WO2013143146A1 - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2013143146A1
WO2013143146A1 PCT/CN2012/073418 CN2012073418W WO2013143146A1 WO 2013143146 A1 WO2013143146 A1 WO 2013143146A1 CN 2012073418 W CN2012073418 W CN 2012073418W WO 2013143146 A1 WO2013143146 A1 WO 2013143146A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
anode
organic electroluminescent
electroluminescent device
Prior art date
Application number
PCT/CN2012/073418
Other languages
English (en)
French (fr)
Inventor
周明杰
王平
冯小明
陈吉星
Original Assignee
海洋王照明科技股份有限公司
深圳市海洋王照明工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司, 深圳市海洋王照明工程有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to PCT/CN2012/073418 priority Critical patent/WO2013143146A1/zh
Priority to CN201280066470.7A priority patent/CN104040748A/zh
Priority to EP12873428.2A priority patent/EP2833428A4/en
Priority to US14/372,214 priority patent/US20140332796A1/en
Priority to JP2015502047A priority patent/JP2015511759A/ja
Publication of WO2013143146A1 publication Critical patent/WO2013143146A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes

Definitions

  • the present invention relates to an organic electroluminescent device and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • the organic electroluminescent diode has a sandwich-like structure, which is a cathode and an anode, respectively, and a single layer or a plurality of organic material functional layers of different material types and different structures are sandwiched between the two electrodes.
  • the organic electroluminescent device is a carrier injection type light-emitting device. After the working voltage is applied to the anode and the cathode, holes are injected from the anode, and electrons are injected from the cathode into the organic material layer of the working device. The two carriers are organic. Forming holes in the luminescent material - The electrons illuminate and then the light is emitted from the side of the electrode.
  • an organic electroluminescent diode uses a polymer film as a substrate and an anode formed on the surface of the substrate, but these conductive films are in a flexible OLED.
  • the doping ratio composition of various elements such as indium and tin is not easily controlled, resulting in ITO.
  • the morphology, carrier and transport properties of the film are difficult to control.
  • prepare ITO on a flexible substrate When a conductive film is used, a low-temperature sputtering technique is generally used, and the surface resistance of the prepared conductive film is high, and the bonding force between the film and the substrate is not strong, so that the flexible OLED is made. In the process of repeated bending, the conductive film is easily detached from the substrate, which affects the luminescent stability of the OLED light-emitting device.
  • An organic electroluminescent device comprising a substrate, an anode, a light-emitting layer and a cathode which are sequentially laminated, the anode comprising an optical antireflection layer, a conductive layer and a hole-assisted injection layer, which are sequentially laminated on a substrate, the optical antireflection layer material Is the visible light transmittance at An inorganic compound of metal zinc having a refractive index of more than 2.3 from 400 nm to 800 nm, and the conductive layer material is graphene.
  • the material of the hole assisted injection layer is selected from one of tungsten trioxide, molybdenum trioxide, vanadium pentoxide or antimony trioxide.
  • the optical antireflective layer material is zinc sulfide or zinc selenide.
  • the thickness of the optical antireflection layer is from 35 nm to 80 nm, and the thickness of the hole-assisted injection layer is from 3 nm to 10 nm. .
  • a buffer layer is further included between the substrate and the anode, and the buffer layer is a UV curable adhesive.
  • the buffer layer has a thickness of from 0.5 ⁇ m to 10 ⁇ m and a surface hardness of from 2H to 3H.
  • a method of preparing an organic electroluminescent device comprising the steps of:
  • Preparing an anode on a substrate by depositing an optical antireflection layer on the surface of the substrate in a vacuum evaporation film system having a pressure of 5 ⁇ 10 ⁇ 4 Pa, and moving the substrate having the antireflection layer out of the vacuum evaporation film system
  • a conductive layer is deposited on the surface of the optical antireflection layer by a pulling step, and then moved into a vacuum evaporation film system to vapor-deposit a hole-assisted injection layer on the surface of the conductive layer to obtain an anode.
  • the optical antireflective layer material has a visible light transmittance at An inorganic compound of metal zinc having a refractive index of more than 2.3, from 400 nm to 800 nm, wherein the conductive layer material is graphene.
  • the pulling step is specifically immersing the substrate on which the antireflection layer is vapor-deposited into the suspension of graphene at 0.1 cm / s to 0.5
  • the substrate on which the antireflection layer is vapor-deposited is pulled from the suspension at a speed of cm / s and dried.
  • a buffer layer is prepared between the substrate and the anode, and the step comprises: applying a UV curable adhesive to the substrate on a homogenizer, curing with an ultraviolet lamp to form a buffer layer, wherein the homogenizing machine The speed is 1000 rpm / min ⁇ 5000 rpm / min, glue time 30 seconds ⁇ 120 seconds.
  • the material of the hole assisted injection layer is selected from one of tungsten trioxide, molybdenum trioxide, vanadium pentoxide or antimony trioxide, and the optical antireflective layer material is zinc sulfide or zinc selenide.
  • the anode of the laminated structure prepared by the method of vacuum thermal evaporation and lifting by the above organic electroluminescent device the anode laminated structure has small damage to the substrate, good light transmittance, low surface resistance, and is in the anode and the substrate.
  • the intervening buffer layer enhances the bonding force between the anode and the substrate, so that the organic electroluminescent device has stable luminescent properties and high luminous efficiency.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an organic electroluminescent device according to another embodiment of the present invention.
  • FIG. 3 is a flow chart showing a method of fabricating an organic electroluminescent device according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a method for preparing an organic electroluminescent device according to another embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the luminance ratio and the number of bends of the organic electroluminescent device fabricated in the embodiment and the comparative example after bending at 90 o ;
  • Figure 6 is a graph showing voltage versus current density of an organic electroluminescent device fabricated in accordance with an embodiment of the present invention and a comparative example.
  • an organic electroluminescent device 100 of an embodiment includes a substrate 110 and an anode 130 which are sequentially stacked.
  • the light emitting layer 160 and the cathode 190 may further include a hole injection layer 140, a hole transport layer 150, an electron transport layer 170, and an electron injection layer 180 according to actual needs. Thereby, the overall performance of the organic electroluminescent device 100 can be improved.
  • Substrate 110 It may be a glass substrate or a polymer film or the like.
  • the glass substrate has a good light transmittance, and in order to ensure the improvement of the transmittance, the transmittance of the polymer film in visible light is more than 80%, and the thickness can be selected from 0.1 mm.
  • 0.5mm material more specifically polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), cyclic olefin copolymer (COC) , polycarbonate (PC) and other materials, selected materials.
  • the anode 130 includes an optical antireflection layer 131, a conductive layer 132, and a hole assist injection layer 133, wherein the optical antireflection layer 131 is an inorganic compound of metallic zinc having a visible light transmittance of 400 nm to 800 nm and a refractive index of more than 2.3, and an optical antireflection layer.
  • the material is specifically zinc sulfide or zinc selenide, and preferably the optical antireflection layer 131 has a thickness of 35 nm to 80 nm.
  • Conductive Layer 132 The material is graphene.
  • the hole assisted injection layer 133 material includes one of tungsten trioxide, molybdenum trioxide, vanadium pentoxide or antimony trioxide, and has a thickness of 3 nm ⁇ 10 nm.
  • the anode prepared on the substrate is a flexible substrate anode.
  • the multilayer flexible anode structure utilizes the principle of anti-reflection in a heat mirror, so that the prepared anode has high visible light transmittance and low surface resistance.
  • a hole-assisted injection layer having a hole injecting ability is used as a part of the multilayer anode for reducing the injection barrier of holes.
  • a flexible organic electroluminescent device having stable luminescent properties and high luminous efficiency is prepared.
  • the hole injecting layer 140 is made of a material commonly used in the art, for example: 4,4',4''-tris(N-3-methylphenyl) -N-phenylamino ) triphenylamine (m-MTDATA) with a thickness of 40 nm;
  • the hole transport layer 150 material is a material commonly used in the art, for example: NPB (N, N'-diphenyl-N, N'- II (1-naphthyl)-1,1'-biphenyl-4,4'-diamine), TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)- 1,1'-biphenyl -4,4'-diamine) or TAPC (1,1-bis(4'-bis(4'-tolyl)aminophenyl)cyclohexane), having a thickness of 30 nm;
  • the material of the light-emitting layer 160 is made of materials commonly used in the art, for example: NPB: Ir(MDQ) 2 (acac), (where NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl) )-1,1'-biphenyl-4,4'-diamine) as host material, Ir(MDQ) 2 (acac) , (bis(2-methyl-diphenyl[f,h] quinoxaline) ) (acetylacetone)) is a guest material with a host-guest doping mass ratio of 5%);
  • TCTA Ir(ppy) 3 (where TCTA(4,4',4''-tris(carbazol-9-yl)-triphenylamine) is the host material, Ir(ppy) 3 (tris(2-phenylphenylpyridine) ) ⁇ )) as the guest material, the host-guest doping mass ratio is 3%);
  • DCJTB Alq 3 (wherein Alq 3 ((8-hydroxyquinoline)-aluminum) is the host material, DCJTB (4-4-dicyanomethylidene-2-tert-butyl-6-(1, 1, 7) , 7-tetramethyl-julonidine-9-vinyl)-4H-pyran is a guest material, the host-guest doping mass ratio is 2%);
  • DPVBi 4,4'-bis(2,2-distyryl)-1,1'-biphenyl
  • the electron transport layer 170 material is a material commonly used in the art, for example: Alq 3 ((8-hydroxyquinoline)-aluminum), Bphen (4,7-diphenyl-phenanthroline) or TPBi (1, 3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene), thickness 40nm
  • the electron injecting layer 180 material is made of materials commonly used in the art, such as lithium fluoride or barium fluoride, and has a thickness of 1 nm;
  • the cathode 190 material is made of materials commonly used in the art, such as aluminum, silver or magnesium alloy, and has a thickness of 100 nm.
  • the organic electroluminescent device 200 of another embodiment includes a substrate 110 and a buffer layer 120 which are sequentially stacked.
  • the anode 130, the luminescent layer 160 and the cathode 190 may further include a hole injection layer 140, a hole transport layer 150, an electron transport layer 170, and an electron injection layer 180 according to actual needs. Thereby, the overall performance of the organic electroluminescent device 100 can be improved.
  • the substrate 110, the anode 130, the light-emitting layer 160, the cathode 190, the hole injection layer 140, and the hole transport layer 150, the electron transport layer 170 and the electron injection layer 180 are as described above, and are not described here.
  • the buffer layer 120 is made of ultraviolet curable glue, and the buffer layer 120 can have a thickness of 0.5-10 ⁇ m, and the resulting buffer layer
  • the surface hardness of 120 is between 2H and 3H (pencil hardness).
  • a method for preparing an organic electroluminescent device includes the following steps:
  • Step S110 cleaning the substrate.
  • the substrate is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic waves, and then dried with nitrogen, and used.
  • the material of the substrate is that the transmittance of the polymer film in visible light is greater than 80%, and the thickness may be selected from 0.1 mm to 0.5 mm.
  • the materials more specifically polyethylene terephthalate (PET), polyethersulfone (PES), polyethylene naphthalate (PEN), cyclic olefin copolymer (COC), polycarbonate Ester (PC) Other materials, selected materials.
  • Step S130 preparing an anode by vacuum evaporation on the surface of the substrate of the step S110.
  • step S130 comprises a three-step method for preparing an anode, including steps S131, S132 and S133 , specifically,
  • Step S131 depositing an optical antireflection layer on the surface of the substrate in a vacuum evaporation film system having a pressure of 5 ⁇ 10 ⁇ 4 Pa.
  • the optical antireflection layer material has a visible light transmittance of 400 nm to 800 nm and a refractive index of more than 2.3.
  • the inorganic compound of metallic zinc, more preferably, the optical antireflective layer material is zinc sulfide or zinc selenide having a thickness of 35 nm to 80 nm.
  • Step S132 after step S131 The treated substrate is removed from the vacuum evaporation film system, and the conductive layer is evaporated on the surface of the optical antireflection layer by a pulling step, wherein the pulling step is specifically to disperse the conductive layer material in deionized water to a concentration of 0.01 mg/ mL ⁇ 2.0 mg/mL suspension;
  • the conductive layer material is a single layer of graphene, and finally forms 0.01 mg/mL to 2.0 mg/mL. a suspension of graphene;
  • the substrate treated in step S131 is immersed in a graphene suspension at 0.1 cm / s to 0.5 cm / s
  • the speed of the substrate is pulled out from the suspension, and then dried, according to the required thickness, can be repeatedly pulled 1 to 5 times;
  • the conductive layer has a thickness of 10 nm to 25 nm.
  • Step S133 the substrate treated in step S132 is transferred into a vacuum evaporation film system having a pressure of 5 ⁇ 10 ⁇ 4 Pa to vapor-deposit a hole-assisted injection layer on the surface of the conductive layer to obtain an anode;
  • the material of the hole assisted injection layer is selected from one of tungsten trioxide, molybdenum trioxide, vanadium pentoxide or antimony trioxide;
  • the hole-assisted injection layer has a thickness of 3 nm to 10 nm.
  • Step S140 depositing a light-emitting layer on the surface of the anode.
  • the luminescent layer material is made of materials commonly used in the art, for example: NPB: Ir(MDQ) 2 (acac), (where NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl)) -1,1'-biphenyl-4,4'-diamine) as host material, Ir(MDQ) 2 (acac) , (bis(2-methyl-diphenyl[f,h]quinoxaline) (acetylacetone)) is a guest material, the host-guest doping mass ratio is 5%);
  • TCTA Ir(ppy) 3 (where TCTA(4,4',4''-tris(carbazol-9-yl)-triphenylamine) is the host material, Ir(ppy) 3 (tris(2-phenylphenylpyridine) ) ⁇ )) as the guest material, the host-guest doping mass ratio is 3%);
  • DCJTB Alq 3 (wherein Alq 3 ((8-hydroxyquinoline)-aluminum) is the host material, DCJTB (4-4-dicyanomethylidene-2-tert-butyl-6-(1, 1, 7) , 7-tetramethyl-julonidine-9-vinyl)-4H-pyran is a guest material, the host-guest doping mass ratio is 2%);
  • Step S150 vapor-depositing the cathode on the surface of the light-emitting layer.
  • the cathode material is made of materials commonly used in the art, such as aluminum, silver or magnesium silver alloy.
  • a hole injection layer may be evaporated between the anode and the light-emitting layer and Or a hole transport layer, an electron transport layer and/or an electron injection layer are evaporated between the light emitting layer and the cathode.
  • the vacuum evaporation film system employed in the present invention is a method commonly used in the art.
  • another method for preparing an organic electroluminescent device includes the following steps:
  • Step S110 cleaning the substrate
  • step S130 preparing an anode by vacuum evaporation on the surface of the substrate of step S110
  • the steps S140 vapor-depositing the light-emitting layer on the surface of the anode
  • step S150 vapor-depositing the cathode on the surface of the light-emitting layer.
  • step S120 preparing a buffer layer.
  • Step S120 preparing a buffer layer, specifically step S110
  • the treated substrate is on a homogenizer, and a UV curable adhesive is spin-coated on the substrate and cured by an ultraviolet lamp to form a buffer layer.
  • the speed of the homogenizer is 1000 rpm to 5000 rpm, and the glue time is 30 seconds to 120 seconds. ;
  • the buffer layer has a thickness of from 0.5 ⁇ m to 10 ⁇ m.
  • the bonding force between the anode and the substrate is strengthened, so that the organic electroluminescent device is prepared, the flexural performance is good, the luminescent property is stable, and the luminous efficiency is high.
  • the preparation process of the organic electroluminescent device is as follows:
  • the polyethylene naphthalate film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic wave, and then dried by blowing nitrogen gas;
  • the preparation of the buffer layer the dried substrate is placed on the homogenizer, the homogenizer is activated, and the speed of the homogenizer is 1000 rpm /
  • the surface of the substrate was spin-coated with a thickness of 0.5 ⁇ m UV-curable adhesive. After 120 seconds of curing, the UV lamp was used to form a buffer layer.
  • the surface hardness of the buffer layer was 2H.
  • the optical antireflection layer is evaporated on the surface of the buffer layer.
  • a zinc sulfide layer having a thickness of 45 nm is used, and then the vacuum evaporation film system is removed.
  • a conductive layer is prepared by pulling on the surface of the optical antireflection layer.
  • a graphene suspension having a concentration of 0.5 mg/mL is used. The film was pulled at a speed of 0.2 cm /S, repeated twice, and then dried to prepare a conductive layer;
  • a hole-assisted injection layer is deposited on the surface of the conductive layer, and the substrate is transferred to a vacuum evaporation film system, and the surface of the conductive layer is evaporated to a thickness of 6 nm.
  • tungsten trioxide forms an anode.
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially deposited on the surface of the anode.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine ( NPB), thickness 30nm;
  • the luminescent layer is TCTA: Ir(ppy) 3 , wherein TCTA (4,4',4''-tris(carbazol-9-yl)-triphenylamine) is the host material, Ir(ppy) 3 (three (2- Phenylpyridine) is a guest material with a host-guest doping mass ratio of 3% and a thickness of 15 nm.
  • the electron transport layer is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl (TPBi), and the thickness is 40nm ;
  • the electron injecting layer is lithium fluoride (LiF) and has a thickness of 1 nm;
  • the cathode is made of aluminum and has a thickness of 100 nm.
  • the structure of the organic electroluminescent device is: PEN/UV gel/ZnS/graphene/WO 3 / m-MTDATA/NPB/TCTA: Ir(ppy) 3 / TPBi /LiF/Al.
  • the preparation process of the organic electroluminescent device is as follows:
  • the substrate is prepared to have a thickness of 0.175 mm
  • the polyethylene terephthalate film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropyl alcohol, acetone in ultrasonic, and then dried by blowing nitrogen;
  • the preparation of the buffer layer the dried substrate is placed on the homogenizer, the homogenizer is activated, and the speed of the homogenizer is 5000 rpm /
  • the surface of the substrate was spin-coated with a thickness of 5 ⁇ m UV-curable adhesive. After 30 seconds of curing, the UV lamp was used to form a buffer layer.
  • the surface hardness of the buffer layer was 3H.
  • an optical antireflection layer is deposited on the surface of the buffer layer.
  • a zinc sulfide layer having a thickness of 35 nm is used, and then the vacuum evaporation film system is removed.
  • the conductive layer is prepared by pulling on the surface of the optical antireflection layer, and the concentration is 0.01 mg/mL in this embodiment.
  • the film is drawn at a rate of 0.1 cm / S, repeated once, and then dried to prepare a conductive layer;
  • a hole-assisted injection layer is evaporated on the surface of the conductive layer, and the substrate is transferred to a vacuum evaporation film system, and the surface of the conductive layer is evaporated to a thickness of 3 nm.
  • Molybdenum trioxide as a hole-assisted injection layer to form an anode layer;
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially deposited on the surface of the anode.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'- a diamine (NPB) having a thickness of 30 nm;
  • the luminescent layer is NPB:Ir(MDQ) 2 (acac), wherein NPB(N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4 '-Diamine is the host material, Ir(MDQ) 2 (acac) (bis(2-methyl-diphenyl[f,h]quinoxaline) (acetylacetone) is the guest material, the host-guest doping mass ratio 5%, thickness 15nm;
  • the electron transport layer is 4,7-diphenyl-phenanthroline (Bphen) with a thickness of 40 nm;
  • the electron injecting layer is cesium fluoride (CsF) and has a thickness of 1 nm;
  • the cathode is a magnesium-silver alloy with a thickness of 100 nm.
  • the structure of the organic electroluminescent device is: PET/UV gel/ZnS/Ag/MoO3/m-MTDATA/NPB/NPB: Ir(MDQ) 2 (acac)/Bphen/CsF/Mg-Ag.
  • the preparation process of the organic electroluminescent device is as follows:
  • the substrate is prepared to have a thickness of 0.2 mm
  • the polyethersulfone film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic wave, and then dried by blowing nitrogen;
  • the preparation of the buffer layer the dried substrate is placed on the homogenizer, the homogenizer is activated, and the speed of the homogenizer is 4000 rpm /
  • the surface of the substrate was spin-coated with a thickness of 1 ⁇ m UV-curable adhesive. After 70 seconds of curing, the UV lamp was used to form a buffer layer.
  • the surface hardness of the buffer layer was 2H.
  • the optical antireflection layer is evaporated on the surface of the buffer layer.
  • a zinc sulfide layer having a thickness of 80 nm is used, and then the vacuum evaporation film system is removed.
  • a conductive layer is prepared by pulling on the surface of the optical antireflection layer.
  • a graphene suspension having a concentration of 0.1 mg/mL is used. The film was pulled at a speed of 0.5 cm /S, repeated five times, and then dried; that is, a conductive layer was prepared;
  • a hole-assisted injection layer is deposited on the surface of the conductive layer, and the substrate is transferred to a vacuum evaporation film system, and the surface of the conductive layer is evaporated to a thickness of 5 nm.
  • the antimony trioxide forms an anode
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially deposited on the surface of the anode.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'- a diamine (TPD) having a thickness of 30 nm;
  • DCJTB Light-emitting layer
  • Alq 3 ((8-hydroxyquinoline)-aluminum) is the host material
  • DCJTB (4-4-dicyanomethylidene-2-tert-butyl-6-(1, 1) , 7, 7-tetramethyl-julonidine-9-vinyl)-4H-pyran is a guest material
  • the host-guest doping mass ratio is 2%
  • the thickness is 15 nm
  • the electron transport layer is 8-hydroxyquinoline (Alq 3 ) with a thickness of 40 nm;
  • the electron injecting layer is lithium fluoride (LiF) and has a thickness of 1 nm;
  • the cathode is silver and has a thickness of 100 nm.
  • the structure of the organic electroluminescent device is: PES/UV glue / ZnS / Ag / ReO 3 / m-MTDATA / TPD / DCJTB: Alq 3 / Alq 3 / LiF / Ag.
  • the preparation process of the organic electroluminescent device is as follows:
  • the substrate is prepared to have a thickness of 0.5 mm
  • the cycloolefin copolymer film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, sequentially treated with isopropyl alcohol, acetone in ultrasonic wave, and then dried by blowing nitrogen;
  • the preparation of the buffer layer the dried substrate is placed on the homogenizer, the homogenizer is activated, and the speed of the homogenizer is 3000 rpm / Divided, the surface of the substrate was spin-coated with a thickness of 10 ⁇ m UV-curable adhesive. After 80 seconds of homogenization, the UV lamp was used to form a buffer layer. The surface hardness of the buffer layer was 3H.
  • an optical antireflection layer is deposited on the surface of the buffer layer in a vacuum evaporation film system having a degree of vacuum of 5 ⁇ 10 -4 Pa.
  • a vacuum evaporation film system having a degree of vacuum of 5 ⁇ 10 -4 Pa.
  • zinc selenide having a thickness of 60 nm is used, and then the vacuum evaporation film is removed.
  • a conductive layer is prepared by pulling on the surface of the optical antireflection layer.
  • a graphene suspension having a concentration of 0.1 mg/mL is used.
  • 0.2 cm /S The film is pulled up at a speed, repeated three times, and then dried to prepare a conductive layer; then a hole-assisted injection layer is vapor-deposited on the surface of the conductive layer, and the substrate is transferred to a vacuum evaporation film system, and the thickness of the surface of the conductive layer is evaporated.
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially deposited on the surface of the anode.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is 1,1-bis(4'-bis(4'-tolyl)aminophenyl)cyclohexane (TAPC) ), the thickness is 30 nm;
  • Light-emitting layer DPVBi 4,4'-bis(2,2-distyryl)-1,1'-biphenyl, thickness 15nm ;
  • the electron transport layer is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl (TPBi), and the thickness is 40nm ;
  • the electron injecting layer is cesium fluoride (CsF) and has a thickness of 1 nm;
  • the cathode is a magnesium-silver alloy with a thickness of 100 nm.
  • a flexible organic electroluminescent device is a layered structure, the order of which is: COC/UV glue /ZnSe/Ag/V 2 O 5 /m-MTDATA/TAPC/DPVBi/TPBi/CsF/Mg- Ag.
  • the preparation process of the organic electroluminescent device is as follows:
  • the substrate is prepared to have a thickness of 0.4 mm
  • the polycarbonate film is ultrasonically cleaned in deionized water containing detergent, washed with deionized water, then treated with isopropanol, acetone in ultrasonic, and then dried by blowing nitrogen;
  • the preparation of the buffer layer the dried substrate is placed on the homogenizer, the homogenizer is activated, and the speed of the homogenizer is 2000 rpm /
  • the surface of the substrate was spin-coated with a thickness of 7 ⁇ m UV-curable adhesive. After 50 seconds of curing, the UV lamp was used to form a buffer layer.
  • the surface hardness of the buffer layer was 2H.
  • the optical antireflection layer is evaporated on the surface of the buffer layer.
  • zinc selenide with a thickness of 80 nm is used and then the vacuum evaporation film system is removed.
  • a conductive layer is prepared by pulling on the surface of the optical antireflection layer.
  • a graphene suspension having a concentration of 2.0 mg/mL is used.
  • the film was pulled at a speed of 0.2 cm /S, repeated once, and then dried; that is, a conductive layer was prepared;
  • a hole-assisted injection layer is evaporated on the surface of the conductive layer, and the substrate is transferred to a vacuum evaporation film system, and the thickness of the conductive layer is 8 nm.
  • Molybdenum trioxide as a hole-assisted injection layer to form an anode;
  • a hole injection layer, a hole transporting layer, a light emitting layer, an electron transporting layer, an electron injecting layer, and a cathode are sequentially deposited on the surface of the anode.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'- a diamine (TPD) having a thickness of 30 nm;
  • DCJTB Light-emitting layer
  • Alq 3 ((8-hydroxyquinoline)-aluminum) is the host material
  • DCJTB (4-4-dicyanomethylidene-2-tert-butyl-6-(1, 1) , 7, 7-tetramethyl-julonidine-9-vinyl)-4H-pyran is a guest material
  • the host-guest doping mass ratio is 2%
  • the thickness is 15 nm
  • the electron transport layer is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl (TPBi), and the thickness is 40nm ;
  • the electron injecting layer is lithium fluoride (LiF) and has a thickness of 1 nm;
  • the cathode is silver and has a thickness of 100 nm.
  • the structure of the organic electroluminescent device is: PC/UV gel/ZnSe/graphene/MoO 3 /m-MTDATA/TPD/DCJTB: Alq 3 /TPBi/LiF/Ag.
  • the polyethylene naphthalate film was ultrasonically cleaned in deionized water containing detergent, rinsed with deionized water, treated with isopropyl alcohol, acetone in ultrasonic, and then dried with nitrogen. Using a magnetron sputtering system, the polyethylene naphthalate film film was sputtered to a thickness of A 125 nm indium tin oxide conductive film is used as an anode, and then vapor-deposited on the surface in a vacuum evaporation film system with a vacuum of 5 ⁇ 10 ⁇ 4 Pa.
  • the hole injection layer is 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), thickness is 40nm;
  • the hole transport is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'- a diamine (NPB) having a thickness of 30 nm;
  • the luminescent layer is TCTA: Ir(ppy) 3 , wherein TCTA (4,4',4''-tris(carbazol-9-yl)-triphenylamine) is the host material, Ir(ppy) 3 (three (2- Phenylpyridine) is a guest material with a host-guest doping mass ratio of 3% and a thickness of 15 nm.
  • the electron transport layer is 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl (TPBi), and the thickness is 40nm ;
  • the electron injecting layer is lithium fluoride (LiF) and has a thickness of 1 nm;
  • the cathode is made of aluminum and has a thickness of 100 nm.
  • the structure of the organic electroluminescent device is: PEN / ITO / m-MTDATA / NPB / TCTA: Ir (ppy) 3 / TPBi / LiF / Al; wherein there is no buffer layer in the device, and the anode is indium tin oxide
  • the conductive film, the other functional layers are the same as in the first embodiment.
  • Table 1 is the embodiment 1 ⁇ 5 And the transmittance and conductivity test results of the comparative organic electroluminescent device.
  • Optical transmission is tested with an ultraviolet-visible spectrophotometer, device type Perkin Elmer lambda 25 Conductivity is tested by four-probe resistivity tester, equipment type CN61M230827, Zhongxi Yuanda; embodiment of the invention and comparative example 1 using ITO
  • the transmittance of the organic electroluminescent device fabricated by the anode was compared with that of the comparative example. 1 ITO anode was used to fabricate the organic electroluminescent device 80.2%.
  • the transmittance of the organic electroluminescent device prepared in the embodiment of the invention has a good transmittance, and the surface electric resistance of the organic electroluminescent device prepared in the embodiment of the invention is reduced.
  • the organic electroluminescent device prepared by the embodiment of the invention has good anode conductivity, and then the highly conductive anode can improve the carrier transmission efficiency and the injection efficiency, thereby facilitating the improvement of the light of the organic electroluminescent device. effect.
  • Example 1 has a luminance ratio graph of bending times of Comparative Example prepared organic electroluminescent device in the embodiment of the present invention, the bent 90 o, it can be seen from the drawing prepared in Example 1 of the organic electroluminescent
  • the anode and the bottom plate of the device have a good bonding force.
  • the luminescence performance is relatively stable, and the anode prepared by the comparative example is easily detached from the bottom plate after repeated 90 o bending, resulting in a decrease in luminescence performance, for example,
  • Example 1 also maintained 87% of the initial brightness, while the contrast ratio decreased to 29% of the initial brightness.

Abstract

一种有机电致发光器件(100,200),包括依次层叠的基底(110)、阳极(130)、发光层(160)和阴极(190),阳极(130)包括依次层叠在基底(110)上的光学增透层(131)、导电层(132)和空穴辅助注入层(133)。光学增透层(131)材料是可见光透过率在400nm-800nm,折射率大于2.3的金属锌的无机化合物,导电层(132)材料是石墨烯。多层阳极结构利用增透原理,使得该阳极的可见光透过率高,表面电阻较低,采用具有空穴注入能力的无机材料,用于降低空穴的注入势垒,使得该有机电致发光器件(100,200)发光性能稳定,发光效率高,并提供该有机电致发光器件(100,200)的制备方法,利用真空热镀和提拉的方法制备的阳极,操作便捷,适合大规模生产。

Description

有机电致发光器件及其制备方法 技术领域
本发明涉及一种有机电致发光器件及其制备方法。
背景技术
有机电致发光二极管 (Organic Light-Emitting Diode) ,以下简称 OLED ,具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角,以及响应速度快等优势,是一种极具潜力的显示技术和光源,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
有机电致发光二极管具有一种类似三明治的结构,其上下分别是阴极和阳极,二个电极之间夹着单层或多层不同材料种类和不同结构的有机材料功能层。有机电致发光器件是载流子注入型发光器件,在阳极和阴极加上工作电压后,空穴从阳极,电子从阴极分别注入到工作器件的有机材料层中,两种载流子在有机发光材料中形成空穴 - 电子对发光,然后光从电极一侧发出。
通常有机电致发光二极管采用聚合物薄膜作为基底,在基底表面制作的阳极,然而这些导电薄膜在柔性 OLED 的应用上也存在诸多难以克服的问题。例如在制备 ITO 薄膜的过程中,各种元素如铟、锡的掺杂比例组成不易控制,导致 ITO 薄膜的形貌,载流子和传输性能难以控制。其次,在柔性衬底上制备 ITO 等导电薄膜时,通常采用低温溅射技术,所制备的导电薄膜表面电阻高,薄膜与衬底的结合力不强,使得柔性 OLED 在反复弯曲的过程中容易发生导电薄膜从基底脱落的情况,影响 OLED 发光器件的发光稳定性。
发明内容
基于此,有必要提供一种有机电致发光器件。
进一步,提供上述有机电致发光器件的制备方法。
一种有机电致发光器件,包括依次层叠的基底、阳极、发光层和阴极,该阳极包括依次层叠在基底上的光学增透层,导电层和空穴辅助注入层,该光学增透层材料是可见光透过率在 400nm ~ 800nm ,折射率大于 2.3 的金属锌的无机化合物,该导电层材料是石墨烯。
优选地,空穴辅助注入层的材料选自三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种。
优选地,光学增透层材料是硫化锌或硒化锌。
优选地,光学增透层的厚度为 35 nm ~ 80nm ,空穴辅助注入层厚度为 3 nm ~ 10nm 。
优选地,基底和所述阳极之间进一步包括缓冲层,所述缓冲层是紫外光固化胶。
优选地,缓冲层厚度为 0.5μm ~ 10μm ,表面硬度为 2H ~ 3H 。
有机电致发光器件的制备方法,包括以下步骤:
清洁基底备用;
在基底上制备阳极,具体步骤为在压强为 5×10-4 Pa 的真空蒸镀膜系统中在基底表面蒸镀光学增透层,将所述蒸镀有增透层的基底移出真空蒸镀膜系统,通过提拉步骤在所述光学增透层的表面蒸镀导电层,接着再次移入真空蒸镀膜系统中在所述导电层表面蒸镀空穴辅助注入层,得到阳极。
然后在阳极上蒸镀发光层和阴极,得到所述有机电致发光器件,其中,所述光学增透层材料是可见光透过率在 400nm ~ 800nm ,折射率大于 2.3 的金属锌的无机化合物,所述导电层材料是石墨烯。
优选地,提拉步骤具体为将蒸镀有增透层的基底浸入到石墨烯的悬浮液中,以 0.1 cm /s ~ 0.5 cm /s 的速度将所述蒸镀有增透层的基底从悬浮液中提拉,干燥即可。
优选地,在所述基底和所述阳极之间制备缓冲层,步骤包括在匀胶机上,将紫外光固化胶旋涂在所述基底上,采用紫外灯固化,形成缓冲层,其中匀胶机的转速为 1000 转 / 分~ 5000 转 / 分,匀胶时间 30 秒~ 120 秒。
优选地,空穴辅助注入层的材料选自三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种,所述光学增透层材料是硫化锌或硒化锌。
上述有机电致发光器件通过真空热蒸镀和提拉的方法制备的叠层结构的阳极,该阳极层叠结构对基底的破坏小,且透光性能好,表面电阻低,并在阳极和基底之间插入缓冲层加强了阳极与基底之间的结合力,使得有机电致发光器件发光性能稳定,发光效率高。
附图说明
图 1 为本发明实施方式的有机电致发光器件的结构示意图;
图 2 为本发明另一实施方式的有机电致发光器件的结构示意图;
图 3 为本发明一实施方式的有机电致发光器件的制备方法流程图;
图 4 为本发明另一实施方式的有机电致发光器件的制备方法流程图;
图 5 为本发明实施例与对比例制作的有机电致发光器件在 90o 弯曲后亮度比值与弯曲次数的关系曲线图;
图 6 为本发明实施例与对比例制作的有机电致发光器件的电压与电流密度关系曲线图。
具体实施方式
以下通过具体实施方式对上述有机电致器件及其制备方法进一步阐述。
请参阅图 1 , 一实施方式的有机电致发光器件 100 ,包括依次层叠的基底 110 、阳极 130 、发光层 160 及阴极 190 ,根据实际需要还可以包括空穴注入层 140 ,空穴传输层 150 ,电子传输层 170 ,电子注入层 180 从而能改善有机电致发光器件 100 的整体性能。
基底 110 可以为玻璃基底或聚合物薄膜等。玻璃基底具有较好的光透过率,为保证提高透光度,其中聚合物薄膜在可见光的透过率大于 80% ,厚度可选自 0.1mm ~ 0.5mm 之间的材料,更具体为聚对苯二甲酸乙二醇酯 (PET) ,聚醚砜 (PES) ,聚萘二甲酸乙二醇酯 (PEN) ,环烯烃共聚物 (COC) ,聚碳酸酯 (PC) 等材料,所选材料。
阳极 130 包括光学增透层 131 、导电层 132 和空穴辅助注入层 133 ,其中光学增透层 131 是可见光透过率在 400 nm ~ 800 nm ,折射率大于 2.3 的金属锌的无机化合物,光学增透层 131 材料具体是硫化锌或硒化锌,优选地光学增透层 131 的厚度为 35 nm ~ 80 nm。
导电层 132 材料是石墨烯。
空穴辅助注入层 133 材料包括三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种,厚度为 3 nm ~ 10 nm 。
选择柔性基底在该基底上制备的阳极为柔性基底阳极,该多层柔性阳极结构,利用了热镜中的增透原理,因此制备的阳极在可见光透过率高,同时表面电阻较低。石墨烯良好的电学性能为基础,进一步为了提高阳极层的空穴注入性能,采用具有空穴注入能力的空穴辅助注入层,作为多层阳极的一部分,用于降低空穴的注入势垒,此基础上制备发光性能稳定且发光效率高的柔性有机电致发光器件。
空穴注入层 140 材料采用本领域内所常用的材料,例如: 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm ;
空穴传输层 150 材料采用本领域内所常用的材料,例如: NPB (N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺 ) 、 TPD(N,N'- 二苯基 -N,N'- 二 (3- 甲基苯基 )-1,1'- 联苯 -4,4'- 二胺 ) 或 TAPC(1,1- 双 (4'- 双 (4'- 甲苯基 ) 氨基苯基 ) 环己烷 ), 厚度为 30nm;
发光层 160 材料采用本领域内所常用的材料,例如: NPB:Ir(MDQ)2(acac) , ( 其中 NPB(N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺 ) 为主体材料, Ir(MDQ)2(acac) , ( 二 (2- 甲基 - 二苯基 [f,h] 喹喔啉 )( 乙酰丙酮 )) 为客体材料,主客体掺杂质量比为 5%) ;
TCTA:Ir(ppy)3( 其中 TCTA(4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 ) 为主体材料, Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) 为客体材料,主客体掺杂质量比 3%) ;
DCJTB:Alq3( 其中 Alq3( ( 8- 羟基喹啉 )- 铝 ) 为主体材料, DCJTB(4-4-二氰基亚甲基-2- 叔丁基 -6-(1, 1, 7, 7- 四甲基 - 久洛尼定 -9- 乙烯基 )-4H- 吡喃为客体材料,主客体掺杂质量比为 2%);
或者 DPVBi ( 4,4'- 二 (2,2- 二苯乙烯基 )-1,1'- 联苯 ), 厚度为 15nm ;
电子传输层 170 材料采用本领域内所常用的材料,例如: Alq3( ( 8- 羟基喹啉 )- 铝 ) 、 Bphen(4,7- 二苯基 - 邻菲咯啉 ) 或者 TPBi(1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基 ) 苯 ), 厚度为 40nm
电子注入层 180 材料采用本领域内所常用的材料,例如:氟化锂或氟化铯,厚度为 1nm ;
阴极 190 材料采用本领域内所常用的材料,例如:铝、银或镁铝合金等,厚度为 100nm 。
请参阅图 2 ,另一实施方式的有机电致发光器件 200 包括依次层叠的基底 110 、缓冲层 120 、阳极 130 、发光层 160 及阴极 190 ,根据实际需要还可以包括空穴注入层 140 ,空穴传输层 150 ,电子传输层 170 ,电子注入层 180 从而能改善有机电致发光器件 100 的整体性能。
其中,基底 110 、阳极 130 、发光层 160 、阴极 190 、空穴注入层 140 ,空穴传输层 150 ,电子传输层 170 和电子注入层 180 如前所述,此处在不累述。
缓冲层 120 是采用紫外固化胶制作而成,缓冲层 120 的厚度可以为 0.5-10 μm ,所得缓冲层 120 的表面硬度达到 2H-3H 之间 ( 铅笔硬度 ) 。
请参阅图 3 ,一种有机电致发光器件的制备方法,包括以下步骤:
步骤 S110 :清洁基底。
本实施方式中,将基底放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干,备用。
优选地,基底的材料为聚合物薄膜在可见光的透过率大于 80% ,厚度可选自 0.1mm ~ 0.5mm 之间的材料,更具体为聚对苯二甲酸乙二醇酯 (PET) ,聚醚砜 (PES) ,聚萘二甲酸乙二醇酯 (PEN) ,环烯烃共聚物 (COC) ,聚碳酸酯 (PC) 等材料,所选材料。
步骤 S130 :在步骤 S110 的基底的表面真空蒸镀制备阳极。
其中,步骤 S130 包括三步法制备阳极,包括步骤 S131 、 S132 和 S133 ,具体为,
步骤 S131 在压强为 5×10-4 Pa 的真空蒸镀膜系统中在基底表面蒸镀光学增透层,优选地,光学增透层材料是可见光透过率在 400nm ~ 800nm ,折射率大于 2.3 的金属锌的无机化合物,更优选地,光学增透层材料是硫化锌或硒化锌厚度为 35 nm ~ 80nm 。
步骤 S132 ,经过步骤 S131 处理过的基底移出真空蒸镀膜系统,通过提拉步骤在所述光学增透层的表面蒸镀导电层,其中,提拉步骤具体为将导电层材料分散在去离子水中形成浓度为 0.01 mg/mL ~ 2.0 mg/mL 的悬浮液;
优选地,本实施例中,导电层材料为单层石墨烯,最后形成 0.01 mg/mL ~ 2.0 mg/mL 石墨烯的悬浮液;
将步骤 S131 处理过的基底浸入石墨烯悬浮液中,以 0.1 cm /s ~ 0.5 cm /s 的速度将衬底从悬浮液中提拉出来,然后进行干燥,根据所需厚度的不同,可反复进行提拉 1 次~ 5 次;
优选地,导电层厚度为 10 nm ~ 25 nm 。
步骤 S133 ,将经过步骤 S132 处理过的基底在此移入压强为 5×10-4 Pa 的真空蒸镀膜系统中在导电层表面蒸镀空穴辅助注入层,得到阳极 ;
优选地,空穴辅助注入层的材料选自三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种;
空穴辅助注入层厚度为 3 nm ~ 10 nm 。
步骤 S140 :在阳极表面蒸镀发光层。
发光层材料采用本领域内所常用的材料,例如: NPB:Ir(MDQ)2(acac) , ( 其中 NPB(N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺 ) 为主体材料, Ir(MDQ)2(acac) , ( 二 (2- 甲基 - 二苯基 [f,h] 喹喔啉 )( 乙酰丙酮 )) 为客体材料,主客体掺杂质量比为 5%) ;
TCTA:Ir(ppy)3( 其中 TCTA(4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 ) 为主体材料, Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) 为客体材料,主客体掺杂质量比 3%) ;
DCJTB:Alq3( 其中 Alq3( ( 8- 羟基喹啉 )- 铝 ) 为主体材料, DCJTB(4-4-二氰基亚甲基-2- 叔丁基 -6-(1, 1, 7, 7- 四甲基 - 久洛尼定 -9- 乙烯基 )-4H- 吡喃为客体材料,主客体掺杂质量比为 2%);
或者 DPVBi 。
步骤 S150 :在发光层表面蒸镀阴极。
阴极材料采用本领域内所常用的材料,例如:铝、银或镁银合金等。
为了改善有机电致发光器件的整体性能可以在阳极与发光层之间蒸镀空穴注入层和 / 或空穴传输层,在发光层与阴极之间蒸镀电子传输层和 / 或电子注入层。
本发明中采用的真空蒸镀膜系统为本领域内常用的方式。
请参阅图 4 ,另一种有机电致发光器件的制备方法,包括以下步骤:
步骤 S110 :清洁基底,步骤 S130 :在步骤 S110 的基底的表面真空蒸镀制备阳极,步骤 S140 :在阳极表面蒸镀发光层以及步骤 S150 :在发光层表面蒸镀阴极。与前面相同此处不再累述,进一步包括步骤 S120 :制备缓冲层。
步骤 S120 :制备缓冲层,具体为步骤 S110 处理后的基底在匀胶机上,将紫外光固化胶旋涂在所述基底上,采用紫外灯固化,形成缓冲层,
优选地,匀胶机的转速为 1000 转 / 分~ 5000 转 / 分,匀胶时间 30 秒~ 120 秒 ;
优选地,缓冲层的厚度为 0.5μm ~ 10 μm 。
通过插入缓冲层,加强了阳极与基底之间的结合力,使得制备有机电致发光器件,挠曲性能好,发光性能稳定,发光效率高。
以下为具体实施例。
实施例 1
有机电致发光器件的制备工艺如下:
基板的制备,将厚度为 0.1 mm 的聚萘二甲酸乙二醇酯薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后采用吹氮气干燥;
缓冲层的制备,将干燥后的基板放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 1000 转 / 分,在基板表面旋涂厚度为 0.5 μm 紫外固化胶,匀胶时间 120 秒后,采用紫外灯固化,形成缓冲层,缓冲层表面硬度为 2H ;
阳极的制备,在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在缓冲层表面蒸镀光学增透层,本实施例采用厚度为 45nm 的硫化锌层,然后移出真空蒸镀膜系统,
在光学增透层表面通过提拉的方法制备导电层,本实施例中采用浓度为 0.5mg/mL 的石墨烯悬浮液,以 0.2cm /S 的速度提拉成膜,反复两次,然后干燥即制备导电层;
然后在导电层表面蒸镀空穴辅助注入层,将上述基板转移至真空蒸镀膜系统中,在导电层表面蒸镀厚度为 6 nm 的三氧化钨作为空穴辅助注入层,形成阳极,
最后,依次在阳极表面蒸镀空穴注入层,空穴传输,发光层,电子传输层,电子注入层和阴极。
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺( NPB ),厚度为 30nm;
发光层为 TCTA:Ir(ppy)3 ,其中 TCTA(4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 ) 为主体材料, Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) 为客体材料,主客体掺杂质量比 3% ,厚度为 15nm ;
电子传输层为 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基( TPBi ),厚度为 40nm ;
电子注入层为氟化锂 (LiF) ,厚度为 1nm;
阴极采用铝,厚度为 100nm 。
该有机电致发光器件结构的依次为: PEN/UV 胶 /ZnS/ 石墨烯 /WO3/ m-MTDATA/NPB/ TCTA:Ir(ppy)3/ TPBi /LiF/Al 。
表面硬度的测试采用 GB-T6739-1996 (涂膜硬度铅笔测定法),采用国标铅笔硬度计进行测试获得,以下实施例同样不在累述。
实施例 2
有机电致发光器件的制备工艺如下:
基板的制备,将厚度为 0.175 mm 的聚对苯二甲酸乙二醇酯薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后采用吹氮气干燥;
缓冲层的制备,将干燥后的基板放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 5000 转 / 分,在基板表面旋涂厚度为 5 μm 紫外固化胶,匀胶时间 30 秒后,采用紫外灯固化,形成缓冲层,缓冲层表面硬度为 3H ;
阳极的制备,在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在缓冲层表面蒸镀光学增透层,本实施例采用厚度为 35nm 的硫化锌层,然后移出真空蒸镀膜系统,
在光学增透层表面通过提拉的方法制备导电层,本实施例中采用浓度为浓度为 0.01 mg/mL 的石墨烯悬浮液中,以 0.1 cm /S 的速度提拉成膜,反复 1 次,然后干燥即制备导电层;
然后在导电层表面蒸镀空穴辅助注入层,将上述基板转移至真空蒸镀膜系统中,在导电层表面蒸镀厚度为 3 nm 的三氧化钼作为空穴辅助注入层,形成阳极层;
最后,依次在阳极表面蒸镀空穴注入层,空穴传输,发光层,电子传输层,电子注入层和阴极。
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺( NPB ),厚度为 30nm;
发光层为 NPB:Ir(MDQ)2(acac) ,其中 NPB(N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺为主体材料, Ir(MDQ)2(acac)( 二 (2- 甲基 - 二苯基 [f,h] 喹喔啉 )( 乙酰丙酮 ) 为客体材料,主客体掺杂质量比为 5% ,厚度为 15nm ;
电子传输层为 4,7- 二苯基 - 邻菲咯啉( Bphen ),厚度为 40nm ;
电子注入层为氟化铯 (CsF) ,厚度为 1nm;
阴极为镁银合金,厚度为 100nm 。
该有机电致发光器件结构的依次为: PET/UV 胶 / ZnS/Ag/MoO3/m-MTDATA/NPB/ NPB:Ir(MDQ)2(acac)/Bphen/CsF/Mg-Ag 。
实施例 3
有机电致发光器件的制备工艺如下:
基板的制备,将厚度为 0.2 mm 的聚醚砜薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后采用吹氮气干燥;
缓冲层的制备,将干燥后的基板放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 4000 转 / 分,在基板表面旋涂厚度为 1 μm 紫外固化胶,匀胶时间 70 秒后,采用紫外灯固化,形成缓冲层,缓冲层表面硬度为 2H ;
阳极的制备,在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在缓冲层表面蒸镀光学增透层,本实施例采用厚度为 80nm 的硫化锌层,然后移出真空蒸镀膜系统,
在光学增透层表面通过提拉的方法制备导电层,本实施例中采用浓度为 0.1 mg/mL 的石墨烯悬浮液,以 0.5 cm /S 的速度提拉成膜,反复五次,然后干燥;即制备导电层;
然后在导电层表面蒸镀空穴辅助注入层,将上述基板转移至真空蒸镀膜系统中,在导电层表面蒸镀厚度为 5 nm 的三氧化铼作为空穴辅助注入层,形成阳极;
最后,依次在阳极表面蒸镀空穴注入层,空穴传输,发光层,电子传输层,电子注入层和阴极。
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 N,N'- 二苯基 -N,N'- 二 (3 -甲基苯基 )-1,1'- 联苯 -4,4'- 二胺( TPD ),厚度为 30nm;
发光层 DCJTB:Alq3 ,其中 Alq3( ( 8- 羟基喹啉 )- 铝 ) 为主体材料, DCJTB(4-4-二氰基亚甲基-2- 叔丁基 -6-(1, 1, 7, 7- 四甲基 - 久洛尼定 -9- 乙烯基 )-4H- 吡喃为客体材料,主客体掺杂质量比为 2% ,厚度为 15nm ;
电子传输层为 8- 羟基喹啉( Alq3 ),厚度为 40nm ;
电子注入层为氟化锂 (LiF) ,厚度为 1nm;
阴极为银,厚度为 100nm 。
该有机电致发光器件结构的依次为: PES/UV 胶 / ZnS/Ag/ReO3/m-MTDATA/TPD/ DCJTB:Alq3/Alq3/LiF/ Ag 。
实施例 4
有机电致发光器件的制备工艺如下:
基板的制备,将厚度为 0.5 mm 的环烯烃共聚物薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后采用吹氮气干燥;
缓冲层的制备,将干燥后的基板放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 3000 转 / 分,在基板表面旋涂厚度为 10 μm 紫外固化胶,匀胶时间 80 秒后,采用紫外灯固化,形成缓冲层;,缓冲层表面硬度为 3H ;
阳极的制备,在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在缓冲层表面蒸镀光学增透层,本实施例采用厚度为 60 nm 的硒化锌,然后移出真空蒸镀膜系统,
在光学增透层表面通过提拉的方法制备导电层,本实施例中采用浓度为 0.1 mg/mL 的石墨烯悬浮液中,以 0.2 cm /S 的速度提拉成膜,反复三次,然后干燥,即制备导电层;然后在导电层表面蒸镀空穴辅助注入层,将上述基板转移至真空蒸镀膜系统中,在导电层表面蒸镀厚度为 10 nm 的五氧化二钒,形成阳极,
最后,依次在阳极表面蒸镀空穴注入层,空穴传输,发光层,电子传输层,电子注入层和阴极。
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 1,1- 双 (4'- 双 (4'- 甲苯基 ) 氨基苯基 ) 环己烷( TAPC ),厚度为 30nm;
发光层 DPVBi , 4,4'- 二 (2,2- 二苯乙烯基 )-1,1'- 联苯,厚度为 15nm ;
电子传输层为 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基( TPBi ),厚度为 40nm ;
电子注入层为氟化铯 (CsF) ,厚度为 1nm;
阴极为镁银合金,厚度为 100nm 。
一种柔性有机电致发光器件,为层状结构,该层状结构的依次为: COC/UV 胶 /ZnSe/Ag/V2O5/m-MTDATA/TAPC/DPVBi/TPBi/CsF/Mg-Ag 。
实施例 5
有机电致发光器件的制备工艺如下:
基板的制备,将厚度为 0.4 mm 的聚碳酸酯薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后采用吹氮气干燥;
缓冲层的制备,将干燥后的基板放置在匀胶机上,启动匀胶机,且该匀胶机的转速在 2000 转 / 分,在基板表面旋涂厚度为 7 μm 紫外固化胶,匀胶时间 50 秒后,采用紫外灯固化,形成缓冲层,缓冲层表面硬度为 2H ;
阳极的制备,在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在缓冲层表面蒸镀光学增透层,本实施例采用厚度为 80 nm 的硒化锌然后移出真空蒸镀膜系统,
在光学增透层表面通过提拉的方法制备导电层,本实施例中采用浓度为 2.0 mg/mL 的石墨烯悬浮液中,以 0.2 cm /S 的速度提拉成膜,反复 1 次,然后干燥;即制备导电层;
然后在导电层表面蒸镀空穴辅助注入层,将上述基板转移至真空蒸镀膜系统中,在导电层表面蒸镀厚度为 8 nm 的三氧化钼作为空穴辅助注入层,形成阳极;
最后,依次在阳极表面蒸镀空穴注入层,空穴传输,发光层,电子传输层,电子注入层和阴极。
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 N,N'- 二苯基 -N,N'- 二 (3 -甲基苯基 )-1,1'- 联苯 -4,4'- 二胺( TPD ),厚度为 30nm;
发光层 DCJTB:Alq3 ,其中 Alq3( ( 8- 羟基喹啉 )- 铝 ) 为主体材料, DCJTB(4-4-二氰基亚甲基-2- 叔丁基 -6-(1, 1, 7, 7- 四甲基 - 久洛尼定 -9- 乙烯基 )-4H- 吡喃为客体材料,主客体掺杂质量比为 2% ,厚度为 15nm ;
电子传输层为 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基( TPBi ),厚度为 40nm ;
电子注入层为氟化锂 (LiF) ,厚度为 1nm;
阴极为银,厚度为 100nm 。
该有机电致发光器件结构的依次为: PC/UV 胶 /ZnSe/ 石墨烯 /MoO3/m-MTDATA/TPD/ DCJTB:Alq3/TPBi/LiF/Ag 。
对比例 1
将厚度为 0.1 mm 的聚萘二甲酸乙二醇酯薄膜薄膜放在含有洗涤剂的去离子水中进行超声清洗,用去离子水清洗干净后依次用异丙醇,丙酮在超声波中处理,然后在用氮气吹干。采用磁控溅射系统,聚萘二甲酸乙二醇酯薄膜薄膜表面溅射制备厚度为 125 nm 的氧化铟锡导电薄膜作为阳极,然后在真空度为 5×10-4Pa 的真空蒸镀膜系统中,在其表面依次蒸镀
穴注入层为 4,4',4''- 三 (N-3- 甲基苯基 -N- 苯基氨基 ) 三苯胺 (m-MTDATA) ,厚度为 40nm;
空穴传输为 N,N'- 二苯基 -N,N'- 二 (1- 萘基 )-1,1'- 联苯 -4,4'- 二胺( NPB ),厚度为 30nm;
发光层为 TCTA:Ir(ppy)3 ,其中 TCTA(4,4',4''- 三 ( 咔唑 -9- 基 )- 三苯胺 ) 为主体材料, Ir(ppy)3( 三 (2- 苯基吡啶 ) 合铱 ) 为客体材料,主客体掺杂质量比 3% ,厚度为 15nm ;
电子传输层为 1,3,5- 三 (1- 苯基 -1H- 苯并咪唑 -2- 基( TPBi ),厚度为 40nm ;
电子注入层为氟化锂 (LiF) ,厚度为 1nm;
阴极采用铝,厚度为 100nm 。
该有机电致发光器件结构的依次为: PEN/ ITO/ m-MTDATA/NPB/ TCTA:Ir(ppy)3/ TPBi /LiF/Al ;其中,该器件中没有缓冲层,且阳极为氧化铟锡导电薄膜,其他各功能层与实施例 1 一样。
请参阅表 1 ,表 1 为实施例 1~5 及对比例有机电致发光器件的透光性以及导电性测试结果。光学透过性采用紫外可见分光光度计测试,设备型号 Perkin Elmer lambda 25 ,导电性采用四探针电阻率测试仪测试,设备型号 CN61M230827 ,中西远大;本发明的实施例与对比例 1 采用 ITO 阳极制作有机电子发光器件的透过率相比,与对比例 1 采用 ITO 阳极制作有机电子发光器件 80.2% 的透过率相差不大,因此,本发明实施例制备的有机电致发光器件制备的阳极具有较好的透过率,而本发明实施例制备的有机电致发光器件的表面方块电阻却降低了很多,说明本发明实施例制备的有机电致发光器件的阳极导电性很好,然后高导电的阳极能够提高载流子的传输效率和注入效率,进而有利于提高有机电致发光器件的光效。
表 1 实施例 1~5 及对比例有机电致发光器件的透光性以及导电性
透过率 方块电阻 Ω/ 方块
实施例 1 80.5% 6
实施例 2 80.1% 8
实施例 3 77.6% 5
实施例 4 73.6% 8
实施例 5 72.8% 5
对比例 80.2% 56
请参阅图 5 为本发明实施例与对比例制作的有机电致发光器件在 90o 弯曲后亮度比值与弯曲次数的关系曲线图,由图面可以看出实施例 1 中制备的有机电致发光器件的阳极与底板有很好的结合力,在经过反复 90o 弯折后,发光性能比较稳定,而对比例制备的阳极在反复 90o 弯曲后容易从底板脱落,导致发光性能下降,例如经过 1000 次弯曲之后,实施例 1 还能保持初始亮度的 87% ,而对比例则下降到初始亮度的 29% 。
请参阅图 6 为本发明实施例与对比例制作的有机电致发光器件的电压与电流密度关系曲线图,由图面可以看出实施例 1 中制备的有机电致发光器件与对比例相比,在相同驱动电压下,实施例 1 具有更高的电流密度,说明本发明提供的阳极,具有更好的空穴注入性能,因此可以得到较好的电致发光效果。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种有机电致发光器件,包括依次层叠的基底、阳极、发光层和阴极,其特征在于,所述阳极包括依次层叠在基底上的光学增透层,导电层和空穴辅助注入层,所述光学增透层材料是可见光透过率在 400nm ~ 800nm ,折射率大于 2.3 的金属锌的无机化合物,所述导电层材料是石墨烯。
  2. 根据权利要求 1 所述的有机电致发光器件,其特征在于,所述空穴辅助注入层的材料选自三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种。
  3. 根据权利要求 1 所述的有机电致发光器件,其特征在于,所述光学增透层材料是硫化锌或硒化锌。
  4. 根据权利要求 1 所述的有机电致发光器件,其特征在于,所述光学增透层的厚度为 35 nm ~ 80nm ,空穴辅助注入层厚度为 3 nm ~ 10nm 。
  5. 根据权利要求 1~4 择一所述的有机电致发光器件,其特征在于,所述基底和所述阳极之间进一步包括缓冲层,所述缓冲层是紫外光固化胶。
  6. 根据权利要求 5 所述的有机电致发光器件,其特征在于,所述缓冲层厚度为 0.5μm ~ 10μm ,表面硬度为 2H ~ 3H 。
  7. 一种有机电致发光器件的制备方法 ,其特征在于,包括以下步骤:
    洁基底备用;
    在基底上制备阳极,具体步骤为在压强为 5×10-4 Pa 的真空蒸镀膜系统中在基底表面蒸镀光学增透层,将所述蒸镀有增透层的基底移出真空蒸镀膜系统,通过提拉步骤在所述光学增透层的表面蒸镀导电层,接着再次移入真空蒸镀膜系统中在所述导电层表面蒸镀空穴辅助注入层,得到阳极,
    然后在阳极上蒸镀发光层和阴极,得到所述有机电致发光器件,其中,所述光学增透层材料是可见光透过率在 400nm ~ 800nm ,折射率大于 2.3 的金属锌的无机化合物,所述导电层材料是石墨烯。
  8. 根据权利要求 7 所述的有机电致发光器件的制备方法,其特征在于,所述提拉步骤具体为将蒸镀有增透层的基底浸入到石墨烯的悬浮液中,以 0.1cm /s ~ 0.5 cm /s 的速度将所述蒸镀有增透层的基底从悬浮液中提拉,干燥即可。
  9. 根据权利要求 7 所述的有机电致发光器件的制备方法,其特征在于,在所述基底和所述阳极之间制备缓冲层,步骤包括在匀胶机上,将紫外光固化胶旋涂在所述基底上,采用紫外灯固化,形成缓冲层,其中匀胶机的转速为 1000 转 / 分~ 5000 转 / 分,匀胶时间 30 秒~ 120 秒。
  10. 根据权利要求 7 所述的有机电致发光器件的制备方法,其特征在于,所述空穴辅助注入层的材料选自三氧化钨、三氧化钼、五氧化二钒或三氧化铼中的一种,所述光学增透层材料是硫化锌或硒化锌。
PCT/CN2012/073418 2012-03-31 2012-03-31 有机电致发光器件及其制备方法 WO2013143146A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/073418 WO2013143146A1 (zh) 2012-03-31 2012-03-31 有机电致发光器件及其制备方法
CN201280066470.7A CN104040748A (zh) 2012-03-31 2012-03-31 有机电致发光器件及其制备方法
EP12873428.2A EP2833428A4 (en) 2012-03-31 2012-03-31 ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD OF MANUFACTURING THE SAME
US14/372,214 US20140332796A1 (en) 2012-03-31 2012-03-31 Organic electroluminescence device and method for manufacture thereof
JP2015502047A JP2015511759A (ja) 2012-03-31 2012-03-31 有機エレクトロルミネッセンスデバイス及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/073418 WO2013143146A1 (zh) 2012-03-31 2012-03-31 有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2013143146A1 true WO2013143146A1 (zh) 2013-10-03

Family

ID=49258123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073418 WO2013143146A1 (zh) 2012-03-31 2012-03-31 有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US20140332796A1 (zh)
EP (1) EP2833428A4 (zh)
JP (1) JP2015511759A (zh)
CN (1) CN104040748A (zh)
WO (1) WO2013143146A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849360B1 (ko) * 2016-01-29 2018-04-16 한화테크윈 주식회사 그래핀 기반 적층체 및 이의 제조방법
CN111969002A (zh) * 2020-08-28 2020-11-20 上海大学 一种超清柔性发光显示器及其制备方法
CN113285049B (zh) * 2021-05-27 2022-05-06 电子科技大学 一种超声喷涂制备三氧化钨高光提取效率oled外光提取层的方法
KR20240029634A (ko) * 2022-08-25 2024-03-06 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034687A (zh) * 2007-04-18 2007-09-12 电子科技大学 一种柔性光电子器件用基板及其制备方法
CN102169963A (zh) * 2010-12-22 2011-08-31 涂洪明 一种碳薄层电极
KR20110115820A (ko) * 2010-04-16 2011-10-24 성균관대학교산학협력단 그라핀 시트를 포함하는 가요성 투명 전도층을 구비하는 유기 전자 소자 및 이의 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215309A (ja) * 2001-04-17 2003-07-30 Sony Corp 反射防止フィルム及び反射防止層付きプラスチック基板
JP2003114302A (ja) * 2001-10-04 2003-04-18 Sony Corp 反射防止フィルム及び反射防止偏光板の製造方法
US8189851B2 (en) * 2009-03-06 2012-05-29 Emo Labs, Inc. Optically clear diaphragm for an acoustic transducer and method for making same
JP5380161B2 (ja) * 2009-06-02 2014-01-08 株式会社日立製作所 透明導電性膜およびそれを用いた電子デバイス
FR2946799B1 (fr) * 2009-06-15 2012-03-02 Astron Fiamm Safety Diode et procede de realisation d'une diode electroluminescente organique incluant une couche de planarisation du substrat
WO2012002113A1 (ja) * 2010-06-29 2012-01-05 コニカミノルタホールディングス株式会社 透明導電体、有機el素子及び有機光電変換素子
TWI433902B (zh) * 2010-07-12 2014-04-11 Hanwha Chemical Corp 導電性漆料組合物與使用該組合物製造導電性薄膜之方法
EP2650940A4 (en) * 2010-12-09 2016-07-13 Ocean S King Lighting Science&Technology Co Ltd DOUBLE-SIDED ORGANIC LIGHT-EMITTING LUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF
KR20130018881A (ko) * 2011-02-09 2013-02-25 가부시키가이샤 인큐베이션 얼라이언스 다층 그래핀 피복 기판의 제조 방법
EP2693507A4 (en) * 2011-03-30 2014-10-08 Oceans King Lighting Science FLEXIBLE ORGANIC ELECTROLUMINESCENZING DEVICE AND METHOD OF MANUFACTURING THEREOF
CN102208556B (zh) * 2011-04-18 2014-03-05 电子科技大学 一种柔性发光器件用基板及其制备方法
KR101240781B1 (ko) * 2011-06-30 2013-03-11 주식회사 탑 엔지니어링 유기 발광소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034687A (zh) * 2007-04-18 2007-09-12 电子科技大学 一种柔性光电子器件用基板及其制备方法
KR20110115820A (ko) * 2010-04-16 2011-10-24 성균관대학교산학협력단 그라핀 시트를 포함하는 가요성 투명 전도층을 구비하는 유기 전자 소자 및 이의 제조 방법
CN102169963A (zh) * 2010-12-22 2011-08-31 涂洪明 一种碳薄层电极

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHO, H. ET AL.: "Highly flexible organic light-emitting diodes based on ZnS/Ag/W03 multilayer transparent electrodes", ORGANIC ELECTRONICS, vol. 10, no. 6, 10 June 2009 (2009-06-10), pages 1163 - 1169, XP026348802 *
CHO, H. ET AL.: "Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics", OPTICS EXPRESS, vol. 18, no. 4, 15 February 2010 (2010-02-15), pages 3404 - 3414, XP055076040 *
See also references of EP2833428A4 *
SUN, T. ET AL.: "Multilayered graphene used as anode of organic light emitting devices", APPLIED PHYSICS LETTERS, vol. 96, no. 13, 29 March 2010 (2010-03-29), pages 133301, XP012130627 *

Also Published As

Publication number Publication date
EP2833428A1 (en) 2015-02-04
EP2833428A4 (en) 2015-11-25
JP2015511759A (ja) 2015-04-20
US20140332796A1 (en) 2014-11-13
CN104040748A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2013000162A1 (zh) 顶发射有机电致发光器件及其制备方法
WO2012129791A1 (zh) 一种柔性有机电致发光器件及其制备方法
WO2010039009A2 (ko) 유기발광소자 및 이의 제조방법
WO2009091231A2 (ko) 유기발광소자 및 이의 제조 방법
WO2014077627A1 (ko) 유기발광소자 및 이의 제조방법
WO2015047037A1 (ko) 유기전자소자용 기판 및 이의 제조방법
WO2010056070A2 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
KR102083785B1 (ko) 유기전계발광표시장치의 제조방법
WO2016173135A1 (zh) 有机发光二极管器件及其制备方法
WO2013180539A1 (ko) 유기전계발광소자
WO2013000163A1 (zh) 顶发射柔性有机电致发光器件及其制备方法
KR20120014786A (ko) 유기 발광 디스플레이 장치 및 그 제조 방법
JP2011054668A (ja) 有機電界発光素子
WO2018188155A1 (zh) 量子点显示器件及其制造方法
WO2013143146A1 (zh) 有机电致发光器件及其制备方法
WO2019177223A1 (ko) 복수의 전도성 처리를 포함하는 고전도성 고분자 박막의 제조 방법
WO2013000164A1 (zh) 顶发射有机电致发光二极管及其制备方法
KR20180047421A (ko) 유기발광다이오드 표시장치
WO2013078593A1 (zh) 掺杂有机电致发光器件及其制备方法
WO2013078585A1 (zh) 聚合物电致发光器件及其制备方法
KR100685419B1 (ko) 유기전계발광표시소자 및 그 제조방법
WO2012068744A1 (zh) 一种有机电致发光器件及其制备方法
WO2014082300A1 (zh) 一种有机电致发光器件及其制备方法
TWI508621B (zh) 影像顯示系統
WO2013078590A1 (zh) 一种聚合物电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14372214

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012873428

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873428

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015502047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE