2Py以外,發光元件8是與發光元件7同樣地製造的。
〈〈發光元件7及發光元件8的工作特性〉〉
在氮氛圍的手套箱中,以不使上述步驟得到的發光元件7及發光元件8暴露於大氣的方式對該發光元件進行密封處理(將密封材料塗佈在元件的周圍,在密封時進行UV處理以及在80℃的溫度下進行1小時的加熱處理),然後對該發光元件的工作特性進行測定。注意,在室溫下(在保持於25℃的氛圍中)進行測定。
關於發光元件7及發光元件8,圖39示出電流密度-亮度特性,圖40示出亮度-電流效率特性,圖41示出電壓-亮度特性,圖42示出亮度-外部量子效率特性。
根據圖40可知:發光元件7及發光元件8具有良好的亮度-電流效率特性,並且是發光效率高的發光元件。由此可知:即便3,5mDBTP2Py及3,5mDBFP2Py具 有高三重態能階以及大的能帶間隙,並且是發射綠色磷光的發光物質,也能夠有效地激發。同樣地,關於圖42中的亮度-外部量子效率,發光元件7及發光元件8也示出良好的特性。另外,根據圖41可知:發光元件7及發光元件8具有良好的電壓-亮度特性,並且是驅動電壓低的發光元件。這表示3,5mDBTP2Py及3,5mDBFP2Py具有高載子傳輸性。同樣地,圖39也示出發光元件7及發光元件8具有良好的電流密度-亮度特性。
如此,可知使用3,5mDBTP2Py及3,5mDBFP2Py的發光元件7及發光元件8是發光效率高且特性良好的發光元件。
接著,圖43示出當以2.5mA/cm2的電流密度使電流流過所製造的發光元件中時的發射光譜。由圖43可知:發光元件7及發光元件8呈現來源於作為發光中心物質的[Ir(ppy)3]的綠色的發光。
接著,進行這些發光元件的可靠性測試。在可靠性測試中,將初始亮度設定為5000cd/m2並在固定電流密度的條件下以初始亮度為100%測量隨著驅動時間經過而產生的亮度變化(歸一化亮度隨時間的變化)。圖44示出其結果。從該結果可知,發光元件7及發光元件8是可靠性好的元件。
實施例9
在本實施例中,示出電洞傳輸層的材料、發 光層的主體材料及電子傳輸層的材料不同的發光元件(發光元件9至13、對比發光元件3及對比發光元件4)的可靠性。
另外,以下述結構式(i)、(ii)、(iv)、(v)、(ix)、(x)、(xii)、(xiii)示出在本實施例中使用的有機化合物的分子結構。作為元件結構採用圖1A所示的結構。
〈〈發光元件9的製造〉〉
首先,準備作為第一電極101形成有110nm的包含 矽的銦錫氧化物(ITSO)的玻璃基板。利用聚醯亞胺膜以使該ITSO表面以2mm平方的尺寸露出的方式來覆蓋ITSO表面的周邊,將電極面積設定為2mm×2mm。作為用來在該基板上形成發光元件的預處理,利用水洗滌基板表面,並以200℃焙燒1小時,然後進行370秒的UV臭氧處理。此後,將基板引入到其內部被減壓到10-4Pa左右的真空蒸鍍裝置中,並且在真空蒸鍍裝置內的加熱室中以170℃進行30分鐘的真空焙燒,然後冷卻基板30分鐘左右。
接著,以使形成有ITSO膜的表面朝下方的方式將基板固定於設置在真空蒸鍍裝置內的支架上。
在將真空蒸鍍裝置內減壓到10-4Pa後,將以上述結構式(i)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯並噻吩)(簡稱:DBT3P-II)和氧化鉬(VI)以DBT3P-II:氧化鉬=4:2(重量比)的比例共蒸鍍,由此形成電洞注入層111。將其膜厚度設定為60nm。
接著,以厚度為20nm的方式蒸鍍以上述結構式(ii)表示的3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)來形成電洞傳輸層112。
並且,以厚度為40nm的方式將以上述結構式(ix)表示的3,5-雙[3-(二苯並噻吩-4-基)苯基]吡啶(簡稱:3,5mDBTP2Py)、PCCP和以上述結構式(iv)表示的fac-三(2-苯基吡啶)銥(簡稱:[Ir(ppy)3])以3,5mDBTP2Py:PCCP:[Ir(ppy)3]=0.8:0.2:0.06(重量 比)的比例共蒸鍍,由此在電洞傳輸層112上形成發光層113。
接著,藉由以厚度為10nm的方式蒸鍍3,5mDBTP2Py,接著以厚度為15nm的方式蒸鍍以上述結構式(v)表示的紅啡啉(簡稱:BPhen),形成電子傳輸層114。
再者,以厚度為1nm的方式蒸鍍氟化鋰來在電子傳輸層114上形成電子注入層115。最後,作為用作陰極的第二電極102形成200nm的鋁膜,以完成發光元件9。在上述蒸鍍過程中,蒸鍍都使用電阻加熱法。
〈〈發光元件10的製造〉〉
除了以上述結構式(xii)表示的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)來代替發光元件9中的電洞傳輸層的PCCP以外,發光元件10是與發光元件9同樣地製造的。
〈〈發光元件11的製造〉〉
除了以上述結構式(x)表示的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)來代替發光元件9中的3,5mDBTP2Py以外,發光元件11是與發光元件9同樣地製造的。
〈〈發光元件12的製造〉〉
除了以上述結構式(x)表示的3,5-雙[3-(二苯並呋喃-4-基)苯基]吡啶(簡稱:3,5mDBFP2Py)來代替發光元件10中的3,5mDBTP2Py以外,發光元件12是與發光元件10同樣地製造的。
〈〈對比發光元件3的製造〉〉
除了以上述結構式(xiii)表示的3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)來代替發光元件9中的3,5mDBTP2Py以外,對比發光元件3是與發光元件9同樣地製造的。
〈〈對比發光元件4的製造〉〉
除了以上述結構式(xiii)表示的3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)來代替發光元件10中的3,5mDBTP2Py以外,對比發光元件4是與發光元件10同樣地製造的。
下面是列出發光元件9至發光元件12、對比發光元件3及對比發光元件4的電洞傳輸層的材料、發光層的主體材料以及電子傳輸層的材料的表。
進行了這些發光元件的可靠性測試。在可靠性測試中,將初始亮度設定為5000cd/m2並在固定電流密度的條件下以初始亮度為100%測量隨著驅動時間經過而產生的亮度變化(歸一化亮度隨時間的變化)。圖45示出其結果。
對比發光元件3及對比發光元件4的亮度分別在經過190小時後及150小時後降低到初始亮度的50%。另一方面,發光元件9及發光元件10的亮度在經過370小時後分別保持初始亮度的61%及60%,發光元件11及發光元件12的亮度在經過340小時後分別保持初始亮度的51%及53%。由此可知,使用本發明的一個方式的有機化合物的發光元件是可靠性良好的發光元件。

Claims (18)

  1. 一種以通式(G6)表示的有機化合物, 其中,A1及A2分別獨立表示二苯並呋喃基和二苯並噻吩基中的任一個,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,其中Ar1鍵結至吡啶骨架的3-位置,以及其中Ar2鍵結至吡啶骨架的5-位置。
  2. 一種以通式(G1)表示的有機化合物, 其中,A1及A2分別獨立表示二苯並呋喃基和二苯並噻吩基中的任一個,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基。
  3. 根據申請專利範圍第2項之有機化合物,其中該有機化合物以通式(G2)表示, 其中Z表示氧原子和硫原子中的任一個。
  4. 根據申請專利範圍第1項之有機化合物,其中該 有機化合物以通式(G7)表示, 其中Z表示氧原子和硫原子中的任一個。
  5. 根據申請專利範圍第2項之有機化合物,其中該有機化合物以結構式(100)表示,
  6. 根據申請專利範圍第2項之有機化合物,其中該有機化合物以結構式(200)表示,
  7. 根據申請專利範圍第1項之有機化合物,其中該有機化合物以結構式(300)表示,
  8. 根據申請專利範圍第1項之有機化合物,其中該有機化合物以結構式(400)表示,
  9. 一種以通式(G3)表示的有機化合物, 其中,R1至R4中的一個是以通式(A-1)表示的基,R1至R4中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,R5至R8中的一個是以通式(A-2)表示的基,R5至R8中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個, R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,並且,Z表示氧原子和硫原子中的任一個。
  10. 一種以通式(G4)表示的有機化合物, 其中R1至R4中的一個是以通式(A-3)表示的基,R1至R4中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,R5至R8中的一個是以通式(A-4)表示的基,R5至R8中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個, R10至R16、R20至R26及R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,並且Z表示氧原子和硫原子中的任一個。
  11. 根據申請專利範圍第10項之有機化合物,其中該有機化合物以通式(G5)表示, 其中R1、R2、R4、R5、R7、R8、R10至R16、R20至R26及R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,並且Z表示氧原子和硫原子中的任一個。
  12. 一種以通式(G8)表示的有機化合物, 其中,R41是以通式(A-1)表示的基,R40、R42至R44中的一個是以通式(A-2)表示的基,R40、R42至R44中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個, R10至R16及R20至R26分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個, Ar1及Ar2分別獨立表示碳原子數為6至13的伸芳基,並且,Z表示氧原子和硫原子中的任一個。
  13. 一種以通式(G9)表示的有機化合物, 其中R41是以通式(A-3)表示的基,R40、R42至R44中的一個是以通式(A-4)表示的基,R40、R42至R44中的其餘的分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個, R10至R16、R20至R26及R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,並且,Z表示氧原子和硫原子中的任一個。
  14. 根據申請專利範圍第13項之有機化合物,其中該有機化合物以通式(G10)表示, 其中R40、R42、R44、R10至R16、R20至R26及R30至R37分別獨立表示氫、碳原子數為1至6的烷基和碳原子數為6至13的芳基中的任一個,並且Z表示氧原子和硫原子中的任一個。
  15. 一種發光元件,包括:一對電極;以及該一對電極之間的包含根據申請專利範圍第1、2、9、10、12及13項中任一項之有機化合物的層。
  16. 一種發光裝置,包括:根據申請專利範圍第15項之發光元件;以及控制該發光元件的單元。
  17. 一種顯示裝置,包括:顯示部中的根據申請專利範圍第15項之發光元件;以及控制該發光元件的單元。
  18. 一種照明設備,包括:照明部中的根據申請專利範圍第15項之發光元件;以及控制該發光元件的單元。
TW103122982A 2013-07-19 2014-07-03 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置 TWI633100B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150305 2013-07-19
JP2013-150305 2013-07-19

Publications (2)

Publication Number Publication Date
TW201509935A TW201509935A (zh) 2015-03-16
TWI633100B true TWI633100B (zh) 2018-08-21

Family

ID=52131571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103122982A TWI633100B (zh) 2013-07-19 2014-07-03 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置

Country Status (5)

Country Link
US (2) US9825235B2 (zh)
JP (3) JP6494938B2 (zh)
KR (1) KR102269018B1 (zh)
DE (1) DE102014213038B4 (zh)
TW (1) TWI633100B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633100B (zh) * 2013-07-19 2018-08-21 半導體能源研究所股份有限公司 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置
DE102014004673A1 (de) * 2014-03-31 2015-10-01 Audi Ag Verfahren zum Ablegen einer Sendung in einem Kraftfahrzeug und zugehöriges Kraftfahrzeug
CN104112758B (zh) * 2014-07-01 2017-02-22 京东方科技集团股份有限公司 发光二极管显示面板及其制作方法、显示装置
KR102357345B1 (ko) 2015-01-27 2022-02-03 삼성디스플레이 주식회사 유기 발광 표시 장치
KR20180099965A (ko) 2017-02-27 2018-09-06 삼성디스플레이 주식회사 유기 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015933A (ja) * 2005-07-05 2007-01-25 Sony Corp アントラセン誘導体の合成方法、有機電界発光素子、および表示装置
WO2010004877A1 (ja) * 2008-07-10 2010-01-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013247191A (ja) * 2012-05-24 2013-12-09 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光照明装置及び有機電界発光表示装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411600A (en) * 1977-06-27 1979-01-27 Mitsui Shipbuilding Eng Device for automatically centering large structure and measuring dimension thereof
JP2001081087A (ja) 1999-09-13 2001-03-27 Sankio Chemical Co Ltd 新規な2−(2−ピリジル)ピリミジン誘導体
JP2001097950A (ja) 1999-10-01 2001-04-10 Sankio Chemical Co Ltd 新規なピリジン誘導体
JP4603646B2 (ja) 1999-11-15 2010-12-22 富士フイルムファインケミカルズ株式会社 新規なジピリジル誘導体
CN100505376C (zh) 2000-11-30 2009-06-24 佳能株式会社 发光器件和显示装置
SG113443A1 (en) 2001-12-05 2005-08-29 Semiconductor Energy Laboratao Organic semiconductor element
US7867629B2 (en) 2003-01-10 2011-01-11 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
US7224118B2 (en) 2003-06-17 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having a wiring connected to a counter electrode via an opening portion in an insulating layer that surrounds a pixel electrode
US8084145B2 (en) 2004-04-02 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light emitting element using the complex, light emitting device using the element, and electric apparatus using the device
US20080093981A1 (en) 2004-08-23 2008-04-24 Semiconductor Energy Laboratory Co., Ltd. Electron Injecting Composition, and Light Emitting Element and Light Emitting Device Using the Electron Injecting Composition
CN101107244B (zh) 2005-01-25 2012-11-28 日本先锋公司 有机化合物、电荷传输材料和有机电致发光元件
CN101128560A (zh) 2005-02-21 2008-02-20 三菱化学株式会社 有机电致发光元件及其制造
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
KR101478004B1 (ko) 2005-12-05 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기금속 착체, 및 이를 사용하는 발광 소자, 발광 장치 및 전자 기기
US7651791B2 (en) 2005-12-15 2010-01-26 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
JP5493357B2 (ja) * 2006-12-13 2014-05-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008147110A2 (en) 2007-05-28 2008-12-04 Cheil Industries Inc. Material for organic electro-optical device having fluorene derivative compound and organic electro-optical device including the same
EP2153455B1 (en) * 2007-06-01 2020-04-29 PerkinElmer Health Sciences, Inc. Atmospheric pressure ion source performance enhancement
TWI524567B (zh) * 2007-09-27 2016-03-01 半導體能源研究所股份有限公司 發光元件,照明裝置,發光裝置,與電子裝置
US8759819B2 (en) 2007-11-22 2014-06-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR101681999B1 (ko) 2008-05-16 2016-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 벤조옥사졸 유도체, 및 벤조옥사졸 유도체를 이용한 발광소자, 발광장치 및 전자기기
JP4474493B1 (ja) 2009-07-31 2010-06-02 富士フイルム株式会社 有機電界発光素子
US9203037B2 (en) * 2010-06-18 2015-12-01 Basf Se Organic electronic devices comprising a layer of a dibenzofurane compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
EP2428512B1 (en) 2010-09-08 2014-10-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
US9133173B2 (en) * 2010-10-15 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, material for light-emitting element, organic semiconductor material, light-emitting element
KR101950363B1 (ko) 2010-10-29 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 페난트렌 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP5664128B2 (ja) * 2010-10-29 2015-02-04 三菱化学株式会社 ピリミジン化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、照明装置及び表示装置
JP5665836B2 (ja) 2011-12-20 2015-02-04 太陽誘電株式会社 圧電発音体及びそれを利用した電子機器
JP5857724B2 (ja) 2011-12-20 2016-02-10 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子の製造方法
JP6040044B2 (ja) 2012-02-17 2016-12-07 株式会社半導体エネルギー研究所 ビピリジン化合物、発光素子用材料、有機半導体材料、発光素子、ディスプレイモジュール、照明モジュール、発光装置、照明装置、表示装置及び電子機器
KR102038815B1 (ko) * 2012-07-31 2019-10-31 엘지디스플레이 주식회사 인광 도펀트용 호스트 화합물 및 이를 이용한 유기발광다이오드소자
TWI633100B (zh) * 2013-07-19 2018-08-21 半導體能源研究所股份有限公司 有機化合物、發光元件、顯示器模組、照明模組、發光裝置、顯示裝置、照明設備及電子裝置
KR102331669B1 (ko) * 2013-11-13 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015933A (ja) * 2005-07-05 2007-01-25 Sony Corp アントラセン誘導体の合成方法、有機電界発光素子、および表示装置
WO2010004877A1 (ja) * 2008-07-10 2010-01-14 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013247191A (ja) * 2012-05-24 2013-12-09 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光照明装置及び有機電界発光表示装置

Also Published As

Publication number Publication date
JP6494938B2 (ja) 2019-04-03
JP2019131562A (ja) 2019-08-08
JP7008774B2 (ja) 2022-01-25
TW201509935A (zh) 2015-03-16
DE102014213038B4 (de) 2023-04-20
US20150021577A1 (en) 2015-01-22
KR102269018B1 (ko) 2021-06-23
KR20150010603A (ko) 2015-01-28
US9825235B2 (en) 2017-11-21
US20180047911A1 (en) 2018-02-15
JP2021028330A (ja) 2021-02-25
DE102014213038A1 (de) 2015-01-22
JP2015038063A (ja) 2015-02-26

Similar Documents

Publication Publication Date Title
JP7030923B2 (ja) 発光素子の発光層用材料
JP6899020B2 (ja) 発光装置
JP2022016485A (ja) 発光素子、照明装置、発光装置、表示装置、および電子機器
TWI603964B (zh) 有機化合物,發光元件,發光裝置,顯示裝置,電子裝置,及照明裝置
TWI619709B (zh) 雜環化合物,發光元件,發光裝置,電子裝置及照明裝置
JP2020047930A (ja) 発光素子
JP7008774B2 (ja) 有機化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
JP2021114624A (ja) 発光素子、照明装置、発光装置、表示装置及び電子機器

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees