WO2012075639A1 - 一种双面发光的有机电致发光器件及其制备方法 - Google Patents

一种双面发光的有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2012075639A1
WO2012075639A1 PCT/CN2010/079634 CN2010079634W WO2012075639A1 WO 2012075639 A1 WO2012075639 A1 WO 2012075639A1 CN 2010079634 W CN2010079634 W CN 2010079634W WO 2012075639 A1 WO2012075639 A1 WO 2012075639A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic electroluminescent
double
emitting
Prior art date
Application number
PCT/CN2010/079634
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
冯小明
钟铁涛
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to EP10860437.2A priority Critical patent/EP2650940A4/en
Priority to CN2010800700070A priority patent/CN103210516A/zh
Priority to PCT/CN2010/079634 priority patent/WO2012075639A1/zh
Priority to US13/885,494 priority patent/US8957409B2/en
Priority to JP2013542328A priority patent/JP2013545249A/ja
Publication of WO2012075639A1 publication Critical patent/WO2012075639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the invention belongs to the technical field of electric light sources, and in particular relates to a double-sided light emitting organic electroluminescent device and a preparation method thereof.
  • the electric light source industry has always been a hot topic in the world's countries, and it plays a very important role in the world economy.
  • the light source widely used at present is a gas discharge light source.
  • the principle of the light source is to charge the interior of the lamp to a mixed gas containing mercury, and to illuminate the phosphor by ultraviolet light generated by gas discharge luminescence or gas discharge.
  • the pulsed light flash of gas discharge light source is easy to cause human visual fatigue, and mercury pollution environment, with the advancement of society and science and technology, research and development of energy-saving and environmentally friendly green light source to replace traditional light source has become an important topic for countries to compete for research.
  • the organic electroluminescent device is one of electric light sources.
  • Organic Light Emission (Organic Light Emission) Diode) referred to as OLED
  • OLED Organic Light Emission
  • the advantages of fast response, and OLED has excellent flexibility, can be folded and bent, is a promising flexible display technology and light source, in line with the development trend of mobile communication and information display in the information age, and green lighting technology Requirements are the focus of many researchers at home and abroad.
  • the organic electroluminescent device generally has a sandwich-like structure, generally including an anode, an organic electroluminescent structure, and a cathode, wherein the organic electroluminescent structure includes at least one of a hole injection layer and a hole injection layer.
  • FIG. 1 is a schematic structural view of a conventional organic electroluminescent device including all of these structures, including a transparent substrate 11, and sequentially bonded to the transparent substrate 11.
  • the organic electroluminescent structure 13 includes a hole injection layer 131, a hole transport layer 132, a light emitting layer 133, an electron transport layer 134, and an electron injection layer 135.
  • prior art OLEDs can only remove light from one side of the anode or cathode, and only a bottom-emitting or top-emitting OLED device can be fabricated.
  • the OLED device of the double-sided light-emitting display invented by some researchers adopts a two-layer structure design, that is, two sets of OLED light-emitting display units are used to back-to-back (Back To Back) is combined to achieve the double-sided illumination or display. This structural design complicates the structure of the OLED device, increases the thickness and weight, and greatly increases the cost.
  • the purpose of the embodiments of the present invention is to overcome the above-mentioned deficiencies of the prior art, and provide a double-sided light-emitting organic electroluminescent device with small driving current, high luminance and high current efficiency; and the above-mentioned double-sided organic electroluminescence device A method of preparing a light emitting device.
  • a double-sided light emitting organic electroluminescent device comprising a light transmissive substrate, an anode, a light transmissive cathode, further comprising at least two organic electroluminescent structures and at least one charge generation between the anode and the light transmissive cathode Floor;
  • the charge generation layer includes an N-type semiconductor layer and a P-type semiconductor layer combined with the N-type semiconductor layer.
  • the charge generating layer comprises an N-type semiconductor layer and a P-type semiconductor layer combined with the N-type semiconductor layer;
  • the double-sided light-emitting organic electroluminescent device of the present invention uses a charge generating layer to connect two or more organic electroluminescent structures, thereby realizing the nearly 360-degree omnidirectional illumination of the double-sided light-emitting organic electroluminescent device, and expanding Irradiation range and application range; the double-emitting organic electroluminescent device of the structure requires small driving current, high luminous efficiency, high brightness and high light output efficiency; and at the same time, the double is effectively extended due to the small required driving current The lifetime of a surface-emitting organic electroluminescent device.
  • the preparation method of the double-sided light-emitting organic electroluminescent device only needs to be plated with various layers in sequence, and the preparation method thereof is simple in process, improves production efficiency, reduces production cost, and is suitable for industrial production.
  • FIG. 1 is a schematic structural view of a conventional single-sided light-emitting organic electroluminescent device
  • FIG. 2 is a first schematic structural view of an organic electroluminescent device with double-sided illumination according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a second structure of a double-sided light-emitting organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a third structure of a double-sided light-emitting organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 5 is a fourth structural diagram of a double-sided light emitting organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a double-sided light emitting organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for preparing a double-sided light-emitting organic electroluminescent device according to an embodiment of the present invention.
  • Figure 8 is a graph showing the relationship between the luminance of a double-sided light-emitting organic electroluminescent device prepared in Example 1 of the present invention and the luminance and current density of an organic electroluminescent device in which no charge generating layer is provided in Comparative Example 5.
  • OLEDs organic electroluminescent devices
  • LUMO lowest unoccupied molecular orbital
  • HOMO organic matter
  • the excitons migrate under the action of an electric field, transfer energy to the luminescent material, and excite the electrons from the ground state to the excited state.
  • the excited state energy is deactivated by radiation to generate photons. , release light energy.
  • the emitted light When the emitted light is directed toward the substrate, the light is refracted and reflected at the substrate or/and the interface of the anode bonded to the substrate, and the refracted light causes the loss of the light emitted by the organic electroluminescent device, and the reflected light is reflected to
  • the light exiting surface of the top surface of the electroluminescent device can enhance the light extraction efficiency of the organic electroluminescent device. Therefore, the interface characteristic of the refraction of the light is changed, so that the original refracted light is totally reflected or reflected after being incident on the interface, so that the light extraction efficiency of the emitted light of the organic electroluminescent device can be further enhanced.
  • the embodiment of the present invention provides a double-sided light-emitting organic electroluminescent device with small driving current, high luminance and high current efficiency according to the above principle, as shown in FIGS. 2 to 6.
  • the double-sided light-emitting organic electroluminescent device includes a light-transmitting substrate 21, an anode 22, a light-transmitting cathode 25, at least two organic electroluminescent structures 23, and at least one charge generating layer 24.
  • the connection relationship of the structures is such that the charge generation layer 24 is respectively coupled between the two adjacent organic electroluminescent structures 23, and is alternately arranged and integrated with the organic electroluminescent structure 23, and is located at one of the two ends.
  • the surface of the organic electroluminescent structure 23a opposite to the charge generating layer 24 is sequentially bonded to the anode 22 and the light transmitting substrate 21, and the surface of the other organic electroluminescent structure 23b opposite to the charge generating layer 24 is bonded to the light transmitting cathode 25.
  • the charge generation layer 24 includes an N-type semiconductor layer 241 and a P-type semiconductor layer 242 bonded to the N-type semiconductor layer 241.
  • the double-sided light-emitting organic electroluminescent device uses a charge generating layer to connect two or more organic electroluminescent structures, thereby realizing the omnidirectional illumination of the double-sided light-emitting organic electroluminescent device close to 360 degrees, and expanding The irradiation range and the application range; the double-emitting organic electroluminescent device of the structure requires a small driving current, high luminous efficiency, high brightness, and high light output efficiency; and at the same time, the driving current is small, effectively extending the The lifetime of a two-sided illuminated organic electroluminescent device.
  • the charge generation layer 24 in the embodiment of the present invention has a structure in which an N-type semiconductor layer 241 is combined with a P-type semiconductor layer 242.
  • the charge generation layer 24 reduces the required operating current of the double-emitting organic electroluminescent device of the embodiment of the invention, so that the double-emitting organic electroluminescent device has high luminance and high current efficiency.
  • the thickness of the N-type doped organic layer 241 is preferably 10 to 30.
  • the thickness of the nm, P-type doped organic or metal oxide layer 242 is preferably from 3 to 30 nm.
  • the N-type semiconductor layer 241 is an N-type doped organic layer
  • the P-type semiconductor layer 241 is a P-type doped organic layer or a metal oxide layer.
  • the material of the N-type doped organic layer 241 is preferably Li:Alq 3 , Li:TPBi, Cs:BPhen And at least one of Mg: Alq 3 , F 16 CuPc, Cs 2 CO 3 : Alq 3 , Li: BPhen, Cs: BCP, Li: BCP; and the material of the P-type doped organic layer 242 is preferably FeCl 3 : NPB, F4-TCNQ: NPB, F4-TCNQ: at least one of m-MTDATA and CuPc.
  • the material of the N-type doped organic layer 241 is preferably Li:Alq 3 , Li:TPBi, Cs:BPhen, Mg. : at least one of Alq 3 , F 16 CuPc, Cs 2 CO 3 :Alq 3 , Li:BPhen, Cs:BCP, Li:BCP;
  • the material of the metal oxide layer 242 is preferably MoO 3 , V 2 O 5 , At least one of WO 3 and nano indium tin metal oxide.
  • the charge generation layer 24 may be Li:Alq 3 /FeCl 3 :NPB, Li:TPBi/FeCl 3 :NPB, Cs:BPhen/F4-TCNQ:NPB, Mg:Alq 3 /F4-TCNQ:m-MTDATA, F 16 CuPc/CuPc, Cs 2 CO 3 : Alq 3 /MoO 3 , Li:BPhen/MoO 3 , Cs:BCP/ITO, Li:BCP/V 2 O 5 , Mg:Alq 3 /WO 3 and the like.
  • the thickness and material of the charge generation layer 24 are more favorable for the generation of electrons and holes, and also for the penetration of light.
  • the material of the transparent substrate 21 is preferably a light transmissive glass or a transparent polymer film material, and of course, other materials in the art are used instead.
  • the thickness of the transparent substrate 21 can also be a thickness commonly used in the art, but should have excellent light transmittance.
  • the light transmittance of the above preferred material can be as high as 95%.
  • the material of the anode 22 is preferably indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), or indium-doped zinc oxide (IZO). It is of course also possible to use other materials commonly used in the field, such as fluorine-doped tin oxide (FTO).
  • the thickness of the light-transmitting anode 22 can also be a thickness commonly used in the art, but should have excellent electrical conductivity, thereby reducing the heat of the positive electrode 22 during electrification, and also having excellent light transmission properties.
  • the material of the transparent cathode 25 is preferably gold (Au), silver (Ag), calcium (Ca), magnesium (Mg) aluminum (Al), magnesium aluminum alloy or magnesium silver alloy, and the thickness of the transparent cathode 25 Thicknesses commonly used in the art can also be used, but should have excellent electrical conductivity, thereby reducing the heat during the energization process, and also having excellent light transmission properties.
  • the light-transmitting cathode 25 is more preferably an Al/Ag double-layer structure in which the thickness of the Al layer is preferably 0.5.
  • the thickness of the nm, Ag layer is preferably 20 nm.
  • the above-described organic electroluminescent structure 23 includes the light-emitting layer 233, and/or further includes at least one of a hole injection layer 231, a hole transport layer 232, an electron transport layer 234, and an electron injection layer 235.
  • the light layer can adopt red, yellow, blue, green and other luminescent materials, and when there are multiple luminescent layers in the illuminating device, the same kind or different kinds of luminescent materials can be used, and when different luminescent materials are used, the type of luminescent materials can be adjusted.
  • the white light emission is realized, when the organic electroluminescence structure 23 is two and the charge generation layer 24 is one, as shown in FIG.
  • one end of the organic electroluminescence structure 23a is combined with the anode 22, and the other end is opposite to the charge generation layer.
  • the type semiconductor layer 241 has at least one of an electron transport layer 234a and an electron injection layer; one end of the organic electroluminescence structure 23b is combined with the light-transmitting cathode 25, and the other end is combined with the charge generation layer 24, and the electroluminescence structure is
  • the light-emitting layer 233b and the light-transmitting cathode 25 in 23b further have at least one of an electron transport layer 234b and an electron injection layer 235b, and the light-emitting layer 233b and the P-type semiconductor layer 24 of the charge generation layer 24.
  • 2 has at least one of a hole injection layer 231b and a hole transport layer 232b.
  • the organic electroluminescent structure 23 is spaced and integrated with the charge generating layer 24, and one end of the organic electroluminescent structure 23a is provided.
  • the opposite end is combined with the charge generating layer 24a
  • the other end of the organic electroluminescent structure 23b is bonded to the light transmitting cathode 25 at one end, and the opposite end is combined with the charge generating layer 24b
  • the organic electroluminescent structures 23b respectively include a light-emitting layer 233, and/or further include at least one of a hole injection layer 231, a hole transport layer 232, an electron transport layer 234, and an electron injection layer 235, a hole injection layer 231,
  • the hole transport layer 232, the electron transport layer 234, and the electron injection layer 235 are bonded in the same manner as the above-described organic electroluminescence structure 23, and the charge generation layer 24
  • a third organic electroluminescent structure 23c is bonded between the charge generating layer 24a and the charge generating layer 24b, wherein the P-type semiconductor layer 242a in the charge generating layer 24a and the light-emitting layer 233c in the organic electroluminescent structure 23c At least one of the hole injection layer 231c and the hole transport layer 232 is included, and the electron transport layer 234c is included between the N-type semiconductor layer 241b in the charge generation layer 24b and the light-emitting layer 233c in the organic electroluminescence structure 23c. At least one of the electron injection layers 235c.
  • the N-type semiconductor layer in the charge generation layer is closer to the positive electrode than the P-type semiconductor layer, and the P-type semiconductor layer is close to the transparent cathode 25, that is, the charge generation layer 24a and the charge generation layer 24b are
  • the direction of bonding in the double-sided light-emitting organic electroluminescent device of this embodiment is uniform.
  • the organic electroluminescent structures 23 and the charge generating layer 24 are sequentially arranged and spaced apart.
  • the structure of the double-luminous organic electroluminescent device of the present embodiment is similar to that of FIG. 3 except that the number of the organic electroluminescent structures 23 and the charge generating layer 24 are sequentially spaced and increased. Therefore, any changes within the framework of the technical solution of the present invention are within the scope of the present invention.
  • the organic electroluminescent device of the double-sided illumination of the embodiment of the present invention can be at least several structures as follows, and is of course not limited to the following structure:
  • the double-emitting organic electroluminescent device of the embodiment of the present invention comprises a transparent substrate 21, an anode 22, a hole injection layer 231a, a hole transport layer 232a, and a light-emitting layer.
  • 233a an electron transport layer 234a, an N-type semiconductor layer 241, a P-type semiconductor layer 242, a hole injection layer 231b, a hole transport layer 232b, a light-emitting layer 233b, an electron transport layer 234b, an electron injection layer 235b, and a light-transmitting cathode 25.
  • the double-emitting organic electroluminescent device of the embodiment of the present invention comprises a transparent substrate 21, an anode 22, a hole injection layer 231a, a hole transport layer 232a, and a light-emitting layer.
  • the organic electroluminescent device with double-sided illumination includes a transparent substrate 21, an anode 22, a hole transport layer 232a, a light-emitting layer 233a, and an N-type semiconductor layer which are sequentially combined. 241, a P-type semiconductor layer 242, a light-emitting layer 233b, an electron transport layer 234b, and a light-transmitting cathode 25.
  • the thickness of the hole injection layer 231 is preferably 20 to 80 nm, and the material thereof is preferably a transition metal oxide, more preferably m-MTDATA, and it is of course also possible to use other materials commonly used in the art.
  • the thickness of the hole transport layer 232 is preferably 20 to 80 nm, and the material thereof is preferably NPB, m-MTDATA, TPD, ⁇ -NPB, Spiro-NPB, DMF-NPB, ⁇ , ⁇ -NPB, spiro-TAD, DMF-TPD. At least one of them.
  • the thickness of the electron transport layer 234 is preferably 20 to 80 nm, and the material thereof is preferably at least one of Bphen, Alq 3 , BCP, Galq, BeBq 2 , Balq, TPBi, OXD-7, and TAZ.
  • the thickness of the electron injecting layer 235 is preferably 20 to 80 nm, and the material thereof is preferably LiF, and of course, it may be replaced with other materials commonly used in the art. For example, alkaline earth metal fluorides (NaF, CsF, CaF 2 , MgF 2 ) or chlorides (NaCl, KCl, RbCl).
  • the thickness of the light-emitting layer 233 is preferably 20 to 80 nm, and the light-emitting layer 233 may be a light-emitting material such as red, yellow, blue or green.
  • the number of the organic electroluminescent structures is 2 or more, the same or different species may be used.
  • luminescent materials when different luminescent materials are used, white light emission or other color light emission can be realized by adjusting the type of luminescent material.
  • the light-emitting layer 233 is preferably at least one of C545T:Alq 3 , (F-BT) 2 Ir(acac):CBP, DPVBi, FIrPic:CBP, Ir(ppy) 3 :CBP, Ir(piq) 3 :CBP.
  • F-BT dimethyl quinacridone
  • DMQA dimethyl quinacridone
  • the electron-hole recombination probability is often low, and the brightness and efficiency of the organic electroluminescent device are not improved. Therefore, by using the hole injection layer 231, the hole transport layer 232, the light-emitting layer 233, the electron transport layer 234, and the electron injection layer 235, the injection and transfer rates of electrons and holes can be effectively adjusted, and carriers can be balanced.
  • the composite region is controlled to obtain the desired luminance and luminous efficiency, and at the same time, the organic electroluminescent device of the embodiment of the invention not only ensures the organic electroluminescent structure and the charge generating layer 24, the anode 22, and the transparent cathode 25, respectively.
  • the hole injection layer 231 is preferably a transition metal oxide, and the material is matched with the organic hole transport layer 232 in an energy level, so that the hole injection of the anode 22 is significantly enhanced, and the electrons and holes are effectively adjusted.
  • the injection and transfer rates, balance carriers, and control of the composite region enable the organic light-emitting device of the double-sided illumination of the embodiment of the present invention to obtain ideal luminance and luminous efficiency.
  • a water vapor barrier layer 26 may be disposed between the anode 22 and the transparent substrate 21, as shown in FIG.
  • the purpose of providing the water vapor barrier layer 26 is to prevent moisture in the atmosphere from penetrating into the double-sided light-emitting organic electroluminescent device during use, thereby affecting the efficiency of the double-sided light-emitting organic electroluminescent device.
  • the thickness of the moisture barrier layer 26 is preferably 50 to 200 nm, and the material thereof is preferably at least one of SiN x , SiO 2 , Si 3 N 4 , Al 2 O 3 , and Ta 2 O 5 .
  • the water vapor barrier layer 26 of the material and thickness is more effective in preventing the penetration of moisture and has good light-emitting properties.
  • the layer water vapor barrier layer 26 formed by SiN x is dense and has good light transmittance, and can effectively isolate water vapor.
  • the case where the moisture barrier layer 26 is provided may be determined according to the material type of the transparent substrate 21, for example, when the material of the transparent substrate 21 is a transparent polymer film material, preferably on a surface of the transparent polymer film transparent substrate 21.
  • a moisture barrier layer 26 is provided. Of course, when the transparent substrate 21 is made of transparent glass, the moisture barrier layer 26 may be added.
  • an antireflection film layer 27 is further bonded to the surface of the light-transmitting cathode 25 opposite to the organic electroluminescent structure 23, as shown in FIG. Since the light transmittance of the metal light-transmitting cathode 25 is lower than the light transmittance of the light-transmitting substrate, the anti-reflection film layer 27 is provided to further enhance the light transmittance of the light-transmitting cathode 25, and the light-transmitting cathode 25 is improved. Light output efficiency.
  • the thickness of the anti-reflection film 26 is preferably 40 to 100 nm, and the material thereof is preferably at least one of Alq 3 , ZnSe, TeO 2 , MoO x , BCP, m-MTDATA, and ZnS. It has been tested that the light-transmitting rate at the light-transmitting cathode 25 is increased by 8 to 10% by adding the anti-reflection film layer 27 in the double-luminous organic electroluminescent device of the embodiment of the present invention.
  • a transparent cover layer 28 may also be added on the outer surface of the antireflection film layer 27 or directly on the outer surface of the light-transmitting cathode 25, and the transparent cover layer 28 is provided for further blocking the transparent cathode 25 Oxidation.
  • the above-mentioned water vapor may be added between the antireflection film layer 27 or the transparent cathode 25 and the transparent cover layer 28.
  • a layer of transparent glue 29 may also be encapsulated between the transparent cover layers 21 and 28, the transparent cover layer 28, and around 22, 23, 24, 25, or around 22, 23, 24, 25, 26, 27.
  • the material of 29 can be UV curing glue (UV glue), of course, it can also be replaced by other glues in the field.
  • UV glue UV curing glue
  • the embodiment of the present invention further provides a method for preparing the above-mentioned double-sided light-emitting organic electroluminescent device according to the above principle.
  • the process flow chart of the method is shown in FIG. 7 , and referring to FIGS. 2-6 , the method includes the following steps:
  • S3 plating at least two organic electroluminescent structures 23 and at least one charge generating layer 24 on a surface of the anode 22 opposite to the transparent substrate 21; wherein the charge generating layer 24 is bonded to two adjacent organic electroluminescent structures 23, and alternating with the organic electroluminescent structure 23; the charge generation layer 24 includes an N-type semiconductor layer 241 and a P-type semiconductor layer 242 combined with the N-type semiconductor layer 241;
  • the method for preparing the double-sided light-emitting organic electroluminescent device only needs to be plated with various layers in sequence, and the preparation method thereof is simple in process, improves production efficiency, reduces production cost, and is suitable for industrial production.
  • the structure, material and specifications of the transparent substrate 21 are as described above, and are not described herein again.
  • the method of plating the anode 2 is preferably vapor deposition, sputtering or sputtering.
  • the sputtering may be magnetron sputtering.
  • the material of the anode 2 and the thickness of the plating are set forth above and will not be described herein.
  • the anode 22 also needs to be subjected to a pretreatment before the next step of vapor deposition, which includes cleaning, oxygen plasma treatment, and the like.
  • the cleaning method is preferably ultrasonic cleaning with detergent, deionized water, acetone, ethanol and isopropanol for 15 minutes in order to thoroughly remove the foreign matter on the surface of the anode 22, so that the surface of the anode 22 is cleaned to the utmost extent; the anode 22 is cleaned.
  • oxygen plasma treatment is further performed, and the oxygen plasma treatment oxygen plasma treatment time is preferably 5-15 min, and the power is preferably 10-150 W, and the main function thereof is to reduce the roughness and contact angle of the surface of the conductive glass, so as to improve the same.
  • the surface is wet and adsorbable, and the surface treatment can further remove organic contaminants on its surface.
  • the manner of plating the organic electroluminescent structure 23 and the charge generating layer 24 is preferably a vapor deposition, sputtering, sputtering or chemical deposition.
  • the organic electroluminescent structure 23 preferably includes a hole injection layer 231, a hole transport layer 232, a light-emitting layer 233, an electron transport layer 234, and an electron injection layer 235 which are sequentially bonded, vapor deposition, sputtering, and sputtering are employed.
  • the hole injection layer 231, the hole transport layer 232, the light-emitting layer 233, the electron transport layer 234, and the electron injection layer 235 are sequentially plated on the anode 2 by chemical deposition.
  • the case of the structure of the organic electroluminescent structure 23 and the charge generating layer 24, etc., is explained above and will not be described herein.
  • the transparent cathode 25 is plated in the same manner as the organic light-emitting structure 23, or the method of plating the anode 22, the thickness of the transparent cathode 25 can be used. As mentioned above.
  • the preparation of the double-sided light-emitting organic electroluminescent device only needs to be sequentially plated on the transparent substrate 21 to obtain the final product, the method is simple, the production efficiency is improved, the production cost is reduced, and the product is suitable for industrial production.
  • the water vapor barrier layer 26 is further plated on a surface of the light-transmitting substrate 21.
  • the antireflection film layer 27 is further coated on the outer surface of the light-transmitting cathode 25.
  • the manner of plating the water vapor barrier layer 26 is preferably carried out in an N 2 environment.
  • a high-purity Si target is used in a N 2 environment, and a surface of the light-transmitting substrate 21 is plated with SiN x in a magnetron sputtering system.
  • Water vapor barrier layer 26 may be a method commonly used in the art such as vapor deposition or sputtering.
  • the structure of the double-emitting light-emitting organic electroluminescent device of the present embodiment is as shown in FIG. 2 and FIG. 6.
  • the double-sided light-emitting organic electroluminescent device comprises a light-transmitting substrate 21, an anode 22, a hole injecting layer 231a, which are sequentially combined.
  • the transparent substrate 21 is a transparent glass of 200 nm thick
  • the anode 22 is a 100 nm thick indium tin oxide (ITO) layer
  • the hole injection layer 231a is a 30 nm thick m-MTDATA layer
  • the hole transport layer 232a is 50 nm.
  • the light-emitting layer 233a is a 20 nm thick C545T:Alq 3 layer
  • the electron transport layer 234a is a 40 nm thick Alq 3 layer
  • the N-type doped organic layer 241 is a 20 nm thick Li:Alq 3 layer
  • P-type doped The hetero-organic layer 242 is 5 nm thick MoO 3
  • the hole injection layer 231 b is a 30 nm thick m-MTDATA layer
  • the hole transport layer 232a is a 50 nm thick NPB layer
  • the light-emitting layer 233a is a 20 nm thick C545T:Alq 3 layer.
  • the electron transport layer 234a is a 40 nm thick Alq 3 layer
  • the electron injection layer 235b is a 1 nm thick LiF layer
  • the light transmissive cathode 25 is an Al/Ag layer
  • the Al layer is 0.5 nm
  • the Ag layer is 20 nm
  • the water vapor barrier layer 26 is 50 nm thick SiN x
  • the antireflection film layer 27 is 80 nm thick Alq 3
  • the transparent cover layer 28 is transparent glass
  • the seal adhesive layer 29 is made of UV glue.
  • the preparation method is as follows:
  • the hole injection layer 231a, the hole transport layer 232a, the light-emitting layer 233a, the electron transport layer 234a, and the N-type doping are sequentially plated by vapor deposition.
  • a surface of the anti-reflection film 27 is sputtered a thickness of 50 nm SiN x as a water vapor barrier layer 26;
  • a transparent glass layer 28 is added to the outer surface of the water vapor barrier layer 26;
  • a double-emitting organic electroluminescent device is prepared, wherein a doped structure of C545T:Alq 3 is used as a green light emitting layer, and a laminated structure of Li:Alq 3 /MoO 3 is used as a charge generating layer 24 and an Alq 3 film. As an antireflection film.
  • the relationship between brightness and current density of the double-sided light-emitting organic electroluminescent device is shown in FIG. It can be seen from FIG. 8 that, in comparison with the organic electroluminescent device in which the charge generating layer 24 of the embodiment of the present invention is not added in Comparative Example 5, the present embodiment prepares a double-sided organic electro-electricity under the same current density conditions.
  • the luminance of the light-emitting device has been significantly improved by about 1.9 times.
  • the organic electroluminescent device with double-sided illumination prepared in this embodiment has small driving current, high luminous efficiency, high brightness and high light output efficiency; and the required driving current is small, and the double-sided length is correspondingly extended. The lifetime of a luminescent organic electroluminescent device.
  • the structure of the double-sided light-emitting organic electroluminescent device of this embodiment is similar to that of Embodiment 1 and FIG.
  • the preparation method is as follows:
  • the thickness of the outer surface of the water vapor barrier layer 26 is 150
  • the AZO of nm is used as the anode 22, and is cleaned, and the cleaning method is the step (1) of the preparation method in the first embodiment;
  • a 30 nm thick m-MTDATA layer 231a, a 50 nm thick NPB layer 232a, and a 30 nm thick DPVBi233a are sequentially deposited by evaporation.
  • the outer surface of the electron injecting layer 235b is sequentially vapor-deposited into a 0.5 nm Al layer and 20 nm.
  • the Ag layer acts as a light-transmissive cathode 25, a 100 nm BCP anti-reflection coating layer 27;
  • a double-emitting organic electroluminescent device is prepared, wherein a doped structure of (F-BT) 2 Ir(acac):CBP is used as a yellow light emitting layer, and DPVBi is used as a blue light emitting layer, Mg:Alq 3 /MoO 3 laminated structure as a charge generating layer. It has been found that the relationship between the brightness and the current density of the double-sided light-emitting organic electroluminescent device is similar to that of FIG.
  • the structure of the double-emitting light-emitting organic electroluminescent device of this embodiment is as shown in FIG.
  • the double-sided light-emitting organic electroluminescent device includes a light-transmitting substrate 21, an anode 22, a hole injection layer 231a, a hole transport layer 232a, a light-emitting layer 233a, an electron transport layer 234a, and an N-type doped organic layer 241 which are sequentially bonded.
  • the transparent substrate 21 is a 200 nm thick transparent glass
  • the anode 22 is a 150 nm thick IZO layer
  • the hole injection layer 231a is a 30 nm thick m-MTDATA layer
  • the hole transport layer 232a is a 50 nm thick NPB layer.
  • the light-emitting layer 233a is a 20 nm thick DPVBi layer
  • the electron transport layer 234a is a 40 nm thick Alq 3 layer
  • the N-type doped organic layer 241 is a 25 nm thick Cs:BPhen layer
  • the P-type doped organic layer 242 is a 10 nm thick WO. 3.
  • the hole injection layer 231b is a 30 nm thick m-MTDATA layer
  • the hole transport layer 232b is a 50 nm thick NPB layer
  • the light emitting layer 233b is a 20 nm thick Rubrene:Alq 3 layer
  • the electron transport layer 234b is a 40 nm thick Alq.
  • the electron injecting layer 235b is a 1 nm thick LiF layer
  • the light transmitting cathode 25 is a 20 nm Ca layer.
  • the preparation method is as follows:
  • the thickness of the outer surface of the water vapor barrier layer 26 is 150 IZO of nm is used as the anode 22, and is cleaned, and the cleaning method is the step (1) of the preparation method in the first embodiment;
  • a 30 nm thick m-MTDATA layer 231a, a 50 nm thick NPB layer 232a, and a 20 nm thick DPVBi layer are sequentially deposited by evaporation.
  • the outer surface of the electron injecting layer 235b is sequentially vapor-deposited into a 0.5 nm Al layer and 20 nm.
  • the Ag layer serves as the light transmitting cathode 25 and the antireflection film layer 27;
  • SiO 2 having a thickness of 50 nm is deposited on the outer surface of the antireflection film layer 27 as another moisture barrier layer 26;
  • a transparent glass cover 28 is added to the outer surface of the water vapor barrier layer 26;
  • a double-emitting organic electroluminescent device in which a doped structure of Rubrene:Alq 3 is used as a yellow light emitting layer, DPVBi is used as a blue light emitting layer, and a Cs:BPhen/WO 3 laminated structure is used as a charge generating layer. It has been found that the relationship between the brightness and the current density of the double-sided light-emitting organic electroluminescent device is similar to that of FIG.
  • the structure of the double-sided light-emitting organic electroluminescent device of this embodiment is shown in FIGS. 3 and 6.
  • the double-sided light-emitting organic electroluminescent device comprises a light-transmitting substrate 21, an anode 22, a hole injection layer 231a, a hole transport layer 232a, a light-emitting layer 233a, an electron transport layer 234a, and an N-type doped organic layer 241a.
  • P-type doped organic layer 242a hole injection layer 231c, hole transport layer 232c, light-emitting layer 233c, electron transport layer 234c, electron injection layer 235c, N-type doped organic layer 241b, metal oxide 242b, hole The injection layer 231b, the hole transport layer 232b, the light-emitting layer 233b, the electron transport layer 234b, the electron injection layer 235b, the light-transmitting cathode 25, the anti-reflection film layer 27, the moisture barrier layer 26, and the transparent cover layer 28, and are packaged in light transmission Between the substrate 21 and the transparent cover layer 28, the transparent sealing layer 29 around the anode 22 to the moisture barrier layer 26.
  • the preparation method is as follows:
  • the cleaning method is the step (1) of the preparation method in the first embodiment
  • a 30 nm thick m-MTDATA layer 231a, a 50 nm thick NPB layer 232a, and a 20 nm thick FIrPic:CBP are sequentially deposited by evaporation.
  • the outer surface of the electron injection layer 235b is sequentially sputtered into a 0.5 nm Al layer and 20 nm.
  • the Ag layer acts as a light-transmissive cathode 25, a 40 nm thick m-MTDATA layer 27;
  • a UV transparent sealant layer 29 is encapsulated between the light-transmitting substrate 21 and the transparent glass layer 28, and around the anode 22 to the other moisture barrier layer 26, thereby obtaining a double-sided light-emitting organic electroluminescent device.
  • the organic electroluminescent device structure of the present embodiment comprises a transparent glass 21, an ITO anode 22, a 30 nm m-MTDATA hole injection layer, a 50 nm NPB hole transport layer, and a 20 nm C545T:Alq 3 ( 20 nm) luminescent layer, 40 nm Alq 3 electron transport layer, 1 nm LiF electron injection layer, Al (0.5 nm)/Ag (20 nm) cathode, 80 nm Alq 3 antireflection layer, 50 nm A transparent cover layer of SiN x water vapor barrier layer and transparent glass, and a UV transparent sealant layer 29 encapsulated between the light transmissive substrate and the transparent cover layer and the anode to the moisture barrier layer.

Description

一种双面发光的有机电致发光器件及其制备方法 技术领域
本发明属于电光源技术领域,具体的说是涉及一种双面发光的有机电致发光器件及其制备方法。
背景技术
电光源行业一直是世界各国竞相研究的热点,在世界经济中占据着非常重要的地位。目前广泛使用的光源为气体放电光源,这种光源的原理是将灯的内部经抽真空后充入含汞的混合气体,利用气体放电发光或气体放电产生的紫外光激发荧光粉发光。然而,气体放电光源的脉冲光闪容易导致人视觉疲劳,而且汞污染环境,随着社会和科技的进步,研究开发节能又环保的绿色光源来替代传统光源,成为各国竞相研究的重要课题。
有机电致发光器件是电光源中的一种。有机电致发光(Organic Light Emission Diode),简称OLED,具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角, 以及响应速度快等优势,并且OLED拥有极佳的柔韧性,可以折叠弯曲,是一种极具潜力的柔性显示技术和光源,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
有机电致发光器件一般具有一种类似三明治的结构,一般包括,阳极、有机电致发光结构以及阴极,其中,有机电致发光结构包括空穴注入层和空穴注入层中的至少一种,发光层以及电子传输层和电子注入层中的至少一种,图1是包含所有这些结构的现有有机电致发光器件的结构示意图,包括透明衬底11,以及与透明衬底11依次结合的阳极12、有机电致发光结构13和阴极14。其中,有机电致发光结构13包括空穴注入层131、空穴传输层132、发光层133、电子传输层134、电子注入层135。
到目前为止,尽管全世界各国的科研人员通过选择合适的有机材料和合理的器件结构设计,已使器件性能的各项指标得到了很大的提升,但是目前由于驱动发光器件的电流较大,发光效率低,器件寿命低,为了实现有机电致发光器件的实用化,人们急于寻找一种驱动电流小,发光效率高的发光器件结构。
此外,现有技术的OLED均只能将光从阳极或者阴极的一侧取出,只能制得底发射或顶发射OLED器件。一些研究者发明的双面发光显示的OLED装置采用的是双层结构设计,即采取两套OLED发光显示单元以背靠背(Back to Back)的方式结合,以实现所述的双面发光或者显示。这种结构设计使得OLED装置的结构变得复杂,厚度和重量增大,且成本大幅增加。
技术问题
本发明实施例的目的在于克服现有技术的上述不足,提供一种驱动电流小,发光亮度高,电流效率高的双面发光的有机电致发光器件;以及,上述双面发光的有机电致发光器件的制备方法。
技术解决方案
为了实现上述发明目的,本发明实施例的技术方案如下:
一种双面发光的有机电致发光器件,包括透光基底、阳极、透光阴极,在所述阳极和所述透光阴极之间还包括至少两个有机电致发光结构和至少一电荷生成层;
在两两相邻的所述有机电致发光结构之间结合所述电荷生成层,所述电荷生成层与所述有机电致发光结构交替排列结合;
所述电荷生成层包括N型半导体层和与N型半导体层结合的P型半导体层。
以及,一种双面发光的有机电致发光器件制备方法,包括如下步骤:
提供透光基底;
在所述透光基底一表面上镀阳极;
在所述阳极的与所述透光基底相对的表面镀至少两个有机电致发光结构和至少一电荷生成层;其中,所述电荷生成层结合在两两相邻的所述有机电致发光结构之间,并与所述有机电致发光结构交替排列结合;所述电荷生成层包括N型半导体层和与N型半导体层结合的P型半导体层;
最后镀上透光阴极,得到所述的有机电致发光器件。
有益效果
本发明双面发光的有机电致发光器件采用电荷生成层连接两个或者多个有机电致发光结构,从而实现了该双面发光的有机电致发光器件接近360度的全方位照明,扩大了照射范围和应用范围;该结构的双面发光的有机电致发光器件所需驱动电流小,发光效率高,亮度高,光输出效率高;同时,由于所需驱动电流小,有效延长了该双面发光的有机电致发光器件的寿命。该双面发光的有机电致发光器件制备方法只需依次镀上各层结构可,其制备方法工序简单,提高了生产效率,降低了生产成本,适于工业化生产。
附图说明
图1是现有单面发光的有机电致发光器件结构示意图;
图2是本发明实施例双面发光的有机电致发光器件第一种结构示意图;
图3是本发明实施例双面发光的有机电致发光器件第二种结构示意图;
图4是本发明实施例双面发光的有机电致发光器件第三种结构示意图;
图5是本发明实施例双面发光的有机电致发光器件第四种结构示意图;
图6是本发明实施例双面发光的有机电致发光器件封装后的结构示意图;
图7是本发明实施例双面发光的有机电致发光器件制备方法的流程示意图;
图8是本发明实施例1制备的双面发光的有机电致发光器件与对比例5中没有设置电荷生成层的有机电致发光器件发光亮度与电流密度关系图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
有机电致发光器件(OLED)的发光原理是基于在外加电场的作用下,电子从阴极注入到有机物的最低未占有分子轨道(LUMO),而空穴从阳极注入到有机物的最高占有轨道(HOMO)。电子和空穴在发光层相遇、复合、形成激子,激子在电场作用下迁移,将能量传递给发光材料,并激发电子从基态跃迁到激发态,激发态能量通过辐射失活,产生光子,释放光能。当发出的光射向基底时,光会在基底或/和与基底结合的阳极界面发生折射和反射,发生折射的光造成有机电致发光器件射出光的损耗,而发生反射的光反射至有机电致发光器件顶端的出光面射出,能增强有机电致发光器件的发出光的取光效率。因此,改变光发生折射的界面特性,使原发生折射光射向该界面后发生全反射或反射,从而能进一步增强有机电致发光器件的发出光的取光效率。
本发明实施例依据上述原理提供了一种驱动电流小,发光亮度高,电流效率高的双面发光的有机电致发光器件,如图2至6所示。该双面发光的有机电致发光器件包括透光基底21、阳极22、透光阴极25、至少两个有机电致发光结构23和至少一电荷生成层24。各结构的连接关系为:该电荷生成层24分别结合在两两相邻的所述有机电致发光结构23之间,并与有机电致发光结构23交替排列结合构成一体,位于两端的其中一有机电致发光结构23a的与电荷生成层24相对的表面与阳极22、透光基底21依次结合,另一有机电致发光结构23b与电荷生成层24相对的表面与透光阴极25结合。该电荷生成层24包括N型半导体层241和与N型半导体层241结合的P型半导体层242。
这样,该双面发光的有机电致发光器件采用电荷生成层连接两个或者多个有机电致发光结构,从而实现了该双面发光的有机电致发光器件接近360度的全方位照明,扩大了照射范围和应用范围;该结构的双面发光的有机电致发光器件所需驱动电流小,发光效率高,亮度高,光输出效率高;同时,由于所需驱动电流小,有效延长了该双面发光的有机电致发光器件的寿命。本发明实施例中的电荷生成层24采用结构为N型半导体层241与P型半导体层242结合。在外加电压下后,电子和空穴会在电荷生成层24中生成,并且分别向外部的阳极与透光阴极25移动注入到有机电致发光结构23中,最终与外部电极产生的空穴和电子复合形成激子,并在发光层中辐射衰减发光。因此,该电荷生成层24降低了本发明实施例双面发光的有机电致发光器件所需工作电流,使双面发光的有机电致发光器件发光亮度大,电流效率高。
具体地,上述电荷生成层24中,N型掺杂有机层241的厚度优选为10~30 nm,P型掺杂有机物或金属氧化物层242的厚度优选为3~30 nm。
上述N型半导体层241为N型掺杂有机层,所述P型半导体层241为P型掺杂有机物层或金属氧化物层。
当上述电荷生成层24为N型掺杂有机层241与P型掺杂有机层242结合构成时,该N型掺杂有机层241的材质优选为Li:Alq3、Li:TPBi、Cs:BPhen、Mg:Alq3、F16CuPc、Cs2CO3:Alq3、Li:BPhen、Cs:BCP、Li:BCP、中的至少一种;P型掺杂有机层242的材质优选为FeCl3:NPB、F4-TCNQ:NPB、F4-TCNQ:m-MTDATA、CuPc中的至少一种。
当上述电荷生成层24为N型掺杂有机层241与金属氧化物层242结合构成时,该N型掺杂有机层241的材质优选为Li:Alq3、Li:TPBi、Cs:BPhen、Mg:Alq3、F16CuPc、Cs2CO3:Alq3、Li:BPhen、Cs:BCP、Li:BCP中的至少一种;金属氧化物层242的材质优选为MoO3、V2O5、WO3、纳米铟锡金属氧化物中的至少一种。
因此,上述电荷生成层24可以是Li:Alq3/FeCl3:NPB、Li:TPBi/FeCl3:NPB、Cs:BPhen/F4-TCNQ:NPB、Mg:Alq3/F4-TCNQ:m-MTDATA、F16CuPc/CuPc、Cs2CO3:Alq3/MoO3、Li:BPhen/MoO3、Cs:BCP/ITO、Li:BCP/V2O5、Mg:Alq3 /WO3等结构。
上述电荷生成层24的厚度和材质更有利于电子和空穴的生成,同时,也有利于光的穿透。
具体地,上述透光基底21的材质优选为透光玻璃或者透明聚合物薄膜材料,当然采用本领域其他材质进行替代。透光基底21的厚度也可以采用本领域常用的厚度,但应该具有优良的透光性为准,进测得,上述优选材质的透光率可高达95%。
具体地,上述阳极22的材质优选为铟锡氧化物(ITO)、掺铝的氧化锌(AZO)、掺铟的氧化锌(IZO)。当然也可以采用掺氟的氧化锡(FTO)等本领域常用的其他材质替代。透光阳极22的厚度也可以采用本领域常用的厚度,但应该具有优良的导电性为准,从而降低正极22在通电过程中的热量,同时还应具备优良的透光性能。
具体地,上述透光阴极25的材质优选为金(Au)、银(Ag)、钙(Ca)、镁(Mg)铝(Al)、镁铝合金或镁银合金,透光阴极25的厚度也可以采用本领域常用的厚度,但应该具有优良的导电性为准,从而降低其在通电过程中的热量,同时还应具备优良的透光性能。该透光阴极25更优选为Al/Ag双层结构,其中,Al层厚度优选为0.5 nm,Ag层厚度优选为20 nm。
具体地,上述有机电致发光结构23包括发光层233,和/或还包含空穴注入层231、空穴传输层232、电子传输层234、电子注入层235中的至少一种。其中,光层可采用红,黄,蓝,绿等发光材料,发光装置中存在多个发光层时,可采用同种或者不同种发光材料,采用不同发光材料时,可以通过调节发光材料的类型,实现白光发射,当有机电致发光结构23为两个,电荷生成层24为一个时,如图2所示,有机电致发光结构23a一端与阳极22结合,相对的另一端与电荷生成层24结合,其中,有机电致发光结构23a的中发光层233a与阳极22之间还具有空穴注入层231a、空穴传输层232a中的至少一种,发光层233a与电荷生成层24中N型半导体层241之间具有电子传输层234a、电子注入层中的至少一种;有机电致发光结构23b一端与透光阴极25结合,相对的另一端与电荷生产层24结合,机电致发光结构23b中发光层233b与透光阴极25之间还具有电子传输层234b、电子注入层235b中的至少一种,发光层233b与所述电荷生成层24中P型半导体层242之间具有空穴注入层231b、空穴传输层232b中的至少一种。
当有机电致发光结构23为三个,电荷生成层24为两个时,如图3所示,有机电致发光结构23与电荷生成层24间隔排列结合为一体,有机电致发光结构23a一端与阳极结合,相对的另一端与电荷生成层24a结合,另一端的有机电致发光结构23b一端与透光阴极25结合,相对的另一端与电荷生成层24b结合,有机电致发光结构23a和有机电致发光结构23b分别包括发光层233,和/或还包含空穴注入层231、空穴传输层232、电子传输层234、电子注入层235中的至少一种,空穴注入层231、空穴传输层232、电子传输层234、电子注入层235的结合方式如同上述有机电致发光结构23为两个,电荷生成层24为一个时的结合方式。第三个有机电致发光结构23c结合在该电荷生成层24a和电荷生成层24b之间,其中,电荷生成层24a中的P型半导体层242a与有机电致发光结构23c中的发光层233c之间包括空穴注入层231c、空穴传输层232中的至少一种,电荷生成层24b中的N型半导体层241b与有机电致发光结构23c中的发光层233c之间包括电子传输层234c、电子注入层235c中的至少一种。其中,电荷生成层中的N型半导体层与P型半导体层相比,N型半导体层靠近正极,P型半导体层靠近透光阴极25,也就是说,电荷生成层24a和电荷生成层24b在本实施例双面发光的有机电致发光器件中结合的方向一致。
以此类推,当有机电致发光结构23的数量为3以上,电荷生成层24的数量为2以上时,有机电致发光结构23与电荷生成层24依次间隔排列结合。本实施例双面发光的有机电致发光器件的结构与图3类似,不同之处只是有机电致发光结构23与电荷生成层24依次间隔排列结合的数量的增加与减少。因此,只要是在本发明技术方案的框架内的任何改变,均在本发明所保护范围之内。
由上所述,本发明实施例双面发光的有机电致发光器件可以至少是如下的几种结构,当然不仅仅限于下述结构:
第一种结构:如图2所示,本发明实施例双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型半导体层241、P型半导体层242、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25。
第二种结构:如图3所示,本发明实施例双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型半导体层241a、P型半导体层242a、空穴注入层231c、空穴传输层232c、发光层233c、电子传输层234c、电子注入层235c、N型半导体层241b、P型半导体层242b、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25。
第三种结构:如图4所示,本发明实施例双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴传输层232a、发光层233a、N型半导体层241、P型半导体层242、发光层233b、电子传输层234b、透光阴极25。
上述空穴注入层231的厚度优选为20~80nm,其材质优选为过渡金属氧化物,更优选为m-MTDATA,当然也可以用本领域常用的其他材质替代。空穴传输层232厚度优选为20~80nm,其材质优选为NPB、m-MTDATA、TPD、β-NPB、Spiro-NPB、DMF-NPB、α,β-NPB、spiro-TAD、DMF-TPD中的至少一种。电子传输层234的厚度优选为20~80nm,其材质优选为Bphen、Alq3、BCP、Galq、BeBq2、Balq、TPBi、OXD-7、TAZ中的至少一种。电子注入层235的厚度优选为20~80nm,其材质优选为LiF,当然也可以用本领域常用的其他材质替代。如,碱土金属氟化物(NaF、CsF、CaF2、MgF2)或氯化物(NaCl、KCl、RbCl)。
上述发光层233的厚度优选为20~80nm,该发光层233可采用红、黄、蓝、绿等发光材料,当上述有机电致发光结构个数为2以上时,可采用同种或者不同种发光材料,采用不同发光材料时,可以通过调节发光材料的类型,实现白光发射或其他颜色的光发射。该发光层233优选为C545T:Alq3、(F-BT)2Ir(acac):CBP、DPVBi、FIrPic:CBP 、Ir(ppy)3:CBP、Ir(piq)3:CBP 中至少一种。当然也可采用本领域的其他材质替代,如二甲基喹吖啶酮(DMQA)等。
由于有机电致发光器件在发光过程中,空穴和电子的传输速率不一致,往往导致了电子-空穴的复合几率偏低,有机电致发光器件的亮度与效率得不到提高。因此,采用空穴注入层231、空穴传输层232、发光层233、电子传输层234、电子注入层235的设置,能有效的调节电子和空穴的注入和传输速率,平衡载流子,控制复合区域,以获得理想的发光亮度和发光效率,同时,还使得本发明实施例有机电致发光器件不但保证了有机电致发光结构分别与电荷生成层24、阳极22、透光阴极25间的良好附着性,而且还使得来自阳极22和透光阴极25的载流子更容易的注入到有机电致发光结构中。例如,空穴注入层231优选为过渡金属氧化物,这种材料与有机空穴传输层232能级比较匹配,使得阳极22的空穴注入得到了明显的加强,有效的调节电子和空穴的注入和传输速率,平衡载流子,控制复合区域,使本发明实施例双面发光的有机电致发光器件获得了理想的发光亮度和发光效率。
进一步地,本发明实施例双面发光的有机电致发光器件中,在上述阳极22与透光基底21之间还可设一层水汽阻挡层26,如图5所示。设置水汽阻挡层26的目的是为了在上使用过程中,防止大气中的水汽渗透至双面发光的有机电致发光器件中,从而影响双面发光的有机电致发光器件效率。该水汽阻挡层26的厚度优选为50~200 nm,其材质优选SiNx、SiO2、Si3N4、Al2O3、Ta2O5中的至少一种。该材质和厚度的水汽阻挡层26更能有效的阻止水汽的渗透,同时投光性能好。如SiNx形成的层水汽阻挡层26致密,透光性好,能有效隔绝水汽。设置水汽阻挡层26的情况可以根据透光基底21的材质种类而定,例如,当透光基底21的材质为透明聚合物薄膜材料时,优选在该透明聚合物薄膜透光基底21一表面上设置水汽阻挡层26。当然,透光基底21材质为透明玻璃时,也可以增设该水汽阻挡层26。
进一步地,本发明实施例双面发光的有机电致发光器件中,在上述透光阴极25的与有机电致发光结构23相对表面还结合有增透膜层27,如图5所示。由于金属透光阴极25的光透过率低于透光衬底的光透过率,因此,该增透膜层27设置的能进一步增强透光阴极25的透光性,提高透光阴极25的光输出效率。该增透膜26的厚度优选为40~100 nm,其材质优选为Alq3、ZnSe、TeO2、MoOx、BCP、m-MTDATA、ZnS中的至少一种。经测试,本发明实施例双面发光的有机电致发光器件中通过增设增透膜层27,使得透光阴极25处的光透过率增加了8~10%。
在增透膜层27外表面或者直接在透光阴极25的外表面还可以增设透明覆盖层28,该透明覆盖层28设置的目的是为了进一步阻止透光阴极25 的氧化。为了阻止水汽从透光阴极25端渗透进入本发明实施例双面发光的有机电致发光器件中,还可在增透膜层27或者透光阴极25与透明覆盖层28之间增设上述的水汽阻挡层26,如图6所示。
进一步地,为了更好的保护本发明实施例双面发光的有机电致发光器件中各层结构,以及保证其发光强度和发光效率。还可以在透光基底21与28透明覆盖层28之间以及22、23、24、25周围,或者22、23、24、25、26、27周围封装一层透明胶29,该透明封接胶29的材质可以是紫外线固化胶(UV胶),当然也可以采用本领域其他胶替代。封装有透明封接胶29的本发明实施例双面发光的有机电致发光器件的结构如图6所示。
本发明实施例依据上述原理还提供了上述双面发光的有机电致发光器件的制备方法,该方法工艺流程图如图7所以示,同时参见图2~6,该方法包括如下步骤:
S1:提供透光基底21;
S2:在透光基底21一表面上镀阳极22;
S3:在阳极22的与透光基底21相对的表面镀至少两个有机电致发光结构23和至少一电荷生成层24;其中,电荷生成层24结合在两两相邻的有机电致发光结构23之间,并与有机电致发光结构23交替排列结合;电荷生成层24包括N型半导体层241和与N型半导体层241结合的P型半导体层242;
S4:最后镀上透光阴极25,得到双面发光的有机电致发光器件。
上述双面发光的有机电致发光器件制备方法只需依次镀上各层结构可,其制备方法工序简单,提高了生产效率,降低了生产成本,适于工业化生产。
具体地,上述双面发光的有机电致发光器件制备方法的S1步骤中,透光基底21的结构、材质及规格如上所述,在此不再赘述。
上述双面发光的有机电致发光器件制备方法的S2步骤中,镀阳极2的方式优选为蒸镀、溅射或喷镀。其中,溅射可以是磁控溅射。阳极2的材质以及镀的厚度以在上文中阐述,在此不再赘述。该阳极22在进行下一步的蒸镀前,还需要进行前置处理,该前置处理方式包括清洗、氧等离子处理等。其中,清洗方式优选为依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min,以彻底清除阳极22表面的异物,使阳极22表面最大程度的清洁;阳极22经清洗处理后,再进行氧等离子处理,该氧等离子处理氧等离子处理的时间优选为5-15min,功率优选为10-150W,其主要作用是减小导电玻璃表面的粗糙度和接触角,以利于改善其表面的湿润性和吸附性,而且通过表面处理后能够进一步去除其表面的有机污染物。
上述双面发光的有机电致发光器件制备方法的S3步骤中,镀有机电致发光结构23和电荷生成层24的方式优选为蒸镀、溅射、喷镀或化学沉积方式。如当该有机电致发光结构23优选包含依次结合的空穴注入层231、空穴传输层232、发光层233、电子传输层234和电子注入层235时,采用蒸镀、溅射、喷镀或化学沉积方式在阳极2上依次镀上空穴注入层231、空穴传输层232、发光层233、电子传输层234和电子注入层235。有机电致发光结构23和电荷生成层24的结构等情况以在上文中阐述,在此不再赘述。
上述双面发光的有机电致发光器件制备方法的S4步骤中,镀透光阴极25的方式如同镀有机发光结构23的方式,或者可以采用如镀阳极22的方式,透光阴极25的厚度材质如上所述。
该双面发光的有机电致发光器件制备只需要在透光基底21上依次镀上各层结构就可获得最终产品,方法工序简单,提高了生产效率,降低了生产成本,适于工业化生产。
进一步地,上述双面发光的有机电致发光器件制备方法的S1步骤之后,S2步骤之前,在透光基底21一表面上还镀水汽阻挡层26。
进一步地,上述双面发光的有机电致发光器件制备方法的S4步骤处理之后,在上述透光阴极25外表面还镀增透膜层27。
上述镀水汽阻挡层26、增透膜层27的厚度、材质以及作用以在上文中阐述,在此不再赘述。其中,镀水汽阻挡层26的方式优选在N2环境中进行。例如,在镀材质为SiNx的水汽阻挡层26时,在N2环境下,使用高纯度的Si靶材,于磁控溅射系统中在透光基底21一表面上镀镀材质为SiNx的水汽阻挡层26。当然,镀水汽阻挡层26、增透膜层27的方式还可以采用蒸镀、喷镀等本领域常用的方式。
现结合具体实例,对本发明进行进一步详细说明。
实施例1
本实施例双面发光的有机电致发光器件结构如图2、图6所示,该双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型掺杂有机层241、P型掺杂有机层242、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25、增透膜层27、水汽阻挡层26和透明覆盖层28,以及封装在透光基底21与透明覆盖层28之间,阳极22至水汽阻挡层26周围的透明封接胶层29。
其中,透光基底21为200nm厚的透明玻璃,阳极22为100nm厚的铟锡氧化物(ITO)层,空穴注入层231a为30 nm厚的m-MTDATA层,空穴传输层232a为50nm厚的NPB层,发光层233a为20nm厚的C545T:Alq3层,电子传输层234a为40nm厚的Alq3层,N型掺杂有机层241为20nm厚的Li:Alq3层、P型掺杂有机层242为5nm厚的MoO3、空穴注入层231b为30nm厚的m-MTDATA层,空穴传输层232a为50nm厚的NPB层,发光层233a为20nm厚的C545T:Alq3层,电子传输层234a为40nm厚的Alq3层,电子注入层235b为1nm厚的LiF层、透光阴极25为Al/Ag层, Al层为0.5 nm,Ag层为20 nm,水汽阻挡层26为50nm厚的SiNx,增透膜层27为80nm厚的Alq3,透明覆盖层28为透明玻璃,封接胶层29材质为UV胶。
其制备方法如下:
(1)采用透明玻璃作为透光基底21,在透光基底21一表面溅射一层ITO作为阳极22;将阳极22依次用洗洁精、去离子水、丙酮、乙醇、异丙醇各超声15min;
(2)在真空度为5×10-4Pa的镀膜系统中,采用蒸镀的方式依次镀上空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型掺杂有机层241、P型掺杂有机层242、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25;
(3)电子注入层235b外表面依次溅射透光阴极25、增透膜层27;
(4)在N2的环境下,使用磁控溅射系统,在增透膜层27一表面溅射一层厚度为50 nm的SiNx作为水汽阻挡层26;
(5)在水汽阻挡层26外表面加设透明玻璃层28;
(6)在透光基底21与透明覆盖层28之间,以及阳极22至水汽阻挡层26周围的透明封接胶层29,从而得到如图6所示的双面发光的有机电致发光器件;
本实施例制备双面发光的有机电致发光器件中,以C545T:Alq3的掺杂结构作为绿光发光层,Li:Alq3/MoO3的叠层结构作为电荷生成层24,Alq3薄膜作为增透膜。该双面发光的有机电致发光器件亮度与电流密度关系见图8所示。从图8可以看到,与对比例5中未增设本发明实施例电荷生成层24的有机电致发光器件相比,在相同的电流密度条件下,本实施例制备双面发光的有机电致发光器件的发光亮度得到了明显提高,提高约为1.9倍。同时也可以得出,本实施例制备双面发光的有机电致发光器件驱动电流小,发光效率高,亮度高,光输出效率高;由于所需驱动电流小,也相应的延长了该双面发光的有机电致发光器件的寿命。
实施例2
本实施例双面发光的有机电致发光器件结构类似实施例1和图6所示。
其制备方法如下:
(1)获取PET薄膜,并对其进行清洗处理;
(2)在N2的环境下,使用磁控溅射系统,在透光基底21一表面溅射厚度为50 nm的SiNx作为水汽阻挡层26;
(3)在水汽阻挡层26外表面溅射厚度为150 nm的AZO作为阳极22,并对其进行清洗处理,清洗方式如实施例1中制备方法的步骤(1);
(4)在真空度为4×10-4Pa的镀膜系统中,采用蒸镀的方式依次镀上30 nm厚的m-MTDATA层231a、50 nm厚的NPB层232a、30 nm厚的DPVBi233a、20 nm厚的Bphen层234 a、20 nm厚的Alq3层235a、30 nm厚的Mg:Alq3层241、3 nm厚的MoO3层242、30 nm厚的m-MTDATA层231b、50 nm厚的NPB层232b、30 nm厚的(F-BT)2Ir(acac):CBP层233b、20 nm 厚的Bphen层234b、1 nm厚的 LiF层235b;
(5)电子注入层235b外表面依次蒸镀为0.5 nm的Al层和20 nm 的Ag层作为透光阴极25、100 nm的BCP增透膜层27;
(6)在N2的环境下,使用磁控溅射系统,在增透膜层27一表面溅射厚度为50 nm的SiNx作为另一水汽阻挡层26;
(7)在水汽阻挡层26外表面加设PET薄膜层28;
(8)在透光基底21与透明覆盖层28之间,以及阳极22至另一水汽阻挡层26周围的透明封接胶层29,从而得到双面发光的有机电致发光器件。
本实施例制备双面发光的有机电致发光器件中,以(F-BT)2Ir(acac):CBP的掺杂结构作为黄光发光层,DPVBi 作为蓝光发光层,Mg:Alq3/MoO3叠层结构作为电荷生成层。经测得,该双面发光的有机电致发光器件亮度与电流密度关系与图7成类似变化趋势。
实施例3
本实施例双面发光的有机电致发光器件结构如图2所示。该双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型掺杂有机层241、P型掺杂有机层242、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25。
其中,透光基底21的为200nm厚的透明玻璃,阳极22为150nm厚的IZO层,空穴注入层231a为30 nm厚的m-MTDATA层,空穴传输层232a为50nm厚的NPB层,发光层233a为20nm厚的DPVBi层,电子传输层234a为40nm厚的Alq3层,N型掺杂有机层241为25nm厚的Cs:BPhen层、P型掺杂有机层242为10nm厚的WO3、空穴注入层231b为30nm厚的m-MTDATA层,空穴传输层232b为50nm厚的NPB层,发光层233b为20nm厚的Rubrene:Alq3层,电子传输层234b为40nm厚的Alq3层,电子注入层235b为1nm厚的LiF层、透光阴极25为20 nm的Ca层。
其制备方法如下:
(1)获取透明玻璃,并对其进行清洗处理。
(2)在水汽阻挡层26外表面溅射厚度为150 nm的IZO作为阳极22,并对其进行清洗处理,清洗方式如实施例1中制备方法的步骤(1);
(4)在真空度为4×10-4Pa的镀膜系统中,采用蒸镀的方式依次镀上30 nm厚的m-MTDATA层231a、50 nm厚的NPB层232a、20 nm厚的DPVBi层233a、40 nm厚的Alq3层234 a、25nm厚的Cs:BPhen层241、10nm厚的WO3层242、30 nm厚的m-MTDATA层231b、50 nm厚的NPB层232b、30 nm厚的Rubrene:Alq3层233b、40nm厚的Alq3层234b、1 nm厚的 LiF层235b;
(5)电子注入层235b外表面依次蒸镀为0.5 nm的Al层和20 nm 的Ag层作为透光阴极25、增透膜层27;
(6)在增透膜层27外表面蒸镀厚度为50 nm的SiO2作为另一水汽阻挡层26;
(7)在水汽阻挡层26外表面加设透明玻璃盖板28;
(8)在透光基底21与透明覆盖层28之间,以及阳极22至另一水汽阻挡层26周围的透明封接胶层29,从而得到双面发光的有机电致发光器件。
本实施例制备双面发光的有机电致发光器件中,以Rubrene:Alq3的掺杂结构作为黄光发光层,DPVBi 作为蓝光发光层,Cs:BPhen/ WO3叠层结构作为电荷生成层。经测得,该双面发光的有机电致发光器件亮度与电流密度关系与图8成类似变化趋势。
实施例4
本实施例双面发光的有机电致发光器件结构如图3和图6所示。该双面发光的有机电致发光器件包括依次结合的透光基底21、阳极22、空穴注入层231a、空穴传输层232a、发光层233a、电子传输层234a、N型掺杂有机层241a、P型掺杂有机层242a、空穴注入层231c、空穴传输层232c、发光层233c、电子传输层234c、电子注入层235c、N型掺杂有机层241b、金属氧化物242b、空穴注入层231b、空穴传输层232b、发光层233b、电子传输层234b、电子注入层235b、透光阴极25、增透膜层27、水汽阻挡层26和透明覆盖层28,以及封装在透光基底21与透明覆盖层28之间,阳极22至水汽阻挡层26周围的透明封接胶层29。
其制备方法如下:
(1)获取透明玻璃,并对其进行清洗处理,清洗方式如实施例1中制备方法的步骤(1);
(2)在N2的环境下,使用磁控溅射系统,在透光基底21一表面溅射厚度为50 nm的SiNx作为水汽阻挡层26;
(3)在水汽阻挡层26外表面溅射厚度为150 nm的ITO作为阳极22;
(4)在真空度为3×10-4Pa的镀膜系统中,采用蒸镀方式依次镀上30 nm厚的m-MTDATA层231a、50 nm厚的NPB层232a、20 nm厚的FIrPic:CBP 233a、20 nm厚的TPBi层234a、20nm厚的Li:Alq3层241、30nm厚的FeCl3:NPB层242、40 nm厚的m-MTDATA层231c、40nm厚的NPB层232c、20nm厚的Ir(ppy)3:CBP层233c、20nm厚的TPBi层234c、1 nm厚的NaF235c、10nm厚的Li:TPBi层241b、5nm厚的V2O5层242b、40 nm厚的m-MTDATA层231b、40 nm厚的NPB层232b、20 nm厚的Ir(piq)3:CBP层233b、20 nm 厚的TPBi层234b、1 nm厚的LiF层235b;
(5)电子注入层235b外表面依次溅射为0.5 nm的Al层和20 nm 的Ag层作为透光阴极25、40 nm厚的m-MTDATA层27;
(6)在N2的环境下,使用磁控溅射系统,在增透膜层27表面溅射厚度为50 nm的SiNx作为另一水汽阻挡层26;
(7)在水汽阻挡层26外表面加设透明玻璃层28;
(8)在透光基底21与透明玻璃层28之间,以及阳极22至另一水汽阻挡层26周围的封装UV透明封接胶层29,从而得到双面发光的有机电致发光器件。
测试本实施例制备的有机电致发光器件性能类似于实施例1制备的有机电致发光器件性能。
对比例5
本实施例的有机电致发光器件结构包括依次结合的透明玻璃21、ITO阳极22、30 nm的m-MTDATA空穴注入层、50 nm的NPB空穴传输层、20 nm的C545T:Alq3(20 nm)发光层、40 nm的Alq3电子传输层、1 nm 的LiF电子注入层、Al(0.5 nm)/Ag (20 nm)的阴极、80 nm的Alq3增透膜层、50 nm的SiNx水汽阻挡层和透明玻璃的透明覆盖层,以及封装在透光基底与透明覆盖层之间,阳极至水汽阻挡层周围的UV透明封接胶层29。
经测试本对比例有机电致发光器件与实施例1制备的双面发光有机电致发光器件的发光强度与电流密度关系如图8。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种双面发光的有机电致发光器件,包括透光基底、阳极、透光阴极,其特征在于:在所述阳极和所述透光阴极之间还包括至少两个有机电致发光结构和至少一电荷生成层;
    在两两相邻的所述有机电致发光结构之间结合所述电荷生成层,所述电荷生成层与所述有机电致发光结构交替排列结合;
    所述电荷生成层包括N型半导体层和与N型半导体层结合的P型半导体层。
  2. 根据权利要求1所述的双面发光的有机电致发光器件,其特征在于:所述N型半导体层的厚度为10~30 nm,所述P型半导体层的厚度为3~30 nm。
  3. 根据权利要求1所述的双面发光的有机电致发光器件,其特征在于:所述N型半导体层为N型掺杂有机层,所述P型半导体层为P型掺杂有机层或金属氧化物层。
  4. 根据权利要求3所述的双面发光的有机电致发光器件,其特征在于:所述电荷生成层由N型掺杂有机层与P型掺杂有机层结合构成时,所述N型掺杂有机层为Li:Alq3、Li:TPBi、Cs:BPhen、Mg:Alq3、F16CuPc、Cs2CO3:Alq3、Li:BPhen、Cs:BCP、Li:BCP、中的至少一种;所述P型掺杂有机层为FeCl3:NPB、F4-TCNQ:NPB、F4-TCNQ:m-MTDATA、CuPc中的至少一种。
  5. 根据权利要求3所述的双面发光的有机电致发光器件,其特征在于:所述电荷生成层由N型掺杂有机层与金属氧化物层结合构成时,所述N型掺杂有机层为Li:Alq3、Li:TPBi、Cs:BPhen、Mg:Alq3、F16CuPc、Cs2CO3:Alq3、Li:BPhen、Cs:BCP、Li:BCP、中的至少一种;所述金属氧化物层中的金属氧化物为MoO3、V2O5、WO3、纳米铟锡金属氧化物中的至少一种。
  6. 根据权利要求1所述的双面发光的有机电致发光器件,其特征在于:所述阳极与所述有机电致发光结构的发光层之间依次设置空穴注入层和空穴传输层中至少一种;所述有机电致发光结构的发光层与所述电荷生成层中的N型半导体层之间依次包括电子传输层和电子注入层中至少一种,所述有机电致发光结构的发光层与所述电荷生成层中的P型半导体层之间依次包括空穴注入层和空穴传输层中至少一种,所述有机电致发光结构的发光层与所述透光阴极之间依次包括电子传输层和电子注入层至少一种。
  7. 根据权利要求1至6任一所述的双面发光的有机电致发光器件,其特征在于:在所述透光阴极的外表面还结合有增透膜层,所述增透膜层的厚度为40~100 nm,材质为Alq3、ZnSe、TeO2、MoOx、BCP、m-MTDATA、ZnS中的至少一种。
  8. 根据权利要求7所述的双面发光的有机电致发光器件,其特征在于:所述阳极与透光基底之间和/或透光阴极的外表面还设有水汽阻挡层,所述水汽阻挡层的厚度为50~200 nm,材质为SiNx、SiO2、Si3N4、Al2O3、Ta2O5中的至少一种。
  9. 一种制备权利要求1所述的双面发光的有机电致发光器件制备方法,包括如下步骤:
    提供透光基底;
    在所述透光基底一表面上镀阳极;
    在所述阳极的与所述透光基底相对的表面镀至少两个有机电致发光结构和至少一电荷生成层;其中,所述电荷生成层结合在两两相邻的所述有机电致发光结构之间,并与所述有机电致发光结构交替排列结合;所述电荷生成层包括N型半导体层和与N型半导体层结合的P型半导体层;
    最后镀上透光阴极,得到所述的有机电致发光器件。
  10. 根据权利要求9所述的双面发光的有机电致发光器件制备方法,其特征在于:所述透光阴极外表面还镀有增透膜层。
  11. 根据权利要求9所述的双面发光的有机电致发光器件制备方法,其特征在于:还包括在所述阳极与透光基底之间和/或透光阴极的外表镀镀水汽阻挡层的步骤。
PCT/CN2010/079634 2010-12-09 2010-12-09 一种双面发光的有机电致发光器件及其制备方法 WO2012075639A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10860437.2A EP2650940A4 (en) 2010-12-09 2010-12-09 DOUBLE-SIDED ORGANIC LIGHT-EMITTING LUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF
CN2010800700070A CN103210516A (zh) 2010-12-09 2010-12-09 一种双面发光的有机电致发光器件及其制备方法
PCT/CN2010/079634 WO2012075639A1 (zh) 2010-12-09 2010-12-09 一种双面发光的有机电致发光器件及其制备方法
US13/885,494 US8957409B2 (en) 2010-12-09 2010-12-09 Double-sided luminescent organic light emitting device and manufacturing method thereof
JP2013542328A JP2013545249A (ja) 2010-12-09 2010-12-09 両面発光有機エレクトロルミネッセンスデバイス及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/079634 WO2012075639A1 (zh) 2010-12-09 2010-12-09 一种双面发光的有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2012075639A1 true WO2012075639A1 (zh) 2012-06-14

Family

ID=46206542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079634 WO2012075639A1 (zh) 2010-12-09 2010-12-09 一种双面发光的有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US8957409B2 (zh)
EP (1) EP2650940A4 (zh)
JP (1) JP2013545249A (zh)
CN (1) CN103210516A (zh)
WO (1) WO2012075639A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253230A (zh) * 2013-06-26 2014-12-31 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
WO2016089131A1 (ko) * 2014-12-03 2016-06-09 경희대학교 산학협력단 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
CN106129099A (zh) * 2016-08-31 2016-11-16 深圳市华星光电技术有限公司 一种双面发光的有机发光二极管照明面板
US9772096B2 (en) 2012-09-05 2017-09-26 Mitsubishi Heavy Industries, Ltd. Illumination device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143146A1 (zh) * 2012-03-31 2013-10-03 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
US9577221B2 (en) * 2012-09-26 2017-02-21 Universal Display Corporation Three stack hybrid white OLED for enhanced efficiency and lifetime
US9142595B2 (en) * 2013-10-18 2015-09-22 OLEDWorks LLC Color-tunable OLED lighting device
CN104218165A (zh) * 2014-08-20 2014-12-17 京东方科技集团股份有限公司 一种有机发光二极管器件及显示装置
JP6419940B2 (ja) * 2015-03-16 2018-11-07 パイオニア株式会社 発光装置
CN104701459B (zh) * 2015-03-30 2018-09-11 京东方科技集团股份有限公司 一种有机发光二极管器件及显示面板、显示装置
CN105097863B (zh) 2015-06-25 2018-09-18 合肥京东方显示光源有限公司 阵列型双面发光器件及其制作方法和双面显示装置
KR102600474B1 (ko) 2016-03-10 2023-11-13 삼성디스플레이 주식회사 유기 발광 소자
CN105679956A (zh) * 2016-04-05 2016-06-15 深圳市华星光电技术有限公司 有机电致发光器件及显示装置
KR20170128664A (ko) 2016-05-12 2017-11-23 삼성디스플레이 주식회사 유기 발광 소자
JP6903443B2 (ja) * 2017-02-13 2021-07-14 パイオニア株式会社 発光装置
CN110649172A (zh) * 2019-09-29 2020-01-03 京东方科技集团股份有限公司 发光器件和显示装置
CN111682119B (zh) * 2020-06-20 2023-08-18 武汉华美晨曦光电有限责任公司 一种柔性透明oled器件结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688185A (zh) * 2005-04-22 2005-10-26 友达光电股份有限公司 有机发光元件
CN1901218A (zh) * 2006-07-25 2007-01-24 信利半导体有限公司 双面发光oled显示屏及其制作方法
US20070103066A1 (en) * 2005-11-04 2007-05-10 D Andrade Brian W Stacked OLEDs with a reflective conductive layer
CN1979915A (zh) * 2005-11-29 2007-06-13 中华映管股份有限公司 有机电致发光元件
WO2009104148A1 (en) * 2008-02-22 2009-08-27 Philips Intellectual Property & Standards Gmbh Double sided organic light emitting diode (oled)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG142163A1 (en) * 2001-12-05 2008-05-28 Semiconductor Energy Lab Organic semiconductor element
JP4610408B2 (ja) * 2004-04-28 2011-01-12 株式会社半導体エネルギー研究所 発光素子およびその作製方法、並びに発光装置
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
JP4945076B2 (ja) * 2004-12-02 2012-06-06 スタンレー電気株式会社 両面発光型有機el素子
JP4496948B2 (ja) * 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
WO2007043299A1 (ja) * 2005-09-22 2007-04-19 Matsushita Electric Works, Ltd. 有機発光素子及びその製造方法
US7719001B2 (en) * 2006-06-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd Semiconductor device with metal oxides and an organic compound
KR101407574B1 (ko) * 2007-01-12 2014-06-17 삼성디스플레이 주식회사 백색 유기 발광 소자
JP5328122B2 (ja) * 2007-08-20 2013-10-30 ローム株式会社 有機薄膜トランジスタ
JP2009259792A (ja) * 2008-03-26 2009-11-05 Fujifilm Corp 有機el表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688185A (zh) * 2005-04-22 2005-10-26 友达光电股份有限公司 有机发光元件
US20070103066A1 (en) * 2005-11-04 2007-05-10 D Andrade Brian W Stacked OLEDs with a reflective conductive layer
CN1979915A (zh) * 2005-11-29 2007-06-13 中华映管股份有限公司 有机电致发光元件
CN1901218A (zh) * 2006-07-25 2007-01-24 信利半导体有限公司 双面发光oled显示屏及其制作方法
WO2009104148A1 (en) * 2008-02-22 2009-08-27 Philips Intellectual Property & Standards Gmbh Double sided organic light emitting diode (oled)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650940A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9772096B2 (en) 2012-09-05 2017-09-26 Mitsubishi Heavy Industries, Ltd. Illumination device
CN104253230A (zh) * 2013-06-26 2014-12-31 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
WO2016089131A1 (ko) * 2014-12-03 2016-06-09 경희대학교 산학협력단 용액공정을 통해 형성된 전하 생성층을 사용한 발광 소자 및 이의 제조 방법
US10510978B2 (en) 2014-12-03 2019-12-17 University-Industry Cooperation Group Of Kyung Hee University Light emitting element using charge generating layer formed through solution process and method for manufacturing same
CN106129099A (zh) * 2016-08-31 2016-11-16 深圳市华星光电技术有限公司 一种双面发光的有机发光二极管照明面板
US10541276B2 (en) 2016-08-31 2020-01-21 Shenzhen China Star Optoelectronics Technology Co., Ltd. Double-sided organic light-emitting diode lighting panel
CN106129099B (zh) * 2016-08-31 2020-02-07 深圳市华星光电技术有限公司 一种双面发光的有机发光二极管照明面板

Also Published As

Publication number Publication date
EP2650940A1 (en) 2013-10-16
US20130228769A1 (en) 2013-09-05
EP2650940A4 (en) 2016-07-13
JP2013545249A (ja) 2013-12-19
CN103210516A (zh) 2013-07-17
US8957409B2 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
WO2012075639A1 (zh) 一种双面发光的有机电致发光器件及其制备方法
Park et al. Large-area OLED lightings and their applications
JP4846953B2 (ja) 高効率の透明な有機発光装置
TWI363579B (en) Organic light emitting device having improved stabiltiy
EP2439806B1 (en) OLED with improved light outcoupling
US9508957B2 (en) OLED with improved light outcoupling
US20020176992A1 (en) Highly transparent non-metallic cathodes
CN102017799B (zh) 有机电致发光元件、显示装置和照明装置
TW200423798A (en) Organic light emitting diode (OLED) display with improved light emission using a metallic anode
US20110095271A1 (en) Hybrid organic light emitting device
CN102074658B (zh) 电荷产生层、叠层有机发光二极管及其制备方法
CN102683602A (zh) 一种倒置式透明有机电致发光器件及其制备方法
JP2011524463A (ja) 光透過性デバイス用導電性構造
CN107093673A (zh) 多层量子白光点发光器件
US20210218361A1 (en) Integrated photovoltaic window and light source
CN102130302A (zh) 叠层有机发光二极管及其制备方法
TWI575725B (zh) 包含金屬氧化物的陽極及具有該陽極之有機發光裝置
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
JPH11354773A (ja) 複合発光素子
CN104183714A (zh) 有机电致发光装置及制备方法、显示屏及其终端
JP2006216924A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
EP2267818B1 (en) Organic lighting device
Sun et al. P‐129: Highly Efficient Stacked OLED Employing New Anode‐Cathode Layer
Liguori et al. Overcoming Challenges in OLED Technology for Lighting Solutions
Wang et al. Effect of BCP ultrathin layer on the performance of organic light-emitting devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885494

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013542328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010860437

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010860437

Country of ref document: EP